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Abstract

Cognitive representations are the basic topic of the third chapter related to M8−H duality.
Cognitive representations are identified as sets of points in extension of rationals for algebraic
varieties with ”active” points containing fermion. The representations are discussed at both
M8- and H level. General conjectures from algebraic geometry support the vision that these
sets are concentrated at lower-dimensional algebraic varieties such as string world sheets and
partonic 2-surfaces and their 3-D orbits identifiable also as singularities of these surfaces.

The notion is applied in various cases and the connection with M8 −H duality is rather
loose.

1. Extensions of rationals are essentially coders of information. There the possible analogy
of extensions of rationals with genes deserves discussion. Extensions, which are not
extensions of extensions would be analogous to genes. The notion of conserved gene as
number theoretical analogy for Galois extensions as the Galois group of extension which
is normal subgroup of Galois extension.

2. The possible physical meaning of the notion of perfectoid introduced by Peter Scholze
is discussed in the framework of p-adic physics. Extensions of p-adic numbers involving
roots of the prime defining the extension are involved and are not considered previously
in TGD framework. There there possible physical meaning deserves discussion.

3. The construction of cognitive representation reduces to a well-known mathematical prob-
lem of finding the points of space-time surface with embedding space coordinates in given
extension of rationals. The work of Kim and Coates represents new ideas in this respect
and there is a natural connection with TGD.

4. One expects that large cognitive representations are winners in the number theoretical
fight for survival. Strong form of holography suggests that it is enough to consider
cognitive representations restricted to string world sheets and partonic 2-surfaces. If the
2-surface possesses large group of symmetries acting in extension of rationals, one can
have large cognitive representations as orbit of point in extension. Examples of highly
symmetric 2-D surfaces are geodesic spheres assignable to partonic 2-surfaces and cosmic
strings and elliptic curves assignable with string world sheets and cosmic strings.

5. Rationals and their extensions give rise to a unique discretizations of space-time surface
(for instance) - cognitive representation - having interpretation in terms of finite mea-
surement resolution. There are however many open questions. Should one allow only oc-
tonionic polynomials defined as algebraic continuations of real polynomials or should one
allow also analytic functions and regard polynomials as approximations. Zeta functions
are especially interesting analytic functions and Defekind zetas characterize extensions
of rationals and one can pose physically motivated questions about them.
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1 Introduction

In the third chapter about M8 − H duality the question whether the space-time surfaces in M8

allow a global slicing by string world sheets X2 defined by an integrable distribution of local
tangent spaces M2(x) ⊂ M4 and their orthogonal duals or whether there is only a discrete set of
surfaces X2 is discussed. Discrete set is obtained by requiring that space-time surface or its normal
space contains string world sheet as a complex (commutative) sub-manifold. By the strong form
of holography (SH) this is enough to deduce the image of X4 ⊂M8 in H from the boundary data
consisting of the H-images of X2 and metrically 2-D light-like partonic orbits X3

L of topological
dimension D = 3.

Also the relation of M8−H duality to p-adic length scale hypothesis and dark matter hierarchy
are discussed and it is shown that the notion of p-adic length scale emerging from p-adic mass
calculations emerges also geometrically.

The fermionic aspects of M8 − H duality are discussed: the basic purely number theoretic
elements are the octonionic realization of M8 spinors and the replacement of Dirac equation as a
partial differential equation with an algebraic equation for octonionic spinors. Dirac equation for
octonionic spinors is analogous to the algebraic momentum space variant of the ordinary Dirac
equation. This provides also considerable understanding about the bosonic aspects of M8 − H
duality. In particular, the pre-images of X3

L ⊂ X4 ⊂ H in M8 correspond to mass shells for
massless octonionic spinor modes realized as light-like 3-surfaces in M8. One can say that M8

picture realizes the momentum space dual of the modified Dirac equation in X4 ⊂ H. Twistor
Grassmannian picture supports the view that spinor modes also in H are localized to X3

L ⊂ X4,
and obey the modified Dirac equation associated with Chern-Simons term.

Cognitive representations is the third basic topic of the chapter. Cognitive representations
are identified as sets of points in an extension of rationals for algebraic varieties with “active”
points containing fermion. The representations are discussed at both M8- and H level. General
conjectures from algebraic geometry support the vision that these sets are concentrated at lower-
dimensional algebraic varieties such as string world sheets and partonic 2-surfaces and their 3-D
orbits identifiable also as singularities of these surfaces. For the earlier work related to adelic TGD
and cognitive representations see [L15, L5, L7].

The notion is applied in various cases and the connection with M8 −H duality is rather loose.

1. Extensions of rationals are essentially coders of information. There the possible analogy of
extensions of rationals with genes deserves discussion. Extensions, which are not extensions of
extensions would be analogous to genes. The notion of conserved gene as number theoretical
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analogy for Galois extensions as the Galois group of extension which is normal subgroup of
Galois extension.

2. The work of Peter Scholze [A7] based on the notion of perfectoid has raised a lot of interest in
the community of algebraic geometers. One application of the notion relates to the attempt
to generalize algebraic geometry by replacing polynomials with analytic functions satisfying
suitable restrictions. Also in TGD this kind of generalization might be needed at the level
of M4 × CP2 whereas at the level of M8 algebraic geometry might be enough. The notion
of perfectoid as an extension of p-adic numbers Qp allowing all p:th roots of p-adic prime
p is central and provides a powerful technical tool when combined with its dual, which is
function field with characteristic p.

Could perfectoids have a role in TGD? The infinite-dimensionality of perfectoid is in conflict
with the vision about finiteness of cognition. For other p-adic number fields Qq, q 6= p the
extension containing p:th roots of p would be however finite-dimensional even in the case of
perfectoid. Furthermore, one has an entire hierarchy of almost-perfectoids allowing powers
of pm:th roots of p-adic numbers. The larger the value of m, the larger the number of points
in the extension of rationals used, and the larger the number of points in cognitive represen-
tations consisting of points with coordinates in the extension of rationals. The emergence of
almost-perfectoids could be seen in the adelic physics framework as an outcome of evolution
forcing the emergence of increasingly complex extensions of rationals [L8].

3. The construction of cognitive representation represents a well-known mathematical problem
of finding the points of space-time surface with embedding space coordinates in given ex-
tension of rationals. Number theorist Minhyong Kim [A3, A5] has speculated about very
interesting general connection between number theory and physics. The reading of a popular
article about Kim’s work revealed that number theoretic vision about physics provided by
TGD has led to a very similar ideas and suggests a concrete realization of Kim’s ideas [L32].
In the following I briefly summarize what I call identification problem. The identification of
points of algebraic surface with coordinates, which are rational or in extension of rationals,
is in question. In TGD framework the embedding space coordinates for points of space-time
surface belonging to the extension of rationals defining the adelic physics in question are
common to reals and all extensions of p-adics induced by the extension. These points define
what I call cognitive representation, whose construction means solving of the identification
problem.

Cognitive representation defines discretized coordinates for a point of “world of classical
worlds” (WCW) taking the role of the space of spaces in Kim’s approach. The symmetries
of this space are proposed by Kim to help to solve the identification problem. The maximal
isometries of WCW necessary for the existence of its Kähler geometry provide symmetries
identifiable as symplectic symmetries. The discrete subgroup respecting extension of rationals
acts as symmetries of cognitive representations of space-time surfaces in WCW, and one
can identify symplectic invariants characterizing the space-time surfaces at the orbits of the
symplectic group.

4. One expects that large cognitive representations are winners in the number theoretical fight
for survival. Strong form of holography suggests that it is enough to consider cognitive
representations restricted to string world sheets and partonic 2-surfaces. If the 2-surface
possesses large group of symmetries acting in extension of rationals, one can have large
cognitive representations as orbit of point in extension. Examples of highly symmetric 2-D
surfaces are geodesic spheres assignable to partonic 2-surfaces and cosmic strings and elliptic
curves assignable with string world sheets and cosmic strings [L41].

5. Rationals and their extensions give rise to a unique discretizations of space-time surface (for
instance) - cognitive representation - having interpretation in terms of finite measurement
resolution. There are howevever many open questions. Should one allow only octonionic
polynomials defined as algebraic continuations of real polynomials or should one allow also
analytic functions and regard polynomials as approximations. Zeta functions are especially
interesting analytic functions and Dekekind zetas characterize extensions of rationals and one
can pose physically motivated questions about them [L25].
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2 About M 8−H-duality, p-adic length scale hypothesis and
dark matter hierarchy

M8 −H duality, p-adic length scale hypothesis and dark matter hierarchy as phases of ordinary
matter with effective Planck constant heff = nh0 are basic assumptions of TGD, which all reduce
to number theoretic vision. In the sequel M8−H duality, p-adic length scale hypothesis and dark
matter hierarchy are discussed from number theoretic perspective.

Several new results emerge. Strong form of holography (SH) allows to weaken strong form
of M8 − H duality mapping space-time surfaces X4 ⊂ M8 to H = M4 × CP2 that it allows to
map only certain complex 2-D sub-manifolds of quaternionic space-time surface to H: SH allows
to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds are determined by conditions
completely analogous to those determined space-time surface as quaternionic sub-manifold and
only discrete set of them is obtained.

M8 duality allows to relate p-adic length scales Lp to differences for the roots of the polynomial
defining the extension defining “special moments in the life of self” assignable causal diamond (CD)
central in zero energy ontology (ZEO). Hence p-adic length scale hypothesis emerges both from
p-adic mass calculations and M8 −H duality. It is proposed that the size scale of CD correspond
to the largest dark scale nLp for the extension and that the sub-extensions of extensions could
define hierarchy of sub-CDs. Skyrmions are an important notion if nuclear and hadron physics,
M8 −H dyality suggests an interpretation of skyrmion number as winding number as that for a
map defined by complex polynomial.

2.1 Some background

A summary of the basic notions and ideas involved is in order.

2.1.1 p-Adic length scale hypothesis

In p-adic mass calculations [K12] real mass squared is obtained by so called canonical identification
from p-adic valued mass squared identified as analog of thermodynamical mass squared using p-adic
generelization of thermodynamics assuming super-conformal invariance and Kac-Moody algebras
assignable to isometries ad holonomies of H = M4 × CP2. This implies that the mass squared is
essentially the expectation value of sum of scaling generators associated with various tensor factors
of the representations for the direct sum of super-conformal algebras and if the number of factors
is 5 one obtains rather predictive scenario since the p-adic temperature Tp must be inverse integer
in order that the analogs of Boltzmann factors identified essentially as pL0/Tp .

The p-adic mass squared is of form Xp+O(p2) and mapped to X/p+O(1/p2). For the p-adic
primes assignable to elementary particles (M127 = 2127−1 for electron) the higher order corrections
are in general extremely small unless the coefficient of second order contribution is larger integer
of order p so that calculations are practically exact.

Elementary particles seem to correspond to p-adic primes near powers 2k. Corresponding p-
adic length - and time scales would come as half-octaves of basic scale if all integers k are allowed.
For odd values of k one would have octaves as analog for period doubling. In chaotic systems also
the generalization of period doubling in which prime p = 2 is replaced by some other small prime
appear and there is indeed evidence for powers of p = 3 (period tripling as approach to chaos).
Many elementary particles and also hadron physics and electroweak physics seem to correspond to
Mersenne primes and Gaussian Mersennes which are maximally near to powers of 2.

For given prime p also higher powers of p define p-adic length scales: for instance, for electron
the secondary p-adic time scale is .1 seconds characterizing fundamental bio-rhythm. Quite gen-
erally, elementary particles would be accompanied by macroscopic length and time scales perhaps
assignable to their magnetic bodies or causal diamonds (CDs) accompanying them.

This inspired p-adic length scale hypothesis stating the size scales of space-time surface corre-
spond to primes near half-octaves of 2. The predictions of p-adic are exponentially sensitive to the
value of k and their success gives strong support for p-adic length scale hypothesis. This hypoth-
esis applied not only to elementary particle physics but also to biology and even astrophysics and
cosmology. TGD Universe could be p-adic fractal.
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2.1.2 Dark matter as phases of ordinary matter with heff = nh0

The identification of dark matter as phases of ordinary matter with effective Planck constant
heff = nh0 is second key hypothesis of TGD. To be precise, these phases behave like dark matter
and galactic dark matter could correspond to dark energy in TGD sense assignable to cosmic
strings thickened to magnetic flux tubes.

There are good arguments in favor of the identification h = 6h0 [L3, L20]. “Effective” means
that the actual value of Planck constant is h0 but in many-sheeted space-time n counts the number
of symmetry related space-time sheets defining space-time surface as a covering. Each sheet gives
identical contribution to action and this implies that effective value of Planck constant is nh0.

2.1.3 M8 −H duality

M8 − H duality (H = M4 × CP2) [L29] has taken a central role in TGD framework. M8 − H
duality allows to identify space-time regions as ”roots” of octonionic polynomials P in complexified
M8 - M8

c - or as minimal surfaces in H = M4 × CP2 having 2-D singularities.
Remark:Oc,Hc,Cc,Rc will be used in the sequel for complexifications of octonions, quaternions,

etc.. number fields using commuting imaginary unit i appearing naturally via the roots of real
polynomials.

The precise form of M8 − H duality has however remained unclear. Two assumptions are
involved.

1. Associativity stating that the tangent or normal space of at the point of the space-time
space-time surface M8 is associative - that is quaternionic. There are good reasons to believe
that this is true for the polynomial ansatz everywhere but there is no rigorous proof.

2. The tangent space of the point of space-time surface at points mappable from M8 to H must
contain fixed M2 ⊂ M4 ⊂ M8 or an integrable distribution of M2(x) so that the 2-surface
of M4 determined by it belongs to space-time surface.

The strongest, global form of M8−H duality states that M2(x) is contained to tangent spaces
of X4 at all points x. Strong form of holography (SH) states allows also the option for which this
holds true only for 2-D surfaces - string world sheets and partonic 2-surfaces - therefore mappable
to H and that SH allows to determined X4 ⊂ H from this data. In the following a realization of
this weaker form of M8−H duality is found. Note however that one cannot exclude the possibility
that also associativity is true only at these surfaces for the polynomial ansatz.

2.1.4 Number theoretic origin of p-adic primes and dark matter

There are several questions to be answered. How to fuse real number based physics with various
p-adic physics? How p-adic length scale hypothesis and dark matter hypothesis emerge from TGD?

The properties of p-adic number fields and the strange failure of complete non-determinism for
p-adic differential equations led to the proposal that p-adic physics might serve as a correlate for
cognition, imagination, and intention. This led to a development of number theoretic vision which
I call adelic physics. A given adele corresponds to a fusion of reals and extensions of various p-adic
number fields induced by a given extension of rationals.

The notion of space-time generalizes to a book like structure having real space-time surfaces
and their p-adic counterparts as pages. The common points of pages defining is back correspond to
points with coordinates in the extension of rationals considered. This discretization of space-time
surface is in general finite and unique and is identified as what I call cognitive representation. The
Galois group of extension becomes symmetry group in cognitive degrees of freedom. The ramified
primes of extension are exceptionally interesting and are identified as preferred p-adic primes for
the extension considered.

The basic challenge is to identify dark scale. There are some reasons to expect correlation
between p-adic and dark scales which would mean that the dark scale would depend on ramified
primes, which characterize roots of the polynomial defining the extensions and are thus not defined
completely by extension alone. Same extension can be defined by many polynomials. The näıve
guess is that the scale is proportional to the dimension n of extension serving as a measure for
algebraic complexity (there are also other measures). p-Adic length scales Lp would be proportional
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nLp, p ramified prime of extension? The motivation would be that quantum scales are typically
proportional to Planck constant. It turns out that the identification of CD scale as dark scale is
rather natural.

2.2 New results about M8 −H duality

In the sequel some new results about M8−H duality are deduced. Strong form of holography (SH)
allows to weaken the assumptions making possible M8 −H duality. It would be enough to map
only certain complex 2-D sub-manifolds of quaternionic space-time surface in M8 to H: SH would
allow to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds would be determined
by conditions completely analogous to those determined space-time surface as quaternionic sub-
manifold and they form a discrete set.

2.2.1 Strong form of holography (SH)

Ordinary 3-D holography is forced by general coordinate invariance (GCI) and loosely states that
the data at 3-D surfaces allows to determined space-time surface X4 ⊂ H. In ZEO 3-surfaces
correspond to pairs of 3-surfaces with members at the opposite light-like boundaries of causal
diamond (CD) and are analogous to initial and final states of deterministic time evolution as Bohr
orbit.

This poses additional strong conditions on the space-time surface.

1. The conjecture is that these conditions state the vanishing of super-symplectic Noether
charges for a sub-algebra of super-symplectic algebra SCn with radial conformal weights
coming as n-multiples of those for the entire algebra SC and its commutator [SCn, SC] with
the entire algebra: these conditions generalize super conformal conditions and one obtains a
hierarchy of realizations.

This hierarchy of minimal surfaces would naturally corresponds to the hierarchy of extensions
of rationals with n identifiable as dimension of the extension giving rise to effective Planck
constant. At the level of Hilbert spaces the inclusion hierarchies for extensions could also
correspond to the inclusion hierarchies of hyper-finite factors of type I1 [K20] so that M8−H
duality would imply beautiful connections between key ideas of TGD.

2. Second conjecture is that the preferred extremals (PEs) are extremals of both the volume
term and Kähler action term of the action resulting by dimensional reduction making possible
the induction of twistor structure from the product of twistor spaces of M4 and CP2 to 6-D
S2 bundle over X4 defining the analog of twistor space. These twistor spaces must have
Kähler structure since action for 6-D surfaces is Kähler action - it exists only in these two
cases [A2] so that TGD is unique.

Strong form of holography (SH) is a strengthening of 3-D holography. Strong form of GCI
requires that one can use either the data associated either with

• light-like 3-surfaces defining partonic orbits as surfaces at which signature of the induced
metric changes from Euclidian to Minkowskian or

• the space-like 3-surfaces at the ends of CD to determine space-time surface as PE (in case
that it exists).

This suggests that the data at the intersections of these 2-surfaces defined by partonic 2-surfaces
might be enough for holography. A slightly weaker form of SH is that also string world sheets
intersecting partonic orbits along their 1-D boundaries is needed and this form seems more realistic.

SH allows to weaken strong form of M8−H duality mapping space-time surfaces X4 ⊂M8 to
H = M4×CP2 that it allows to map only certain complex 2-D sub-manifolds of quaternionic space-
time surface to H: SH allows to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds
are determined by conditions completely analogous to those determined space-time surface as
quaternionic sub-manifold and only discrete set of them is obtained.
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2.2.2 Space-time as algebraic surface in M8
c regarded complexified octonions

The octonionic polynomial giving rise to space-time surface as its “root” is obtained from ordi-
nary real polynomial P with rational coefficients by algebraic continuation. The conjecture is
that the identification in terms of roots of polynomials of even real analytic functions guarantees
associativity and one can formulate this as rather convincing argument [?] Space-time surface X4

c

is identified as a 4-D root for a Hc-valued “imaginary” or “real” part of Oc valued polynomial
obtained as an Oc continuation of a real polynomial P with rational coefficients, which can be
chosen to be integers. These options correspond to complexified-quaternionic tangent- or normal
spaces. For P (x) = xn + .. ordinary roots are algebraic integers. The real 4-D space-time surface
is projection of this surface from M8

c to M8. One could drop the subscripts ”c” but in the sequel
they will be kept.

M4
c appears as a special solution for any polynomial P . M4

c seems to be like a universal
reference solution with which to compare other solutions.

One obtains also brane-like 6-surfaces as 6-spheres as universal solutions. They have M4

projection, which is a piece of hyper-surface for which Minkowski time as time coordinate of CD
corresponds to a root t = rn of P . For monic polynomials these time values are algebraic integers
and Galois group permutes them.

One cannot exclude rational functions or even real analytic functions in the sense that Taylor
coefficients are octonionically real (proportional to octonionic real unit). Number theoretical vision
- adelic physics [?, ?] suggests that polynomial coefficients are rational or perhaps in extensions of
rationals. The real coefficients could in principle be replaced with complex numbers a+ ib, where
i commutes with the octonionic units and defines complexifiation of octonions. i appears also in
the roots defining complex extensions of rationals.

2.2.3 How do the solutions assignable to the opposite boundaries of CD relate to
each other?

CD has two boundaries. The polynomials associated with them could be different in the general
formulation discussed in [L44, L45] but they could be also same. How are the solutions associated
with opposite boundaries of CD glued together in a continuous manner?

1. The polynomials assignable to the opposite boundaries of CD are allowed to be polynomials
of o resp. (o− T ): here T is the distance between the tips of CD.

2. CD brings in mind the realization of conformal invariance at sphere: the two hemispheres
correspond to powers of z and 1/z: the condition z = 1/z at unit circle is essential and there
is no real conjugation. How the sphere is replaced with 8-D CD which is also complexified.
The absence of conjugation looks natural also now: could CD contain a 3-surface analogous
to the unit circle of sphere at which the analog of z = 1/z holds true? If so, one has
P (o, z) = P (1/o, z) and the solutions representing roots fo P (o, z) and P (1/o, z) can be
glued together.

Note that 1/o can be expressed as o/oo when the Minkowskian norm squared oo is non-
vanishing and one has polynomial equation also now. This condition is true outside the
boundary of 8-D light-cone, in particular near the upper boundary of CD.

The counter part for the length squared of octonion in Minkowskian signature is light-one
proper time coordinate a2 = t2− r2 for M8

+. Replacing o which scaled dimensionless variable
o1 = o/(T/2) the gluing take place along a = T/2 hyperboloid.

One has algebraic holomorphy with respect to o but also anti-holomorphy is possible. What
could these two options correspond to? Could the space-time surfaces assignable to self and its
time-reversal relate by octonionic conjugation o → o relating two Fock vacuums annihilated by
fermionic annihilation resp. creation operators?

In [L44, L45] the possibility that the sequence of SSFRs or BSFRs could involve iteration of
the polynomial defining space-time surface - actually different polynomials were allowed for two
boundaries. There are 3 options: each SSFR would involve the replacement Q = P ◦ ..◦P → P ◦Q,
the replacement occurs only when new “special moments in the life of self” defined by the roots
of P as t = rn balls of cd, or the replacement can occur in BSFR when the metabolic resources
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do not allow to continue the iteration (the increase of heff during iteration increases the needed
metabolic feed).

The iteration is compatible with the proposed picture. The assumption P (0) = 0 implies that
iterates of P contain also the roots of P as roots - they are like conserved genes. Also the 8-D
light-cone boundary remains invariant under iteration. Even more general function decompositions
P → Q→ P are consistent with the proposed picture.

2.2.4 Brane-like solutions

One obtains also 6-D brane-like solutions to the equations.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone δM8
+ of M8

with tip at the origin of coordinates is an exception [L10, L11, L12]. At δM8
+ the octonionic

coordinate o is light-like and one can write o = re, where 8-D time coordinate and radial
coordinate are related by t = r and one has e = (1 + er)/

√
2 such that one as e2 = e.

Polynomial P (o) can be written at δM8
+ as P (o) = P (r)e and its roots correspond to 6-

spheres S6 represented as surfaces tM = t = rN , rM =
√
r2N − r2E ≤ rN , rE ≤ rN , where

the value of Minkowski time t = r = rN is a root of P (r) and rM denotes radial Minkowski
coordinate. The points with distance rM from origin of t = rN ball of M4 has as fiber
3-sphere with radius r =

√
r2N − r2E . At the boundary of S3 contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries rM = rN of balls belong to the
boundary of M4 light-cone. In this case the intersection would be that of 4-D and 3-D surface,
and empty in the generic case (it is however quite not clear whether topological notion of
“genericity” applies to octonionic polynomials with very special symmetry properties).

3. The 6-spheres tM = rN would be very special. At these 6-spheres the 4-D space-time surfaces
X4 as usual roots of P (o) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of rn.

The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their
2-D ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary
Feynman diagrams. Obviously this would make the definition of the generalized vertices
mathematically elegant and simple.

Note that this does not require that space-time surfaces X4 meet along 3-D surfaces at
S6. The interpretation of the times tn as moments of phase transition like phenomena is
suggestive. ZEO based theory of consciousness suggests interpretation as moments for state
function reductions analogous to weak measurements ad giving rise to the flow of experienced
time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as
initial data fixing the 4-D roots of polynomials. This would give precise content to strong
form of holography (SH), which is one of the central ideas of TGD and strengthens the
3-D holography coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of
CD define unique preferred extremals. The reduction to 2-D holography would be due to
preferred extremal property realizing the huge symplectic symmetries and making M8 −H
duality possible as also classical twistor lift.

I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X4 ∩ S6? This is not possible since time coordinate tM constant at the roots
and varies at string world sheets.

Note that the compexification of M8 (or equivalently octonionic E8) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(ε1, εi, .., ε8), epsiloni = ±1 signatures. Their physical interpretation - if any - remains open
at this moment.
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5. The universal 6-D brane-like solutions S6
c have also lower-D counterparts. The condition

determining X2 states that the Cc-valued “real” or “imaginary” for the non-vanishing Qc-
valued “real” or “imaginary” for P vanishes. This condition allows universal brane-like
solution as a restriction of Oc to M4

c (that is CDc) and corresponds to the complexified
time=constant hyperplanes defined by the roots t = rn of P defining “special moments in
the life of self” assignable to CD. The condition for reality in Rc sense in turn gives roots of
t = rn a hyper-surfaces in M2

c .

2.2.5 Explicit realization of M8 −H duality

M8 − H duality allows to map space-time surfaces in M8 to H so that one has two equivalent
descriptions for the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with
2-D singularities in H satisfying an infinite number of additional conditions stating vanishing
of Noether charges for super-symplectic algebra actings as isometries for the “world of classical
worlds” (WCW). Twistor lift allows variants of this duality. M8

H duality predicts that space-
time surfaces form a hierarchy induced by the hierarchy of extensions of rationals defining an
evolutionary hierarchy. This forms the basis for the number theoretical vision about TGD.

M8 −H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Associativity condition for tangent-/normal space is the first essential condition for the exis-
tence of M8 −H duality and means that tangent - or normal space is quaternionic.

