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Abstract

In this article a scenario about the detailed relationship of strong and weak interactions
is discussed. In this picture classical electroweak interactions are basically local and only
these appear in the TGD analogs of fundamental interactions vertices describing splitting
and reconnection of monopole flux tubes. Also strong interactions can be assigned to these
topological interactions. The basic problem is to understand how strong interaction can be
parity conserving while the classical electroweak dynamics violates parity conservation.

The proposed model, argued to overcome this problem, involves several topological ele-
ments.

1. The topological explanation of the family replication phenomenon in terms of the genus
of partonic 2-surface carrying fermion lines as boundaries of string world sheets.

2. The view of holography as a 4-D analog of holomorphy reducing to 2-D holomorphy for
partonic 2-surfaces. This predicts two kinds of partonic 2-surfaces as complex 2-surfaces
in CP2 with a spherical topology. Tor the homologically non-trivial geodesic sphere
induced weak fields vanish (no parity violation classically) and for the second complex
sphere they do not. A natural working hypothesis is that these two spheres explain the
difference between strong and weak interactions.

3. The homology (Kähler magnetic) charge h of the partonic 2-surface correlates with the
genus of the partonic 2-surface. For complex partonic 2-surfaces in CP2, the genus is
given g = (h− 1)(h− 2)/2 − s, where s is the number of singularities. Only the genera
g = (h− 1)(h− 2)/2 are free of singularities. For g = 0, this includes h = 1 and h = 2.
Already for g = 2 there would be singularity. It is however possible to overcome this
problem since partonic 2-surfaces can be deformed to M4 degrees of freedom and one can
add handles in this way. A rather detailed picture of partonic 2-surfaces and monopole
flux tubes emerges.
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1 Introduction

The observations and considerations of the article about what I called Platonization [L13] inspired
questions about the precise relationship between strong and weak interactions. In the same article
I already proposed answers to these questions but since this topic is so important for TGD, I
thought that these questions deserve a separate article.

1.1 Basic views of physics in TGD framework

TGD provides two basic perspectives of physics: geometric and number theoretic. It is somewhat a
matter of taste whether one should divide geometric view to differential geometric and topological
views or whether one should regard topological view as a third perspective.
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1. At the level of H = M4 × CP2, the color group SU(3) acting as isometries of CP2 would
correspond to the color interactions. The holonomy group U2) of CP2 embeddable as a
subgroup to SU3) would correspond to electroweak interactions as the fact that one has
hypercharge and isospin in both sectors. This implies deep correlations between color and
electroweak interactions not predicted by QCD.

2. The differential geometric view involves the notion of induced metric and spinor connection
and leads to geometration of the local aspects of the standard model physics. Topological
aspects involve non-trivial topology of space-time surfaces in all scales. Kähler magnetic
fluxes, monopole flux tubes, the topological explanation of family replication phenomenon,
and topological interactions as reconnections of flux tubes are examples of these non-local
aspects and in [L13] it was found that these aspects are important in all scales and even in
atomic physics.

3. At the level ofM8 = M4×E4, SU(3) corresponds to a subgroup of octonionic automorphisms
and U(2) could be identified as subgroup of isometries leaving invariant the number theoretic
inner product in E4. This inspired the proposal that strong isospin corresponds to U(2)
and hadron-parton duality corresponds to M8 −H duality basically.

1.2 The basic picture of strong interactions in the TGD framework

This general picture could explain various poorly understood aspects of strong interactions.

1. In the good old times, when strong interactions were not yet ”understood” and it was also
possible to think instead of merely computing, strange connections between strong and weak
interactions were observed. The already mentioned conserved vector current hypothesis
(CVC) and partially conserved axial current hypothesis (PCAC) were formulated and suc-
cessful quantitative predictions emerged. Note however that only vector currents appear in
strong interaction physics but combinations of both vector and axial currents appear in weak
interaction physics.

Vectorial strong isospin is equal to vectorial weak isospin for nucleons but heavier quarks
did not fit the picture. (c,s) and (t,b) dublets were assigned quantum numbers such as
strangeness and charm, and they are not quantum numbers of weak interactions.

When perturbative QCD became the dominating science industry, low energy hadron physics
was forgotten. Lattice QCD was thought to describe hadrons but the successes were rather
meager. Lattice QCD has even mathematical problems such as the description of quarks and
the strong CP problem which lead to postulate the existence of axions, which have not been
found.

2. In TGD these connections can be understood elegantly.

(a) The topological description of family replication phenomenon implies that strangeness
and charm are not fundamental quantum numbers and the identification of weak and
strong isospins makes sense.

(b) The flux tubes correspond to possibly p-adically scaled mesons and weak bosons in a
predicted by the TGD based explanation of family replication phenomenon. Tensegrity
is the basic construction principle for hadrons and nuclei and even atoms, for which
color octet excitations of leptons define the counterparts of mesons.

Flux tube ends are bound to quarks or nucleons or electrons by color confinement both
in the case of hadrons and lepto-hadrons.

Also the fractality inspired ideas related to p-adically scaled up variants of strong and weak
interactions organize to a beautiful picture.

1. p-Adic fractality inspired the idea that both strong and interaction physics appear as p-
adically scaled variants. In particular, M89 hadron physics would be a p-adically scaled
up version of the ordinary hadron physics assignable with M107 and would correspond to
the same p-adic length scale as weak bosons. Various forgotten anomalies support this
proposal [K1, K2].
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2. Both weak bosons and mesons would be described as string-like entities and stringy dynamics
involving reconnections and splitting allows a unified geometrodynamics description of both
weak and color interactions. TGD explanation of the family replication phenomenon predicts
the analog of family replication phenomenon for weak bosons basically similar to that for
mesons and there is evidence for this [K1, K2] [L15]. From the known spectrum of mesons
of ordinary mesons one can predict masses of both M89 mesons by using p-adic length scale
hypothesis. There is already evidence for the dark counterparts of M89 mesons with scaled
up Compton length equal to that for M107 mesons. Also M89 baryons are predicted. Both
p-adic and heff hierarchies of length scales are required in the proposed vision.

The failure of the perturbation series to converge is the basic problem of QCD. How could TGD
solve this problem?

1. In the non-perturbative hadronic phase color confinement implies that color interactions are
absent and only the topological interactions realized as reconnections of the monopole flux
tubes are present.

What happens in hadronic collisions? The basic idea is simple: when the perturbation
theory fails, Nature comes in rescue, and a phase transition increasing the value of h to heff
takes place if needed and scales down the color coupling strength by factor h/heff [L15].
The kinetic energy liberated in a particle collision involving hadrons would make this phase
transition possible. h increases when needed.

2. The perturbative color dynamics would be realized at the magnetic body of the system
carrying dark variants of quarks and gluons. The collision would correspond to quantum
criticality and the increases of heff would increase the lengths of monopole flux tubes making
possible their splittings generating gluons and hadrons. Hadronization would lead to the
reduction heff → h and contraction of flux tubes in the reverse phase transition.

What can one say about the relationship between weak interactions and color interactions? Are
they different and closely correlated aspects of topological geometrodynamics; are they perhaps
dual; or does the description of say weak interactions imply automatically that of color interactions
as the fact that only weak gauge potentials couple to fermions suggests?

1. Duality would predict that weak bosons and their predicted exotic counterparts implied by
the family replication phenomenon are nothing but the mesons of M89 hadron physics, or
rather M89 physics since strong and weak interactions are in TGD framework aspects of the
same purely geometric dynamics.

This prediction looks unrealistic in light of the parity violation in weak interactions. Fur-
thermore, the classical counterpart HAJαβ of color gauge field vanishes for Lagrangian sub-
manifolds of CP2 whereas weak fields are non-vanishing.

The classical weak fields could however determine classical color gauge fields and one might
consider the possibility that at least at the level of a single space-time surface where color
degrees of freedom are not visible (note also color confinement), only electroweak interactions
are needed to allow a complete description.

In the sequel a scenario about the detailed relationship of strong and weak interactions is
discussed. In this picture classical electroweak interactions are basically local and only these appear
in the TGD analogs of fundamental interaction vertices describing splitting and reconnection of
monopole flux tubes. Also strong interactions can be assigned to these topological interactions. The
basic problem is to understand how strong interaction can be parity conserving while the classical
electroweak dynamics violates parity conservation. The proposed model, argued to overcome this
problem, involves several topological elements.

1. The topological explanation of the family replication phenomenon in terms of the genus of
partonic 2-surface carrying fermion lines as boundaries of string world sheets.
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2. The view of holography as a 4-D analog of holomorphy reducing to 2-D holomorphy for
partonic 2-surfaces. This predicts two kinds of partonic 2-surfaces as complex 2-surfaces in
CP2 with a spherical topology. Tor the homologically non-trivial geodesic sphere induced
weak fields vanish (no parity violation classically) and for the second complex sphere they do
not. A natural working hypothesis is that these two spheres explain the difference between
strong and weak interactions.

3. The homology (Kähler magnetic) charge h of the partonic 2-surface correlates with the genus
of the partonic 2-surface. For complex partonic 2-surfaces in CP2, the genus is given g =
(h−1)(h−2)/2−s, where s is the number of singularities. Only the genera g = (h−1)(h−2)/2
are free of singularities. For g = 0, this includes h = 1 and h = 2. Already for g = 2 there
would be singularity. It is however possible to overcome this problem since partonic 2-surfaces
can be deformed to M4 degrees of freedom and one can add handles in this way. A rather
detailed picture of partonic 2-surfaces and monopole flux tubes emerges.

2 How do strong and weak interactions relate to each other
in the TGD Universe?

In the following the question of how strong interactions emerge at the level of scattering amplitudes.
The problem is that, although there is a natural candidate for gluons as induced gauge fields, only
electroweak gauge potentials couple to embedding space spinor fields and induced spinor fields.

2.1 How could strong interactions emerge at the level of scattering am-
plitudes?

The above considerations are dangerous in that the intuitive QFT based thinking based is applied in
TGD context where all interactions reduced to the dynamics of 3-surfaces and fields are geometrized
by reducing them to the induced geometry at the level of space-time surface. Quantum field theory
limit is obtained as an approximation and the applications of its notions at the fundamental level
might be dangerous. In any case, it seems that only electroweak gauge potentials appear in the
fermionic vertices and this might be a problem.

1. By holography perturbation series is not needed in TGD. Scattering amplitudes are sums of
amplitudes associated with Bohr orbits, which are not completely deterministic: there is no
path integral. Whether path integral could be an approximate approximation for this sum
under some conditions is an interesting question.

2. It is best to start from a concrete problem. Is pair creation possible in TGD? The problem is
that fermion and antifermion numbers are separately conserved for the most obvious propos-
als for scattering amplitudes. This essentially due to the fact that gauge bosons correspond
to fermion-antifermion pairs. Intuitively, fermion pair creation means that fermion turns
backwards in time. If one considers fermions in classical background fields this turning back
corresponds to a 2-particle vertex. Could pair creation in classical fields be a fundamental
process rather than a mere approximation in the TGD framework. This would conform with
the vision that classical physics is an exact part of quantum physics.

The turning back in time means a sharp corner of the fermion line, which is light-like else-
where. M4 time coordinate has a discontinuous derivative with respect to the internal time
coordinate of the line. In [L9, L16] a proposal was made that this kind of singularities are
associated with vertices involving pair creation and that they correspond to local defects
making the differentiable structure of X4 exotic. The basic problem of GRT would become
a victory in the TGD framework and also mean that pair creation is possible only in 4-D
space-time.

