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Abstract

The notion of higher structures promoted by John Baez looks very promising notion in
the attempts to understand various structures like quantum algebras and Yangians in TGD
framework. The stimulus for this article came from the nice explanations of the notion of
higher structure by Urs Screiber. The basic idea is simple: replace “=” as a blackbox with
an operational definition with a proof for A = B. This proof is called homotopy generalizing
homotopy in topological sense. n-structure emerges when one realizes that also the homotopy
is defined only up to homotopy in turn defined only up...

In TGD framework the notion of measurement resolution defines in a natural manner
various kinds of “=”s and this gives rise to resolution hierarchies. Hierarchical structures
are characteristic for TGD: hierarchy of space-time sheet, hierarchy of p-adic length scales,
hierarchy of Planck constants and dark matters, hierarchy of inclusions of hyperfinite factors,
hierarchy of extensions of rationals defining adeles in adelic TGD and corresponding hierarchy
of Galois groups represented geometrically, hierarchy of infinite primes, self hierarchy, etc...

In this article the idea of n-structure is studied in more detail. A rather radical idea is a
formulation of quantum TGD using only cognitive representations consisting of points of space-
time surface with imbedding space coordinates in extension of rationals defining the level of
adelic hierarchy. One would use only these discrete points sets and Galois groups. Everything
would reduce to number theoretic discretization at space-time level perhaps reducing to that at
partonic 2-surfaces with points of cognitive representation carrying fermion quantum numbers.

Even the “world of classical worlds ” (WCW) would discretize: cognitive representation
would define the coordinates of WCW point. One would obtain cognitive representations
of scattering amplitudes using a fusion category assignable to the representations of Galois
groups: something diametrically opposite to the immense complexity of the WCW but perhaps
consistent with it. Also a generalization of McKay’s correspondence suggests itself: only those
irreps of the Lie group associated with Kac-Moody algebra that remain irreps when reduced
to a subgroup defined by a Galois group of Lie type are allowed as ground states.
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1 Introduction

I encountered a very interesting work by Urs Schreiber related to so called higher structures and
realized that these structures are part of the mathematical language for formulating quantum TGD
in terms of Yangians and quantum algebras in a more general manner.

1.1 Higher structures and categorification of physics

What theoretical physicist Urs Screiber calls “higher structures” are closely related to the cat-
egorification program of physics. Baez, David Corfield and Urs Schreiber founded a group blog
n-Category Cafe about higher category theory and its applications. John Baez is a mathematical
physicists well-known from is pre-blog “This Week’s Finds” (see http://tinyurl.com/yddcabfl)
explaining notions of mathematical physics.

Higher structures or n-structures involve “higher” variants of various mathematical structures
such as groups, algebras, homotopy theory, and also category theory (see http://tinyurl.com/

ydz9mbtp. One can assign a higher structure to practically anything. Typically one loosens some
conditions on the structure such as commutativity or associativity: a good example is the product
for octonionic units which is associative only apart from sign factors [K12]. Braid groups and
fusion algebras [L2], which seem to play crucial role in TGD can be seen as higher structures.

The key idea is simple: replace “=” with homotopy understood in much more general sense
than in topology and identified as the procedure proving A = B! Physicist would call this op-
erationalism. I would like a more concrete interpretation: “=” is replaced with “=” in a given
measurement resolution. Even homotopies can be defined only modulo homotopies of homotopies
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1.2 Evolution of Schreiber’s ideas 3

- that is within measurement resolution - and one obtains a hierarchy of homotopies and at the
highest level coherence conditions state that one has “=” almost in the good old sense. This kind
of hierarchical structures are characteristic for TGD: hierarchy of space-time sheet, hierarchy of
p-adic length scales, hierarchy of Planck constants and dark matters, hierarchy of inclusions of
hyperfinite factors, hierarchy of extensions of rationals defining adels in adelic TGD, hierarchy of
infinite primes, self hierarchy, etc...

1.2 Evolution of Schreiber’s ideas

One of Schreiber’s articles in Physics Forum articles has title “Why higher category theory in
physics?” (see http://tinyurl.com/ydcylrun) telling his personal history concerning the notion
of higher category theory. Supersymmetric quantum mechanics and string theory/M-theory are
strongly involved with his story.

1.2.1 Wheeler’s superspace and its deformations as starting point

Schreiber started with super variant of Wheeler’s super-space. Intriguingly, also the “world of
classical worlds” (WCW) of TGD [K4, K2, K17] emerged as a counterpart of superspace of Wheeler
in which the generalization of super-symmetries is geometrized in terms of spinor structure of WCW
expressible in terms of fermionic oscillator operators so that there is something common at least.

Screiber consider deformation theory of this structure. Deformations appear also in the con-
struction of various quantum structures such as quantum groups and Yangians. Both quantum
groups characterized by quantum phase, which is root of unity, and Yangians ideal for reduction
of many-particle states and their interactions to kinematics seem to be the most important from
the TGD point of view [L2].

These deformations are often called “quantizations” but this nomenclature is to my opinion
misleading. In TGD framework the basic starting point is “Do not quantize” meaning the reduction
of the entire quantum theory to classical physics at the level of WCW: modes of a formally classical
WCW spinor fields correspond to the states of the Universe.

This does not however prevent the appearance of the deformations of basic structures also
in TGD framework and they might be the needed mathematical tool to describe the notions of
finite measurement resolution and cognitive resolution appearing in the adelic version of TGD. I
proposed more than decade ago that inclusions of hyperfinite factors of II1 (HFFs) [K13, K3] might
provide a natural description of finite measurement resolution: the action of included factor would
generate states equivalent under the measurement resolution used.

1.2.2 The description of non-point-like objects in terms of higher structures

Schreiber ends up with the notion of higher gauge field by considering the space of closed loops
in 4-D target space [B3]. At the level of target space the loop space connection (1-form in loop
space) corresponds to 2-form at the level of target space. At space-time level 1- form A defines
gauge potentials in ordinary gauge theory and non-abelian 2-form B as its generalization with
corresponding higher gauge field identified as 3-form F = dB.

The idea is that the values of 2-form B are defined for a string world sheet connecting two string
configuration just like the values of 1-form are defined for a world-line connecting two positions
of a point-like particle. The new element is that the ordinary curvature form does not anymore
satisfy the usual Bianchi identities stating that magnetic monopole currents are vanishing (see
http://tinyurl.com/ya3ur2ad).

It however turns out that one has B = DA = F (D denotes covariant derivative) so that B
is flat by the usual Bianchi-identities implying dB = 0 so that higher gauge field vanishes. B
also turns out to be Abelian. In the Abelian case the value of 2-form would be magnetic flux
depending only on the boundary of string world sheet. By dB = 0 gauge fields in loop space would
vanish and only topology of field configurations would make itself manifest as for locally trivial
gauge potentials in topological quantum field theories (TQFT): a generalization of Aharonov-Bohm
effect would be in question. Schreiber calls this “fake flatness condition”. This could be seen as
an unsatisfactory outcome since dynamics would reduce to topological dynamics.

http://tinyurl.com/ydcylrun
http://tinyurl.com/ya3ur2ad
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The assumption that loop space gauge fields reduce to those in target space could be argued to
be non-realistic in TGD framework . For instance, high mass excitations of theories of extended
structures like strings would be lost. In the case of loop spaces there is also problem with general
coordinate invariance (GCI): one would like to have 2-D GCI assignable to string world sheets. In
TGD the realization that one must have 4-D GCI for 3-D fundamental objects was a breakthrough,
which occurred around 1990 about 12 years after the discovery of the basic idea of TGD and led
to the discovery of WCW Kähler geometry and to “Do not quantize”.

1.2.3 Understanding “fake flatness” condition

Schreiber tells how he encountered the article of John Baez titled “Higher Yang-Mills Theory” [B2]
(see http://tinyurl.com/yagkqsut) based on the notion of 2-category and was surprised to find
that also now the “fake flatness condition” emerged.

Schreiber concludes that the “fake flatness condition” results from “a kind of choice of coor-
dinate composition”: non-Abelian higher gauge field would reduce to Abelian gauge field over a
background of ordinary non-Abelian gauge fields. Schreiber describes several string theory related
examples involving branes and introduces connection with modern mathematics. Since branes in
the stringy sense are not relevant to TGD and I do not know much about them, I will not discuss
these here.

However, dimensional hierarchies formed by fermions located to points at partonic 2-surfaces,
their world lines at 3-D light-like orbits of partons, strings and string world sheets as their orbits,
and space-time surfaces as 4-D orbits of 3-surfaces definitely define a TGD analog for the brane
hierarchy of string models. It is not yet completely clear whether strong form of holography (SH)
implies that string world sheets and strings provide dual descriptions of 4-D physics or whether
one could regard all levels of this hierarchy independent to some degree at least [L1].

Since the motion of measurement resolution is fundamental in TGD [K13, K3], it is interesting
to see whether n-structures could emerge naturally also in TGD framework. There is also second
aspect involved: various hierarchies appearing in TGD have basically the structure of abstraction
hierarchy of statements about statements and higher structures seem to define just this kind of
hierarchies. Of course, human mind - at least my mind - is in grave difficulties already with few
lowest levels but here category theory and its computerization might come into a rescue.

1.3 What higher structures are?

Schreiber describes in very elegant and comprehensible manner the notion of higher structures
(see http://tinyurl.com/ydfspcld). This description is a real gem for a physicists frustrated
to the impenetrable formula jungle of the usual mathematical prose. Just the basic ideas and the
reader can start to think using his/her own brains. The basic ideas ideas are very simple and
general. Even if one were not enthusiastic about the notion of higher gauge field, the notion of
higher structure is extremely attractive concerning the mathematical realization of the notion of
finite measurement resolution.

1. The idea is to reconsider the meaning of “=”. Usually it is understood as equivalence:
A = B if A and B belong to same equivalence class defined by equivalence relation. The
idea is to replace “=” with its operational definition, with the proof of equivalence. This
could be seen as operationalism of physics applied to mathematics. Schreiber calls this proof
homotopy identified as a generalization of a map ft: S → X depending on parameter t ∈ [0, 1]
transforming two objects of a topological space X to each other in continuous manner: f0(S)
is the initial object and f1(S) is the final object. Now homotopy would be much more general.

2. One can also improve the precision of “=” meaning that equivalence classes decompose to
smaller ones and equivalent homotopies decompose to subclasses of equivalent homotopies
related by homotopies. One might say that “=” is deconstructed to more precise “=”.
Physicist would see this as a partial opening of a black box by improving the measurement
resolution. This gives rise to n-variants of various algebraic structures.

