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Abstract

In this article a scenario about the detailed relationship of strong and weak interactions
is discussed. In this picture classical electroweak interactions are basically local and only
these appear in the TGD analogs of fundamental interactions vertices describing splitting
and reconnection of monopole flux tubes. Also strong interactions can be assigned to these
topological interactions. The basic problem is to understand how strong interaction can be
parity conserving while the classical electroweak dynamics violates parity conservation.

The proposed model, argued to overcome this problem, involves several topological ele-
ments.

1. The topological explanation of the family replication phenomenon in terms of the genus
of partonic 2-surface carrying fermion lines as boundaries of string world sheets.

2. The view of holography as a 4-D analog of holomorphy reducing to 2-D holomorphy for
partonic 2-surfaces. This predicts two kinds of partonic 2-surfaces as complex 2-surfaces
in CP2 with a spherical topology. Tor the homologically non-trivial geodesic sphere
induced weak fields vanish (no parity violation classically) and for the second complex
sphere they do not. A natural working hypothesis is that these two spheres explain the
difference between strong and weak interactions.

3. The homology (Kähler magnetic) charge h of the partonic 2-surface correlates with the
genus of the partonic 2-surface. For complex partonic 2-surfaces in CP2, the genus is
given g = (h− 1)(h− 2)/2 − s, where s is the number of singularities. Only the genera
g = (h− 1)(h− 2)/2 are free of singularities. For g = 0, this includes h = 1 and h = 2.
Already for g = 2 there would be singularity. It is however possible to overcome this
problem since partonic 2-surfaces can be deformed to M4 degrees of freedom and one can
add handles in this way. A rather detailed picture of partonic 2-surfaces and monopole
flux tubes emerges.
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1 Introduction

The observations and considerations of the article about what I called Platonization [L5] inspired
questions about the precise relationship between strong and weak interactions. In the same article
I already proposed answers to these questions but since this topic is so important for TGD, I
thought that these questions deserve a separate article.

1.1 Basic views of physics in TGD framework

TGD provides two basic perspectives of physics: geometric and number theoretic. It is somewhat a
matter of taste whether one should divide geometric view to differential geometric and topological
views or whether one should regard topological view as a third perspective.

1. At the level of H = M4 × CP2, the color group SU(3) acting as isometries of CP2 would
correspond to the color interactions. The holonomy group U2) of CP2 embeddable as a
subgroup to SU3) would correspond to electroweak interactions as the fact that one has
hypercharge and isospin in both sectors. This implies deep correlations between color and
electroweak interactions not predicted by QCD.

2. The differential geometric view involves the notion of induced metric and spinor connection
and leads to geometration of the local aspects of the standard model physics. Topological
aspects involve non-trivial topology of space-time surfaces in all scales. Kähler magnetic
fluxes, monopole flux tubes, the topological explanation of family replication phenomenon,
and topological interactions as reconnections of flux tubes are examples of these non-local
aspects and in [L5] it was found that these aspects are important in all scales and even in
atomic physics.

3. At the level ofM8 = M4×E4, SU(3) corresponds to a subgroup of octonionic automorphisms
and U(2) could be identified as subgroup of isometries leaving invariant the number theoretic
inner product in E4. This inspired the proposal that strong isospin corresponds to U(2)
and hadron-parton duality corresponds to M8 −H duality basically.
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1.2 The basic picture of strong interactions in the TGD framework

This general picture could explain various poorly understood aspects of strong interactions.

1. In the good old times, when strong interactions were not yet ”understood” and it was also
possible to think instead of merely computing, strange connections between strong and weak
interactions were observed. The already mentioned conserved vector current hypothesis
(CVC) and partially conserved axial current hypothesis (PCAC) were formulated and suc-
cessful quantitative predictions emerged. Note however that only vector currents appear in
strong interaction physics but combinations of both vector and axial currents appear in weak
interaction physics.

Vectorial strong isospin is equal to vectorial weak isospin for nucleons but heavier quarks
did not fit the picture. (c,s) and (t,b) dublets were assigned quantum numbers such as
strangeness and charm, and they are not quantum numbers of weak interactions.

When perturbative QCD became the dominating science industry, low energy hadron physics
was forgotten. Lattice QCD was thought to describe hadrons but the successes were rather
meager. Lattice QCD has even mathematical problems such as the description of quarks and
the strong CP problem which lead to postulate the existence of axions, which have not been
found.

2. In TGD these connections can be understood elegantly.

(a) The topological description of family replication phenomenon implies that strangeness
and charm are not fundamental quantum numbers and the identification of weak and
strong isospins makes sense.

(b) The flux tubes correspond to possibly p-adically scaled mesons and weak bosons in a
predicted by the TGD based explanation of family replication phenomenon. Tensegrity
is the basic construction principle for hadrons and nuclei and even atoms, for which
color octet excitations of leptons define the counterparts of mesons.

Flux tube ends are bound to quarks or nucleons or electrons by color confinement both
in the case of hadrons and lepto-hadrons.

Also the fractality inspired ideas related to p-adically scaled up variants of strong and weak
interactions organize to a beautiful picture.

1. p-Adic fractality inspired the idea that both strong and interaction physics appear as p-
adically scaled variants. In particular, M89 hadron physics would be a p-adically scaled
up version of the ordinary hadron physics assignable with M107 and would correspond to
the same p-adic length scale as weak bosons. Various forgotten anomalies support this
proposal [K1, K2].

2. Both weak bosons and mesons would be described as string-like entities and stringy dynamics
involving reconnections and splitting allows a unified geometrodynamics description of both
weak and color interactions. TGD explanation of the family replication phenomenon predicts
the analog of family replication phenomenon for weak bosons basically similar to that for
mesons and there is evidence for this [K1, K2] [L6]. From the known spectrum of mesons
of ordinary mesons one can predict masses of both M89 mesons by using p-adic length scale
hypothesis. There is already evidence for the dark counterparts of M89 mesons with scaled
up Compton length equal to that for M107 mesons. Also M89 baryons are predicted. Both
p-adic and heff hierarchies of length scales are required in the proposed vision.

The failure of the perturbation series to converge is the basic problem of QCD. How could TGD
solve this problem?

1. In the non-perturbative hadronic phase color confinement implies that color interactions are
absent and only the topological interactions realized as reconnections of the monopole flux
tubes are present.
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What happens in hadronic collisions? The basic idea is simple: when the perturbation theory
fails, Nature comes in rescue, and a phase transition increasing the value of h to heff takes
place if needed and scales down the color coupling strength by factor h/heff [L6]. The kinetic
energy liberated in a particle collision involving hadrons would make this phase transition
possible. h increases when needed.