2. The tangent space of space-time surface and thus space-time surface itself must contain a
preferred M2

c ⊂ M4
c or more generally, an integrable distribution of tangent spaces M2

c (x)
and similar distribution of their complements E2c(x). The string world sheet like entity
defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would correspond to
partonic 2-surface.

One can imagine two realizations for this condition.
Option I: Global option states that the distributions M2

c (x) and E2
c (x) define slicing of X4

c .
Option II: Only discrete set of 2-surfaces satisfying the conditions exist, they are mapped to

H, and strong form of holography (SH) applied in H allows to deduce space-time surfaces in H.
This would be the minimal option.

That the selection between these options is not trivial is suggested by following.

1. For massless extremals (MEs, topological light rays) parameterized by light-like vector vector
k defining M2 ⊂ M2 × E2 ⊂ M4 at each point and by space-like polarization vector ε
depending on single transversal coordinate of E2 [K1].

2. CP2 coordinates have an arbitrary dependence on both u = k ·m and w = ε ·m and can be
also multivalued functions of u and w. Single light-like vector k is enough to identify M2.
CP2 type extremals having metric and Kähler form of CP2 have light-like geodesic as M4

projection defining M2 and its complement E2 in the normal space.

3. String like objects X2×Y 2 ⊂M4×CP2 are minimal surfaces and X2 defines the distribution
of M2(x) ⊂M4. Y 2 ddefines the complement of this distribution.

Option I is realized in all 3 cases. It is not clear whether M2 can depend on position in
the first 2 cases and also CP2 point in the third case. It could be that only a discrete set of
these string world sheets assignable to wormhole contacts representing massless particles is
possible (Option II).

How these conditions would be realized?

1. The basic observation is that X2c can be fixed by posing to the non-vanishing Hc-valued
part of octonionic polynomial P condition that the Cc valued “real” or “imaginary” part in
Cc sense for P vanishes. M2

c would be the simplest solution but also more general complex
sub-manifolds X2

c ⊂M4
c are possible. This condition allows only a discrete set of 2-surfaces

as its solutions so that it works only for Option II.
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These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
curves of analytic function f(z) = u + iv. One should have family of polynomials differing
by a constant term, which should be real so that v = 0 surfaces would form a discrete set.

2. As found, there are also classes special global solutions for which the choice of M2
c is global

and does not depend on space-time point. The interpretation would be in terms of modes
of classical massless fields characterized by polarization and momentum. If the identification
of M2

c is correct, these surfaces are however unstable against perturbations generating dis-
crete string world sheets and orbits of partonic 2-surfaces having interpretation space-time
counterparts of quanta. That fields are detected via their quanta was the revolutionary ob-
servation that led to quantum theory. Could quantum measurement induce the instability
decomposing the field to quanta at the level of space-time topology?

3. One can generalize this condition so that it selects 1-D surface in X2
c . By assuming that

Rc-valued “real” or “imaginary” part of quaternionic part of P at this 2-surface vanishes.
one obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit or

distribution of the imaginary unit having interpretation as complexified string. Together
these kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin.
The outcome would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as
surfaces.

This option could be made possible by SH. SH states that preferred extremals are determined
by data at 2-D surfaces of X4. Even if the conditions defining X2

c have only a discrete set
of solutions, SH at the level of H could allow to deduce the preferred extremals from the
data provided by the images of these 2-surfaces under M8 − H duality. Associativity and
existence of M2(x) would be required only at the 2-D surfaces.

4. I have proposed that physical string world sheets and partonic 2-surfaces appear as singu-
larities and correspond to 2-D folds of space-time surfaces at which the dimension of the
quaternionic tangent space degenerates from 4 to 2 [L28] [K1]. This interpretation is consis-
tent with a book like structure with 2-pages. Also 1-D real and imaginary manifolds could
be interpreted as folds or equivalently books with 2 pages.

For the singular surfaces the dimension quaternionic tangent or normal space would reduce
from 4 to 2 and it is not possible to assign CP2 point to the tangent space. This does not
of course preclude the singular surfaces and they could be analogous to poles of analytic
function. Light-like orbits of partonic 2-surfaces would in turn correspond to cuts.

5. What could the normal space singularity mean at the level of H? Second fundamental form
defining vector basis in normal space is expected to vanish. This would be the case for
minimal surfaces.

(a) String world sheets with Minkowskian signature (in M4 actually) are expected to be
minimal surfaces. In this case T matters and string world sheets could be mapped to
H by M8 −H duality and SH would work for them.

(b) The light-like orbits of partonic 2-surfaces with Euclidian signature in H would serve
as analogs of cuts. N is expected to matter and partonic 2-surfaces should be minimal
surfaces. Their branching of partonic 2-surfaces is thus possible and would make possible
(note the analogy with the branching of soap films) for them to appear as 2-D vertices
in H.

The problem is to identify the pre-images of partonic 2-surfaces in M8. The light-
likeness of the orbits of partonic 2-surfaces (induced 4-metric changes its signature and
degenerates to 3-D) should be important. Could light-likeness in this sense define the
pre-images partonic orbits in M8?

Remark: It must be emphasized that SH makes possible M8−H correspondence assuming that
also associativity conditions hold true only at partonic 2-surfaces and string world sheets. Thus
one could give up the conjecture that the polynomial ansatz implies that tangent or normal spaces
are associative. Proving that this is the case for the tangent/normal spaces of these 2-surfaces
should be easier.
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2.2.6 Does M8 −H duality relate hadron physics at high and low energies?

During the writing of this article I realized that M8 − H duality has very nice interpretation in
terms of symmetries. For H = M4 × CP2 the isometries correspond to Poincare symmetries and
color SU(3) plus electroweak symmetries as holonomies of CP2. For octonionic M8 the subgroup
SU(3) ⊂ G2 is the sub-group of octonionic automorphisms leaving fixed octonionic imaginary unit
invariant - this is essential for M8 −H duality. SU(3) is also subgroup of SO(6) ≡ SU(4) acting
as rotation on M8 = M2 × E6. The subgroup of the holonomy group of SO(4) for E4 factor of
M8 = M4 ×E4 is SU(2)×U(1) and corresponds to electroweak symmetries. One can say that at
the level of M8 one has symmetry breaking from SO(6) to SU(3) and from SO(4) = SU(2)×SO(3)
to U(2).

This interpretation gives a justification for the earlier proposal that the descriptions provided
by the old-fashioned low energy hadron physics assuming SU(2)L × SU(2)R and acting acting as
covering group for isometries SO(4) of E4 and by high energy hadron physics relying on color
group SU(3) are dual to each other.

2.2.7 Skyrmions and M8 −H duality

I received a link (https://tinyurl.com/ycathr3u) to an article telling about research (https:
//tinyurl.com/yddwhr2o) carried out for skyrmions, which are very general condensed matter
quasiparticles. They were found to replicate like DNA and cells. I realized that I have not clarified
myself the possibility of skyrmions on TGD world and decided to clarify my thoughts.

1. What skyrmions are?

Consider first what skyrmions are.

1. Skyrmions are topological entities. One has some order parameter having values in some
compact space S. This parameter is defined in say 3-ball such that the parameter is constant
at the boundary meaning that one has effectively 3-sphere. If the 3rd homotopy group of
S characterizing topology equivalence classes of maps from 3-sphere to S is non-trivial, you
get soliton-llike entities, stable field configurations not deformable to trivial ones (constant
value). Skyrmions can be assigned to space S which is coset space SU(2)L×SU(2)R/SU(2)V ,
essentially S3 and are labelled by conserved integer-valued topological quantum number.

2. One can imagine variants of this. For instance, one can replace 3-ball with disk. SO(3) = S3

with 2-sphere S2. The example considered in the article corresponds to discretized situation
in which one has magnetic dipoles/spins at points of say discretized disk such that spins have
same direction about boundary circle. The distribution of directions of spin can give rise to
skyrmion-like entity. Second option is distribution of molecules which do not have symmetry
axis so that as rigid bodies the space of their orientations is discretized version of SO(3). The
field would be the orientation of a molecule of lattice and one has also now discrete analogs
of skyrmions.

3. More generally, skyrmions emerge naturally in old-fashioned hadron physics, where SU(2)L×
SU(2)R/SU(2)V involves left-handed, right-handed and vectorial subgroups of SO(4) =
SU(2)L × SU(2)R. The realization would be in terms of 4-component field (π, σ), where π
is charged pion with 3 components - axial vector - and σ which is scalar. The additional
constraint π · π + σ2 = constant defines 3-sphere so that one has field with values in S3.
There are models assigning this kind of skyrmion with nucleon, atomic nuclei, and also in
the bag model of hadrons bag can be thought of as a hole inside skyrmion. These models
seem to have something to do with reality so that a natural question is whether skyrmions
might appear in TGD.

2. Skyrmion number as winding number

In TGD framework one can regard space-time as 4-surface in either octonionic M8
c , c refers

here to complexification by an imaginary unit i commuting with octonions, or in M4 × CP2. For
the solution surfaces M8 has natural decomposition M8 = M2×E6 and E6 has SO(6) as isometry
group containing subgroup SU(3) having automorphisms of octonions as subgroup leaving M2

https://tinyurl.com/ycathr3u
https://tinyurl.com/yddwhr2o
https://tinyurl.com/yddwhr2o
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invariant. SO(6) = SU(4) contains SU(3) as subgroup, which has interpretation as isometries of
CP2 and counterpart of color gauge group. This supports M8−H duality, whose most recent form
is discussed in [L42].

The map S3 → S3 defining skyrmion could be taken as a phenomenological consequence ofM8−
H duality implying the old-fashioned description of hadrons involving broken SO(4) symmetry
(PCAC) and unbroken symmetry for diagonal group SO(3)V (CCV). The analog of (π, sigma)
field could correspond to a B-E condensate of pions (π, sigma).

The obvious question is whether the map S3 → S3 defining skyrmion could have a deeper
interpretation in TGD framework. I failed to find any elegant formulation. One could however
generalize and ask whether skyrmion like entities characterize by winding number are predicted by
basic TGD.

1. In the models of nucleon and nuclei the interpretation of conserved topological skyrmion
number is as baryon number. This number should correspond to the homotopy class of the
map in question, essentially winding number. For polynomials of complex number degree
corresponds to winding number. Could the degree n = heff/h0 of polynomial P having
interpretation as effective Planck constant and measure of complexity - kind of number
theoretic IQ - be identifiable as skyrmion number? Could it be interpreted as baryon number
too?

2. For leptons regarded as local 3 anti-quark composites in TGD based view about SUSY [L34]
the same interpretation would make sense. It seems however that the winding number must
have both signs. Degree is n is however non-negative.

Here complexification of M8 to M8
c is essential. One an allow both holomorphic and anti-

holomorphic continuations of real polynomials P (with rational coefficients) using complex-
ification defined by commutative imaginary unit i in M8

c so that one has polynomials P (z)
resp. P (z) in turn algebraically continued to complexified octonionic polynomials P (z, o)
resp. P (z, o).

Particles resp. antiparticles would correspond to the roots of octonionic polynomial P (z, o)
resp. P (z, o) meaning space-time geometrization of the particle-antiparticle dichotomy and
would be conjugates of each other. This could give a nice physical interpretation to the
somewhat mysterious complex roots of P .

3. More detailed formulation

To make this formulation more detailed on must ask how 4-D space-time surfaces correspond
to 8-D “roots” for the “imaginary” (“real” ) part of complexified octonionic polynomial as surfaces
in M8

c .

1. Equations state the simultaneous vanishing of the 4 components of complexified quaternion
valued polynomial having degree n and with coefficients depending on the components of
Oc, which are regarded as complex numbers x+ iy, where i commutes with octonionic units.
The coefficients of polynomials depend on complex coordinates associated with non-vanishing
“real” (“imaginary”) part of the Oc valued polynomial.

2. To get perspective, one can compare the situation with that in catastrophe theory in which
one considers roots for the gradient of potential function of behavior variables xi. Potential
function is polynomial having control variables as parameters. Now behavior variable corre-
spond “imaginary” (“real” ) part and control variables to “real” (“imaginary”) of octonionic
polynomial.

For a polynomial with real coefficients the solution divides to regions in which some roots are
real and some roots are complex. In the case of cusp catastrophe one has cusp region with
3-D region of the parameter defined by behavior variable x and 2 control parameters with 3
real roots, the region in which one has one real root. The boundaries for the projection of
3-sheeted cusp to the plane defined by control variables correspond to degeneration of two
complex roots to one real root.

In the recent case it is not clear whether one cannot require the M8
c coordinates for space-time

surface to be real but to be in M8 = M1 + iE7 .
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3. Allowing complex roots gives 8-D space-time surfaces. How to obtain real 4-D space-time
surfaces?

(a) One could project space-time surfaces to real M8 to obtain 4-D real space-time surfaces.
For M8 this would mean projection to M1 + iE7 and in time direction the real part of
root is accepted and is same for the root and its conjugate. For E7 this would mean
that imaginary part is accepted and means that conjugate roots correspond to different
space-time surfaces and the notion of baryon number is realized at space-time level.

(b) If one allows only real roots, the complex conjugation proposed to relate fermions and
anti-fermions would be lost.

4. One can select for 4 complex M8
c coordinates Xk of the surface and the remaining 4 coordi-

nates Y k can be formally solved as roots of n:th degree polynomial with dynamical coefficients
depending on Xk and the remaining Y k. This is expected to give rise to preferred extremals
with varying dimension of M4 and CP2 projections.

5. It seems that all roots must be complex.

(a) The holomorphy of the polynomials with respect to the complex M8
c coordinates implies

that the coefficients are complex in the generic point M8
c . If so, all 4 roots are in general

complex but do not appear as conjugate pairs. The näıve guess is that the maximal
number of solutions would be n4 for a given choice of M8 coordinates solved as roots.
An open question is whether one can select subset of roots and what happens at t = rn
surfaces: could different solutions be glued together at them.

(b) Just for completeness one can consider also the case that the dynamical coefficients are
real - this is true in the E8 sector and whether it has physical meaning is not clear.
In this case the roots come as real roots and pairs formed by complex root and its
conjugate. The solution surface can be divided into regions depending on the character
of 4 roots. The n roots consist of complex root pairs and real roots. The members or
complex root pairs are mapped to same point in E8.

4. Could skyrmions in TGD sense replicate?

What about the observation that condensed matter skyrmions replicate? Could this have analog
at fundamental level?

1. The assignment of conserved topological quantum number to the skyrmion is not consistent
with replication unless the skyrmion numbers of outgoing states sum up to that of the initial
state. If the system is open one can circumvent this objection. The replication would be like
replication of DNA in which nucleotides of new DNA strands are brought to the system to
form new strands.

2. It would be fascinating if all skyrmions would correspond to space-time surfaces at funda-
mental M8 level. If so, skyrmion property also in magnetic sense could be induced by from
a deeper geometric skyrmion property of the MB of the system. The openness of the system
would be essential to guarantee conservation of baryon number. Here the fact that leptons
and baryons have opposite baryon numbers helps in TGD framework. Note also ordinary
DNA replication could correspond to replication of MB and thus of skyrmion sequences.

2.3 About p-adic length scale hypothesis and dark matter hierarchy

It is good to introduce first some background related to p-adic length scale hypothesis discussed
in chapters of [K13] and dark matter hierarchy discussed in chapters [K10, K11], in particular in
chatper [K5, K6, K7, K8].
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2.3.1 General form of p-adic length scale hypothesis

The most general form of p-adic length scale hypothesis does not pose conditions on allowed p-adic
primes and emerges from p-adic mass calculations [K3, K12, K14]. It has two forms corresponding
to massive particles and massless particles.

1. For massive particles the preferred p-adic mass calculations based on p-adic thermodynamics
predicts the p-adic mass squared m2 to be proportional to p or its power- the real counterpart
of m2 is proportional to 1/p or its power. In the simplest case one has

m2 =
X

p

~
L0

,

where L0 is apart from numerical constant the length R of CP2 geodesic circle. X is a
numerical constant not far from unity. X ≥ 1 is small integer in good approximation. For
instance for electron one has x = 5.

By Uncertainty Principle the Compton length of particle is characterizing the size of 3-
surfaces assignable to particle are proportional to

√
p:

Lc(m) = ~
m =

√
1
XLp , Lp =

√
pL0 = .

Here Lp is p-adic length scale and corresponds to minimal mass for given p-adic prime. p-
Adic length scale would be would characterize the size of the 3-surface assignable to the
particle and would correspond to Compton length.

2. For massless particles mass vanishes and the above picture is not possible unless there is very
small mass coming from p-adic thermodynamics and determined by the size scale of CD - this
is quite possible. The preferred time/spatial scales p-adic energy- equivalently 3-momentum
are proportional to p-adic prime p or its power. The real energy is proportional to 1/p. At
the embedding space level the size of scale causal diamond (CD) [L33] would be proportional
to p: L = T = pL0, L0 = T0 for c = 1. The interpretation in terms of Uncertainty Principle
is possible.

There would be therefore two levels: space-time level and embedding space level . At the
space-time level the primary p-adic length scale would be proportional to

√
p whereas the

p-adic length scale at embedding space-time would correspond to secondary p-adic length
scale proportional to p. The secondary p-adic length scales would assign to elementary new
physics in macroscopic scales. For electron the size scale of CD would be about .1 seconds,
the time scale associated with the fundamental bio-rhythm of about 10 Hz.

3. A third piece in the picture is adelic physics [L15, L16] inspiring the hypothesis that effective
Planck constant heff given by heff/h0 = n, h = 6h0, labels the phases of ordinary matter
identified as dark matter. n would correspond to the dimension of extension of rationals.

The connection between preferred primes and the value of n = heff/h0 is interesting. One
proposal is that preferred primes p in p-adic length scale hypothesis determining the mass
scale of particle correspond to so called ramified primes, which characterize the extensions.
The p-adic variant of the polynomial defining space-time surfaces in M8 picture would have
vanishing discriminant in order O(p). Since discriminant is proportional to the product of
differences of different roots of the polynomial, two roots would be very near to each other
p-adically. This would be mathematical correlate for criticality in p-adic sense.

M8 −H duality [L29, L26] leads to the prediction that the roots rn of polynomial defining
the space-time region in M8 correspond to preferred time values t = tn =∝ rn- I have called
t = tn “special moments in the life of self”. Since the squares for the differences for the roots
are proportional to ramified primes, these time differences would code for ramified primes
assignable to the space-time surface. There would be several p-adic time scales involved and
they would be coded by tij = ri− rj , whose moduli squared are divided by so called ramified
primes defining excellent candidates for preferred p-adic primes. p-Adic physics would make
itself visible at the level of space-time surface in terms of “special moments in the life of self”.
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4. p-Adic length scales emerge naturally from M8 − H duality [L29, L26]. Ramified primes
would in M8 picture appear as factors of time differences associated with “special moments
in the life of self” associated with CD [L26]. One has |ti − tj | ∝

√
pij , pij ramified prime. It

is essential that square root of ramified prime appears here.

This suggests strongly that p-adic length scale hypothesis is realized at the level of space-
time surface and there are several p-adic length scales present coded to the time differences.
Knowing of the polynomial would give information about p-adic physics involved. If dark
scales correlate with p-adic length scales as proposed, the definition of dark scale should
assume the dependence of ramified primes quite generally rather than as a result of number
theoretic survival of fittest as one might also think.

The factors ti − tj are proportional - not only to the typically very large p-adic prime pmax
charactering the system - but also smaller primes or their powers. Could the scales in
question be of form lp =

√
X
√
pmaxL0 rather than p-adic length scales Lpram defined by

various ramified primes. Here X would be integer consisting of small ramified primes.

p-Adic mass calculations predict in an excellent approximation the mass of the particle is
given by m = (

√
X/
√
p)m0, X small integer and m0 = 1/L0. Compton length would be

given by Lc(p) =
√
p/
√
X)L0. The identification lp = Lc(p) would be attractive but is not

possible unless one has X = 1. In this case one would be considering p-adic length scale Lp.
the interpretation in terms of multi-p-adicity seems to be the realistic option.

2.3.2 About more detailed form of p-adic length scale hypothesis

More specific form of p-adic length scale hypothesis poses conditions on physically preferred p-adic
primes. There are several guesses for preferred primes. They could be primes near to integer
powers 2k, where k could be positive integer, which could satisfy additional conditions such as
being odd, prime or be associated with Mersenne prime or Gaussian Mersenne. One can consider
also powers of other small primes such as p = 2, 3, 5. p-Adic length scale hypothesis in is basic
form would generalize the notion of period doubling. For odd values of k one would indeed obtain
period doubling, tripling, etc... suggesting strongly chaos theoretic origin.

1. p-Adic length scale hypothesis in its basic form

Consider first p-adic length scale hypothesis in its basic form.

1. In its basic form states that primes p ' 2k are preferred p-adic primes and correspond by
p-adic mass calculations p-adic length scales Lp ≡ L(k) ∝ √p = 2k/2. Mersenne primes
and primes associated with Gaussian Mersennes as especially favored primes and charged
leptons (k ∈ {127, 113, 107}) and Higgs boson (k = 89) correspond to them. Also hadron
physics (k = 107) and nuclear physics (k = 113) correspond to these scales. One can assign
also to hadron physics Mersenne prime and the conjecture is that Mersennes and Gaussian
Mersennes define scaled variants of hadron physics and electroweak physics. In the length
scale between cell membrane thickness fo 10 nm and nuclear size about 2.5 µm there are as
many as 4 Gaussian Mersennes corresponding to k ∈ {151, 157, 163, 167}.
Mersenne primes correspond to prime values of k and I have proposed that k is prime for
fundamental p-adic length scales quite generally. There are also however also other p-adic
length scales - for instance, for quarks k need not be prime - and it has remained unclear
what criterion could select the preferred exponents k. One can consider also the option that
odd values of k defined fundamental p-adic length scales.

2. What makes p-adic length scale hypothesis powerful is that masses of say scaled up variant
of hadron physics can be estimated by simple scaling arguments. It is convenient to use
electron’s p-adic length scale and calculate other p-adic length scales by scaling L(k) =
2(k−127)/2L(127).

Here one must make clear that there has been a confusion in the definitions, which was originally
due to a calculational error.
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1. I identified the p-adic length scale L(151) mistakenly as L(151) = 2(k−127)/2Le(127) by using
instead of L(127) electron Compton length Le ' L(127/

√
5. The notation for these scales

would be therefore Le(k) identified as Le(k) = 2(k−127)/2Le(127) and I have tried to use it
systematically but failed to use the wrong notation in informal discussions.

2. This mistake might reflect highly non-trivial physics. It is scaled up variants of Le which
seem to appear in physics. For instance, Le(151) ' 10 nm corresponds to basic scale in
living matter. Why the biological important scales should correspond to scaled up Compton
lengths for electron? Could dark electrons with scaled up Compton scales equal to Le(k) be
important in these scales? And what about the real p-adic length scales relate to these scales
by a scaling factor

√
5 ' 2.23?

2. Possible modifications of the p-adic length scale hypothesis

One can consider also possible modifications of the p-adic length scale hypothesis. In an attempt
to understand the scales associated with INW structures in terms of p-adic length scale hypothesis it
occurred to me that the scales which do not correspond to Mersenne primes or Gaussian Mersennes
might be generated somehow from the these scales.

1. Geometric mean L =
√
L(k1)L(k2) would length scale which would correspond to Lp with

p ' 2(k1+k2)/2. This is of the required form only if k = k1 + k2 is even so that k1 and k2
are both even or odd. If one starts from Mersennes and Gaussian Mersennes the condition
is satisfied. The value of k = (k1 + k2)/2 can be also even.

Remark: The geometric mean (127 + 107)/2 = 117 of electronic and hadronic Mersennes
corresponding to mass 16 MeV rather near to the mass of so called X boson [L4] (https:
//tinyurl.com/ya3yuzeb).

2. One can also consider the formula L = (L(k1)L(k2)..L(kn))1/n but in this case the scale
would correspond to prime p ' 2k1+...kn)/n. Since (k1 + ..kn)/n is integer only if k1 + ...kn is
proportional to n.

What about the allowed values of fundamental integers k? It seems that one must allow all
odd integers.

1. If only prime values of k are allowed, one can obtain obtain for twin prime pair (k− 1, k+ 1)
even integer k as geometric mean

√
k if k is square. If prime k is not a member of this

kind of pair, it is not possible to get integers k − 1 and k + 1. If only prime values of k are
fundamental, one could assign to k = 89 characterizing Higgs boson weak bosons k = 90
possibly characterizing weak bosons. Therefore it seems that one must allow all odd integers
with the additional condition already explained.

2. Just for fun one can check whether k = 161 forced by the argument related to electroweak
scale and heff corresponds to a geometric mean of two Gaussian Mersennes. One has
k(k1, k2) = (k2 + k2)/2 giving the list k(151, 157) = 154), k(151, 163) = 157 Gaussian
Mersenne itself, k(151, 167) = 159, k(157, 163) = 160, k(157, 167) = 162, k(163, 167) = 165.
Unfortunately, k = 161 does not belong to this set. If one allows all odd values of k as
fundamental, the problem disappears.

One can also consider refinements of p-adic length scale hypothesis in its basic form.

1. One can consider also a generalization of p-adic length scale hypothesis to allow length scales
coming as powers of small primes. The small primes p = 2, 3, 5 assignable to Platonic solids
would be especially interesting. p = 2, 3, 5 and also Fermat primes and Mersenne primes are
maximally near to powers of two and their powers would define secondary and higher p-adic
length scales. In this sense the extension would not actually bring anything new.

There is evidence for the occurrence of long p-adic time scales coming as powers of 3 [?, ?]
(http://tinyurl.com/ycesc5mq) and [K15] (https://tinyurl.com/y8camqlt. Further-
more, prime 5 and Golden Mean are related closely to DNA helical structure. Portion of
DNA with L(151) contains 10 DNA codons and is the minimal length containing an integer
number of codons.

https://tinyurl.com/ya3yuzeb
https://tinyurl.com/ya3yuzeb
http://tinyurl.com/ycesc5mq
https://tinyurl.com/y8camqlt
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2. The presence of length scales associated with 1 nm and 2 nm thick structures encourage to
consider the possibility of p-adic primes near integers 2k3l5m defining generators of multi-
plicative ideals of integers. They do not satisfy the maximal nearness criterion anymore but
would be near to integers representable as products of powers of primes maximally near to
powers of two.

