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Abstract

Birational maps and their inverses are defined in terms of rational functions. They are
very special in the sense that they map algebraic numbers in a given extension E of rationals
to E itself. In the TGD framework, E defines a unique discretization of the space-time surface
if the preferred coordinates of the allowed points belong to E. I refer to this discretization as
cognitive representation. Birational maps map points in E to points in E so that they define
what might be called cognitive morphism.

M8 − H duality duality (H = M4 × CP2) relates the number vision of TGD to the
geometric vision. M8 − H duality maps the 4-surfaces in M8

c to space-time surfaces in H:
a natural condition is that in some sense it maps E to E and cognitive representations to
cognitive representations. There are special surfaces in M8

c that allow cognitive explosion in
the number-theotically preferred coordinates. M4 and hyperbolic spaces H3 (mass shells),
which contain 3-surfaces defining holographic data, are examples of these surfaces. Also the 3-
D light-like partonic orbits defining holographic data. Possibly also string world sheets define
holographic data. Does cognitive explosion happen also in these cases?

In M8
c octonionic structure allows to identify natural preferred coordinates. In H, in

particular M4, the preferred coordinates are not so unique but should be related by birational
mappings. So called Hamilton-Jacobi structures define candidates for preferred coordinates:
could different Hamilton-Jacobi structures relate to the each other by birational maps? In this
article these questions are discussed.
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1 Introduction

https://en.wikipedia.org/wiki/Birationalgeometry and their inverses are defined in terms of ra-
tional functions. They are very special in the sense that they map algebraic numbers in a given
extension E of rationals to E itself.

1. In the TGD framework, the algebraic extensions E are defined by rational polynomials P at
the level ofM8

c identifiable as complexified octonions. E defines a unique discretization for the
number theoretically preferred coordinates of M8

c by the condition that the M8 coordinates
have values in E: I call these discretizations cognitive representations. They make sense
also in the extensions of p-adic number fields induced by E serving as correlates of cognition
in TGD inspired theory of conscious experience. Birational maps respect the extension E
associated with the cognitive representations and map cognitive representations to cognitive
representation of same kind. They are clearly analogous to morphisms in category theory.

2. M8 − H duality [L1, L2, L7, L9] is a number theoretic analogue of momentum-position
duality. M8

c serves as the analog of momentum space and H = M4 × CP2 as the analog
of position space. M8 −H duality maps the 4-surface defined in M8

c by number theoretic
holography based on 3-D data to a 4-D space-time surface in H.

3. Should M8 − H duality respect the algebraic extension? If so, it would map the cognitive
representation defined by points belonging to 4-D surface Y 4 ⊂ M8 with the values of
preferred coordinates in E to points of M4 ⊂ H with coordinate values in E. One could say
that M8 −H duality respects the number theoretical character of cognitive representations.
The precise meaning of this intuition is however far from clear.

There are also questions related to the choice of preferred coordinates in which the cognitive
representation is defined.

1. Number theoretic constraints fix the preferred coordinates at M8 side rather uniquely and
this induces a preferred choice also on M4 ⊂ H. For hyperbolic spaces (mass shells) a
cognitive explosion happens and a natural question whether cognitive explosion happens also
for the light-like curves assignable to the partonic orbits. If the light-like curve is geodesic, the
explosion indeed occurs. For more general light-like curves this is not the case always: could
these more general light-like curves be related by a birational map to light-like geodesics?

2. At the H side one can also imagine besides standard Minkowski coordinates also other phys-
ically preferred choices of coordinates: are they also theoretically preferred? The notion of
Hamilton-Jacobi structure [L6] suggests that in the case of M4 Hamilton-Jacobi coordinates
are very natural for the holomorphic realization of holography. If these are allowed, a nat-
ural condition would be that the Hamilton-Jacobi coordinates are related to each other by
birational maps mapping the point of E to points of E so that cognitive representations are
mapped to cognitive representations.

2 M 8 − H duality, holography as holomorphy, Hamilton-
Jacobi structures, and birational maps as cognitive mor-
phisms

In the sequel the questions raised in the introduction are considered. The basic notions are M8 −
H duality [L1, L2, L7, L9], holography as a generalized holomorphy [L5, L8], Hamilton-Jacobi
structures [L6], and birational maps as cognitive morphisms.