2. The perturbative color dynamics would be realized at the magnetic body of the system
carrying dark variants of quarks and gluons. The collision would correspond to quantum
criticality and the increases of heff would increase the lengths of monopole flux tubes making
possible their splittings generating gluons and hadrons. Hadronization would lead to the
reduction heff → h and contraction of flux tubes in the reverse phase transition.

What can one say about the relationship between weak interactions and color interactions? Are
they different and closely correlated aspects of topological geometrodynamics; are they perhaps
dual; or does the description of say weak interactions imply automatically that of color interactions
as the fact that only weak gauge potentials couple to fermions suggests?

1. Duality would predict that weak bosons and their predicted exotic counterparts implied by
the family replication phenomenon are nothing but the mesons of M89 hadron physics, or
rather M89 physics since strong and weak interactions are in TGD framework aspects of the
same purely geometric dynamics.

This prediction looks unrealistic in light of the parity violation in weak interactions. Fur-
thermore, the classical counterpart HAJαβ of color gauge field vanishes for Lagrangian sub-
manifolds of CP2 whereas weak fields are non-vanishing.

The classical weak fields could however determine classical color gauge fields and one might
consider the possibility that at least at the level of a single space-time surface where color
degrees of freedom are not visible (note also color confinement), only electroweak interactions
are needed to allow a complete description.

In the sequel a scenario about the detailed relationship of strong and weak interactions is
discussed. In this picture classical electroweak interactions are basically local and only these appear
in the TGD analogs of fundamental interaction vertices describing splitting and reconnection of
monopole flux tubes. Also strong interactions can be assigned to these topological interactions. The
basic problem is to understand how strong interaction can be parity conserving while the classical
electroweak dynamics violates parity conservation. The proposed model, argued to overcome this
problem, involves several topological elements.

1. The topological explanation of the family replication phenomenon in terms of the genus of
partonic 2-surface carrying fermion lines as boundaries of string world sheets.

2. The view of holography as a 4-D analog of holomorphy reducing to 2-D holomorphy for
partonic 2-surfaces. This predicts two kinds of partonic 2-surfaces as complex 2-surfaces in
CP2 with a spherical topology. Tor the homologically non-trivial geodesic sphere induced
weak fields vanish (no parity violation classically) and for the second complex sphere they do
not. A natural working hypothesis is that these two spheres explain the difference between
strong and weak interactions.

3. The homology (Kähler magnetic) charge h of the partonic 2-surface correlates with the genus
of the partonic 2-surface. For complex partonic 2-surfaces in CP2, the genus is given g =
(h−1)(h−2)/2−s, where s is the number of singularities. Only the genera g = (h−1)(h−2)/2
are free of singularities. For g = 0, this includes h = 1 and h = 2. Already for g = 2 there
would be singularity. It is however possible to overcome this problem since partonic 2-surfaces
can be deformed to M4 degrees of freedom and one can add handles in this way. A rather
detailed picture of partonic 2-surfaces and monopole flux tubes emerges.
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2 How do strong and weak interactions relate to each other
in the TGD Universe?

In the following the question of how strong interactions emerge at the level of scattering amplitudes.
The problem is that, although there is a natural candidate for gluons as induced gauge fields, only
electroweak gauge potentials couple to embedding space spinor fields and induced spinor fields.

2.1 How could strong interactions emerge at the level of scattering am-
plitudes?

The above considerations are dangerous in that the intuitive QFT based thinking based is applied in
TGD context where all interactions reduced to the dynamics of 3-surfaces and fields are geometrized
by reducing them to the induced geometry at the level of space-time surface. Quantum field theory
limit is obtained as an approximation and the applications of its notions at the fundamental level
might be dangerous. In any case, it seems that only electroweak gauge potentials appear in the
fermionic vertices and this might be a problem.

1. By holography perturbation series is not needed in TGD. Scattering amplitudes are sums of
amplitudes associated with Bohr orbits, which are not completely deterministic: there is no
path integral. Whether path integral could be an approximate approximation for this sum
under some conditions is an interesting question.

2. It is best to start from a concrete problem. Is pair creation possible in TGD? The problem is
that fermion and antifermion numbers are separately conserved for the most obvious propos-
als for scattering amplitudes. This essentially due to the fact that gauge bosons correspond
to fermion-antifermion pairs. Intuitively, fermion pair creation means that fermion turns
backwards in time. If one considers fermions in classical background fields this turning back
corresponds to a 2-particle vertex. Could pair creation in classical fields be a fundamental
process rather than a mere approximation in the TGD framework. This would conform with
the vision that classical physics is an exact part of quantum physics.

The turning back in time means a sharp corner of the fermion line, which is light-like else-
where. M4 time coordinate has a discontinuous derivative with respect to the internal time
coordinate of the line. In [L3, L7] a proposal was made that this kind of singularities are
associated with vertices involving pair creation and that they correspond to local defects
making the differentiable structure of X4 exotic. The basic problem of GRT would become
a victory in the TGD framework and also mean that pair creation is possible only in 4-D
space-time.

One can imagine two kinds of turning backs in time.

1. The turning back in time could occur for a 3-D surface such as monopole flux tube and
induce the same process the string world sheets associated with the flux tubes and for the
ends of the string world sheets as fermion lines ending at the 3-D light-like orbits of partonic
2-surfaces.

2. In the fusion of two 2-sheeted monopole flux tubes along their ”ends” identifiable as partonic
2-surfaces wormhole contacts, the ends would fuse instantaneously (this process is analogous
to ”join along boundaries”). The time reversal of this process would correspond to the
splitting of the monopole flux tube inducing a turning back in time for a partonic 2-surface
and for fermionic lines as boundaries of string world sheets at the partonic 2-surface.

This would be analogous to a creation of a fermion pair in a classical induced gauge field,
which is electroweak. The same would occur for the partonic 2-surfaces as opposite wormhole
throats and for the string world sheets having light-like boundaries at the orbits of partonic
2-suraces.

3. The light-like orbit of a partonic 2-surface contains fermionic lines as light-like boundaries of
string world sheets. A good guess is that the singularity is a cusp catastrophe so that the
surface turns back in time in exactly the opposite direction. One would have an infinitely
sharp knife edge.
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What one can say about the scattering amplitudes on the basis of this picture? Can one obtain
the analog for the 2-vertex describing a creation of a fermion pair in a classical external field?