What could be the interpretation of the integer k appearing in p ' 2k? Elementary particle
quantum numbers would be associated with wormhole contacts with size scale of CP2 whereas
elementary particles correspond to p-adic size scale about Compton length. What could determine
the size scale of wormhole contact? I have proposed that to p-adic length scale there is associated
a scale characterizing wormhole contact and depending logarithmically on it and corresponds to
Lk = (1/2)log(p)L0 = (k/2)log(2)L0. The generalization of this hypothesis to the case of p '
2k3l5m... be straightforward and be Lk,l,m = (1/2)(klog(2) + llog(3) +mlog(5) + ..).

2.3.3 Dark scales and scales of CDs and their relation to p-adic length scale hierarchy

There are two length scale hierarchies. p-Adic length scale hierarchy assignable to space-time
surfaces and the dark hierarchy assignable to CDs. One should find an identification of dark scales
and understand their relationship to p-adic length scales.

1. Identification of dark scales

The dimension n of the extension provides the roughest measure for its complexity via the
formula heff/h0 = n. The basic - rather ad hoc - assumption has been that n as dimension of
extension defines not only heff but also the size scale of CD via L = nL0.

This assumption need not be true generally and already the attempt to understand gravitational
constant [L43] as a prediction of TGD led to the proposal that gravitational Planck constant
hgr = ngrh0 = GMm/v0 [?] could be coded by the data relating to a normal subgroup of Galois
group appearing as a factor of n.

The most general option is that dark scale is coded by a data related to extension of its
sub-extension and this data involves ramified primes. Ramified primes depend on the polyno-
mial defining the extension and there is large number polynomials defining the same extension.
Therefore ramified ramifies code information also about polynomial and dynamics of space-time
surface.

First some observations.

1. For Galois extension the order n has a natural decomposition to a product of orders ni of its
normal subgroups serving also as dimensions of corresponding extensions: n =

∏
i ni. This

implies a decomposition of the group algebra of Galois group to a tensor product of state
spaces with dimensions ni [L45].

2. Could one actually identify several dark scales as the proposed identifications of gravitational,
electromagnetic, etc variants of heff suggest? The hierarchy of normal subgroups of Galois
group of rationals corresponds to sub-groups with orders given by N(i, 1) = nini−1...ni−1
of n define orders for the normal subgroups of Galois group. For extensions of k − 1:th
extension of rationals one has N(i, k) = nini−1...ni−k. The most general option is that these
normal subgroups provide only the data allowing to associate dark scales to each of them.
The spectrum of heff could correspond to the {Ni,k} or at least the set {Ni,1}.

3. The extensions with prime dimension n = p have no non-trivial normal subgroups and n = p
would hold for them. For these extensions the state space of group algebra is prime as Hilbert
space and does not decompose to tensor product so that it would represent fundamental
system. Could these extensions be of special interest physically? SSFRs would naturally
involve state function reduction cascades proceeding downwards along hierarchy of normal
subgroups and would represent cognitive measurements [L45].

The original guess was that dark scale LD = nLp, where n is the order n for the extensions
and p is a ramified prime for the extension. A generalized form would allow LD = N(i, 1)Lpk for
the sub-extension such that pk is ramified prime for the sub-extension.
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2. Can one identify the size scale of CD as dark scale?

It would be natural if the scale of CD would be determined by the extension of rationals. Or
more generally, the scales of CD and hierarchy of sub-CDs associated with the extension would
be determined by the inclusion hierarchy of extensions and thus correspond to the hierarchy of
normal sub-groups of Galois group.

The simplest option would be LCD = LD so that the size scales of sub-CD would correspond
dark scales for sub-extension given by LCD,i = N(i, 1)Lpk , pk ramified prime of sub-extension.

1. The differences |ri − rj | would correspond to differences for Minkowski time of CD. CD
need not contain all values of hyperplanes t = ri and the evolution by SSFR would gradually
bring in day-light all roots rn of the polynomial P defining space-time surface as “very special
moments in the life of self”. If the size scale of CD is so large that also the largest value of
|ri| is inside the upper or lower half of CD, the size scale of CD would correspond roughly to
the largest p-adic length scale.

CD contains sub-CDs and these could correspond to normal subgroups of Galois extension
as extension of extension of ....

2. One can ask what happens when all special moments t = rn have been experienced? Does
BSFR meaning death of conscious entity take place or is there some other option? In [L44]
I considered a proposal for how chaos could emerge via iterations of P during the sequence
of SSFRs.

One could argue that when CD has reached by SSFRs following unitary evolutions a size for
which all roots rn have become visible, the evolution could continues by the replacement of
P with P ◦ P , and so on. This would give rise to iteration and space-time analog for the
approach to chaos.

3. Eventually the evolution by SSFRs must stop. Biological arguments suggests that metabolic
limitations cause the death of self since the metabolic energy feed is not enough to preserve
the distribution of values of heff (energies increase with heff ∝ Nn, for N :th iteration and
heff is reduced spontaneously) [L46].

3 Fermionic variant of M 8 −H duality

The topics of this section is M8 −H duality for fermions. Consider first the bosonic counterpart
of M8 −H duality.

1. The octonionic polynomial giving rise to space-time surface X4 as its “root” is obtained
from ordinary real polynomial P with rational coefficients by algebraic continuation. The
conjecture is that the identification in terms of roots of polynomials of even real analytic
functions guarantees associativity and one can formulate this as rather convincing argument
[L10, L11, L12]. Space-time surface X4

c is identified as a 4-D root for a Hc-valued “imaginary”
or “real” part of Oc valued polynomial obtained as an Oc continuation of a real polynomial
P with rational coefficients, which can be chosen to be integers. These options correspond
to complexified-quaternionic tangent- or normal spaces. For P (x) = xn + .. ordinary roots
are algebraic integers. The real 4-D space-time surface is projection of this surface from M8

c

to M8. One could drop the subscripts ”c” but in the sequel they will be kept.

M4
c appears as a special solution for any polynomial P . M4

c seems to be like a universal
reference solution with which to compare other solutions.

One obtains also brane-like 6-surfaces as 6-spheres as universal solutions. They have M4

projection, which is a piece of hyper-surface for which Minkowski time as time coordinate of
CD corresponds to a root t = rn of P . For monic polynomials these time values are algebraic
integers and Galois group permutes them.

2. One cannot exclude rational functions or even real analytic functions in the sense that Taylor
coefficients are octonionically real (proportional to octonionic real unit). Number theoretical
vision - adelic physics [L15], suggests that polynomial coefficients are rational or perhaps
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in extensions of rationals. The real coefficients could in principle be replaced with complex
numbers a + ib, where i commutes with the octonionic units and defines complexifiation of
octonions. i appears also in the roots defining complex extensions of rationals.

The generalization of the relationship between reals, extensions of p-adic number fields, and
algebraic numbers in their intersection is suggestive. The “world of classical worlds” (WCW)
would contain the space-time surfaces defined by polynomials with general real coefficients.
Real WCW would be continuous space in real topology. The surfaces defined by rational
or perhaps even algebraic coefficients for given extension would represent the intersection of
real WCW with the p-adic variants of WCW labelled by the extension.

3. M8 − H duality requires additional condition realized as condition that also space-time
surface itself contains 2-surfaces having commutative (complex) tangent or normal space.
These surfaces can be 2-D also in metric sense that is light-like 3-D surfaces. The number of
these surfaces is finite in generic case and they do not define a slicing of X4 as was the first
expectation. Strong form of holography (SH) makes it possible to map these surfaces and
their tangent/normal spaces to 2-D surfaces M4× CP2 and to serve as boundary values for
the partial differential equations for variational principle defined by twistor lift. Space-time
surfaces in H would be minimal surface apart from singularities.

Concerning M8 −H duality for fermions, there are strong guidelines: also fermionic dynamics
should be algebraic and number theoretical.

1. Spinors should be octonionic. I have already earlier considered their possible physical inter-
pretation. [L1].

2. Dirac equation as linear partial differential equation should be replaced with a linear algebraic
equation for octonionic spinors which are complexified octonions. The momentum space
variant of the ordinary Dirac equation is an algebraic equation and the proposal is obvious:
PΨ = 0, where P is the octonionic continuation of the polynomial defining the space-time
surface and multiplication is in octonionic sense. The conjugation in Oc is induced by the
conjugation of the commuting imaginary unit i. The square of the Dirac operator is real if the
space-time surface corresponds to the projection Oc →M8 →M4 with real time coordinate
and imaginary spatial coordinates so that the metric defined by the octonionic norm is real
and has Minkowskian signature. Hence the notion of Minkowski metric reduces to octonionic
norm for Oc - a purely number theoretic notion.

The masslessness condition restricts the solutions to light-like 3-surfaces mklP
kP l = 0 in

Minkowskian sector analogous to mass shells in momentum space - just as in the case of
ordinary massless Dirac equation. P (o) rather than octonionic coordinate o would define
momentum. These mass shells should be mapped to light-like partonic orbits in H.

3. This picture leads to the earlier phenomenological picture about induced spinors in H.
Twistor Grassmann approach suggests the localization of the induced spinor fields at light-
like partonic orbits in H. If the induced spinor field allows a continuation from 3-D partonic
orbits to the interior of X4, it would serve as a counterpart of virtual particle in accordance
with quantum field theoretical picture.

3.1 M8 −H duality for space-time surfaces

It is good to explain M8−H duality for space-time surfaces before discussing it in fermionic sector.

3.1.1 Space-time as 4-surface in M8
c = Oc

One can regard real space-time surface X4 ⊂ M8 as a M8−-projection of X4
c ⊂ M8

c = Oc. M
4
c

is identified as complexified quaternions Hc [L29, L42]. The dynamics is purely algebraic and
therefore local an associativity is the basic dynamical principle.

1. The basic condition is associativity of X4 ⊂M8 in the sense that either the tangent space or
normal space is associative - that is quaternionic. This would be realized if X4

c as a root for
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the quaternion-valued “real” or “imaginary part” for the Oc algebraic continuation of real
analytic function P (x) in octonionic sense. Number theoretical universality requires that the
Taylor coefficients are rational numbers and that only polynomials are considered.

The 4-surfaces with associative normal space could correspond to elementary particle like
entities with Euclidian signature (CP2 type extremals) and those with associative tangent
space to their interaction regions with Minkowskian signature. These two kinds space-time
surfaces could meet along these 6-branes suggesting that interaction vertices are located at
these branes.

2. The conditions allow also exceptional solutions for any polynomial for which both “real” and
“imaginary” parts of the octonionic polynomial vanish. Brane-like solutions correspond to 6-
spheres S6 having t = rn 3-ball B3 of light-cone as M4 projection: here rn is a root of the real
polynomial with rational coefficients and can be also complex - one reason for complexification
by commuting imaginary unit i. For scattering amplitudes the topological vertices as 2-
surfaces would be located at the intersections of X4

c with 6-brane. Also Minkowski space M4

is a universal solution appearing for any polynomial and would provide a universal reference
space-time surface.

3. Polynomials with rational coefficients define EQs and these extensions form a hierarchy real-
ized at the level of physics as evolutionary hierarchy. Given extension induces extensions of
p-adic number fields and adeles and one obtains a hierarchy of adelic physics. The dimension
n of extension allows interpretation in terms of effective Planck constant heff = n×h0. The
phases of ordinary matter with effective Planck constant heff = nh0 behave like dark matter
and galactic dark matter could correspond to classical energy in TGD sense assignable to
cosmic strings thickened to magnetic flux tubes. It is not completely clear whether number
galactic dark matter must have heff > h. Dark energy in would correspond to the volume
part of the energy of the flux tubes.

There are good arguments in favor of the identification h = 6h0 [L19]. “Effective” means
that the actual value of Planck constant is h0 but in many-sheeted space-time n counts the
number of symmetry related space-time sheets defining X4 as a covering space locally. Each
sheet gives identical contribution to action and this implies that effective value of Planck
constant is nh0.

The ramified primes of extension in turn are identified as preferrred p-adic primes. The
moduli for the time differences |tr− ts| have identification as p-adic time scales assignable to
ramified primes [L42]. For ramified primes the p-adic variants of polynomials have degenerate
zeros in O(p) = 0 approximation having interpretation in terms of quantum criticality central
in TGD inspired biology.

4. During the preparation of this article I made a trivial but overall important observation.
Standard Minkowski signature emerges as a prediction if conjugation in Oc corresponds to
the conjugation with respect to commuting imaginary unit i rather than octonionic imaginary
units as though earlier. If the space-time surface corresponds to the projection Oc →M8 →
M4 with real time coordinate and imaginary spatial coordinates the metric defined by the
octonionic norm is real and has Minkowskian signature. Hence the notion of Minkowski
metric reduces to octonionic norm for Oc - a purely number theoretic notion.

3.1.2 Realization of M8 −H duality

M8 − H duality allows to X4 ⊂ M8 to X4 ⊂ H so that one has two equivalent descriptions for
the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with 2-D preferred 2-
surfaces defining holography making possibleM8−H duality and possibly appearing as singularities
in H. The dynamics of minimal surfaces, which are also extremals of Kähler action, reduces
for known extremals to purely algebraic conditions analogous to holomorphy conditions in string
models and thus involving only gradients of coordinates. This condition should hold generally and
should induce the required huge reduction of degrees of freedom proposed to be realized also in
terms of the vanishing of super-symplectic Noether charges already mentioned [K16].
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Twistor lift allows several variants of this basic duality [L40]. M8
H duality predicts that space-

time surfaces form a hierarchy induced by the hierarchy of EQs defining an evolutionary hierarchy.
This forms the basics for the number theoretical vision about TGD.

As already noticed, X4 ⊂M8 would satisfy an infinite number of additional conditions stating
vanishing of Noether charges for a sub-algebra SSAn ⊂ SSA of super-symplectic algebra SSA
actings as isometries of WCW.

M8 −H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions [L29].

1. Associativity condition for tangent-/normal spaces is the first essential condition for the exis-
tence of M8−H duality and means that tangent - or normal space is associative/quaternionic.

2. Each tangent space of X4 at x must contain a preferred M2
c (x) ⊂ M4

c such that M2
c (x)

define an integrable distribution and therefore complexified string world sheet in M4
c . This

gives similar distribution for their orthogonal complements E2c(x). The string world sheet
like entity defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would
correspond to partonic 2-surface. This condition generalizes for X4 with quaternionic normal
space. A possible interpretation is as a space-time correlate for the selection of quantization
axes for energy (rest system) and spin.

One can imagine two realizations for the additional condition.

Option I: Global option states that the distributions M2
c (x) and E2

c (x) define a slicing of X4
c .

Option II: Only a discrete set of 2-surfaces satisfying the conditions exist, they are mapped
to H, and strong form of holography (SH) applied in H allows to deduce X4 ⊂ H. This would be
the minimal option.

It seems that only Option II can be realized.

1. The basic observation is that X2
c can be fixed by posing to the non-vanishing Hc-valued part

of octonionic polynomial P condition that the Cc-valued “real” or “imaginary” part in Cc
sense for P vanishes. M2

c would be the simplest solution but also more general complex
sub-manifolds X2

c ⊂M4
c are possible. This condition allows only a discrete set of 2-surfaces

as its solutions so that it works only for Option II.

These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
curves of analytic function f(z) = u + iv. One should have family of polynomials differing
by a constant term, which should be real so that v = 0 surfaces would form a discrete set.

2. SH makes possible M8 −H duality assuming that associativity conditions hold true only at
2-surfaces including partonic 2-surfaces or string world sheets or perhaps both. Thus one can
give up the conjecture that the polynomial ansatz implies the additional condition globally.

SH indeed states that PEs are determined by data at 2-D surfaces of X4. Even if the
conditions defining X2

c have only a discrete set of solutions, SH at the level of H could allow
to deduce the PEs from the data provided by the images of these 2-surfaces under M8 −H
duality. The existence of M2(x) would be required only at the 2-D surfaces.

3. There is however a delicacy involved: X2 might be 2-D only metrically but not topologically!
The 3-D light-like surfaces X3

L indeed have metric dimension D = 2 since the induced 4-
metric degenerates to 2-D metric at them. Therefore their pre-images in M8 would be
natural candidates for the singularities at which the dimension of the quaternionic tangent
or normal space reduces to D = 2 [L28] [K1]. If this happens, SH would not be quite so strong
as expected. The study of fermionic variant of M8 −H-duality supports this conclusion.

One can generalize the condition selecting X2
c so that it selects 1-D surface inside X2

c . By
assuming that Rc-valued “real” or “imaginary” part of complex part of P sense at this 2-surface
vanishes. One obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit

or distribution of the imaginary unit having interpretation as a complexified string. Together these
kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin. The outcome
would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as surfaces.
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Figure 1: M8 −H duality.

3.2 What about M8 −H duality in the fermionic sector?

During the preparation of this article I become aware of the fact that the realization M8−H duality
in the fermionic sector has remained poorly understood. This led to a considerable integration of
the ideas about M8 − H duality also in the bosonic sector and the existing phenomenological
picture follows now from M8 −H duality. There are powerful mathematical guidelines available.

3.2.1 Octonionic spinors

By supersymmetry, octonionicity should have also fermionic counterpart.

1. The interpretation of M8
c as complexified octonions suggests that one should use complexified

octonionic spinors in M8
c . This is also suggested by SO(1,7) triality unique for dimension

d = 8 and stating that the dimensions of vector representation, spinor representation and
its conjugate are same and equal to D = 8. I have already earlier considered the possibility
to interpret M8 spinors as octonionic [L1]. Both octonionic gamma matrices and spinors
have interpretation as octonions and gamma matrices satisfy the usual anti-commutation
rules. The product for gamma matrices and gamma matrices and spinors is replaced with
non-associative octonionic product.

2. Octonionic spinors allow only one M8-chirality, which conforms with the assumption of TGD
inspired SUSY that only quarks are fundamental fermions and leptons are their local com-
posites [L34].
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3. The decomposition of X2 ⊂ X4 ⊂M8 corresponding to R ⊂ C ⊂ Q ⊂ O should have analog
for the Oc spinors as a tensor product decomposition. The special feature of dimension D = 8
is that the dimensions of spinor spaces associated with these factors are indeed 1, 2, 4, and
8 and correspond to dimensions for the surfaces!

One can define for octonionic spinors associative/co-associative sub-spaces as quaternionic/co-
quaternionic spinors by posing chirality conditions. For X4 ⊂ M8

c one could define the
analogs of projection operators P± = (1 ± γ5)/2 as projection operators to either factor of
the spinor space as tensor product of spinor space associated with the tangent and normal
spaces of X4: the analog of γ5 would correspond to tangent or normal space depending on
whether tangent or normal space is associative. For the spinors with definite chirality there
would be no entanglement between the tensor factors. The condition would generalize the
chirality condition for massless M4 spinors to a condition holding for the local M4 appearing
as tangent/normal space of X4.

4. The chirality condition makes sense also for X2 ⊂ X4 identified as complex/co-complex
surface of X4. Now γ5 is replaced with γ3 and states that the spinor has well-defined spin
in the direction of axis defined by the decomposition of X2 tangent space to M1 × E1 with
M1 defining real octonion axis and selecting rest frame. Interpretation in terms of quantum
measurement theory is suggestive.

What about tangent space quantum numbers in M8 picture. In H-picture they correspond to
spin and electroweak quantum numbers. In M8 picture the geometric tangent space group for a
rest system is product SU(2) × SU(2) with possible modifications due to octonionicity reducing
tangent space group to those respecting octonionic automorphisms.

What about the sigma matrices for the octonionic gamma matrices? The surprise is that
the commutators of M4 sigma matries and those of E4 sigma matrices close to the sama SO(3)
algebra allowing interpretation as representation for quaternionic automorphisms. Lorentz boosts
are represented trivially, which conforms with the fact that octonion structure fixes unique rest
system. Analogous result holds in E4 degrees of freedom. Besides this one has unit matrix
assignable to the generalize spinor structure of CP2 so that also electroweak U(1) factor is obtained.

One can understand this result by noticing that octonionic spinors correspond to 2 copies of a
tensor products of the spinor doublets associated with spin and weak isospin. One has 2⊗2 = 3⊕1
so that one must have 1⊕3⊕1⊕3. The octonionic spinors indeed decompose like 1+1+3+3 under
SU(3) representing automophisms of the octonions. SO(3) could be interpreted as SO(3) ⊂ SU(3).
SU(3) would be represented as tangent space rotations.

3.2.2 Dirac equation as partial differential equation must be replaced by an algebraic
equation

Algebraization of dynamics should be also supersymmetric. The modified Dirac equation in H is
linear partial differential equation and should correspond to a linear algebraic equation in M8.

1. The key observation is that for the ordinary Dirac equation the momentum space variant of
Dirac equation for momentum eigenstates is algebraic! Could the interpretation for M8−H
duality as an analog of momentum-position duality of wave mechanics considered already
earlier make sense! This could also have something to do with the dual descriptions of
twistorial scattering amplitudes in terms of either twistor and momentum twistors. Already
the earlier work excludes the interpretation of the octonionic coordinate o as 8-momentum.
Rather, P (o) has this interpretation and o corrresponds to embedding space coordinate.

2. The first guess for the counterpart of the modified Dirac equation at the level of X4 ⊂ M8

is PΨ = 0, where Ψ is octonionic spinor and the octonionic polynomial P defining the
space-time surface can be seen as a generalization of momentum space Dirac operator with
octonion units representing gamma matrices. If associativity/co-associativity holds true, the
equation becomes quaternionic/co-quaternionic and reduces to the 4-D analog of massless
Dirac equation and of modified Dirac equation in H. Associativity hols true if also Ψ satisfies
associativity/co-associativity condition as proposed above.
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3. What about the square of the Dirac operator? There are 3 conjugations involved: quater-
nionic conjugation assumed in the earlier work, conjugation with respect to i, and their
combination. The analog of octonionic norm squared defined as the product oco

∗
c with con-

jugation with respect to i only, gives Minkowskian metric mklo
kol as its real part. The

imaginary part of the norm squared is vanishing for the projection Oc →M8 →M4 so that
time coordinate is real and spatial coordinates imaginary. Therefore Dirac equation allows
solutions only for the M4 projection X4 and M4 (M8) signature of the metric can be said
to be an outcome of quaternionicity (octonionicity) alone in accordance with the duality
between metric and algebraic pictures.

Both P †P and PP should annihilate Ψ. P †PΨ = 0 gives mklP
kP

l
= 0 as the analog

of vanishing mass squared in M4 signature in both associative and co-associative cases.
PPΨ = 0 reduces to PΨ = 0 by masslessness condition. One could perhaps interpret the
projection X4

c →M8 →M4 in terms of Uncertainty Principle.

There is a U(1) symmetry involved: instead of the plane M8 one can choose any plane
obtained by a rotation exp(iφ) from it. Could it realize quark number conservation in M8

picture?

For P = o having only o = 0 as root Po = 0 reduces to o†o = 0 and o takes the role of
momentum, which is however vanishing. 6-D brane like solutions S6 having t = rn balls
B3 ⊂ CD4 as M4 projections one has P = 0 so that the Dirac equation trivializes and does
not pose conditions on Ψ. o would have interpretation as space-time coordinates and P (o)
as position dependent momentum components P k.

The variation of P at mass shell of M8
c (to be precise) could be interpreted in terms of the

width of the wave packet representing particle. Since the light-like curve at partonic 2-surface
for fermion at X3

L is not a geodesic, mass squared in M4 sense is not vanishing. Could one
understand mass squared and the decay width of the particle geometrically? Note that mass
squared is predicted also by p-adic thermodynamics [K12].

4. The masslessness condition restricts the spinors at 3-D light-cone boundary in P (M8). M8−
H duality [L29] suggests that this boundary is mapped to X3

L ⊂ H defining the light-like
orbit of the partonic 2-surface in H. The identification of the images of PkP

k = 0 surfaces
as X3

L gives a very powerful constraint on SH and M8 −H duality.

5. Also at 2-surfaces X2 ⊂ X4 an the variant Dirac equation would hold true and should
commute with the corresponding chirality condition. Now D†DΨ = 0 gives 2-D variant
of masslessness condition with 2-momentum components represented by those of P . 2-D
masslessness locates the spinor to a 1-D curve X1

L. Its H-image would naturally contain the
boundary of the string word sheet at X3

L assumed to carry fermion quantum numbers and
also the boundary of string world sheet at the light-like boundary of CD4. The interior of
string world sheet in H would not carry induced spinor field.

6. The general solution for both 4-D and 2-D cases can be written as Ψ = PΨ0, Ψ0 a constant
spinor - this in a complete analogy with the solution of modified Dirac equation in H. P
depends on position: the WKB approximation using plane waves with position dependent
momentum seems to be nearer to reality than one might expect.

3.2.3 The phenomenological picture at H-level follows from the M8-picture

Remarkably, the partly phenomenological picture developed at the level of H is reproduced at
the level of M8. Whether the induced spinor fields in the interior of X4 are present or not, has
been long standing question since they do not seem to have any role in the physical picture. The
proposed picture answers this question.

Consider now the explicit realization of M8 −H-duality for fermions.

1. SH and the expected analogy with the bosonic variant of M8 − H duality lead to the first
guess. The spinor modes in X4 ⊂ M8 restricted to X2 can be mapped by M8 −H-duality
to those at their images X2 ⊂ H, and define boundary conditions allowing to deduce the
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solution of the modified Dirac equation at X4 ⊂ H. X2 would correspond to string world
sheets having boundaries X1

L at X3
L.

The guess is not quite correct. Algebraic Dirac equation requires that the solutions are
restricted to the 3-D and 1-D mass shells PkP

k = 0 in M8. This should remain true also in
H and X3

L and their 1-D intersections X1
L with string world sheets remain. Fermions would

live at boundaries. This is just the picture proposed for the TGD counterparts of the twistor
amplitudes and corresponds to that used in twistor Grassmann approach!