2.1 About more precise definitions of the basic concepts

Consider first more precise definitions of various notions involved.
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1. What are the preferred coordinates of M8
c in which the cognitive representation is con-

structed? M8
c has a number theoretic interpretation in terms of complexified octo-

nions and physical interpretation as 8-D momentum space. Linear Minkowski coordinates
are number-theoretically preferred since octonionic multiplication and other arithmetic op-
erations have a very simple form in these coordinates. Also the number theoretic auto-
morphisms respect the arithmetic operations. The allowed automorphisms correspond to
the group G2 which is a subgroup of SO(1, 7). Physically Minkowski space coordinates are
preferred coordinates in the momentum space and also in M4 ⊂ H.

2. How the algebraic extension of rationals, call it E, is determined? The proposal is that
rational polynomials characterize partially the 3-D data for number theoretic holography [L7].
The roots of a rational polynomial P define an algebraic extension of rationals, call it E.
A stronger, physically motivated, condition on P is that its coefficients are integers smaller
than the degree of P .

The roots of P define mass shells H3
c ⊂M4

c ⊂M8
c , which in turn assign to the mass shells a

4-D surface Y 4 of M8
c going through the mass shells by associative holography requiring that

the normal space of Y 4 is associative, that is quaternionic. It has been be assumed that the
roots are complex although also the condition that the roots are real can be considered. The
imaginary unit i associated with the roots commutes with the octonionic imaginary units.

3. How the cognitive representation is defined? The points of Y 4 ⊂ M8
c with M4 coordinates

in E define a unique discretization of Y 4, called a cognitive representation, making sense
also in the extensions of p-adic number fields induced by E. In general, the number of
algebraic points in the interior of Y 4 is discrete and even finite but at the mass shells H3

a cognitive explosion takes place. All points of H3 with coordinates in E are algebraic.

The algebraic points with coordinates, which are algebraic integers are physically and cog-
nitively in very special role in number theoretic physics and make sense also as points of
various p-adic number fields making possible number theoretical universality. The points
of H3 have interpretation as momenta and for physical states the total momentum as sum
of momenta at mass shells defined by the roots of P has components which are integers,
called Galois confinement [L3, L4], would define fundamental mechanism for the formation
of bound states.

4. M8−H duality maps the points of H3
c ⊂M4

c ⊂M8
c to points of H3 ⊂M4 ⊂M4×CP2 = H

by a map, which is essentially an inversion: this form is motivated by Uncertainty Principle:
for the most recent formulation of the duality see [L9]. This map is a birational map and
takes points of E points of E. Also the points of cognitive representation belonging to
the interior of Y 4 ⊂ M8

c are mapped to the interior of X4 ⊂ M8
c . One can ask whether

the discrete set of points of cognitive representations in the interiors are of special physical
interest, say having interpretation as interaction vertices.

2.2 Questions to be pondered

There are many questions to be considered.

1. Also partonic orbits in X4 ⊂ H define 3-D holographic data in H. What are these partonic
orbits? The simplest partonic orbits have light-like M4 projection but also more general
light-like H projection can be considered (note the analogy with a 2-D rigid body rotating
along a light-like geodesic of H). A general light-like geodesic of H is a combination of
time-like geodesic of M4 and space-like geodesic of CP2.

A point of the light-like partonic orbit correspond at the level of M8 to the 3-D blowup
of a point of M8 at which the quaternionic normal space parametrized by CP2 point is
not unique so that the normal spaces for a 3-D section of CP2, whose union along (probably
light-like) geodesic is CP2 with two holes corresponding to the ends of the partonic orbit.
This singularity is highly analogous to the singularity of the electric field of a point charge.
Partonic orbits define part of the 3-D holographic data.
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2. Could one associate cognitive representations also to the partonic orbits? Could also
partonic orbits allow a cognitive explosion? The simplest way to guarantee light-likeness
for the H projection is as a light-like geodesic and this indeed allows an infinite number of
algebraic points in Minkowski coordinates. Same applies to more general light-like orbits.
One would have at least 1-D explosion of the cognitive representation.

3. What can one say about the CP2 and M4 projections of the partonic 2-surface? Could also
these projections to X2 and Y 2 allow an infinite number of points with coordinates in E
or do these kinds of points have some special physical meaning, say as vertices for particle
reactions? Concerning cognitive representation, the blow-up would mean that the point
has an infinite but discrete set of quaternionic normal spaces at the level of M8. Since
the partonic surface can have an arbitrary complex sub-manifold as CP2, there is indeed
information to be cognitively represented.