1. The action for a geometric object of a given dimension defines modified gamma matrices
in terms of canonical momentum currents as Γα = TαkΓk, Tαk = ∂L/partial(∂αh

k). By
hermiticity the covariant divergence DαΓα of the vector defined by modified gamma matrices
must vanish. This is true if the field equations are satisfied. This implies supersymmetry
between fermionic and bosonic degrees of freedom.

For space-time surfaces, the action is Kähler action plus volume term. For the 3-D light-
partonic orbits one has Chern-Simons-Kähler action. For string world sheets one has area
action plus the analog of Kähler magnetic flux. For the light-boundaries of string world sheets
defining fermion lines one has the integral

∫
Aµdx

µ. The induced spinors are restrictions of
the second quantized spinors fields of H = M4×CP2 and the argument is that the modified
Dirac equation holds true everywhere, except possibly at the turning points.

2. Consider now the interaction part of the action defining the fermionic vertices. The basic
problem is that the entire modified Dirac action density is present and vanishes if the modified
Dirac equation holds true everywhere. In perturbative QFT, one separates the interaction
term from the action and obtains essentially ΨΓαDαΨ. This is not possible now.

The key observation is that the modified Dirac equation could fail at the turning points!
QFT vertices would have purely geometric interpretation. The gamma matrices appearing
in the modified Dirac action would be continuous but at the singularity the derivative ∂µΨ =
∂µm

k∂kΨ of the induced free second quantized spinor field of H would become discontinuous.
For a Fourier mode with momentum pk, one obtains

∂µΨp = pk∂µm
kΨp ≡ pµΨp .

This derivative changes sign in the blade singularity. At the singularity one can define this
derivative as an average and this leaves from the action ΨΓαDαΨ only the term ΨΓαAαΨ.
This is just the interaction part of the action!

3. This argument can be applied to singularities of various dimensions. For D = 3, the action
contains the modified gamma matrices for the Kähler action plus volume term. For D = 2,
Chern-Simons-Kähler action defines the modified gamma matrices. For string world sheets
the action could be induced from area action plus Kähler magnetic flux. For fermion lines
from the 1-D action for fermion in induced gauge potential so that standard QFT result
would be obtained in this case.

How does this picture relate to perturbative QFT?

1. The first thing to notice is that in the TGD framework gauge couplings do not appear at all
in the interaction vertices. The induced gauge potentials do not correspond to A but to gA.
The couplings emerge only at the level of scattering amplitudes when one goes to the QFT
limit. Only the Kähler coupling strength and cosmological constant appear in the action.

2. The basic implication is that only the electroweak gauge potentials appear in the vertices.
This conforms with the dangerous looking intuition that also strong interactions can be de-
scribed in terms of electroweak vertices but this is of course a potential killer prediction. One
should be able to show that the presence of WCW degrees of freedom taken into account
minimally in terms of fermionic color partial waves in CP2 predicts strong interactions and
predicts the value of αs. Note that the restriction of spinor harmonics of CP2 to a homolog-
ically non-trivial geodesic sphere gives U(2) partial waves with the same quantum numbers
as SU(3) color partial waves have.

3. TGD approach differs dramatically from the perturbative QFT. Since 1/αs appears in the
vertex, the increase of heff in the vertex increases it: just the opposite occurs in the pertur-
bative QFT! This seems to be in conflict with QFT intuition suggesting a perturbation series
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in αs ∝ 1/~eff . The explanation is that 1/αK appears as a coupling parameter instead of
αs.

This reminds of the electric-magnetic duality between perturbative and non-perturbative
phases of gauge theories, where magnetic coupling strength is proportional to the inverse of
the electric coupling strength. The description in terms of monopole flux tubes is therefore
analogous to the description in terms of magnetic monopoles in the QFT framework. In
TGD, it is the only natural description at the fundamental level. The decrease of αK by
increase of heff would indeed correspond to the QFT type description reduction of αs.

Could the description based on Maxwellian non-monopole flux tubes correspond to the usual
perturbative phase without magnetic monopoles? In the Maxwellian phase there is huge
vacuum degeneracy due to the presence of vacuum extremals with a vanishing Kähler form
at the limit of vanishing volume action. Could this degeneracy allow path integral as a
practical approximation at QFT limit.

4. heff/h0 = n is proposed to correspond to the dimension of algebraic extension of rationals
associated with the space-time surface and serve as a measure for algebraic complexity.
The increase of algebraic complexity of the space-time region defining the strong interaction
volume would also make interactions strong. In TGD, the fundamental coupling strength
would be αK and the increase of αK for ordinary value of h would force the increase of h.
This should happen below the electroweak scale or at least the confinement scales and make
perturbation theory describing strong interactions possible. This description would involve
monopole flux tubes and their reconnections.

5. The basic objection against the proposal is that weak interactions violate parity conservation,
which is very small for hadrons. The increase of the length scale below which weak bosons are
effectively massless strengthens this effect. The way out of the problem should be based on
the dominance of the Kähler part of electroweak fields in the electroweak vertices describing
the splitting of flux tubes modelling the emission of gluons. Flux tubes obtained as M4

deformations of cosmic strings carry vanishing weak fields apart from Z0 field containing
Kähler part so that the parity breaking effects might be small. Kähler form to which also
classical color gauge fields are proportional, is invariant under color rotations whereas color
rotations induce non-trivial holonomies for the weak gauge fields. Also this could play a
crucial role in minimizing parity breaking effects by making weak contributions to the gluon
emission vertex very small. Same is true also for emission of mesons. For Maxwellian flux
tubes the situation would be different. The stringy description of quarks, gluons, and hadrons
as monopole flux tubes would distinguish between strong and electroweak interactions.

2.2 About the difference between electroweak and strong interactions
assuming generalized holomorphy

It is interesting to see what the holography as generalization to 4-D holomorphy hypothesis pre-
dicts when combined with the proposed explanation of the family replication phenomenon and
the proposal for how parity violation is avoided in strong interactions despite the fact that only
electroweak induced fields appear in the fundamental vertices for the creation of various particles
identified as closed 2-sheeted monopole flux tubes. This includes mesons and gluons.

1. Monopole flux tubes can be regarded as M4 deformations of cosmic strings representable
as Cartesian products of string world sheet X2 ⊂ M4 and 2-surface Y 2 ⊂ CP2. Partonic
2-surfaces would appear as ”ends” of 2-sheeted monopole flux tubes. If the holomorphic
realization of holography makes sense, the space-time surfaces are complex algebraic surfaces.
In the simplest situation the 2-D cross section of a cosmic string is a complex surface of CP2.
A more general option is as a complex algebraic curve in E2 × CP2.

