Some TGD inspired comments related to quantum measurement theoryIn the following some TGD inspired comments on quantum measurement theory inspired by FB discussions. Does the analog of repeated second quantization take place at the level of WCW? The world of classical worlds (WCW) is the basic structure of quantum TGD. It can be said to be the space of 3-surfaces consisting of pairs of (not necessarily connected 3-surfaces) at the boundaries of causal diamond (CD) and connected by a not necessarily connected 4-surface. 4- surface defines the interaction between the states associated with the 3-surfaces. The state associated with given 3-surface correspond to WCW spinor and one has modes of WCW spinor fields. WCW decomposes to sub-WCWs assignable to CDs and effectively the universe reduces to CD. The key idea is that the WCW spinor fields are purely classical spinor fields. No second quantization is performed for them. Second quantization of induced spinor fields at space-time level is however carried out and gamma matrices of WCW anticommuting to its Kähler metric are linear combinations of fermionic oscillator operators. The classicality of WCW spinor fields looks somewhat problematic.
One could think the situation in terms of (X3,Y3) ∈ WCW× WCW in which case one can speak of entanglement between WCW spinor modes associated with X3 and Y3 reduced by the measurement of density matrix. Second interpretation as a localization of wave function of Z3=X3∪ Y3∈ WCW. About the notion of observable In ordinary quantum theory observables are hermitian operators and their eigenvalues representing the values of observables are real. In TGD using M4× CP2 picture the gauge coupling strengths are complex and therefore also classical Noether charges are complex. This should be the case also for quantum observables. Total quantum numbers could be still real but single particle quantum numbers complex. I have proposed that this is true for conformal weights and talked about conformal confinement. Also in ordinary twistor approach virtual particles are on mass shell and thus massless but complex. Same is expected in TGD for 8-momenta so that one obtains particles massive in 4-D sense but massless in 8-D sense: this is absolutely crucial for the generalization of twistor approach to 8-D context. Virtual momenta could be massless in 8-D sense but complex but total momenta would be real. This would apply to all quantal charges, which for Cartan algebra are identical with classical Noether charges. I learned also a very interesting fact about normal operators for which operator and its hermitian conjugate commute. As the author mentions, this trivial fact has remained unknown even for professionals. One can assign to a normal operator real and imaginary parts, which are commuting as hermitian operators so that - according to the standrd quantum measurement theory - they can be measured simultaneously. For instance, complex values of various charge predicted by twistor lift of TGD would therefore in principle be allowed even without the assumption that the total charges are real ( total charges as hermitian operators). Combining the two ideas one would have that single particle charges are complex and represented by normal operators and total charges are real and represented by hermitian operators. What does amplification process in quantum measurement mean? Quantum measurement involves an amplification process amplifying the outcome of state function reduction at single particle level to a macroscopic effect. This aspect of quantum measurement theory is poorly understood at fundamental level and is usually though to be unessential concerning the calculation of the predictions of quantum theory. The intuitive expectation is that the amplification is made possible by criticality - I would suggest quantum criticality - and involves the analog of a phase transition generated by seed. This is like the change for a direction of single spin in magnet at criticality inducing change of the magnetization direction. Quantum criticality involves long range fluctuations and correlations for which heff/h=n serves as a mathematical description in terms of adelic physics in TGD framework. Long range correlations would make possible the classical macroscopic state characterizing the pointer. This large heff/h=n aspect would naturally correspond to the presence of intellligent observer: heff indeed closely relates to the description of not only sensory but also cognitive aspects of existence and has number theoretic interpretation as a measure for what might be called IQ of the system. If this is tge case, one cannot build proper quantum measurement theory in the framework of standard quantum mechanics, which is unable to say anything interesting about cognition and observer. A theory of consciousness is required for this and ZEO based quantum measurement theory is also a theory of consciousness. Zero energy ontology and Afshar experiment Afshar experiment challenges Copenhagen and many-universe interpretations and it is interesting to look how it can be understood in zero energy ontology (ZEO). Consider first the experimental arrangement of Afshar.
|