2.3 The most general cognitively preferred coordinate choices for space-
time surfaces and H?

In the case of M8
c , number theoretical considerations fix the preferred coordinates highly uniquely.

In the case of H the situation is not so obvious and one cannot exclude alternative coordinate
choices related by a birational map.

A possible motivation comes from the following argument.

1. String world sheets are candidates for singularities analogous to partonic orbits. At a given
point of the string world sheet a blow up to a 2-D complex sub-manifold of CP2 would
occur. This would mean that the normal spaces of the point in M8

c form this sub-manifold.
Cosmic strings are the simplest objcts of this kind. Monopole flux tubes are deformations of
the cosmic strings and allow also an interpretation in terms of maps from M4 to CP2.

If string world sheets define part of the data needed to define holography, one could argue
that it makes sense to assign cognitive explosion to the string world sheet.

2. Cognitive explosion takes place if the string world sheets are 2-D geodesic submanifolds of
H. Planes M2 ⊂M4 represent the simplest example. A more complex example is obtained
by taking a space-like geodesic in H and rotating it along a time-like geodesic of H. One can
also take a light-like geodesic in H and rotate it along a light-like geodesic in dual light-like
direction (ruler surface would be in question). In which case the gluing of the string world
sheet along the boundary to the partonic orbit could be possible.

One might perhaps think of building string world sheets by gluing these kinds of ultrasim-
ple regions along their boundaries so that one would have edges. An interpretation as a
discretization would be appropriate. One might even go further and argue that the cogni-
tive explosion explains why we are able to think of these kinds of regions in terms of simple
formulas. One might argue that number theoretic physics realizes exactly what is usually
regarded as approximation. One can however wonder whether life is so simple.

This argument encourages to consider a more complex option allowing more general string
world sheets.

1. In the case of M4 projection, the notion of the Hamilton-Jacobi structure [L6], generalizing
the notion of ordinary complex structure, is highly interesting in this respect. It involves
a generalization of complex coordinates involving local decompositions M4(x) = M2(x) ×
E2(x) of the 4-D tangent space of M4. The integrable distribution of E2(x) corresponds
to complex coordinates (w,w integrating to a partonic 2-surface whereas the integrable
distribution of M2(x) to light-like coordinate pairs (u, v) integrating to a string world sheet
in M4.

Cognitive representation mean that the discretized values of the Hamilton-Jacobi coordinates
(u, v, w,w) are in E. Hamilton-Jacobi structure generalizes also to the level of X4 ⊂ H and
now Y 2 can also correspond to CP2 projection as in the case of cosmic strings and magnetic
flux tubes. Note that in TGD one can use a subset of H coordinates as coordinates of X4.
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2. The simplest assumption is that the 1-D parton orbit corresponds to a light-like geodesic but
could one map light-like geodesics to more general light-like curves by a birational map?
Hamilton-Jacobi structure gives rise to a pair of curved (u, v) of light-like coordinates: could
it relate to the standard flat light-like coordinates of M2 by a birational map? Could a
birational map relate standard complex coordinates of E2 to the pair (w,w)? Could one also
consider more general birational maps of M4 → M4? If so, the Hamilton-Jacobi structures
would be related by maps respecting algebraic extensions and cognitive representations. This
would give a very powerful constraint on the Hamilton-Jacobi structures.

In the case of CP2, projective coordinates are group-theoretically highly unique and determined
apart from color rotations. Could one require that the CP2 projection Y 2 associated with the
partonic 2-surface and cosmic string or magnetic flux tube involves cognitive explosion. Are the
allowed M4 and CP2 projections related by birational maps? Note that color rotations are
birational maps.

These considerations suggest the following speculative view.

1. M8 −H duality, when restricted to 3-D holographic data at both sides, is analogous to a
birational map expressible in terms of rational functions and respects the number theoretical
character of cognitive representations.

2. Cognitive explosion occurs for the holographic data (this is very natural from the information
theoretic perspective): this includes also string world sheets. Hamilton-Jacobi structures in
the same cognitive class, partially characterized by the extension E of rationals, are related
by a birational map.

3. M8−H duality maps the quaternionic normal spaces to points of CP2 and is an example of
a birational map in M4 degrees of freedom. It is not however easy to guess how the number
theoretic holography is realized explicitly and how the 4-surfaces in M8 are mapped to
holomorphic 4-surfaces in H.

