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Abstract

The construction of Kähler geometry of WCW (”world of classical worlds”)
is fundamental to TGD program. I ended up with the idea about physics as
WCW geometry around 1985 and made a breakthrough around 1990, when I
realized that Kähler function for WCW could correspond to Kähler action for its
preferred extremals defining the analogs of Bohr orbits so that classical theory
with Bohr rules would become an exact part of quantum theory and path integral
would be replaced with genuine integral over WCW. The motivating construction
was that for loop spaces leading to a unique Kähler geometry. The geometry for
the space of 3-D objects is even more complex than that for loops and the vision
still is that the geometry of WCW is unique from the mere existence of Riemann
connection.

This chapter represents the updated version of the construction providing
a solution to the problems of the previous construction. The basic formulas
remain as such but the expressions for WCW super-Hamiltonians defining WCW
Hamiltonians (and matrix elements of WCW metric) as their anticommutator
are replaced with those following from the dynamics of the modified Dirac action.

1 Introduction

The construction of Kähler geometry of WCW (”world of classical worlds”) is funda-
mental to TGD program. I ended up with the idea about physics as WCW geometry
around 1985 and made a breakthrough around 1990, when I realized that Kähler func-
tion for WCW could correspond to Kähler action for its preferred extremals defining
the analogs of Bohr orbits so that classical theory with Bohr rules would become an
exact part of quantum theory and path integral would be replaced with genuine in-
tegral over WCW. The motivating construction was that for loop spaces leading to a
unique Kähler geometry [A7]. The geometry for the space of 3-D objects is even more
complex than that for loops and the vision still is that the geometry of WCW is unique
from the mere existence of Riemann connection.

The basic idea is that WCW is union of symmetric spaces G/H labelled by zero
modes which do not contribute to the WCW metric. There have been many open
questions and it seems the details of the ealier approach [?]ust be modified at the level
of detailed identifications and interpretations.

1. A longstanding question has been whether one could assign Equivalence Principle
(EP) with the coset representation formed by the super-Virasoro representation
assigned to G and H in such a manner that the four-momenta associated with the
representations and identified as inertial and gravitational four-momenta would
be identical. This does not seem to be the case. The recent view will be that
EP reduces to the view that the classical four-momentum associated with Kähler
action is equivalent with that assignable to modified Dirac action supersymmet-
rically related to Kähler action: quantum classical correspondence (QCC) would
be in question. Also strong form of general coordinate invariance implying strong
form of holography in turn implying that the super-symplectic representations
assignable to space-like and light-like 3-surfaces are equivalent could imply EP
with gravitational and inertial four-momenta assigned to these two representa-
tions.
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2. The detailed identification of groups G and H and corresponding algebras has
been a longstanding problem. Symplectic algebra associated withδM4

± × CP2
(δM4

± is light-cone boundary - or more precisely, with the boundary of causal
diamond (CD) defined as Cartesian product of CP2 with intersection of future
and past direct light cones of M4 has Kac-Moody type structure with light-
like radial coordinate replacing complex coordinate z. Virasoro algebra would
correspond to radial diffeomorphisms. I have also introduced Kac-Moody algebra
assigned to the isometries and localized with respect to internal coordinates of
the light-like 3-surfaces at which the signature of the induced metric changes from
Minkowskian to Euclidian and which serve as natural correlates for elementary
particles (in very general sense!). This kind of localization by force could be
however argued to be rather ad hoc as opposed to the inherent localization of
the symplectic algebra containing the symplectic algebra of isometries as sub-
algebra. It turns out that one obtains direct sum of representations of symplectic
algebra and Kac-Moody algebra of isometries naturally as required by the success
of p-adic mass calculations.

3. The dynamics of Kähler action is not visible in the earlier construction. The
construction also expressed WCW Hamiltonians as 2-D integrals over partonic
2-surfaces. Although strong form of general coordinate invariance (GCI) implies
strong form of holography meaning that partonic 2-surfaces and their 4-D tangent
space data should code for quantum physics, this kind of outcome seems too
strong. The progress in the understanding of the solutions of modified Dirac
equation led however to the conclusion that spinor modes other than right-handed
neutrino are localized at string world sheets with strings connecting different
partonic 2-surfaces. This leads to a modification of earlier construction in which
WCW super-Hamiltonians are essentially integrals with integrand identified as a
Noether super current for the deformations in G Each spinor mode gives rise to
super current and the modes of right-handed neutrino and other fermions differ
in an essential manner. Right-handed neutrino would correspond to symplectic
algebra and other modes to the Kac-Moody algebra and one obtains the crucial
5 tensor factors of Super Virasoro required by p-adic mass calculations.

The matrix elements of WCW metric between Killing vectors are expressible
as anti-commutators of super-Hamiltonians identifiable as contractions of WCW
gamma matrices with these vectors and give Poisson brackets of corresponding
Hamiltonians. The anti-commutation relates of induced spinor fields are dic-
tated by this condition. Everything is 3-dimensional although one expects that
symplectic transformations localized within interior of X3 act as gauge symme-
tries so that in this sense effective 2-dimensionality is achieved. The components
of WCW metric are labelled by standard model quantum numbers so that the
connection with physics is extremely intimate.

4. An open question in the earlier visions was whether finite measurement resolution
is realized as discretization at the level of fundamental dynamics. This would
mean that only certain string world sheets from the slicing by string world sheets
and partonic 2-surfaces are possible. The requirement that anti-commutations
are consistent suggests that string world sheets correspond to surfaces for which
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Kähler magnetic field is constant along string in well defined sense (Jµνε
µνg1/2

remains constant along string). It however turns that by a suitable choice of
coordinates of 3-surface one can guarantee that this quantity is constant so that
no additional constraint results.

5. Quantum criticality is one of the basic notions of quantum TGD and its rela-
tionship to coset construction has remained unclear. In this chapter the concrete
realization of criticality in terms of symmetry breaking hierarchy of Super Vira-
soro algebra acting on symplectic and Kac-Moody algebras. Also a connection
with finite measurement resolution - second key notion of TGD - emerges natu-
rally.

2 WCW as a union of homogenous or symmetric

spaces

In the following the vision about WCW as union of coset spaces is discussed in more
detail.

2.1 Basic vision

The basic view about coset space construction for WCW has not changed.

1. The idea about WCW as a union of coset spaces G/H labelled by zero modes
is extremely attractive. The structure of homogenous space [A1] (http://en.
wikipedia.org/wiki/Homogenous_space) means at Lie algebra level the decom-
position g = h⊕ t to sub-Lie-algebra h and its complement t such that [h, t] ⊂ t
holds true. Homogeneous spaces have G as its isometries. For symmetric space
the additional condition [t, t] ⊂ h holds true and implies the existence of invo-
lution changing at the Lie algebra level the sign of elements of t and leaving
the elements of h invariant. The assumption about the structure of symmetric
space [A6] (http://en.wikipedia.org/wiki/Symmetric_space) implying co-
variantly constant curvature tensor is attractive in infinite-dimensional case since
it gives hopes about calculability.

An important source of intuition is the analogy with the construction of CP2,
which is symmetric space A particular choice of h corresponds to Lie-algebra el-
ements realized as Killing vector fields which vanish at particular point of WCW
and thus leave 3-surface invariant. A preferred choice for this point is as maxi-
mum or minimum of Kähler function. For this 3-surface the Hamiltonians of h
should be stationary. If symmetric space property holds true then commutators
of [t, t] also vanish at the minimum/maximum. Note that Euclidian signature for
the metric of WCW requires that Kähler function can have only maximum or
minimum for given zero modes.

2. The basic objection against TGD is that one cannot use the powerful canon-
ical quantization using the phase space associated with configuration space -
now WCW. The reason is the extreme non-linearly of the Kähler action and

http://en.wikipedia.org/wiki/Homogenous_space
http://en.wikipedia.org/wiki/Homogenous_space
http://en.wikipedia.org/wiki/Symmetric_space
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its huge vacuum degeneracy, which do not allow the construction of Hamilto-
nian formalism. Symplectic and Kähler structure must be realized at the level
of WCW. In particular, Hamiltonians must be represented in completely new
manner. The key idea is to construct WCW Hamiltonians as anti-commutators
of super-Hamiltonians defining the contractions of WCW gamma matrices with
corresponding Killing vector fields and therefore defining the matrix elements of
WCW metric in the tangent vector basis defined by Killing vector fields. Super-
symmetry therefre gives hopes about constructing quantum theory in which only
induced spinor fields are second quantized and imbedding space coordinates are
treated purely classically.

3. It is important to understand the difference between symmetries and isometries
assigned to the Kähler function. Symmetries of Kähler function do not affect it.
The symmetries of Kähler action are also symmetries of Kähler action because
Kähler function is Kähler action for a preferred extremal (here there have been
a lot of confusion). Isometries leave invariant only the quadratic form defined
by Kähler metric gMN = ∂M∂LK but not Kähler function in general. For G/H
decomposition G represents isometries and H both isometries and symmetries of
Kähler function.