2. Riemann-Roch theorem (see ) allows to define geometric genus (see ) of a complex algebraic
curve in CP2 as

g = (d− 1)(d− 2)/2− s ,

https://en.wikipedia.org/wiki/Riemann Roch_theorem
https://en.wikipedia.org/wiki/Genus_(mathematics)
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noindent where s is the number of singularities, which are cones and as a special case cusps
(infinitely sharp cones). According to the Wikipedia article, this formula generalizes to
algebraic surfaces in higher than 2-D complex manifolds, or at least projective space.

From this one can conclude for the (d − 1)(d − 2)/2 ≥ g for partonic 2-surfaces as complex
surfaces in CP2 there are always singularities. For s = 0, g = 0 allows d = 0 and d = 1. For
s = 0, g = 1 allows d = 3 related to elliptic functions. Already for g = 2 one has s ≥ 1. The
genera g = (d− 1)(d− 2)/2 are special in that they also allow s = 0.

3. It is known (see ) that for s = 0 the topological genus, algebraic genus and arithmetic genus
are identical. This might be relevant for the definition of genus for the p-adic counterparts of
partonic 2-surfaces, where the topological genus does not make sense. This could make g ∈
{0, 1, (d−1)(d−2)2} cognitively special. It would seem that p-adic variants of g = 2 partonic
2-surfaces do not make sense unless one can eliminate the singularities by a deformation of
Y 2 to a complex 2-surface in E2 × Y 2. One should also be able to represent g > 0 surfaces
as surfaces in E2 × CP2, where CP1 corresponds to either d = 1 of d = 2.

2.2.1 Generalized holomorphy, difference between strong and weak interactions, and
family replication phenomenon

It is instructive to consider the CP2 option and its generalization in more detail from the perspective
of weak and strong interactions and family replication phenomenon.

1. g = 0 option is the most natural one for cosmic strings and allows polynomials of degree
d = 1 and d = 2. d = 1 would correspond to the homologically non-trivial geodesic sphere
of CP2 and d = 2 a more complex surface. For the homologically non-trivial sphere only the
Kähler form would contribute to the vertex related to the splitting of the cosmic string. This
could explain why the generation of hadronic and gluonic monopole strings does not lead to
a parity violation.

For d = 2 and g = 0 induced electroweak fields are non-vanishing and parity violations are
predicted. Could photons and gluons correspond to cosmic strings with cross section as d = 1
surface of CP2? Could parity violating weak bosons relate to cosmic strings with a d = 2
spherical cross section so that the difference between strong and weak interactions would
reduce to algebraic geometry?

2. The genus g = 1 could be also realized for cosmic strings with d = 3 to which elliptic
functions. In this case, the induced weak fields would be present for the CP2 option. This
does not conform with the idea that parity breaking effects do not depend on the genus
(generation of fermion).

Could the deformations of partonic 2-surfaces in M4 degrees of freedom come in rescue? For
partons as complex 2-surfaces in E2×S2 ⊂ E2×CP2, S2 homologically non-trivial geodesic
sphere, no charged weak fields would be present. If this picture is correct the deformations in
E2 degrees of freedom would distinguish between fermion families but the difference should
be subtle. I do not know whether the formula for algebraic surfaces in projective spaces still
holds true.

3. Genus g = 2 partonic 2-surface in CP2 would have at least one singular point. Is this
physically acceptable? Is it possible to avoid the singularity for the Y 2 ⊂ E2×S2 ⊂ E2×CP2

option? Blowing up of the singularities by removing a small disk of S2 around the singularity
and gluing back a disk of E2×S2 is what comes to mind. Blowup, in particular a blowup at
a given point of complex manifold, such as a cone singularity of complex surface, is described
in the Wikipedia article (see ).

Topologically this means construction of a connected sum with the projective space CP1 by
removing a small disk around the singularity. The realization of this operation would now
occur in E2 × Y 2. If the genus g = d(d − 1)/2 − r is preserved in the blowup so that one
would obtain non-singular representatives also in g = 2 case. Obviously the formula for the
genus would not hold anymore.

https://en.wikipedia.org/wiki/Genus_(mathematics)
https://en.wikipedia.org/wiki/Blowing_up
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4. Since all quark genera g ≤ 2 appear in strong interactions, which do not violate parity, one
should have a way of constructing g > 0 surfaces from the homologically non-trivial sphere
CP1 ⊂ CP2 with n = 1 complex surface in E2 ⊂ CP1. Addition of handles should be the
way. These surfaces would be associated with quarks, gluons and mesons, which all would
correspond to 2-sheeted monopole fluxe tubes.

This operation should be possible also for the d = 2 complex sphere carrying induced weak
gauge fields. The predicted higher families of weak bosons as analogs of mesons could be
obtained from d = 2 monopole flux tubes. The existence of strong and weak interactions
would reflect the existence of d = 1 and d = 2 complex spheres of CP2. In particular, one
obtains non-singular g = 2 fermions. Also leptons could correspond to d = 2 spheres.

2.2.2 About the relationship between Kähler magnetic charge and genus

What can one say about the homological (Kähler magnetic) charge of a partonic 2-surface with a
given genus. At least homological charges ±1 and ±2 should be realized for the partonic 2-surfaces.
For about 4 decades ago, my friend Lasse Holmström, who is a mathematician, gave me as a gift
a Bulletin of American Mathematical Society [A1] containing articles about 4-D topology and also
about topology of CP2. At page 124 there were interesting results related to the realization of
homologically non-trivial 2-surfaces in CP2, in particular there were conditions on the minimal
genus of these surfaces.

The basic result was that a surface with homology charge h can be realized as a surface with
genus g = (h− 1)(h− 2)/2 and there are no known realizations with a smaller genus. For d = h,
this sequence would correspond to the sequence g = (d− 1)(d− 2)/2 for complex surfaces without
singularities. This correlation between genus and homology charge troubled me since in the TGD
framework h ∈ {±1,±2} should be possible for all genera. The addition of handles to d = 1, 2
complex spheres of CP1 ⊂ CP1 ⊂ E2 would solve the problem. An interesting question is whether
the sequence 0, 1, 6, 10, 15, ... of homologically special genera could have a physical interpretation
and perhaps predict a hierarchy of analogs of strong and weak interactions.

