DNA as topological quantum computer: IVIn order to have a more concrete view about realization of topological quantum computation (see the previous posting and links from it), one must understand how quantum computation can be reduced to a construction of braidings from fundamental unitary operations. The article Braiding Operators are Universal Quantum Gates by Kaufmann and Lomonaco contains a very lucid summary of how braids can be used in topological quantum computation.
Quantum computer is universal if all unitary transformations of nth tensor power of a finite-dimensional state space V can be realized. Universality is achieved by using only two kinds of gates. The gates of first type are single particle gates realizing arbitrary unitary transformation of U(2) in case of qubits. Only single 2-particle gate is necessary and universality is guaranteed if the corresponding unitary transformation is entangling for some state pair. The standard choice for the 2-gate is CNOT acting on bit pair (t,c). The value of the control bit c remains of course unchanged and the value of the target bit changes for c=1 and remains unchanged for c=0. 2. The fundamental braiding operation as a universal 2-gate The realization of CNOT or gate equivalent to it is the key problem in topological quantum computation. For instance, the slow de-coherence of photons makes quantum optics a promising approach but the realization of CNOT requires strongly nonlinear optics. The interaction of control and target photon should be such that for second polarization of the control photon target photon changes its direction but keeps it for the second polarization direction. For braids CNOT can be be expressed in terms of the fundamental braiding operation en representing the exchange of the strands n and n+1 of the braid represented as a unitary matrix R acting on Vn\otimes Vn+1. The basic condition on R is Yang-Baxter equation expressing the defining condition enen+1en= en+1enen+1 for braid group generators. The solutions of Yang-Baxter equation for spinors are well-known and CNOT can be expressed in the general case as a transformation of form A1\otimes A2 R A3\otimes A4 in which single particle operators Ai act on incoming and outgoing lines. 3-braid is the simplest possible braid able to perform interesting tqc, which suggests that genetic codons are associated with 3-braids. The dance of lipids on chessboard defined by the lipid layer would reduce R to an exchange of neighboring lipids. For instance, the matrix R= DS, D =diag(1,1,1,-1) and S=e11+e23+e32+e44 the swap matrix permuting the neighboring spins satisfies Yang-Baxter equation and is entangling. 3. What the replacement of linear braid with planar braid could mean? Standard braids are essentially linear objects in plane. The possibility to perform the basic braiding operation for the nearest neighbors in two different directions must affect the situation somehow.
The realization of single particle gates as U(2) transformations leads naturally to the extension of the braid group by assigning to the strands sequences of group elements satisfying the group multiplication rules. The group elements associated with a nth strand commute with the generators of braid group which do not act on nth strand. G would be naturally subgroup of the covering group of rotation group acting in spin degrees of spin 1/2 object. Since U(1) transformations generate only an overall phase to the state, one the presence of this factor might not be necessary. A possible candidate for U(1) factor is as a rotation induced by a time-like parallel translation defined by the electromagnetic scalar potential Φ=At. The natural realization for single particle gate s subset SU(2) would be as SU(2) rotation induced by a magnetic pulse. This transformation is fixed by the rotation axis and rotation angle around this axes. This kind of transformation would result by applying to the strand a magnetic pulse with magnetic field in the direction of rotation axes. The duration of the pulse determines the rotation angle. Pulse could be created by bringing a magnetic flux tube to the system, letting it act for the required time, and moving it away. U(1) phase factor could result from the electromagnetic gauge potential as a non-integrable phase factor exp(ie∫ Atdt/hbar) coming from the presence of scale potential Φ=At in the Hamiltonian. What could then be the simplest realization of the U(2) transformation in the case of cell membrane?
|