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Abstract
With a motivation coming from explicit calculations Nima-Arkani Hamed

and collaborators argue that positivity could be a quite general property of
calN = 4 scattering amplitudes: as if the amplitudes were analogous to gen-
eralized volumes of higher-dimensional polyhedra. A related notion is positive
Grassmannian. This article considers the possibility that the positivity of the
scattering amplitudes and Grassmannians might follow from the condition of
number theoretical universality demanding that scattering amplitudes can be
algebraically continued from real (complex numbers) to p-adic number fields
and vice versa. Complex phases correspond quite generally to roots of unity
for an algebraic extension of p-adic numbers so that algebraic continuation is
just identification for the phases: for their p-adic coefficients the situation is
different. Note that discretization identifiable in terms of finite resolution, is
unavoidable in p-adic sector. What about the mapping of the p-adic coeffi-
cients to reals and vice versa.

Besides direct algebraic continuation of reals through common rationals (or
their algebraic extension), so called canonical identification mapping p-adics in
a continuous manner to reals but not respecting smoothness and symmetries is
involved. Canonical identification with cutoffs reflecting appropriate UV and
IR resolutions appears also in the definition of p-adic space-time surface as
”cognitive representation” of real space-time surface. What is important that
canonical identification maps p-adic numbers to non-negative real numbers so
that this map and its inverse require non-negativity on the real side. If canon-
ical identification with cutoffs maps the ordinary p-adic numbers appearing
in p-adic scattering amplitudes to reals and vice versa, p-adicizability requires
positivity. Quite generally, complex scattering amplitude would be a super-
position of numbers in an algebraic extension of p-adic numbers mapped to
real amplitude such that the coefficientts of various algebraic numbers would
be positive.

1 Introduction

Lubos (http://motls.blogspot.fi/2015/01/mysterious-positivity-of-amplituhedron.
html) wrote a commentary about two new articles of Nima Arkani Hamed and col-
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laborators. The first article is about the positivity (http://arxiv.org/abs/1412.
8478) of the amplitudes in the amplituhedron [B2]. With motivation coming from
explicit calculations it is argued that positivity could be a quite general property:
as if the amplitudes were analogous to generalized volumes of higher-dimensional
polyhedra. Twistor Grassmann approach has been restricted hitherto to planar am-
plitudes but in the second paper (http://arxiv.org/abs/1412.8478) [B3] non-
planar MHV amplitudes are discussed, and a suggestion is made that also these are
expressible as positive sum of of differently ordered Parker-Taylor amplitudes.

The Grassmannian twistor approach considers also positive Grassmannians [B1].
This is not the same thing but most be closely related to the positivity of amplitudes.
I recall that the core idea is however that one considers higher-D analogs of polygons.
An ultrasimple representative for positive space polygon would be a triangle bounded
by positive x- and y-axis and the line y=-x. x and y coordinates are positive.

What is of course certain is that the entire scattering amplitude cannot be pos-
itive since it is complex number. Rather, it must decompose into a product of
”trivial” part determined by symmetries and non-trivial part which for some reason
must be positive. What does this mean? Lubos considers this question in his post-
ing: the idea is roughly that the real amplitude in question is an exponential and
this guarantees positivity. Bundle theorist might speak about global everywhere
non-vanishing section of vector bundle having geometric and topological meaning in
algebraic geometry. Below I try to interpret positivity in terms of number theoretic
arguments inspired by TGD. There is no need to emphasize that I can only admire
the incredible technical skills of the advocates of twistor Grassmann approach and
my comments are more philosophical than technical.

The idea is that the positivity of the scattering amplitudes and Grassmannians
might follow from the condition of number theoretical universality demanding that
scattering amplitudes can be algebraically continued from real (complex numbers)
to p-adic number fields and vice versa. Complex phases correspond quite gener-
ally to roots of unity for an algebraic extension of p-adic numbers so that algebraic
continuation is just identification for the phases: for their p-adic coefficients the sit-
uation is different. Note that discretization identifiable in terms of finite resolution,
is unavoidable in p-adic sector. What about the mapping of the p-adic coefficients
to reals and vice versa.