2.2.3 About the number of complex deformations of a given partonic 2-surface

It is interesting to ask about how many deformations a given partonic 2-surface represents as a
complex surface in E2 × CP1, where CP1 corresponds to the surface of CP2 with d ∈ {1, 2}. For
the deformations of CP1 with d = 1, 2, one can express E2 complex coordinate as a meromorphic
function of CP1 complex coordinate. More generally, one can consider the partonic 2-surface in
E2 × S2 as a surface with given genus g and consider the complex deformations of this surface.
The dimension of the space of these deformations is of obvious physical interest if generalized
holomorphy is accepted.

In the case of a pole, the E2 point would go to infinity so that poles are not allowed. If the
notion of Hamilton-Jacobi structure [L8] makes sense, one can slice M4 also using closed partonic
2-surfaces with complex coordinates so that meromorphic functions with poles are allowed. In
TGD, rational functions with rational coefficients of corresponding polynomials are favoured.

These functions can be characterized by so-called principal divisors expressible as formal super-
positions D =

∑
νkPk. Here Pk are the singular points (zeros for νk > 0 and poles for νk < 0). One

can assign also to complex one-forms divisors: this kind of divisor is known as canonical divisor
and is unique apart from addition of principal divisor, which corresponds to a multiplication of the
1-form with a meromorphic function. The degree of the divisor can be defined as deg(D) =

∑
νk.

Riemann-Roch theorem applies also to algebraic surfaces such as complex surfaces in E2×CP1,
and allows to get grasp about the numbers of the surfaces obtained as deformations of CP1 with a
given divisor D for a surface with a given genus g. These numbers correspond to the dimensions of
the linear spaces of rational functions, whose poles are not worse than the coefficients of D, where
Pk are the singular points (zeros for nk > 0 and poles for nk < 0). The Riemann-Roch formula
reads as

`(D)− `(K −D) = deg(D)− g + 1.

Here `(D) is the dimension of the space of meromorphic functions h for which all the coefficients
of (h) +D are non-negative (no poles). The term −`(K −D) is a correction term present only for
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low degrees deg(D) defining the analog of polynomial degree characterizing the winding number of
h. Because `(K −D) is a dimension of vector space, it cannot be negative and vanishes for large
enough degrees. For large values of deg(D) the formula reads therefore as `(D) = deg(D)− g + 1.

3 Questions related to the generalized holomorphies and
fundamental vertices according to TGD

We had very inspiring discussions with Marko Manninen at a birthday meal with wine. During the
way home some questions and ideas emerged. Could the 4-D generalization of holomorphy realizing
holography allow an explicit realization of an infinite hierarchy of conserved charges generalizing
the Super Virasoro algebra? Could the only particle vertex in TGD correspond to a creation of
fermion-antifermion pair: in this 2-vertex fermion state and fermionic line, partonic orbit, or Bohr
orbit turns back in time? Can one identify the graviton emission vertex?

3.1 Questions related to the generalized holomorphies and symplectic
transformations

We had very inspiring discussions with Marko Manninen at a birthday meal with wine. During the
way home some questions and ideas emerged. Could the 4-D generalization of holomorphy realizing
holography allow an explicit realization of an infinite hierarchy of conserved charges generalizing
the Super Virasoro algebra?

3.1.1 4-D generalization of the holomorphy allows conserved charges associated with
the generalized holomorphies

Does the 4-D analogy of holomorphy as a realization of holography give rise to conserved quantities?
Now the symmetries would not be isometries, nor some other symmetries of the action, but dynamic
symmetries satisfied only by the Bohr orbits. A little calculation that one can do in your head
shows that one obtains conserved currents: the reason is the same as in the case of field equations.
The divergence of the Noether current is a contraction of tensors with no common index pairs for
the generalization of complex coordinates.

Unlike those associated with the general coordinate invariance, these conserved quantities do
not vanish. They correspond to the 4-D generalization of conformal transformations and give rise
to a generalization of the Virasoro algebra and also of Super Virasoro algebra realized in terms
of the modified Dirac action for the induced spinor fields obtained from the free second quantized
spinor fields of H.

In the string model, these conformal charges are assumed to annihilate the physical states. In
TGD, I have proposed that only a subalgebra that is isomorphic to the whole algebra, having
conformal weights which are integer multiples of the entire algebra, does this. In TGD framework,
the conformal weights are necessarily non-negative and ZEO allows this. One obtains a whole
hierarchy of subalgebras and a sub-hierarchy of algebras for which conformal symmetry as gauge
symmetry is ”broken” to dynamical Lie symmetries for physical states having conformal weight
below some maximum value. These hierarchies could correspond to the hierarchies of algebraic
extensions for rationals defined by composite polynomials.

Generalized holomorphy algebra generalizes the Super-Virasoro algebra and the Super-Kac-
Moody algebra related to the conformal invariance of the string model. The corresponding Noether
charges are conserved. Modified Dirac action allows to construct the supercharges having inter-
pretation as WCW gamma matrices. This suggests an answer to a longstanding question related
to the isometries of the ”world of the classical worlds” (WCW).

1. Either the generalized holomorphies or the symplectic symmetries of H = M4×CP2 or both
together define WCW isometries and corresponding super algebra. One can ask whether
the symplectic symmetries induced from H are necessarily needed and whether they might
correspond to symplectic symmetries of WCW. One would obtain a close similarity with the
string model, except that one has half-algebra for which conformal weights are proportional
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to non-negative integers and gauge conditions only apply to an isomorphic subalgebra. These
are labeled by positive integers and one obtains a hierarchy.

2. By their light-likeness, the light cone boundary and orbits of partonic 2-surfaces allow an
infinite-dimensional isometry group. This is possible only in dimension four. Its transforma-
tions are generalized conformal transformations of 2-sphere (partonic 2-surface) depending
on light-like radial coordinate such that the radial scaling compensates for the usual con-
formal scaling of the metric. The WCW isometries would thus correspond to the isometries
of the parton orbit and of the boundary of the light cone! These two representations could
provide alternative representations for the charges if the strong form of holography holds
true and would realize a strong form of holography. Perhaps these realizations deserve to be
called inertial and gravitational charges.

For the light-cone boundary, the conservation looks obvious if the light-cone is sliced by
time translates of the light-cone boundary. A slicing defined by the Hamilton-Jacobi
structure [L8] would be naturally associated with the partonic orbits and possible light-
like boundaries of space-time surface [L4]. For the partonic slicing, time direction and also
slices are light-like: a limiting case of ordinary slicing by Euclidian slices is in question. One
can see the entire partonic orbit as analog of a 3-D Euclidian surface at which holographic
data are given.

