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Abstract

McKay correspondence states that the McKay graphs for the irreducible representations
(irreps) of finite subgroups of G C SU(2) characterizing their fusion algebra is given by
extended Dynkin diagram of ADE type Lie group. Minimal conformal models with SU(2)
Kac-Moody algebra (KMA) allow a classification by the same diagrams as fusion algebras
of primary fields. The resolution of the singularities of complex algebraic surfaces in C* by
blowing implies the emergence of complex lines C'P;. The intersection matrix for the C' Pis is
Dynkin diagram of ADE type Lie group. These results are highly inspiring concerning adelic
TGD.

1. The appearance of Dynkin diagrams in the classification of minimal conformal field theo-
ries (CFTs) inspires the conjecture that in adelic physics Galois groups Gal or semidirect
products of Gal with a discrete subgroup G of automorphism group SO(3) (having SU(2)
as double covering!) classifies TGD generalizations of minimal CFTs. Also discrete sub-
groups of octonionic automorphism group can be considered. The fusion algebra of irreps
of Gal would define also the fusion algebra for KMA for the counterparts of minimal fields.
This would provide deep insights to the general structure of adelic physics.

2. One cannot avoid the question whether the extended ADE diagram could code for a
dynamical symmetry of a minimal CFT or its modification? If the Gal singlets formed
from the primary fields of minimal model define primary fields in Cartan algebra of
ADE type KMA, then standard free field construction would give the charged KMA
generators. In TGD framework this conjecture generalizes.

3. A further conjecture is that the singularities of space-time surface imbedded as 4-surface
in its 6-D twistor bundle with twistor sphere as fiber could be classified by McKay graph
of Gal. The singular intersection of the Euclidian and Minkowskian regions of space-
time surface is especially interesting: the twistor spheres at the common points defining
light-like partonic orbits need not be same but have intersections with intersection matrix
given by McKay graph for Gal. The basic information about adelic CF'T would be coded
by the general character of singularities for the twistor bundle.

4. In TGD also singularities in which the group Gal is reduced to its subgroup Gal/H,
where H is normal group are possible and would correspond to phase transition reducing
the value of Planck constant. What happens in these phase transitions to single particle
states would be dictated by the decomposition of representations of Gal to those of
Gal/H and transition matrix elements could be evaluated.
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1 Introduction

McKay correspondence is rather mysterious looking correspondence appearing in several fields.
This correspondence is extremely interesting from point of view of adelic TGD [?]delephysics [L2].

1. McKay graphs code for the fusion algebra of irreducible representations (irreps) of finite
groups (see http://tinyurl.com/z48d92t). For finite subgroups of G C SU(2) McKay
graphs are extended Dynkin diagrams for affine (Kac-Moody) algebras of ADE type coding
the structure of the root diagram for these algebras. The correspondence looks mysterious
since Dynkin diagrams have quite different geometric interpretation.

2. McKay graphs for finite subgroups of G C SU(2) characterize also the fusion rules of minimal
conformal field theories (CFTs) having Kac-Moody algebra (KMA) of SU(2) as symmetries
(see http://tinyurl.com/y7doftpe). Fusion rules characterize the decomposition of the
tensor products of primary fields in CFT. For minimal CFTs the primary fields belonging
to the irreps of SU(2) are in 1-1 correspondence with irreps of G, and the fusion rules for
primary fields are same as for the irreps of G. The irreps of SU(2) are also irreps of G.

Could the ADE type affine algebra appear as dynamical symmetry algebra too? Could the
primary fields for ADE defining extended ADE Cartan algebra be constructed as G-invariants
formed from the irreps of G and be exponentiated using the standard free field construction
using the roots of the ADE KMA a give ADE KMA acting as dynamical symmetries?

3. McKay graphs for G C SU(2) characterize also the double point singularities of algebraic
surfaces of real dimension 4 in C? (or CP? | one variant of twistor space!) with real dimension
6 (see http://tinyurl.com/ydz93hle). The subgroup G C SU(2) has a natural action in
C? and it appears in the canonical representation of the singularity as orbifold C?/G. This
partially explains the appearance of the McKay graph of G. The resolved singularities are
characterized by a set of projective lines C'P; with intersection matrix in C' P, characterized
by McKay graph of G. Why the number of spheres is the number of irreps for G is not
obvious to me.

The double point singularities of C? C C? allow thus ADE classification. The number of
added points corresponds to the dimension of Cartan algebra for ADE type affine algebra,
whose Dynkin diagram codes for the finite subgroup G C SU(2) leaving the algebraic surface
looking locally like C? invariant and acting as isotropy group of the singularity.

These results are highly inspiring concerning adelic TGD.

1. The appearance of Dynkin diagrams in the classification of minimal CFTs inspires the con-
jecture that in adelic physics Galois groups Gal or semi-direct products G < Gal of Gal with
a discrete subgroup G of automorphism group SO(3) (having SU(2) as double covering!)
classifies TGD generalizations of minimal CFTs. Also discrete subgroups of octonionic au-
tomorphism group can be considered. The fusion algebra of irreps of Gal would define also
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the fusion algebra for KMA for the counterparts of minimal fields. This would provide deep
insights to the general structure of adelic physics.