One can imagine two kinds of turning backs in time.

1. The turning back in time could occur for a 3-D surface such as monopole flux tube and
induce the same process the string world sheets associated with the flux tubes and for the
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ends of the string world sheets as fermion lines ending at the 3-D light-like orbits of partonic
2-surfaces.

2. In the fusion of two 2-sheeted monopole flux tubes along their ”ends” identifiable as partonic
2-surfaces wormhole contacts, the ends would fuse instantaneously (this process is analogous
to ”join along boundaries”). The time reversal of this process would correspond to the
splitting of the monopole flux tube inducing a turning back in time for a partonic 2-surface
and for fermionic lines as boundaries of string world sheets at the partonic 2-surface.

This would be analogous to a creation of a fermion pair in a classical induced gauge field,
which is electroweak. The same would occur for the partonic 2-surfaces as opposite wormhole
throats and for the string world sheets having light-like boundaries at the orbits of partonic
2-suraces.

3. The light-like orbit of a partonic 2-surface contains fermionic lines as light-like boundaries of
string world sheets. A good guess is that the singularity is a cusp catastrophe so that the
surface turns back in time in exactly the opposite direction. One would have an infinitely
sharp knife edge.

What one can say about the scattering amplitudes on the basis of this picture? Can one obtain
the analog for the 2-vertex describing a creation of a fermion pair in a classical external field?

1. The action for a geometric object of a given dimension defines modified gamma matrices
in terms of canonical momentum currents as Γα = TαkΓk, Tαk = ∂L/partial(∂αh

k). By
hermiticity the covariant divergence DαΓα of the vector defined by modified gamma matrices
must vanish. This is true if the field equations are satisfied. This implies supersymmetry
between fermionic and bosonic degrees of freedom.

For space-time surfaces, the action is Kähler action plus volume term. For the 3-D light-
partonic orbits one has Chern-Simons-Kähler action. For string world sheets one has area
action plus the analog of Kähler magnetic flux. For the light-boundaries of string world sheets
defining fermion lines one has the integral

∫
Aµdx

µ. The induced spinors are restrictions of
the second quantized spinors fields of H = M4×CP2 and the argument is that the modified
Dirac equation holds true everywhere, except possibly at the turning points.

2. Consider now the interaction part of the action defining the fermionic vertices. The basic
problem is that the entire modified Dirac action density is present and vanishes if the modified
Dirac equation holds true everywhere. In perturbative QFT, one separates the interaction
term from the action and obtains essentially ΨΓαDαΨ. This is not possible now.

The key observation is that the modified Dirac equation could fail at the turning points!
QFT vertices would have purely geometric interpretation. The gamma matrices appearing
in the modified Dirac action would be continuous but at the singularity the derivative ∂µΨ =
∂µm

k∂kΨ of the induced free second quantized spinor field of H would become discontinuous.
For a Fourier mode with momentum pk, one obtains

∂µΨp = pk∂µm
kΨp ≡ pµΨp .

This derivative changes sign in the blade singularity. At the singularity one can define this
derivative as an average and this leaves from the action ΨΓαDαΨ only the term ΨΓαAαΨ.
This is just the interaction part of the action!

3. This argument can be applied to singularities of various dimensions. For D = 3, the action
contains the modified gamma matrices for the Kähler action plus volume term. For D = 2,
Chern-Simons-Kähler action defines the modified gamma matrices. For string world sheets
the action could be induced from area action plus Kähler magnetic flux. For fermion lines
from the 1-D action for fermion in induced gauge potential so that standard QFT result
would be obtained in this case.

How does this picture relate to perturbative QFT?
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1. The first thing to notice is that in the TGD framework gauge couplings do not appear at all
in the interaction vertices. The induced gauge potentials do not correspond to A but to gA.
The couplings emerge only at the level of scattering amplitudes when one goes to the QFT
limit. Only the Kähler coupling strength and cosmological constant appear in the action.

2. The basic implication is that only the electroweak gauge potentials appear in the vertices.
This conforms with the dangerous looking intuition that also strong interactions can be de-
scribed in terms of electroweak vertices but this is of course a potential killer prediction. One
should be able to show that the presence of WCW degrees of freedom taken into account
minimally in terms of fermionic color partial waves in CP2 predicts strong interactions and
predicts the value of αs. Note that the restriction of spinor harmonics of CP2 to a homolog-
ically non-trivial geodesic sphere gives U(2) partial waves with the same quantum numbers
as SU(3) color partial waves have.

3. TGD approach differs dramatically from the perturbative QFT. Since 1/αs appears in the
vertex, the increase of heff in the vertex increases it: just the opposite occurs in the pertur-
bative QFT! This seems to be in conflict with QFT intuition suggesting a perturbation series
in αs ∝ 1/~eff . The explanation is that 1/αK appears as a coupling parameter instead of
αs.

This reminds of the electric-magnetic duality between perturbative and non-perturbative
phases of gauge theories, where magnetic coupling strength is proportional to the inverse of
the electric coupling strength. The description in terms of monopole flux tubes is therefore
analogous to the description in terms of magnetic monopoles in the QFT framework. In
TGD, it is the only natural description at the fundamental level. The decrease of αK by
increase of heff would indeed correspond to the QFT type description reduction of αs.

Could the description based on Maxwellian non-monopole flux tubes correspond to the usual
perturbative phase without magnetic monopoles? In the Maxwellian phase there is huge
vacuum degeneracy due to the presence of vacuum extremals with a vanishing Kähler form
at the limit of vanishing volume action. Could this degeneracy allow path integral as a
practical approximation at QFT limit.

4. heff/h0 = n is proposed to correspond to the dimension of algebraic extension of rationals
associated with the space-time surface and serve as a measure for algebraic complexity.
The increase of algebraic complexity of the space-time region defining the strong interaction
volume would also make interactions strong. In TGD, the fundamental coupling strength
would be αK and the increase of αK for ordinary value of h would force the increase of h.
This should happen below the electroweak scale or at least the confinement scales and make
perturbation theory describing strong interactions possible. This description would involve
monopole flux tubes and their reconnections.

5. The basic objection against the proposal is that weak interactions violate parity conservation,
which is very small for hadrons. The increase of the length scale below which weak bosons are
effectively massless strengthens this effect. The way out of the problem should be based on
the dominance of the Kähler part of electroweak fields in the electroweak vertices describing
the splitting of flux tubes modelling the emission of gluons. Flux tubes obtained as M4

deformations of cosmic strings carry vanishing weak fields apart from Z0 field containing
Kähler part so that the parity breaking effects might be small. Kähler form to which also
classical color gauge fields are proportional, is invariant under color rotations whereas color
rotations induce non-trivial holonomies for the weak gauge fields. Also this could play a
crucial role in minimizing parity breaking effects by making weak contributions to the gluon
emission vertex very small. Same is true also for emission of mesons. For Maxwellian flux
tubes the situation would be different. The stringy description of quarks, gluons, and hadrons
as monopole flux tubes would distinguish between strong and electroweak interactions.
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2.2 About the difference between electroweak and strong interactions
assuming generalized holomorphy

It is interesting to see what the holography as generalization to 4-D holomorphy hypothesis pre-
dicts when combined with the proposed explanation of the family replication phenomenon and
the proposal for how parity violation is avoided in strong interactions despite the fact that only
electroweak induced fields appear in the fundamental vertices for the creation of various particles
identified as closed 2-sheeted monopole flux tubes. This includes mesons and gluons.

1. Monopole flux tubes can be regarded as M4 deformations of cosmic strings representable
as Cartesian products of string world sheet X2 ⊂ M4 and 2-surface Y 2 ⊂ CP2. Partonic
2-surfaces would appear as ”ends” of 2-sheeted monopole flux tubes. If the holomorphic
realization of holography makes sense, the space-time surfaces are complex algebraic surfaces.
In the simplest situation the 2-D cross section of a cosmic string is a complex surface of CP2.
A more general option is as a complex algebraic curve in E2 × CP2.

2. Riemann-Roch theorem (see ) allows to define geometric genus (see ) of a complex algebraic
curve in CP2 as

g = (d− 1)(d− 2)/2− s ,

noindent where s is the number of singularities, which are cones and as a special case cusps
(infinitely sharp cones). According to the Wikipedia article, this formula generalizes to
algebraic surfaces in higher than 2-D complex manifolds, or at least projective space.

From this one can conclude for the (d − 1)(d − 2)/2 ≥ g for partonic 2-surfaces as complex
surfaces in CP2 there are always singularities. For s = 0, g = 0 allows d = 0 and d = 1. For
s = 0, g = 1 allows d = 3 related to elliptic functions. Already for g = 2 one has s ≥ 1. The
genera g = (d− 1)(d− 2)/2 are special in that they also allow s = 0.

3. It is known (see ) that for s = 0 the topological genus, algebraic genus and arithmetic genus
are identical. This might be relevant for the definition of genus for the p-adic counterparts of
partonic 2-surfaces, where the topological genus does not make sense. This could make g ∈
{0, 1, (d−1)(d−2)2} cognitively special. It would seem that p-adic variants of g = 2 partonic
2-surfaces do not make sense unless one can eliminate the singularities by a deformation of
Y 2 to a complex 2-surface in E2 × Y 2. One should also be able to represent g > 0 surfaces
as surfaces in E2 × CP2, where CP1 corresponds to either d = 1 of d = 2.

2.2.1 Generalized holomorphy, difference between strong and weak interactions, and
family replication phenomenon

It is instructive to consider the CP2 option and its generalization in more detail from the perspective
of weak and strong interactions and family replication phenomenon.

1. g = 0 option is the most natural one for cosmic strings and allows polynomials of degree
d = 1 and d = 2. d = 1 would correspond to the homologically non-trivial geodesic sphere
of CP2 and d = 2 a more complex surface. For the homologically non-trivial sphere only the
Kähler form would contribute to the vertex related to the splitting of the cosmic string. This
could explain why the generation of hadronic and gluonic monopole strings does not lead to
a parity violation.

For d = 2 and g = 0 induced electroweak fields are non-vanishing and parity violations are
predicted. Could photons and gluons correspond to cosmic strings with cross section as d = 1
surface of CP2? Could parity violating weak bosons relate to cosmic strings with a d = 2
spherical cross section so that the difference between strong and weak interactions would
reduce to algebraic geometry?

2. The genus g = 1 could be also realized for cosmic strings with d = 3 to which elliptic
functions. In this case, the induced weak fields would be present for the CP2 option. This

https://en.wikipedia.org/wiki/Riemann Roch_theorem
https://en.wikipedia.org/wiki/Genus_(mathematics)
https://en.wikipedia.org/wiki/Genus_(mathematics)
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does not conform with the idea that parity breaking effects do not depend on the genus
(generation of fermion).

Could the deformations of partonic 2-surfaces in M4 degrees of freedom come in rescue? For
partons as complex 2-surfaces in E2×S2 ⊂ E2×CP2, S2 homologically non-trivial geodesic
sphere, no charged weak fields would be present. If this picture is correct the deformations in
E2 degrees of freedom would distinguish between fermion families but the difference should
be subtle. I do not know whether the formula for algebraic surfaces in projective spaces still
holds true.

3. Genus g = 2 partonic 2-surface in CP2 would have at least one singular point. Is this
physically acceptable? Is it possible to avoid the singularity for the Y 2 ⊂ E2×S2 ⊂ E2×CP2

option? Blowing up of the singularities by removing a small disk of S2 around the singularity
and gluing back a disk of E2×S2 is what comes to mind. Blowup, in particular a blowup at
a given point of complex manifold, such as a cone singularity of complex surface, is described
in the Wikipedia article (see ).