CP2 is familiar example: SU(3) represents isometries and U(2) leaves also Kähler
function invariant since it depends on the U(2) invariant radial coordinate r of
CP2. The origin r = 0 is left invariant by U(2) but for r > 0 U(2) performs a
rotation at r = constant 3-sphere. This simple picture helps to understand what
happens at the level of WCW.

How to then distinguish between symmetries and isometries? A natural guess
is that one obtains also for the isometries Noether charges but the vanishing of
boundary terms at spatial infinity crucial in the argument leading to Noether
theorem as ∆S = ∆Q = 0 does not hold true anymore and one obtains charges
which are not conserved anymore. The symmetry breaking contributions would
now come from effective boundaries defined by wormhole throats at which the
induce metric changes its signature from Minkowskian to Euclidian. A more
delicate situation is in which first order contribution to ∆S vanishes and therefore
also ∆Q and the contribution to ∆S comes from second variation allowing also
to define Noether charge which is not conserved.

4. The simple picture about CP2 as symmetric space helps to understand the general
vision if one assumes that WCW has the structure of symmetric space. The
decomposition g = h+t corresponds to decomposition of symplectic deformations
to those which vanish at 3-surface (h) and those which do not (t).

For the symmetric space option, the Poisson brackets for super generators asso-
ciated with t give Hamiltonians of h identifiable as the matrix elements of WCW
metric. They would not vanish although they are stationary at 3-surface meaning
that Riemann connection vanishes at 3-surface. The Hamiltonians which vanish
at 3-surface X3 would correspond to t and the Hamiltonians for which Killing
vectors vanish and which therefore are stationary at X3 would correspond to
h. Outside X3 the situation would of course be different. The metric would be



2.2 Equivalence Principle and WCW 7

obtained by parallel translating the metric from the preferred point of WCW to
elsewhere and symplectic transformations would make this parallel translation.

For the homogenous space option the Poisson brackets for super generators of t
would still give Hamiltonians identifiable as matrix elements of WCW metric but
now they would be necessary those of h. In particular, the Hamiltonians of t do
not in general vanish at X3.

2.2 Equivalence Principle and WCW

Quite recently I returned to an old question concerning the meaning of Equivalence
Principle (EP) in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not
is a pseudo problem due to uncritical assumption there really are two different four-
momenta which must be identified. If even the identification of these two different
momenta is difficult, the pondering of this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by gravi-
ton exchange are proportional to the product of four-momenta of particles and that
the proportionality constant does not depend on any other parameters characterizing
particle (except spin). The are excellent reasons to expect that the stringy picture for
interactions predicts this.

1. The old idea is that EP reduces to the coset construction for Super Virasoro al-
gebra using the algebras associated with G and H. The four-momenta assignable
to these algebras would be identical from the condition that the differences of the
generators annihilate physical states and identifiable as inertial and gravitational
momenta. The objection is that for the preferred 3-surface H by definition acts
trivially so that time-like translations leading out from the boundary of CD can-
not be contained by H unlike G. Hence four-momentum is not associated with
the Super-Virasoro representations assignable to H and the idea about assigning
EP to coset representations does not look promising.

2. Another possibility is that EP corresponds to quantum classical correspondence
(QCC) stating that the classical momentum assignable to Kähler action is iden-
tical with gravitational momentum assignable to Super Virasoro representations.
This view might be equivalent with coset space view. This forced to recon-
sider the questions about the precise identification of the Kac-Moody algebra
and about how to obtain the magic five tensor factors required by p-adic mass
calculations [K9].

A more precise formulation for EP as QCC comes from the observation that
one indeed obtains two four-momenta in TGD approach. The classical four-
momentum assignable to the Kähler action and that assignable to the modified
Dirac action. This four-momentum is an operator and QCC would state that
given eigenvalue of this operator must be equal to the value of classical four-
momentum for the space-time surfaces assignable to the zero energy state in
question. In this form EP would be highly non-trivial. It would be justified
by the Abelian character of four-momentum so that all momentum components
are well-defined also quantum mechanically. One can also consider the splitting
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of four-momentum to longitudinal and transversal parts as done in the parton
model for hadrons: this kind of splitting would be very natural at the boundary
of CD. The objection is that this correspondence is nothing more than QCC.

3. A further possibility is that duality of light-like 3-surfaces and space-like 3-
surfaces holds true. This is the case if the action of symplectic algebra can
be defined at light-like 3-surfaces or even for the entire space-time surfaces. This
could be achieved by parallel translation of light-cone boundary providing slicing
of CD. The four-momenta associated with the two representations of super-
symplectic algebra would be naturally identical and the interpretation would be
in terms of EP.

2.3 Criticism of the earlier construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be criti-
cized.

1. Even after these more than twenty years it looks strange that the Hamiltonians
should reduce to flux integrals over partonic 2-surfaces. The interpretation has
been in terms of effective 2-dimensionality suggested strongly by strong form
of general coordinate invariance stating that the descriptions based on light-like
orbits of partonic 2-surfaces and space-like three surfaces at the ends of causal
diamonds are dual so that only partonic 2-surfaces and 4-D tangent space data at
them would matter. Strong form of holography implies effective 2-dimensionality
but this should correspond gauge character for the action of symplectic generators
in the interior the space-like 3-surfaces at the ends of CDs, which is something
much milder.

One expects that the strings connecting partonic 2-surfaces could bring some-
thing new to the earlier simplistic picture. The guess is that imbedding space
Hamiltonian assignable to a point of partonic 2-surface should be replaced with
that defined as integral over string attached to the point. Therefore the earlier
picture would suffer no modification at the level of general formulas.

2. The fact that the dynamics of Kähler action and modified Dirac action are not
directly involved with the earlier construction raises suspicions. I have proposed
that Kähler function could allow identification as Dirac determinant [K6] but one
would expect more intimate connection. Here the natural question is whether
super-Hamiltonians for the modified Dirac action could correspond to Kähler
charges constructible using Noether’s theorem for corresponding deformations of
the space-time surface and would also be identifiable as WCW gamma matrices.

2.4 Is WCW homogenous or symmetric space?

A key question is whether WCW can be symmetric space [A6] (http://en.wikipedia.
org/wiki/Riemannian_symmetric_space) or whether only homogenous structure is
needed. The lack of covariant constancy of curvature tensor might produce problems
in infinite-dimensional context.

http://en.wikipedia.org/wiki/Riemannian_symmetric_space
http://en.wikipedia.org/wiki/Riemannian_symmetric_space
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The algebraic conditions for symmetric space are g = h + t, [h, t] ⊂ t, [t, t] ⊂ h.
The latter condition is the difficult one.

1. δCD Hamiltonians should induce diffeomorphisms of X3 indeed leaving it invari-
ant. The symplectic vector fields would be parallel to X3. A stronger condition is
that they induce symplectic transformations for which all points of X3 remain in-
variant. Now symplectic vector fields vanish at preferred 3-surface (note that the
symplectic transformations are rM local symplectic transformations of S2×CP2).

2. For Kac-Moody algebra inclusionH ⊂ G for the finite-dimensional Lie-algebra in-
duces the structure of symmetric space. If entire algebra is involved this does not
look physically very attractive idea unless one believes on symmetry breaking for
both SU(3), U(2)ew, and SO(3) and E2 (here complex conjugation corresponds
to the involution). If one assumes only Kac-Moody algebra as critical symme-
tries, the number of tensor factors is 4 instead of five, and it is not clear whether
one can obtain consistency with p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of CP2.
They could correspond to intersections of deformations of CP2 type vacuum
exrtremals with the boundary of CD. Also geodesic spheres S2 of CP2 are in-
variant under U(2) subgroup and would relate naturally to cosmic strings. The
corresponding 3-surface would be L × S2, where L is a piece of light-like radial
geodesic.

3. In the case of symplectic algebra one can construct the imbedding space Hamil-
tonians inducing WCW Hamiltonians as products of elements of the isometry
algebra of S2 ×CP2 for with parity under involution is well-defined. This would
give a decomposition of the symplectic algebra satisfying the symmetric space
property at the level imbedding space. This decomposition does not however
look natural at the level of WCW since the only single point of CP2 and light-
like geodesic of δM4

+ can be fixed by SO(2)× U(2) so that the 3-surfaces would
reduce to pieces of light rays.