3. This hierarchy would have a finite number of levels. At highest level the accuracy would be
maximal and “=” would have almost its usual meaning. This idea is formulated in terms of

http://tinyurl.com/yagkqsut
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coherence conditions. Braiding involving R-matrix represents one example: permutations are
replaced by braidings and permutation group is lifted to braid group but associativity still
holds true for Yang-Baxter equation (YBE). Second example is 2-group for which associativity
holds true only modulo homotopy so that (x ◦ y) ◦ z is related to x ◦ (y ◦ z) by homotopy
ax,y,z depending on x, y, z and called an associator. For 2-group the composite homotopy
((w ◦ x) ◦ y) ◦ z → w ◦ (x ◦ (y ◦ z)) is however unique albeit non-trivial.

This gives rise to the so called pentagon identity encountered also in the theory of quantum
groups and Yangians. The outcome is that all homotopies associated with re-bracketings of
an algebraic expression are identical. One can define in similar manner n-group and formally
even infinity-group.

1.4 Possible applications of higher structures to TGD

Before listing some of the applications of higher structures imaginable in TGD framework, let us
summarize the basic principles.

1. Physics as WCW geometry [K10, K4, K2, K17] having super-symplectic algebra (SSA) and
partonic super-conformal algebra (PSCA) as fundamental symmetries involving a generaliza-
tion of ordinary conformal invariance to that for light-like 3-surfaces defined by the boundary
of CD and by the light-like orbits of partonic 2-surfaces at which the signature of the induced
metric changes from Minkowskian to Euclidian.

2. Physics as generalized number theory [K11] [L3] leading to the notion of adelic physics with
a hierarchy of adeles defined by the extensions of rationals.

3. In adelic physics finite resolutions for sensory and cognitive representations (see the glossary
of Appendix) could would characterize “=”. Hierarchies of resolutions meaning hierarchies of
n-structures rather than single n-structure would give inclusion hierarchies for HFFs, SSA,
and PSCA, and extensions of rationals characterized by Galois groups with order identifiable
as heff/h = n and ramified primes of extension defining candidates for preferred p-adic
primes.

Finite measurement resolution defined by SSA and its isomorphic sub-algebra acting as pure
gauge algebra would reduce SSA to finite-dimensional SKMA. WCW could become effectively
a coset space of Kac-Moody group or of even Lie group associated with it. Same would take
place for PSCA. This would give rise to n-structures. Quantum groups and Yangians would
indeed represent examples of n-structures.

In TGD the “conformal weight” of Yangian however corresponds to the number of partonic
surfaces - parton number - whereas for quantum groups and Kac-Moody algebras it is anal-
ogous to harmonic oscillator quantum number n, which however has also interpretation as
boson number. Maybe this co-incidence involves something much deeper and relates to quan-
tum classical correspondence (QCC) remaining rather mysterious in quantum field theories
(QFTs).

4. An even more radical reduction of degrees of freedom can be imagined. Cognitive represen-
tations could replace space-time surfaces with discrete structures and points of WCW could
have cognitive representations as disretized WCW coordinates.

5. Categorification requires morphisms and homomorphisms mapping group to sub-group hav-
ing normal sub-group defining the resolution as kernel would define “resolution morphisms”.
This normal sub-group principle would apply quite generally. One expects that the repre-
sentations of the groups involved are those for quantum groups with quantum phase q equal
to a root of unity.

Some examples helps to make this more concrete.
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1.4.1 Scattering amplitudes as computations

The deterministic time devolution connecting two field patterns could define analog of homotopy in
generalized sense. In TGD framework space-time surface (preferred extremals) having 3-D space-
like surfaces at the opposite boundaries of causal diamond (CD) could therefore define analog of
homotopy.

1. Preferred extremal defines a topological scattering diagram in which 3-vertices of Feynman
diagram are replaced with partonic 2-surfaces at which the ends of light-like orbits of par-
tonic 2-surfaces meet and fermions moving along lines defined by string world sheets scatter
classically, and are redistributed between partonic orbits [K22, K20, K24]. Also braidings
and reconnections of strings are possible. It is important to notice that one does not sum
over these topological diagrams. They are more like possible classical backgrounds.

The conjecture is that scattering diagrams are analogous to algebraic computations so that
one can find the shortest computation represented by a tree diagram. Homotopy in the
roughest sense could mean identification of topological scattering diagrams connecting two
states at boundaries of CD and differing by addition of topological loops. The functional
integral in WCW is proposed to trivialize in the sense that loop corrections vanish as a
manifestation of quantum criticality of Kähler coupling strength and one obtains an exponent
of Kähler function which however cancels in scattering amplitudes if only single maximum
of Kähler function contributes.

2. In the optimal situation one could eliminate all loops of these diagrams and also move line
ends along the lines of diagrams to get tree diagrams as representations of scattering dia-
grams. Similar conditions hold for fusion algebras. This might however hold true only in
the minimal resolution. In an improved measurement resolution the diagrams could become
more complex. For instance, one might obtain genuine topological loops.

3. The diagrams and state spaces with different measurement resolutions could be related by
Hilbert space isometries but would not be unitarily equivalent: Hilbert space isometries are
also defined by entanglement in tensor nets [K16]. This would give an n-levelled hierarchy
of higher structures (rather than single n-structure!) and at the highest level with best
resolution one would have coherence rules. Generalized fusion algebras would partially realize
this vision. In improved measurement resolution the diagrams would not be identical anymore
and equivalence class would decompose to smaller equivalence classes. This brings in mind
renormalization group equations with cutoff.

4. Intuitively the improvement of the accuracy corresponds to addition of sub-CDs of CDs and
smaller space-time sheets glued to the existing space-time sheets.

1.4.2 Zero energy ontology (ZEO)

In ZEO [K15] “=” could mean the equivalence of two zero energy states indistinguishable in given
measurement resolution. Could one say that the 3-surfaces at the ends of space-time surface are
equivalent in the sense that they are connected by preferred extremal and have thus same total
Noether charges, or that entangled many-fermion states at the boundaries of CD correspond to
quantal logical equivalences (fermionic oscillator algebra defines a quantum Boolean algebra)?

In the case of zero energy states “=” could tolerate a modification of zero energy state by zero
energy state in smaller scale analogous to a quantum fluctuation in quantum field theories (QFTs).
One could add to a zero energy state for given CD zero energy states associated with smaller CDs
within it.

In TGD inspired theory of consciousness [L4] sub-CDs are correlates for the perceptive fields
of conscious entities and the states associated with sub-CDs would correspond to sub-selves of
self defining its mental images. Also this could give rise to hierarchies of n-structures with n
characterizing the number of CDs with varying sizes. An interesting proposal is the distance
between the tips of CD is integer multiple of CP2 for number theoretic reasons. Primes and primes
near powers of 2 are suggested by p-adic length scale hypothesis [K6, K7, K8] [L3].
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1.4.3 “World of classical worlds” (WCW)

At the level of “world of classical worlds” (WCW) “=” could have both classical meaning and
meaning in terms of quantum state defining the measurement resolution. At the level of WCW
geometry n-levelled hierarchies formed by the isomorphic sub-algebras of SSA and PSCA are
excellent candidates for n-structures. The sub-SCA or sub-PSCA would define the measurement
resolution. The smaller the sub-SSA or sub-PSCA, the better the resolution.

This could correspond to a hierarchy of inclusions of HFFs [K13, K3] to which one can assign
ADE SKMA by McKay correspondence or its generalization allowing also other Lie groups sug-
gested by the hierarchy of extensions of rationals with Galois groups that are groups of Lie type.
The conjecture generalizing McKay correspondence is that the Galois group Gal is representable
as a subgroup of G in the case that it is of Lie type.

An attractive idea is that WCW is effectively reduced to a finite-dimensional coset space of the
Kac-Moody group defined by the gauge conditions. Number theoretic universality requires that
these parameters belong to the extension of rationals considered so that the Kac-Moody group G
is discretized and also homotopies are discretized. SH raises the hope that it is enough to consider
string world sheets with parameters (WCW coordinates) in the extension of rationals.

One can define quite concretely the action of elements of homotopy groups of Kac-Moody
Lie groups G on space-time surfaces as induced action changing the parameters characterizing
the space-time surface. n + 1-dimensional homotopy would be 1-dimensional homotopy of n-
dimensional homotopy. Also the spheres defining homotopies could be discretized so that the
coordinates of its points would belong to the extension of rationals.

These kind of homotopy sequences could define analogs of Berry phases (see http://tinyurl.

com/yd4agwnt) in Kac-Moody group. Could gauge theory for Kac-Moody group give an approx-
imate description of the dynamical degrees of freedom besides the standard model degrees of
freedom? This need not be a good idea. It is better to base the considerations of the physical
picture provided by TGD. I have however discussed the TGD analog of the fake flatness condition
in the Appendix.

1.4.4 Adelic physics

Also number theoretical meaning is possible for “=”. It is good to start with an objection against
adelic physics. The original belief was that adelic physics forces preferred coordinates. Indeed,
the property of belonging to an extension of rationals does not conform with general coordinate
invariance (GCI). Coordinate choice however matters cognitively as any mathematical physicist
knows! One can therefore introduce preferred coordinates at the imbedding space level as cogni-
tively optimal coordinates: they are dictated to a high degree by the isometries of H. One can
use a sub-set of these coordinates also for space-time surfaces, string world sheets, and partonic
2-surfaces.

1. Space-time surfaces can be regarded as multi-sheeted Galois coverings of a representative
sheet [L3]. Minimal resolution means that quantum state is Galois singlet. Improving res-
olution means requiring that singlet property holds true only for normal sub-group H of
Galois group Gal and states belong to the representations of Gal/H. Maximal resolution
would mean that states are representations of the entire Gal. The hierarchy of normal sub-
groups of Gal would define a resolution hierarchy and perhaps an analog of n-structure.
heff/h = n hypothesis suggests hierarchies of Galois groups with dimensions ni dividing
ni+1. The number of extensions in the hierarchy would characterize n-structure.

2. The increase of the complexity for the extension of rationals would bring new points in the
cognitive representations defined by the points of the space-time surface with imbedding space
coordinates in the extension of rationals used (see the glossary in Appendix). Also the size
of the Gal would increase and higher-D representations would become possible. The value
of heff/h = n identifiable as dimension of Gal would increase. The cognitive representation
would become more precise and the topology of the space-time surface would become more
complex.

3. In adelic TGD “=” could have meaning at the level of cognitive representations. One could
go really radical and ask whether discrete cognitive representations replacing space-time

http://tinyurl.com/yd4agwnt
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surfaces with the set of points with H-coordinates in an extension of rationals (see the
glossary in Appendix) defining the adele should provide the fundamental data and that all
group representations involved should be realized as representations of Gal. This might apply
in cognitive sector.