One cannot avoid the question whether the extended ADE diagram could code for a dy-
namical symmetry of a minimal CFT or its modification? If the Gal singlets formed from
the primary fields of minimal model define primary fields in Cartan algebra of ADE type
KMA, then standard free field construction would give the charged KMA generators. In
TGD framework this conjecture generalizes.

A further conjecture is that the singularities of space-time surface imbedded as 4-surface in
its 6-D twistor bundle with twistor sphere as fiber could be classified by McKay graph of Gal.
The singular intersection of the Euclidian and Minkowskian regions of space-time surface is
especially interesting: the twistor spheres at the common points defining light-like partonic
orbits need not be same but have intersections with intersection matrix given by McKay
graph for Gal. The basic information about adelic CFT would be coded by the general
character of singularities for the twistor bundle.

In TGD also singularities in which the group Gal is reduced to its subgroup Gal/H, where
H is normal group are possible and would correspond to phase transition reducing the value
of Planck constant. What happens in these phase transitions to single particle states would
be dictated by the decomposition of representations of Gal to those of Gal/H and transition
matrix elements could be evaluated.

One can find from web excellent articles about the topics to be discussed in this article.

1.

The article ” Cartan matrices, finite groups of quaternions, and Kleinian singularities” of
John McKay [A2] (seehttp://tinyurl.com/ydygjgge) summarizes McKay correspondence.

. Miles Reid has written an article ” The Du Val singularities Ay, Dy, Fg, E7, Es” [A3] (see

http://tinyurl.com/ydz93hle). Also the article 7 Chapters on algebraic surfaces” [Ad]
(see https://arxiv.org/abs/alg-geom/9602006) of Reid should be helpful. There is also
an article ” Resolution of Singularities in Algebraic Varieties” [Al] (see http://tinyurl.
com/yb7cuwkf) of Emma Whitten about resolution of singularities.

. Andrea Cappelli and Jean-Benard Zuber have written an article ” A-D-E Classification of

Conformal Field Theories” |[BI] about ADE classification of minimal CFT models (see http:
//tinyurl.com/y7doftpel.

. McKay correspondence appears also in M-theory, and the thesis ” On Algebraic Singularities,

Finite Graphs and D-Brane Gauge Theories: A String Theoretic Perspective” [B2] (see http:
//tinyurl.com/ycmyjukn) of Yang-Hui He might be helful for the reader. In this work the
possible generalization of McKay correspondence so that it would apply form finite subgroups
of SU(n) is discussed. SU(3) acting as subgroup of automorphism group G2 of octonions is
especially interesting in this respect. The idea is rather obvious: the fusion diagram for the
theory in question would be the McKay graph for the finite group in question.

McKay graphs in mathematics and physics

McKay graphs for subgroups of SU(2) reducing to Dynkin diagrams for affine Lie algebras of ADE
type appear in several manners in mathematics and physics.

2.1 McKay graphs

McKay graphs [A2] (see http://tinyurl.com/ydygjgge) code for the fusion algebra of irrpes
of finite groups G (for Wikipedia article see http://tinyurl.com/z48d92t). One considers the
tensor products of irreps with the canonical representation (doublet representation for the finite
sub-groups of SU(2)), call it V. The irreps V; correspond to nodes and their number is equal to
the number of irreps G.


http://tinyurl.com/ydygjgge
http://tinyurl.com/ydz93hle
https://arxiv.org/abs/alg-geom/9602006
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/y7doftpe
http://tinyurl.com/y7doftpe
http://tinyurl.com/ycmyjukn
http://tinyurl.com/ycmyjukn
http://tinyurl.com/ydygjgge
http://tinyurl.com/z48d92t

2.2 MacKay graphs and Dynkin diagrams 4

Two nodes ¢ and j are no connected if the decomposition of V ® V; to irreps does not contain
Vj. There is arrow pointing from ¢ — j in this case. The number n;; > 0 or number of arrows tells
how many times j is contained in V ® V;. For n;; = nj; there is no arrow.

One can characterize the fusion rules by matrix A = dd;; — n;;, where d is the dimension of the
canonical representation. The eigenvalues of this matrix turn out to be given by d — &y (g), where
&v (g) is the character of the canonical representation, which depends on the conjugacy class of ¢
only. The number of eigenvalues is therefore equal to the number n(class, G) of conjugacy classes.
The components of eigenvectors in turn are given by the values y;(g) of characters of irreps.

2.2 MacKay graphs and Dynkin diagrams

The nodes of the Dynkin diagram (see http://tinyurl.com/hpm5y9s) are positive simple root
vectors identified as vectors formed by the eigenvalues of the Cartan sub-algebra generators under
adjoint action on Lie algebra. In the case of affine Lie algebra the Cartan algebra contains besides
the Cartan algebra of the Lie group also scaling generator Ly = td/dt and the number of nodes
increases by one.

The number of positive simple roots equals to the dimension of the root space. The number
n;; codes now for the angle between positive simple roots. The number of edges connecting root
vectors is n = 0, 1,2, 3 depending on whether the the angle between root vectors is 7 /2, 27 /3, 37 /4,
or 57 /6. The ratios of lengths of connected roots can have values v/n, n € {1, 2,3}, and the number
n of edges corresponds to this ratio. The arrow is directed to the shorter root if present. For simply
laced Lie groups (ADE groups) the roots have unit length so that only single undirected edge can
connect the roots. Weyl group acts as symmetries of the root diagram as reflections in hyperplanes
orthogonal to the roots.