Topologically this means construction of a connected sum with the projective space CP1 by
removing a small disk around the singularity. The realization of this operation would now
occur in E2 × Y 2. If the genus g = d(d − 1)/2 − r is preserved in the blowup so that one
would obtain non-singular representatives also in g = 2 case. Obviously the formula for the
genus would not hold anymore.

4. Since all quark genera g ≤ 2 appear in strong interactions, which do not violate parity, one
should have a way of constructing g > 0 surfaces from the homologically non-trivial sphere
CP1 ⊂ CP2 with n = 1 complex surface in E2 ⊂ CP1. Addition of handles should be the
way. These surfaces would be associated with quarks, gluons and mesons, which all would
correspond to 2-sheeted monopole fluxe tubes.

This operation should be possible also for the d = 2 complex sphere carrying induced weak
gauge fields. The predicted higher families of weak bosons as analogs of mesons could be
obtained from d = 2 monopole flux tubes. The existence of strong and weak interactions
would reflect the existence of d = 1 and d = 2 complex spheres of CP2. In particular, one
obtains non-singular g = 2 fermions. Also leptons could correspond to d = 2 spheres.

2.2.2 About the relationship between Kähler magnetic charge and genus

What can one say about the homological (Kähler magnetic) charge of a partonic 2-surface with a
given genus. At least homological charges ±1 and ±2 should be realized for the partonic 2-surfaces.
For about 4 decades ago, my friend Lasse Holmström, who is a mathematician, gave me as a gift
a Bulletin of American Mathematical Society [A1] containing articles about 4-D topology and also
about topology of CP2. At page 124 there were interesting results related to the realization of
homologically non-trivial 2-surfaces in CP2, in particular there were conditions on the minimal
genus of these surfaces.

The basic result was that a surface with homology charge h can be realized as a surface with
genus g = (h− 1)(h− 2)/2 and there are no known realizations with a smaller genus. For d = h,
this sequence would correspond to the sequence g = (d− 1)(d− 2)/2 for complex surfaces without
singularities. This correlation between genus and homology charge troubled me since in the TGD
framework h ∈ {±1,±2} should be possible for all genera. The addition of handles to d = 1, 2
complex spheres of CP1 ⊂ CP1 ⊂ E2 would solve the problem. An interesting question is whether
the sequence 0, 1, 6, 10, 15, ... of homologically special genera could have a physical interpretation
and perhaps predict a hierarchy of analogs of strong and weak interactions.

2.2.3 About the number of complex deformations of a given partonic 2-surface

It is interesting to ask about how many deformations a given partonic 2-surface represents as a
complex surface in E2 × CP1, where CP1 corresponds to the surface of CP2 with d ∈ {1, 2}. For
the deformations of CP1 with d = 1, 2, one can express E2 complex coordinate as a meromorphic
function of CP1 complex coordinate. More generally, one can consider the partonic 2-surface in
E2 × S2 as a surface with given genus g and consider the complex deformations of this surface.

https://en.wikipedia.org/wiki/Blowing_up
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The dimension of the space of these deformations is of obvious physical interest if generalized
holomorphy is accepted.

In the case of a pole, the E2 point would go to infinity so that poles are not allowed. If the
notion of Hamilton-Jacobi structure [L17] makes sense, one can slice M4 also using closed partonic
2-surfaces with complex coordinates so that meromorphic functions with poles are allowed. In
TGD, rational functions with rational coefficients of corresponding polynomials are favoured.

These functions can be characterized by so-called principal divisors expressible as formal super-
positions D =

∑
νkPk. Here Pk are the singular points (zeros for νk > 0 and poles for νk < 0). One

can assign also to complex one-forms divisors: this kind of divisor is known as canonical divisor
and is unique apart from addition of principal divisor, which corresponds to a multiplication of the
1-form with a meromorphic function. The degree of the divisor can be defined as deg(D) =

∑
νk.

Riemann-Roch theorem applies also to algebraic surfaces such as complex surfaces in E2×CP1,
and allows to get grasp about the numbers of the surfaces obtained as deformations of CP1 with a
given divisor D for a surface with a given genus g. These numbers correspond to the dimensions of
the linear spaces of rational functions, whose poles are not worse than the coefficients of D, where
Pk are the singular points (zeros for nk > 0 and poles for nk < 0). The Riemann-Roch formula
reads as

`(D)− `(K −D) = deg(D)− g + 1.

Here `(D) is the dimension of the space of meromorphic functions h for which all the coefficients
of (h) +D are non-negative (no poles). The term −`(K −D) is a correction term present only for
low degrees deg(D) defining the analog of polynomial degree characterizing the winding number of
h. Because `(K −D) is a dimension of vector space, it cannot be negative and vanishes for large
enough degrees. For large values of deg(D) the formula reads therefore as `(D) = deg(D)− g + 1.

3 Questions related to the generalized holomorphies and
fundamental vertices according to TGD

We had very inspiring discussions with Marko Manninen at a birthday meal with wine. During the
way home some questions and ideas emerged. Could the 4-D generalization of holomorphy realizing
holography allow an explicit realization of an infinite hierarchy of conserved charges generalizing
the Super Virasoro algebra? Could the only particle vertex in TGD correspond to a creation of
fermion-antifermion pair: in this 2-vertex fermion state and fermionic line, partonic orbit, or Bohr
orbit turns back in time? Can one identify the graviton emission vertex?

3.1 Questions related to the generalized holomorphies and symplectic
transformations

We had very inspiring discussions with Marko Manninen at a birthday meal with wine. During the
way home some questions and ideas emerged. Could the 4-D generalization of holomorphy realizing
holography allow an explicit realization of an infinite hierarchy of conserved charges generalizing
the Super Virasoro algebra?

3.1.1 4-D generalization of the holomorphy allows conserved charges associated with
the generalized holomorphies

Does the 4-D analogy of holomorphy as a realization of holography give rise to conserved quantities?
Now the symmetries would not be isometries, nor some other symmetries of the action, but dynamic
symmetries satisfied only by the Bohr orbits. A little calculation that one can do in your head
shows that one obtains conserved currents: the reason is the same as in the case of field equations.
The divergence of the Noether current is a contraction of tensors with no common index pairs for
the generalization of complex coordinates.

Unlike those associated with the general coordinate invariance, these conserved quantities do
not vanish. They correspond to the 4-D generalization of conformal transformations and give rise
to a generalization of the Virasoro algebra and also of Super Virasoro algebra realized in terms
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of the modified Dirac action for the induced spinor fields obtained from the free second quantized
spinor fields of H.

In the string model, these conformal charges are assumed to annihilate the physical states. In
TGD, I have proposed that only a subalgebra that is isomorphic to the whole algebra, having
conformal weights which are integer multiples of the entire algebra, does this. In TGD framework,
the conformal weights are necessarily non-negative and ZEO allows this. One obtains a whole
hierarchy of subalgebras and a sub-hierarchy of algebras for which conformal symmetry as gauge
symmetry is ”broken” to dynamical Lie symmetries for physical states having conformal weight
below some maximum value. These hierarchies could correspond to the hierarchies of algebraic
extensions for rationals defined by composite polynomials.

Generalized holomorphy algebra generalizes the Super-Virasoro algebra and the Super-Kac-
Moody algebra related to the conformal invariance of the string model. The corresponding Noether
charges are conserved. Modified Dirac action allows to construct the supercharges having inter-
pretation as WCW gamma matrices. This suggests an answer to a longstanding question related
to the isometries of the ”world of the classical worlds” (WCW).

1. Either the generalized holomorphies or the symplectic symmetries of H = M4×CP2 or both
together define WCW isometries and corresponding super algebra. One can ask whether
the symplectic symmetries induced from H are necessarily needed and whether they might
correspond to symplectic symmetries of WCW. One would obtain a close similarity with the
string model, except that one has half-algebra for which conformal weights are proportional
to non-negative integers and gauge conditions only apply to an isomorphic subalgebra. These
are labeled by positive integers and one obtains a hierarchy.

2. By their light-likeness, the light cone boundary and orbits of partonic 2-surfaces allow an
infinite-dimensional isometry group. This is possible only in dimension four. Its transforma-
tions are generalized conformal transformations of 2-sphere (partonic 2-surface) depending
on light-like radial coordinate such that the radial scaling compensates for the usual con-
formal scaling of the metric. The WCW isometries would thus correspond to the isometries
of the parton orbit and of the boundary of the light cone! These two representations could
provide alternative representations for the charges if the strong form of holography holds
true and would realize a strong form of holography. Perhaps these realizations deserve to be
called inertial and gravitational charges.

For the light-cone boundary, the conservation looks obvious if the light-cone is sliced by
time translates of the light-cone boundary. A slicing defined by the Hamilton-Jacobi
structure [L17] would be naturally associated with the partonic orbits and possible light-
like boundaries of space-time surface [L10]. For the partonic slicing, time direction and also
slices are light-like: a limiting case of ordinary slicing by Euclidian slices is in question. One
can see the entire partonic orbit as analog of a 3-D Euclidian surface at which holographic
data are given.

3. An absolutely essential point is that generalized holomorphisms are not symmetries of Kähler
function since otherwise Kähler metric involving second derivatives of type (1,1) with respect
to complex coordinates of WCW is non-trivial if defined by these symmetry generators as
differential operators. If Kähler function is equal to Kähler action, as it seems, Kähler action
cannot be invariant under generalized holomorphies.

Noether’s theorem states that the invariance of the action under a symmetry implies the con-
servation of corresponding charge but does not claim that the existence of conserved Noether
currents implies invariance of the action. Since Noether currents are conserved now, one
would have a concrete example about a situation in which the inverse of Noether’s theorem
does not hold true. In a string model based on area action, conformal transformations of
complex string coordinates give rise to conserved Noether currents as one can easily check
and the area element defined by the induced metric suffers a conformal scaling so that the
action is not invariant in this case.

4. What makes this so interesting is that, due to the light-likeness of δM4
+, the algebra of

isometries of δM4
+×CP2 corresponds to the infinite-dimensional algebra of holomorphisms
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of S2 localized with respect to the light-like radial coordinate δM4
+! Radially localized

holomorphisms would act as isometries of the light-cone boundary and induce isometries
of WCW! Same is true at the light-like orbits of partonic 2-surfaces. Also the generalized
Kac-Moody algebra could define infinitesimal isometries.

5. What about Poincare symmetries? They would act on the center of mass coordinates of
causal diamonds (CDs) as found already earlier [L18]. CDs form the ”spine” of WCW, which
can be regarded as fiber space with fiber for a given CD containing as a fiber the space-time
surfaces inside it.

The super-symmetric counterparts of holomorphic charges for the modified Dirac action and
bilinear in fermionic oscillator operators associated with the second quantization of free spinor
fields in H, define gamma matrices of WCW. Their anticommutators define the Kähler metric
of WCW. There is no need to calculate either the action defining the classical Kähler action
defining the Kähler function or its derivatives with respect to WCW complex coordinates and
their conjugates. What is important is that this makes it possible to speak about WCW metric
also for number theoretical discretization of WCW with space-time surfaces replaced with their
number theoretic discretizations.

3.1.2 Challenging the existing picture of WCW geometry

These findings make it possible to challenge and perhaps sharpen the existing speculations con-
cerning the metric and isometries of WCW.