For 2-D case constant octonionic spinors Ψ0 and gamma matrix algebra are equivalent with
the ordinary Weyl spinors and gamma matrix algebra and can be mapped as such to H. This
gives one additional reason for why SH must be involved.

2. At the level of H the first guess is that the modified Dirac equation DΨ = 0 is true for
D based on the modified gamma matrices associated with both volume action and Kähler
action. This would select preferred solutions of modified Dirac equation and conform with
the vanishing of super-symplectic Noether charges for SSAn for the spinor modes. The guess
is not quite correct. The restriction of the induced spinors to X3

L requires that Chern-Simons
action at X3

L defines the modified Drac action.

3. The question has been whether the 2-D modified Dirac action emerges as a singular part of 4-
D modified Dirac action assignable to singular 2-surface or can one assign an independent 2-D
Dirac action assignable to 2-surfaces selected by some other criterion. For singular surfaces
M8−H duality fails since tangent space would reduce to 2-D space so that only their images
can appear in SH at the level of H.

This supports the view that singular surfaces are actually 3-D mass shells M8 mapped to X3
L

for which 4-D tangent space is 2-D by the vanishing of
√
g4 and light-likeness. String world

sheets would correspond to non-singular X2 ⊂ M8 mapped to H and defining data for SH
and their boundaries X1

L ⊂ X3
L and X1

L ⊂ CD4 would define fermionic variant of SH.

What about the modified Dirac operator D in H?

1. For X3
L modified Dirac equation DΨ = 0 based on 4-D action S containing volume and

Kähler term is problematic since the induced metric fails to have inverse at X3
L. The only

possible action is Chern-Simons action SCS used in topological quantum field theories and
now defined as sum of C-S terms for Kähler actions in M4 and CP2 degrees of freedom. The
presence of M4 part of Kähler form of M8 is forced by the twistor lift, and would give rise
to small CP breaking effects explaining matter antimatter asymmetry [L34]. SC−S could
emerge as a limit of 4-D action.

The modified Dirac operator DC−S uses modified gamma matrices identified as contractions
ΓαCS = Tαkγk, where Tαk = ∂LCS/∂(∂αh

k) are canonical momentum currents for SC−S
defined by a standard formula.

2. CP2 part would give conserved Noether currents for color in and M4 part Poincare quantum
numbers: the apparently small CP breaking term would give masses for quarks and leptons!
The bosonic Noether current JB,A for Killing vector jkA would be proportional to JαB,A =

Tαk jAk and given by JB,A = εαβγ [JβγAk +AβJγk]jkA.

Fermionic Noether current would be JF,A = ΨJαΨ 3-D Riemann spaces allow coordinates in
which the metric tensor is a direct sum of 1-D and 2-D contributions and are analogous to
expectation values of bosonic Noether currents. One can also identify also finite number of
Noether super currents by replacing Ψ or Ψ by its modes.

3. In the case of X3
L the 1-D part light-like part would vanish. If also induced Kähler form

is non-vanishing only in 2-D degrees of freedom, the Noether charge densities J t reduce to
J t = JAkj

k
A, J = εαβγJβγ defining magnetic flux. Modified Dirac operator would reduce to

D = JAkγ
kDt and 3-D solutions would be covariantly constant spinors along the light-like

geodesics parameterized by the points 2-D cross section. One could say that the number of
solutions is finite and corresponds to covariantly constant modes continued from X1

L to X3
L.

This picture is just what twistor Grassmannian approach led to [L24].
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3.2.4 A comment inspired by the ZEO based quantum measurement theory

I cannot resist the temptation to make a comment relating to quantum measurement theory in-
spired by zero energy ontology (ZEO) extending to a theory of consciousness [L33, L45, L46].

I have proposed [L42, L44] that the time evolution by “big” state function reductions (BSFRs)
could be induced by iteration of real polynomial P - at least in some special cases. The foots of the
real polynomial P would define a fractal at the limit of larger number of iterations. The roots of
n-fold iterate ◦nP would contain the inverse images under ◦−n+1P of roots of P and for P (0) = 0
the inverse image ◦nP would consist of inverse images under ◦−kP , k = 0, ...., n− 1, of roots of P .

Also the mass shells for ◦nP would be unions of inverses images under ◦−kP , k = 0, , ...., n− 1,
of roots of P . This gives rather concrete view about evolution of M4 projections of the partonic
orbits. A rough approximate expression for the largest root of real P approximated as P (x) '
anx

n + an− 1ixn−1 for large x is xmax ∼ an/an−1. For ◦nP one obtains the same estimate. This
suggests that the size scales of the partonic orbits are same for the iterates. The mass shells would
not differ dramatically: could they have an interpretation in terms of mass splitting?

The evolution by iteration would add new partonic orbits and preserve the existing ones: this
brings in mind conservation of genes in biological evolution. This is true also for a more general
evolution allowing general functional decomposition Q→ Q ◦ P to occur in BSFR.

3.2.5 What next in TGD?

The construction of scattering amplitudes has been the dream impossible that has driven me for
decades. Maybe the understanding of fermionic M8 − H duality provides the needed additional
conceptual tools. The key observation is utterly trivial but far reaching: there are 3 possible
conjugations for octonions corresponding to the conjugation of commutative imaginary unit or
of octonionic imaginary units or both of them. 1st norm gives a real valued norm squared in
Minkowski signature natural at M8 level! Second one gives a complex valued norm squared in
Euclidian signature. 1st and 2nd norms are equivalent for octonions light-like with respect to the
first norm. The 3rd conjugation gives a real-valued Euclidian norm natural at the level of Hilbert
space.

1. M8 picture looks simple. Space-time surfaces in M8 can be constructed from real polynomials
with real (rational) coefficients, actually knowledge of their roots is enough. Discrete data -
roots of the polynomial!- determine space-time surface as associative or co-associative region!
Besides this one must pose additional condition selecting 2-D string world sheets and 3-
D light-like surfaces as orbits of partonic 2-surfaces. These would define strong form of
holography (SH) allowing to map space-time surfaces in M8 to M4 × CP2.

2. Could SH generalize to the level of scattering amplitudes expressible in terms of n-point
functions of CFT?! Could the n points correspond to the roots of the polynomial defining
space-time region!

Algebraic continuation to quaternion valued scattering amplitudes analogous to that giving
space-time sheets from the data coded SH should be the key idea. Their moduli squared are
real - this led to the emergence of Minkowski metric for complexified octonions/quaternions)
would give the real scattering rates: this is enough! This would mean a number theoretic
generalization of quantum theory.

3. One can start from complex numbers and string world sheets/partonic 2-surfaces. Confor-
mal field theories (CFTs) in 2-D play fundamental role in the construction of scattering
string theories and in modelling 2-D statistical systems. In TGD 2-D surfaces (2-D at least
metrically) code for information about space-time surface by strong holography (SH) .

Are CFTs at partonic 2-surfaces and string world sheets the basic building bricks? Could
2-D conformal invariance dictate the data needed to construct the scattering amplitudes for
given space-time region defined by causal diamond (CD) taking the role of sphere S2 in
CFTs. Could the generalization for metrically 2-D light-like 3-surfaces be needed at the level
of ”world of classical worlds” (WCW) when states are superpositions of space-time surfaces,
preferred extremals?
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The challenge is to develop a concrete number theoretic hierarchy for scattering amplitudes:
R→ C → H → O - actually their complexifications.

1. In the case of fermions one can start from 1-D data at light-like boundaries LB of string
world sheets at light-like orbits of partonic 2-surfaces. Fermionic propagators assignable
to LB would be coded by 2-D Minkowskian QFT in manner analogous to that in twistor
Grassmann approach. n-point vertices would be expressible in terms of Euclidian n-point
functions for partonic 2-surfaces: the latter element would be new as compared to QFTs
since point-like vertex is replaced with partonic 2-surface.

2. The fusion (product?) of these Minkowskian and Euclidian CFT entities corresponding to
different realization of complex numbers as sub-field of quaternions would give rise to 4-D
quaternionic valued scattering amplitudes for given space-time sheet. Most importantly:
there moduli squared are real for both norms.

It is not quite clear whether one must use the 1st Minkowskian norm requiring “time-like”
scattering amplitudes to achieve non-negative probabilities or use the 3rd norm to get the
ordinary positive-definite Hilbert space norm. A generalization of quantum theory (CFT)
from complex numbers to quaternions (quaternionic ”CFT”) would be in question.

3. What about several space-time sheets? Could one allow fusion of different quaternionic
scattering amplitudes corresponding to different quaternionic sub-spaces of complexified oc-
tonions to get octonion-valued non-associative scattering amplitudes. Again scattering rates
would be real. This would be a further generalization of quantum theory.

There is also the challenge to relate M8- and H-pictures at the level of WCW. The formulation
of physics in terms of WCW geometry [K16, L39] leads to the hypothesis that WCW Kähler
geometry is determined by Kähler function identified as the 4-D action resulting by dimensional
reduction of 6-D surfaces in the product of twistor spaces of M4 and CP2 to twistor bundles having
S2 as fiber and space-time surface X4 ⊂ H as base. The 6-D Kähler action reduces to the sum of
4-D Kähler action and volume term having interpretation in terms of cosmological constant.

The question is whether the Kähler function - an essentially geometric notion - can have a
counterpart at the level of M8.

1. SH suggests that the Kähler function identified in the proposed manner can be expressed
by using 2-D data or at least metrically 2-D data (light-like partonic orbits and light-like
boundaries of CD). Note that each WCW would correspond to a particular CD.

2. Since 2-D conformal symmetry is involved, one expects also modular invariance meaning that
WCW Kähler function is modular invariant, so that they have the same value for X4 ⊂ H
for which partonic 2-surfaces have induced metric in the same conformal equivalence class.

3. Also the analogs of Kac-Moody type symmetries would be realized as symmetries of Kähler
function. The algebra of super-symplectic symmetries of the light-cone boundary can be
regarded as an analog of Kac-Moody algebra. Light-cone boundary has topology S2 × R+

where R+ corresponds to radial light-like ray parameterized by radial light-like coordinate r.
Super symplectic transformations of S2 × CP2 depend on the light-like radial coordinate r,
which is analogous to the complex coordinate z for he Kac-Moody algebras.

The infinitesimal super-symplectic transformations form algebra SSA with generators propor-
tional to powers rn . The Kac-Moody invariance for physical states generalizes to a hierarchy
of similar invariances. There is infinite fractal hierarchy of sub-algebras SSAn ⊂ SSA with
conformal weights coming as n-multiples of those for SSA. For physical states SSAn and
[SSAn, SSA] would act as gauge symmetries. They would leave invariant also Kähler func-
tion in the sector WCWn defined by n. This would define a hierarchy of sub- WCWs of the
WCW assignable to given CD.

The sector WCWn could correspond to extensions of rationals with dimension n, and one
would have inclusion hierarchies consisting of sequences of ni with ni dividing ni+1. These
inclusion hierarchies would naturally correspond to those for hyper-finite factors of type
II1 [K20].
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4 Cognitive representations and algebraic geometry

The general vision about cognition is realized in terms of adelic physics as physics of sensory
experience and cognition [L15, L14]. Rational points and their generalization as ratios of algebraic
integers for geometric objects would define cognitive representations as points common for real
and various p-adic variants of the space-time surface. The finite-dimensionality for induced p-adic
extensions allows also extensions of rationals involving root of e and its powers. This picture
applies both at space-time level, embedding space level, and at the level of space-time surfaces but
basically reduces to embedding space level. Hence counting of the (generalized) rational points for
geometric objects would be determination of the cognitive representability.

4.1 Cognitive representations as sets of generalized rational points

The set of rational points depends on the coordinates chosen and one can argue that one must
allow different cognitive representations and classify them according to their effectiveness.

How uniquely the M8
c coordinates can be chosen?

1. Polynomial property allows only linear transformations of the complex octonionic coordinates
with coefficients which belong to the extension of rationals used. This poses extremely strong
restrictions on the allowed representations once the quaternionic moduli defining a foliation
of M4

0 is chosen. One has therefore moduli space of quaternionic structures. One must also
fix the time axis in M4 assignable to real octonions.

2. One can also define several inequivalent octonionic structures and associate a moduli space to
these. The moduli space for octonionic structures would correspond to the space of M4

0 ⊂M8s
as quaternionic planes containing fixed M2

0 . One can allow even allow Lorentz transforms
mixing real and imaginary octonionic coordinates. It seems that these moduli are not relevant
at the level of H.

What could the precise definition of rationality?

1. The coordinates of point are rational in the sense defined by the extension of rationals used.
Suppose that one considers parametric representations of surfaces as maps from space-time
surface to embedding space. Suppose that one uses as space-time coordinates subset of pre-
ferred coordinates for embedding space. These coordinate changes cannot be global and one
space-time surface decomposes to regions in which different coordinates apply.

2. The coordinate transformations between over-lapping regions are birational in the sense that
both the map and its inverse are in terms of rational functions. This makes the notion of
rationality global.

3. When cognitively easy rational parametric representations are possible? For algebraic curves
with g ≥ 2 in CP2 represented as zeros of polynomials this cannot the case since the number
of rational points is finite for instance for g ≥ 2 surfaces. There is simple explanation for
this. Solving second complex coordinate in terms of the other one gives it as an algebraic
function for g ≥ 2: this must be the reason for the loss of dense set of rational points. For
elliptic surfaces y2 − x3 − ax− b = 0 y2 is however polynomial of x and one can find rational
parametric representation by taking y2 as coordinate [L7]. For g = 0 one has linear equations
and one obtains dense set of rational points. For conic sections one can also have dense set
of rational points but not always. Generalizing from this it would seem that the failure to
have rational parametric representation is the basic reason for the loss of dense set of rational
points.

This picture does not work for general surfaces but generalizes for algebraic varieties defined
by several polynomial equations. The co-dimension dc = 1 case is however unique and the most
studied one since for several polynomial equations one encounters technical difficulties when the
intersection of the surfaces defined by the dc polynomials need not be complete for dc > 1. In
the recent situation one has dc = 4 but octonion analyticity could be powerful enough symmetry
to solve the problem of non-complete intersections by eliminating them or providing a physical
interpretation for them.
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4.2 Cognitive representations assuming M8 −H duality

Many questions should be answered.

1. Can one generalize the results applying to algebraic varieties? Could the general vision about
rational and potentially dense set of rational points generalize?. At M8 side the description
of space-time surfaces as algebraic varieties indeed conforms with this picture. Could one
understand SH from the fact that real analyticity octonionic polynomials are determined
by ordinary polynomial real coordinate completely? In information theoretic sense sense
SH reduces to 1-D holography and the polynomial property makes the situation effectively
discrete since finite number of points of real axis allows to determine the octonionic polynomial
completely! It is a pity that one cannot measure octonionic polynomial directly!

2. Also the notion of Zariski dimension should make sense in TGD at M8 side. Preferred
extremals define the notion of closed set for given CD at M8 side? It would indeed seem that
one define Zariski topology at the level of M8

c . Zariski topology would require 4-surfaces,
string world sheets, or partonic 2-surfaces and even 1-D curves. This picture conforms with
the recent view about TGD and resembles the M-theory picture, where one has branes. SH
suggests that the analog of Zariski dimension of space-time surface reduces to that for strings
world sheets and partonic 2-surfaces and that even these are analogous to 1-D curves by
complex analyticity. Integrability of TGD and preferred extremal property would indeed
suggest simplicity.

M8 −H hypothesis suggests that these conjectures make sense also at H side. String world
sheets, partonic 2-surface, space-like 3-surfaces at the ends of space-time surface at boundaries
of CD, and light-like 3-surfaces correspond to closed sets also at the level of WCW in the
topology most natural for WCW.

3. Also the problems related to Minkowskian signature could be solved. String world sheets
are problematic because of the Minkowskian signature. They however have the topology of
disk plus handles suggesting immediately a vision about cognitive representations in terms of
rational points. One can can complexify string world sheets and it seems possible to apply the
results of algebraic geometry holding true in Euclidian signature. This would be analogous
to the Wick rotation used in QFTs and also in twistor Grassmann approach.

4. What about algebraic geometrization of the twistor lift? How complex are twistor spaces of
M4, CP2 and space-time surface? How can one generalize twistor lift to the level of M8.
S2 bundle structure and the fact that S2 allows a dense set of rational suggests that the
complexity of twistor space is that of space-time surface itself so that the situation actually
reduces to the level of space-time surfaces.

Suppose one accepts M8 −H duality requiring that the tangent space of space-time surface at
given point x contains M2(x) such that M2(x) define an integrable distribution giving rise to string
world sheets and their orthogonal complements give rise to partonic 2-surfaces. This would give
rise to a foliation of the space-time surface by string world sheets and partonic 2-surface conjecture
on basis of the properties of extremals of Kähler action. As found these foliations could correspond
to quaternion structures that is allowed choices of quaterionic coordinates.

Should one define cognitive representations at the level of M8 or at the level of M4 × CP2?
Or both? For M8 option the condition that space-time point belongs to an extension of rationals
applies at the level of M8 coordinates. For M4 × CP2 option cognitive representations are at the
level of M4 and CP2 parameterizing the points of M4 and their tangent spaces. The formal study
of partial differential equations alone does not help much in counting the number of rational points.
One can define cognitive representation in very many ways, and some cognitive representation could
be preferred only because they are more efficient than others. Hence both cognitive representations
seems to be acceptable.

Some cognitive representations are more efficient than others. General coordinate invariance
(GCI) at the level of cognition is broken. The precise determination of cognitive efficiency is a
challenge in itself. For instance, the use of coordinates for which coordinate lines are orbits of
subgroups of the symmetry group should be highly efficient. Only coordinate transformations
mediated by bi-rational maps can take polynomial representations to polynomial representations.
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It might well be that only a rational (in generalized sense) sub-group G2 of octonionic automor-
phisms is allowed. For rational surfaces allowing parametric representation in terms of polynomial
functions the rational points form a dense set.

The cognitive resolution for a dense set of rational points is unrealistically high since cognitive
representation would contain infinite number of points. Hence one must tighten the notion of
cognitive representation. The rational points must contain a fermion. Fermions are indeed are
identified as correlates for Boolean cognition [K2]. This would suggests a view in which cognitive
representations are realized at the light-like orbits of partonic 2-surfaces at which Minkowskian
associative and Euclidian co-associative space-time surfaces meet. The general wisdom is that
rational points are localized to lower-dimensional sub-varieties (Bombieri-Lang conjecture): this
conforms with the view that fermion lines reside at the orbits of partonic 2-surfaces.

4.3 Are the known extremals in H easily cognitively representable?

Suppose that one takes TGD inspired adelic view about cognition seriously. If cognitive repre-
sentations correspond to rational points for an extension of rationals, then the surfaces allowing
large number of this kind of points are easily representable cognitively by adding fermions to these
points. One could even speculate that mathematical cognition invents those geometric objects,
which are easily cognitively representable and thus have a large number of rational points.

4.3.1 Could the known extremals of twistor lift be cognitively easy?

Also TGD is outcome of mathematical cognition. Could the known extremals of the twistor lift
of Kähler action be cognitively easy? This is suggested by the fact that even such a pariah class
theoretician as I am have managed to discover then! Positive answer could be seen as support for
the proposed description of cognition!

1. If one believes in M8 − H duality and the proposed identification of associative and co-
associative space-time surfaces in terms of algebraic surfaces in octonionic space M8

c , the
generalization of the results of algebraic geometry should give overall view about the cogni-
tive representations at the level of M8. In particular, surfaces allowing rational parametric
representation (polynomials would have rational coefficients) would allow dense set or rational
points since the images of rational points are rational. Rationals are understood here as ratios
of algebraic integers in extension of rationals.

2. Also for H the existence of parameter representation using preferred H-coordinates and ra-
tional functions with rational coefficients implies that rational points are dense. If M8 −H
correspondence maps the parametric representations in terms of rational functions to simi-
lar representations, dense set of rational points is preserved in the correspondence. There is
however no obvious reason why M8 −H duality should have this nice property.

One can even play with the idea that the surfaces, which are cognitively difficult at the M8

side, might be cognitively easy at H-side or vice versa. Of course, if the explicit representation
as algebraic functions makes sense at M8 side, this side looks cognitively ridiculously easy
as compared to H side. The preferred extremal property and SH can however change the
situation.

3. At M8 side and for a given point of M4 there are several points of E4 (or vice versa) if the
degree of the polynomial is larger than n = 1 so that for the image of the surface H there
are several CP2 points for a given point of M4 (or vice versa) depending on the choice of
coordinates. This is what the notion of the many-sheeted space-time predicts.

4. The equations for the surface at H side are obtained by a composite map assigning first to the
coordinates of X4 ⊂M8 point of M4×E4, and then assigning to the points of X4 ⊂M8 CP2

coordinates of the tangent space of the point. At this step the slightly non-local tangent space
information is fed in and the surfaces in M4 ×CP2 cannot be given by zeros of polynomials.
The indeed satisfy instead of algebraic equations partial differential equations given by the
Kähler action for the twistor lift TGD. Algebraic equations instead of partial differential
equations suggests that the M8 representation is much simpler than H-representation. On
the other hand, reduction to algebraic equations at M8 side could have interpretation in terms
of the conjectured complete integrability of TGD [K1, K18].
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4.3.2 Testing the idea about self-reference

In any case, it is possible to test the idea about self-reference by looking whether the known
extremals in H are cognitively easy and even have a dense set of rational points in natural coordi-
nates. Here I will consider the situation at the level of M4 × CP2. It was already found that the
known extremals can have inverse images in M8.

1. Canonically imbedded M4 with linear coordinates and constant CP2 coordinates rational is
the simple example about preferred extremal and it seems that TGD based cosmology at
microscopic relies on these extremals. In this case it is obvious that one has a dense set of
rational points at both sides. Could this somehow relate to the fact that physics as physics
M4 was discovered before general relativity?

Canonically imbedded M4 corresponds to a first order octonionic polynomial for which imag-
inary part is put to constant so that tangent space is same everywhere and corresponds to a
constant CP2 coordinate.

2. CP2 type extremals have 4-D CP2 projection and light-like geodesic line of M4 as M4 projec-
tion. One can choose the time parameter as a function of CP2 coordinates in infinitely many
ways. Clearly the rational points are dense in any CP2 coordinates.

3. Massless extremals (MEs) are given as zeros of arbitrary functions of CP2 coordinates and
2 M4 coordinates representing local light-like direction and polarization direction orthogonal
to it. In the simplest situation these directions are constant. In the general case light-like
direction would define tangent space of string world sheet giving rise also to a distribution
of ortogonal polarization planes. This is consistent with the general properties of the M8

representation and corresponds to the decomposition of quaternionic tangent plane to complex
plane and its complement. One can ask whether one should allow only polynomials with
rational coefficients as octonionic polynomials.

4. String like objects X2×Y 2 with X2 ⊂M4 a minimal surface and Y 2 complex or Lagrangian
surface of CP2 are also basic extremals and their deformations in M4 directions are expected
to give rise to magnetic flux tubes.

If Y 2 is complex surface with genus g = 0 rational points are dense. Also for g = 1 one
obtains a dense set of rational points in some extension of rationals. For elliptic curves one
has lattice of rational points. What happens for Lagrangian surfaces Y 2? In this case one
does not have complex curves but real co-dimension 2 surfaces. There is no obvious objection
why these surfaces would not be possible.

5. What about string world sheets? If the string world is static M2 ⊂ M4 one has a dense
set of rational points. One however expects something more complex. If the string world
sheet is rational map M2 to its orthogonal complement E2 one has rational surface. For
rotating strings this does not make sense except for certain period of time. If the choice
of the quaternion structure corresponds to a choice of minimal surface in M4 as integrable
distribution for M2(x), the coordinates associated with the Hamilton-Jacobi structure could
make the situation simple.

If one restricts the consideration the intersections of partonic 2-surfaces and string world
sheets at two boundaries of CD the situation simplifies and the question is only about the
rationality of the M4 coordinates at rational points of Y 2 ⊂ CP2. This would simplify the
situation enormously and might even allow to use existing knowledge.

6. The slicing of of space-time surfaces by string world sheets and partonic 2-surfaces required by
Hamilton-Jacobi structure could be seen as a fibering analogous to that possessed by elliptic
surfaces. This suggest that M8 counterparts of spacetime surfaces are not of general type in
Kodaira classification and that the number of rational points can be large. If the existence
of Hamilton-Jacobi structure does not allow handles, this factor would be cognitively simple.
This would however suggests that fermion number is not localized at the ends of strings only
- as assumed in the construction of scattering amplitudes inspired by twistor Grassmann
approach [K9] - but also to the interior of the light-like curves inside string world sheets.
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4.4 Twistor lift and cognitive representations

What about twistor lift of TGD replacing space-time surfaces with their twistor spaces. Consider
first M8 side.

1. At M8 side S2 seems to introduce nothing new. One might expect that the situation does not
change at H-side since space-time surfaces are obtained essentially by dimensional reduction
and the possible problem relates to the choice of base space as section of is twistor bundle
and the embedding of space-time as base space could have singularities at the boundary of
Euclidian and Minkowskian space-time regions as discussed in [L7].

At the side of M8 the proposed induction of twistor structure is just a projection of the
twistor sphere S6 to its geodesic sphere and one has 4-D moduli space for geodesic spheres
S2 ⊂ S6. If one interprets the choice of S2 ⊂ S6 as as a section in the moduli space, the
moduli of S2 can depend on the point of space-time surface. Note that there are is also a
position dependent choice of preferred point of S2 representing Kähler form, and this choice
is good candidate for giving rise to Hamilton-Jacobi structures with position dependent M2.

2. The notion of Kodaira dimension is defined also for co-dimension 4 algebraic varieties in M8
c .

The cognitively easiest spacetime surfaces would allow rational parametric representation with
complex coordinates serving as parameters. If this is not possible, one has algebraic functions,
which makes the situation much more complex so that the number of rational points would
be small.

3. For some complex enough extensions of rationals the set of rational points can be dense.
g ≥ 2 genera are basic example and one expects also in more general case that polynomials
involving powers larger than n = 4 make the situation problematic. The condition that real
or imaginary part of real analytic octonionic polynomial is in question is a strong symmetry
expected to faciliate cognitive representability.