This would also replace space-time surfaces as points of WCW with their cognitive repre-
sentations defining their WCW coordinates! All finite groups can appear as Galois groups
for some number field. Whether this is case when one restricts the consideration to the
extensions of rationals, is not known. Most finite groups are groups of Lie type and thus
representable as rational points of some Lie group. Note that rational point can also mean
rational point in extension of rationals as ratio of corresponding algebraic integers identifiable
as roots of monic polynomials Pn(x) = xn + .... having rational coefficients.

4. By SH space-time surface would in information theoretic sense effectively reduce to string
world sheets and even discrete set of points with H-coordinates in extension of rationals.
These points could even belong to the partonic 2-surface at the ends of strings at ends
of CD carrying fermions and the partonic 2-surfaces defining topological vertices. If only
this data is available, the WCW coordinates of space-time surface would reduce to these
points of H = M4 × CP2 and to the direction angles of strings emerging from these points
and connecting them to the corresponding points at other partonic 2-surfaces besides Gal
identifiable as sub-group of Lie group G of some Kac-Moody group! Not all pairs Gal − G
are possible.

5. Could these data be enough to describe mathematically what one knows about space-time
surface as point of WCW and the physics? One could indeed deduce heff/h = n as the
order of Gal and preferred p-adic primes as ramified primes of extension. The Galois rep-
resentations acting on the covering defining space-time surface or string world sheets should
be identifiable as representations of physical states. There is even number theoretical vision
about coupling constant evolution relying on zeros of Riemann zeta [K19],

6. This sounds fine but one must notice that there is also the global information about the
conformal moduli of partonic 2-surfaces and the elementary particle vacuum functionals
defined in this moduli space [K1] explain family replication phenomenon. There is also
information about moduli of CDs. Also the excitations of SKMA representations with higher
conformal weights are present and play a crucial role in p-adic thermodynamics predicting
particle masses [K6]. It is far from clear whether the approach involving only cognitive
representation is able to describe them.

To help the reader I have included a vocabulary at the end of the article and include here a list
of the abbreviations used in the text.

General abbreviations: Quantum field theory (QFT); Topological quantum field theory (TQFT);
Hyper-finite factor of type II1 (HFF); General coordinate invariance (GCI); Equivalence Principle
(EP).

TGD related abbreviations: Topological Geometrodynamics (TGD); General Relativity Theory
(GRT); Zero energy ontology (ZEO); Strong form of holography (SH); Strong form of general co-
ordinate invariance (SGCI); Quantum classical correspondence (QCC); Negentropy Maximization
Principle (NMP); Negentropic entanglement (NE); Causal diamond (CD); Super-symplectic alge-
bra (SSA); Partonic superconformal algebra (PSCA); Super Virasoro algebra (SVA); Kac-Moody
algebra (KMA); Super-Kac-Moody algebra (SKMA);

2 TGD very briefly

TGD is a fusion of two approaches to physics. Physics as infinite-dimensional geometry based
on the notion of “(” []WCW) [K10] and physics as generalized number theory [K11]. Here some
aspects of the vision about physics as WCW geometry are discussed very briefly.
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2.1 World of classical worlds (WCW)

TGD is a fusion of two approaches to physics. Physics as infinite-dimensional geometry based
on the notion of “(” []WCW) [K10] and physics as generalized number theory [K11]. Here some
aspects of the vision about physics as WCW geometry are discussed very briefly.

2.1.1 Construction of WCW geometry briefly

In the following the vision about physics in terms of classical physics of spinor fields of WCW is
briefly summarized.

1. The idea is to geometrize not only the classical physics in terms of geometry of space-time
surfaces but also quantum physics in terms of WCW [K17]. Quantum states of the Universe
would be modes of classical spinor fields in WCW and there would be no quantization. One
must construct Kähler metric and Kähler form of WCW: in complex coordinates they differ
by a multiplicative imaginary unit. Kähler geometry makes possible to geometrize hermitian
conjugation fundamental for quantum theory.

2. One manner to build WCW metric this is via the construction of gamma matrices of WCW in
terms of second quantized oscillator operators for fermions described by induced spinor fields
at space-time surfaces. By strong form of holography this would reduce to the construction
of second quantized induced spinor fields at string world sheets. The anti-commutators of
of WCW gamma matrices expressible in terms of oscillator operators would define WCW
metric with maximal isometry group (SCA) [K14, K17].

3. Second manner to achieve the geometrization is to construct Kähler metric and Kähler form
directly [K4, K2, K17]. The idea is to induce WCW geometry from the Kähler form J of the
imbedding space H = M4 × CP2. The mere existence of the Riemann connection forces a
maximal group of isometries. In fact, already in the case of loop space the Kähler geometry
is essentially unique.

The original construction used only the Kähler form of CP2. The twistor lift of TGD [K24]
forces to endow also M4 with the Minkowskian analog of Kähler form involving complex and
hypercomplex part and the sum of the two Kähler forms can be used to define what might be
called flux Hamiltonians. They would define the isometries of WCW as symplectic transfor-
mations. What was surprising and also somewhat frustrating was that what I called almost
2-dimensionality of 3-surfaces emerges from the condition of general coordinate invariance
and absence of dimensional parameters apart from the size scale of CP2.

In the recent formulation this corresponds to SH: 2-D string world sheets and 2-D partonic 2-
surfaces would contain data allowing to construct space-time surfaces as preferred extremals.
In adelic physics also the specification of points of space-time surface belonging to extension
of rationals defining the adele would be needed. There are several options to consider but
the general idea is clear.

SH is analogous to a construction of analytic function of 2-complex from its real values at
2-D surface and the analogy at the level of twistor lift is holomorphy as generalization of
holomorphy of solutions gauge fields in the twistor approach of Penrose. Also quaternionic
analyticity [K22] is suggestive and might mean even stronger form of holography in which
1-D data allow to construct space-time surfaces as preferred extremals and quantum states.

I have proposed formulas for the Kähler form of WCW in terms of flux Hamiltonians but
the construction as anti-commutators of gamma matrices is the more convincing definition.
Fermions and second quantize induced spinor fields could be an absolutely essential part of
WCW geometry.

4. WCW allows as infinitesimal isometries huge super-symplectic algebra (SSA) [K4, K2] acting
on space-like 3-surfaces at the ends of space-time surfaces inside causal diamond (CD) and
also generalization of Kac-Moody and conformal symmetries acting on the 3-D light-like
orbits of partonic 2-surfaces (partonic super-conformal algebra (PSCA)). These symmetry
algebras have a fractal structure containing a hierarchy of sub-algebras isomorphic to the full
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algebra. Even ordinary conformal algebra with non-negative conformal weights has similar
fractal structure as also Yangian. In fact, quantum algebras are formulated in terms of these
half algebras.

The proposal is that sub-algebra of SSA (with non-negative conformal weights) and isomor-
phic to entire SSA and its commutator with the full algebra annihilate the physical states.
What remains seems to be finite-D Kac-Moody algebra as an effective “coset” algebra ob-
tained. Note that the resulting normal sub-group is actually quantum group.

There is direct analogy with the decomposition of a group Gal to a product of sub-group
and normal sub-group H. If the normal sub-group H acts trivially on the representation the
representation of Gal reduces to that of the group Gal/H. Now one works at Lie algebra
level: Gal is replaced with SSA and H with its sub-algebra with conformal weights multiples
of those for SSA.

2.1.2 Super-symplectic conformal weights, zeros of Riemann zeta, and quantum
phases?

In [K19] I have considered the possibility that the generators of super-symplectic algebra could
correspond to zeros h = 1/2 + iy of zeta. The hypothesis has several variants.

1. The simplest variant is that the non-trivial zeros of zeta are labelling the generators of SSA
associated with Hamiltonians proportional to the functions f(rM ) of the light-like radial
coordinate of light-cone boundary as f(rM ) = (rM/0)h ≡ exp(hu), u = log(rM/r0), h =
−1/2 + iy. For infinitely large size of CD the plane waves are orthogonal but for finite-sized
CD orthogonality is lost. Orthogonality requires periodic boundary conditions and these are
simultanwously possible only for a finite number of zeros of zeta.

2. One could modify the hypothesis by allowing superpositions of zeros of zeta but with a
subtraction of half integer to make the real part of ih equal to 1/2 so that one obtains an
analog of plane-wave when using u = log(rM/r0) as a radial coordinate. Equivalently, one
can take drM/rM out as integration measure and assume h = iy plus the condition that
the Riemannian plane waves are orthogonal and satisfy periodic boundary conditions for the
allowed zeros z = 1/2 + iy.

3. Periodic boundary conditions can be satisfied for given zero of zeta if the condition rmax/rmin =
pn holds true and the additional conjecture that given non-trivial zeros of zeta correspond to
prime p(y) and piy is a root of unity. Given basis of f(rM ) would correspond to n-ary p-adic
length scales and also the size scales of CDs would correspond to powers of p-adic primes.
This conjecture is rather attractive physically and I have not been able to prove it wrong.

One can associate to given zero z = 1/2 + iy single and only single prime p(y) by demanding
that piy = exp(i2πq), q = m/n rational, implying log(p)y = 2πq. If there were two primes
p1 and p2 of this kind, one one ends up with contradiction pm1 = pn2 for some integers m and
n.

One could however associate several zeros yi(p) to the same prime p as discussed in [K19].
If N =

∏
i ni is the smallest common denominator of qi allowed conformal weights would

be superpositions ih = iN
∑
niyi(p) and conformal weights would form higher dimensional

lattice rather than 1-D lattice as usually. If only single prime p(y) can be associated to given
y, then the original hypothesis identifying h = 1/2+iy as conformal weight would be natural.

4. The understanding of the p-adic length scale hypothesis is far from complete and one can
ask whether preferred p-adic primes near powers of 2 and possibly also other small primes
could be primes for which there are several roots yi(p).

2.2 Strong form of holography (SH)

There are several reasons why string world sheets and partonic 2-surfaces should code for physics.
One reason for SH comes from M8 −H correspondence [K18]. Second motivation comes from the
condition that spinor modes at string world sheets are eigenstates of em charge [K14]. The third
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reason could come the requirement that the notion of commutative quantum sub-manifold [A1] is
equivalent with its number theoretic variant.

2.2.1 SH and M8 −H correspondence

The strongest form of M8−H correspondence [K12, K18, K24] assumes that the 4-surfaces X4 ⊂
M8 have fixed M2 ⊂ M4 ⊂ M8 as part of tangent space. A weaker form states that these 2-D
subspaces M2 define an integrable distribution and therefore 2-D surface in M4. This condition
guarantees that the quaternionic (associative) tangent space of X4 is parameterized by a point of
CP2 so that the map of X4 to a 4-surface in M4 × CP2 is possible. One can consider also co-
associative space-time surfaces having associative normal spaces. m Note that M8−H [K12, K18]
correspondence respects commutativity and quaternionic property by definition since it maps space-
time surfaces having quaternionic tangent space having fixed M2 as sub-set of tangent space.