I have considered the possibility that also the symplectomorphisms of δM4 + ×CP2 could
define WCW isometries. This actually the original proposal. One can imagine two options.

1. The continuation of symplectic transformations to transformations of the space-time surface
from the boundary of light-cone or from the orbits partonic 2-surfaces should give rise to
conserved Noether currents but it is not at all obvious whether this is the case.

2. One can assign conserved charges to the time evolution of the 3-D boundary data defining
the holographic data: the time coordinate for the evolution would correspond to the light-
like coordinate of light-cone boundary or partonic orbit. This option I have not considered
hitherto. It turns out that this option works!

The conclusion would be that generalized holomorphies give rise to conserved charges for 4-D
time evolution and symplectic transformations give rise to conserved charged for 3-D time evolution
associated with the holographic data.

3.1.3 About extremals of Chern-Simons-Kähler action

Let us look first the general nature of the solutions to the extremization of Chern-Simons-Kähler
action.

1. The light-likeness of the partonic orbits requires Chern-Simons action, which is equivalent to
the topological action J∧J , which is total divergence and is a symplectic in variant. The field
equations at the boundary cannot involve induced metric so that only induced symplectic
structure remains. The 3-D holographic data at partonic orbits would extremize Cherns-
Simons-Kähler action. Note that at the ends of the space-time surface about boundaries of
CD one cannot pose any dynamics.

2. If the induced Kähler form has only the CP2 part, the variation of Chern-Simons-Kähler
form would give equations satisfied if the CP2 projection is at most 2-dimensional and
Chern-Simons action would vanish and imply that instanton number vanishes.

3. If the action is the sum of M4 and CP2 parts, the field equations in M4 and CP2 degrees
of freedom would give the same result. If the induced Kähler form is identified as the sum
of the M4 and CP2 parts, the equations also allow solutions for which the induced M4 and
CP2 Kähler forms sum up to zero. This phase would involve a map identifying M4 and CP2

projections and force induce Kähler forms to be identical. This would force magnetic charge

https://tgdtheory.fi/public_html/articles/CDconformal
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in M4 and the question is whether the line connecting the tips of the CD makes non-trivial
homology possible. The homology charges and the 2-D ends of the partonic orbit cancel
each other so that partonic surfaces can have monopole charge.

The conditions at the partonic orbits do not pose conditions on the interior and should allow
generalized holomorphy. The following considerations show that besides homology charges
as Kähler magnetic fluxes also Hamiltonian fluxes are conserved in Chern-Simons-Kähler
dynamics.

3.1.4 Can one assign conserved charges with symplectic transformations or partonic
orbits and 3-surfaces at light-cone boundary?

The geometric picture is that symplectic symmetries are Hamiltonian flows along the light-like
partonic orbits generated by the projection At of the Kähler gauge potential in the direction of
the light-like time coordinate. The physical picture is that the partonic 2-surface is a Kähler
charged particle that couples to the Hamilton H = At. The Hamiltonians HA are conserved
in this time evolution and give rise to conserved Noether currents. The corresponding conserved
charge is integral over the 2-surface defined by the area form defined by the induced Kähler form.

Let’s examine the change of the Chern-Simons-Kähler action in a deformation that corresponds,
for example, to the CP2 symplectic transformation generated by Hamilton HA. M4 symplectic
transformations can be treated in the same way:here however M4 Kähler form would be involved,
assumed to accompany Hamilton-Jacobi structure as a dynamically generated structure.

1. Instanton density for the induced Kähler form reduces to a total divergence and gives
Chern-Simons-Kähler action, which is TGD analog of topological action. This action should
change in infinitesimal symplectic transformations by a total divergence, which should vanish
for extremals and give rise to a conserved current. The integral of the divergence gives
a vanishing charge difference between the ends of the partonic orbit. If the symplectic
transformations define symmetries, it should be possible to assign to each Hamiltonian HA a
conserved charge. The corresponding quantal charge would be associated with the modified
Dirac action.

2. The conserved charge would be an integral over X2. The surface element is not given by the
metric but by the symplectic structure, so that it is preserved in symplectic transformations.
The 2-surface of the time evolution should correspond to the Hamiltonian time transformation
generated by the projection Aα = Ak∂αs

k of the Kähler gauge potential Ak to the direction
of light-like time coordinate xα ≡ t.

3. The effect of the generator jkA = Jkl∂lHA on the Kähler potential Al is given by jkA∂kAl.
This can be written as ∂kAl = Jkl + ∂lAk. The first term gives the desired total divergence
∂α(εαβγJβγHA).

The second term is proportional to the term ∂αHA − {Aα, H}. Suppose that the induced
Kähler form is transversal to the light-like time coordinate t, i.e. the induced Kähler form
does not have components of form Jtµ. In this kind of situation the only possible choice for
α corresponds to the time coordinate t. In this situation one can perform the replacement
∂αHA−{Aα, H} → dHA/dt−{At, H} This corresponds to a Hamiltonian time evolution
generated by the projection At acting as a Hamiltonian. If this is really a Hamiltonian
time evolution, one has dHA/dt − {A,H} = 0. Because the Poisson bracket represents
a commutator, the Hamiltonian time evolution equation is analogous to the vanishing of
a covariant derivative of HA along light-like curves: dHA/dt + [A,HA] = 0. The physical
interpretation is that the partonic surface develops like a particle with a Kähler charge. As
a consequence the change of the action reduces to a total divergence.

An explicit expression for the conserved current JαA = HAε
αβγJβγ can be derived from

the vanishing of the total divergence. Symplectic transformations on X2 generate an
infinite-dimensional symplectic algebra. The charge is given by the Hamiltonian flux QA =∫
HAJβγdx

α ∧ dxβ .

4. If the projection of the partonic path CP2 or M4 is 2-D, then the light-like geodesic line
corresponds to the path of the parton surface. If Al can be chosen parallel to the surface, its
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projection in the direction of time disappears and one has At = 0. In the more general case,
X2 could, for example, rotate in CP2. In this case At is nonvanishing. If J is transversal
(no Kähler electric field), charge conservation is obtained.

Do the above observations apply at the boundary of the light-cone?

1. Now the 3-surface is space-like and Chern-Simons-Kähler action makes sense. It is not
necessary but emerges from the ”instanton density” for the Kähler form. The symplectic
transformations of δM4

+×CP2 are the symmetries. The most time evolution associated
with the radial light-like coordinate would be from the tip of the light-cone boundary to
the boundary of CD. Conserved charges as homological invariants defining symplectic
algebra would be associated with the 2-D slices of 3-surfaces. For closed 3-surfaces the total
charges from the sheets of 3-space as covering of δM4

+ must sum up to zero.

2. Interestingly, the original proposal for the isometries of WCW was that the Hamiltonian
fluxes assignable to M4 and CP2 degrees of freedom at light-like boundary act define the
charges associated with the WCW isometries as symplectic transformations so that a strong
form of holography would have been be realized and space-time surface would have been
effectively 2-dimensional. The recent view is that these symmetries pose conditions only on
the 3-D holographic data. The holographic charges would correspond to additional isometries
of WCW and would be well-defined for the 3-surfaces at the light-cone boundary.

To sum up, one can imagine many options but the following picture is perhaps the simplest
one and is supported by mathematical facts. The isometry algebra of δM4

+ × CP2 consists of
generalized conformal and KM algebras at 3-surfaces in δM4

+ ×CP2 and symplectic algebras at
the light cone boundary and 3-D light-like partonic orbits. The latter symmetries give constraints
on the 3-D holographic data. It is still unclear whether one can assign generalized conformal
and Kac-Moody charges to Chern-Simons-Kähler action. The isomorphic subalgebras labelled by a
positive integer and their commutators with the entire algebra would annihilate the physical states.
The isomorphic subalgebras labelled by a positive integer and their commutators with the entire
algebra would annihilate the physical states. These two representations would generalize the
notions of inertial and gravitational mass and their equivalence would generalize the Equivalence
Principle.

3.1.5 The TGD counterparts of the gauge conditions of string models

The string model picture forces to ask whether the symplectic algebras and the generalized
conformal and Kac-Moody algebras could act as gauge symmetries.

1. In string model picture conformal invariance would suggest that the generators of the gener-
alized conformal and KM symmetries act as gauge transformations annihilate the physical
states. In the TGD framework, this does not however make sense physically. This also sug-
gests that the components of the metric defined by supergenerators of generalized conformal
and Kac Moody transformations vanish. If so, the symplectomorphisms δM4

+ ×CP2 local-
ized with respect to the light-like radial coordinate acting as isometries would be needed.
The half-algebras of both symplectic and conformal generators are labelled by a non-negative
integer defining an analog of conformal weight so there is a fractal hierarchy of isomorphic
subalgebras in both cases.

2. TGD forces to ask whether only subalgebras of both conformal and Kac-Moody half
algebras, isomorphic to the full algebras, act as gauge algebras. This applies also to the
symplectic case. Here it is essential that only the half algebra with non-negative multiples
of the fundamental conformal weights is allowed. For the subalgebra annihilating the states
the conformal weights would be fixed integer multiples of those for the full algebra. The
gauge property would be true for all algebras involved. The remaining symmetries would
be genuine dynamical symmetries of the reduced WCW and this would reflect the number
theoretically realized finite measurement resolution. The reduction of degrees of freedom
would also be analogous to the basic property of hyperfinite factors assumed to play a key
role in thee definition of finite measurement resolution.
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3. For strong holography, the orbits of partonic 2-surfaces and boundaries of the spacetime
surface at δM4

+ would be dual in the information theoretic sense. Either would be enough
to determine the space-time surface.

3.2 Are fermionic 2-vertices all that is needed in TGD?

In quantum field theories, already the interaction vertex for 3 particles leads to divergences. In a
typical 3-vertex, fermion emits a boson or boson decays to a fermion-antifermion pair. In TGD,
the situation changes.

1. Fermions are the only fundamental particles in TGD. Since fundamental bosons are missing,
there is no vertex representing emission of a fundamental boson emission from fermion or a
vertex producing fermion antifermion pair from a fundamental boson. In TGD, bosons as
elementary particles (distinguished from fundamental bosons) are fermion-antifermion pairs,
and the emission of elementary bosons is possible. However, the problem is that the total
fermion and antifermion numbers are separately conserved. Unless it is possible to create
fermion pairs from classical fields!

2. In the standard theory fermion-antifermion pairs can be indeed created in classical gauge
fields. This creation is an experimental fact but it is thought that this description is only
a convenient approximation. In TGD however, the classical fields associated with the Bohr
orbits of 3-surfaces are an exact part of quantum theory. Could this description be accurate
in TGD? In the classical induced fields associated with particles, pairs could arise. Approxi-
mation would become exact in TGD.

A 2-vertex for creation of fermion-antifermion pair (or corresponding boson) is needed. In this
vertex, the fermion turns must turn backwards in time.

1. I managed to identify the fermionic 2-vertex was specified towards the end of this year as I
realized the connection to the problem of general relativity, which arises from the existence of
GRT space-times for which the 4-D diffeo structure is non-standard. There are a lot of these.
For an exotic diffeo structure, the standard diffeo structure can be said to have point-like
defects analogous to lattice defects.

2. Remarkably, this problem is encountered only in the space-time dimension 4 [L16]! Physical
intuition suggests that it must be possible to turn this problem from a disaster to victory.
In TGD, this is what actually happens: these point-like diffeo-defects can be identified as
interaction vertices, the fermion turns back in the direction of time. Pair creation would be
possible only in space-time dimension 4!