The Dynkin diagrams of affine algebras are obtained by adding to the Cartan algebra a generator
which corresponds to the scaling generator Ly = td/dt of affine algebra assumed to act via adjoint
action to the Lie algebra. Depending on the position of the added node one obtains also twisted
versions of the KMA.

For the finite subgroups of SU(2) the McKay graphs reduce to Dynkin diagrams of affine Lie
algebras of ADE type [A2] (see http://tinyurl.com/ydygjgge) so that one has either n;; = 0
or nj; = 1 for i # j. There are no self-loops (n;; # 0). The result looks mysterious since the
two diagrams describe quite different things. One can also raise the question whether ADE type
affine algebra might somehow emerge in minimal CFT involving SU(2) KMA for which ADE
classification emerges.

In TGD framework the interpretation of finite groups G C SU(2) in terms of quaternions is
an attractive possibility since rotation group SO(3) acts as automorphisms of quaternions and has
SU(2) as its covering group.

2.3 ADE diagrams and subfactors

ADE classification emerges also naturally for the inclusions of hyper-finite factors of type Iy
K3, [K1]. Subfactors with index smaller than four have so called principal graphs characterizing
the sequence of inclusions equal to one of the A, D or E Coxeter-Dynkin diagrams: see the article
“In and around the origin of quantum groups” of Vaughan Jones [AD] (see http://tinyurl.com/
ycbbbvpq). As a matter of fact, only the Ds, and Fgs and Fg do occur. It is also possible to
construct M : N = 4 sub-factor such that the principle graph is that for any subgroup G C SU(2).
This suggests that the subfactors M : N = 4cos?(m/n) < 4 correspond to quantum groups. The
basic objects can be seen as quantum spinors so that again the appearance of subgroups of SU(2)
looks natural. One can still wonder whether ADE KMAs might be involved.

2.4 ADE classification for minimal CFTs

CFTs on torus [B1] are characterized by modular invariant partition functions, which can be
expressed in terms of characters of the scaling generator Ly of Virasoro algebra (VA) given by

Z(r)=Tr(X) , X =exp{i2m [1(Lo —¢/24) —T(Lo — c¢/24)]} . (2.1)
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Modular invariance requires that Z(7) is invariant under modular transformations leaving the
conformal equivalence class of torus invariant. Modular group equals to SL(2, Z) has as generators
the transformations T': 7 — 7+ 1 and S : 7 — —1/7. The partition function can be expressed as

Z(t) = X Njxi(@x5@) , q=exp(i2nr) , §=exp(—i27T) . (2:2)

Here yx; corresponds to the trace of Ly — ¢/24 for a representation of KMA inducing the VA
representation. Modular invariance of the partition function requires SNST = N and TNTt = N.

The ADE classification for minimal conformal models summarized in [B1] (seehttp://tinyurl.
com/y7doftpe)) involves SU(2) affine algebra with central extension parameter k. The central ex-
tension parameter for the VA is ¢ < 1. The fusion algebra for primary fields in representations of
SU(2) KMA characterizes the CFT to a high degree.

The fusion rules characterized the decomposition of the tensor product of representation D;
with representation D; as ¢ ® j = NZ} Dy. Due to the properties of the tensor product the matrices
N; = Ni’“j form and associative and commutative algebra and one can diagonalize these matrices
simultaneously. This algebra is known as Verlinde algebra and its elements can be expressed in
terms of unitary modular matrix S;; representing the transformation of characters in the modular
transformation 7 — —1/7.

The generator of the Verlinde algebra is fusion algebra for the 2-D representation of SU(2)
generating the fusion algebra (this corresponds to the fact that tensor powers of this representations
give rise to all representations of SU(2)). It turns out that for minimal models with a finite number
of primary fields (KMA representations) the fusion algebra of KMA reduces to that for a finite
subgroup of SU(2) and thus corresponds to ADE KMA. The natural interpretation is that the
condition that the number of primary fields is finite is realized if the primary fields correspond also
to the irreps of finite subgroup of SU(2).

Could the ADE type KMA actually correspond to a genuine dynamical symmetry of minimal
CFT? For this conjecture makes sense, the roots of ADE type KMA should be in 1-1 correspondence
with the irreps of G C SU(2) assignable to primary fields. How could this be possible? In the free
field construction of ADE type KMA generators one constructs charged KMA generators from free
fields in Cartan algebra by exponentiating the quantities a-¢, where « is the root and ¢ is a primary
field corresponding to the element of Cartan algebra of KMA. Could SU(2) invariants formed from
the primary fields defined by each G- (equivalently SU(2)-) multiplet give rise to SU(2) neutral
multiplet of primary fields of ADE type Cartan algebra and could their exponentiation give rise
to ADE type KMA acting as dynamical symmetries of a minimal CFT?

2.5 The resolution of singularities of algebraic surfaces and extended
Dynkin diagrams of ADE type

The classification of singularities of algebraic surfaces leads also to extended Dynkin diagrams of
ADE type.

2.5.1 Classification of singularities

In algebraic geometry the classification of singularities of algebraic varieties [A1] is a central task.
The singularities of curves in plane represent simplest singularities (see http://tinyurl.com/
y8ub2c4s)). The resolution of singularities of complex curves in C? is less trivial task.