3. An absolutely essential point is that generalized holomorphisms are not symmetries of Kähler
function since otherwise Kähler metric involving second derivatives of type (1,1) with respect
to complex coordinates of WCW is non-trivial if defined by these symmetry generators as
differential operators. If Kähler function is equal to Kähler action, as it seems, Kähler action
cannot be invariant under generalized holomorphies.

Noether’s theorem states that the invariance of the action under a symmetry implies the con-
servation of corresponding charge but does not claim that the existence of conserved Noether
currents implies invariance of the action. Since Noether currents are conserved now, one
would have a concrete example about a situation in which the inverse of Noether’s theorem
does not hold true. In a string model based on area action, conformal transformations of
complex string coordinates give rise to conserved Noether currents as one can easily check
and the area element defined by the induced metric suffers a conformal scaling so that the
action is not invariant in this case.

4. What makes this so interesting is that, due to the light-likeness of δM4
+, the algebra of

isometries of δM4
+×CP2 corresponds to the infinite-dimensional algebra of holomorphisms

of S2 localized with respect to the light-like radial coordinate δM4
+! Radially localized

holomorphisms would act as isometries of the light-cone boundary and induce isometries
of WCW! Same is true at the light-like orbits of partonic 2-surfaces. Also the generalized
Kac-Moody algebra could define infinitesimal isometries.

5. What about Poincare symmetries? They would act on the center of mass coordinates of
causal diamonds (CDs) as found already earlier [L9]. CDs form the ”spine” of WCW, which
can be regarded as fiber space with fiber for a given CD containing as a fiber the space-time
surfaces inside it.

The super-symmetric counterparts of holomorphic charges for the modified Dirac action and
bilinear in fermionic oscillator operators associated with the second quantization of free spinor
fields in H, define gamma matrices of WCW. Their anticommutators define the Kähler metric
of WCW. There is no need to calculate either the action defining the classical Kähler action
defining the Kähler function or its derivatives with respect to WCW complex coordinates and
their conjugates. What is important is that this makes it possible to speak about WCW metric
also for number theoretical discretization of WCW with space-time surfaces replaced with their
number theoretic discretizations.

3.1.2 Challenging the existing picture of WCW geometry

These findings make it possible to challenge and perhaps sharpen the existing speculations con-
cerning the metric and isometries of WCW.

https://tgdtheory.fi/public_html/articles/CDconformal
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I have considered the possibility that also the symplectomorphisms of δM4 + ×CP2 could
define WCW isometries. This actually the original proposal. One can imagine two options.

1. The continuation of symplectic transformations to transformations of the space-time surface
from the boundary of light-cone or from the orbits partonic 2-surfaces should give rise to
conserved Noether currents but it is not at all obvious whether this is the case.

2. One can assign conserved charges to the time evolution of the 3-D boundary data defining
the holographic data: the time coordinate for the evolution would correspond to the light-
like coordinate of light-cone boundary or partonic orbit. This option I have not considered
hitherto. It turns out that this option works!

The conclusion would be that generalized holomorphies give rise to conserved charges for 4-D
time evolution and symplectic transformations give rise to conserved charged for 3-D time evolution
associated with the holographic data.

3.1.3 About extremals of Chern-Simons-Kähler action

Let us look first the general nature of the solutions to the extremization of Chern-Simons-Kähler
action.

1. The light-likeness of the partonic orbits requires Chern-Simons action, which is equivalent to
the topological action J∧J , which is total divergence and is a symplectic in variant. The field
equations at the boundary cannot involve induced metric so that only induced symplectic
structure remains. The 3-D holographic data at partonic orbits would extremize Cherns-
Simons-Kähler action. Note that at the ends of the space-time surface about boundaries of
CD one cannot pose any dynamics.

2. If the induced Kähler form has only the CP2 part, the variation of Chern-Simons-Kähler
form would give equations satisfied if the CP2 projection is at most 2-dimensional and
Chern-Simons action would vanish and imply that instanton number vanishes.

3. If the action is the sum of M4 and CP2 parts, the field equations in M4 and CP2 degrees
of freedom would give the same result. If the induced Kähler form is identified as the sum
of the M4 and CP2 parts, the equations also allow solutions for which the induced M4 and
CP2 Kähler forms sum up to zero. This phase would involve a map identifying M4 and CP2

projections and force induce Kähler forms to be identical. This would force magnetic charge
in M4 and the question is whether the line connecting the tips of the CD makes non-trivial
homology possible. The homology charges and the 2-D ends of the partonic orbit cancel
each other so that partonic surfaces can have monopole charge.

The conditions at the partonic orbits do not pose conditions on the interior and should allow
generalized holomorphy. The following considerations show that besides homology charges
as Kähler magnetic fluxes also Hamiltonian fluxes are conserved in Chern-Simons-Kähler
dynamics.

3.1.4 Can one assign conserved charges with symplectic transformations or partonic
orbits and 3-surfaces at light-cone boundary?

The geometric picture is that symplectic symmetries are Hamiltonian flows along the light-like
partonic orbits generated by the projection At of the Kähler gauge potential in the direction of
the light-like time coordinate. The physical picture is that the partonic 2-surface is a Kähler
charged particle that couples to the Hamilton H = At. The Hamiltonians HA are conserved
in this time evolution and give rise to conserved Noether currents. The corresponding conserved
charge is integral over the 2-surface defined by the area form defined by the induced Kähler form.

Let’s examine the change of the Chern-Simons-Kähler action in a deformation that corresponds,
for example, to the CP2 symplectic transformation generated by Hamilton HA. M4 symplectic
transformations can be treated in the same way:here however M4 Kähler form would be involved,
assumed to accompany Hamilton-Jacobi structure as a dynamically generated structure.
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1. Instanton density for the induced Kähler form reduces to a total divergence and gives
Chern-Simons-Kähler action, which is TGD analog of topological action. This action should
change in infinitesimal symplectic transformations by a total divergence, which should vanish
for extremals and give rise to a conserved current. The integral of the divergence gives
a vanishing charge difference between the ends of the partonic orbit. If the symplectic
transformations define symmetries, it should be possible to assign to each Hamiltonian HA a
conserved charge. The corresponding quantal charge would be associated with the modified
Dirac action.

2. The conserved charge would be an integral over X2. The surface element is not given by the
metric but by the symplectic structure, so that it is preserved in symplectic transformations.
The 2-surface of the time evolution should correspond to the Hamiltonian time transformation
generated by the projection Aα = Ak∂αs

k of the Kähler gauge potential Ak to the direction
of light-like time coordinate xα ≡ t.