A generalization of the classical fermion pair creation vertex has the same general form as in
QFT. As a special case the pair can correspond to a boson as a fermion-antifermion bound
state. This vertex also has geometric variants in different dimensions. A fermion line, string
world sheet, the orbit of a partonic 2-surface and also the Bohr orbit of 3 surface can turn
backwards in time and the fermion states associated with the induced spinor fields do the
same.

This inspires two questions.

1. Is the creation of a pair actually the only vertex or is it possible to have a geometric 3-vertex
and is it really needed? At the fermion level only the 2-vertex described above is not possible,
but for the topological reactions of surfaces one could think of 3-vertices and in the earlier
picture I thought these are needed. They do not seem to be necessary however.

If so, the theory would be extremely simple compared to quantum field theories. There
dangerous genuine 3-vertices would be absent and diffeo defects defining 2 vertices, which
give all that is needed! At the geometric level, monopole fluxes would replicate and break
and join. Intriguingly, this is what would happen at the magnetic bodies of DNA and induce
similar reactions at the level of DNA molecules! Maybe biology has been doing its best to
tell us what the fundamental particle dynamics is!
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2. Since only the induced electroweak gauge potentials couple to fermions, the question arises
whether color and strong interactions are obtained. How is it possible to have strong inter-
actions without parity violation when basic vertices involve weak parity violation? I have
already discussed this question.

3.3 Vertex for graviton emission

There is still one crucially important question left. Is it possible and what would happen in it?
Can one obtain a vertex, where the analog for a contraction Tαβδgαβ of energy-momentum tensor
with the deviation of the metric from the Minkowski metric appears?

1. In TGD all elementary particles, also gravitons, are identified as closed 2-sheeted monopole
flux tubes with two wormhole contacts at its ”ends” and opposite wormhole throats carrying
fermions and antifermions [L13]. For gravitation one has 1 fermion or antifermion for each
wormhole throat.

Splitting of a monopole flux tube would give rise to the basic topological vertex appearing
in all particle vertices. This process would generalize the splitting of an open string to two
pieces. The flux tubes at the opposite sheets of the monopole flux tube representing a particle
would touch at a single point. This would lead to a homologically trivial wormhole contact,
which would evolve to a contact carrying a pair of opposite fluxes. This structure would
further develop to a pair of wormhole contacts touching at a single point. This structure
would then split to a pair of homologically trivial wormhole contacts with opposite fluxes at
the ends of a pair of resulting monopole flux tubes.

The graviton emission vertex should correspond to a splitting of monopole flux tubes. Mopole
flux tubes with fermion-antifermion pairs assignable to both wormhole contacts should ap-
pear. The fermion and antifermion should reside at the opposite throats of each wormhole
contact. This should happen in the splitting of a monopole flux tube and second monopole
flux tube would correspond to graviton. That two bosonic vertices are involved with the
emission, brings to mind the proposal that gravitation is in some sense a square of gauge
theory.

2. The vertex is the same as for gauge boson emission and for a creation of a fermion-antifermion
pair. The definition of the modified gamma matrices as Γα = Tαk Γk appearing in the modified
Dirac action [K4], involving the modified Dirac operator ΓµDµ makes it possible to identify
the gravitational part of the vertex. Here the quantities Tαk = ∂L/∂(∂αh

k) are canonical
momentum currents associated with the action defining the space-time surface and also the
analog of the energy-momentum tensor.

Modified gamma matrices are required by hermiticity forcing the vanishing of the divergence
of Γα giving classical field equations for space-time surfaces. This implies a supersymmetry
between the dynamics of fermions and 3-surfaces. The gravitational interaction would cor-
respond to the deviation of the induced metric from the induced metric defined by induced
CP2 metric. CP2 radius must correspond to Planck length lP . This requires that the CP2

as R ∼ 104lP must correspond to h = nh0, n ∼ 107 as found already earlier.

3. The cosmological term in GRT has coefficient 1/8πGΛ ≡ 1/R4 so that the modified gamma
matrices would contain a term proportional to 1/R4 plus a term coming from the Kähler
action. In the TGD framework [L1, L2], cosmological constant Λ depends on the p-adic
length scale, which is assumed to correspond to a ramified prime for an extension of rationals
associated with the polynomial P determining to high degree the space-time surface and
approaches to zero in cosmic scales. The cosmological value corresponds to R ' 10−4 meters,
i.e. cell length scale and a scale near neutrino Compton length.

In the general coordinate invariant formalism, one does not assign dimension to the coordi-
nates or to covariant derivative Dα. Metric has dimension 2. The scale dimension of Tαk

√
g

is the same dimension of L
√
g and thus vanishes. Γα has scale dimension −1. The modified

Dirac action must be dimensionless so that the induced spinors must have scale dimension
1/2.
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4. The cosmological constant as the coefficient of the action depends on the p-adic length scale.
This term contributes to the string tension of string-like objects an additional term, which
among other things can explain hadronic string tension. This term is visible also in the
interaction vertices. The Kähler part of the bosonic action terms comes from the deviation
of the induced metric from the flat metric and should give the usual gravitational interactions
with matter.

5. Holomorphy hypothesis allows any general coordinate invariant action constructible in terms
of the induced geometry. Although preferred extremals are always minimal surfaces, the
properties of the action are visible via classical conservation laws, via the field equation at
singular 3-surfaces involving the entire action, and via the vertices.

There is however an objection against the identification of gravitons as pairs of fermion-
antifermion pairs: in this case graviton emission requires two bosonic vertices. If one allows
the monopole flux tubes string-like entities to carry rotational angular momentum, graviton could
correspond to a single fermion-antifermion pair.

4 What gravitons are and could one detect them in TGD
Universe?

What gravitons are in the TGD framework? This question has teased me for decades. It is easy
to understand gravitation at the classical level in the TGD framework but the identification of
gravitons has been far from obvious. Second question is whether the new physics provided by
TGD could make the detection of gravitons possible?

4.1 Background

The initial stimulus, which lead to the ideas related to the TGD based identification of gravitons
to be discussed in the sequel came from condensed matter physics and condensed matter aspect
will be discussed first.

4.1.1 Could FQHE make possible detection of gravitons?

There was a highly interesting popular article (see this) telling about the work of Liang et al
with title ”Evidence for chiral graviton modes in fractional quantum Hall liquids” published in
Nature [?] (see this).

The abstract of the article helps to gain some idea of what is involved.

Exotic physics could emerge from interplay between geometry and correlation. In frac-
tional quantum Hall (FQH) states, novel collective excitations called chiral graviton
modes (CGMs) are proposed as quanta of fluctuations of an internal quantum metric
under a quantum geometry description.

Such modes are condensed-matter analogues of gravitons that are hypothetical spin-2
bosons. They are characterized by polarized states with chirality of +2 or 2, and energy
gaps coinciding with the fundamental neutral collective excitations (namely, magnetoro-
tons) in the long-wavelength limit. However, CGMs remain experimentally inaccessible.

Here we observe chiral spin-2 long-wavelength magnetorotons using inelastic scattering
of circularly polarized lights, providing strong evidence for CGMs in FQH liquids. At
filling factor v = 1/3, a gapped mode identified as the long-wavelength magnetoroton
emerges under a specific polarization scheme corresponding to angular momentum S =
2, which persists at extremely long wavelengths. Remarkably, the mode chirality remains
2 at v = 2/5 but becomes the opposite at v = 2/3 and 3/5. The modes have character-
istic energies and sharp peaks with marked temperature and filling-factor dependence,
corroborating the assignment of long-wavelength magnetorotons. The observations cap-
ture the essentials of CGMs and support the FQH geometrical description, paving the
way to unveil rich physics of quantum metric effects in topological correlated systems.

https://lifeboat.com/blog/2024/04/scientist-say-they-have-first-experimental-evidence-of-gravitons-that-could-connect-quantum-mechanics-and-relativity
https://www.nature.com/articles/s41586-024-07201-w
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From the abstract of the latter article it is clear that, assuming that quantum gravitation is
what the standard thinking would suggest, the work has not produced evidence for genuine
gravitons contrary to what the popular article claims. Gravitons in question are ”condensed
matter gravitons” and would be associated with systems exhibiting fractional quantum Hall effect
(FQHE) involving quantum coherent many-electron states.

One can however ask whether the notion of chiral graviton might generalize to the TGD frame-
work and this question turned out to be one of the really good questions which sometimes pop
into mind.

4.1.2 Theoretical models for chiral gravitons

Chern-Simons action is used to model FQHE. This does not however provide a full description
of these systems (also viscosity shows quantal features) and it has been proposed that effective
3-dimensional gravitation using effective 3-metric could work. This approach predicts graviton
type excitations (chiral gravitons). If the 3-metric has the property that it is degenerate, i.e. has
one light-like direction, one has a situation in which Chern-Simons action is extremely natural
since it does not involve the metric and all so that one avoids the problems due to the singularity
of the contravariant metric.

Haldane has proposed a geometric representation of the fractional quantum Hall effect in the
article [?]. Liou et al have proposed that chiral gravitons are possible in FQH liquids [?]. Son
has proposed what he calls Newton-Cartan Geometry [?] and Gromow and Son have proposed
a bimetric theory of fractional quantum hall states [?].

Since the bimetric theory is the latest contribution to this kind of models, I include the abstract
here to give a more concrete view about what is involved

We present a bimetric low-energy effective theory of fractional quantum Hall (FQH)
states that describes the topological properties and a gapped collective excitation, known
as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological
Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action a la bimetric
gravity, describing the gapped dynamics of a spin-2 mode.

The theory is formulated in curved ambient space and is spatially covariant, which
allows us to restrict the form of the effective action and the values of phenomenological
coefficients. Using bimetric theory, we calculate the projected static structure factor up
to the k 6 order in the momentum expansion.

To provide further support for the theory, we derive the long-wave limit of the GMP
algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states.
The particle-hole (PH) transformation of the theory takes a very simple form, making
the duality between FQH states and their PH conjugates manifest. We also comment
on the possible applications to fractional Chern insulators, where closely related struc-
tures arise. It is shown that the familiar FQH observables acquire a curious geometric
interpretation within the bimetric formalism.

Although chiral gravitons are not genuine gravitons, one can ask whether real gravitons could
be observed by using FQH systems.

1. One can ask whether real gravitons could couple to the chiral gravitons in analogy with
the coupling of a photon to a vector boson in hadron physics.

2. One can wonder whether real gravitons could be the, not necessarily chiral, TGD analogs
of chiral gravitons. As a matter of fact, this led to a consideration of a long standing
problem of what gravitons are in the TGD framework. They might indeed ge analogs of
chiral gravitons and this view solves several problems of the earlier view.

3. Quantum coherence in a rather long scale is associated FQH system and this might amplify
the rate for graviton absorption: proportionality to the number N of electrons would be
replaced with a proportionality to N2, and one can ask wonder whether the extremely small
scattering/absorption rate might increase so that it could be detected. Unfortunately, the
number of electrons turns out to be too small and also their mass. One can however also
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consider what I call monopole flux tube condensates with flux tubes carrying dark protons.
These play a key role in the TGD inspired quantum biology. Larger mass of proton and the
long scale quantum coherence scale lead to a more optimistic view of the detection.