4. The general intuitive wisdom from algebraic geometry is that the rational points are dense
only in lower-dimensional sub-varieties (Bombieri-Lang and Vojta conjectures mentioned in
the first section). The general vision inspired by SH and the proposal for the construction of
twistor amplitudes indeed is that the algebraic points (rational in generalized sense) defining
cognitive representations are associated with the intersections of string world sheets and
partonic 2-surfaces to which fermions are assigned. This would suggest that partonic 2-
surfaces and string world sheets contain the cognitive representation, which under additional
conditions can contain very many points.

5. An interesting question concerns the M8 counterparts of partonic 2-surfaces as space-time
regions with Minkowskian and Euclidian signature. The partonic orbits representing the
boundaries between these regions should be mapped to each other by M8 −H duality. This
conforms with the fact that induced metric must have degenerate signature (0,−1,−1,−1)
at partonic orbits. Can one assume that the topologies of partonic 2-surfaces at two sides
are identical? Consider partonic 2-surface of genus g in M4 × CP2 - say at the boundary of
CD. It should be inverse image of a 2-surface in M4 ×E4 such that the tangent space of this
surface labelled by CP2 coordinates is mapped to a 2-surface in M4 × CP2. If the inverse of
M8 −H correspondence is continuous one expects that g is preserved.

Consider next the H-side. There is a conjecture that for Cartesian product the Kodaira di-
mension is sum dK =

∑
i dK,i of the Kodaira dimensions for factors. Suppose that CP1 fiber as

surface in the 12-D twistor bundle T (M4) × T (CP2) has Kodaira dimension dK(CP1) = −∞ (it
is expected to be rational surface) then the fact that the bundle decomposes to Cartesian product
locally and rational points are pairs of rational points in the factors, is indeed consistent with the
proposal. S2 would give dense set of rational points in S2 and the bundle would have infinite
number of rational points.

In TGD context, it is however space-time surface which matters. Space-time surface as section
of the bundle would not however have a dense set of points in the general case and the relevant
Kodaira dimension be dK = dK(X4). One can of course ask whether the space-time surface as an
algebraic section (not many of them) of the twistor bundle could chosen to be cognitively simple.
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4.5 What does cognitive representability really mean?

The following considerations reflect the ideas inspired by Face Book debate with Santeri Satama
(SS) relating to the notion of number and the notion of cognitive representation.

SS wants to accept only those numbers that are constructible, and SS mentioned the notion of
demonstrability due to Gödel. According to my impression demonstrability means that number
can be constructed by a finite algorithm or at least that the information needed to construct the
number can be constructed by a finite algorithm although the construction itself would not be
possible as digit sequence in finite time. If the constructibility condition is taken to extreme, one
is left only with rationals.

As a physicists, I cannot consider starting to do physics armed only with rationals: for instance,
continuous symmetries and the notion of Riemann manifold would be lost. My basic view is that
we should identify the limitations of cognitive representability as limitations for what can exist. I
talked about cognitive representability of numbers central in the adelic physics approach to TGD.
Not all real numbers are cognitively representable and need not be so.

Numbers in the extensions of rationals would be cognitively representable as points with coordi-
nates in an extension of rationals. The coordinates themselves are highly unique in the octonionic
approach to TGD and different coordinates choices for complexified octonionic M8 are related
by transformations changing the moduli of the octonion structure. Hence one avoids problems
with general coordinate invariance). Not only algebraic extensions of rationals are allowed. Neper
number e is an exceptional transcendental in that ep is p-adic number and finite-D extensions of
p-adic numbers by powers for root of e are possible.

My own basic interest is to find a deeper intuitive justification for why algebraic numbers shoud
be cognitively representable. The näıve view about cognitive representability is that the number
can be produced in a finite number of steps using an algorithm. This would leave only rationals
under consideration and would mean intellectual time travel to ancient Greece.

Situation changes if one requires that only the information about the construction of number
can be produced in a finite number of steps using an algorithm. This would replace construction
with the recipe for construction and lead to a higher abstraction level. The concrete construction
itself need not be possible in a finite time as bit sequence but could be possible physically (

√
2 as a

diagonal of unit square, one can of course wonder where to buy ideal unit squares). Both number
theory and geometry would be needed.

Stern-Brocot tree associated with partial fractions indeed allows to identify rationals as finite
paths connecting the root of S-B tree to the rational in question. Algebraic numbers can be
identified as infinite periodic paths so that finite amount of information specifies the path. Tran-
scendental numbers would correspond to infinite non-periodic paths. A very close analogy with
chaos theory suggests itself.

4.5.1 Demonstrability viz. cognitive representability

SS talked about demonstrable numbers. According to Gödel demonstrable number would be
representable by a formula G, which is provable in some axiom system. I understand this that
G would give a recipe for constructing that number. In computer programs this can even mean
infinite loop, which is easy to write but impossible to realize in practice. Here comes the possibility
that demonstrability does not mean constructibility in finite number of steps but only a finite recipe
for this.

The requirement that all numbers are demonstrable looks strange to me. I would talk about
cognitive representability and reals and p-adic number fields emerge unavoidably as prerequisites
for this notion: cognitive representation must be about something in order to be a representation.

About precise construction of reals or something bigger - such as surreals - containing them,
there are many views and I am not mathematician enough to take strong stance here. Note however
that if one accepts surreals as being demonstrable (I do not really understand what this could mean)
one also accept reals as such. These delicacies are not very interesting for the formulation of physics
as it is now.

The algorithm defining G defines a proof. But what does proof mean? Proof in mathematical
sense would reduce in TGD framework be a purely cognitive act and assignable to the p-adic
sectors of adele. Mathematicians however tend to forget that for physicist the demonstration
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is also experimental. Physicist does not believe unless he sees: sensory perception is needed.
Experimental proofs are what physicists want. The existence of

√
2 as a diagonal of unit square is

experimentally demonstrable in the sense of being cognitively representable but not deducible from
the axioms for rational numbers. As a physicist I cannot but accept both sensory and cognitive
aspects of existence.

Instead of demonstrable numbers I prefer to talk about cognitively representable numbers.

1. All numbers are cognizable (p-adic) or sensorily perceivable (real). These must form continua
if one wants to avoid problems in the construction of physical theories, where continuous
symmetries are in a key role.

Some numbers but not all are also cognitively representable that is being in the intersection
reals and p-adics - that is in extension of rationals if one allows extensions of p-adics induced by
extensions of rationals. This generalizes to intersection of space-time surfaces with real/p-adic
coordinates, which are highly unique linear coordinates at octonionic level so that objections
relating to a loss of general coordinate invariance are circumvented. General coordinate
transformations reduce to automorphisms of octonions.

The relationship to the axiom of choice is interesting. Should axiom of choice be restricted
to the points of complexified octonions with coordinates in extensions of rationals? Only
points in the extensions could be selected and this selection process would be physical in the
sense that fermions providing realization of quantum Boolean algebra would reside at these
points [K2]. In preferred octonionic coordinates the M8 coordinates of these points would be
in given extension of rationals. At the limit of algebraic numbers these points would form a
dense set of reals.

Remark: The spinor structure of “world of classical worlds” (WCW) gives rise to WCW
spinors as fermionic Fock states at given 3-surface. In ZEO many-fermion states have inter-
pretation in terms of superpositions of pairs of Boolean statements A → B with A and B
represented as many-fermion states at the ends of space-time surface located at the opposite
light-like boundaries of causal diamond (CD). One could say that quantum Boolean logic
emerges as square root of Kähler geometry of WCW.

At partonic 2-surfaces these special points correspond to points at which fermions can be
localized so that the representation is physical. Universe itself would come in rescue to make
representability possible. One would not anymore try to construct mathematics and physics
as distinct independent disciplines.

Even observer as conscious entity is necessarily brought into both mathematics and physics.
TGD Universe as a spinor field in WCW is re-created state function reduction by reduction
and evolves: evolution for given CD corresponds to the increase of the size of extension of
rationals in statistical sense. Hence also mathematics with fixed axioms is replaced with a q
dynamical structure adding to itself new axioms discovery by discovery [L16, L15].

2. Rationals as cognitively representable numbers conforms with näıve intuition. One can how-
ever criticize the assumption that also algebraic numbers are such. Consider

√
2: one can

simply define it as length of diagonal of unit square and this gives a meter stick of length√
2: one can represent any algebraic number of form m + n

√
2 by using meter stricks with

length of 1 and
√

2. Cognitive representation is also sensory representation and would bring
in additional manner to represent numbers.

Note that algebraic numbers in n-dimensional extension are points of n-dimensional space
and their cognitive representations as points on real axis obtained by using the meter sticks
assignable to the algebraic numbers defining base vectors. This should generalize to the roots
arbitrary polynomials with rational or even algebraic coefficients. Essentially projection form
n-D extension to 1-D real line is in question. This kind of projection might be important in
number theoretical dynamics. For instance, quasi-periodic quasi-crystals are obtained from
higher-D periodic crystals as projections.

n-D algebraic extensions of p-adics induced by those of rationals might also related to our
ability to imagine higher-dimensional spaces.

3. In TGD Universe cognitive representability would emerge from fundamental physics. Exten-
sions of rationals define a hierarchy of adeles and octonionic surfaces are defined as zero loci
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for real or imaginary parts (in quaternionic sense) of polynomials of real argument with coef-
ficients in extension continued to octonionic polynomials [L9]. The zeros of real polynomial
have a direct physical interpretation and would represent algebraic numbers physically. They
would give the temporal positions of partonic 2-surfaces representing particles at light-like
boundary of CD.

4. Note that all calculations with algebraic numbers can be done without using approximations
for the genuinely algebraic numbers defining the basis for the extension. This actually sim-
plifies enormously the calculation and one avoids accumulating errors. Only at the end one
represents the algebraic units concretely and is forced to use rational approximation unless
one uses above kind of cognitive representation.

For these reasons I do not feel any need to get rid of algebraics or even transcendentals. Sensory
aspects of experience require reals and cognitive aspects of experience require p-adic numbers fields
and one ends up with adelic physics. Cognitive representations are in the intersection of reality
and various p-adicities, something expressible as formulas and concrete physical realizations or at
least finite recipes for them.

4.5.2 What the cognitive representability of algebraic numbers could mean?

Algebraic numbers should be in some sense simple in order to be cognitively representable.

1. For rationals representation as partial fractions produces the rational number by using a finite
number of steps. One starts from the top of Stern-Brocot (S-B) tree (see http://tinyurl.

com/yb6ldekq) and moves to right or left at each step and ends up to the rational number
appearing only once in S-B tree.

2. Algebraic numbers cannot be produced in a finite number of steps. During the discussion
I however realized that one can produce the information needed to construct the algebraic
number in a finite number of steps. One steps to a new level of abstraction by replacing the
object with the information allowing to construct the object using infinite number of steps
but repeating the same sub-algorithm with finite number of steps: infinite loop would be in
question.

Similar abstraction takes place as one makes a step from the level of space-time surface to the
level of WCW. Space-time surface with a continuum of points is represented by a finite number
of WCW coordinates, in the octonionic representation of space-time surface by the coefficients
of polynomial of finite degree belonging to an extension of rationals [L9]. Criticality conditions
pose additional conditions on the coefficients. Finite number of algebraic points at space-time
surface determines the entire space-time surface under these conditions! Simple names for
complex things replacing the complex things is the essence of cognition!

3. The interpretation for expansions of numbers in given base suggests an analog with complexity
theory and symbolic dynamics associated with division. For cognitively representable numbers
the information about this dynamics should be coded by an algorithm with finite steps.
Periodic orbit or fixed point orbit would be the dynamical analog for simplicity. Non-periodic
orbit would correspond to complexity and possibly also chaos.

These ideas led to two approaches in attempt to understand the cognitive representability of
algebraic numbers.

1. Generalized rationals in extensions of rationals as periodic orbits for the dynamics of division

The first approach allows to represent ratios of algebraic integers for given extension using
periodic expansion in the base so that a finite amount of information is needed to code the number
if one accepts the numbers defining the basis of the algebraic extension as given.

1. Rationals allow periodic expansion with respect to any base. For p-adic numbers the base is
naturally prime. Therefore the information about rational is finite. One can see the expansion
as a periodic orbit in dynamics determining the expansion by division m/n in given base.
Periodicity follows from the fact that the output of the division algorithm for a given digit
has only a finite number of outcomes so that the process begins to repeat itself sooner or
later.

http://tinyurl.com/yb6ldekq
http://tinyurl.com/yb6ldekq
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2. This generalizes to generalized rationals in given extension of rationals defined as ratios of
algebraic integers. One can reduce the division to the construction of the expansion of ordinary
rational identified as number theoretic norm |N | of the denominator in the extension of
rationals considered.

The norm |N | of N is the determinant |N | = det(N) for the linear map of extension induced
by multiplication with N . det(N) is ordinary (possibly p-adic) integer. This is achieved by
multiplying 1/N by n − 1 conjugates of N both in numerator and denominator so that one
obtains product of n − 1 conjugates in the numerator and det(N) in the denominator. The
computation of 1/N as series in the base used reduces to that in the case of rationals.

3. One has now periodic orbits in n-dimensional space defined by algebraic extensions which for
ordinary rationals reduced to periodic orbits in 1-D space. This supports the interpretation of
numbers as orbits of number theoretic dynamics determining the next digit of the generalized
rational for given base. This picture also suggests that transcendentals correspond to non-
periodic orbits. Some transcendentals could still allow a finite algorithm: in this case the
dynamics would be still deterministic. Some transcendentals would be chaotic.

4. Given expansion of algebraic number is same for all extensions of rationals containing the
extension in question and the ultimate extension corresponds to algebraic numbers.

The problem of this approach is that the algebraic numbers defining the extension do not have
representation and must be accepted as irreducibles.

2. Algebraic numbers as infinite periodic orbits in the dynamics of partial fractions

Second approach is based on partial fractions and Stern-Brocot tree (see http://tinyurl.com/
yb6ldekq, see also http://tinyurl.com/yc6hhboo) and indeed allows to see information about
algebraic numbers as constructible by using an algorithm with finite number of steps, which is
allowed if one accepts abstraction as basic aspect of cognition. I had managed to not become
aware of this possibility and am grateful for SS for mentioning the representation of algebraics in
terms of S-B tree.

1. The definition S-B tree is simple: if m/n and m′/n′ are any neighboring rationals at given
level in the tree, one adds (m + m′)/(n + n′) between them and obtains in this manner the
next level in the tree. By starting from (0/1) and (1/0) as representations of zero and ∞ one
obtains (0/1)(1/1)(1/0) as the next level. One can continue in this manner ad infinitum. The
nodes of S-B tree represent rational points and it can be shown that given rational appears
only once in the tree.

Given rational can be represented as a finite path beginning from 1/1 at the top of tree
consisting of left moves L and right moves R and ending to the rational which appears
only once in S-B tree. Rational can be thus constructured by a sequences Ra0La1La2 ....
characterized by the sequence a0; a1, a2.... For instance, 4/11 = 0+1/(2+x) , x = 1/(1+1/3)
corresponds to R0L2R1L3−1 labelled by 0; 2, 1, 3.

2. Algebraic numbers correspond to infinite but periodic paths in S-B tree in the sense that some
sequence of L:s and R:s characterized by sequences of non-negative integers starts to repeat
itself. Periodicity means that the information needed to construct the number is finite.

The actual construction as a digit sequence representing algebraic number requires infinite
amount of time. In TGD framework octonionic physics would come in rescue and construct
algebraic numbers as roots of polynomials having concrete interpretations as coordinate values
assignable to fermions at partonic 2-surfaces.

3. Transcendentals would correspond to non-periodic infinite sequences of L:s and R:s. This
does not exclude the possibility that these sequences are expressible in terms of some rule
involving finite number of steps so that the amount of information would be also now finite.
Information about number would be replaced by information about rule.

This picture conforms with the ideas about transition to chaos. Rationals have finite paths. A
possible dynamical analog is particle coming at rest due to the dissipation. Algebraic numbers
would correspond to periodic orbits possible in presence of dissipation if there is external feed
of energy. They would correspond to dynamical self-organization patterns.

http://tinyurl.com/yb6ldekq
http://tinyurl.com/yb6ldekq
http://tinyurl.com/yc6hhboo
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Remark: If one interprets the situation in terms of conservative dynamics, rationals would
correspond to potential minima and algebraic numbers closed orbits around them.

The assignment of period doubling and p-pling to this dynamics as the dimension of extension
increases is an attractive idea. One would expect that the complexity of periodic orbits
increases as the degree of the defining irreducible polynomial increases. Algebraic numbers
as maximal extension of rationals possibly also containing extension containing all rational
roots of e and transcendentals would correspond to chaos.

Transcendentals would correspond to non-periodic orbits. These orbits need not be always
chaotic in the sense of being non-predictable. For instance, Neper number e can be said to
be p-adically algebraic number (ep is p-adic integer albeit infinite as real integer). Does the
sequence of L:s and R:s allow a formula for the powers of L and R in this case?

4. TGD should be an integrable theory. This suggests that scattering amplitudes involve only
cognitive representations as number theoretic vision indeed strongly suggests [L9]. Cognitively
representable numbers would correspond to the integrable sub-dynamics [L18]. Also in chaotic
systems both periodic and chaotic orbits are present. Complexity theory for characterization
of real numbers exists. The basic idea is that complexity is measured by the length of the
shortest program needed to code the bit sequences coding for the number.

4.5.3 Surreals and ZEO

The following comment is not directly related to cognitive representability but since it emerged dur-
ing discussion, I will include it. SS favors surreals (see http://tinyurl.com/86jatas) as ultimate
number field containing reals as sub-field. I must admit that my knowledge and understanding of
surreals is rather fragmentary.

I am agnostic in these issues and see no conflict between TGD view about numbers and surreals.
Personally I however like very much infinite primes, integers, and rationals over surreals since they
allow infinite numbers to have number theoretical anatomy [K17]. A further reason is that the
construction of infinite primes resembles structurally repeated second quantization of the arithmetic
number field theory and could have direct space-time correlate at the level of many-sheeted space-
time. One ends up also to a generalization of real number. Infinity can be seen as something
related to real norm: everything is finite with respect to various p-adic norms.

Infinite rationals with unit real norm and various p-adic norms bring in infinitely complex
number theoretic anatomy, which could be even able to represent even the huge WCW and the
space of WCW spinor fields. One could speak of number theoretical holography or algebraic
Brahman=Atman principle. One would have just complexified octonions with infinitely richly
structure points.

Surreals are represented in terms of pairs of sets. One starts the recursive construction from
empty set identified as 0. The definition says that the pairs (.|.) of sets defining surreals x and y
satisfy x ≤ y if the left hand part of x as set is to left from the pair defining y and the right hand
part of y is to the right from the pair defining x. This does not imply that one has always x < y,
y < x or x = y as for reals.

What is interesting that the pair of sets defining surreal x is analogous to a pair of states at
boundaries of CD defining zero energy state. Is there a connection with zero energy ontology
(ZEO)? One could perhaps say at the level of CD - forgetting everything related to zero energy
states - following. The number represented by CD1 - say represented as the distance between its
tip - is smaller than than the number represented by CD2, if CD1 is inside CD2. This conforms
with the left and righ rule if left and right correspond to the opposite boundaries of CD. A more
detailed definition would presumably say that CD1 can be moved so that it is inside CD2.

What makes this also interesting is that CD is the geometric correlate for self, conscious entity,
also mathematical mental image about number.

5 Galois groups and genes

In an article discussing a TGD inspired model for possible variations of Geff [L21], I ended up
with an old idea that subgroups of Galois group could be analogous to conserved genes in that
they could be conserved in number theoretic evolution. In small variations such as above variation

http://tinyurl.com/86jatas
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Galois subgroups as genes would change only a little bit. For instance, the dimension of Galois
subgroup would change.

The analogy between subgoups of Galois groups and genes goes also in other direction. I have
proposed long time ago that genes (or maybe even DNA codons) could be labelled by heff/h = n
. This would mean that genes (or even codons) are labelled by a Galois group of Galois extension
(see http://tinyurl.com/zu5ey96) of rationals with dimension n defining the number of sheets of
space-time surface as covering space. This could give a concrete dynamical and geometric meaning
for the notion of gene and it might be possible some day to understand why given gene correlates
with particular function. This is of course one of the big problems of biology.

5.1 Could DNA sequence define an inclusion hierarchy of Galois exten-
sions?

One should have some kind of procedure giving rise to hierarchies of Galois groups assignable to
genes. One would also like to assign to letter, codon and gene and extension of rationals and its
Galois group. The natural starting point would be a sequence of so called intermediate Galois
extensions EH leading from rationals or some extension K of rationals to the final extension E.
Galois extension has the property that if a polynomial with coefficients in K has single root in E,
also other roots are in E meaning that the polynomial with coefficients K factorizes into a product
of linear polynomials. For Galois extensions the defining polynomials are irreducible so that they
do not reduce to a product of polynomials.

Any sub-group H ⊂ Gal(E/K)) leaves the intermediate extension EH invariant in element-wise
manner as a sub-field of E (see http://tinyurl.com/y958drcy). Any subgroup H ⊂ Gal(E/K))
defines an intermediate extension EH and subgroup H1 ⊂ H2 ⊂ ... define a hierarchy of extensions
EH1 > EH2 > EH3 ... with decreasing dimension. The subgroups H are normal - in other words
Gal(E) leaves them invariant and Gal(E)/H is group. The order |H| is the dimension of E as an
extension of EH . This is a highly non-trivial piece of information. The dimension of E factorizes
to a product

∏
i |Hi| of dimensions for a sequence of groups Hi.

Could a sequence of DNA letters/codons somehow define a sequence of extensions? Could
one assign to a given letter/codon a definite group Hi so that a sequence of letters/codons would
correspond a product of some kind for these groups or should one be satisfied only with the
assignment of a standard kind of extension to a letter/codon?

Irreducible polynomials define Galois extensions and one should understand what happens to an
irreducible polynomial of an extension EH in a further extension to E. The degree of EH increases
by a factor, which is dimension of E/EH and also the dimension of H. Is there a standard manner
to construct irreducible extensions of this kind?

1. What comes into mathematically uneducated mind of physicist is the functional decomposition
Pm+n(x) = Pm(Pn(x)) of polynomials assignable to sub-units (letters/codons/genes) with
coefficients in K for a algebraic counterpart for the product of sub-units. Pm(Pn(x)) would
be a polynomial of degree n+m in K and polynomial of degree m in EH and one could assign
to a given gene a fixed polynomial obtained as an iterated function composition. Intuitively
it seems clear that in the generic case Pm(Pn(x)) does not decompose to a product of lower
order polynomials. One could use also polynomials assignable to codons or letters as basic
units. Also polynomials of genes could be fused in the same manner.

2. If this indeed gives a Galois extension, the dimensionm of the intermediate extension should be
same as the order of its Galois group. Composition would be non-commutative but associative
as the physical picture demands. The longer the gene, the higher the algebraic complexity
would be. Could functional decomposition define the rule for who extensions and Galois
groups correspond to genes? Very näıvely, functional decomposition in mathematical sense
would correspond to composition of functions in biological sense.

3. This picture would conform withM8−M4×CP2 correspondence [L9] in which the construction
of space-time surface at level of M8 reduces to the construction of zero loci of polynomials
of octonions, with rational coefficients. DNA letters, codons, and genes would correspond to
polynomials of this kind.

http://tinyurl.com/zu5ey96
http://tinyurl.com/y958drcy
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5.2 Could one say anything about the Galois groups of DNA letters?

A fascinating possibility is that this picture could allow to say something non-trivial about the
Galois groups of DNA letters.

1. Since n = heff/h serves as a kind of quantum IQ, and since molecular structures consisting
of large number of particles are very complex, one could argue that n for DNA or its dark
variant realized as dark proton sequences can be rather large and depend on the evolutionary
level of organism and even the type of cell (neuron viz. soma cell). On the other, hand one
could argue that in some sense DNA, which is often thought as information processor, could
be analogous to an integrable quantum field theory and be solvable in some sense. Notice also
that one can start from a background defined by given extension K of rationals and consider
polynomials with coefficients in K. Under some conditions situation could be like that for
rationals.

2. The simplest guess would be that the 4 DNA letters correspond to 4 non-trivial finite groups
with smaller possible orders: the cyclic groups Z2, Z3 with orders 2 and 3 plus 2 finite groups
of order 4 (see the table of finite groups in http://tinyurl.com/j8d5uyh). The groups of
order 4 are cyclic group Z4 = Z2 × Z2 and Klein group Z2 ⊕ Z2 acting as a symmetry group
of rectangle that is not square - its elements have square equal to unit element. All these 4
groups are Abelian. Polynomial equations of degree not larger than 4 can be solved exactly
in the sense that one can write their roots in terms of radicals.

3. Could there exist some kind of connection between the number 4 of DNA letters and 4
polynomials of degree less than 5 for whose roots one an write closed expressions in terms of
radicals as Galois found? Could it be that the polynomials obtained by a a repeated functional
composition of the polynomials of DNA letters have also this solvability property?

This could be the case! Galois theory states that the roots of polynomial are solvable by
radicals if and only if the Galois group is solvable meaning that it can be constructed from
abelian groups using Abelian extensions (see https://cutt.ly/4RuXmGo).

Solvability translates to a statement that the group allows so called sub-normal series 1 <
G0 < G1... < Gk such that Gj−1 is normal subgroup of Gj and Gj/Gj−1 is an abelian group.
An equivalent condition is that the derived series GBG(1)BG(2)B ... in which j+1:th group is
commutator group of Gj ends to trivial group. If one constructs the iterated polynomials by
using only the 4 polynomials with Abelian Galois groups, the intuition of physicist suggests
that the solvability condition is guaranteed! Wikipedia article also informs that for finite
groups solvable group is a group whose composition series has only factors which are cyclic
groups of prime order.