Besides direct algebraic continuation of reals through common rationals (or their
algebraic extension), so called canonical identification mapping p-adics in a contin-
uous manner to reals but not respecting smoothness and symmetries is involved.
Canonical identification with cutoffs reflecting appropriate UV and IR resolutions
appears also in the definition of p-adic space-time surface as ”cognitive represen-
tation” of real space-time surface. What is important that canonical identification
maps p-adic numbers to non-negative real numbers so that this map and its inverse
require non-negativity on the real side. If canonical identification with cutoffs maps
the ordinary p-adic numbers appearing in p-adic scattering amplitudes to reals and
vice versa, p-adicizability requires positivity. Quite generally, complex scattering
amplitude would be a superposition of numbers in an algebraic extension of p-adic
numbers mapped to real amplitude such that the coefficientts of various algebraic
numbers would be positive.
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2 Does number theoretical universality require

positivity?

Number theoretical universality of physics [K1] is one of the key principles of TGD
and states that real physics must allow algebraic continuation to p-adic physics and
vice versa [K2]. I suggest that number theoretical universality requires the positivity.

1. The p-adicization of the amplitudes requires positivity. The ”non-trivial” fac-
tor of the amplitude is mapped to its p-adic counterpart by a variant of canon-
ical identification mapping p-adics to non-negative reals and vice versa and is
well-defined only for non-negative real numbers. Hence positivity. This con-
dition could also explain why positive Grassmannians [B1] are needed: the
preferred coordinates must be positive in order to have well-defined p-adic
counterparts and vice versa.

The basic reason for positivity is that p-adic numbers are not well-ordered.
When one has two p-adic numbers with the same p-adic norm, one cannot tell
which of them is the larger one. This makes it impossible to tell whether a
given p-adic number is positive or negative and one cannot talk about p-adic
boundaries. p-Adic line segment has no ends. As a consequence, definite inte-
gral is very difficult notion p-adically although the notion of integral function
can be defined. p-Adic counterparts of differential forms are also far from
trivial to define.

2. What about the symmetry determined parts of the amplitudes, which are
typically analogs of partial waves depending on angular coordinates and are
complex and cannot be positive? Also here one encounters a technical problem
related to another conceptual challenge of p-adicization program: the notion
of angle is not well-defined in p-adic context and one can talk only about dis-
crete phases. One can define exponential function exp(x) if x has p-adic norm
smaller than 1 but it does not have the properties of the ordinary exponen-
tial function (it has p-adic norm 1 for all values of x). One can define also
trigonometric functions with the help of exp(ix) for p mod 4 = 3 formally but
the trigonometric functions are not periodic. Something is missing.

In the case of ordinary trigonometry the only way out is to perform alge-
braic extension of p-adic numbers by adding roots of unity representing phases
associated with corresponding angles: phases replace angles. For instance,
Un = exp(i2π/n) exists in an algebraic extension of p-adic numbers.

In the case of hyperbolic geometry, one can add roots of e to obtain p-adic
counterparts of e(1/n) (note that ep is ordinary p-adic numbers so that these
extensions are finite-dimensional algebraically and e is completely unique real
transcendental in that it is algebraic number p-adically!): this extension allows
to get the counterparts of ordinary exponential functions in extension.

One can also multiply the points of discretization by p-adic numbers of norm
smaller than 1 (or some negative power of p) to get something as near as pos-
sible to continuum. Hence discretization in both hyperbolic and trigonometric
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degrees of freedom by algebraic extension solves the problems quite gener-
ally for amplitudes defined in highly symmetric spaces. In Grassmann twistor
approach one indeed considers projective spaces.

3. Consider as an example the p-adic counterpart of Euclidian 2-space with coor-
dinates (ρ, φ). ρ is non-negative radial coordinate and has p-adic counterpart
obtained by canonical identification or its variant. The values of φ are replaced
with discrete phase factors Un characterizing the values of φ coordinate. One
has a collection of n rays emanating from origin instead of entire plane. One
has infinite number of variants of E2 labelled by n characterizing the angular
resolution.

The p-adicization of Cartesian representation of real Euclidian 2-space defined
using (x, y) coordinates would give only the first quadrant since negative x and
y have no p-adic counterparts. In both cases cognitive representations lose a
lot of information for purely number theoretical reasons. Cognitive analog of
Uncertainty Principle is suggestive.

4. Obviously General Coordinate Invariance is broken at the level of cognition
which is actually not so surprising after all since the worlds in which mathe-
matician has chosen to used Cartesian resp. spherical coordinates must differ
in some delicate manner! Of course, the resulting discretized spaces are very
different.

3 How should one p-adicize?

The p-adicization of various spaces and amplitudes is needed. p-Adicization means
that one assigns to a real (or complex) number a p-adic variant by some rule. In the
case of trigonometric and hyperbolic angles one can use discretization and algebraic
extension but what about other kinds of coordinates? There are two guesses [K3].