4.1.3 Could gravitons in TGD be analogs of chiral gravitons and could gravitons be
detected in the TGD Universe?

The generalized Kähler structure forM4 ⊂M4×CP2 leads to together with holography=generalized
holomorphy hypothesis to the question whether the spinor connection of M4 could have interpre-
tation as gauge potentials with spin taking the role of the gauge charge.

The objection is that the induced M4 spinor connection has a vanishing spinor curvature. If
only holomorphies preserving the generalized complex structure are allowed one cannot transform
this gauge potential to zero everywhere. This argument can be strengthened by assigning the
fundamental vertices with the splitting of closed string-like flux tubes representing elementary
particles. The vertices would correspond to the defects of 4-D diffeo structure making possible
a theory allowing a creation of fermion pairs. The induced M4 spinor connection could not be
eliminated by a general coordinate transformation at the defects.

One would have an analog of topological field theory and the Equivalence Principle at quantum
level would state that locally the M4 spinor connection can be transformed to zero but not globally.
Gravitons and gauge bosons would be in a completely similar role as far as vertices of generalized
Feynman diagrams are considered. The vertex itself is proportional to the trace of the second
fundamental form at the singularity identifiable as generalization acceleration and analog of Higgs
field and vanishes elsewhere. The condition for the vertex generalizes Newton’s ”F=ma”!

The second question raised by the article [?] is whether gravitons could be detected in the
TGD Universe. It turns out that the FQHE type systems do not allow this but dark protons at
the monopole flux tube condensates give rise to a mild optimism.

Could gravitons identified in terms of the M4 spinor connection serve as the TGD analogs of
chiral gravitons. The term chiral graviton suggests that they have definite chirality in the sense
that they violate parity symmetry so that their couplings are chiral just like the couplings of weak
bosons.

The classical gravitation is not chiral. Chirality might reflect the fact that Chern-Simons
action violates chirality as an action for 3-D space. In the TGD, Chern-Simons-Kähler action is
defined for a light-like 3-surface whereas reflection acts in M4. Parity symmetry would
require that the holomorphic spinor connection for coordinates associated with Hamilton-Jacobi
structure is vectorial.

Could the self-dual Kähler form, having a physical interpretation as a presence of parallel
electric and magnetic fields of identical strength, induce a parity violation at the fundamental
level? I have proposed that CP could be violated and that this could explain the CP violation
in hadron physics and the matter-antimatter asymmetry. Could the TGD counterparts of chiral
gravitons couple vectorially but violate the CP symmetry?

4.2 Brief summary of some basic ideas of TGD

In this section some background of classical and quantum TGD is described and also the question
what gravitons are is considered.

4.2.1 Recent view of classical TGD

Before continuing, it is good to summarize the basic view about classical TGD as it is now.

1. In the TGD framework, one can understand classical gravitation in terms of the induced
geometry of the space-time surface X4 ⊂ H = M4 × CP2. The gravitational constant G
should be determined by the square of the CP2 radius R ∼ 104lP , l2P = G~. If one accepts
the hierarchy of Planck constants heff = nh0 predicted by the number theoretical vision
about TGD [L21], the effective radius of CP2, which is about 104 Planck lengths, would be
apart from a numerical scale factor near unity R2

eff = (~eff/h0)l2P .
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2. Embeddability to H and the holography forced by the general coordinate invariance, imply-
ing that space-time surfaces are analogs of Bohr orbits, poses extremely strong constraints on
the space-time surfaces so that they cannot directly correspond to the Einsteinian space-time.

The QFT limit of TGD is obtained by replacing the many-sheeted space-time surface with a
single metrically deformed region of M4 such that gauge potentials are sums of the induced
gauge potentials for the space-time sheets. Same applies to the deviations of the induced
metric from the M4 metric. This picture applies in long length scales in which Einsteinian
view of space-time works [L13, L14, L19].

3. Holography is realized as a generalized holomorphy [L21, L23]. The twistor lift of TGD [L5,
L6, L17] leads to the proposal that M4 has a generalized Kähler structure, which combines
ordinary complex structure and hypercomplex structure to its 4-D generalization so that
H also allow generalized complex structure with 1 hypercomplex (light-like) coordinate and
1 complex coordinate for M4 and two complex coordinates for CP2. I have christened this
generalization of the complex structure as Hamilton-Jacobi structure [L17]. A good guess
is that there is a moduli space of Hamilton-Jacobi structures and in the first guess locally
equal to a Cartesian product of the moduli space of ordinary complex structures and its
hyper-complex analog.

The generalized complex structure corresponds to the slicings of M4 and X4 by complex
partonic 2-surfaces and hypercomplex string world sheets which are transversal or possibly
even orthogonal locally.

4.2.2 Chern-Simons-Kähler action

1. In the TGD framework Chern-Simons-Kähler action is the only possible action for 3-D
light-like surfaces representing light-like orbits of partonic 2-surfaces. At these 3-surfaces
4-D induced metric degenerates to effectively 3-dimensional metric. The twistor lift of
TGD suggests that C-S-K action involves contributions from both CP2 and M4 allowing a
generalized Kähler structure [L17]. M4 contribution allows the assignment of non-vanishing
Poincare charges to C-S-K action.

2. By its topological nature, C-S-K action does not involve the induced metric at all. The
interior part of action makes itself visible in boundary conditions stating that quantum
numbers do not flow out through boundaries and are conserved at light-like interfaces between
regions of space-time surface with Euclidean and Minkowski signature [L10].

3. Modified Dirac action is the fermionic counterpart of C-S-K action and is determined
uniquely by consistency arguments predicting a far reaching generalization of superconformal
symmetry and related Kac-Moody symmetry is used to describe all interactions at elementary
particle level [K4] [L23].

Modified C-S-K Dirac action involves couplings to the induced electroweak gauge potentials.
The covariant derivatives contain the CP2 spinor connection determined by the CP2 metric.
CP2 scale appears as a counterpart of Planck length and could be equal to Planck length
for the minimal value of effective Planck constant heff = nh0. Also the M4 part associated
with the generalized Kähler structure is present if one accepts a twistor lift of TGD.

4. The light-like surface can also contain many-fermion states and I proposed for a long time
ago that at the fundamental level FQHE type systems could correspond to the nanoscopic
analogs of partonic 2-surfaces carrying a very large number of electrons [K3]. One possibility
is that the partonic surface contains a very large number of handles behaving like particles
but this is not the only possibility.

The couplings of this kind of systems to gauge bosons and gravitons would be described as
in the case of elementary particles. One would have a sum over scattering amplitudes and
quantum coherence would apply. 2-dimensionality would be essential and would raise FQHE
type systems in a special role.
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4.2.3 About the QFT limit of TGD

Just for fun, one can also look at the situation from the point of view of Einstein-Yang-Mills
type theory, which should emerge as the QFT limit of TGD at which space-time surface can
be assumed to have a 4-D M4 projection so that the modelling of the many-sheeted space-time
surfaces as slightly curved M4 should make sense. The gauge potentials would correspond to
the sums of the induced gauge potentials for various space-time sheets. Same would apply to the
deviation of the metric from the M4 metric.

One expects that in the case of effectively 2-D systems, the light-like partonic orbits cannot be
completely eliminated even at this limit and FQHE systems could represent systems of this kind.
In elementary particle length scales they could be replaced by point-like particles but in the case
of multi-electrons states at nanoscopic parton surfaces this does not work.

What happens to the curvature scalar at the limit when the induced 4-metric becomes effectively
3-D?

1. The induced covariant 4-metric becomes degenerate at the partonic orbit and the con-
travariant metric has some divergent components.

√
−g4 vanishes at this limit like 1/L,

L→ 0.

2. The curvature tensor Rαβγδ has dimension zero and could remain finite. Ricci tensor Rαβ

and Einstein tensor Gαβ could diverge like 1/L4. Curvature scalar could diverge like 1/L2.
If Einstein’s equations hold true, the energy momentum tensor is proportional to the Einstein
tensor and could diverge like 1/L4. Multiplied with

√
−g it would diverge like 1/L3. This

suggests that the limit gives the analog of Chern-Simons-Kähler action or its QFT analog as
a delta function like singularity. The modified Dirac action should also have a counterpart,
which could be finite since it has vanishing dimension.

4.3 What gravitons could be in the TGD Universe?

The idea that gravitons could be regarded as SO(1, 3) gauge bosons does not look attractive in
the standard gauge theory but in TGD the situation is different.

4.3.1 Could gravitational interaction correspond to the M4 spinor connection in-
duced to the space-time surface?

In the generalized complex coordinates of H, the spinor connection of M4 is non-trivial and
contributes to the induced spinor connection.

1. Intriguingly, the gauge charges are now components of spin matrices so that the gauge po-
tentials behave like spin 2 objects. Spin becomes a gauge charge. Could the components of
the spinor connection correspond to gravitons or more general graviton-like states consisting
of a single fermion pair as carriers of quantum numbers?

2. The modified gamma matrices Γα = Tαk Γk, where one has Tαk = ∂L/∂hkα are fixed by
the classical action uniquely (by the hermiticity of the modified Dirac operator) and are
proportional to what generalizes energy momentum tensor. This implies a generalization
of superconformal symmetry and super symplectic and other charges defining the isometry
charges of the ”world of classical worlds” (WCW) are accompanied by super charges defining
the gamma matrices.

What would be especially nice is that the couplings of both gauge bosons and scalar parti-
cles and of gravitons would involve the analog of energy momentum tensor! One could see
YHF either as a gauge theory or a theory of gravitation so that one would have a different
realization of gauge-gravitation duality.

There is however a grave objection. The spinor connection gives rise to vanishing induced
gauge fields since the M4 metric is trivial. Does this spoil the idea that the spinor connection
could describe the coupling of the spinor field to gravitons?
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1. One can eliminate the spinor connecting locally by going to standard generalized complex
coordinates corresponding to the M2 × E2 slicing for which the spinor connection vanishes.
If this coordinate transformation is a generalized holomorphy, the transformation cannot
be carried out globally and must have singularities analogous to poles and cuts of analytic
functions since the topologies of string world sheets and partonic 2-surfaces need not be those
associated with pieces M2 and E2.

2. Does this mean that one has an analog of topological gauge theory and that one cannot
eliminate the M4 parts of gauge potentials and that they have a physical meaning. Could the
possibility to eliminate the spinor connection by a generalized holomorphy locally corresponds
to the quantum counterpart of the Equivalence Principle? Note that holomorphies are analogs
symmetries of the holographic dynamics rather than general cooordinate transformations.

4.3.2 How to identify graviton in the TGD framework?

TGD leads to the identification of all elementary particles in terms of closed monopole flux tubes
associated with pairs two parallel space-time sheets. The Euclidean wormhole contacts at the
”ends” of the flux tube correspond to light-like orbits of partonic 2-surfaces and would carry
point-like fermions serving as building bricks of all elementary particles. In the case of particles
with spin smaller than 2, either wormhole contact can carry the spin and electroweak quantum
numbers and second wormhole contact possibly carries a neutrino pair neutralizing the weak isospin
so that one has a weak analog of confinement. There are also closed half-monopole flux tubes
having boundaries [L24] and both these and monopole flux tubes with closed cross section could
be important in superconductivity [L4].

The proposal has been that graviton spin reduces to fermionic spin so that both wormhole
contacts should carry a fermion pair with spin 1. These kinds of states might well exist but in this
picture it is difficult to understand how the expected value of the gravitational constant is coded
to the structure of the state formed by the two spin 1 fermion pairs. The second problem is that
it is not obvious how the Equivalence Principle could be realized at the level of gravitons in this
picture.