4. An interesting additional aspect relates to the non-determinism of partonic orbits due to
the non-determinism of the light-likeness condition deriving from the fact that the action is
Chern-Simons-Kähler action. The deformation of the partonic orbit induces the deformation
of time derivatives of H coordinates at the boundary of δM4

+ × CP2 to guarantee that
boundary conditions at the orbit are realized. This suggests a strong form of holography [L8].
Already the 3-surfaces at δM4

+×CP2 or partonic orbits would be enough as holographic data.
This in turn suggests that the analog of birational cognitive correspondence between the
holographic data at δM4

+ × CP2 and at partonic orbits.

3 Appendix: Some facts about birational geometry

Birational geometry has as its morphisms birational maps: both the map and its inverse are
expressible in terms of rational functions. The coefficients of polynomials appearing in rational
functions are in the TGD framework rational. They map rationals to rationals and also numbers of
given extension E of rationals to themselves (one can assign to each space-time region an extension
defined by a polynomial).

Therefore birational maps map cognitive representations, defined as discretizations of the space-
time surface such that the points have physically/number theoretically preferred coordinates in E,
to cognitive representations. They therefore respect cognitive representations and are morphisms
of cognition. They are also number-theoretically universal, making sense for all p-adic number
fields and their extensions induced by E. This makes birational maps extremely interesting from
the TGD point of view.

The following lists basic facts about birational geometry as I have understood them on the
basis of Wikipedia articles about birational geometry and Enriques-Kodaira classification. I have
added physics inspired associations with TGD.

Birational geometries are one central approach to algebraic geometry.

https://en.wikipedia.org/wiki/Birational_geometry
https://en.wikipedia.org/wiki/Enriques\OT1\textendash Kodaira_classification
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1. They provide classification of complex varieties to equivalence classes related by birational
maps. The classification complex curves (real dimension 2) reduces to the classification of
projective curves of projective space CPn determined as zeros of a homogeneous polynomial.
Complex surfaces (real dimension 4) are of obvious interest in TGD: now however the notion
of complex structure is generalized and one has Hamilton-Jacobi structure.

2. In TGD, a generalization of complex surfaces of complex dimension 2 in the embedding space
H = M4 × CP2 of complex dimension 4 is considered. What is new is the presence of the
Minkowski signature requiring a combination of hypercomplex and complex structures to the
Hamilton-Jacobi structure. Note however the space-time surfaces also have counterparts
in the Euclidean signature E4 × CP2: whether this has a physical interpretation, remains
an open question. Second representation is provided as 4-surfaces in the space M8

c of
complexified octonions and an attractive idea is that M8 − H duality corresponds to a
birational mapping of cognitive representations to cognitive representations.

3. Every algebraic variety is birationally equivalent with a sub-variety of CPn so that their
classification reduces to the classification of projective varieties of CPn defined in terms of
homogeneous polynomials. n = 2 (4 real dimensions) is of special relevance from the TGD
point of view. A variety is said to be rational if it is birationally equivalent to some
projective variety: for instance CP2 is rational.

4. A concrete example of birational equivalence is provided by stereographic projections of
quadric hypersurfaces in n+1-D linear space. Let p be a point of quadric. The stereographic
projection sends a point q of the quadric to the line going through p and q, that is a
point of CPn in the complex case. One can select one point on the line as its representative.
Another exammple is provided by Möbius transformations representing Lorentz group as
transformations of complex plane.

The notion of a minimal model is important.

1. The basic observation is that it is possible to eliminate or add singularities by using
birational maps of the space in which the surface is defined to some other spaces, which can
have a higher dimension. The zeros of a birational map can be used to eliminate singularities
of the algebraic surface of dimension n by blowups replacing the singularity with CPn. Poles
in turn create singularities. Peaks and self-intersections are examples of singularities.

The idea is to apply birational maps to find a birationally equivalent surface representation,
which has no singularities. There is a very counter-intuitive formal description for this. For
instance, complex curves of CP2 have intersections since their sum of their real dimensions is
4. The same applies to 4-surfaces in H. My understanding is as follows: the blowup for CP2

makes it possible to get rid of an intersection with intersection number 1. One can formally
say that the blow up by gluing a CP1 defines a curve which has negative intersection number
-1.