4. A more promising involution is the inversion rM → 1/rM of the radial coordinate
mapping the radial conformal weights to their negatives. This corresponds to
the inversion in Super Virasoro algebra. t would correspond to functions which
are odd functions of u ≡ log(rM/r0) and h to even function of u. Stationary 3-
surfaces would correspond to u = 1 surfaces for which log(u) = 0 holds true. This
would assign criticality with Virasoro algebra as one expects on general grounds.

rM = constant surface would most naturally correspond to a maximum of Kähler
function which could indeed be highly symmetric. The elements with even u-
parity should define Hamiltonians, which are stationary at the maximum of
Kähler function. For other 3-surfaces obtained by /rM -local) symplectic trans-
formations the situation is different: now H is replaced with its symplectic con-
jugate hHg−1 of H is acceptable and if the conjecture is true one would obtained
3-surfaces assignable to perturbation theory around given maximum as symplec-
tic conjugates of the maximum. The condition that H leaves X3 invariant in
pointwise manner is certainly too strong and imply that the 3-surface has single
point as CP2 projection.



2.5 Symplectic and Kac-Moody algebras as basic building bricks 10

5. One can also consider the possibility that critical deformations correspond to h
and non-critical ones to t for the preferred 3-surface. Criticality for given h would
hold only for a preferred 3-surface so that this picture would be very similar that
above. Symplectic conjugates of h would define criticality for other 3-surfaces.
WCW would decompose to a union corresponding to different criticalities perhaps
assignable to the hierarchy of sub-algebras of conformal algebra labelled by integer
whose multiples give the allowed conformal weights. Hierarchy of breakings of
conformal symmetries would characterize this hierarchy of sectors of WCW.

For sub-algebras of the conformal algebras (Kac-Moody and symplectic algebra)
the condition [t, t] ⊂ h cannot hold true so that one would obtain only the
structure of homogenous space.

2.5 Symplectic and Kac-Moody algebras as basic building bricks

The basic building bricks are symplectic algebra of δCD (this includes CP2 besides
light-cone boundary) and Kac-Moody algebra assignable to the isometries of δCD [K4].
It seems however that the longheld view about the role of Kac-Moody algebra must be
modified. Also the earlier realization of super-Hamiltonians and Hamiltonians seems
too naive.

1. I have been accustomed to think that Kac-Moody algebra could be regarded as
a sub-algebra of symplectic algebra. p-Adic mass calculations however requires
five tensor factors for the coset representation of Super Virasoro algebra naturally
assigned to the coset structure G/H of a sector of WCW with fixed zero modes.
Therefore Kac-Moody algebra cannot be regarded as a sub-algebra of symplectic
algebra giving only single tensor factor and thus inconsistent with interpretation
of p-adic mass calculations.

2. The localization of Kac-Moody algebra generators with respect to the internal
coordinates of light-like 3-surface taking the role of complex coordinate z in con-
formal field theory is also questionable: the most economical option relies on
localization with respect to light-like radial coordinate of light-cone boundary as
in the case of symplectic algebra. Kac-Moody algebra cannot be however sub-
algebra of the symplectic algebra assigned with covariantly constant right-handed
neutrino in the earlier approach.

3. Right-handed covariantly constant neutrino as a generator of super symmetries
plays a key role in the earlier construction of symplectic super-Hamiltonians.
What raises doubts is that other spinor modes - both those of right-handed
neutrino and electroweakly charged spinor modes - are absent. All spinor modes
should be present and thus provide direct mapping from WCW geometry to
WCW spinor fields in accordance with super-symmetry and the general idea that
WCW geometry is coded by WCW spinor fields.

Hence it seems that Kac-Moody algebra must be assigned with the modes of
the induced spinor field which carry electroweak quantum numbers. If would be
natural that the modes of right-handed neutrino having no weak and color inter-
actions would generate the huge symplectic algebra of symmetries and that the
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modes of fermions with electroweak charges generate much smaller Kac-Moody
algebra.

4. The dynamics of Kähler action and modified Dirac action action are invisible in
the earlier construction. This suggests that the definition of WCW Hamiltonians
is too simplistic. The proposal is that the conserved super charges derivable as
Noether charges and identifiable as super-Hamiltonians define WCW metric and
Hamiltonians as their anti-commutators. Spinor modes would become labels of
Hamiltonians and WCW geometry relates directly to the dynamics of elementary
particles.

3 Preferred extremals of Kähler action, solutions of

the modified Dirac operator, and quantum criti-

cality

Perhaps due to my natural laziness I have not bothered to go through the basic con-
struction [K4, K3] although several new ideas have emerged during last years [K13].

1. The new view about preferred extremals of Kähler action involves the slicing
of space-time surface to string world sheets labelled by points of any partonic
two-surface or vice versa. I have called this structure Hamilton-Jacobi structure
[K2]. A number theoretic interpretation based on the octonionic representation
of imbedding space gamma matrices. A gauge theoretic interpretation in terms of
two orthogonal 2-D spaces assignable to polarization and momentum of massless
field mode is also possible. The slicing suggests duality between string world
sheets and conformal field theory at partonic 2-surfaces analogous to AdS/CFT.
Strong form of holography implied by strong form of GCI would be behind the
duality.

2. The new view about the solutions of modified Dirac equation involves localiza-
tion of the modes at string world sheets: this emerges from the condition that
electric charge is well defined quantum number for the modes. The effective 2-
dimensionality of the space of the modified gamma matrices is crucial for the
localization. This leads to a concrete model of elementary particles as string like
objects involving two space-time sheets and flux tubes carrying Kähler magnetic
monopole flux. Holomorphy and complexification of modified gamma matrices
are absolutely essential consequences of the localization and is expected to be
crucial also in the construction of WCW geometry. The weakest interpretation
is that the general solution of modified Dirac is superposition of these localized
modes parametrized by the points of partonic 2-surface and integer labelling the
modes themselves as in string theory. One has the same general picture as in
ordinary quantum theory.

One can wonder whether finite measurement resolution is realized dynamically in
the sense that a discrete set of stringy world sheets are possible. It will be found
that quantization of induced spinor fields leads to a concrete proposal realizing
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this: strings would be identified as curves along which Kähler magnetic field has
constant value.

3. Quantum criticality is central notion in TGD framework: Kähler coupling strength
is the only coupling parameter appearing in Kähler action and is analogous to
temperature. The idea of quantum criticality is that TGD Universe is quantum
critical so that Kähler coupling strength is analogous to critical temperature.
The hope is that this could make the theory unique. I have not however been
able to really understand it and relate it to the coset space construction of WCW
and to coset representations of Super Virasoro.

3.1 What criticality is?

The basic technical problem has been characterization of it quantitatively [K6]. Here
there is still a lot of fuzzy thinking and unanswered questions. What is the precise
definition of criticality and what is its relation to G/H decomposition of WCW? Could
H correspond to critical deformations so that it would have purely group theoretical
characterization, and one would have nice unification of two approaches to quantum
TGD?

1. Does criticality correspond to the failure of classical determinism?

The intuitive guess is that quantum criticality corresponds classically to the criti-
cality of Kähler action implying non-determinism. The preferred extremal associated
with given 3-surface at the boundary of CD is not unique. There are several defor-
mations of space-time surface vanishing at X3 and leaving the Kähler action and thus
Kähler function invariant.

Some nitpicking before continuing is in order.

1. The key word is ”vanishing” in the above definition of criticality relying on clas-
sical non-determinism. Could one allow also non-vanishing deformations of X3

with the property that Kähler function and Kähler action are not changed? This
would correspond to the idea that critical directions correspond to flat directions
for the potential in quadratic approximation: now it would be Kähler function
in quadratic approximation. The flat direction would not contribute to Kähler
metric GKL = ∂K∂L.

Clearly, the subalgebra h associated with H would satisfy criticality in this sense
for all 3-surfaces except the one for which it acts as isotropy group: in this case
one would have criticality in the strong sense.

This identification of criticality is consistent with that based on non-determinism
only if the deformations in H leaving X3 fixed do not leave X4(X3) fixed. This
would apply also to h. One would have bundle like structure: 3-surface would
represent base point of the bundle and space-time surfaces associated with it
would correspond to the points in the fiber permuted by h.

2. What about zero modes, which appear only in the conformal scaling factor of
WCW metric but not in the differentials appearing the line element? Are the
critical modes zero modes but only up to second order in functional Taylor ex-
pansion?
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Returning to the definition of criticality relying on classical non-determinism. One
can try to fix X4(X3) uniquely by fixing 3-surface at the second end of CD but even
this need not be enough? One expects non-uniqueness in smaller scales in accordance
with approximate scaling invariance and fractality assignable to criticality.

A possible interpretation would be in terms of dynamical symmetry analogous to
gauge symmetry assignable to H and having interpretation in terms of measurement
resolution. Increasing the resolution would mean fixing X3 at upper and lower bound-
aries in shorter scale. Finite measurement resolution would give rise to dynamical
gauge symmetry. This conforms with the idea that TGD Universe is analogous to a
Turing machine able to mimick any gauge dynamics. The hierarchy of inclusions for
hyper-finite factors of type II1 supports this view too [K10].