Abelian groups are trivially solvable, nilpotent groups are solvable, p-groups (having order,
which is power prime) are solvable and all finite p-groups are nilpotent. Every group with
order less than 60 elements is solvable. Fourth order polynomials can have at most S4 with 24
elements as Galois groups and are thus solvable. Fifth order polynomials can have the smallest
non-solvable group, which is alternating group A5 with 60 elements as Galois group and in
this case are not solvable. Sn is not solvable for n > 4 and by the finding that Sn as Galois
group is favored by its special properties (see https://arxiv.org/pdf/1511.06446.pdf).

A5 acts as the group icosahedral orientation preserving isometries (rotations). Icosahedron
and tetrahedron glued to it along one triangular face play a key role in TGD inspired model
of bio-harmony and of genetic code [L2, L22]. The gluing of tetrahedron increases the number
of codons from 60 to 64. The gluing of tetrahedron to icosahedron also reduces the order of
isometry group to the rotations leaving the common face fixed and makes it solvable: could
this explain why the ugly looking gluing of tetrahedron to icosahedron is needed? Could the
smallest solvable groups and smallest non-solvable group be crucial for understanding the
number theory of the genetic code.

An interesting question inspired byM8−H-duality [L9] is whether the solvability could be posed
on octonionic polynomials as a condition guaranteeing that TGD is integrable theory in number
theoretical sense or perhaps following from the conditions posed on the octonionic polynomials.
Space-time surfaces in M8 would correspond to zero loci of real/imaginary parts (in quaternionic
sense) for octonionic polynomials obtained from rational polynomials by analytic continuation.

http://tinyurl.com/j8d5uyh
https://cutt.ly/4RuXmGo
https://arxiv.org/pdf/1511.06446.pdf
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Could solvability relate to the condition guaranteeing M8 duality boiling down to the condition
that the tangent spaces of space-time surface are labelled by points of CP2. This requires that
tangent or normal space is associative (quaternionic) and that it contains fixed complex sub-space
of octonions or perhaps more generally, there exists an integrable distribution of complex subspaces
of octonions defining an analog of string world sheet.

What could the interpretation for the events in which the dimension of the extension of
rationals increases? Galois extension is extensions of an extension with relative Galois group
Gal(rel) = Gal(new)/Gal(old). Here Gal(old) is a normal subgroup of Gal(new). A highly at-
tractive possibility is that evolutionary sequences quite generally (not only in biology) correspond
to this kind of sequences of Galois extensions. The relative Galois groups in the sequence would
be analogous to conserved genes, and genes could indeed correspond to Galois groups [K4] [L9].
To my best understanding this corresponds to a situation in which the new polynomial Pm+n

defining the new extension is a polynomial Pm having as argument the old polynomial Pn(x):
Pm+n(x) = Pm(Pn(x)).

What about the interpretation at the level of conscious experience? A possible interpretation
is that the quantum jump leading to an extension of an extension corresponds to an emergence
of a reflective level of consciousness giving rise to a conscious experience about experience. The
abstraction level of the system becomes higher as is natural since number theoretic evolution as
an increase of algebraic complexity is in question.

This picture could have a counterpart also in terms of the hierarchy of inclusions of hyperfinite
factors of type II1 (HFFs). The included factor M and including factor N would correspond to
extensions of rationals labelled by Galois groups Gal(M) and Gal(N) having Gal(M) ⊂ Gal(M)
as normal subgroup so that the factor group Gal(N)/Gal(M) would be the relative Galois group
for the larger extension as extension of the smaller extension. I have indeed proposed [L23] that the
inclusions for which included and including factor consist of operators which are invariant under
discrete subgroup of SU(2) generalizes so that all Galois groups are possible. One would have
Galois confinement analogous to color confinement: the operators generating physical states could
have Galois quantum numbers but the physical states would be Galois singlets.

6 Could the precursors of perfectoids emerge in TGD?

In algebraic-geometry community the work of Peter Scholze [A7] (see http://tinyurl.com/

y7h2sms7) introducing the notion of perfectoid related to p-adic geometry has raised a lot of
interest. There are two excellent popular articles about perfectoids: the first article in AMS
(see http://tinyurl.com/ydx38vk4) and second one in Quanta Magazine (see http://tinyurl.

com/yc2mxxqh). I had heard already earlier about the work of Scholze but was too lazy to
even attempt to understand what is buried under the horrible technicalities of modern math-
ematical prose. Rachel Francon re-directed my attention to the work of Scholze (see http:

//tinyurl.com/yb46oza6). The work of Scholze is interesting also from TGD point of view
since the construction of p-adic geometry is a highly non-trivial challenge in TGD.

1. One should define first the notion of continuous manifold but compact-open characteristic
of p-adic topology makes the definition of open set essential for the definition of topology
problematic. Even single point is open so that hopes about p-adic manifold seem to decay
to dust. One should pose restrictions on the allowed open sets and p-adic balls with radii
coming as powers of p are the natural candidates. p-Adic balls are either disjoint or nested:
note that also this is in conflict with intuitive picture about covering of manifold with open
sets. All this strangeness originates in the special features of p-adic distance function known
as ultra-metricity. Note however that for extensions of p-adic numbers one can say that the
Cartesian products of p-adic 1-balls at different genuinely algebraic points of extension along
particular axis of extension are disjoint.

2. At level of M8 the p-adic variants of algebraic varieties defined as zero loci of polynomials do
not seem to be a problem. Equations are algebraic conditions and do not involve derivatives
like partial differential equations naturally encountered if Taylor series instead of polynomials
are allowed. Analytic functions might be encountered at level of H = M4 × CP2 and here
p-adic geometry might well be needed.

http://tinyurl.com/y7h2sms7
http://tinyurl.com/y7h2sms7
http://tinyurl.com/ydx38vk4
http://tinyurl.com/yc2mxxqh
http://tinyurl.com/yc2mxxqh
http://tinyurl.com/yb46oza6
http://tinyurl.com/yb46oza6
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The idea is to define the generalization of p-adic algebraic geometry in terms of p-adic func-
tion fields using definitions very similar to those used in algebraic geometry. For instance,
generalization of variety corresponds to zero locus for an ideal of p-adic valued function field.
p-Adic ball of say unit radius is taken as the basic structure taking the role of open ball in
the topology of ordinary manifolds. This kind of analytic geometry allowing all power series
with suitable restrictions to function field rather than allowing only polynomials is something
different from algebraic geometry making sense for p-adic numbers and even for finite fields.

3. One would like to generalize the notion of analytic geometry even to the case of number
fields with characteristic p (p-multiple of element vanishes), in particular for finite fields Fp
and for function fields Fp[t]. Here one encounters difficulties. For instance, the factorial 1/n!
appearing as normalization factor of forms diverges if p divides it. Also the failure of Frobenius
homomorphism to be automorphism for Fp[t] causes difficulties in the understanding of Galois
groups.

The work of Scholze has led to a breakthrough in unifying the existing ideas in the new frame-
work provided by the notion of perfectoid. The work is highly technical and involves infinite-D
extension of ordinary p-adic numbers adding all powers of all roots p1/p

m

, m = 1, 2.... Formally,
an extension by powers of p1/p

∞
is in question.

This looks strange at first but it guarantees that all p-adic numbers in the extension have p:th
roots, one might say that one forms a p-fold covering/wrapping of extension somewhat analogous to
complex numbers. This number field is called perfectoid since it is perfect meaning that Frobenius
homomorphism a→ ap is automorphism by construction. Frob is injection always and by requiring
that p:th roots exist always, it becomes also a surjection.

This number field has same Galois groups for all of its extensions as the function field G[t]
associated with the union of function fields G = Fp[t

1/pm ]. Automorphism property of Frob
saves from the difficulties with the factorization of polynomials and p-adic arithmetics involving
remainders is replaced with purely local modulo p arithmetics.

6.1 About motivations of Scholze

Scholze has several motivations for this work. Since I am not a mathematician, I am unable to
really understand all of this at deep level but feel that my duty as user of this mathematics is at
least to try!

1. Diophantine equations is a study of polynomial equations in several variables, say x2 + 2xy+
y = 0. The solutions are required to be integer valued: in the example considered x = y = 0
and x = −y = −1 is such a solution. For integers the study of the solution is very difficult
and one approach is to study these equations modulo p that is reduced the equations to finite
field Gp for any p. The equations simplify enormously since ane has ap = a in Fp. This
identity in fact defines so called Frobenius homomorphism acting as automorphism for finite
fields. This holds true also for more complex fields with characteristic p say the ring Fp[t] of
power series of t with coefficients in Fp.

The powers of variables, say x, appearing in the equation is reduced to at most xp−1. One can
study the solutions also in p-adic number fields. The idea is to find first whether finite field
solution, that is solution modulo p, does exist. If this is the case, one can calculate higher
powers in p. If the series contains finite number of terms, one has solution also in the sense
of ordinary integers.

2. One of the related challenges is the generalization of the notion of variety to a geometry defined
in arbitrary number field. One would like to have the notion of geometry also for finite fields,
and for their generalizations such as Fp[t] characterized by characteristic p (px = 0 holds true
for any element of the field). For fields of characteristic 1 - extensions of rationals, real, and
p-adic number fields) xp = 0 not hold true for any x 6= 0. Any field containing rationals as
sub-field, being thus local field, is said to have characteristic equal to 1. For local fields the
challenge is relatively easy.

3. The situation becomes more difficult if one wants a generalization of differential geometry.
In differential geometry differential forms are in a key role. One wants to define the notion
of differential form in fields of characteristic p and construct a generalization of cohomology
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theory. This would generalize the notion of topology to p-adic context and even for finite
fields of finite character. A lot of work has been indeed done and Grothendieck has been the
leading pioneer.

The analogs of cohomology groups have values in the field of p-adic numbers instead of
ordinary integers and provide representations for Galois groups for the extensions of rationals
inducing extensions of p-adic numbers and finite fields.

In ordinary homology theory non-contractible sub-manifolds of various dimensions correspond
to direct summands Z (group of integers) for homology groups and by Poincare duality those
for cohomology groups. For Galois groups Z is replaced with ZN . N depends on extension to
which Galois group is associated and if N is divisible by p one encounters technical problems.

There are many characteristic p- and p-adic cohomologies such as etale cohomology, chrys-
talline cohomology, algebraic de-Rham cohomology. Also Hodge theory for complex differen-
tial forms generalizes. These cohomologies should be related by homomorphism and category
theoretic thinking the proof of the homomorphism requires the construction of appropriate
functor between them.

The integrals of forms over sub-varieties define the elements of cohomology groups in ordinary
cohomology and should have p-adic counterparts. Since p-adic numbers are not well-ordered,
definite integral has no straightforward generalization to p-adic context. One might however
be able to define integrals analogous to those associated with differential forms and depending
only on the topology of sub-manifold over which they are taken. These integrals would
be analogous to multiple residue integrals, which are the crux of the twistor approach to
scattering amplitudes in super-symmetric gauge theories. One technical difficulty is that for
a field of finite characteristic the derivative of Xp is pXp−1 and vanishes. This does not allow
to define what integral

∫
Xp−1dX could mean. Also 1/n! appears as natural normalization

factor of forms but if p divides it, it becomes infinite.

6.2 Attempt to understand the notion of perfectoid

Consider now the basic ideas behind the notion of perfectoid.

1. For finite finite fields Fp Frobenius homomorphism a → ap is automorphism since one has
ap = a in modulo p arithmetics. A field with this property is called perfect and all local fields
are perfect. Perfectness means that an algebraic number in any extension L of perfect field
K is a root of a separable minimal polynomial. Separability means that the number of roots
in the algebraic closure of K of the polynomial is maximal and the roots are distinct.

2. All fields containing rationals as sub-fields are perfect. For fields of characteristic p Frob need
not be a surjection so that perfectness is lost. For instance, for Fp[t] Frob is trivially injection
but surjective property is lost: t1/p is not integer power of t.

One can however extend the field to make it perfect. The trick is simple: add to Fp[t] all
fractional powers t1/p

n

so that all p:th roots exist and Frob becomes and automorphism.
The automorphism property of Frob allows to get rid of technical problems related to a
factorization of polynomials. The resulting extension is infinite-dimensional but satisfies the
perfectness property allowing to understand Galois groups, which play key role in various
cohomology theories in characteristic p.

3. Let K = Qp[p
1/p∞ ] denote the infinite-dimensional extension of p-adic number field Qp by

adding all powers of pm:th roots for all all m = 1, 2, .... This is not the most general option:
K could be also only a ring. The outcome is perfect field although it does not of course have
Frobenius automorphism since characteristic equals to 1.

One can divide K by p to get K/p as the analog of finite field Fp as its infinite-dimensional
extension. K/p allows all p:th roots by construction and Frob is automorphism so that K/p
is perfect by construction.

The structure obtained in this manner is closely related to a perfect field with characteristic
p having same Galois groups for all its extensions. This object is computationally much
more attractive and allows to prove theorems in p-adic geometry. This motivates the term
perfectoid.
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4. One can assign to K another object, which is also perfectoid but has characteristic p. The
correspondence is as follows.

(a) Let Fp be finite field. Fp is perfect since it allows trivially all p:th roots by ap = a. The
ring Fp[t] is however not prefect since t1/p

m

is not integer power of t. One must modify
Fp[t] to obtain a perfect field. Let Gm = Fp[t

1/pm ] be the ring of formal series in powers
of t1/p

m

defining also function field. These serious are called t-adic and one can define
t-adic norm.

(b) Define t-adic function field Kb called the tilt of K as

Kb = ∪m=1,...(K/p)[t
1/pm][t] .

One has all possible power series with coefficients in K/p involving all roots t1/p
m

, m =
1, 2, ..., besides powers of positive integer powers of t. This function field has characteristic
p and all roots exist by construction and Frob is automorphism. Kb/t is perfect meaning
that the minimal polynomials for the for given analog of algebraic number in any of its
extensions allows separable polynomial with maximal number of roots in its closure.

This sounds rather complicated! In any case, Kb/t has same number theoretical structure as
Qp[p

1/p∞ ]/p meaning that Galois groups for all of its extensions are canonically isomorphic to
those for extensions of K. Arithmetics modulo p is much simpler than p-adic arithmetic since
products are purely local and there is no need to take care about remainders in arithmetic
operations, this object is much easier to handle.

Note that also p-adic number fields fields Qp as also Fp = Qp/p are perfect but the analog of
Kb = Fb[t] fails to be perfect.

6.3 Second attempt to understand the notions of perfectoid and its tilt

This subsection is written roughly year after the first version of the text. I hope that it reflects a
genuine increase in my understanding.

1. Scholze introduces first the notion of perfectoid. This requires some background notions. The
characteristic p for field is defined as the integer p (prime) for which px = 0 for all elements
x. Frobenius homomorphism (Frob familiarly) is defined as Frob : x → xp. For a field of
characteristic p Frob is an algebra homomorphism mapping product to product and sum to
sum: this is very nice and relatively easy to show even by a layman like me.

2. Perfectoid is a field having either characteristic p = 0 (reals, p-adics for instance) or for which
Frob is a surjection meaning that Frob maps at least one number to a given number x.

3. For finite fields Frob is identity: xp = x as proved already by Fermat. For reals and p-
adic number fields with characteristic p=0 it maps all elements to unit element and is not a
surjection. Field is perfect if it has either p = 0 (reals, p-adics) or if Frobenius is surjection.
Finite fields are obviously perfectoids too.

Scholze introduces besides perfectoids K also what he calls tilt Kb of the perfectoid. Kb is
infinite-D extension of p-adic numbers by iterated p:th roots p-adic numbers: the units of the

extension correspond to the roots p1/p
k

. They are something between p-adic number fields and
reals and leads to theorems giving totally new insights to arithmetic geometry. Unfortunately, my
technical skills in mathematics are hopelessly limited to say anything about these theorems.

1. As we learned during the first student year of mathematics, real numbers can be defined
as Cauchy sequences of rationals converging to a real number, which can be also algebraic
number or transcendental. The elements in the tilt Kb would be this kind of sequences.

2. Scholze starts from (say) p-adic numbers and considers infinite sequence of iterates of 1/p:th

roots. At given step x→ x1/p. This gives the sequence (x, x1/p, x1/p
2

, x1/p
3

, ...) identified as
an element of the tilt Kb. At the limit one obtains 1/p∞ root of x.

Remark: For finite fields each step is trivial (xp = x) so that nothing interesting results: one
has (x, x, x, x, ...)



6.3 Second attempt to understand the notions of perfectoid and its tilt 45

(a) For p-adic number fields the situation is non-trivial. x1/p exists as p-adic number for all
p-adic numbers with unit norm having x = x0 + x1p + .... In the lowest order x ' x0
the root is just x since x is effectively an element of finite field in this approximation.
One can develop the x1/p to a power series in p and continue the iteration. The sequence
obtained defines an element of tilt Kb of field K, now p-adic numbers.

(b) If the p-adic number x has norm pn, n 6= 0 and is therefore not p-adic unit, the root
operation makes sense only if one performs an extension of p-adic numbers containing all

the roots p1/p
k

. These roots define one particular kind of extension of p-adic numbers
and the extension is infinite-dimensional since all roots are needed. One can approximate
Kb by taking only finite number iterated roots.

3. The tilt is said to be fractal: this is easy to understand from the presence of the iterated p:th
root. Each step in the sequence is like zooming. One might say that p-adic scale becomes p:th
root of itself. In TGD the p-adic length scale Lp is proportional to p1/2: does the scaling mean
that the p-adic length scale would defined hierarchy of scales proportional to p1/2kp: root of
itself and approach the CP2 scale since the root of p approaches unity. Tilts as extensions by
iterated roots would improve the length scale resolution.

One day later after writing this I got the feeling that I might have vaguely understood one more
important thing about the tilt of p-adic number field: changing of the characteristic 0 of p-adic
number field to characteristics p > 0 of the corresponding finite field for its tilt. What could this
mean?

1. Characteristic p (p is the prime labelling p-adic number field) means px = 0. This property
makes the mathematics of finite fields extremely simple: in the summation one need not take
care of the residue as in the case of reals and p-adics. The tilt of the p-adic number field would
have the same property! In the infinite sequence of the p-adic numbers coming as iterated
p:th roots of the starting point p-adic number one can sum each p-adic number separately.
This is really cute if true!

2. It seems that one can formulate the arithmetics problem in the tilt where it becomes in
principle as simple as in finite field with only p elements! Does the existence of solution in
this case imply its existence in the case of p-adic numbers? But doesn’t the situation remain
the same concerning the existence of the solution in the case of rational numbers? The infinite
series defining p-adic number must correspond a sequence in which binary digits repeat with
some period to give a rational number: rational solution is like a periodic solution of a
dynamical system whereas non-rational solution is like chaotic orbit having no periodicity?
In the tilt one can also have solutions in which some iterated root of p appears: these cannot
belong to rationals but to their extension by an iterated root of p.

The results of Scholze could be highly relevant for the number theoretic view about TGD in
which octonionic generalization of arithmetic geometry plays a key role since the points of space-
time surface with coordinates in extension of rationals defining adele and also what I call cognitive
representations determining the entire space-time surface if M8 − H duality holds true (space-
time surfaces would be analogous to roots of polynomials). Unfortunately, my technical skills in
mathematics needed are hopelessly limited.

TGD inspires the question is whether this kind of extensions could be interesting physically.
At the limit of infinite dimension one would get an ideal situation not realizable physically if
one believes that finite-dimensionality is basic property of extensions of p-adic numbers appearing
in number theoretical quantum physics (they would related to cognitive representations in TGD).
Adelic physics [L15] involves all finite-D extensions of rationals and the extensions of p-adic number
fields induced by them and thus also cutoffs of extensions of type Kb- which I have called precursors
of Kb.

6.3.1 How this relates to Witt vectors?

Witt vectors provide an alternative representation of p-adic arithmetics of p-adic integers in which
the sum and product are reduced to purely local digit-wise operations for each power of p for the
components of Witt vector so that one need not worry about carry pinary digit.



6.4 TGD view about p-adic geometries 46

1. The idea is to consider the sequence consisting pinary cutoffs to p-adic number xmodpn and
identify p-adic integer as this kind of sequence as n approaches infinity. This is natural
approach when one identifies finite measurement resolution or cognitive resolution as a cutoff
in some power of pn. One simply forms the numbers Xn = x mod pn+1: for numbers
1, ..., p− 1 they are called Teichmueller representatives and only they are needed to construct
the sequences for general x. One codes this sequence of pinary cutoffs to Witt vector.

2. The non-trivial observation made by studying sums of p-adic numbers is that the sequence
X0, X1, X2, ... of approximations define a sequence of components of Witt vector as W0 = X0,

W1 = Xp
0 +pX1, W2 = X

(
0p

2)+pXp
1 +p2X2, ... or more formally Wn = Sumi<np

iZX
[
ip

(n−i)].
3. The non-trivial point is that Witt vectors form a commutative ring with local digit-wise

multiplication and sum modulo p: there no carry digits. Effectively one obtains infinite
Cartesian power of finite field Fp. This means a great simplification in arithmetics. One can
do the arithmetics using Witt vectors and deduce the sum and product from their product.

4. Witt vectors are universal. In particular, they generalize to any extension of p-adic numbers.
Could Witt vectors bring in something new from physics point of view? Could they allow
a formulation for the hierarchy of pinary cutoffs giving some new insights? For instance,
neuro-computationalist might ask whether brain could perform p-adic arithmetics using a
linear array of modules (neurons or neuron groups) labelled by n = 1, 2, ... calculates sum
or product for component Wn of Witt vector? No transfer of carry bits between modules
would be needed. There is of course the problem of transforming p-adic integers to Witt
vectors and back - it is not easy to imagine a natural realization for a module performing this
transformation. Is there any practical formulation for say p-adic differential calculus in terms
of Witt vectors?

I would seem that Witt vectors might relate in an interesting manner to the notion of perfectoid.
The basic result proved by Petter Scholtze is that the completion ∪nQp(p1/p

n

) of p-adic numbers by
adding pn:th roots and the completion of Laurent series Fp((t)) to ∪nFp((t1/p

n

)) have isomorphic
absolute Galois groups and in this sense are one and same thing. On the other hand, p-adic
integers can be mapped to a subring of Fp(t) consisting of Taylor series with elements allowing
interpretation as Witt vectors.

6.4 TGD view about p-adic geometries

As already mentioned, it is possible to define p-adic counterparts of n-forms and also various p-adic
cohomologies with coefficient field taken as p-adic numbers and these constructions presumably
make sense in TGD framework too. The so called rigid analytic geometry is the standard proposal
for what p-adic geometry might be.

The very close correspondence between real space-time surfaces and their p-adic variants plays
realized in terms of cognitive representations [L17, L16, L9] plays a key role in TGD framework
and distinguishes it from approaches trying to formulate p-adic geometry as a notion independent
of real geometry.

Ordinary approaches to p-adic geometry concentrate the attention to single p-adic prime. In
the adelic approach of TGD one considers both reals and all p-adic number fields simultaneously.

Also in TGD framework Galois groups take key role in this framework and effectively replace
homotopy groups and act on points of cognitive representations consisting of points with coordi-
nates in extension of rationals shared by real and p-adic space-time surfaces. One could say that
homotopy groups at level of sensory experience are replaced by Galois at the level of cognition. It
also seems that there is very close connection between Galois groups and various symmetry groups.
Galois groups would provide representations for discrete subgroups of symmetry groups.

In TGD framework there is strong motivation for formulating the analog of Riemannian geome-
try of H = M4×CP2 for p-adic variants of H. This would mean p-adic variant of Kähler geometry.
The same challenge is encountered even at the level of “World of Classical Worlds” (WCW) having
Kähler geometry with maximal isometries. p-Adic Riemann geometry and n-forms make sense
locally as tensors but integrals defining distances do not make sense p-adically and it seems that
the dream about global geometry in p-adic context is not realizable. This makes sense: p-adic
physics is a correlate for cognition and one cannot put thoughts in weigh or measure their length.
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6.4.1 Formulation of adelic geometry in terms of cognitive representations

Consider now the key ideas of adelic geometry and of cognitive representations.

1. The king idea is that p-adic geometries in TGD framework consists of p-adic balls of possibly
varying radii pn assignable to points of space-time surface for which the preferred embed-
ding space coordinates are in the extension of rationals. At level of M8 octonion property
fixes preferred coordinates highly uniquely. At level of H preferred coordinates come from
symmetries.

These points define a cognitive representation and inside p-adic points the solution of field
equations is p-adic variant of real solution in some sense. At M8 level the field equations
would be algebraic equations and real-p-adic correspondence would be very straightforward.
Cognitive representations would make sense at both M8 level and H level.

Remark: In ordinary homology theory the decomposition of real manifold to simplexes re-
duces topology to homology theory. One forgets completely the interiors of simplices. Could
the cognitive representations with points labelling the p-adic balls could be seen as analogous
to decompositions to simplices. If so, homology would emerge as something number theo-
retically universal. The larger the extension of rationals, the more precise the resolution of
homology would be. Therefore p-adic homology and cohomology as its Poincare dual would
reduce to their real counterparts in the cognitive resolution used.

2. M8−H correspondence would play a key role in mapping the associative regions of space-time
varieties in M8 to those in H. There are two kinds of regions. Associative regions in which
polynomials defining the surfaces satisfy criticality conditions and non-associative regions.
Associative regions represent external particles arriving in CDs and non-associative regions
interaction regions within CDs.

3. In associative regions one has minimal surface dynamics (geodesic motion) at level of H
and coupling parameters disappear from the field equations in accordance with quantum
criticality. The challenge is to prove that M8 − H correspondence is consistent with the
minimal surface dynamics n H. The dynamics in these regions is determined in M8 as zero
loci of polynomials satisfying quantum criticality conditions guaranteeing associativity and is
deterministic also in p-adic sectors since derivatives are not involved and pseudo constants
depending on finite number of pinary digits and having vanishing derivative do not appear.
M8 −H correspondence guarantees determinism in p-adic sectors also in H.

4. In non-associative regions M8−H correspondence does not make sense since the tangent space
of space-time variety cannot be labelled by CP2 point and the real and p-adic H counterparts
of these regions would be constructed from boundary data and using field equations of a vari-
ational principle (sum of the volume term and Kähler action term), which in non-associative
regions gives a dynamics completely analogous to that of charged particle in induced Kähler
field. Now however the field characterizes extended particle itself.