What could be the relationship between SH and M8 −H correspondence? Number theoretic
vision suggests rather obvious conjectures.

1. Could the tangent spaces of string world sheets in H be commutative in the sense of complex-
ified octonions and therefore be hyper-complex in Minkowskian regions. By M8−H duality
the commutative sub-manifolds would correspond to those of octonionic M8 and finding of
these could be the first challenge. The co-commutative manifolds in quaternionic X4 would
have commutative normal spaces. Could they correspond to partonic 2-surfaces?

2. There is however a delicacy involved. Could world sheets and partonic 2-surfaces correspond
to hyper-complex and co-hyper-complex sub-manifolds of space-time surface X4 identifiable
as quaternionic surface in octonionic M8 mappable to similar surfaces in H. Or could their
M4 (CP2) projections define hypercomplex (co-hypercomplex) 2-manifolds?

3. Could co-commutativity condition for a foliation by partonic 2-surfaces select preferred string
world sheets as normal spaces integrable to 2-surfaces identifiable as string world sheets? Note
that induced gauge field on 2-surface is always Abelian so that QFT and number theory based
views about commutativity co-incide.

Preferred choices for these 2-surfaces would serve as natural representatives for the equiva-
lence classes of string world sheets and partonic 2-surfaces with fermions at the boundaries of
string world sheets serving as markers for the representatives? The end points of the string
orbits would belong to extension of rationals or even correspond to singular points at which
the different sheets co-incide and have rational coordinates: this possibility was considered
in [L5].

Real curves correspond to the lowest level of the dimensional hierarchy of continuous surfaces.
Could string world lines along light-like partonic orbits correspond to real sub-manifolds of octo-
nionic M8 mapped to M4 × CP2 by M8 −H correspondence and carrying fermion number?

What about the set of points with coordinates in the extension of rationals? Do all these points
carry fermion number? If so they must correspond to the edges of the boundaries of string world
sheets at partonic 2-surfaces at the boundaries of CD or edges at the partonic 2-surfaces defining
generalized vertices to which sub-CDs could be assigned.

2.2.2 Well-definedness of em charge forces 2-D fundamental objects

The proposal has been that the representative string world sheets should have vanishing induced
W fields so that induced spinors could have well-defined em and Z0 charges and partonic 2-surfaces
would correspond to the ends of 3-D boundaries between Euclidian and Minkowskian space-time
regions [K14, K17].

As a matter of fact, the projections of electroweak gauge fields to 2-D surfaces are always
Abelian and by using a suitable SU(2)L × U(1) rotation one can always find a gauge in which
the induced W fields and even Z0 field vanish. The highly non-trivial conclusion is that string
world sheets as fundamental dynamical objects coding 4-D physics by SH would guarantee well-
definedness of em charge as fermionic quantum number. Also the projections of all classical color
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gauge fields, whose components are proportional to HAJ , where HA is color Hamiltonian and J
is Kähler form of CP2, are Abelian and in suitable gauge correspond to hypercharge and isospin.

One can imagine a foliation of space-time surfaces by string world sheets and partonic 2-surfaces.
Could there be a U(1) gauge invariance allowing to chose partonic 2-surfaces and string world sheets
arbitrarily? If so, the assignment of the partonic 2-surfaces to the light-like boundaries between
Minkowskian and Euclidian space-time regions would be only one - albeit very convenient - choice.
I have proposed that this choice is equivalent with the choice of complex coordinates of WCW.
The change of complex coordinates would introduce a U(1) transformation of Kähler function of
WCW adding to it a real part of holomorphic function and of Kähler gauge potential leaving the
Kähler form and Kähler metric of WCW invariant.

2.2.3 String world sheets as sub-manifolds of quantum spaces for which commuting
sub-set of coordinates are diagonalized?

The third notion of commutativity relates to the notion of non-commutative geometry. Unfortu-
nately, I do not know much about non-commutative geometry.

1. Should one follow Connes [A1] and replace string world sheets with non-commutative geome-
tries with quantum dimension identifiable as fractal dimension. I must admit that I have
felt aversion towards non-commutative geometries. For linear structures such as spinors the
quantum Clifford algebra looks natural as a “coset space” obtained by taking the orbits of
included factor as elements of quantum Clifford algebra. The application of this idea to string
world sheets does not look attractive to me.

2. The basic reason for my aversion is that non-commutative quantum coordinates lead to
problems with general coordinate invariance (GCI). There is however a possible loophole here.
One can approach the situation from two angles: number theoretically and from the point
view of non-commutative space. Commutativity could mean two things: number theoretic
commutativity and commutativity of quantum coordinates for H seen as observables. Could
these two meanings be equivalent as quantum classical correspondence (QCC) encourages to
think?

Could the discreteness for cognitive representations correspond to a discretization of the
eigenvalue spectrum of the coordinates as quantum operators? The choice of the coefficient
number field for Hilbert space as extension of rationals would automatically imply this and
resolve the problems related to continuous spectra.

Quantum variant of string world sheet could correspond to a quantization using a sub-
set of imbedding space coordinates as quantum commutative coordinates as coordinates for
string world sheet. H-coordinates for string world sheet would correspond to eigenvalues of
commuting quantum coordinates.

The above three views about SH suggests that Abelianity at the fundamental level is unavoid-
able because basic observable objects are 2-dimensional. This would correspond A = J = −B = 0
for non-Abelian gauge fields reducing to Abelian ones in Schreiber’s approach. Also Schreiber
finds that with suitable choice of coordinates this holds true always. In TGD this choice would
correspond to gauge choice in which all induced gauge fields are Abelian (see Appendix).

Ordinary twistorialization maps points of M4 to bi-spinors allowing quantum variants. Could
twistorialization of M4 and CP2 allow something analogous?

3 The notion of finite measurement resolution

Finite measurement resolution [K13, K3] is central in TGD. It has several interpretations and the
challenge is to unify the mutually consistent views.

3.1 Inclusions of HFFs, finite measurement resolution and quantum di-
mensions

Concerning measurement resolution the first proposal was that the inclusions of HFFs chacterize
it.



3.1 Inclusions of HFFs, finite measurement resolution and quantum dimensions 13

1. The key idea is simple. Yangians and/or quantum algebras associated with the dynami-
cal SKMAs defined by pairs of SSA and its isomorphic sub-algebra acting as pure gauge
transformations are characterized by quantum phases [L2] characterizing also inclusions of
HFFs [K13, K3]. Quantum parameter would characterize the measurement resolution.

The Lie group characterizing SKMA would be replaced by its quantum counterpart. Quan-
tum groups involve quantum parameter q ∈ C involved also with n-structures. This param-
eter - in particular its phase- should belong to the extension of rationals considered. Notions
like braiding making sense for 2-D structures are crucial. Remarkably, the representation
theory for quantum groups with q different from a root of unity does not differ from that for
ordinary groups. For the roots of unity the situation is different.

2. The levels in the hierarchy of inclusions for HFFs [K13] are labelled by integer n ∈ [3,∞)
or equivalenly by quantum phases q = exp(iπ/n) and quantum dimension is given by dq =
4cos2(π/n). n = 3 gives d = 2 that is ideal SH with minimal measurement resolution. For
instance, in extension of rationals only phases, which are powers of exp(iπ/3) are represented
p-adically so that angle measurement is very imprecise. The hierarchy would correspond to
an increasing measurement resolution and at the level n→∞ one would have dq → 4. Could
the interpretation be that one sees space-time as 4-dimensional? This strongly suggests that
the hierarchy of Lie groups characterizing SKMAs are characterized by the same quantum
phase as inclusions of HFFs.

How does quantal dimension show itself at space-time level?

1. Could SH reduce the 4-surfaces to effectively fractal objects with quantum dimension dq?
Could one speak of quantum variant of SH perhaps describe finite measurement resolution.
In adelic picture this limit could correspond to an extension of rational consists of algebraic
numbers extended by all rational powers of e. How much does this limit deviate from real
numbers?

2. McKay correspondence (see http://tinyurl.com/z48d92t) states that the hierarchy of fi-
nite sub-groups of SU(2) corresponds to the hierarchy ADE Kac-Moody algebras in the
following sense. The so called McKay graph codes for the information about the multi-
plicities of the tensor products of given representation of finite group (spin 1/2 doublet) -
obviously one can assign McKay graph to any Galois group. McKay correspondence says
that the McKay graph for the so called canonical representation of finite sub-group of SU(2)
co-incides with the Dynkin diagram for ADE type Kac-Moody algebra.

3. A physically attractive idea is that these algebras correspond to a hierarchy of reduced SSAs
and PSCAs defined by the gauge conditions of SSA and PSCA. The breaking of maximal
effective gauge symmetry characterizing measurement resolution to isomorphic sub-algebra
would bring in additional degrees of freedom increasing the quantum dimension of string
world sheets from the minimal value dq = 2.

My naive physical intuition suggests that McKay correspondence generalizes to a much wider
class of Galois groups identifiable as finite groups of Lie type identifiable as sub-groups of Lie
groups (for the periodic table of finite groups see (see http://tinyurl.com/y75r68hp)). In
general, the irreducible representation (irrep) of group is reducible representation of subgroup.
The rule could be that the representations of the quantum Lie groups allowed as ground states
of SKMA representations are irreducible also as representations of Galois group in case that
it is Lie-type subgroup.

What about the concrete geometric interpretation of dq? Two interpretations, which do not
exclude each other, suggest themselves.

1. A very naive idea is that string world sheets effectively fill the space-time surface as the
measurement accuracy increases. The idea about fractal string world sheets does not however
conform with the fact that preferred extremals must be rather smooth.

String world sheets could be however locally smooth if they define an analog of discretization
for the space-time surface. At the limit dq → 4 string world sheets would fill space-time sur-
face. Analogously, strings (string orbits) would fill the space-like 3-surfaces at the boundaries

http://tinyurl.com/z48d92t
http://tinyurl.com/y75r68hp
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of CD (the light-like 3-surfaces connecting the partonic 2-surfaces at boundaries of CD). The
number of fermions at partonic 2-surfaces would increase and lead to an increased measure-
ment resolution at the level of physics. For anyonic systems [K9] one indeed would have have
large number of fermions at 2-D surfaces.