Criticality would be a space-time correlate for quantum non-determinism. I have
assigned this nondeterminism to multi-furcations of space-time sheets giving rise to
the hierarchy of Planck constants. This involves however something new: namely the
idea that several alternative paths are selected in the multi-furcation simultaneously
[K5, K12].

2. Further aspects of criticality

1. Mathematically the situation at criticality of Kähler action for X4(X3) (as dis-
tinguished from Kähler function for X3) is analogous to that at the extremum
of potential when the Hessian defined by second derivatives has vanishing deter-
minant and there are zero modes. Now one would have an infinite number of
deformations leaving Kähler action invariant in second order. What is important
that critical deformations leave X3 invariant so that they cannot correspond to
the sub-algebra h except possibly at point for which H acts as an isotropy group.

2. Criticality would suggest that conserved charges linear in deformation vanish: this
because deformation vanishes at X3. Second variation would give rise to charges
to and invariance of the Kähler action in this action would mean that ∆S2 =
∆Q2 = 0 holds true unless effective boundary terms spoil the situation. Second
order charges would be quadratic in the variation and it is not at all clear whether
there is any hope about having a non-linear analog of Lie-algebra or super algebra
structure. I do not know whether mathematicians have considered this kind of
possibility. Yangian algebra represent involving besides Lie algebra generators
also generators coming as their multilinears have some formal resemblance with
this kind of non-linear structure.

3. Supersymmetry would suggest that criticality for the Kähler action implies crit-
icality for the modified Dirac action. The first order charges for Dirac action
involve the partial derivatives of the canonical momentum currents Tαk with re-
spect to partial derivatives ∂βh

l of imbedding space coordinates just as the second
order charges for Kähler action do. First order Noether charges vanish if criti-
cality means that variation vanishes at X3 but not at X4(X3) since they involve
linearly δhk vanishing at X3. Second order charges for modified Dirac action get
second contribution from the modification of the induced spinor field by a term
involving spin rotation and from the second variation of the modified gamma
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matrices. Here it is essential that derivatives of ∂kδh
l, which need not vanish, are

involved.

Note: I use the notation ∂α for space-time partial derivatives and ∂k for imbedding
space partial derivatives).

3.2 Do critical deformations correspond to Super Virasoro al-
gebra?

One can try to formulate criticality a in terms of super-conformal algebras and their
sub-algebras hc,m for which conformal weights are integer multiples of integer m. Now
I mean with super-conformal algebra also symplectic and super Kac-Moody algebras.
These decompositions - call them just gc = tc ⊕ hc need not correspond to g + h
associated with G/H although it could do so. For instance, if gc corresponds to Super
Virasoro algebra then the decomposition gc = tc⊕hc does not correspond to g = t⊕h.

1. There would be a hierarchy of included sub-algebras hc,m, which corresponds to
hierarchy of conformal algebras assignable to the light-like radial coordinate of
the boundary of light-cone and criticalities could form hierarchy in this sense.
The algebras form inclusion hierarchies hm1 ⊃ hm2 ⊃ ... labelled by sequences
consisting of integers such that given integer is divisible by the previous integer
in the sequence: mn mod mn−1 = 0.

Critical deformations assignable to hc,m would vanish at preferred X3 for which
H is isotropy group and leave Kähler action invariant and would not therefore
contribute to Kähler metric at X3. They could however affect X4(X3).

Non-critical deformation would correspond to the complement of this sub-algebra
affecting both X4(X3) and X3. This hierarchy would correspond to an infinite hi-
erarchy of conformal symmetry breakings and would be manifested at the level of
WCW geometry. Also a connection with the inclusion hierarchy for hyper-finite
factors of type II1 [K10] having interpretation in terms of finite measurement res-
olution is suggested by this hierarchy. Super Virasoro generators with conformal
weight coming as a multiple of m would annihilate physical states so that effec-
tively the criticality correspond to finite-D Hilbert space. This is something new
as compared to the ordinary view about criticality for which all Super Virasoro
generators annihilate the states.

2. A priori g = t+ h decomposition need not have anything to do with the decom-
position of deformations to non-critical and critical ones. Critical deformations
could indeed appear as sub-algebra of g = t+ h and be present for both t and h
in the same manner: that is as sub-algebras of super- Virasoro algebras: Super
Virasoro would represent the non-determinism and criticality and in 2-D confor-
mal theories describing criticality this is indeed the case. In this case the actions
of G and H identified as super-symplectic and super Kac-Moody algebras could
be unique and non-deterministic aspect would not be present. This corresponds
to the physical intuition.

If criticality corresponds to G/H structure, symmetric space property [t, t] ⊂ h
would not hold true as is clear from the additivity of super-conformal weights
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in the commutators of conformal algebras. The reduction of G/H structure to
criticality would be very nice but personally I would give up covariant constancy
of curvature tensor in infinite-dimensional context only with heavy heart.

3. The super-symmetric relation between Kähler action and corresponding modi-
fied Dirac action suggests that the criticality of Kähler action implies vanishing
conserved charges also for the modified Dirac action (both ordinary and super
charges so that one has super-symmetry). The reason is that conserved charge
is linear in deformation. Conservation in turn means that Kähler action is not
changed: ∆S = ∆Q = 0. For non-critical deformations the boundary terms at
the orbits wormhole throats imply non-conservation so that ∆Q (the difference of
charges at space-like ends of space-time surface) is non-vanishing although local
conservation law holds strue. This in terms implies that the contribution to the
Kähler metric is non-trivial.

At criticality both bosonic and fermionic conserved currents can be assigned
to the second variation and are thus quadratic in deformation just like that
associated with Kähler action. If effective boundary terms vanish the criticality
for Kähler action implies the conservation of second order charges by ∆2S =
∆2Q = 0.

3.3 Connection with the vanishing of second variation for
Kähler action

There are three general conjectures related to modified Dirac equation and the con-
served currents associated with the vanishing second variation of Kähler action at
critical points analogous to extrema of potential function at which flat directions ap-
pear and the determinant defined by second derivatives of the potential function does
not have maximal rank.

1. Quantum criticality has as a correlate the vanishing of the second variation of
Kähler action for critical deformations. The conjecture is that the number of these
directions is infinite and corresponds to sub-algebras of Super Virasorol algebra
corresponding to conformal weights coming as integer multiples of integer. Super
Virasoro hypothesis implies that preferred extremals have same algebra of critical
deformations at all points.

Noether theorem applied to critical variations gives rise to conserved currents
and charges which are quadratic in deformation. For non-critical deformations
one obtains linearity in deformation and this charges define the super- conformal
algebras.

Super Virasoro algebra indeed has a standard representation in which generators
are indeed quadratic in Kac-Moody (and symplectic generators in the recent
case). This quadratic character would have interpretation in terms of criticality
not allowing linear representation.

2. Modified Dirac operator is assumed to have a solution spectrum for which both
non-critical and critical deformations act as symmetries. The critical currents
vanish in the first order. Second variation involving first variation for the modified
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gamma matrices and first variation for spinors (spinor rotation term) gives and
second variation for canonical momentum currents gives conserved current. The
general form of the current is very similar to the corresponding current associated
with Kähler action.

3. The currents associated with the modified Dirac action and Kähler action have
same origin. In other words: the conservation of Kähler currents implies the
conservation of the currents associated with the modes of the modified Dirac
operator. A question inspired by quantum classical correspondence is whether
the eigen values of the fermionic charges correspond to the values ofcorrespond-
ing classical conserved charges for Kähler action in the Cartan algebra. This
would imply that all space-time surfaces in superposition representing momen-
tum eigentstate have the same value of classical four-momentum. A sronger
statement of QCC would be that classical correlation functions are same as the
quantal ones.

4 Quantization of the modified Dirac action

The quantization of the modified Dirac action follows standard rules.

1. The general solution is written as a superposition of modes, which are for other
fermions than νR localized to string world sheets and parametrized by a point of
partonic 2-surface which can be chosen to be the intersection of light-like 3-surface
at which induced metric changes signature with the boundary of CD.

2. The anti-commutations for the induced spinor fields are dictated from the con-
dition that the anti-commutators of the super-Hamiltonians identified as WCW
gamma matrices give WCW Hamiltonians as matrix elements of WCW met-
ric. Super Hamiltonians are identified as Noether charges for the modified Dirac
action assignable to the symplectic algebra of δCD being labelled also by the
quantum numbers labelling the modes of the induced spinor field.

3. Consistency conditions for the modified Dirac operator require that the modified
gamma matrices have vanishing divergence: this is true for the extremals of
Kähler action.

4. The guess for the critical algebra is as sub-algebra of Super Virasoro algebra
affecting on the radial light-like coordinate of δCD as diffeomorphisms. Second
variation of the modified Dirac action should vanish in the case of critical defor-
mations. The guess is that the local vanishing of second variation of Kähler action
guarantees this. One obtains classical Kähler charges and Dirac charges: the lat-
ter act as operators. The equivalence of the two definitions of of four-momenta
would corresponds to EP and QCC.