The resolution of singularity (http://tinyurl.com/y8veht3p) is a central concept and means
elimination of singularity by modifying it locally. There is extremely general theorem by Hiroka
stating that the resolution of singularities of algebraic varieties is always possible for fields with
characteristic zero (reals and p-adic number fields included) using a sequence of birational trans-
formations. For finite groups the situation is unclear for dimensions d > 3.

The articles of Reid [A3] and Whitten [AT] describe the resolution for algebraic surfaces (2-D
surfaces with real dimension equal to four). The article of Reid describes how the resolutions
of double-point singularities of m = d. = 2-D surfaces in n = d, = 3-D C3 or CP3 (d,. refers to
complex dimension) are classified by ADE type extended Dynkin diagrams. Subgroups G C SU(2)
appear naturally because the surface has dimension d. = 2. This is the simplest non-trivial
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situation since for Riemann surface with (m,n) = (1,2) the group would be discrete subgroup of

U(1).

2.5.2 Singularity and Jacobians

What does one mean with singularity and its resolution? Reid [A3] (see http://tinyurl.com/

ydz93hle) discusses several examples. The first example is the singularity of the surface P(x1, zo, x3) =
2

i — xax3 = 0.

1. One can look the situation from the point of view of imbedding of the 2-surface to C3: one
considers map from tangent space of the surface to the imbedding space C3. The Jacobian
of the imbedding map (zq, 23) = (21, 22, x3) = +./T2T3, X2, r3) becomes ill-defined at origin
since the partial derivatives 0x1/0z2 = (y/x3/x2)/2 and dx1/0xs = (\/x2/x3)/2 have all
possible limiting values at singularity. The resolution of singularity must as a coordinate
transformation singular at the origin should make the Jacobian well-defined. Obviously this
must mean addition of points corresponding to the directions of various lines of the surface
through origin.

2. A more elegant dual approach replaces parametric representation with representation in
terms of conditions requiring function to be constant on the surface. Now the Jacobian of
a map from C? to the 1-D normal space of the singularity having polynomial P(z1, 2, x3)
as coordinate is considered. Singularity corresponds to the situation when the rank of the
Jacobian defined by partial derivatives is less than maximal so that one has dP/0x; = 0.
The resolution of singularity means that the rank becomes maximal. Quite generally, for
co-dimension m algebraic surface the vanishing of polynomials P;, i = 1,...,m defines the
surface. At the singularity the reduction of the rank for the matrix OP;/0z,, from its maximal
value takes place.

2.5.3 Blowing up of singularity

Codimension one algebraic surface is defined by the condition P(z1, z9, ..., ) = 0, where P(x1, ..., x,,)
is polynomial. For higher codimensions one needs more polynomials and the situation is not
so neat anymore since so called complete intersection property need not hold anymore. Reid
[A3] gives an easy-to- understand introduction to the blowing up of double-point singularities.
Also the article “Resolution of Singularities in Algebraic Varieties” of Emma Whitten [Al] (see
http://tinyurl.com/yb7cuwkf) is very helpful.

1. Coordinates are chosen such that the singularity is at the origin (z,y,z) = (0,0,0) of com-
plex coordinates. The polynomial has vanishing linear terms at singularity and the first
non-vanishing term is second power of some coordinate, say zi, so that one has x; =
++/Pi(x1, 22,3, where 1 in P; appears in powers higher than 2. At the singularity the two
roots co-incide. One can of course have also more complex singularities such as triple-points.

2. The simplest example P(z1,z2,x3) = x% — x2x3 = 0 has been already mentioned. This
singularity has the structure of double cone since one as x1 = +,/Tax3. At (0,0,0) the
vertices of the two cones meet.

3. One can look this particular situation from the perspective of projective geometry. Homoge-
nous polynomials define a surface invariant under scalings of coordinates so that modulo
scalings the surface can be regarded also as complex curve in C'P,. The conical surface can
be indeed seen as a union of lines (z7 = k23, 0 = kxs), where k is complex number. The
ratio x1 : zo : x3 for the coordinates at given line is determined by 1 : o = k and x5 : 3 = k
so that the surface can be parameterized by k and the coordinate along given line.

In this perspective the singularity decomposes to the directions of the lines going through
it and the situation becomes non-singular. The replacement of the original view with this
gives a geometric view idea about the resolution of singularity: the 2-surface is replaced by
a bundle lines of surfaces going through the singularity and singularity is replaced with a
union of directions for these lines.
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Quite generally, in the resolution of singularity, origin is replaced by a set of points (z1,z2, x3)
with a well-defined ratio (27 : x5 : x3). This interpretation applies also to more general singularities.
One can say that origin is replaced with a projective sub-manifold of 2-D projective space CP;
(very familiar to me)! This procedure is known as blowing up. Strictly speaking, one only replaces
origin with the directions of lines in C3.

Remark: In TGD the wormhole contacts connecting space-time sheets of many-sheeted space-
time could be seen as outcomes of blowing up procedure.

Blowing up replaces the singular point with projective space C'P; for which points with same
value of (x : 9 : x3) are identified. Blowing up can be also seen as a process analogous to seeing
the singularity such as self-intersection of curve as an illusion: the curve is actually a projection
of a curve in higher dimensional space to which it is lifted so that the intersection disappears [A]]
(see http://tinyurl.com/yb7cuwkf)). Physicist can of course protest by saying that in space-time
physics is is not allowed to introduce additional dimensions in this manner!