2. An alternative idea is that quantum dimension is temperature like parameter coding for
the ignorance about the details of space-time surface and string world sheet due to finite
cognitive resolution. Cognitive representation consists of a discrete set of points of H in
an extension of rationals defining the adele and quantum dimension would represent this
ignorance. A precise mathematical representation of ignorance can be extremely successful
trick as ordinary thermodynamics and also p-adic thermodynamics for particle masses [K6]
demonstrate!

3.2 Three options for the identification of quantum dimension

The quantum dimension would increase as the measurement accuracy increases but what quantum
dimension of string world sheets could mean at space-time level? Identification of quantum dimen-
sion as fractal dimension could be the answer but how could one concretely define this notion?
Could one find an elegant formulation for the fractality at space-time level.

3.2.1 Option I

One could argue that quantum dimension is temperature like parameter coding for the ignorance
about the details of space-time surface and string world sheet due to finite cognitive resolution.
Cognitive representation consists of a discrete set of points of H in an extension of rationals defining
the adele and quantum dimension would represent this ignorance. One would give up the attempts
to represent quantum superposition of space-time surfaces with single classical surface. This option
would use only the discrete cognitive representations (see the glossary in Appendix).

1. This would mean a radical simplification and could make sense for cognitive representations.
String world sheet would be replaced by this discrete cognitive representation and one should
be able to deduce its quantum dimension. Gal acts on this representation.

2. Could one imagine q-variants of the representations of Gal defining also representations of
the Lie group defining KMA? If one can imbed Gal to Lie-group as discrete sub-group then
the q-representation of the Lie-group would define a q-representation of discrete group and
one might be able to talk about q-Galois groups.

3. On the other hand, the condition that these representations restricted to representations of
Galois group remain irreducible poses similar condition. Are these two criteria equivalent?
Could this allow to identify the value of root of unity associated with given Galois group and
corresponding Lie group defining SKMA in case that it contains representations that remain
irreps of Galois group? If so, the notion of quantum group would follow from adelic physics
in a natural manner.

This would allow to assign quantum dimension to the discretized string world sheet without
clumsy fractal constructions at space-time level involving a lot of redundant information. The
really nice thing would be that one would use only the information defining the cognitive rep-
resentations and the fact that one does not know about the rest. Just as in thermodynamics,
things would become extremely simple!

4. One might argue that giving just discrete points at partonic 2-surfaces gives very little in-
formation. If one however assumes that also the functions characterizing space-time surfaces
as points of sub-WCW involved are constructed from rational polynomials with roots in the
extension of rationals used, the situation improves dramatically.

3.2.2 Option II

A very naive idea is that string world sheets effectively fill the space-time surface as the measure-
ment accuracy increases. Smooth strings would fill the space-like 3-surfaces at the boundaries of
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CD and light-like 3-surface connecting the partonic 2-surfaces at boundaries of CD. The number
of fermions at partonic 2-surfaces would increase and lead to an increased measurement resolution.
For anyonic systems one indeed would have have large number of fermions at 2-D surfaces.

This option would be based on fractal dimension of some kind. Most naturally the fractal
dimension would be that of space-time surface discretized using string world sheets and possibly
also partonic 2-surface instead of points. It is however difficult to imagine a practical realization
for fractal dimension in this sense.

1. Assume reference string world sheets in the minimal resolution defined by an extension of
rationals with total area S0. Study the total area S associated with string world sheets as
function of the extension of rationals.

2. As the size of the extension grows, new points of extension emerge at partonic 2-surfaces and
therefore also new string world sheets and the total area of string worlds sheets increases.
Twistor lift suggests that one can take the area S1 defined by Planck length squared and the
area S2 of CP2 geodesic sphere as units. Suppose that one has S/S0 = (S1/S2)d, where d
depends on the extension and equals to d = 0 for rationals, holds true. Could d+2 define the
fractal dimension equal to dq for Jones inclusions in the range [2, 4)? If the proposed notion
of quantum Galois group makes sense this could be the case.

One must admit that the hopes of proving this picture works in practice are rather meager.
Too much redundant information is involved.

3.2.3 Option III

One can also imagine an approach quantum dimension identifying quantum dimension as fractal
dimension for space-time surface. If SH makes sense, one can consider the possibility that this
dimension determined by the geometry of space-time surface as Riemann manifold has fractal
dimension equal to the fractal dimension of string world sheets as sub-manifold.

1. The spectral dimension of classical geometry is discussed in http://tinyurl.com/yadcmjd6).
One considers heat equation describing essentially random walk in a given metric and con-
structs so called heat kernel as a solution of the heat equation. The Laplacian depends on
metric only - now the induced metric. The trace of heat kernel characterizes the probability
to return to the original position. The derivative of the logarithm of the heat trace with
respect to the logarithm of fictive time coordinate gives time dependent spectral dimension,
which for short times approaches to topological dimension and for flat space equals to it
always. For long times the dimension is smaller than the topological dimension due to curva-
ture effects and SH raises the hope that this dimension corresponds to the fractal dimension
of string world sheets identified as quantum dimension.

2. This approach can be criticized for the introduction of fictive time coordinate. Furthermore,
Laplacian would be replaced with d’Alembertian in Minkowskian regions so that one can-
not speak about diffusion anymore. Could one replace the heat equation with 4-D spinor
d’Alembertian or modified Dirac operator so that also the induced gauge fields would appear
in the equation? Artificial time coordinate would be replaced with some time coordinate for
M4 - light-cone proper time is the most natural choice. The probability would be defined as
modulus squared for the fermionic propagator integrated over space-time surface.

The problem is that this approach is rather formal and might be of little practical value.

3.3 n-structures and adelic physics

TGD involves several concepts, which could relate to n-structures. The notion of finite measure-
ment resolution realized in terms of HFFs is the oldest notion [K13, K3]. Adelic physics suggests
that the measurement resolution could be realized in terms of a hierarchy of extensions of ratio-
nals [L3]. The parameters characterizing space-time surfaces and by SH the string world sheets
would belong to the extension. Also the points of space-time surface in the extension would be
data coding for the preferred extremals. The reconnection points and intersection points would

http://tinyurl.com/yadcmjd6


3.4 Could normal sub-groups of symplectic group and of Galois groups correspond
to each other? 16

belong to the extension [L2]. n-structures relate closely to the notion of non-commutative space
and strings world sheets could be such. Also the role of classical number fields - in particular
M8 −H correspondence suggest the same. The challenge is to develop a coherent view about all
these structures.

1. There should be also a connection with the adelic view. In this picture string world sheets
and points of space-time surface with coordinates in the extension of rationals defining the
adele code for the data for preferred extremals and quantum states. What these points
are - could they correspond to points of partonic 2-surfaces carrying fermions or could the
correspond also to the points in the interior of space-time surface is not clear. The larger the
extension of rationals, the larger the number of these points, and the better the resolution
and the larger the deviation of SH from ideal. The hierarchy of Galois groups of extension
of rationals should relate closely to the inclusion hierarchies.

2. Galois extension with given Galois group Gal allows hierarchy of intermediate extensions
defining inclusion sequence for Galois groups. Besides inclusion homomorphisms there exists
homomorphisms from Galois group Gal with order heff/h = n to its sub-groups H ⊂ Gal
with order heff/h = m < n dividing n. If it exists the sub-group mapped to identity
element is normal sub-group H for which right and left cosets gH and Hg are identical.
These homomorphisms to sub-groups identify the sheets of Galois covering of the space-
time surface transformed to each other by H and thus define different number theoretical
resolutions: measurement resolution would have precise geometric meaning. This would
mean looking states with heff/h = n in poorer resolution defined by heff/h = m < n.

These arrows would define “resolution morphisms” in category theoretic description. Also
the analogy with the homotopies of n-structures is obvious. There would be a finite number
of normal sub-groups with order dividing n for given higher structure. Quantum phase equal
to root of unity (q = exp(i2π/k)) could appear in these representations and distinguish them
from ordinary group representations.

3.4 Could normal sub-groups of symplectic group and of Galois groups
correspond to each other?

Measurement resolution realized in terms of various inclusion is the key principle of quantum TGD.
There is an analogy between the hierarchies of Galois groups, of fractal sub-algebras of SSA, and
of inclusions of HFFs. The inclusion hierarchies of isomorphic sub-algebras of SSA and of Galois
groups for sequences of extensions of extensions should define hierarchies for measurement reso-
lution. Also the inclusion hierarchies of HFFs are proposed to define hierarcies of measurement
resolutions. How closely are these hierarchies related and could the notion of measurement reso-
lution allow to gain new insights about these hierarchies and even about the mathematics needed
to realize them?

1. As noticed, SSA and its isomorphic sub-algebras are in a relation analogous to the between
normal sub-group H of group Gal (analog of isomorphic sub-algebra) and the group G/H.
One can assign to given Galois extension a hierarchy of intermediate extensions such that one
proceeds from given number field (say rationals) to its extension step by step. The Galois
groups H for given extension is normal sub-group of the Galois group of its extension. Hence
Gal/H is a group. The physical interpretation is following. Finite measurement resolution
defined by the condition that H acts trivially on the representations of Gal implies that they
are representations of Gal/H. Thus Gal/H is completely analogous to the Kac-Moody type
algebra conjecture to result from the analogous pair for SSA.

2. How does this relate to McKay correspondence stating that inclusions of HFFs correspond
to finite discrete sub-groups of SU(2) acting as isometries of regular n-polygons and Pla-
tonic solids correspond to Dynkin diagrams of ADE type SKMAs determined by ADE Lie
group G. Could one identify the discrete groups as Galois groups represented geometrically
as sub-groups of SU(2) and perhaps also those of corresponding Lie group? Could the rep-
resentations of Galois group correspond to a sub-set of representations of G defining ground
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states of Kac-Moody representations. This might be possible. The sub-groups of SU(2) can
however correspond only to a very small fraction of Galois groups.

Can one imagine a generalization of ADE correspondence? What would be required that the
representations of Galois groups relate in some natural manner to the representations as Kac-
Moody groups.

3.4.1 Some basic facts about Galois groups and finite groups

Some basic facts about Galois groups mus be listed before continuing. Any finite group can appear
as a Galois group for an extension of some number field. It is known whether this is true for
rationals (see http://tinyurl.com/hus4zso).

Simple groups appear as building bricks of finite groups and are rather well understood. One
can even speak about periodic table for simple finite groups (see http://tinyurl.com/y75r68hp).
Finite groups can be regarded as a sub-group of permutation group Sn for some n. They can be
classified to cyclic, alternating , and Lie type groups. Note that alternating group An is the
subgroup of permutation group Sn that consists of even permutations. There are also 26 sporadic
groups and Tits group.