5. An interesting question of principle is what the almost topological QFT property
meaning that Kähler action reduces to Chern-Simons form integrated over bound-
ary of space-time and over the light-like 3-surfaces means. Could one write the
currents in terms of Chern-Simons form alone? Could one use also Chern-Simons
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analog of modified Dirac action. What looks like problem at the first glance
is that only the charges associated with the symplectic group of CP2 would be
non-vanishing. Here the weak form of electric-magnetic duality [K6, K13] how-
ever introduce constraint terms to the action implying that all charges can be
non-vanishing.

The challenge is to construct explicit representations of super charges and demon-
strate that suitably defined anti-commutations for spinor fields reproduce the anti-
commutations of the super-symplectic algebra.

4.1 Integration measure in the superposition over modes

One can express Ψ as a superposition over modes as usually. Except for νR, the modes
are localized at string world sheets and can be labelled by a point of X2, integer
characterizing the mode and analogous to conformal weight, and quantum numbers
characterizing spin, electroweak quantum numbers, and M4 handedness. The delocal-
ization of the modes of νR decouple from left-handed neutrino if the modified gamma
matrices involved only M4 or CP2 gamma matrices. It might be possible to choose
the string coordinate to be light-like radial coordinate of δCD but this is by no means
necessary.

The integration measure dµ in the superposition of modes has nothing to do with
the metric determinants assignable to 3-surface X3 or with the corresponding space-
time surface at X3. dµ at partonic 1-surface X2 must be taken to be such that its
square multiplied by transversal delta function resulting in anti-commutation of two
modes gives a measure defined by the Kähler form Jµν and given by dµ = Jµνdx

µdxν =
J
√
g2dx

1 ∧ dx2, J = Jµνε
µν (note that permutation tensor is inversely proportional√

g2). This measure appears in the earlier definition of WCW Hamiltonian as the
analog of flux integral

∮
HAJdx

1 ∧ dx2, where HA is Hamiltonian to be replaced with
its integral over string.

There are two manners to get J to the measure for Hamiltonian flux.

• Option I: One uses for super charges has ”half integration measure” given by
dµ1/2 =

√
J
√
g2dx

1 × dx2. Note that
√
J is imaginary for J < 0 and also the

unique choice of sign of the square root might produce problems.

• Option II: The integration measure is dµ = J(x, end)
√
g2dx

1 ∧ dx2 for the super
charge and anti-commutations of Ψ at string are proportional to 1/J(x, end)

√
g2

so that anti-commutator of supercharges would be proportional to J(x, end)
√
g2

and metric determinant disappears from the integration measure. Note that the
vanishing of J(x, end) does not produce any problems in anti-commutators.

J(x, end) means a non-locality in the anti-commutator. If the string is interpreted
as beginning from the partonic surface at its second end, one obtains two different
anti-commutation relations unless strings are J(x, y)

√
g2 = constant curves. This

could make sense for flux tubes which are indeed assumed to carry the Kähler
flux. Note also that partonic 2-surface decomposes naturally into regions with
fixed sign of J forming flux tubes.

J(x, y)
√
g2 = constant condition seems actually trivial. The reason is that by

a suitable coordinate transformations (x, y)→ (f(x, y) leaving string coordinate
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invariant the
√
g2 gains a factor equal to the Jacobian of the transformation which

reduces to 2-D Jacobian for the transformation for the coordinates of partonic 2-
surface. By a suitable choice of this transformation J(x, y)

√
g2 = constant condi-

tion is satisfied along string world sheets. This transformation is determined only
modulo an area preserving - thus symplectic - transformation for each partonic
2-surface in the slicing. One obtains space-time analog of symplectic invariance
as an additional symmetry having identification as a remnant of 3-D GCI. Since
also string parametrizations t→ f(t) are allowed so that 3-D GCI reduces to 1-D
Diff and 2-D Sympl. Natural 4-D extension of string reparametrizations would be
to the analogs of conformal transformations associated with the effective metric
defined by modified gamma matrices so that 4-D Diff would reduce to a product
of 2-D conformal and symplectic groups.

The physical state is specified by a finite number of fermion number carrying
string world sheets (one can of course have a superposition of these states with
different locations of string world sheets). One can ask whether QCC forces the
space-time surface to code this state in its geometry in the sense that only these
string world sheets are possible. J(x, y)

√
g2 = constant condition does not force

this.

• Option III: If one assumes slicing by partonic 2-surfaces with common coordinates
x = (x1, x2) and that J(x, y)

√
g is included to current density at the point of

string and that 1/J(x, y)
√
g2 in the anti-commutations is evaluated at the point

x of the partonic surface intersecting the string at y, the flux is replaced with the
superposition of local fluxes from all points in the slicing by partonic 2-surfaces
and J(x, y). For J

√
g2= constant along strings Options II an III are equivalent.

On basis of physical picture Option II with J
√
g2= constant achieved by a proper

choice of partonic coordinates for the slicing looks very attractive.

4.2 Fermionic supra currents as Noether currents

Fermionic supra currents can be taken as Noether currents assignable to the modified
Dirac action. Charges are obtained by integrating over string. Here possible technical
problems relate to the correct identification of the integration measure. In the normal
situation the integration measure is

√
g4 but now 2-D delta function restricts the charge

density for a given mode to the string world sheet and might produce additional factors.
The general form of the super current at given string world sheet corresponding to

a given string world sheet is given by

Jα =
[
ΨnO

α
β,kδh

kDαΨ + ΨnΓαδΨ
]√

g4 ,

Oα
β,k =

∂Γα

∂(∂βhk)
. (4.1)

The covariant divergence of Jα vanishes. Modified gamma matrices appearing in the
equation are defined as contractions of the canonical momentum densities Tαk of Kähler
action with imbedding space gamma matrices Γk as
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Γα = Tαk Γk ,

Tαk =
LK

∂(∂βhk)
,

(4.2)

Ψn is the mode of induced spinor field considered. δΨ is the change of Ψ in spin
rotation given by

δΨ = ∂ljkΣ
kl . (4.3)

The corresponding current is obtained by replacing Ψn with Ψ and integrating over
the modes.

The current could quite well vanish. The reason is that holography means that one
half of modified gamma matrices whose number is effectively 2 annihilates the spinor
modes. Also the covariant derivative Dz or Dz annihilates it. One obtains vanishing
result if the quantity Oz

β,k is proportional to Γz. This can be circumvented if it is
superposition of gamma matrices which are not parallel to the string world sheet or if
is superposition of Γz and Γz: this could have interpretation as breaking of conformal
invariance.

For critical deformations vanishing at X3 δhk appearing in the formula of current
vanishes so that one obtains non-vanishing charge only for second variation.

Note that the quantity Oα
β,k involves terms JαkJ lβ and can be non-vanishing even

when J vanishes. The replacement of ordinary γ0 in fermionic anti-commutation rela-
tions with the modified gamma matrix Γ0 helps here since modified gamma matrices
vanish when J vanishes.

Note that for option II favoured by the existing physical picture J is constant along
the strings and anti-commutation relations are non-singular for J 6= 0.

4.3 Anti-commutators of super-charges

The anti-commutators for fermionic fields- or more generally, quantities related to them
- should be such that the anti-commutator of fermionic super-Hamiltonians defines
WCW Hamiltonian with correct group theoretical properties. To obtain the correct
anti-commutator requires that one obtains Poisson bracket of δCD Hamiltonians ap-
pearing in the super-Hamiltonians. This is the case if the anti-commutator involved is
proportional to iJkl since this gives the desired Poisson bracket

Jklj
k
Aj

l
B = {HA, HB} . (4.4)

This is achieved if one replaces the anti-commutators of Ψ and Ψ with anti-commutator
of Ak ≡ O0

kΨ and Al ≡ ΨO0
l (Oα

k was defined in Eq. 4.1) and assumes

{Ak, Al} = iJklΓ
0δ2(x2, y2)δ1(y1, y2)

X

g
1/2
4

. (4.5)
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Here Γ0 is modified gamma matrix and δ2 is delta function assignable to the partonic
2-surface and δ1 is delta function assignable with the string. Depending on whether
one assumes option I, II, or III one has X = 1, X = 1/Jx,end or 1/J(x1, x2, y).

The modified anti-commutation relations do not make sense in higher imbedding
space dimensions since the number of spinor components exceeds imbedding space
dimension. For D = 8 the dimension of H and the number of independent spinor
components with given H-chirality are indeed same (leptons and quarks have opposite
H-chirality). This makes the dimension D = 8 unique in TGD framework.

4.4 Strong form of General Coordinate Invariance and strong
form of holography

Strong form of general coordinate invariance (GCI) suggests a duality between descrip-
tions using light-like 3-surfaces X3

l at which the signature of the induced metric changes
and space-like 3-surface X3 at the ends of the space-time surface. Also the translates
of these surfaces along slicing might define the theory but with a Kähler function to
which real part of a holomorphic function defined in WCW is added.