There is an analytic description for what happens at the singular point in blowing up process
[AT] (see http://tinyurl.com/yb7cuwkf)).

1. In blowing up one lifts the surface in higher-dimensional space C3 x CP, (C? can be replaced
by any affine space). The blowing up of the singularity would be the set of lines g of the
surface S going through the singularity that is the set B = {(¢,q)|¢ € S}. This set can be seen
as a subset of C3 x CP, and one can represent it explicitly by using projective coordinates
(y1,y2,y3) for CP,. Consider points of C% and C P, with coordinates z = (z1, 22, r3) and
y = (y1,Y2,y3). The coordinate vectors must be parallel x is to be at line y. This requires
that all 2 x 2 sub-determinants of the matrix

{xl 2 ”33] (2.3)

Yr Y2 Y3

vanish: that is z;y; — x;1; = 0 for all pairs 4 < j. This description generalizes to the higher-
dimensional case. The added C'P;s defined what is called exceptional divisor in the blown up
surface. Recall that divisors (see http://tinyurl.com/yc7x3ohx) are by definition formal
combinations of points of algebraic surface with integer coefficients. The principal divisors
defined by functions are are sums over their zeros and poles with integer weight equal to the
order of zero (negative for pole).

The above example considers a surface as% — xox3 = 0 which allows interpretation as a
projective surface. The method however works also for more general case since the idea
about replacing point with directions is applied only at origin.

2. One can consider a more practical resolution of singularity by performing a bi-rational coordi-
nate transformation becoming singular at the singular point. This can improve the singularity
by blowing it up or make it worse by inducing blowing down. The idea is to perform a se-
quence of this kind of coordinate changes inducing blowing ups so that final outcome is free
of singularities.

Since one considers polynomial equations both blowing up and its reversal must map poly-
nomials to polynomials. Hence a bi-rational transformation b acting as a surjection from
the modified surface to the original one must be in question (for bi-rational geometry see
http://tinyurl.com/yadoo3ot)). At the singularity b is many-to-one y so that at this point
inverse image is multivalued and gives rise to the blowing up.

The equation P(x1,z2,23) = 0 combined with the equations x;y; — 2;¥; = 0 by putting
ys = 1 (the coordinates are projective) leads to a parametric representation of S using y;
and yy as coordinates instead of x1 and x5. Origin is replaced with C'P;. This representation
is actually much more general. Whitten [AT] gives a systematic description of resolution of
singularities using this representation. For instance, cusp singularity P(xy,z2) = 22 —23 =0
is discussed as a special case.

3. Topologically the blow up process corresponds to the gluing of C'P;, to the algebraic surface
A: A — A#CP; and clearly makes it more complex. One can say that gluing occurs along


http://tinyurl.com/yb7cuwkf
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/yc7x3ohx
http://tinyurl.com/yadoo3ot

3. Do McKay graphs of Galois groups give overall view about classical and quantum
dynamics of quantum TGD? 8

sphere C'P; and since the process involves several steps several spheres are involved with the
resolution of singularities.

2.5.4 ADE classification for resolutions of double point singularities of algebraic sur-
faces

ADE classification emerges for co-dimension one double point singularities of complex surfaces in
C? known as Du Val singularities. The surface itself can be seen locally as C2. These surfaces
are 4-D in real sense can have self-intersections with real dimension 2. In the singular point the
dimension of the intersection is reduced and the dimension of tangent space is reduced (the rank
of Jacobian is not maximal). The vertices of cone and cusp are good examples of singularities.

The subgroup G' C SU(2) has a natural action in C? and it appears in the canonical represen-
tation of the singularity as orbifold C?/G. This helps to understand the appearance of the McKay
graph of G. The resolved singularities are characterized by a set of projective lines CP; with
intersection matrix in C'P, characterized by McKay graph of G. Why the number of projective
lines equals to the number of irrepss of G appearing as nodes in McKay graph looks to me rather
mysterious. Reid’s article [A3] gives the characterization of groups G and canonical forms of the
polynomials defining the singular surfaces.

The reason why Du Val singularities are so interesting from TGD point of view is that complex
surfaces in Du Val theory have real dimension 4 and are surfaces in space of real dimension 6.
The intersections of the branches of the 4-surfaces have real dimension D = 2 in the generic
case. In TGD space-time surfaces as preferred extremals have real dimension 4 and assumed
possess complex structure or its Minkowskian generalization that I have called Hamilton-Jacobi
structure [K2].

3 Do McKay graphs of Galois groups give overall view about
classical and quantum dynamics of quantum TGD?

McKay graphs for Galois groups are interesting from TGD view point for several reasons. Galois
groups are conjectured to be the number theoretical symmetries for the hierarchy of extensions
of rationals defining hierarchy of adelic physics [K6] [L2] and the notion of CFT is expected to
generalize in TGD framework so that ADE classification for minimal CFTs might generalize to a
classification of minimal number theoretic CF'TS by Galois groups.

3.1 Vision

The arguments leading to the vision are roughly following.