Most simple finite groups are groups of Lie type that is rational sub-groups of Lie groups.
Rational means ordinary rational numbers or their extension. The groups of Lie type (see http:

//tinyurl.com/k4hrqr6) can be characterized by the analogs of Dynkin diagrams characterizing
Lie algebras. For finite groups of Lie type the McKay correspondence could generalize.

3.4.2 Representations of Lie groups defining Kac-Moody ground states as irreps of
Galois group?

The goal is to generalize the McKay correspondence. Consider extension of rationals with Galois
group Gal. The ground staes of KMA representations are irreps of the Lie group G defining KMA.
Could the allow ground states for given Gal be irreps of also Gal?

This constraint would determine which group representations are possible as ground states of
SKMA representations for a given Gal. The better the resolution the larger the dimensions of the
allowed representations would be for given G. This would apply both to the representations of the
SKMA associated with dynamical symmetries and maybe also those associated with the standard
model symmetries. The idea would be quantum classical correspondence (QCC) space-time sheets
as coverings would realize the ground states of SKMA representations assignable to the various
SKMAs.

This option could also generalize the McKay correspondence since one can assign to finite
groups of Lie type an analog of Dynkin diagram (see http://tinyurl.com/k4hrqr6). For Galois
groups, which are discrete finite groups of SU(2) the hypothesis would state that the Kac-Moody
algebra has same Dynkin diagram as the finite group in question.

To get some perspective one can ask what kind of algebraic extensions one can assign to ADE
groups appearing in the McKay correspondence? One can get some idea about this by studying
the geometry of Platonic solids (see http://tinyurl.com/p4rwc76). Also the geometry of Dynkin
diagrams telling about the geometry of root system gives some idea about the extension involved.

1. Platonic solids have p vertices and q faces. One has {p, q} ∈ {{3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}}.
Tetrahedron is self-dual (see http://tinyurl.com/qdl4sss object whereas cube and octa-
hedron and also dodecahedron and icosahedron are duals of each other. From the table of
http://tinyurl.com/p4rwc76 one finds that the cosines and sines for the angles between
the vectors for the vertices of tetrahedron, cube, and octahedron are rational numbers. For
icosahedron and dodecahedron the coordinates of vertices and the angle between these vec-
tors involve Golden Mean φ = (1 +

√
5)/2 so that algebraic extension must involve

√
5 at

least.

The dihedral angle θ between the faces of Platonic solid {p, q} is given by sin(θ/2) =
cos(π/q)/sin(π/p). For tetrahedron, cube and octahedron sin(θ) and cos(θ) involve

√
3.

For icosahedron dihedral angle is tan(θ/2) = φ. For instance, the geometry of tetrahedron
involves both

√
2 and

√
3. For dodecahedron more complex algebraic numbers are involved.

http://tinyurl.com/hus4zso
http://tinyurl.com/y75r68hp
http://tinyurl.com/k4hrqr6
http://tinyurl.com/k4hrqr6
http://tinyurl.com/k4hrqr6
http://tinyurl.com/p4rwc76
http://tinyurl.com/qdl4sss
http://tinyurl.com/p4rwc76
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2. The rotation matrices for for the triangles of tetrahedron and icosahedron involve cos(2π/3)
and sin(2π/3) associated with the quantum phase q = exp(i2π/3) associated with it. The ro-
tation matrices performing rotation for a pentagonal face of dodecahedron involves cos(2π/5)
and sin(2π/5) and thus q = exp(i2π/5) characterizing the extension. Both q = exp(i2π/3)
and q = exp(i2π/5) are thus involved with icosahedral and dodecahedral rotation matrices.
The rotation matrices for cube and for octahedron have rational matrix elements.

3. The Dynkin diagrams characterize both the finite discrete groups of SU(2) and those of ADE
groups. The Dynkin diagrams of Lie groups reflecting the structure of corresponding Weyl
groups involve only the angles π/2, 2π/3, π − π/6, 2π − π/6 between the roots. They would
naturally relate to quadratic extensions.

For ADE Lie groups the diagram tells that the roots associated with the adjoint representa-
tion are either orthogonal or have mutual angle of 2π/3 and have same length so that length
ratios are equal to 1. One has sin(2π/3) =

√
3/2. This suggests that

√
3 belongs to the

algebraic extension associated with ADE group always. For the non-simply laced Lie groups
of type B, C, F, G the ratios of some root lengths can be

√
2 or

√
3.

For ADE groups assignable to n-polygons (n > 5) Galois group must involve the cyclic extension
defined by exp(i2π/n). The simplest option is that the extension corresponds to the roots of the
polynomial xn = 1.

3.5 A possible connection with number theoretic Langlands correspon-
dence

I have discussed number theoretic version of Langlands correspondence in [K5, K21] trying to
understand it using physical intuition provided by TGD (the only possible approach in my case).
Concerning my unashamed intrusion to the territory of real mathematicians I have only one excuse:
the number theoretic vision forces me to do this.

Number theoretic Langlands correspondence relates finite-dimensional representations of Ga-
lois groups and so called automorphic representations of reductive algebraic groups defined also
for adeles, which are analogous to representations of Poincare group by fields. This is kind of rela-
tionship can exist follows from the fact that Galois group has natural action in algebraic reductive
group defined by the extension in question.

The “Resiprocity conjecture” of Langlands states that so called Artin L-functions assignable
to finite-dimensional representations of Galois group Gal are equal to L-functions arising from
so called automorphic cuspidal representations of the algebraic reductive group G. One would
have correspondence between finite number of representations of Galois group and finite number
of cuspidal representations of G.

This is not far from what I am naively conjecturing on physical grounds: finite-D representations
of Galois group are reductions of certain representations of G or of its subgroup defining the analog
of spin for the automorphic forms in G (analogous to classical fields in Minkowski space). These
representations could be seen as induced representations familiar for particle physicists dealing
with Poincare invariance. McKay correspondence encourages the conjecture that the allowed spin
representations are irreducible also with respect to Gal. For a childishly naive physicist knowing
nothing about the complexities of the real mathematics this looks like an attractive starting point
hypothesis.

In TGD framework Galois group could provide a geometric representation of “spin” (maybe even
spin 1/2 property) as transformations permuting the sheets of the space-time surface identifiable
as Galois covering. This geometrization of number theory in terms of cognitive representations
analogous to the use of algebraic groups in Galois correspondence might provide a totally new
geometric insights to Langlands correpondence. One could also think that Galois group represented
in this manner could combine with the dynamical Kac-Moody group emerging from SSA to form
its Langlands dual.

Skeptic physicist taking mathematics as high school arithmetics might argue that algebraic
counterparts of reductive Lie groups are rather academic entities. In adelic physics the situation
however changes completely. Evolution corresponds to a hierarchy of extensions of rationals re-
flected directly in the physics of dark matter in TGD sense: that is as phases of ordinary matter
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with heff/h = n identifiable as divisor of the order of Galois group for an extension of rationals.
Algebraic groups and their representations get physical meaning and also the huge generalization
of their representation to adelic representations makes sense if TGD view about consciousness and
cognition is accepted.

In attempts to understand what Langlands conjecture says one should understand first the
rough meaning of many concepts. Consider first the Artin L-functions appearing at the number
theoretic side. Consider first the Artin L-functions appearing at the number theoretic side.

1. L-functions (see http://tinyurl.com/y8dc4zv9) are meromorphic functions on complex
plane that can be assigned to number fields and are analogs of Riemann zeta function fac-
torizing into products of contributions labelled by primes of the number field. The defini-
tion of L-function involves Direchlet characters: character is very general invariant of group
representation defined as trace of the representation matrix invariant under conjugation of
argument.

2. In particular, there are Artin L-functions (see http://tinyurl.com/y7thhodk) assignable
to the representations of non-Abelian Galois groups. One considers finite extension L/K of
fields with Galois group G. The factors of Artin L-function are labelled by primes p of K.
There are two cases: p is un-ramified or ramified depending on whether the number of primes
of L to which p decomposes is maximal or not. The number of ramified primes is finite and in
TGD framework they are excellent candidates for physical preferred p-adic primes for given
extension of rationals.

These factors labelled by p analogous to the factors of Riemann zeta are identified as char-
acteristic polynomials for a representation matrix associated with any element in a preferred
conjugacy class of G. This preferred conjugacy class is known as Frobenius element Frob(p)
for a given prime ideal p , whose action on given algebraic integer in OL is represented as its
p:th power. For un-ramified p the characteristic polynomial is explicitly given as determinant
det[I − tρ(Frob(p))]−1, where one has t = N(p)−s and N(p) is the field norm of p in the
extension L (see http://tinyurl.com/o4saw2l).

In the ramified case one must restrict the representation space to a sub-space invariant under
inertia subgroup, which by definition leaves invariant integers of OL/p that is the lowest part
of integers in expansion of powers of p.

At the other side of the conjecture appear representations of algebraic counterparts of reductive
Lie groups and their L-functions and the two number theoretic and automorphic L-functions would
be identical.

1. Automorphic form F generalizes the notion of plane wave invariant under discrete subgroup
of the group of translations and satisfying Laplace equation defining Casimir operator for
translation group. Automorphic representations can be seen as analogs for the modes of
classical fields with given mass having spin characterized by a representation of subgroup of
Lie group G (SO(3) in case of Poincare group).

Automorphic functions as field modes are eigen modes of some Casimir operators assignable
to G. Algebraic groups would in TGD framework relate to adeles defined by the hierarchy of
extensions of rationals (also roots of e can be considered in extensions). Galois groups have
natural action in algebraic groups.

2. Automorphic form (see http://tinyurl.com/create.php) is a complex vector valued func-
tion F from topological group to some vector space V . F is an eigen function of certain
Casimir operators of G. In the simplest situation these function are invariant under a dis-
crete subgroup Γ ⊂ G identifiable as the analog of the subgroup defining spin in the case of
induced representations.

In general situation the automorphic form F transforms by a factor j of automorphy under Γ.
The factor can also act in a finite-dimensional representation of group Γ, which would suggest
that it reduces to a subgroup of Γ obtained by dividing with a normal subgroup. j satisfies
1-cocycle condition j(g1, g2g3) = j(g1g2, g3) in group cohomology guaranteeing associativity
(see http://tinyurl.com/on7ffy9). Cuspidality relates to the conditions on the growth of
F at infinity.

http://tinyurl.com/y8dc4zv9
http://tinyurl.com/y7thhodk
http://tinyurl.com/o4saw2l
http://tinyurl.com/create.php
http://tinyurl.com/on7ffy9
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3. Elliptic functions in complex plane characterized by two complex periods are meromor-
phic functions of this kind. A less trivial situation corresponds to non-compact group
G = SL(2, R) and Γ ⊂ SL(2, Q).