1. Consider only rationals or their algebraic extension and map only them to
their p-adic counterparts in the needed extension of p-adic numbers. This
correspondence is however extremely discontinuous since real numbers which
are arbitrary distant can be arbitrary near p-adically and vice versa. What
is nice that this map respects symmetries suggesting that one has symmetries
below some rational cutoff defining measurement resolution. This conforms
with the general philosophy about measurement resolution realized in terms
of inclusions of hyper-finite factors realizing measurement resolution as analog
of dynamical gauge symmetry.

2. Use canonical identification mapping p-adic numbers to p-adic numbers by
canonical identification: x =

∑
xnp

n →
∑
xnp

−n is the first option. It indeed
works only for non-negative real numbers! Canonical identification is continu-
ous but does not respect differentiability nor symmetries. Direct identification
via common rationals in turn does not respect continuity.

The resolution of the problems is a compromize based on the use of two cut-
offs. In some length scale range above p-adic UV cutoff LUV and scale L a direct
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correspondence between common rationals is assumed. Between L IR cutoff LIR

canonical identification is used. Outside the range [LUV , LIR] there is no correspon-
dence and conditions like smoothness dictate the details at both sides.

4 p-Adic space-time surfaces as cognitive maps of

real ones and real space-time surfaces as corre-

lates for realized intentions

One wants to talk about real topological invariants also in p-adic context: p-adic
space-time surface should be a kind of cognitive representation of real space-time
surface.

1. Space-time surfaces are extremals of Kähler action (real/p-adic) but have a
discrete set of common rational points. The notion of p-adic manifold for
which p-adic regions are mapped to real chart leafs (rather than to p-adic
ones!) formalizes this concept and allows to avoid the problem that p-adic
balls are either disjoint or nested so that the usual construction of manifold
does not make sense. The problem that there exists an endless variety of
coordinate choices and each would give different notion of p-adic manifold.

2. The cure comes from space-time as a surface property, and from symmetries
allowing to induce manifold structure from the level of imbedding space the
level of space-time surfaces. In TGD imbedding space is M4×CP2. CP2 allows
very natural p-adicizations by using complex coordinates transforming linearly
under maximal sectiongroup of isometries and one obtains discrete variants of
coset space with points labeled by phases in the algebraic extensions of p-adic
numbers. One can also have a generalization in which each discrete point
corresponds to a continuum of p-adic units.

In the case of M4 one has more options but if one requires that the coordinate
which is mapped by canonical identification to its real counterpart, the natural
choices is the cosmic coordinates assignable to the future or past light-cone
of causal diamond. Light-cone proper time would correspond to non-negative
coordinate and the remaining coordinates would be ordinary angles hyperbolic
angle and mappable to phase factors and real exponential, which exists if one
introduces finite number of roots of e and discretizes the hyperbolic angle. Note
that p-adic causal diamond (CD) is p-adically non-trivial manifold requiring
two chart leafs and this might deeply relate to the fact that state function
reductions occur to either boundary of CD.

3. Surface property implies that the correspondence between real and p-adic
space-time surfaces is induced from that between the corresponding imbedding
spaces and thus dictated to high degree by symmetries. Preferred imbedding
space coordinates and their discretizations induce coordinates and discretiza-
tions at space-time surfaces so that there is a huge reduction in the number of
different but cognitively non-equivalent discretizations.



THEORETICAL PHYSICS 6

4. This could make possible in practice to define the notion of p-adic space-time
surface as a cognitive map of real space-time surface and real space-surface as
a realizaton of intention represented by p-adic space-time surface. The real
extremal of Kähler action is mapped to p-adic one only in a given resolution.
A sectionset of discrete points of the space-time surface is mapped to p-adic
ones and vice versa and this discrete skeleton is continued to a p-adic extremal
of Kähler action. The outcome is interpreted as cognitive representation or its
inverse (transformation of intention to action) and need not be unique. The
mapping taking p-adic skeleton to real one is up to some cutoff pinary digit
just identification along common rationals respecting symmetry and above
that canonical identification up to the highest allowed pinary digit.

To sum up, number theoretic universality condition for scattering amplitudes
might help to understand the success of twistor Grassmann approach. The exis-
tence of p-adic variants of the amplitudes in finite algebraic extensions is a powerful
constraint and I have argued that they are satisfied for the polylogarithms used.
Positive Grassmannians and positivity of the amplitudes might be also seen as a
manner to satisfy these constraints.
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