In order to define the formalism for light-like 3-surfaces, one should be able to define
the symplectic algebra. This requires the translation of the boundaries of the light-
cone along the line connecting the tips of the CD so that the Hamiltonians of δM4

+ or
δM4

− make sense at X3
l . Depending on whether the the state function reduction has

occurred on upper or lower boundary of CD one must use translates of δM4
+ or δM4

−:
this would be one particular manifestation for the arrow of time.

4.5 Radon, Penrose ja TGD

The construction of the induced spinor field as a superposition of modes restricted to
string world sheets to have well-defined em charge (except in the case of right-handed
neutrino) brings in mind Radon transform [A4] (http://en.wikipedia.org/wiki/
Radon_transform) and Penrose transform [A3] (http://en.wikipedia.org/wiki/
Penrose_transform). In Radon transform the function defined in Euclidian space
En is coded by its integrals over n − 1 dimensional hyper-planes. All planes are al-
lowed and are characterized by their normal whose direction corresponds to a point
of n − 1-dimensional sphere Sn−1 and by the orthogonal distance of the plane from
the origin. Note that the space of hyper-planes is n-dimensional as it should be if it
is to carry same information as the function itself. One can easily demonstrate that
n-dimensional Fourier transform is composite of 1-dimensional Fourier transform in
the direction normal vector parallel to wave vector obtained integrating over the dis-
tance parameter associated with n−dimensional Radon transform defined by function
multplied by the plane wave.

In the case of Penrose transform [A3] (http://en.wikipedia.org/wiki/Penrose_
transform) one has 6-dimensional twistor space CP3 and the space of complex two
- planes- topologically spheres in CP3 - one for each point of in CP3 - defines 4-D
compactified Minkowski space. A massless field in M4 has a representation in CP3

with field value at given point of M4 represented as an integral over S3 of holomorphic
field in CP3.

http://en.wikipedia.org/wiki/Radon_transform
http://en.wikipedia.org/wiki/Radon_transform
http://en.wikipedia.org/wiki/Penrose_transform
http://en.wikipedia.org/wiki/Penrose_transform
http://en.wikipedia.org/wiki/Penrose_transform
http://en.wikipedia.org/wiki/Penrose_transform
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In the recent case the situation resembles very much that for Penrose transform.
In the case of space-like 3-surface CP3 is replaced with the space of strings emanating
from the partonic 2-surface and its points are labelled by points of partonic 2-surface
and points of string so that dimension is still D = 3. The transform describes second
quantize spinor field as a collection of ”Fourier components” along stringy curves.
In 4-D case one has 4-D space-time surface and collection of ”Fourier components”
along string world sheets. One could say that charge densities assignable to partonic
2-surfaces replace the massless fields in M4. Now however the decomposition into
strings and string world sheets takes place at the level of physics rather than only
mathematically.

5 About the notion of four-momentum in TGD frame-

work

The starting point of TGD was the energy problem of General Relativity [K9]. The
solution of the problem was proposed in terms of sub-manifold gravity and based on the
lifting of the isometries of space-time surface to those of M4×CP2 in which space-times
are realized as 4-surfaces so that Poincare transformations act on space-time surface
as an 4-D analog of rigid body rather than moving points at space-time surface. It
however turned out that the situation is not at all so simple.

There are several conceptual hurdles and I have considered several solutions for
them. The basic source of problems has been Equivalence Principle (EP): what does
EP mean in TGD framework [K9, K16]? A related problem has been the interpretation
of gravitational and inertial masses, or more generally the corresponding 4-momenta.
In General Relativity based cosmology gravitational mass is not conserved and this
seems to be in conflict with the conservation of Noether charges. The resolution is
in terms of zero energy ontology (ZEO), which however forces to modify slightly the
original view about the action of Poincare transformations.

A further problem has been quantum classical correspondence (QCC): are quan-
tal four-momenta associated with super conformal representations and classical four-
momenta associated as Noether charges with Kähler action for preferred extremals
identical? Could inertial-gravitational duality - that is EP - be actually equivalent
with QCC? Or are EP and QCC independent dualities. A powerful experimental input
comes p-adic mass calculations [K15] giving excellent predictions provided the number
of tensor factors of super-Virasoro representations is five, and this input together with
Occam’s razor strongly favors QCC=EP identification.

Twistor Grassmannian approach has meant a technical revolution in quantum field
theory (for attempts to understand and generalize the approach in TGD framework
see [K11, K7]. This approach seems to be extremely well suited to TGD and I have
considered a generalization of this approach from N = 4 SUSY to TGD framework
by replacing point like particles with string world sheets in TGD sense and super-
conformal algebra with its TGD version: the fundamental objects are now massless
fermions which can be regarded as on mass shell particles also in internal lines (but
with unphysical helicity). The approach solves old problems related to the realiza-
tion of stringy amplitudes in TGD framework, and avoids some problems of twistorial
QFT (IR divergences and the problems due to non-planar diagrams). The Yangian
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variant of 4-D conformal symmetry is crucial for the approach in N = 4 SUSY, and
implies the recently introduced notion of amplituhedron [?]. A Yangian generalization
of various super-conformal algebras seems more or less a ”must” in TGD framework.
As a consequence, four-momentum is expected to have characteristic multilocal con-
tributions identifiable as multipart on contributions now and possibly relevant for the
understanding of bound states such as hadrons.

5.1 Scale dependent notion of four-momentum in zero energy
ontology

Quite generally, General Relativity does not allow to identify four-momentum as Noether
charges but in GRT based cosmology one can speak of non-conserved mass [K8], which
seems to be in conflict with the conservation of four-momentum in TGD framework.
The solution of the problem comes in terms of zero energy ontology (ZEO) [K1, K14],
which transforms four-momentum to a scale dependent notion: to each causal dia-
mond (CD) one can assign four-momentum assigned with say positive energy part of
the quantum state defined as a quantum superposition of 4-surfaces inside CD.

ZEO is necessary also for the fusion of real and various p-adic physics to single
coherent whole. ZEO also allows maximal ”free will” in quantum jump since every zero
energy state can be created from vacuum and at the same time allows consistency with
the conservation laws. ZEO has rather dramatic implications: in particular the arrow
of thermodynamical time is predicted to vary so that second law must be generalized.
This has especially important implications in living matter, where this kind of variation
is observed.

More precisely, this superposition corresponds to a spinor field in the ”world of clas-
sical worlds” (WCW) [K14]: its components - WCW spinors - correspond to elements
of fermionic Fock basis for a given 4-surface - or by holography implied by general
coordinate invariance (GCI) - for 3-surface having components at both ends of CD.
Strong form of GGI implies strong form of holography (SH) so that partonic 2-surfaces
at the ends of space-time surface plus their 4-D tangent space data are enough to fix
the quantum state. The classical dynamics in the interior is necessary for the trans-
lation of the outcomes of quantum measurements to the language of physics based on
classical fields, which in turn is reduced to sub-manifold geometry in the extension of
the geometrization program of physics provided by TGD.

Holography is very much reminiscent of QCC suggesting trinity: GCI-holography-
QCC. Strong form of holography has strongly stringy flavor: string world sheets con-
necting the wormhole throats appearing as basic building bricks of particles emerge
from the dynamics of induced spinor fields if one requires that the fermionic mode
carries well-defined electromagnetic charge [K13].

5.2 Are the classical and quantal four-momenta identical?

One key question concerns the classical and quantum counterparts of four-momentum.
In TGD framework classical theory is an exact part of quantum theory. Classical four-
momentum corresponds to Noether charge for preferred extremals of Kähler action.
Quantal four-momentum in turn is assigned with the quantum superposition of space-
time sheets assigned with CD - actually WCW spinor field analogous to ordinary spinor
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field carrying fermionic degrees of freedom as analogs of spin. Quantal four-momentum
emerges just as it does in super string models - that is as a parameter associated with
the representations of super-conformal algebras. The precise action of translations in
the representation remains poorly specified. Note that quantal four-momentum does
not emerge as Noether charge: at at least it is not at all obvious that this could be the
case.

Are these classical and quantal four-momenta identical as QCC would suggest?
If so, the Noether four-momentum should be same for all space-time surfaces in the
superposition. QCC suggests that also the classical correlation functions for various
general coordinate invariant local quantities are same as corresponding quantal corre-
lation functions and thus same for all 4-surfaces in quantum superposition - this at
least in the measurement resolution used. This would be an extremely powerful con-
straint on the quantum states and to a high extend could determined the U-, M-, and
S-matrices.

