### Non-Standard Numbers and TGD

I had opportunity to read articles of Elemer Rosinger about possible physical applications of non-standard numbers and it was natural to compare these numbers with the generalization of real numbers inspired by the notion of infinite primes. I dediced to attach the commentary as a new chapter to "Physics as a Generalized Number Theory". The abstract gives a rough overall view about the commentary.

The chapter represents a comparison of ultrapower fields (loosely surreals, hyper-reals, long line) and number fields generated by infinite primes having a physical interpretation in Topological Geometrodynamics. Ultrapower fields are discussed in very physicist friendly manner in the articles of Elemer Rosinger and these articles are taken as a convenient starting point. The physical interpretations and principles proposed by Rosinger are considered against the background provided by TGD. The construction of ultrapower fields is associated with physics using the close analogies with gauge theories, gauge invariance, and with the singularities of classical fields. Non-standard numbers are compared with the numbers generated by infinite primes and it is found that the construction of infinite primes, integers, and rationals has a close similarity with construction of the generalized scalars. The construction replaces at the lowest level the index set Λ=N of natural numbers with algebraic numbers A, Frechet filter of N with that of A, and R with unit circle S1 represented as complex numbers of unit magnitude. At higher levels of the hierarchy generalized -possibly infinite and infinitesimal- algebraic numbers emerge. This correspondence maps a given set in the dual of Frechet filter of A to a phase factor characterizing infinite rational algebraically so that correspondence is like representation of algebra. The basic difference between two approaches to infinite numbers is that the counterpart of infinitesimals is infinitude of real units with complex number theoretic anatomy: one might loosely say that these real units are exponentials of infinitesimals.

For details see the new chapter Non-Standard Numbers and TGD.