3. The effect of the generator jkA = Jkl∂lHA on the Kähler potential Al is given by jkA∂kAl.
This can be written as ∂kAl = Jkl + ∂lAk. The first term gives the desired total divergence
∂α(εαβγJβγHA).

The second term is proportional to the term ∂αHA − {Aα, H}. Suppose that the induced
Kähler form is transversal to the light-like time coordinate t, i.e. the induced Kähler form
does not have components of form Jtµ. In this kind of situation the only possible choice for
α corresponds to the time coordinate t. In this situation one can perform the replacement
∂αHA−{Aα, H} → dHA/dt−{At, H} This corresponds to a Hamiltonian time evolution
generated by the projection At acting as a Hamiltonian. If this is really a Hamiltonian
time evolution, one has dHA/dt − {A,H} = 0. Because the Poisson bracket represents
a commutator, the Hamiltonian time evolution equation is analogous to the vanishing of
a covariant derivative of HA along light-like curves: dHA/dt + [A,HA] = 0. The physical
interpretation is that the partonic surface develops like a particle with a Kähler charge. As
a consequence the change of the action reduces to a total divergence.

An explicit expression for the conserved current JαA = HAε
αβγJβγ can be derived from

the vanishing of the total divergence. Symplectic transformations on X2 generate an
infinite-dimensional symplectic algebra. The charge is given by the Hamiltonian flux QA =∫
HAJβγdx

α ∧ dxβ .

4. If the projection of the partonic path CP2 or M4 is 2-D, then the light-like geodesic line
corresponds to the path of the parton surface. If Al can be chosen parallel to the surface, its
projection in the direction of time disappears and one has At = 0. In the more general case,
X2 could, for example, rotate in CP2. In this case At is nonvanishing. If J is transversal
(no Kähler electric field), charge conservation is obtained.

Do the above observations apply at the boundary of the light-cone?

1. Now the 3-surface is space-like and Chern-Simons-Kähler action makes sense. It is not
necessary but emerges from the ”instanton density” for the Kähler form. The symplectic
transformations of δM4

+×CP2 are the symmetries. The most time evolution associated
with the radial light-like coordinate would be from the tip of the light-cone boundary to
the boundary of CD. Conserved charges as homological invariants defining symplectic
algebra would be associated with the 2-D slices of 3-surfaces. For closed 3-surfaces the total
charges from the sheets of 3-space as covering of δM4

+ must sum up to zero.

2. Interestingly, the original proposal for the isometries of WCW was that the Hamiltonian
fluxes assignable to M4 and CP2 degrees of freedom at light-like boundary act define the
charges associated with the WCW isometries as symplectic transformations so that a strong
form of holography would have been be realized and space-time surface would have been
effectively 2-dimensional. The recent view is that these symmetries pose conditions only on
the 3-D holographic data. The holographic charges would correspond to additional isometries
of WCW and would be well-defined for the 3-surfaces at the light-cone boundary.
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To sum up, one can imagine many options but the following picture is perhaps the simplest
one and is supported by mathematical facts. The isometry algebra of δM4

+ × CP2 consists of
generalized conformal and KM algebras at 3-surfaces in δM4

+ ×CP2 and symplectic algebras at
the light cone boundary and 3-D light-like partonic orbits. The latter symmetries give constraints
on the 3-D holographic data. It is still unclear whether one can assign generalized conformal
and Kac-Moody charges to Chern-Simons-Kähler action. The isomorphic subalgebras labelled by a
positive integer and their commutators with the entire algebra would annihilate the physical states.
The isomorphic subalgebras labelled by a positive integer and their commutators with the entire
algebra would annihilate the physical states. These two representations would generalize the
notions of inertial and gravitational mass and their equivalence would generalize the Equivalence
Principle.

3.1.5 The TGD counterparts of the gauge conditions of string models

The string model picture forces to ask whether the symplectic algebras and the generalized
conformal and Kac-Moody algebras could act as gauge symmetries.

1. In string model picture conformal invariance would suggest that the generators of the gener-
alized conformal and KM symmetries act as gauge transformations annihilate the physical
states. In the TGD framework, this does not however make sense physically. This also sug-
gests that the components of the metric defined by supergenerators of generalized conformal
and Kac Moody transformations vanish. If so, the symplectomorphisms δM4

+ ×CP2 local-
ized with respect to the light-like radial coordinate acting as isometries would be needed.
The half-algebras of both symplectic and conformal generators are labelled by a non-negative
integer defining an analog of conformal weight so there is a fractal hierarchy of isomorphic
subalgebras in both cases.

2. TGD forces to ask whether only subalgebras of both conformal and Kac-Moody half
algebras, isomorphic to the full algebras, act as gauge algebras. This applies also to the
symplectic case. Here it is essential that only the half algebra with non-negative multiples
of the fundamental conformal weights is allowed. For the subalgebra annihilating the states
the conformal weights would be fixed integer multiples of those for the full algebra. The
gauge property would be true for all algebras involved. The remaining symmetries would
be genuine dynamical symmetries of the reduced WCW and this would reflect the number
theoretically realized finite measurement resolution. The reduction of degrees of freedom
would also be analogous to the basic property of hyperfinite factors assumed to play a key
role in thee definition of finite measurement resolution.

3. For strong holography, the orbits of partonic 2-surfaces and boundaries of the spacetime
surface at δM4

+ would be dual in the information theoretic sense. Either would be enough
to determine the space-time surface.

3.2 Are fermionic 2-vertices all that is needed in TGD?

In quantum field theories, already the interaction vertex for 3 particles leads to divergences. In a
typical 3-vertex, fermion emits a boson or boson decays to a fermion-antifermion pair. In TGD,
the situation changes.

1. Fermions are the only fundamental particles in TGD. Since fundamental bosons are missing,
there is no vertex representing emission of a fundamental boson emission from fermion or a
vertex producing fermion antifermion pair from a fundamental boson. In TGD, bosons as
elementary particles (distinguished from fundamental bosons) are fermion-antifermion pairs,
and the emission of elementary bosons is possible. However, the problem is that the total
fermion and antifermion numbers are separately conserved. Unless it is possible to create
fermion pairs from classical fields!

2. In the standard theory fermion-antifermion pairs can be indeed created in classical gauge
fields. This creation is an experimental fact but it is thought that this description is only
a convenient approximation. In TGD however, the classical fields associated with the Bohr
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orbits of 3-surfaces are an exact part of quantum theory. Could this description be accurate
in TGD? In the classical induced fields associated with particles, pairs could arise. Approxi-
mation would become exact in TGD.