1. Adelic physics postulates a hierarchy of quantum physics with adeles at given level associated
with extension of rationals characterized partially by Galois group and ramified primes of
extension. The dimension of the extension is excellent candidate for defining the value of
Planck constant heyf/h = n and ramified primes could correspond to preferred p-adic primes.
The discrete sets of points of space-time surface for which imbedding space coordinates are
in the extension define what I have interpreted as cognitive representations and can be said
to be in the intersection of all number fields involved forming kind of book like structure with
pages intersecting at the points with coordinates in extension.

Galois groups would define a hierarchy of theories and the natural first guess is that Galois
groups take the role of subgroups of SU(2) in CFTs with SU(2) KMA as symmetry. Could
the MacKay graphs defining the fusion algebra of Galois group define the fusion algebra of
corresponding minimal number theoretic QFT's in analogy with minimal conformal models?
This would fix the primary fields of theories assignable to given level of adele hierarchy to
be minimal representations of Gal perhaps having also interpretation as representations of
KMAs or their generalization to TGD framework.

2. The analogies between TGD and the theory of Du Val singularities is intriguing. Complex
surfaces in Du Val theory have real dimension 4 and are surfaces in space of real dimension 6.
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The intersections of the branches of the 4-surfaces have real dimension D = 2 in the generic
case. In TGD space-time surfaces have real dimension 4 and possess complex structure or
its Minkowskian generalization that I have called Hamilton-Jacobi structure.

The twistor bundle of space-time surface has 2-sphere C'P; as a fiber and space-time surface
as base [K4, [K7]. Space-time surfaces can be realized as sections in their own 6-D twistor
bundle obtained by inducing twistor structure from the product T(M*) x T(C Py) of twistor
bundles of M* and CP,. Section is fixed only modulo gauge choice, which could correspond to
the choice of the Kéhler form defining twistor structure from quaternionic units represented
as points of S2. Even if this choice is made, U(1) gauge transformations remain and could
correspond to gauge transformations of WCW changing its Kahler gauge potential by gradient
and adding to Kahler function a real part of holomorphic function of WCW coordinates.

If the imbedding of 4-D space-time surface as section can become singular in given gauge, it
will have self-intersections with dimension 2 possibly assignable to partonic 2-surfaces and
maybe also string world sheets playing a key role in strong form of holography (SH). Could
SH mean that information about classical and quantum theory is coded by singularities of
the imbedding of space-time surface to twistor bundle. This would be highly analogous to
what happens in the case of complex functions and also in twistor Grassmann theory whether
the amplitudes are determined by the data at singularities.

Where would the intersections take place? Space-time regions with Minkowskian and Eu-
clidian signature of metric have light-like orbits of partonic 2-surfaces as intersections. These
surfaces are singular in the sense that the metric determinant vanishes and tangent space of
space-time surface becomes effectively 3-D: this would correspond to the reduction of tangent
space dimension of algebraic surface at singularity. It is attractive to think that the lifts of
Minkowskian and Euclidian space-time sheets have twistor spheres, which only intersect and
have intersection matrix represented by McKay graph of Gal.

What about string world sheets? Does it make sense to regard them as intersections of 4-D
surfaces? This does not look plausible idea but there are also other characterizations of string
world sheets. One can also ask about the interpretation of the boundaries of string world
sheets, in particular the points at the partonic 2-surfaces. How could they relate to singular-
ities? The points of cognitive representation at partonic 2-surfaces carrying fermion number
should belong to cognitive representation with imbedding space coordinates belonging to an
extension of rationals.

In Du Val theory the resolution of singularity means that one adds additional points to a
double singularity: the added points form projective sphere CP;. The blowing up process
is like lifting self-intersecting curve to a non-singular curve by imbedding it into 3-D space
so that the original curve is its projection. Could singularity disappear as one looks at 6-D
objects instead of 4-D object? Could the blowing up correspond in TGD to a transition
to a new gauge in which the self intersection disappears or is shifted on new place? The
intersections of 4-surfaces in 6-space analogous to roots of polynomial are topologically stable
suggesting that they can be only shifted by a new choice of gauge.

Self-intersection be a genuine singularity if the spheres C'P; defining the fibers of the twistor
bundles of branches of the space-time surface do not co-incide in the 2-D intersection. In
the generic case they would only intersect in the intersection. Could the McKay diagram of
Galois group characterize the intersection matrix?

The big vision could be following. Galois groups characterize the singularities at given level
of the adelic hierarchy and code for the multiplets of primary fields and for the analogs of
their fusion rules for TGD counterparts of minimal CFTs. Note that singularities themselves
identified as partonic 2-surfaces and possibly also light partonic orbits and possibly even
string world sheets are not restricted in any manner.

This idea need not be so far-fetched as it might look at first.

1. One considers twistor lift and self-intersections indeed occur also in twistor theory. When

the M* projections of two spheres of twistor space C'P; (to which the geometric twistor space
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T(M*) = M* x S? has a projection) have light-like separation, they intersect. In twistor
diagrams the intersection corresponds to an emission of massless particle.

2. The physical expectation is that this kind of intersections could occur also for the twistor
bundle associated with the space-time surface. Most naturally, they could occur along the
light-like boundary of causal diamond (CD) for points with light-like separation. They could
also occur along the partonic orbits which are light-like 3-surfaces defining the boundaries
between Minkowskian and Euclidian space-time regions. The twistor spheres at the ends of
light-like curve could intersect.