There are more groups involved: Langlands group LF and Langlands dual group LG. A
more technical formulation says that the automorphic representations of a reductive Lie group
G correspond to homomorphisms from so called Langlands group LF (see http://tinyurl.com/

ycnhkvm2) at the number theoretic side to L-group LG or Langlands dual of algebraic G at group
theory side (see http://tinyurl.com/ycnk9ga5). It is important to notice that LG is a complex
Lie group. Note also that homomorphism is a representation of Langlands group LF in L-group
LG. In TGD this would be analogous to a homomorphism of Galois group defining it as subgroup
of the group G defining Kac-Moody algebra.

1. Langlands group LF of number field is a speculative notion conjectured to be a extension of
the Weil group of extension, which in turn is a modification of the absolute Galois group.
Unfortunately, I was not able to really understand the Wikipedia definition of Weil group
(http://tinyurl.com/hk74sw7). If E/F is finite extension as it is now, the Weil group
would be WE/F = WF /W

c
E , W c

E refers to the commutator subgroup WE defining a normal
subgroup, and the factor group is expected to be finite. This is not Galois group but should
be closely related to it.

Only finite-D representations of Langlands group are allowed, which suggests that the rep-
resentations are always trivial for some normal subgroup of LF For Archimedean local fields
LF is Weil group, non-Archimedean local fields LF is the product of Weil group of L and of
SU(2). The first guess is that SU(2) relates to quaternions. For global fields the existence of
LF is still conjectural.

2. I also failed to understand the formal Wikipedia definition of the L-group LG appearing
at the group theory side. For a reductive Lie group one can construct its root datum
(X∗,∆, X∗,∆

c), where X∗ is the lattice of characters of a maximal torus, X∗ its dual, ∆ the
roots, and ∆c the co-roots. Dual root datum is obtained by switching X∗ and X∗ and ∆
and ∆c. The root datum for G and LG are related by this switch.

For a reductive G the Dynkin diagram of LG is obtained from that of G by exchanging the
components of type Bn with components of type Cn. For simple groups one has Bn ↔ Cn.
Note that for ADE groups the root data are same for G and its dual and it is the Kac-Moody
counterparts of ADE groups, which appear in McKay correspondence. Could this mean that
only these are allowed physically?

3. Consider now a reductive group over some field with a separable closure K (say k for rationals
and K for algebraic numbers). Over K G as root datum with an action of Galois group of
K/k. The full group LG is the semi-direct product LG0oGal(K/k) of connected component
as Galois group and Galois group. Gal(K/k) is infinite (absolute group for rationals). This
looks hopelessly complicated but it turns it that one can use the Galois group of a finite
extension over whichG is split. This is what gives the action of Galois group of extension (l/k)
in LG having now finitely many components. The Galois group permutes the components.
The action is easy to understand as automorphism on Gal elements of G.

Could TGD picture provide additional insights to Langlands duality or vice versa?

1. In TGD framework the action of Gal on algebraic group G is analogous to the action of Gal
on cognitive representation at space-time level permuting the sheets of the Galois covering,
whose number in the general case is the order of Gal identifiable as heff/h = n. The
connected component LG0 would correspond to one sheet of the covering.

2. What I do not understand is whether LG = G condition is actually forced by physical
contraints for the dynamical Kac-Moody algebra and whether it relates to the notion of
measurement resolution and inclusions of HFFs.

http://tinyurl.com/ycnhkvm2
http://tinyurl.com/ycnhkvm2
http://tinyurl.com/ycnk9ga5
http://tinyurl.com/hk74sw7


3.6 A formulation of adelic TGD in terms of cognitive representations? 21

3. The electric-magnetic duality in gauge theories suggests that gauge group action of G on
electric charges corresponds in the dual phase to the action of LG on magnetic charges. In
self-dual situation one would have G =L G. Intriguingly, CP2 geometry is self-dual (Kähler
form is self-dual so that electric and magnetic fluxes are identical) but induced K̈ahler form
is self-dual only at the orbits of partonic 2-surfaces if weak form of electric-magnetic duality
holds true. Does this condition leads to LG = G for dynamical gauge groups? Or is it
possible to distinguish between the two dynamical descriptions so that Langlands duality
would correspond to electric-magnetic duality. Could this duality correspond to the proposed
duality of two variants of SH: namely, the electric description provided by string world sheets
and magnetic description provided by partonic 2-surfaces carrying monopole fluxes?

3.6 A formulation of adelic TGD in terms of cognitive representations?

The vision about p-adic physics as cognitive representations of real physics [L3] encourages to
consider an amazingly simple formulation of TGD diametrically opposite to but perhaps consistent
with the vision based on the notion of WCW and WCW spinor fields. Finiteness of cognitive and
measurement resolutions would not be enemies of the theoretician but could make possible to
deduce highly non-trivial predictions from the theory by getting rid of all irrelevant information
and using only the most significant bits. Number theoretic physics need not of course cover the
entire quantum physics and could be analogous to topological quantum field theories: even this
might provide huge amounts of precise information about the quantum physics of TGD Universe.

3.6.1 Could the discrete variant of WCW geometry make sense?

The first thing that one can imagine is number theoretic discretization of WCW by assuming that
WCW coordinates belong to an extension of rationals. Integration would reduce to a summation
but the problem is that there are too many points in the extension so that sums do not make
sense in real sense. In the case of space-time surfaces the problems are solved by the fact that
space-time surfaces have dimension lower than the imbedding space and the number of points with
coordinates in the extension is in typical case finite: exceptions are surfaces such as canonically
imbedded M4 or CP2. This option does not work at the level of WCW.

Cognitive representations however carry information about the points with coordinates in the
extension of rationals defining the adele and possibly about the directions of strings emanating
from these points. The effective WCW is kind of coset space with most of degrees of freedom not
visible in the cognitive representation. Cognitive representations would specify the points in the
extension of rationals for space-time surface, string world sheets, or even for their intersection with
partonic surfaces at the ends of CD carrying fermion number plus those at the ends of sub-CDs
forming a hierarchy.

Could one use the points of cognitive representation as coordinates for this effective WCW
so that everything including WCW integration would reduce to well-defined summations? This
would solve the problem of too many points in sub-WCW associated with the extension. Could one
formulate everything that one can know at given level of cognitive hierarchy defined by extensions?

This idea was already suggested by the interpretation of p-adic mass calculations.

1. p-Adic mass calculations would correspond to cognitive representation of real physics [K1,
K6]. For large p-adic primes p-adic thermodynamics converges extremely rapidly as powers
p−n/2 and the results from two lowest orders are practically exact.

2. What is however required is a justification for the map of p-adic mass squared values to
real numbers by canonical identification. Quite generally this map makes sense for group
invariants - say Lorentz invariants defined by inner products of momenta. As a matter of
fact, the construction of quantum algebras and Yangians demands p-adic topology for the
antipode to exist mathematically so that this approach could be forced by mathematical
consistency [B1].
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3.6.2 Could scattering amplitudes be constructed in terms of cognitive representa-
tions?

The crazy looking idea that cognitive representations defined by common points of real and p-adic
variants of space-time surfaces or even partonic 2-surfaces is at least worth of showing to be wrong.
If the idea works, cognitive representations could code what can be known about classical and even
quantum dynamics and reduce physics to number theory. Also WCW would be discretized with
points of discretized space-time surface defining WCW coordinates. Functional integral over WCW
would reduce to a converging sum over cognitive representations.

It is interesting to look what this could mean if scattering amplitudes correspond in some sense
to algebraic computations in bi-algebra besides product also co-product as its time reversal and
interpreted as 3-vertex physically.

1. For the simplest option fermions would reside at the intersection points of partonic 2-surfaces
and string world sheets. One possibility considered earlier is that at these points the Galois
coverings are singular meaning that all sheets co-incide. This might be too strong condition
and might be replacable by a weaker condition that Galois group at these points reduces to
its sub-group and normal subgroup leaves amplitudes invariant. A reduction of measurement
resolution would be in question.

2. If the basic computational operation involves a fusion of representations of Galois group,
fusion algebra could describe the situation [L2]. The Galois groups assignable to the incoming
lines of 3-vertex must correspond to Galois groups, which define groups of 3-levelled hierarchy
of extension of rationals allowing inclusion homomorphism. Therefore the values of Planck
constant would be of from heff/h ∈ {n1, n1n2, n1n2n3}. The tensor product decomposition
would tell the outcome of tensor product. One can consider also 2-vertices corresponding to
a phase transition n1 ↔ n1n2 changing the value of heff/h.

McKay graphs (see http://tinyurl.com/z48d92t) for Galois groups describe the decom-
position of the tensor products of representations of Galois groups. In general the tensor
products for corresponding KMAs restricted to Galois group are not irreducible. What could
this mean? Are they allowed to occur? Are there general results allowing to conclude how
do the analogs of McKay graphs for the tensor products of the irreps of the group defining
Kac-Moody group relate to the McKay graphs for its finite discrete sub-groups?

Possible problems relate to the description of momenta and higher excitations of SKMAs. In
topological QFTs one loses information about metric properties such as mass but what happens
in number theoretic QFT? Could the Galois approach expanded to include also discrete variants
of quaternions and octonions assigna ble to extensions of rationals allow also the number theoretic
description of also momenta?

1. Octonions and quaternions have G(2) and SO(3) as automorphisms groups (analogs of Ga-
lois groups). The octonionic automorphisms respecting chosen imaginary consist of SU(3)
rotations. These groups would be replaced with their dicrete variants with matrix elements
in an extension of rationals.

The automorphism group Gal for the extension of rationals and automorphism group Aut ∈
{G2, SU(3), SO(3)} for octonions/for octonions with fixed unit/for quaternions form a semi-
direct product GaloAut with multiplication rule (g1, ga) ◦ (g2, gb) = (g1g2, g2g1(gb)), where
g1(gb) represents the element of Aut obtained by performing Gal automorphism g1 for gb.
For rational elements gb one has (g1, ga) ◦ (g2, gb) = (g1g2, gagb) so that Gal AutQ commute.
An interesting possibility is that the automorphisms of Aut ∈ {SU(3), SO(3)} can be inter-
preted in terms of standard model symmetries whereas Gal would relate to the dynamical
symmetries.

In M8 picture one has naturally wave functions in the space of quaternionic light-like 8-
momenta and it is natural to decompose quaternionic momenta to longitudinal M2 piece
and transversal E2 piece. The physical interpretation of this condition has been discussed
thoroughly in [K24]. One has thus more than mere analog of TQFT.

http://tinyurl.com/z48d92t
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2. If fermions propagate along the lines of the TGD analogs twistor graphs, one must have
an analog of propagator. Twistor approach [K24] implies that the propagator is replaced
with the inverse of the fermion propagator for quaternionic 8-momentum as a residue with
sigma matrices representing the quaternionic units. This is non-vanishing only if the fermion
chirality is “wrong”. This has co-homological interpretation: for external lines the inverse of
the propagator would annihilate the state (co-closedness) unlike for internal lines.