A 2-vertex for creation of fermion-antifermion pair (or corresponding boson) is needed. In this
vertex, the fermion turns must turn backwards in time.

1. I managed to identify the fermionic 2-vertex was specified towards the end of this year as I
realized the connection to the problem of general relativity, which arises from the existence of
GRT space-times for which the 4-D diffeo structure is non-standard. There are a lot of these.
For an exotic diffeo structure, the standard diffeo structure can be said to have point-like
defects analogous to lattice defects.

2. Remarkably, this problem is encountered only in the space-time dimension 4 [L7]! Physical
intuition suggests that it must be possible to turn this problem from a disaster to victory.
In TGD, this is what actually happens: these point-like diffeo-defects can be identified as
interaction vertices, the fermion turns back in the direction of time. Pair creation would be
possible only in space-time dimension 4!

A generalization of the classical fermion pair creation vertex has the same general form as in
QFT. As a special case the pair can correspond to a boson as a fermion-antifermion bound
state. This vertex also has geometric variants in different dimensions. A fermion line, string
world sheet, the orbit of a partonic 2-surface and also the Bohr orbit of 3 surface can turn
backwards in time and the fermion states associated with the induced spinor fields do the
same.

This inspires two questions.

1. Is the creation of a pair actually the only vertex or is it possible to have a geometric 3-vertex
and is it really needed? At the fermion level only the 2-vertex described above is not possible,
but for the topological reactions of surfaces one could think of 3-vertices and in the earlier
picture I thought these are needed. They do not seem to be necessary however.

If so, the theory would be extremely simple compared to quantum field theories. There
dangerous genuine 3-vertices would be absent and diffeo defects defining 2 vertices, which
give all that is needed! At the geometric level, monopole fluxes would replicate and break
and join. Intriguingly, this is what would happen at the magnetic bodies of DNA and induce
similar reactions at the level of DNA molecules! Maybe biology has been doing its best to
tell us what the fundamental particle dynamics is!

2. Since only the induced electroweak gauge potentials couple to fermions, the question arises
whether color and strong interactions are obtained. How is it possible to have strong inter-
actions without parity violation when basic vertices involve weak parity violation? I have
already discussed this question.

3.3 Vertex for graviton emission

There is still one crucially important question left. Is it possible and what would happen in it?
Can one obtain a vertex, where the analog for a contraction Tαβδgαβ of energy-momentum tensor
with the deviation of the metric from the Minkowski metric appears?

1. In TGD all elementary particles, also gravitons, are identified as closed 2-sheeted monopole
flux tubes with two wormhole contacts at its ”ends” and opposite wormhole throats carrying
fermions and antifermions [L5]. For gravitation one has 1 fermion or antifermion for each
wormhole throat.

Splitting of a monopole flux tube would give rise to the basic topological vertex appearing
in all particle vertices. This process would generalize the splitting of an open string to two
pieces. The flux tubes at the opposite sheets of the monopole flux tube representing a particle
would touch at a single point. This would lead to a homologically trivial wormhole contact,
which would evolve to a contact carrying a pair of opposite fluxes. This structure would
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further develop to a pair of wormhole contacts touching at a single point. This structure
would then split to a pair of homologically trivial wormhole contacts with opposite fluxes at
the ends of a pair of resulting monopole flux tubes.

The graviton emission vertex should correspond to a splitting of monopole flux tubes. Mopole
flux tubes with fermion-antifermion pairs assignable to both wormhole contacts should ap-
pear. The fermion and antifermion should reside at the opposite throats of each wormhole
contact. This should happen in the splitting of a monopole flux tube and second monopole
flux tube would correspond to graviton. That two bosonic vertices are involved with the
emission, brings to mind the proposal that gravitation is in some sense a square of gauge
theory.

2. The vertex is the same as for gauge boson emission and for a creation of a fermion-antifermion
pair. The definition of the modified gamma matrices as Γα = Tαk Γk appearing in the modified
Dirac action [K3], involving the modified Dirac operator ΓµDµ makes it possible to identify
the gravitational part of the vertex. Here the quantities Tαk = ∂L/∂(∂αh

k) are canonical
momentum currents associated with the action defining the space-time surface and also the
analog of the energy-momentum tensor.

Modified gamma matrices are required by hermiticity forcing the vanishing of the divergence
of Γα giving classical field equations for space-time surfaces. This implies a supersymmetry
between the dynamics of fermions and 3-surfaces. The gravitational interaction would cor-
respond to the deviation of the induced metric from the induced metric defined by induced
CP2 metric. CP2 radius must correspond to Planck length lP . This requires that the CP2

as R ∼ 104lP must correspond to h = nh0, n ∼ 107 as found already earlier.

3. The cosmological term in GRT has coefficient 1/8πGΛ ≡ 1/R4 so that the modified gamma
matrices would contain a term proportional to 1/R4 plus a term coming from the Kähler
action. In the TGD framework [L1, L2], cosmological constant Λ depends on the p-adic
length scale, which is assumed to correspond to a ramified prime for an extension of rationals
associated with the polynomial P determining to high degree the space-time surface and
approaches to zero in cosmic scales. The cosmological value corresponds to R ' 10−4 meters,
i.e. cell length scale and a scale near neutrino Compton length.

In the general coordinate invariant formalism, one does not assign dimension to the coordi-
nates or to covariant derivative Dα. Metric has dimension 2. The scale dimension of Tαk

√
g

is the same dimension of L
√
g and thus vanishes. Γα has scale dimension −1. The modified

Dirac action must be dimensionless so that the induced spinors must have scale dimension
1/2.

4. The cosmological constant as the coefficient of the action depends on the p-adic length scale.
This term contributes to the string tension of string-like objects an additional term, which
among other things can explain hadronic string tension. This term is visible also in the
interaction vertices. The Kähler part of the bosonic action terms comes from the deviation
of the induced metric from the flat metric and should give the usual gravitational interactions
with matter.

5. Holomorphy hypothesis allows any general coordinate invariant action constructible in terms
of the induced geometry. Although preferred extremals are always minimal surfaces, the
properties of the action are visible via classical conservation laws, via the field equation at
singular 3-surfaces involving the entire action, and via the vertices.

There is however an objection against the identification of gravitons as pairs of fermion-
antifermion pairs: in this case graviton emission requires two bosonic vertices. If one allows
the monopole flux tubes string-like entities to carry rotational angular momentum, graviton could
correspond to a single fermion-antifermion pair.
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