Why the number of intersecting twistor spheres should reduce to the number n(irred, Gal) of
irreducible representations (irreps) of Gal, which equals to n(Gal) in Abelian case but is otherwise
smaller? This question could be seen as a serious objection.

1. Does it make sense to think that although there are n(Gal) in the local fiber of twistor bundle,
the part of Galois fiber associated with the twistor fiber C'P; has only n(irrep, Gal) C'Py:s
and even that the spheres could correspond to irreps of Gal. I cannot invent any obvious
objection against this. What would happen that Could this mean realization of quantum
classical correspondence at space-time level.

2. There are n(irrep, G) irreps and Y, n? = n(G). n? points at corresponding sheet labelled by
irrep. The number of twistor spheres collapsing to single one would be n; for n;-D irrep so
that instead of states of representations the twistor spheres would correspond to irrep. One
would have analogy with the fractionization of quantum numbers. The points assignable to
n;-D representations would become effectively 1/n;-fractionized. At the level of base space
this would not happen.

3.2 Phase transitions reducing h.ss/h

In TGD framework one can imagine also other kinds of singularities. The reduction of Gal to its
subgroup Gal/H, where H is normal subgroup defining Galois group for the Gal as extension of
Gal/H is one such singularity meaning that the the H orbits of space-time sheets become trivial.

1. The action of Gal could reduce locally to a normal subgroup H so that Gal would be replaced
with Gal/H. In TGD framework this would correspond to a phase transition reducing
the value of Planck constant hcs¢/h = n(Gal) labelling dark matter phases to hess/h =
n(Gal/H) = n(Gal)/n(H). The reduction to Gal/H would occur automatically for the
points of cognitive representation belonging to a lower dimensional extension having Gal/H
as Galois group. The singularity would occur for the cognitive points of both space-time
surface and twistor sphere and would be analogous to n(H)-point singularity.

2. A singularity of the discrete bundle defined by Galois group would be in question and is
assumed to induce similar singularity of n(Gal) -sheeted space-time surface and its twistor
lift. Although the singularity would occur for the ends of strings it would induce reduction
of the extension of rationals to Gal/H, which should also mean that string world sheets have
representation with WCW coordinates in smaller extension of rationals.

3. This would be visible as a reduction in the spectrum of primary fields of number theoretic
variant of minimal model. I have considered the possibility that the points at partonic 2-
surfaces carrying fermions located at the ends of string world sheets could correspond to
singularities of this kind. Could string world sheets could correspond to this kind of bundle
singularities? This singularity would not have anything to do with the above described self-
interactions of the twistor spheres associated with the Minkowskian and Euclidian regions
meeting at light-like orbits of partonic 2-surfaces.

4. This provides a systematic procedure for constructing amplitudes for the phase transitions
reducing heps/h = n(Gal) to heps/h = n(Gal/H). The representations of Gal would be
simply decomposed to the representations of Gal(G/H) in the vertex describing the phase
transition. In the simplest 2-particle vertex the representation of Gal remains irreducible as
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representation of Gal/H. Transition amplitudes are given by overlap integrals of represen-
tation functions of group algebra representations of Gal restricted to Gal/H with those of
Gal/H.

The description of transitions in which particles with different Galois groups arrive in same
diagram would look like follows. The Galois groups must form an increasing sequence
. C Gal; = Gal;y1/H;+1 C .... The representations of the largest Galois group would be
decomposed to the representations of smallest Galois group so that the scattering amplitudes
could be constructed using the fusion algebra of the smallest Galois group. The decomposi-
tion to should be associative and commutative and could be carried in many manners giving
the same outcome at the final step.

3.3 Also quaternionic and octonionic automorphisms might be impor-
tant

What about the role of subgroups of SU(2)? What roles they could have? Could also they classify
singularities in TGD framework?

1. SU(2) is indeed realize as multiplication of quaternions. M® — H correspondence suggests
that space-time surfaces in M8 can be regarded as associative or co-associative (normal space-
is associative. Associative translates to quaternionic. Associativity makes sense also at the
level of H although it is not necessary. This would mean that the tangent space of space-time
surface has quaternionic structure and the multiplication by quaternions is makes sense.

2. The Galois group of quaternions is SO(3) and has discrete subgroups having discrete sub-
groups of SU(2) as covering groups. Quaternions have action on the spinors from which
twistors are formed as pairs of spinors. Could quaternionic automorphisms be lifted to a an
SU(2) action on these spinors by quaternion multiplication? Could one imagine that the
representations formed as tensor powers of these representations give finite irreps of discrete
subgroups of SU(2) defining ground states of SU(2) KMA a representations and define the
primary fields of minimal models in this manner?

3. Galois groups for extensions of rationals have automorphic action on SO(3) and its algebraic
subgroups replacing matrix elements with their automorphs: for subgroups represented by
rational matrices the action is trivial. One would have analogs of representations of Lorentz
group SL(2,C) induced from spin representations of finite subgroups G C SU(2) by Lorentz
transformations realizing the representation in Lobatchevski space. Lorentz group would be
replaced by Gal and the Lobatchevski spaces as orbit with the representation of Gal in its
group algebra. An interesting question is whether the hierarchy of discrete subgroups of
SU(2) in McKay correspondence relates to quaternionicity.

G4 acts as octonionic automorphisms and SU(3) appears as its subgroup leaving on octonionic
imaginary unit invariant. Could these semi-direct products of Gal with these automorphism groups
have some role in adelic physics?