QCC seems to be more or less equivalent with SH stating that in some respects
the descriptions based on classical physics defined by Kähler action in the interior of
space-time surface and the quantal description in terms of quantum states assignable
to the intersections of space-like 3-surfaces at the boundaries of CD and light-like
3-surfaces at which the signature of induced metric changes. SH means effective 2-
dimensionality since the four-dimensional tangent space data at partonic 2-surfaces
matters. SH could be interpreted as Kac-Mody and symplectic symmetries meaning
that apart from central extension they act almost like gauge symmetries in the interiors
of space-like 3-surfaces at the ends of CD and in the interiors of light-like 3-surfaces
representing orbits of partonic 2-surfaces. Gauge conditions are replaced with Super
Virasoro conditions. The word ”almost” is of course extremely important.

5.3 What Equivalence Principle (EP) means in TGD?

EP states the equivalence of gravitational and inertial masses in Newtonian theory. A
possible generalization would be equivalence of gravitational and inertial four-momenta.
In GRT this correspondence cannot be realized in mathematically rigorous manner
since these notions are poorly defined and EP reduces to a purely local statement
in terms of Einstein’s equations. What about TGD? What could EP mean in TGD
framework?

1. Is EP realized at both quantum and space-time level? This option requires
the identification of inertial and gravitational four-momenta at both quantum
and classical level. QCC would require the identification of quantal and clas-
sical counterparts of both gravitational and inertial four-momenta. This would
give three independent equivalences, say PI,class = PI,quant, Pgr,class = Pgr,quant,
Pgr,class = PI,quant, which imply the remaining ones.

Consider the condition Pgr,class = PI,class. At classical level the condition that the
standard energy momentum tensor associated with Kähler action has a vanish-
ing divergence is guaranteed if Einstein’s equations with cosmological term are
satisfied. If preferred extremals satisfy this condition they are constant curvature
spaces for non-vanishing cosmological constant. A more general solution ansatz
involves several functions analogous to cosmological constant corresponding to
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the decomposition of energy momentum tensor to terms proportional to Ein-
stein tensor and several lower-dimensional projection operators [K16]. It must
be emphasized that field equations are extremely non-linear and one must also
consider preferred extremals (which could be identified in terms of space-time
regions having so called Hamilton-Jacobi structure): hence these proposals are
guesses motivated by what is known about exact solutions of field equations.

Consider next Pgr,class = PI,class. At quantum level I have proposed coset repre-
sentations for the pair of super conformal algebras g and h ⊂ g which correspond
to the coset space decomposition of a given sector of WCW with constant val-
ues of zero modes. The coset construction would state that the differences of
super-Virasoro generators associated with g resp. h annhilate physical states.

The identification of the algebras g and h is not straightforward. The algebra g
could be formed by the direct sum of super-symplectic and super Kac-Moody al-
gebras and its sub-algebra h for which the generators vanish at partonic 2-surface
considered. This would correspond to the idea about WCW as a coset space G/H
of corresponding groups (consider as a model CP2 = SU(3)/U(2) with U(2) leav-
ing preferred point invariant). The sub-algebra h in question includes or equals
to the algebra of Kac-Moody generators vanishing at the partonic 2-surface. A
natural choice for the preferred WCW point would be as maximum of Kähler
function in Euclidian regions: positive definiteness of Kähler function allows only
single maximum for fixed values of zero modes). Coset construction states that
differences of super Virasoro generators associated with g and h annihilate phys-
ical states. This implies that corresponding four-momenta are identical that is
Equivalence Principle.

2. Does EP reduce to one aspect of QCC? This would require that classical Noether
four-momentum identified as inertial momentum equals to the quantal four-
momentum assignable to the states of super-conformal representations and iden-
tifiable as gravitational four-momentum. There would be only one independent
condition: Pclass ≡ PI,class = Pgr,quant ≡ Pquant.

Holography realized as AdS/CFT correspondence states the equivalence of de-
scriptions in terms of gravitation realized in terms of strings in 10-D spacetime
and gauge fields at the boundary of AdS. What is disturbing is that this picture is
not completely equivalent with the proposed one. In this case the super-conformal
algebra would be direct sum of super-symplectic and super Kac-Moody parts.

Which of the options looks more plausible? The success of p-adic mass calculations
[K15] have motivated the use of them as a guideline in attempts to understand TGD.
The basic outcome was that elementary particle spectrum can be understood if Super
Virasoro algebra has five tensor factors. Can one decide the fate of the two approaches
to EP using this number as an input?

This is not the case. For both options the number of tensor factors is five as required.
Four tensor factors come from Super Kac-Moody and correspond to translational Kac-
Moody type degrees of freedom in M4, to color degrees of freedom and to electroweak
degrees of freedom (SU(2) × U(1)). One tensor factor comes from the symplectic
degrees of freedom in ∆CD × CP2 (note that Hamiltonians include also products of
δCD and CP2 Hamiltonians so that one does not have direct sum!).
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The reduction of EP to the coset structure of WCW sectors is extremely beautiful
property. But also the reduction of EP to QCC looks very nice and deep. It is of course
possible that the two realizations of EP are equivalent and the natural conjecture is
that this is the case.

For QCC option the GRT inspired interpretation of Equivalence Principle at space-
time level remains to be understood. Is it needed at all? The condition that the
energy momentum tensor of Kähler action has a vanishing divergence leads in General
Relativity to Einstein equations with cosmological term. In TGD framework preferred
extremals satisfying the analogs of Einstein’s equations with several cosmological con-
stant like parameters can be considered.

Should one give up this idea, which indeed might be wrong? Could the divergence
of of energy momentum tensor vanish only asymptotically as was the original proposal?
Or should one try to generalize the interpretation? QCC states that quantum physics
has classical correlate at space-time level and implies EP. Could also quantum classical
correspondence itself have a correlate at space-time level. If so, space-time surface
would able to represent abstractions as statements about statements about.... as the
many-sheeted structure and the vision about TGD physics as analog of Turing machine
able to mimic any other Turing machine suggest.g machine suggests.

5.4 How translations are represented at the level of WCW?

The four-momentum components appearing in the formulas of super conformal gener-
ators correspond to infinitesimal translations. In TGD framework one must be able to
identify these infinitesimal translations precisely. As a matter of fact, finite measure-
ment resolution implies that it is probably too much to assume infinitesimal transla-
tions. Rather, finite exponentials of translation generators are involved and translations
are discretized. This does not have practical signficance since for optimal resolution
the discretization step is about CP2 length scale.

Where and how do these translations act at the level of WCW? ZEO provides a
possible answer to this question.

5.4.1 Discrete Lorentz transformations and time translations act in the
space of CDs: inertial four-momentum

Quantum state corresponds also to wave function in moduli space of CDs. The moduli
space is obtained from given CD by making all boosts for its non-fixed boundary:
boosts correspond to a discrete subgroup of Lorentz group and define a lattice-like
structure at the hyperboloid for which proper time distance from the second tip of CD
is fixed to Tn = n × T (CP2). The quantization of cosmic redshift for which there is
evidence, could relate to this lattice generalizing ordinary 3-D lattices from Euclidian
to hyperbolic space by replacing translations with boosts (velocities).

The additional degree of freedom comes from the fact that the integer n > 0 obtains
all positive values. One has wave functions in the moduli space defined as a pile of
these lattices defined at the hyperboloid with constant value of T (CP2): one can say
that the points of this pile of lattices correspond to Lorentz boosts and scalings of CDs
defining sub-WCW:s.

The interpretation in terms of group which is product of the group of shifts Tn(CP2)→
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Tn+m(CP2) and discrete Lorentz boosts is natural. This group has same Cartesian prod-
uct structure as Galilean group of Newtonian mechanics. This would give a discrete
rest energy and by Lorentz boosts discrete set of four-momenta giving a contribution
to the four-momentum appearing in the super-conformal representation.

What is important that each state function reduction would mean localisation of
either boundary of CD (that is its tip). This localization is analogous to the localization
of particle in position measurement in E3 but now discrete Lorentz boosts and discrete
translations Tn − − > Tn+m replace translations. Since the second end of CD is
necessary del-ocalized in moduli space, one has kind of flip-flop: localization at second
end implies de-localization at the second end. Could the localization of the second end
(tip) of CD in moduli space correspond to our experience that momentum and position
can be measured simultaneously? This apparent classicality would be an illusion made
possible by ZEO.

The flip-flop character of state function reduction process implies also the alterna-
tion of the direction of the thermodynamical time: the asymmetry between the two
ends of CDs would induce the quantum arrow of time. This picture also allows to
understand what the experience growth of geometric time means in terms of CDs.

5.4.2 The action of translations at space-time sheets

The action of imbedding space translations on space-time surfaces possibly becoming
trivial at partonic 2-surfaces or reducing to action at δCD induces action on space-
time sheet which becomes ordinary translation far enough from end end of space-time
surface. The four-momentum in question is very naturally that associated with Kähler
action and would therefore correspond to inertial momentum for PI,class = Pquant,gr
option. Indeed, one cannot assign quantal four-momentum to Kähler action as an
operator since canonical quantization badly fails. In finite measurement infinitesimal
translations are replaced with their exponentials for PI,class = Pquant,gr option.