Boundary data would correspond to partonic 2-surfaces and string world sheets and possibly
also the 3-surfaces at the ends of space-time surface at boundaries of CD and the light-like
orbits of partonic 2-surfaces. At these surfaces the 4-D (!) tangent/normal space of space-
time surface would be associative and could be mapped by M8−H correspondence from M8

to H and give rise to boundary conditions.

Due to the existence of p-adic pseudo-constants the p-adic dynamics determined by the action
principle in non-associative regions inside CD would not be deterministic in p-adic sectors.
The interpretation would be in terms of freedom of imagination. It could even happen that
boundary values are consistent with the existence of space-time surface in p-adic sense but
not with the existence of real space-time surfaces. Not all that can be imagined is realizable.

At the level of M8 this vision seems to have no obvious problems. Inside each ball the same
algebraic equations stating vanishing of IM(P ) (imaginary part of P in quaternionic sense) hold
true. At the level of H one has second order partial differential equations, which also make sense
also p-adically. Besides this one has infinite number of boundary conditions stating the vanishing
of Noether charges assignable to sub-algebra super-symplectic algebra and its commutator with
the entire algebra at the 3-surfaces at the boundaries of CD. Are these two descriptions really
equivalent?
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During writing I discovered an argument, which skeptic might see as an objection against
M8 −H correspondence.

1. M8 correspondence maps the space-time varieties in M8 in non-local manner to those in
H = M4×CP2. CP2 coordinates characterize the tangent space of space-time variety in M8

and this might produce technical problems. One can map the real variety to H and find the
points of the image variety satisfying the condition and demand that they define the “spine”
of the p-adic surface in p-adic H.

2. The points in extensions of rationals in H need not be images of those in M8 but should this be
the case? Is this really possible? M4 point in M4×E4 would be mapped to M4 ⊂M4×CP2:
this is trivial. 4-D associative tangent/normal space at m containing preferred M2 would be
characterized by CP2 coordinates: this is the essence of M8 −H correspondence. How could
one guarantee that the CP2 coordinates characterizing the tangent space are really in the
extension of rationals considered? If not, then the points of cognitive representation in H are
not images of points of cognitive representation in M8. Does this matter?

6.4.2 Are almost-perfectoids evolutionary winners in TGD Universe?

One could take perfectoids and perfectoid spaces as a mere technical tool of highly refiner mathe-
matical cognition. Since cognition is basic aspect of TGD Universe, one could also ask perfectoids
or more realistically, almost-perfectoids, could be an outcome of cognitive evolution in TGD Uni-
verse?

1. p-Adic algebraic varieties are defined as zero loci of polynomials. In the octonionic M8 ap-
proach identifying space-time varieties as zero loci for RE or IM of octonionic polynomial
(RE and IM in quaternionic sense) this allows to define p-adic variants of space-time surfaces
as varieties obeying same polynomial equations as their real counterparts provided the coeffi-
cients of octonion polynomials obtainable from real polynomials by analytic continuation are
in an extension of rationals inducing also extension of p-adic numbers.

The points with coordinates in the extension of rationals common to real and p-adic variants
of M8 identified as cognitive representations are in key role. One can see p-adic space-time
surfaces as collections of “monads” labelled by these points at which Cartesian product of
1-D p-adic balls in each coordinate degree. The radius of the p-adic ball can vary. Inside
each ball the same polynomial equations are satisfied so that the monads indeed reflect other
monads.

Kind of algebraic hologram would be in question consisting of the monads. The points in
extension allow to define ordinary real distance between monads. Only finite number of
monads would be involved since the number of points in extension tends to be finite. As the
extension increases, this number increases. Cognitive representations become more complex:
evolution as increase of algebraic complexity takes place.

2. Finite-dimensionality for the allowed extensions of p-adic number fields is motivated by the
idea about finiteness of cognition. Perfectoids are however infinite-dimensional. Number the-
oretical universality demands that on only extensions of p-adics induced by those of rationals
are allowed and defined extension of the entire adele. Extensions should be therefore be
induced by the same extension of rationals for all p-adic number fields.

Perfectoids correspond to an extension of Qp apparently depending on p. This dependence
is in conflict with number theoretical universality if real. This extension could be induced
by corresponding extension of rationals for all p-adic number fields. For p-adic numbers Qq
q 6= p all equation ap

n

= x reduces to an = x mod p and this in term to am = x mod p,
m = n mod p. Finite-dimensional extension is needed to have all roots of required kind! This
extension is therefore finite-D for all q 6= p and infinite-D for p.

3. What about infinite-dimensionality of the extension. The real world is rarely perfect and our
thoughts about it even less so, and one could argue that we should be happy with almost-
perfectoids! “Almost” would mean extension induced by powers of p1/p

m

for large enough m,
which is however not infinite. A finite-dimensional extension approaching perfectoid asymp-
totically is quite possible!
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4. One could see the almost perfectoid as an outcome of evolution and perfectoid as the asymp-
totic states. High dimension of extension means that p-adic numbers and extension of rationals
have large number of common numbers so that also cognitive representations contain a large
number of common points. Maybe the p-adic number fields, which are evolutionary winners,
have managed to evolve to especially high-dimensional almost-perfectoids! Note however that
also the roots of e can be considered as extensions of rationals since corresponding p-adic
extensions are finite-dimensional. Similar evolution can be considered also now.

To get some perspective mote that for large primes such as M127 = 2127 − 1 characterizing

electron the lowest almost perfectoid would give powers of M
1/M127

127 = (2127 − 1)1/(2
127−1) ∼

1 + log(2)2−120! The lattice of points in extension is extremely dense near real unit. The
density of of points in cognitive representations near this point would be huge. Note that
the length scales comes as negative powers of two, which brings in mind p-adic length scale
hypothesis [K13].

Although the octonionic formulation in terms of polynomials (or rational functions identifying
space-time varieties as zeros or poles of RE(P ) or IM(P ) is attractive in its simplicity, one can also
consider the possibility of allowing analytic functions of octonion coordinate obtained from real
analytic functions. These define complex analytic functions with commutative imaginary unit used
to complexify octonions. Could meromorphic functions real analytic at real axis having only zeros
and poles be allowed? The condition that all p-adic variants of these functions exist simultaneously
is non-trivial. Coefficients must be in the extension of rationals considered and convergence poses
restrictions. For instance, ex converges only for |x|p < 1. These functions might appear at the
level of H.

7 Secret Link Uncovered Between Pure Math and Physics

I learned about a possible existence of a very interesting link between pure mathematics and physics
(see http://tinyurl.com/y86bckmo). The article told about ideas of number theorist Minhyong
Kim working at the University of Oxford. As I read the popular article, I realized it is something
very familiar to me but from totally different view point.

Number theoretician encounters the problem of finding rational points of an algebraic curve
defined as real or complex variant in which case the curve is 2-D surface and 1-D in complex sense.
The curve is defined as root of polynomials polynomials or several of them. The polynomial have
typically rational coefficients but also coefficients in extension of rationals are possible.

For instance, Fermat’s theorem is about whether xn + yn = 1, n = 1, 2, 3, ... has rational
solutions for n ≥ 1. For n = 1, and n = 2 it has, and these solutions can be found. It is now
known that for n > 2 no solutions do exist. Quite generally, it is known that the number is finite
rather than infinite in the generic case.

A more general problem is that of finding points in some algebraic extension of rationals. Also
the coefficients of polynomials can be numbers in the extension of rationals. A less demanding
problem is mere counting of rational points or points in the extension of rationals and a lot of
progress has been achieved in this problem. One can also dream of classifying the surfaces by the
character of the set of the points in extension.

I have consider the identification problem earlier in [L9] and I glue here a piece of text
summarizing some basic results. The generic properties of sets of rational points for algebraic
curves are rather well understood. Mordelli conjecture proved by Falting as a theorem (see
http://tinyurl.com/y9oq37ce) states that a curve over Q with genus g = (d− 1)(d− 2)/2 > 1
(degree d > 3) has only finitely many rational points.

1. Sphere CP1 in CP2 has rational points as a dense set. Quite generally rational surfaces, which
by definition allow parametric representation using polynomials with rational coefficients (en-
countered in context of Du Val singularities characterized by the extended Dynkin diagrams
for finite subgroups of SU(2)) allow dense set of rational points [A4, A6]).

g = 0 does not yet guarantee that there is dense set of rational points. It is possible to have
complex conics (quadratic surface) in CP2 with no rational points. Note however that this
depends on the choice of the coordinates: if origin belongs to the surface, there is at least one
rational point

http://tinyurl.com/y86bckmo
http://tinyurl.com/y9oq37ce
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2. Elliptic curve y2 − x3 − ax− b in CP2 (see http://tinyurl.com/lovksny) has genus g = 1
and has a union of lattices of rational points and of finite cyclic groups of them since it has
origin as a rational point. This lattice of points are generated by translations. Note that
elliptic curve has no singularities that is self intersections or cusps (for a = 0, b = 0 origin is
a singularity).

g = 1 does not guarantee that there is infinite number of rational points. Fermat’s last
theorem and CP2 as example. xd + yd = zd is projectively invariant statement and therefore
defines a curve with genus g = (d − 1)(d − 2)/2 in CP2 (one has g = 0, 0, 2, 3, 6, 10, ...). For
d > 2, in particular d = 3, there are no rational points.

3. g ≥ 2 curves do not allow a dense set of rational points nor even potentially dense set of
rational points.

In my article [L9] providing TGD perspective about the role of algebraic geometry in physics,
one can find basic results related to the identification problem including web links and references
to literature.

7.1 Connection with TGD and physics of cognition

The identification problem is extremely difficult even for mathematicians - to say nothing about
humble physicist like me with hopelessly limited mathematical skills. It is however just this problem
which I encounter in TGD inspired vision about adelic physics [L16, L15, L9]. Recall that in TGD
space-times are 4-surfaces in H = M4 × CP2, preferred extremals of the variational principle
defining the theory [K16, L24].

1. In this approach p-adic physics for various primes p provide the correlates for cognition: there
are several motivations for this vision. Ordinary physics describing sensory experience and the
new p-adic physics describing cognition for various primes p are fused to what I called adelic
physics. The adelic physics is characterized by extension of rationals inducing extensions of
various p-adic number fields. The dimension n of extension characterizes kind of intelligence
quotient and evolutionary level since algebraic complexity is the larger, the larger the value
of n is. The connection with quantum physics comes from the conjecture that n is essentially
effective Planck constant heff/h0 = n characterizing a hierarchy of dark matters. The larger
the value of n the longer the scale of quantum coherence and the higher the evolutionary
level, the more refined the cognition.

2. An essential notion is that of cognitive representation [K15] [L15, L9]. It has several realiza-
tions. One of them is the representation as a set of points common to reals and extensions of
various p-adic number fields induced by the extension of rationals. These space-time points
have points in the extension of rationals considered defining the adele. The coordinates are
the embedding space coordinates of a point of the space-time surface. The symmetries of
embedding space provide highly unique embedding space coordinates.

3. The gigantic challenge is to find these points common to real number field and extensions of
various p-adic number fields appearing in the adele.

4. If this were not enough, one must solve an even tougher problem. In TGD the notion of
“world of classical worlds” (WCW) is also a central notion [K16]. It consists of space-time
surfaces in embedding space H = M4 × CP2, which are so called preferred extremals of the
action principle of theory. Quantum physics would reduce to geometrization of WCW and
construction of classical spinor fields in WCW and representing basically many-fermion states:
only the quantum jump would be genuinely quantal in quantum theory.

There are good reasons to expect that space-time surfaces are minimal surfaces with 2-D
singularities, which are string world sheets - also minimal surfaces [L24, L28]. This gives nice
geometrization of gauge theories since minimal surfaces equations are geometric counterparts
for massless field equations.

One must find the algebraic points, the cognitive representation, for all these preferred ex-
tremals representing points of WCW (one must have preferred coordinates for H - the sym-
metries of embedding space crucial for TGD and making it unique, provide the preferred
coordinates)!

http://tinyurl.com/lovksny
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5. What is so beautiful is that in given cognitive resolution defined by the extension of rationals
inducing the discretization of space-time surface, the cognitive representation defines the
coordinates of the space-time surfaces as a point of WCW. In finite cognitive and measurement
resolution this huge infinite-dimensional space WCW discretizes and the situation can be
handled using finite mathematics.

7.2 Connection with Kim’s work

So: what is then the connection with the work and ideas of Kim. There has been a lot of progress
in understanding the problem: here I an only refer to the popular article.

1. One step of progress has been the realization that if one uses the fact that the solutions are
common to both reals and various p-adic number fields helps a lot. The reason is that for
rational points the rationality implies that the solution of equation representable as infinite
power series of p contains only finite number powers of p. If one manages to prove the this
happens for even single prime, a rational solution has been found.

The use of reals and all p-adic numbers fields is nothing but adelic physics. Real surfaces
and all its p-adic variants form pages of a book like structure with infinite number of pages.
The rational points or points in extension of rationals are the cognitive representation and
are points common to all pages in the back of the book.

This generalizes also to algebraic extensions of rationals. Solving the number theoretic prob-
lem is in TGD framework nothing but finding the points of the cognitive representation. The
surprise for me was that this viewpoint helps in the problem rather than making it more
complex.

There are however problematic situations in some cases the hypothesis about finite set of
algebraic points need not make sense. A good example is Fermat for x+ y = 1. All rational
points and also algebraic points are solutions. For x2+y2 = 1 the set of Pythagorean triangles
characterizing the solutions is infinite. How to cope with these situations in which one has
accidental symmetries as one might say?

2. Kim argues that one can make even further progress by considering the situation from even
wider perspective by making the problem even bigger. Introduce what the popular article (see
http://tinyurl.com/y86bckmo) calls the space of spaces. The space of string world sheets is
what string models suggests. WCW is what TGD suggests. One can get a wider perspective
of the problem of finding algebraic points of a surface by considering the problem in the space
of surfaces and at this level it might be possible to gain much more understanding. The notion
of WCW would not mean horrible complication of a horribly complex problem but possible
manner to understand the problem!

The popular article mentioned in the beginning mentions so called Selmer varieties as a
possible candidate for the space of spaces. From the Wikipedia article (see http://tinyurl.

com/y27so3f2) telling about Kim one can find a link to an article [A3] related to Selmer
varieties. This article goes over my physicist’s head but might give for a more mathematically
oriented reader some grasp about what is involved. One can find also a list of publications of
Kim (see http://people.maths.ox.ac.uk/kimm/.

Kim also suggests that the spaces of gauge field configurations could provide the spaces
of spaces. The list contains an article [A5] with title Arithmetic Gauge Theory: A Brief
Introduction (see http://tinyurl.com/y66mphkh) , which might help physicist to understand
the ideas. An arithmetic variant of gauge theory could provide the needed space of spaces.

7.3 Can one make Kim’s idea about the role of symmetries more con-
crete in TGD framework?

The crux of the Kim’s idea is that somehow symmetries of space of spaces could come in rescue in
the attempts to understand the rational points of surface. The notion of WCW suggest in TGD
framework rather concrete realization of this idea that I have discussed from the point of view of
construction of quantum states.

http://tinyurl.com/y86bckmo
http://tinyurl.com/y27so3f2
http://tinyurl.com/y27so3f2
http://people.maths.ox.ac.uk/kimm/
http://tinyurl.com/y66mphkh
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1. A little bit more of zero energy ontology (ZEO) is needed to follow the argument. In ZEO
causal diamonds (CDs) are central. CDs are defined as intersections of future and past
directed light-cones with points replaced with CP2 and forming a scale hierarchy are central.
Space-time surfaces are preferred extremals with ends at the opposite boundaries of CD
indeed looking like diamond. Symplectic group for the boundaries of causal diamond (CD)
is the group of isometries of WCW [K16] [L24]. Maximal isometry group is required to
guarantee that the WCW Kähler geometry has Riemann connection - this was discovered for
loop spaces by Dan Freed [A1]. Its Lie algebra has structure of Kac- Moody algebra with
respect to the light-like radial coordinate of the light-like boundary of CD, which is piece of
light-cone boundary. This infinite-D group plays central role in quantum TGD: it acts as
maximal group of WCW isometries and zero energy states are invariant under its action at
opposite boundaries.

2. As one replaces space-time surface with a cognitive representation associated with an extension
of rationals, WCW isometries are replaced with their infinite discrete subgroup acting in the
number field define by the extension of rationals defining the adele. These discrete isometries
do not leave the cognitive representation invariant but replace with it new one having the
same number of points and one obtains entire orbit of cognitive representations. This is what
the emergence of symmetries in wider conceptual framework would mean.

3. One can in fact construct invariants of the symplectic group. Symplectic transformations leave
invariant the Kähler magnetic fluxes associated with geodesic polygons with edges identified
as geodesic lines of H. There are also higher-D symplectic invariants. The simplest polygons
are geodesic triangles. The symplectic fluxes associated with the geodesic triangles define
symplectic invariants characterizing the cognitive representation. For the twistor lift one must
allow also M4 to have analog of Kähler form and it would be responsible for CP violation and
matter antimatter asymmetry [L6]. Also this defines symplectic invariants so that one obtains
them for both M4 and CP2 projections and can characterize the cognitive representations in
terms of these invariants. Note that the existence of twistor lift fixes the choice of H uniquely
since M4 and CP2 are the only 4-D spaces allowing twistor space with Kähler structure [A2]
necessary for defining the twistor lift of Kähler action.

More complex cognitive representations in an extension containing the given extension are
obtained by adding points with coordinates in the larger extension and this gives rise to new
geodesic triangles and new invariants. A natural restriction could be that the polynomial
defining the extension characterizing the preferred extremal via M8 −H duality defines the
maximal extension involved.

4. Also in this framework one can have accidental symmetries. For instance, M4 with CP2

coordinates taken to be constant is a minimal surface, and all rational and algebraic points
for given extension belong to the cognitive representation so that they are infinite. Could this
has something to do with the fact that we understand M4 so well and have even identified
space-time with Minkowski space! Linear structure would be cognitively easy for the same
reason and this could explain why we must linearize.

CP2 type extremals with light-like M4 geodesic as M4 projection is second example of acci-
dental symmetries. The number of rational or algebraic points with rational M4 coordinates
at light-like curve is infinite - the situation is very similar to x + y = 1 for Fermat. Sim-
plest cosmic strings are geodesic sub-manifolds, that is products of plane M2 ⊂M4 and CP2

geodesic sphere. Also they have exceptional symmetries.

What is interesting from the point of view of proposed model of cognition is that these
cognitively easy objects play a central role in TGD: their deformations represent more complex
dynamical situations. For instance, replacing planar string with string world sheet replaces
cognitive representation with a discrete or perhaps even finite one in M4 degrees of freedom.

5. A further TGD based simplification would be M8 − H (H = M4 × CP2) duality in which
space-time surfaces at the level of M8 are algebraic surfaces, which are mapped to surfaces in
H identified as preferred extremals of action principle by the M8 −H duality [L9]. Algebraic
surfaces satisfying algebraic equations are very simple as compared to preferred extremals
satisfying partial differential equations but “preferred” is what makes possible the duality.
This huge simplification of the solution space of field equations guarantees holography neces-
sitated by general coordinate invariance implying that space-time surfaces are analogous to
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Bohr orbits. It would also guarantee the huge symmetries of WCW making it possible to
have Kähler geometry.

This suggests in TGD framework that one finds the cognitive representation at the level of
M8 using methods of algebraic geometry and maps the points to H by using the M8 − H
duality. TGD and octonionic variant of algebraic geometry would meet each other.

It must be made clear that now solutions are not points but 4-D surfaces and this probably
means also that points in extension of rationals are replaced with surfaces with embedding
space coordinates defining function in extensions of rational functions rather than rationals.
This would bring in algebraic functions. This might provide also a simplification by providing
a more general perspective. Also octonionic analyticity is extremely powerful constraint that
might help.

8 Cognitive representations for partonic 2-surfaces, string
world sheets, and string like objects

Cognitive representations are identified as points of space-time surface X4 ⊂ M4 × CP2 having
embedding space coordinates in the extension of of rationals defined by the polynomial defined by
the M8 pre-image of X4 under M8−H correspondence [L10, L11, L36, L29, L27, L25]. Cognitive
representations have become key piece in the formulation of scattering amplitudes [L31] . One
might argue that number theoretic evolution as increase of the dimension of the extension of
rationals favors space-time surfaces with especially large cognitive representations since the larger
the number of points in the representation is, the more faithful the representation is.

One can pose several questions if one accepts the idea that space-time surfaces with large
cognitive representations are survivors.

1. Preferred p-adic primes are proposed to correspond to the ramified primes of the extension
[L38]. The proposal is that the p-adic counterparts of space-time surfaces are identifiable
as imaginations whereas real space-time surfaces correspond to realities. p-Adic space-time
surfaces would have the embedding space points in extension of rationals as common with
real surfaces and large number of these points would make the representation realistic. Note
that the number of points in extension does not depend on p-adic prime.

Could some extensions have an especially high number of points in the cognitive representation
so that the corresponding ramified primes could be seen as survivors in number theoretical
fight for survival, so to say? Galois group of the extension acts on cognitive representation.
Galois extension of an extension has the Galois group of the original extension as normal
subgroup so that ormal Galois group is analogous to a conserved gene.

2. Also the type of extremal matters. For instance, for instance canonically imbedded M4 and
CP2 contain all points of extension. These surfaces correspond to the vanishing of real or
imaginary part (in quaternionic sense) for a linear octonionic polynomial P (o) = o! As a
matter of fact, this is true for all known preferred extremals under rather mild additional
conditions. Boundary conditions posed at both ends of CD in ZEO exclude these surfaces
and the actual space-time surfaces are expected to be their deformations.

3. Could the surfaces for which the number of points in cognitive representation is high, be
the ones most easily discovered by mathematical mind? The experience with TGD supports
positive answer: in TGD the known extremals [K1] are examples of such mathematical objects!
If so, one should try to identify mathematical objects with high symmetries and look whether
they allow TGD realization.

4. One must also specify more precisely what cognitive representation means. Strong form of
holography (SH) states that the information gives at 2-D surfaces - string world sheets and
partonic 2-surfaces - is enough to determine the space-time surfaces. This suggests that it
is enough to consider cognitive representation restricted to these 2-surfaces. What kind of
2-surfaces are the cognitively fittest one? It would not be surprising if surfaces with large
symmetries acting in extension were favored and elliptic curves with discrete 2-D translation
group indeed turn out to be assigable string world sheets as singularities and string like
objects. In the case of partonic 2-surfaces geodesic sphere of CP2 is similar object.
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All known extremals, in particular preferred extremals, are good candidates in this respect
because of their high symmetries. By strong form of holography (SH) partonic 2-surfaces and
string world sheets are expected to give rise to cognitive representations. Also cosmic strings are
expected to carry them. Under what conditions these representations are large?

8.1 Partonic 2-surfaces as seats of cognitive representations

One can start from SH and look the situation more concretely. The situation for partonic 2-surfaces
has been considered already earlier [L37, L26] but deserves a separate discussion.

1. Octonionic polynomials allow special solutions for which the entire polynomial vanishes. This
happens at 6-sphere S6 at the boundary of 8-D light-cone. S6 is analogous to brane and has
radius R = rn, which is a root of the real polynomial with rational coefficients algebraically
continued to the octonionic polynomial.

S6 has the ball B3 of radius rn of the light-cone M4
+ with time coordinate t = rn as analog

of base space and sphere S3 of E4 with radius R =
√
r2n − r2, r the radial coordinate of B3

as an analog of fiber. The analog of the fiber contracts to a point at the boundary of the
light-cone. The points with B3 projection and E4 coordinates in extension of rationals belong
to the cognitive representation. The condition that R2 = xix

i = r2n−r2 is square of a number
of extension is rather mild and allows infinite number of solutions.

2. The 4-D space-time surfaces X4 are obtained as generic solutions of Im(P (o)) = 0 or
Re(P (o)) = 0. Their intersection with S6 - partonic 2-surface X2 - is 2-D. The assumption
is that the incoming and outgoing 4-D space-time surfaces representing orbits of particles in
topological sense are glued together at X2 and possibly also in their interiors. X2 serves as an
analog of vertex for 3-D particles. This gives rise to topological analogs of Feynman diagrams.

In the generic case the number of points in cognitive representation restricted to X2 is finite
unless the partonic 2-surface X2 is special - say correspond to a geodesic spere of S6.

3. The discrete isometries and conformal symmetries of the cognitive representation restricted
to X2 possibly represented as elements of Galois group might play a role. For X2 = S2 the
finite discrete subgroups of SO(3) giving rise to finite tessellations and appearing in ADE
correspondence might be relevant. For genera g = 01, 2 conformal symmetry Z2 is always
possible but for higher genera only in the case of hyper-elliptic surfaces- this used to explain
why only g = 0, 1, 2 correspond to observed particles [K3] whereas higher genera could be
regarded as many-particle states of handles having continuous mass spectrum. Torus is an
exceptional case and one can ask whether discrete subgroup of its isometries could be realized.

4. In TGD inspired theory of consciousness [L17, L26] the moments t = rn corresponds to “very
special moments in the life of self”. They would be also cognitively very special - kind of
eureka moments with a very large number of points in cognitive representation. The question
is whether these surfaces might be relevant for understanding the nature of mathematical
consciousness and how the mathematical notions emerge at space-time level.

8.2 Ellipticity

Surfaces with discrete translational symmetries is a natural candidate for a surface with very large
cognitive representation. Are their analogs possible? The notions of elliptic function, curve, and
surface suggest themselves as a starting point.

1. Elliptic functions (http://tinyurl.com/gpugcnh) have 2-D discrete group of translations as
symmetries and are therefore doubly periodic and thus identifiable as functions on torus.

Weierstrass elliptic functions P(z;ω1, ω2) (http://tinyurl.com/ycu8oa4r) are defined on
torus and labelled by the conformal equivalence class λ = ω1/ω2 of torus identified as the
ratio λ = ω1/ω2 of the complex numbers ωi defining the periodicities of the lattice involved.
Functions P(z;ω1, ω2) are of special interest as far as elliptic curves are considered and defines
an embedding of elliptic curve to CP2 as will be found.