2. In the TGD framework, wormhole contacts have the same metric and Kähler structure as
CP2 and light-like M4 projection (or even H projection). They appear as blowups of singu-
larities of 4-surfaces along a light-like curve of M8. The union of the quaternionic/associative
normal spaces along the curve is not a line of CP2 but CP2 itself with two holes correspond-
ing to the ends of the light-like curve. The 3-D normal spaces at the points of the light-like
curve are not unique and form a local slicing of CP2 by 3-D surfaces. This is a Minkowskian
analog of a blow-up for a point and also an analog of cut of analytic function.

The Italian school of algebraic geometry has developed a rather detailed classification of
these surfaces. The main result is that every surface X is birational either to a product P1 ×
CforsomecurveCortoaminimalsurfaceY.P referredextremalsareindeedminimalsurfacessothatspace−
timesurfacesmightdefine minimalmodels.Theabsenceofsingularities(typicallypeaksorself−intersections)characterizingminimalmodelsisindeedverynaturalsincephysicallythepeaksdonotlookacceptable.

There are several birational invariants listed in the Wikipedia article. Many of them are rather
technical in nature. The canonical bundle KX for a variety of complex dimension n corresponds
to n:th exterior power of complex cotangent bundle that is holomorphic n-forms. For space-time
surfaces one would have n = 2 and holomorphic 2-forms.

 https://en.wikipedia.org/wiki/Canonical_bundle
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1. Plurigenera corresponds to the dimensions for the vector space of global sections H0(X,Kd
X)

for smooth projective varieties and are birational invariants. The global sections define global
coordinates, which define birational maps to a projective space of this dimension.

2. Kodaira dimension measures the complexity of the variety and characterizes how fast the
plurigenera increase. It has values −∞, 0, 1, ..n and has 4 values for space-time surfaces. The
value −∞ corresponds to the simplest situation and for n = 2 characterizes CP2 which is
rational and has vanishing plurigenera.

3. The dimensions for the spaces of global sections of the tensor powers of complex cotangent
bundle (holomorphic 1-forms) define birational invariants. In particular, holomorphic forms
of type (p, 0) are birational invariants unlike the more general forms having type (p, q).
Betti numbers are not in general birational invariants.

4. Fundamental group is birational invariant as is obvious from the blowup construction. Other
homotopy groups are not birational invariants.

5. Gromow-Witten invariants are birational invariants. They are defined for pseudo-holomorphic
curves (real dimension 2) in a symplectic manifold X. These invariants give the number of
curves with a fixed genus and 2-homology class going through n marked points. Gromow-
Witten invariants have also an interpretation as symplectic invariants characterizing the
symplectic manifold X.

In TGD, the application would be to partonic 2-surfaces of given genus g and homology charge
(Kähler magnetic charge) representatable as holomorphic surfaces in X = CP2 containing
n marked points of CP2 identifiable as the loci of fermions at the partonic 2-surface. This
number would be of genuine interest in the calculation of scattering amplitudes.

What birational classification could mean in the TGD framework?

1. Holomorphic ansatz gives the space-time surfaces as Bohr orbits. Birational maps give new
solutions from a given solution. It would be natural to organize the Bohr orbits to birational
equivalence classes, which might be called cognitive equivalence classes. This should induce
similar organization at the level of M8

c .

2. An interesting possibility is that for certain space-time surfaces CP2 coordinates can be
expressed in terms of preferred M4 coordinates using birational functions and vice versa.
Cognitive representation in M4 coordinates would be mapped to a cognitive representation
in CP2 coordinates.

3. The interpretation of M8 − H duality as a generalization of momentum position duality
suggests information theoretic interpretation and the possibility that it could be seen as a
cognitive/birational correspondence. This is indeed the case M4 when one considers linear
M4 coordinates at both sides.

4. An intriguing question is whether the pair of hypercomplex and complex coordinates as-
sociated with the Hamilton-Jacobi structure could be regarded as cognitively acceptable
coordinates. If Hamilton-Jacobi coordinates are cognitively acceptable, they should relate to
linear M4 coordinates by a birational correspondence so that M8−H duality in its basic form
could be replaced with its composition with a coordinate transformation from the linear M4

coordinates to particular Hamilton-Jacobi coordinates. The color rotations in CP2 in turn
define birational correspondences between different choices of Eguchi-Hanson coordinates.

If this picture makes sense, one could say that the entire holomorphic space-time surfaces,
rather than only their intersections with mass shells H3 and partonic orbits, correspond to
cognitive explosions. This interpretation might make sense since holomorphy has a huge
potential for generating information: it would make TGD exactly solvable.

https://en.wikipedia.org/wiki/Gromov\OT1\textendash Witten_invariant
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