What looks like a problem is that ordinary translations in the general case lead out
from given CD near its boundaries. In the interior one expects that the translation
acts like ordinary translation. The Lie-algebra structure of Poincare algebra including
sums of translation generators with positive coefficient for time translation is preserved
if only timelike superpositions if generators are allowed also the commutators of time-
like translation generators with boost generators give time like translations. This
defines a Lie-algebraic formulation for the arrow of geometric time. The action of
time translation on preferred etxremal would be ordinary translation plus continuation
of the translated preferred extremal backwards in time to the boundary of CD. The
transversal space-like translations could be made Kac-Moody algebra by multiplying
them with functions which vanish at δCD.

A possible interpretation would be that Pquant,gr corresponds to the momentum
assignable to the moduli degrees of freedom and Pcl,I to that assignable to the time
like translations. Pquant,gr = Pcl,I would code for QCC. Geometrically quantum classical
correspondence would state that timelike translation shift both the interior of space-
time surface and second boundary of CD to the geometric future/past while keeping
the second boundary of space-time surface and CD fixed.
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5.5 Yangian and four-momentum

Yangian symmetry implies the marvellous results of twistor Grassmannian approach
to N = 4 SUSY culminating in the notion of amplituhedron which promises to give
a nice projective geometry interpretation for the scattering amplitudes [?]. Yangian
symmetry is a multilocal generalization of ordinary symmetry based on the notion of
co-product and implies that Lie algebra generates receive also multilocal contributions.
I have discussed these topics from slightly different point of view in [K11], where also
references to the work of pioneers can be found.

5.5.1 Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and
his group in the study of integrable systems. Yangians are Hopf algebras which can be
assigned with Lie algebras as the deformations of their universal enveloping algebras.
The elegant but rather cryptic looking definition is in terms of the modification of the
relations for generating elements [K11] . Besides ordinary product in the enveloping
algebra there is co-product ∆ which maps the elements of the enveloping algebra to
its tensor product with itself. One can visualize product and co-product is in terms
of particle reactions. Particle annihilation is analogous to annihilation of two particle
so single one and co-product is analogous to the decay of particle to two. ∆ allows to
construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-
Moody algebra or Virasoro algebra. In the case of SUSY it means conformal algebra
of M4- or rather its super counterpart. Witten, Nappi and Dolan have described the
notion of Yangian for super-conformal algebra in very elegant and and concrete manner
in the article Yangian Symmetry in D=4 superconformal Yang-Mills theory [?] . Also
Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n
replaced with a continuous one. Discrete index poses conditions on the Lie group and
its representation (adjoint representation in the case of N = 4 SUSY). One of the
conditions conditions is that the tensor product R ⊗ R∗ for representations involved
contains adjoint representation only once. This condition is non-trivial. For SU(n)
these conditions are satisfied for any representation. In the case of SU(2) the basic
branching rule for the tensor product of representations implies that the condition is
satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody
algebra. Now however the generators are labelled by non-negative integers labeling
the light-like incoming and outgoing momenta of scattering amplitude whereas in in
the case of Kac-Moody algebra also negative values are allowed. Note that only the
generators with non-negative conformal weight appear in the construction of states
of Kac-Moody and Virasoro representations so that the extension to Yangian makes
sense.

The generating elements are labelled by the generators of ordinary conformal trans-
formations acting in M4 and their duals acting in momentum space. These two sets
of elements can be labelled by conformal weights n = 0 and n = 1 and and their mu-
tual commutation relations are same as for Kac-Moody algebra. The commutators of
n = 1 generators with themselves are however something different for a non-vanishing
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deformation parameter h. Serre’s relations characterize the difference and involve the
deformation parameter h. Under repeated commutations the generating elements gen-
erate infinite-dimensional symmetric algebra, the Yangian. For h = 0 one obtains just
one half of the Virasoro algebra or Kac-Moody algebra. The generators with n > 0
are n+ 1-local in the sense that they involve n+ 1-forms of local generators assignable
to the ordered set of incoming particles of the scattering amplitude. This non-locality
generalizes the notion of local symmetry and is claimed to be powerful enough to fix
the scattering amplitudes completely.

5.5.2 How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, it is not much to say. It is however
possible to keep discussion at general level and still say something interesting (as I
hope!). The key question is whether it could be possible to generalize the proposed
Yangian symmetry and geometric picture behind it to TGD framework.

1. The first thing to notice is that the Yangian symmetry of N = 4 SUSY in
question is quite too limited since it allows only single representation of the gauge
group and requires massless particles. One must allow all representations and
massive particles so that the representation of symmetry algebra must involve
states with different masses, in principle arbitrary spin and arbitrary internal
quantum numbers. The candidates are obvious: Kac-Moody algebras [A2] and
Virasoro algebras [A5] and their super counterparts. Yangians indeed exist for
arbitrary super Lie algebras. In TGD framework conformal algebra of Minkowski
space reduces to Poincare algebra and its extension to Kac-Moody allows to have
also massive states.

2. The formal generalization looks surprisingly straightforward at the formal level.
In zero energy ontology one replaces point like particles with partonic two-surfaces
appearing at the ends of light-like orbits of wormhole throats located to the future
and past light-like boundaries of causal diamond (CD×CP2 or briefly CD). Here
CD is defined as the intersection of future and past directed light-cones. The
polygon with light-like momenta is naturally replaced with a polygon with more
general momenta in zero energy ontology and having partonic surfaces as its
vertices. Non-point-likeness forces to replace the finite-dimensional super Lie-
algebra with infinite-dimensional Kac-Moody algebras and corresponding super-
Virasoro algebras assignable to partonic 2-surfaces.

3. This description replaces disjoint holomorphic surfaces in twistor space with par-
tonic 2-surfaces at the boundaries of CD×CP2 so that there seems to be a close
analogy with Cachazo-Svrcek-Witten picture. These surfaces are connected by
either light-like orbits of partonic 2-surface or space-like 3-surfaces at the ends of
CD so that one indeed obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of
context)?

1. At least it means that ordinary Super Kac-Moody and Super Virasoro algebras
associated with isometries of M4 × CP2 annihilating the scattering amplitudes
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must be extended to a co-algebras with a non-trivial deformation parameter.
Kac-Moody group is thus the product of Poincare and color groups. This algebra
acts as deformations of the light-like 3-surfaces representing the light-like orbits
of particles which are extremals of Chern-Simon action with the constraint that
weak form of electric-magnetic duality holds true. I know so little about the
mathematical side that I cannot tell whether the condition that the product of
the representations of Super-Kac-Moody and Super-Virasoro algebras contains
adjoint representation only once, holds true in this case. In any case, it would
allow all representations of finite-dimensional Lie group in vertices whereasN = 4
SUSY would allow only the adjoint.

2. Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-
Kac-Moody algebra associated with the light-cone boundary which is metrically
3-dimensional. The finite-dimensional Lie group is in this case replaced with
infinite-dimensional group of symplectomorphisms of δM4

+/− made local with
respect to the internal coordinates of the partonic 2-surface. This picture also
justifies p-adic thermodynamics applied to either symplectic or isometry Super-
Virasoro and giving thermal contribution to the vacuum conformal and thus to
mass squared.

3. The construction of TGD leads also to other super-conformal algebras and the
natural guess is that the Yangians of all these algebras annihilate the scattering
amplitudes.

4. Obviously, already the starting point symmetries look formidable but they still
act on single partonic surface only. The discrete Yangian associated with this
algebra associated with the closed polygon defined by the incoming momenta and
the negatives of the outgoing momenta acts in multi-local manner on scattering
amplitudes. It might make sense to speak about polygons defined also by other
conserved quantum numbers so that one would have generalized light-like curves
in the sense that state are massless in 8-D sense.

5.5.3 Could Yangian symmetry provide a new view about conserved quan-
tum numbers?

The Yangian algebra has some properties which suggest a new kind of description for
bound states. The Cartan algebra generators of n = 0 and n = 1 levels of Yangian
algebra commute. Since the co-product ∆ maps n = 0 generators to n = 1 generators
and these in turn to generators with high value of n, it seems that they commute
also with n ≥ 1 generators. This applies to four-momentum, color isospin and color
hyper charge, and also to the Virasoro generator L0 acting on Kac-Moody algebra of
isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as
sum of contributions from various levels? If so, the four momentum and mass squared
would involve besides the local term assignable to wormhole throats also n-local con-
tributions. The interpretation in terms of n-parton bound states would be extremely
attractive. n-local contribution would involve interaction energy. For instance, string
like object would correspond to n = 1 level and give n = 2-local contribution to the
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momentum. For baryonic valence quarks one would have 3-local contribution corre-
sponding to n = 2 level. The Yangian view about quantum numbers could give a
rigorous formulation for the idea that massive particles are bound states of massless
particles.
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