3.4 About TGD variant of ADE classification for minimal models

I already considered the ADE classification of minimal models. The first question is whether the
finite subgroups G C SU(2) are replaced in TGD context with Galois groups or with their semi-
direct products G < Gal. Second question concerns the interpretation of the Dynkin diagram of
affine ADE type Lie algebra. Does it correspond to a real dynamical symmetries.

1. Could the MacKay correspondence and ADE classification generalize? Could fusion algebras
of minimal models for KMA associated with general compact Lie group G be classified by
the fusion algebras of the finite subgroups of G. This generalization seems to be discussed
in [B2] (see http://tinyurl.com/ycmyjukn).

2. Could the fusion algebra of Galois groupGal give rise to a generalization of the minimal
model associated with a KMA of Lie group G D Gal. The fusion algebra of Gal would be
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identical with that for the primary fields of KMA for G. Galois groups could be also grouped
to classes consisting of Galois groups appearing as a subgroup of a given Lie group G.

3. In TGD one has a fractal hierarchy of isomorphic supersymplectic algebras (SSAs) (the con-
formal weights of sub-algebra are integer multiples of those of algebra) with gauge conditions
stating that given sub-algebra of SSA and its commutator with the entire algebra annihilates
the physical states. The remnant of the full SSA symmetry algebra would be naturally KMA.

The pair formed by full SSA and sub-SSA would correspond to pair formed by group G and
normal subgroup H and the dynamical KMA would correspond to the factor group G/H.
This conjecture generalizes: one can replace G with Galois group and SU(2) KMA with a
KMA continuing Gal as subgroup. One the other hand, one has also hierarchies of extensions
of rationals such that i + 1:th extension of rationals is extension of i:th extension. G; is a
normal subgroup of G;41 so that the group Gal;t+1,; = Gali+1/Gal; acts as the relative Galois
group for i + 1:th extension as extensions of i:th extension.

This suggest the conjecture that the Galois groups Gal; for extension hierarchies correspond
to the inclusion hierarchies SSA; D SSA; 1 of fractal sub-algebras of SSA such that the
gauge conditions for SSA; define a hierarchy K M A; of dynamical KMAs acting as dynamical
symmetries of the theory. The fusion algebra of KM A; theory would be characterized by
Galois group Gal;.

4. T have considered the possibility that the McKay graphs for finite subgroups G C SU(2)
indeed code for root diagrams of ADE type KMAs acting as dynamical symmetries to be dis-
tinguished from SU(2) KMA symmetry and from fundamental KMA symmetries assignable
to the isometries and holonomies of M* x CP;.

One can of course ask whether also the fundamental symmetries could have a representation
in terms of Gal or its semi-direct product G < Gal with a finite sub-group automorphism
group SO(3) of quaternions lifting to finite subgroup G C SU(2) acting on spinors. This is
not necessary since Gal can form semidirect products with the algebraic subgroups of Lie
groups of fundamental symmetries (Langlands program relies on this). In the generic case
the algebraic subgroups spanned by given extension of rationals are infinite. When the finite
subgroup G C SU(2) is closed under Gal automorphism, the situation changes, and these
extensions are expected to be in a special role physically.

The number theoretic generalization of the idea that affine ADE group acts as symmetries
would be roughly like following. The nodes of the McKay graph of G < Gal label its irreps,
which should be in 1-1 correspondence with the Cartan algebra of the KMA. The KMA
counterparts of the local bilinear Gal invariants associated with Gal irreps would give currents
of dynamical KMA having unit conformal weight. The convolution of primary fields with
respect to conformal weight would be completely analogous to that occurring in the expression
of energy momentum tensor as local bilinears of KMA currents.

If the free field construction using the local invariants as Cartan algebra defined by the irreps
of G <« Gal works, it gives rise to charged primary fields for the dynamical KMA labelled by
roots of the corresponding Lie algebra. For trivial Gal one would have ADE group acting as
dynamical symmetries of minimal model associated with G C SU(2).

5. Number theoretic Langlands conjecture [LI] [K5] generalizes this to the semidirect product
Go < Gal algebraic subgroup Gg of the original KMA Lie group (p-adicization allows also
powers of roots of e in extension). One can imagine a hierarchy of KMA type algebras
KM A,, obtained by repeating the procedure for the G; <Gal, where G is discrete subgroup
of the new KMA Lie group.

6. In CFTs are also other manners to extend VA or SVA (Super-Virasoro algebra) to a larger
algebra by discovering new dynamical symmetries. The hope is that symmetries would
allow to solve the CFT in question. The general constraint is that the conformal weights of
symmetry generators are integer or half-integer valued. For the energy momentum tensor
defining VA the conformal weight is h = 2 whereas the conformal weights of primary fields
for minimal models are rational numbers.
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The simplest extension is SVA involving super generators with h = 3/2. Extension of
(S)VA by (S)KMA so that (S)VA acts by semidirect product on (S)KMA means adding
(S)KMA generators with with h = 1 (and 1/2). The generators of W,,-algebras (see http:
//tinyurl.com/y93f6eoo) have either integer or half integer conformal weights and the
algebraic operations are defined as ordered products (an associative operation). These ex-
tensions are different from the proposed number theoretic extension for which the restriction
to a discrete subgroup of KMA Lie group is essential.
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