The assumption of two fermion pairs is not necessary if the monopole flux tube rotates. One
could have fermion and antifermion at the wormhole contacts defining the ends of this string-like
object. Angular momentum L = 0 would give bosons with spin 0 and 1. L = 1 would allow bosons
spin 2, 1, and 0 and L = 2 would allow bosons with spin 3, 2, 1.

These observations force us to seriously consider the possibility that the M4 spinor connection
for generalized complex structure defines the gravitational field. This assumption gives additional
constraints on possible values of spin.

1. In the case of electroweak couplings the product ΓµAµ(CP2) with the spinor field gives a spin
1/2 object. Therefore the fermion and antifermion at the ends of the two string-like objects
have spin 1/2 and the fermion can emit only a gauge boson or scalar. One obtains standard
model vertices. In [L14] it is shown how gluon vertices emerge from the vertex involving
Kähler gauge potential coupling vectorially.

2. The product ΓµAµ(M4) involves product of M4 gamma matrices and sigma matrices oper-
ating of spin 1/2 fermion state producing spin 1/2 state. The tensor product gives rise to
total spins 3/2 and 1/2. Spin 3/2 configuration could contribute angular momentum L = 1
to the rotation of the string-like object with fermion and antifermion at its ends and produce
besides J = 2 state identifiable as graviton also J = 1 state. Whether gauge conditions
eliminate this state or whether it represents a new spin 1 boson remains unclear.

4.3.3 Exotic differential structures in 4 dimensions, particle vertices, and the new
view of gravitons

What remains to be understood are the counterparts of the basic vertices of the gauge theory and
quantum gravity. One can start from a long standing problem of TGD. Since gauge bosons do
not appear as fundamental fields, the prediction seems to be that pair creation is not possible.
The net fermion and antifermion numbers would be separately conserved. How to circumvent this
problem?
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The solution came from the discovery that 4-dimensional space-times are completely unique in
the sense that they allow an infinite number of exotic differentiable structures [L9]. Apart from a
subset of measure zero they are reduced to ordinary differentiable structures. These subsets are
physically analogous to defects and the simplest defects are point defects but one can also imagine
1-, 2-, and even 3-D defects. This finding means a serious difficulty for general relativity. Should
some kind of cosmic censorship hypothesis deny their existence?

In the TGD framework, an attractive identification of the defects would be as singularities at
which the minimal surface property for space-time surfaces as generalized complex surfaces fails.
These singularities are analogs of poles and cuts in the complex analysis. In fact, hypercomplex
poles are 1-D geodesic lines in M2 and would correspond to light-like curves in the general case.
Therefore 3-D light-like partonic orbits would be analogous to poles. String world sheet could serve
as a counterpart for a hypercomplex cut.

The identification
defects of the ordinary diffeo structure ↔ singularities at which the minimal surface property

fails ↔ poles and other singularities where generalized holomorphy fails
looks highly attractive. The 3-D light-like orbits of partonic orbits, string world sheets, strings,

and points at which light-like orbits of point-like fermions split, could correspond to these singu-
larities identifiable as generalized vertices. It is not clear whether 3-D defects can be space-like
3-surfaces.

These structures could be essential for the definition of creation and annihilation vertices for
fermion-antifermion pairs. The intuitive picture is that a fermion turns backwards in time in this
kind of vertex.

1. In QFTs a standard approximation is to replace the gauge boson of the vertex with a classical
gauge potential. In TGD there are no bosons as fundamental particles and this replacement
is necessary. This would correspond to a turning of fermion lines at the orbit of a partonic 2-
surface backwards in time which is somehow special. Could this point correspond to a defect
of the ordinary differentiable structure which is actually exotic differentiable structure?

2. There is also another problem. Modified Dirac action should give rise to all fundamental
vertices. At the fermion line the modified Dirac equation is satisfied but it puts modified
Dirac action to zero so that the action would be trivial in the gauge theory sense. At the
singularity the modified Dirac equation could however fail and one would obtain a delta
function like singularity giving the standard classical vertex for the creation of a fermion
pair or a particle with spin smaller than 2 as a bound fermion pair. This picture generalizes
also to higher-dimensional defects. Interesting quantum physics would be possible only in
space-time dimension four!

3. This picture could generalize also to the creation of gravitons if they are analogs of gauge
bosons with gauge group SO(1, 3) or its compact subgroup as required by unitarity unless one
allows infinite-dimensional representations of SO(1, 3), which in fact are naturally associated
with the causal diamonds (CDs), which are basic objects in zero energy ontology (ZEO) [L18]:
the Poincare invariance which is problematic at the level of CD would be realized in the
moduli space of CDs.

4. If gravitons are pairs of fermion pairs, the vertex involves two separate vertices in an essential
way. This is possible but does not look elegant since two separate gauge boson vertices would
be needed. This would conform with the idea that gravitation is in some sense square of a
gauge theory but does not look an attractive idea.

In this framework one could understand basic vertices as splitting of two-sheeted closed monopole
flux tubes with Euclidean wormhole contacts at ends. The splitting of the flux tube as a general-
ization of reconnection for closed strings would produce two closed flux tubes. The simplest recon-
nection would involve creation of a fermion-antifermion pair such that the fermion and antifermion
pair go to separate wormhole contacts. The defects of the diffeo structure would correspond to
situations in which the topology of 3-surface is between two topologies. The pinching of torus to
produce two spheres represent the basic example of this.

In the case of a fermion with a neutrino-antineutrino (left- and right-handed neutrinos) pair at
the second wormhole contact neutralizing the weak isospin of the fermion as a geometric object,
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the reconnection would produce a pair of monopole flux tubes. The first one would represent
a fermion. The second one would represent a boson with fermion and antifermion at opposite
wormhole contacts. If the string does not rotate, the boson has spin 1 or 0 corresponding to a
gauge boson and Higgs type scalar or pseudoscalar. If the string rotates one obtains a boson with
spin 2 or 1 for the simplest option if the M4 spinor connection contributes.

One can of course worry about the triviality of the M4 spinor connection. The failure of
the standard diffeostructure at the defect could however imply that the elimination of the spinor
connection by a general coordinate transformation fails just at the defect!

4.3.4 What modified Dirac action is and how it determines scattering amplitudes?

Holography=generalized holomorphy property means that minimal surface field equations are true
outside singularities for any general coordinate invariant action constructible in terms of the in-
duced geometry. However, the twistor lift of TGD suggests that 6-D Kähler action is the funda-
mental action. It reduces to 4-D Kähler action plus volume term in the dimensional reduction
guaranteeing that the 6-surface can be regarded as a generalization of twistor space having space-
time surface as a base-space and 2-sphere.

One can express the induced spinor field obtained as a restriction of the second quantized H
spinor field to the space-time surface and it satisfies modified Dirac equation [L23].

Modified Dirac action LD is defined for the induced spinor fields.

1. It is fixed by the condition of hermiticity stating that the canonical momentum currents
appearing in it have a vanishing divergence. If the modified gamma matrices Γα are defined
by an action SB defining the space-time surface itself, they are indeed divergenceless by field
equations. This implies a generalization of conformal symmetry to the 4-D situation [L17] and
the modes of the modified Dirac equation define super-symplectic and generalized conformal
charges defining the gamma matrices of WCW [L23].

2. Generalized holomorphy implies that SB could be chosen to correspond to modified gamma
matrices defined by the sum of LK + LV or even by LV defining induced gamma matrices.
Which option is more plausible?

3. An attractive guiding physical idea is that the singularities are not actually singularities if
exotic diffeo structure is introduced. Field equations hold true but with SK + SV . The
singularities would cancel. One would avoid problems with the conservation laws by using
exotic diffeo structure.

4. At the short distance limit for which αK is expected to diverge as a U(1) coupling, the action
reduces to SV and the defects would be absent. Only closed cosmic strings and monopole
flux tubes would be present but wormhole contacts and string world sheets identifiable as
defects are absent: this would be the situation in the primordial cosmology [L22]. Only dark
energy as classical energy of the cosmic strings and monopole flux tubes would be present
and there would be no elementary particles and elementary particle scattering at this limit.

One can consider several options assuming that the singularities are not actually present for
the exotic diffeo structures.

Option 1: The first option relies on the assumption that the exponential of the modified Dirac
action is imaginary and analogous to the phase defined by the action in QFTs. This is enough
in TGD since fermions are the only fundamental particles and bosonic action is a purely classical
notion.

1. Volume action is in a very special role in that it represents both the classical dynamics of
particles as 3-D surfaces as analogs of geodesic lines, the classical geometrized dynamics of
massless fields, and generalizes the Laplace equations of complex analysis.

This motivates the proposal that only induced the gamma matrices Γαgαβhkβγk (no contribu-
tion from LK) corresponding to SV appear in LD and the bosonic action SB = SK+SV +SI ,
where SI is real, is defined by the twistor lift of TGD. The field equations are satisfied also
at the singularities so that the contributions from SK + SI and SV cancel each other at the
singularity in accordance with the idea that an exotic diffeo structure is in question. Both
SK and SI contributions would have an imaginary phase.
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2. Therefore LV , which involves cosmological constant Λ, disappears from the scattering ampli-
tudes by the field equations for LB although it is implicitly present. The number theoretic
evolution of the SK + SI makes itself visible in the scattering vertices. Outside the singu-
larities both terms vanish separately but at singularities this is not the case. Only lower-D
singularities contribute to the scattering amplitudes.

The number theoretical parameters of the bosonic action determined by the hierarchy of ex-
tensions of rationals would parametrize different exotic diffeo structures and make themselves
visible in the quantum dynamics in this way. SI would contribute to classical charges and
its M4 part would contribute to the Poincare charges.

3. An objection against this proposal is that the divergence of the modified gamma matrices
defined by the SK + SI need not be well-defined. It should be proportional to a lower-
dimensional delta function located at the singularity.

For 3-D light-like light-partonic orbits, the contravariant induced metric appearing in the
trace of the second fundamental form has diverging components but it is not clear whether
the trace of the second fundamental form can give rise to a 3 − D delta function at this
limit. Chern-Simons action at the light-like partonic orbit coming from the instanton term
is well-defined and field equations should not give rise to a singularity except at partonic
2-surfaces, which have been identified as analogs of vertices at which the partonic 2-surface
X2 splits to two.

At X2 the trace of the second fundamental form can be well defined and proportional to a
2-D delta function since the 4-metric has one light-like direction at X2 and has a vanishing
determinant and is therefore effectively 2-D (the light-like components of guv = gvu of the
4-metric vanish). Therefore vertices would naturally correspond to partonic 2-surfaces, which
split to two at the vertex. This is indeed the original proposal.

4. The divergence of gµν∂ν vertex as the trace of the second fundamental form Dαh
kβ defined by

covariant derivatives of coordinate gradients, appears in the vertex. The second fundamental
form is orthogonal to the space-time surface and can be written as

gµνDν∂µh
k = P kl H

l , P kl = hkl − gµνhkµhlrhrν ,
Hk = gαβ(∂α +Bkα)(gαβhkβ , Bkα = Bklmh

m
α .

(4.1)

P kl projects to the normal space of the space-time surface. Hk is covariant derivative of hkα
and Bkα = Bklmh

m
α is the projection of the Riemann connection of H to the space-time surface.