If the periods are in extension of rationals then values in the extension appear infinitely
many times. Elliptic functions are not polynomials. Although the polynomials giving rise to

http://tinyurl.com/gpugcnh
http://tinyurl.com/ycu8oa4r
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octonionic polynomials could be replaced by analytic functions it seems that elliptic functions
are not the case of primary interest. Note however that the roots rn could be also complex
and could correspond to values of elliptic function forming a lattice.

2. Elliptic curves (http://tinyurl.com/lovksny) are defined by the polynomial equation

y2 = P (x) = x3 + ax+ b . (8.1)

An algebraic curve of genus 1 allowing 2-D discrete translations as symmetries is in question. If
a point of elliptic curve has coordinates in extension of rationals then 2-D discrete translation
acting in extension give rise to infinite number of points in the cognitive representation.
Clearly, the 2-D vectors spanning the lattice defining the group must be in extension of
rationals.

One can indeed define commutative sum P + Q for the points of the elliptic curve. The
detailed definition of the group law and its geometric illustration can be found in Wikipedia article
(http://tinyurl.com/lovksny).

1. Consider real case for simplicity so that elliptic curve is planar curve. y2 = P (x) = x3+ax+b
must be non-negative to guarantee that y is real. P (x) ≥ 0 defines a curve in upper (x, y)
plane extending from some negative value xmin corresponding to y2 = P (xmin) = 0 to the
right. Given value of y can correspond to 3 real roots or 1 real root of Py(x) = y2 − P (x).

At the two extrema of Py(x) 2 real roots coincide. The graph of y = ±
√
P (x) is reflection

symmetric having two branches beginning from (xmin, y = 0).

2. The negative −P is obtained by reflection with respect to x-axis taking yP to −yP . Neutral
element O is identified as point a infinity (assuming compactification of the plane to a sphere)
which goes to itself under reflection y → −y.

3. One assigns to the points P and Q of the elliptic curve a line y = sx+d containing them so that
one has s = (yp− yQ)/(xP −xQ). In the generic case the line intersects the elliptic curve also
at third point R since Py=sx+d(x) is third order polynomial having three roots (xP , xQ, xR).
It can happen that 2 roots are complex and one has 1 real root. At criticalityfor the transiton
from 3 to 1 real roots one has xQ = xR.

Geometrically one can distinguish between 4 cases.

• The roots P,Q,R of Py=sx+d(x) are different and finite: one defines the sum as P +Q =
−R.

• P 6= Q and Q = R (roots Q and R are degenerate): P +Q+Q = O giving R = −P/2.

• P and Q are at a line parallel to y-axis and one has R = O: P +Q+O = O and P = −Q.

• P is double root of Py=sx+d(x) with tangent parallel to y-axis at the point (xmin, y = 0)
at which the elliptic curve begins so that one has R = O: P +P +O = O gives P = −P .
This corresponds to torsion.

4. Elliptic surfaces (see http://tinyurl.com/yc33a6dg) define a generalization of elliptic curves
and are defined for 4-D complex manifolds. Fiber is required to be smooth and has genus 1.

8.3 String world sheets and elliptic curves

In twistor lift of TGD space-time surfaces identifiable as minimal surfaces with singularities, which
are string world sheets and partonic 2-surfaces. Preferred extremal property means that space-time
surfaces are extremals of both Kähler action and volume action except at singularities.

Are string world sheets with very large number of points in cognitive representation possible?
One has right to expect that string world sheets allow special kind of symmetries allowing large,
even infinite number of points at the limit of large sheet and related by symmetries acting in the
extension of rationals. If one of the points is in the extension, also other symmetry related points
are in the extension. For a non-compact group, say translation one would have infinite number
of points in the representation but the finite size of CD would pose a limitation to the number of
points.

String world sheets are good candidates for the realization of elliptic curves.

http://tinyurl.com/lovksny
http://tinyurl.com/lovksny
http://tinyurl.com/yc33a6dg
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1. The general conjecture is that preferred extremals allow what I call Hamilton-Jacobi structure
for M4 [K16]. The distribution of tangent spaces having decomposition M4(x) = M2(x) ×
E2(x) would be integrable giving rise to a family of string world sheets Y 2 and partonic 2-
surfaces X2 more general than those defined above. X2 and Y 2 are orthogonal to each other
at each point of X4. One can introduce local light-cone coordinates (u, v) for Y 2 and local
E2 complex coordinate w for X2.

2. Space-time surface itself would be a deformation of M4 with Hamilton-Jacobi structure in
CP2 direction. w coordinate as function w(z) of CP2 complex coordinate z or vice versa
would define the string world sheet. This would be a transversal deformation of the basic
string world sheet Y 2: stringy dynamics is indeed transversal.

3. The idea about maximal cognitive representation suggests that w ↔ z correspondence defines
elliptic curve. One would have y2 = P (x) = x3 + ax + b with either (y = w, x = z) or
(y = z, x = w). A natural conjecture is that for the space-time surface corresponding to
a given extension K of rationals the coefficients a an b belong to K so that the algebraic
complexity of string world sheet would increase in number theoretic evolution [L35]. The
orbit of a algebraic point at string world sheet would be lattice made finite by the size of CD.
Elliptic curves would define very special deformed string world sheets in space-time.

4. It is interesting to consider the pre-image of given point y (y = w or y = z) covering point
x. One has y = ±

√
u, u = P (x) corresponding to group element and its negative: there are

two points of covering given value of u. u = P (x) covers 3 values of x. The values of x would
belong to 6-fold covering of rationals. The number theoretic interpretation for the effective
Planck constant heff = nh0 states that n is the number of sheets for space-time surface as
covering.

There is evidence that heff = h corresponds to n = 6 [L3]. Could 6-fold covering of rationals
be fundamental since it gives very large cognitive representation at the level of string world
sheets?

For extensions K of rationals the x coordinates for the points of cognitive representation
would belong to 6-D extension of K.

5. Ellipticity condition would apply on the string world sheets themselves. In the number the-
oretic vision string world sheets would correspond at M8 level to singularities at which the
quaternionic tangent space degenerates to 2-D complex space. Are these conditions consis-
tent with each other? It would seem that the two conditions would select cognitively very
special string world sheets and partonic 2-surfaces defining by strong form of holography (SH)
space-time surface as a hologram in SH. Consciousness theorist interested in mathematical
cognition might ask whether the notion of elliptic surfaces have been discovered just because
it is cognitively very special. In the case of partonic 2-surfaces geodesic sphere of CP2 is
similar object.

8.4 String like objects and elliptic curves

String like objects - cosmic strings - and their deformations, are fundamental entities in TGD based
cosmology and astrophysics and also in TGD inspired quantum biology. One can assign elliptic
curves also to string like objects.

1. Quite generally, the products X2× Y 2 ⊂M4 of string world sheets X2 and complex surfaces
Y 2 of CP2 define extremals that I have called cosmic strings [K1].

2. Elliptic curves allow a standard embedding to CP2 as complex surfaces constructible in terms
of Weierstrass elliptic function P(z) (http://tinyurl.com/ycu8oa4r) satisfying the identity

[P ′(z)]2 = [P(z)]3 − g2P(z)− g3 . (8.2)

Here g2 and g3 are modular invariants. This identity is of the same form as the condition
y2 = x3 + ax+ b with identifications y = P ′(z), x = P(z) and (a = −g2, b = −g3). From the
expression

http://tinyurl.com/ycu8oa4r
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y2 = x(x− 1)(x− λ) (8.3)

in terms of the modular invariant λ = ω1/ω2 of torus one obtains

g2 = 41/3

3 (λ2 − λ+ 1 , g3 = 1
27 (λ+ 1)(2λ2 − 5λ+ 2) . (8.4)

Note that third root of a appears in the formula. The so called modular discriminant

∆ = g32 − 27g23 = λ2(λ− 1)2 . (8.5)

vanishes for λ = 0 and λ = 1 for which the lattice degenerates.

3. The embedding of the elliptic curve to CP2 can be expressed in projective coordinates of CP2

as

(z1, z2, z3) = (ξ1, ξ2, 1) = (
P ′(w)

2
,P(w), 1) . (8.6)

9 Are fundamental entities discrete or continuous and what
discretization at fundamental level could mean?

There was an interesting FB discussion about discrete and continuum. I decided to write down
my thoughts and emphasize those points that I see as important.

9.1 Is discretization fundamental or not?

The conversation inspired the question whether discreteness is something fundamental or not. If
it is assumed to be fundamental, one encounters problems. The discrete structures are not unique.
One has deep problem with the known space-time symmetries. Symmetries are reduced to discrete
subgroup or totally lost. A further problem is the fact that in order to do physics, one must bring
in topology and length measurements.

In discrete situation topology, in particular space-time dimension, must be put in via homology
effectively already meaning use of embedding to Euclidian space. Length measurement remains
completely ad hoc. The construction of discrete metric is highly non-unique procedure and the
discrete analog of of say Einstein’s theory (Regge calculus) is rather clumsy. One feeds in infor-
mation, which was not there by using hand weaving arguments like infrared limit. It is possible to
approximate continuum by discretization but discrete to continuum won’t go.

In hype physics these hand weaving arguments are general. For instance, the emergence of
3-space from discrete Hilbert space is one attempt to get continuum. One puts in what is factually
a discretization of 3-space and then gets 3-space back at IR limit and shouts ”Eureka!”.

9.2 Can one make discretizations unique?

Then discussion went to numerics. Numerics is for mathematicians same as eating for poets. One
cannot avoid it but luckily you can find people doing the necessary programming if you are a
professor. Finite discretization is necessary in numerics and is highly unique.

I do not have anything personal against discretization as a numerical tool. Just the opposite, I
see finite discretization as absolutely essential element of adelic physics as an attempt to describe
also the correlates of cognition in terms of p-adic physics with p-adic space-time sheets as correlates
of ”thought bubbles” [L15, L16]. Cognition is discrete and finite and uses rational numbers: this
is the basic clue.
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1. Cognitive representations are discretizations of (for instance) space-time surface. One can
say that physics itself builds its cognitive representation in all scales using p-adic space-time
sheets. They should be unique once measurement resolution is characterized if one is really
talking about fundamental physics.

The idea abou tp-adic physics as physics of cognition indeed led to powerful calculational
recipes. In p-adic thermodynamics the predictions come in power series of p-adic prime p and
for the values of p assignable to elementary particles the two lowest terms give practically
exact result [K12]. Corrections are of order 10−76 for electron characterized by Mersenne
prime M127 = 2127 − 1 ∼ 1038.

2. Adelic physics [L15] provides the formulation of p-adic physics: it is assumed that cognition is
universal. Adele is a book like structure having as pages reals and extensions of various p-adic
number fields induced by given extension of rationals. Each extension of rationals defines its
own extension of the rational adele by inducing extensions of p-adic number fields. Common
points between pages consist of points in extension of rationals. The books associated with
the adeles give rise to an infinite library.

At space-time level the points with coordinates in extension define what I call cognitive
representation. In the generic case it is discrete and has finite number of points. The loss of
general coordinate invariance is the obvious objection. In TGD however the symmetries of the
embedding space fix the coordinates used highly uniquely. M8−H duality (H = M4×CP2)
and octonionic interpretation implies that M8 octonionic linear coordinates are highly unique
[L9, L29]. Note that M8 must be complexified. Different coordinatizations correspond to
different octonionic structures- to different moduli - related by Poincare transformations of
M8. Only rational time translations as transformations of octonionic real coordinate are
allowed as coordinate changes respecting octonionic structure.

3. Discretization by cognitive representation is unique for given extension of rationals defining the
measurement resolution. At the limit of algebraic numbers algebraic points form a dense set
of real space-time surface and p-adic space-time surfaces so that the measurement resolution
is ideal. One avoids the usual infinities of quantum field theories induced by continuous
delta functions, which for cognitive representations are replaced with Kronecker deltas. This
seems to be the best that one can achieve with algebraic extensions of rationals. Also for
transcendental extensions the situation is discrete.

This leads to a number theoretic vision about second quantization of induced spinor fields
central for the construction of gamma matrices defining the spinor structure of ”world of
classical worlds” (WCW) providing the arena of quantum dynamics in TGD analogous to the
super-space of Wheeler [K16]. One ends up to a construction allowing to understand TGD
view about SUSY as necessary aspect of second quantization of fermions and leads to the
conclusions that in the simplest scenario only quarks are elementary fermions and leptons can
be seen as their local composites analogous to super partners.

4. Given polynomial defining space-time surfaces in M8 defines via its roots extension of ra-
tionals. The hierarchy of extensions defines an evolutionary hierarchy. The dimension n of
extension defines kind of IQ measuring algebraic complexity and n corresponds also to effec-
tive Planck constant labelling phases of dark matter in TGD sense so that a direct connection
with physics emerges.

Embedding space assigns to a discretization a natural metric. Distances between points of
metric are geodesic distances computed at the level of embedding space.

5. An unexpected finding was that the equations defining space-time surfaces as roots of real
or imaginary parts of octonionic polynomials have also 6-D brane like entities with topology
of S6 as solutions [L26, L36]. These entities intersect space-time surfaces at 3-D sections for
which linear M4 time is constant. 4-D roots can be glued together along these branes. These
solutions turn out to have an interpretation in TGD based theory of quantum measurement
extending to a theory of consciousness. The interpretation as moments of ”small” state
function reductions as counterparts of so called weak measurements. They could correspond
to special moments in the life of conscious entity.
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9.3 Can discretization be performed without lattices?

For a systems obeying dynamics defined by partial differential equations, the introduction of lat-
tices seems to be necessary aspect of discretization. The problem is that the replacement of
derivatives with discrete approximations however means that there is no hope about exact results.
In the general case the discretization for partial differential equations involving derivatives forces
to introduce lattice like structures. This is not needed in TGD.

1. At the level of M8 ordinary polynomials give rise to octonionic polynomials and space-time
surfaces are algebraic surfaces for which imaginary or real part of octonionic polynomial in
quaternionic sense vanishes. The equations are purely algebraic involving no partial deriva-
tives and there is no need for lattice discretization.

For surfaces defined by polynomials the roots of polynomial are enough to fix the polynomials
and therefore also the space-time surface uniquely: discretization is not an approximation but
gives an exact result! This could be called number theoretical holography and generalizes the
ordinary holography. Space-time surfaces are coded by the roots of polynomials with rational
coefficients.

2. What about the field equations at the level of H = M4 × CP2? M8 − H duality maps
these surfaces to preferred extremals as 4-surfaces in H analogous to Bohr orbits. Twistor
lift of TGD predicts that they should be minimal surfaces with 2-D singularities being also
extremals of 4-D Kähler action. The field equations would reduce locally to purely algebraic
conditions. In properly chosen coordinates for H they are expected to be determined in terms
of polynomials coding for the same extension of rationals as their M8 counterparts so that the
degree should be same [L29]. This would allow to deduce the partial derivatives of embedding
space for the image surfaces without lattice approximation.

3. The simplest assumption is that the polynomials have rational coefficients. Number theo-
retic universality allows to consider also algebraic coefficients. In both cases also WCW is
discretized and given point -space-time surface in QCD has coordinates given by the points
of the number theoretically universal cognitive representation of the space-time surface. Even
real coefficients are possible. This would allow to obtain WCW as a continuum central for
the construction of WCW metric but is not consistent with number theoretical universality.

Can one have polynomial/functions with rational coefficients and discretization of WCW
without lattice but without losing WCW metric? Maybe the same trick that works at space-
time level works also in WCW!

(a) The group WCW isometries is identified as symplectic transformations of δM4
± × CP2

(δM4
± denotes light-cone boundary) containing the boundary of causal diamond CD. The

Lie algebra Sympl of this group is analogous half-Kac Moody algebra having symplectic
transformations of S2 × CP2 as counterpart of finite-D Lie group has fractal structure
containing infinite number of sub-algebras Sympln isomorphic to algebra itself: the con-
formal weights assignable to radial light-like coordinate are n-multiples of those for the
entire algebra. Note that conformal weights of Sympl are non-negative.

(b) One formulation for the preferred extremal property is in terms of infinite number of
analogs of gauge conditions stating the vanishing of classical and also Noether charges
for Sympln and [Sympln, Sympl]. The conditions generalize to the super-counterpart of
Sympl and apply also to quantum states rather than only space-time surfaces. In fact,
while writing this I realized that - contrary to the original claim - also the vanishing of
the Noether charges of higher commutators is required so that effectively Sympln would
define normal subgroup of Sympl. These conditions does not follow automatically.
The Hamiltonians of Sympl(S2 × CP2) are also labelled by the representations of the
product of the rotation group SO(3) ⊂ SO(3, 1) of S2 and color group SU(3) together
forming the analog of the Lie group defining Kac-Moody group. This group does not
have have the fractal hierarchy of subgroups. The strongest condition is that the algebra
corresponding to Hamiltonian isometries does not annihilate the physical states.
The space of states satisfying the gauge conditions is finite-D and that WCW becomes
effectively finite-dimensional. A coset space associated with Sympl would be in question
and it would have maximal symmetries as also WCW. The geometry of the reduced
WCW, WCWred could be deduced from symmetry considerations alone.
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(c) Number theoretic discretization would correspond to a selection of points of this subspace
with the coordinates in the extension of rationals.The metric of WCWred,n at the points
of discretization would be known and no lattice discretization would be needed. The
gauge conditions are analogous to massless Dirac equation in WCW and could be solved
in the points of discretization without introducing the lattice to approximate derivatives.
As a matter fact, Dirac equation can be formulated solely in terms of the generators of
Sympl.

(d) This effectively restricts WCW to WCWred,n in turn reduced to its discrete subset -
since infinite number of WCW coordinates are fixed. If this sub-space can be regarded
as realization of infinite number of algebraic conditions by polynomials with rational
coefficients one can assign to it extension of rationals defining naturally the discretization
of WCWred,n. This extension is naturally the same as for space-time surfaces involved
so that the degree of polynomials defining WCWred,n would be naturally n and same as
that for the polynomial defining the space-time surface. WCWred,n would decompose to
union of spaces WCWred,En

labelled by extensions En of rationals with same dimension
n.
There is analogy with gauge fixing. WCWred,En is a coset space of WCW defined by
the gauge conditions. One can represent this coset space as a sub-manifold of WCW by
taking one representative point from each coset. This choice is not unique but one can
hope finding a gauge choice realized by an infinite number of polynomials of degree n
defining same extension of rationals as the polynomial defining the space-time surfaces
in question.

(e) WCW spinor fields would be always restricted to finite-D algebraic surface of WCWred,En

expressible in terms of algebraic equations. Finite measurement resolution indeed strongly
suggests that WCW spinor field mode is non-vanishing only in a region parameterized
in WCW by finite number of parameters. There is also a second manner to see this.
WCWred,En

could be also seen as n+ 4-dimensional surface in WCW .

(f) One can make this more concrete. Cognitive representation by points of space-time
surface with coordinates in the extension - possibly satisfying additional conditions such
as belonging to the 2-D vertices at which space-time surfaces representing different roots
meet - provides WCW coordinates of given space-time surface. Minimum number of
points corresponds to the dimension of extension so that the selection of coordinate can
be redundant. As the values of these coordinates vary, one obtains coordinatization for
the sector of WCWred,En . An interesting question is whether one could represent the
distances of space-time surfaces in this space in terms of the data provided by the points
of discretization.
An interesting question is whether one can represent the distances of space-time surfaces
in this space in terms of the data provided by the points of cognitive representation. One
can define distance between two disjoint surfaces as the minimum of distance between the
points of 2-surfaces. Could something like this work now? The points would be restricted
to the cognitive representations. Could one define the distance between two cognitive
representations with same number N of points in the following manner.
Consider all bipartitions formed by the cognitive representations obtained by connecting
their points together in 1-1 manner. There are N! bipartitions of this kind if the number
of points is N. Calculate the sum of the squares of the embedding space distances between
paired points. Find the bipartition for which this distance squared is minimum and define
the distance between cognitive representations as this distance. This definition works also
when the numbers of points are different.

(g) If there quantum states are the basic objects and there is nothing ”physical” behind
them one can ask how we can imagine mathematical structures which different from
basic structure of TGD. Could quantum states of TGD Universe in some sense represent
all mathematical objects which are internally consistent. One could indeed say that at the
level of WCW all n+4-D manifolds can be represented concretely in terms of WCW spinor
fields localized to n-D subspaces of WCW. WCW spinor fields can represent concept of
4-surface of WCWred,n as a quantum superposition of its instance and define at the same
time n+ 4-D surfaces [L39] [L28, L32, L31, L39].
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9.4 Simple extensions of rationals as codons of space-time genetic
code

A fascinating idea is that extensions of rationals define the analog of genetic code for space-
time surfaces, which would therefore represent number theory and also finite groups.

(a) The extensions of rationals define an infinite hierarchy: the proposal is that the dimension
of extensions corresponds to the integer n characterizing subalgebra Sympln. This would
give direct correspondence between the inclusions of HFFs assigned to the hierarchy of
algebras Sympln and hierarchy of extensions of rationals with dimension n.
Galois group for a extension of extension contains Galois group of extension as normal
subgroup and is therefore not simple. Extension hierarchies correspond to inclusion hi-
erarchies for normal subgroups. Simple Galois groups are in very special position and
associated with what one might call simple extensions serving as fundamental build-
ing bricks of inclusion hierarchies. They would be like elementary particles and define
fundamental space-time regions. Their Galois groups would act as groups of physical
symmetries.

(b) One can therefore talk about elementary space-time surfaces inM8 and their compositions
by function composition of octonionic polynomials. Simple groups would label elementary
space-time regions. They have been classified: (see http://tinyurl.com/y3xh4hrh).
The famous Monster groups are well-known examples about simple finite groups and
would have also space-time counterparts. Also the finite subgroups of Lie groups are
special and those of SU(2) are associated with Platonic solids and seem to play key role
in TGD inspired quantum biology. In particular, vertebrate genetic code can be assigned
to icosahedral group.

(c) There is also an analogy with genes. Extensions with simple Galois groups could be seen
as codons and sequences of extension obtained by functional composition as analogs of
genes. I have even conjectured that the space-time surfaces associated with genes could
quite concretely correspond to extensions of extensions of ...

9.5 Are octonionic polynomials enough or are also analytic functions
needed?

I already touched the question whether also analytic functions with rational coefficients (num-
ber theoretical universality) might be needed.

(a) The roots of analytic functions generate extension of rationals. If the roots involve tran-
scendental numbers they define infinite extensions of rationals. Neper number e is very
special in this sense since ep is ordinary p-adic number for all primes p so that the induced
extension is finite-dimensional. One could thus allow it without losing number theoretical
universality. The addition of π gives infinite-D extension but one could do by adding only
roots of unity to achieve finite-D extensions with finite accuracy of phase measurement.
Phases would be number theoretically universal but not angles.

(b) One could of course consider only transcendental functions with rational roots. Trigono-
metric function sin(x/2π) serves as a simple example. One can also argue that since
physics involves in an essential manner trigonometric functions via Fourier analysis, the
inclusion of analytic functions with algebraic roots must be allowed.

(c) What about analytic functions as limits of polynomials with rational coefficients such
that the number of roots becomes infinite at the limit? Also their imaginary and real
part can vanish in quaternionic sense and could define space-time surfaces - analogs of
transcendentals as space-time surfaces. It is not clear whether these could be allowed or
not.

Could one have a universal polynomial like function giving algebraic numbers as the extension
of rationals defined by its algebraic roots? Could Riemann zeta (see http://tinyurl.com/

nfbkrsx) code algebraic numbers as an extension via its roots. I have conjectured that roots
of Riemann zeta are algebraic numbers: could they span all algebraic numbers?

http://tinyurl.com/y3xh4hrh
http://tinyurl.com/nfbkrsx
http://tinyurl.com/nfbkrsx


MATHEMATICS 62

It is known that the real or imaginary part of Riemann zeta along s = 1/2 critical line can
approximate any function to arbitrary accuracy: also this would fit with universality. Could
one think that the space-time surface defined as root of octonionic continuation of zeta could
be universal entity analogous to a fixed point of iteration in the construction of fractals? This
does not look plausible.

4. One can construct iterates of Riemann zeta having at least the same roots as zeta by the rule

f0(s) = ζ(s) ,
fn(s) = ζ(fn−1(s))− ζ(0), ζ(0) = −1/2 .

(9.1)

ζ is not a fixed point of this iteration as the fractal universality would suggest. The set of
roots however is. Should one be happy with this.

5. Riemann zeta has also counterpart in all extensions of rationals known as Dedekind zeta (see
http://tinyurl.com/y5grktv) [L13, L38, L30]. Riemann zeta is therefore not unique. One
can ask whether Dedekind zetas associated with simple Galois groups are special and whether
Dedekind zetas associated with extensions of extensions of .... can be constructed by using
the Dedekind zetas of simple extensions. How do the roots of Dedekind zeta depend on the
associated extension of rationals? How the roots of Dedekind zeta for extension of extension
defined by composite of two polynomials depend on extensions involved? Are the roots union
for the roots associated with the composites?

6. What about forming composites of Dedekind zetas? Categorical according to my primitive
understanding raises the question whether a composition of extensions could correspond to
a composition of functions. Could Dedekind zeta for a composite of extensions be obtained
from a composite of Dedekind zetas for extensions? Requiring that roots of extension E1 are
preserved would give formula

ζD,E1E2
= ζD,E1

◦ ζD,E2
− ζD,E1

(0) . (9.2)

The zeta function would be obtained by an iteration of simple zeta functions labelled by
simple extensions. The inverse image for the set of roots of ζD,E1 under ζD,E2 that is the set
ζ−1D,E2

(roots(ζD,E1
) would define also roots of ζD,E1E2

. This looks rather sensible.

But what about iteration of Riemann zeta, which corresponds to trivial extension? Riemann
ζ is not invariant under iteration although its roots are. Should one accept this and say that
it is the set of roots which defines the invariant. Could one say that the iterates of various
Dedekind zetas define entities which are somehow universal.
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