3. Triality holds true for the octonionic vector representation assignable to momenta and octo-
nionic spinors and their conjugates. All these should be quaternionic, in other words belong
to some complexified quaternionic M4 ⊂M8. The components of these spinors should belong
to an extension of rational used with imaginary unit commuting with octonionic imaginary
units.

4. The condition that the amplitudes belong to an extension of rationals could be extremely
powerful when combined with category theoretic view implying the Hilbert space isometries
allowing to relate amplitudes at different levels of the hierarchy. This conditions should
be true also for the twistors in terms which momenta can be expressed. Also the space
SU(3)/U(1) × U(1) of CP2 twistors would be replaced with a sub-space with points in an
extension of rationals.

4 Appendix

I have left the TGD counterpart of fake flatness condition in Appendix. Also a little TGD glossary
is included.

4.1 What could be the counterpart of the fake flatness in TGD frame-
work?

Schreiber considers the n-variant of gauge field concept with gauge potential A and gauge field
F = DA replaced with a hierarchy of gauge potential like entities Ak), k = 1, .., n with DAn) = 0
and ends up in n = 2 case to what he calls fake flatness condition DA1) = A2). This raises a chain
of questions.

Could higher gauge fields of Schreiber and Baez [B3, B2] provide a proper description of the sit-
uation in finite measurement resolution? Could induction procedure make sense for them? Should
one define the projections of the classical fields by replacing ordinary H-coordinates with their
quantum counterparts? Could these reduce to c-numbers for number-theoretically commutative
2-surfaces with commutative tangent space? What about second fundamental form orthogonal to
the string world sheet? Must its trace vanish so that one would have minimal 2-surface?

The proposal of Schreiber is a generalization of a massless gauge theory. My gut feeling is that
the non-commutative counterpart of space-time surface is not promising in TGD framework. My
feelings are however mixed.

1. The effective reduction of SSA and PSCA to quantal variants of Kac-Moody algebras gives
rise to a theory much more complex than gauge theory. On the other hand, the reduction to
Galois groups by finiteness of measurement resolution would paradoxically reduce TGD to
extremely simple theory.

2. Analog of Yang Mills theory is not enough since it describes massless particles. Massless
states in 4-D sense are only a very small portion of the spectrum of states in TGD. Stringy
mass squared spectrum characterizes these theories rather than massless spectrum. On the
other hand, in TGD particles are massless in 8-D sense and this is crucial for the success of
generalized twistor approach.

3. To define a generalization of gauge theory in WCW one needs homology and cohomology
for differential forms and their duals. For infinite-dimensional WCW the notion of dual
is difficult to define. The effective reduction of SSA and PSCA to SKMAs could however
effectively replace WCW with a coset space of the Lie-group associated with SKMA and
finite dimension would allow tod define dual.
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4. The idea about non-Abelian counterparts of Kähler gauge potential A and J in WCW does
not look promising and the TGD counterpart of the fake flatness condition does not however
encourage this.

Just for curiosity one could however ask whether one could generalize the Kähler structure of
WCW to n-Kähler structure to describe finite measurement resolution at the level of WCW and
whether also now something analogous to the fake flatness condition emerges. The “fake flatness”
condition has interesting analogy in TGD framework starting from totally different geometric
vision.

1. SSA acts as dynamical symmetries on fermions at string world sheets. Gauge condition
would make the situation effectively finite-dimensional and allow to define if the effectively
finite-D variant of WCW n-structures using ordinary homotopies and homology and coho-
mology. Also n-gauge fields could be defined in this effectively finite-D WCW and they would
allow a description in terms of string world sheets. The interpretation could be in terms of
generalization of Bohm-Aharonov phase from space-time level to Berry phase in abstract
configuration space defined now in reduced WCW.

2. The Kähler form of H = M4 × CP2 (involving also the analog of Kähler form for M4) can
be induced to space-time level. When limited to the string world sheet is both the curvature
form of Kähler potential and the analog of flat 2-connection defining the 1-connection in the
approaches of Schreiber’s and Baez so that one would have B = J and dB = 0.

3. 2-form J as it is interpreted in Screiber’s approach is hwoever not enough to construct
WCW geometry. The generalization of the geometry of M4×CP2 (involving also the analog
of Kähler form for M4) to involve higher forms and its induction to the space-time level and
level of WCW looks rather awkward idea and does not bring in anything new.

4.2 A little glossary

Topological Geometrodynamics (TGD): TGD can be regarded as a unified theory of funda-
mental interactions. In General Relativity space-time time is abstract pseudo-Riemannian manifold
and the dynamical metric of the space-time describes gravitational interactions. In TGD space-
time is a 4-dimensional surface of certain 8-dimensional space, which is non-dynamical and fixed
by either physical or purely mathematical requirements. Hence space-time has shape besides met-
ric properties. This identification solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity. Even more, sub-manifold geometry, being considerably
richer in structure than the abstract manifold geometry behind General Relativity, leads to a
geometrization of known fundamental interactions and elementary particle quantum numbers.

Many-sheeted space-time, topological quantization, quantum classical correspon-
dence (QCC): TGD forces the notion of many-sheeted space-time (see http://tinyurl.com/

mf99gpv) with space-time sheets identified as geometric correlates of various physical objects (el-
ementary particles, atoms, molecules, cells, ..., galaxies, ...). Quantum-classical correspondence
(QCC) states that all quantum notions have topological correlates at the level of many-sheeted
space-time.

Topological quantization: Topological field quantization is one of the basic distinctions
between TGD and Maxwell’s electrodynamics and GRT and means that various fields decompose
to topological field quanta: radiation fields to “topological light rays”; magnetic fields to flux tube
structures; and electric fields to electric flux quanta (electrets). Topological field quantization
means that one can assign to every material system a field (magnetic) body, usually much larger
than the material system itself, and providing a representation for various quantum aspects of the
system.

Strong form of holography (SH): SH states that space-time surfaces as preferred extremals
can be constructed from the data given at 2-D string world sheets and by a discrete set of points
defining the cognitive representation of the space-time surface as points common to real and various
p-adic variants of the space-time surface (intersection of realities and various p-adicities). Points of
the cognitive representation have imbedding space coordinates in the extension of rationals defining

http://tinyurl.com/mf99gpv
http://tinyurl.com/mf99gpv
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the adele in question. Effective 2-dimensionality is a direct analogy for the continuation of 2-D
data to analytic function of two complex variables.

Zero energy ontology (ZEO): In ZEO quantum states are replaced by pairs of positive and
negative energy states having opposite total quantum numbers. The pair corresponds to the pair of
initial and final state for a physical event in classical sense. The members of the pair are at opposite
boundaries of causal diamond (CD) (see http://tinyurl.com/mh9pbay), which is intersection of
future and past directed light-cones with each point replaced with CP2. Given CD can be regarded
as a correlate for the perceptive field of conscious entity.

p-Adic physics, adelic physics, hierarchy of Planck constants, p-adic length scale
hypothesis: p-Adic physics is a generalization of real number based physics to p-adic number
fields and interpreted as a correlate for cognitive representations and imagination. Adelic physics
fuses real physics with various p-adic physics (p = 2, 3, 5, ...) to adelic physics. Adele is structure
formed by reals and extensions of various p-adic number fields induced by extensions of rationals
forming an evolutionary hierarchy. Hierarchy of Planck constants corresponds to the hierarchy of
orders of Galois groups for these extensions. Preferred p-adic primes satisfying p-adic length scale
hypothesis p ' 2k, are so called ramified primes for certain extension of rationals appearing as
winners in algebraic evolution.

Cognitive representation: Cognitive representation corresponds to the intersection of the
sensory and cognitive worlds - realities and p-adicities - defined by real and p-adic space-time sur-
faces. The points of the cognitive representation have H-coordinates which belong to an extension
of rationals defining the adele. The choice of H-coordinates is in principle free but symmetries of
H define preferred coordinates especially suitable for cognitive representations. The Galois group
of the extension of rationals has natural action in the cognitive representation, and one can decom-
pose it into orbits, whose points correspond the sheets of space-time surface as Galois covering.
The number n of sheets equals to the dimension of the Galois group in the general case and is
identified as the value heff/h = n of effective Planck constant characterizing levels in the dark
matter hierarchy. One can also consider replacing space-time surfaces as points of WCW with
their cognitive representations defined by the cognitive representation of the space-time surface
and defining the natural coordinates of WCW point.

Quantum entanglement, negentropic entanglement (NE), Negentropy maximiza-
tion principle (NMP): Quantum entanglement does not allow any concretization in terms
of everyday concepts. Schrödinger cat is the classical popularization of the notion (see http:

//tinyurl.com/lpjcjm9): the quantum state, which is a superposition of the living cat + the
open bottle of poison and the dead cat + the closed bottle of poison represents quantum entangled
state. Schrödinger cat has clearly no self identity in this state.

In adelic physics one can assign to the same entanglement both real entropy and various p-adic
negentropies identified as measures of conscious information. p-Adic negentropy - unlike real -
can be positive, and one can speak of negentropic entanglement (NE). Negentropy Maximization
Principle (NMP) states that it tends to increase. In the adelic formulation NMP holding true only
in statistical sense is a consequence rather than separate postulate.

Self, subself, self hierarchy: In ZEO self is generalized Zeno effect. At the passive boundary
nothing happens to the members of state pairs and the boundary remains unaffected. At active
boundary members of state pairs change and boundary itself moves farther away from the passive
boundary reduction by reduction inducing localization of the active boundary in the moduli space
of CDs after unitary evolution inducing delocalization in it. Self dies as the first reduction takes
place at opposite boundary. A self hierarchy extending from elementary particle level to the level
of the entire Universe is predicted. Selves can have sub-selves which they experience as mental
images. Sub-selves of two separate selves can quantum entangle and this gives rise to fusion of the
mental images and the fused mental image is shared by both selves.

Sensory representations: The separation of data processing and its representation is highly
desirable. In computers processing of the data is performed inside CPU and representation is
realized outside it (monitor screen, printer,...). In standard neuroscience it is however believed
that both data processing and representations are realized inside brain. TGD leads the separation
of data processing and representations: the “manual” of the material body provided by field (or
magnetic) body serves as the counterpart of the computer screen at which the sensory and other
representations of the data processed in brain are realized. Various attributes of the objects of the
perceptive field processed by brain are quantum entangled with simple “something exists” mental
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images at the MB. The topological rays of EEG serve are the electromagnetic bridges serving as
the topological correlates for this entanglement.
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