5. This allows a very elegant physical interpretation. In linear Minkowski coordinates for M4,
one has Bkα = 0 but the presence of the CP2 contribution coming from the orthonormal
projection implies that the covariant divergence is non-vanishing and proportional to the
radius squared of CP2. Vertex is proportional to the trace of the second fundamental form,
whose CP2 part is analogous to the Higgs field of the standard model. This field is vanishing
in the interior by the minimal surface property in analogy with the generalized Equivalence
Principle.

The trace of the second fundamental form is a generalization of acceleration from 1-D case to
4-D situation so that the interaction vertices are lower-dimensional regions of the space-time
surface which experience acceleration. The regions outside the vertices represent massless
fields geometrically. At the singularities the Higgs-like field is non-vanishing so that there is
mass present. The analog of Higgs vacuum expectation is non-vanishing only at the defects.

It seems that a circle is closing. I started more than half a century ago from Newton’s
”F=ma” and now I discover it in the interaction vertex, which is the core of quantum field
theories! I almost see Newton nodding and smiling and saying ”What I said!”.

Option 2: Modified gamma matrices are defined by SK + SV + iSI and the real part of the
singularity vanishes. The imaginary part cannot vanish simultaneously.
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1. The exponent of Kähler function defines a real vacuum functional and K is determined by
SK + SV whereas the action exponential of QFTs of QFTs defines a phase. In topological
QFTs, the contribution of the instanton term SD,I is naturally purely imaginary and could
define ”imaginary part of the Kähler function K, which does not contribute to the Kähler
metric of WCW.

One can argue that this must be the case also for SD. Hence the contribution of SK + SV
to SD would be real and differ by a multiplication with i from that in QFTs whereas the
contribution of iSI would be imaginary. One must admit that this is not quite logical. Also
the contribution to the Noether charges would be imaginary. This does not look physically
plausible.

2. One cannot require the vanishing of both the real part and imaginary part of the divergence
of the modified gamma matrices at the singularity. The contribution of LC−S−K at the
singularity would be non-vanishing and determine scattering amplitudes and imply their
universality.

For the representations of Kac-Moody algebras the coefficient of Chern-Simons action is k/4π
and allows an interpretation as quantization of αK as αK = 1/k. Scattering vertices would
be universal and determined by an almost topological field theory. Almost comes from the
fact that the exponent of SB defines the vacuum functional.

3. The real exponential exp(K) of the real Kähler function defined by SK + SV would be
visible in the WCW vacuum functional and bring in an additional dependence on the αK
and cosmological constant Λ, whose number theoretic evolution would fix the evolution of
the other coupling strengths. Note that the induced spinor connection corresponds in gauge
theories to gauge potentials for which the gauge coupling is absorbed as a multiplicative
factor.

There are therefore two options. For both cases 1/αK = 1/k appears in the action.

1. For Option 1 only iSV appears in SD and iSK + iSC−S−K determines the scattering ampli-
tudes for option 2). Exponent of the modified Dirac action defines the analog of the imaginary
action exponential of QFTs.

2. For Option 2 for which the entire action defines the modified gamma matrices the iSC−S−K
defines the scattering amplitudes and one has an analog of topological QFT. This picture
would conform with an old proposal that in some sense TGD is a topological quantum field
theory. One can however argue that the treatment of SK +SV and SI in different ways does
not conform with QFT treatment and also the Noether charges are a problem.

Some technical remarks are in order.

1. The spinor connection does not disappear from the dynamics at the singularities. It is trans-
formed to components of projected Riemann connection of H appearing in the divergence
DαT

αk

C−S−K .

2. The modified Dirac action must be dimensionless so that the scaling dimension of the induced
spinors should be d = −3/2 and therefore same as the scaling dimension of M4 spinors. This
looks natural since CP2 is compact.

The volume term included in the definition of the induced gamma matrices must be nor-
malized by 1/L4

p. Lp is a p-adic length scale and is roughly of order of a biological scale
Lp ∼ 10−4 meters if the scale dependent cosmological constant Λ corresponds to the inverse
squared for the horizon radius. One has 1/L4

p = 3Λ/8πG. This guarantees the expected
rather slow coupling constant evolution induced by that of αK diverging in short scales.

4.3.5 The symmetry between gravitational and gauge interactions

The beauty of the proposal is that implies a complete symmetry between gravitational and gauge
interactions. Weak interactions and gravitation couple to weak isospin and spin respectively. Color
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interactions couple to the isometry charges of CP2 and gravitational interactions coupling to the
isometry charges of M4. The extreme weakness of the gravitation can be understood as the
presence of the CP2 contribution to the induced metric in the gravitational vertices.

Does color confinement have any counterpart at the level of M4? The idea that physical states
have vanishing four-momenta does not look attractive.

1. In ZEO, the finite-D space of causal diamonds (CDs) forms [L18] the backbone of WCW
and Poincare invariance and Poincare quantum numbers can be assigned with wave func-
tions in this space. For CD, the infinite-D unitary representations of SO(1, 3) satisfying
appropriate boundary conditions are a highly attractive identification for the counterparts
of finite-D unitary representations associated with gauge multiplets. The basic objection
against gravitation as SO(1, 3) gauge theory would fail.

One could replace the spinor fields of H with spinor fields restricted to CD with spinor fields
for which M4 parts sinor nodes as plane waves are replaced with spinor modes in CD labelled
by spin and its hyperbolic counterpart assignable to Lorentz boosts with respect to either
tip of CD. One could also express these modes as superpositions of the plane wave modes
defined in the entire H.

The analog of color confinement would hold true for particles as unitary representations of
SO(1, 3) in CD. One could say that SO(1, 3) appears as an internal isometry group of an
observer’s perceptive field represented by CD and Poincare group as an external symmetry
group treating the observer as a physical object.

2. By separation of variables the spinor harmonics in CD factorize phases depending on the
mass of the particle determined by CP2 and spinor harmonic of hyperbolic 3-space H3 =
SO(1, 3)/SO(3). SO(1, 3) allows an extremely rich set of representations in the hyperbolic
space H3 analogous to spherical harmonics. A given infinite discrete subgroup Γ ⊂ SO(1, 3)
defines a fundamental domain of Γ as a double coset space Γ \ SO(1, 3)/SO(3). This funda-
mental domain is analogous to a lattice cell of condensed matter lattice defined by periodic
boundary conditions. The graphics of Escher give an idea about these structures in the case
of H2. The products of wave functions defined in Γ ⊂ SO(1, 3) and of wave functions in Γ
define a wave function basis analogous to the space states in condensed matter lattice.

3. TGD allows gravitational quantum coherence in arbitrarily long scales and I have proposed
that the tessellations of H3 define the analogs of condensed matter lattices at the level of
cosmology and astrophysics [L20]. The unitary representations of SO(1, 3) would be central
for quantum gravitation at the level of gravitationally dark matter. They would closely relate
to the unitary representations of the supersymplectic group of δM4

+ ×CP2 in M4 degrees of
freedom and define their continuations to the entire CD.

4. There exists a completely unique tessellation known as icosa tetrahedral tessellation consist-
ing of icosahedrons, tetrahedrons, and octahedrons glued along boundaries together. I have
proposed that it gives rise to a universal realization of the genetic code of which biochemical
realizations is only a particular example [L3, L11]. Also this supports a deep connection
between biology and quantum gravitation emerging also in classical TGD [L8, L7]. Also
electromagnetic long range classical fields are predicted to be involved with long length scale
quantum coherence [L12].

The challenge is to understand the implications of this picture for M8 −H duality [L21]. The
discretization of M8 identified as octonions O with the Minkowskian norm defined by Re(Im(o2))
is linear M8 coordinates natural for octonions. The discretization obtained by the requirement
that the coordinates of the points of M8 (momenta) are algebraic integers in an algebraic extension
of rationals would make sense also in p-adic number fields.

In the Robertson-Walker coordinates for the future light-cone M4
+ sliced by H3:s the coordi-

nates define by mass (light-cone proper time in H), hyperbolic angle and spherical angles, the
discretizations defined by the spaces Γ \ SO(1, 3)/SO(3) would define a discretization and one
can define an infinite hierarchy of discretizations defined by the discrete subgroups of SO(1, 3)
with matrix elements belonging to an extension of rationals. This number theoretically universal
discretization defines a natural alternative for the linear discretization. Maybe the linear resp.
non-linear discretization could be assigned to the moduli space of CDs resp. CD.
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4.4 Could TGD allow the detection of gravitons?

Could an effectively 2-dimensional system make it possible to observe real gravitons and why
should this be the case? What about couplings to quantum coherent many-particle states such as
electrons or protons at light-like 3-surfaces assignable to the FQHE in the TGD description?

4.4.1 Is the detection of gravitons possible in FQHE type systems?

Could the interaction vertices of electrons with a real graviton sum up to a very large number of
identical amplitudes when the wavelength of graviton is much longer than the size of the partonic
2-surface? One would obtain an analog of diffraction, somewhat like in the TGD based models
of the recently discovered gravitational hum identified in the TGD framework as diffraction in
astrophysical length scales [L20].

One might hope that the coupling of real gravitons to condensed matter gravitons and/or
nanoscale quantum coherence make the graviton absorption amplitude proportional to the square
of the total number N of electrons.

1. FQHE occurs in 2-D electron gas and (see this) and the typical densities of electrons are of
order 1011/cm2. For an area cm2 one would have N2 ∼ 1022.

2. The differential cross section from a particle with mass m [?] (see this) is

dσ

dΩ
=

G2m2

sin4(θ)
(cos8(θ) + sin8(θ)) .

For the electron the order of magnitude is σ ∼ 10−42l2e , where le is electron’s Compton
length, unless θ is very near to the forward direction. There is no hope of detecting gravitons
in this way unless one has analog of forward scattering. Even if quantum coherence occurs,
the hopes for detection seem rather meager. If θ is of order 10−5, the order of magnitude
for the differential cross section is of the order of l2e .

4.4.2 What about dark protons at the monopole flux tubes and half-monopole flux
tubes?

Proton mass is roughly 2000 times larger than electron mass and they are more promising.

1. Could the dark protons at magnetic monopole flux tubes give rise to a similar quantum
coherence amplifying the interactions with gravitons. Monopole flux tube condensates in-
volve a very large number of parallel monopole flux tubes, which form a quantum coherent
region. Could the quantum coherent scattering of gravitons lead to observable effects via
the exchange of momentum with ordinary matter despite the fact that the dark matter is
not directly observable using the recent technology.

2. The number of monopole flux tubes corresponds to heff/h and this can be as large as 1014.
This would give a factor of order N2 ∼ 1028 to the scattering cross section. In the case of
dark protons, one would have a scaling factor (mp/me)

2 ∼ 4×106. This would give a factor
of order 1034 giving σ ∼ 10−8l2e ∼ 10−2l2p. Could this make the detection possible?

3. Half-monopole flux tubes appear in the TGD based model for the transition to superconduc-
tivity as an intermediate, not yet superconducting, flux tubes carrying dark electrons but
not their Cooper pairs [L24]: the pair of dark electron and corresponding hole at the level of
ordinary matter replaces the notion of Bogoliubov quasiparticle as a superposition of electron
and hole in such a way that the total fermion number is conserved. Half-monopole flux tubes
have boundaries, which should be light-like and can be so as static structure in the induced
geometry [L10], which could carry dark protons.

Note that also the light-like surfaces associated with the Quantum Hall systems would be
naturally half-monopole flux tubes since electrons in these systems are known to form bound
states with magnetic fluxes.

https://en.wikipedia.org/wiki/Two-dimensional_electron_gas
https://arxiv.org/pdf/gr-qc/0601043.pdf
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