Magnetite produced by traffic as a possible cause of Alzheimer disease
A rather unexpected partial explanation for Alzheimer's disease has been found: magnetite particles, which can be found in urban environments from exhaust gases containing breathing air (see this). I have written earlier about Alzheimer's disease from the TGD point of view (see this). Magnetite particles seem to be found in the hippocampus of those with the disease, which is central to memory. Now it has been found that the exposure of mice to magnetite leads to a generation of Alzheimer disease. The overall important message to the decision makers is that the pollution caused by the traffic in urban environment could be an important cause of Alzheimer disease. The brain needs metabolic energy. Hemoglobin is central to the supply of metabolic energy because it binds oxygen. Could it be thought that Alzheimer's is at least partially related to a lack of metabolic energy in the hippocampus? In the sequel I will consider this explanation in the TGD framework. Short digression to TGD view of metabolism Oxygen molecules O2 bind to iron atoms in hemoglobin (see this) that already have a valence bond with 5 nitrogen atoms and a bond is created where Fe has received 5 electrons and a sixth from oxygen molecule O2. So Fe behaves the opposite of what you would expect and hemoglobin is very unusual chemically! Phosphate O=PO3, or more precisely phosphate ion O=P(O-)3), which also plays a central role in metabolism, also breaks the rules: instead of accepting 3 valence electrons, it gives up 5 electrons to oxygen atoms. Could the TGD view of quantum biology help to understand what is involved. Dark protons created by the Pollack effect provide a basic control tool of quantum biochemistry in TGD. Could they be involved now. Consider first the so-called high energy phosphate bond, which is one of the mysteries of biochemistry.
What the effect of magnetite could be? Magnetite particles, .5 micrometers in size, consist of Fe3O4 molecules containing iron and oxygen. According to Wikipedia, magnetite appears as crystals and obeys the chemical formula Fe2+(Fe3+)2(O-2)4. The electronic configuration is [Ar] 3d6 4s2 and 3 Fe ions have donated besides the s electrons also one electron to oxygen. Could it happen that somehow the oxygen absorption capacity of hemoglobin would decrease, that the amount of hemoglobin would decrease, or that oxygen would bind to the magnetite molecules on the surface of the magnetite particle? For example, could you think that some of the O2 molecules bind to Fe3O4 molecules instead of hemoglobin at the surface of the magnetite. Carbon monoxide is dangerous because it binds to the heme. Could it be that also the magnetite crystals do the same or rather could heme bind to them (thanks for Shamoon Ahmed for proposing this more reasonable looking option). See the chapter Quantum Mind and Neuroscience.
|