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Abstract

The idea of M8 − H duality has progressed through frustratingly many several twists
and turns. I have discussed several variants of M8 − H. Basic technical problem relates
to the lack of the concrete realization of the M8 −H duality since explicit realization of the
parametrization of the quaternionic normal space has been missing. The second open question
is whether M8 −H duality is between 4-D surfaces in M8 and space-time surfaces in H or is
it enough that only the 3-D holographic data in H are fixed by M8 − H duality. There are
indeed some intuitive arguments supporting the latter view. Could it be that M−H duality
is not an alternative view to see the dynamics but a way to determine holographic data in H
so that a consistency with holography = holomorphy hypothesis is obtained.

It turns out that a modification of the original form of the M8 −H duality formulated in
terms of a real analytic function of octonions leads to a possible solution of these problems.
The original form of the M8 −H duality based on real analytic octonion valued functions of
octonions f(o) representables as power series works. The conditions f(o) = 0 and f(o) = 1 are
invariant under local G2 and the local G2 acts as a dynamical spectrum generating symmetry
group since f ◦ g2 = g2 ◦ f holds true. The roots of f(o) = 0/1 for the simplest situation in
which the quaternionic normal space is fixed M4, are 4-spheres S6.

The 4-surface Y 4 for the simplest solutions is identifiable as the intersection Y 4 = E4∩S6,
where E4 is the normal space of a fixed quaternionic M4 ⊂ M8. This guarantees that the
normal space of Y 4 at each point is quaternionic M4. The assumption that M4 contains
commutative subspace M2 guarantees that the normal space correspond to a point of CP2

so that the Y 4 can be mapped to X4 ⊂ H = M4 × CP2. Local G2 transformations give
more general surfaces Y 4. One can choose the function f(o) to be an analytic function of a
hypercomplex coordinate of M4 and 3 complex coordinates of M8. One can hope that the
image X4 of Y 4 satisfies the holography = holomorphy hypothesis.

1 Introduction

The idea of M8 −H duality has progressed through frustratingly many several twists and turns.
Consider first the development of the key ideas.
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1. The first key idea was that one can interpret octonions O as M8 by using the number
theoretic inner product defined by the real part of the octonion product. Later I gave up
this assumption and considered complexified octonions, which do not form a number field,
but finally found that the original option is the only sensible option.

2. The second key idea was that if either the tangent or normal space of the surface Y 4 ⊂M8

is quaternionic and therefore associative and if it also contains a commutative subspace, it
can be parameterized by a point of CP2 and mapped to H = M4 ×CP2. This would be the
first half or M8 −H duality. How to map the M4 ⊂ M8 projection to M4 × CP2? This
question did not have an obvious answer. The simplest map is direct identification whereas
inversion is strongly suggested by Uncertainty Principle (UP) and the interpretation of M8

coordinates as components of 8-momentum. Note that one can considerably generalize the
simplest view by replacing the fixed commutative subspace of quaternion space M4 with
an integrable distribution of them in M8.

3. I considered first the option in which tangent space was assumed to be associative. The
cold shower was that this option allows only trivial solutions [L1, L2]. Quaternionic normal
space however works: any integrable distribution of quaternionic normal spaces defines an
associative surface Y 4.

4. If M8 is not complexified the surfaces Y 4 in M8 are necessarily Euclidean. [L8]. This is in
sharp conflict with the original intuitive idea that they have a number theoretic Minkowski
signature. It is the normal space, which must have a Minkowskian signature and this forces
us to rethink how the M8 −H duality is realized in Minkowskian degrees of freedom.

5. I have considered also the minimal option in which M8 − H duality determines only the
3-D holographic data as 3-surfaces Y 3 ⊂M8 mapped by M8 −H duality to H. The images
of Y 3 could define holographic data consistent with the holography = holomorphy (H-H)
vision. Both M8 and H sides of the duality would be necessary.

The physical interpretation for the space of 4-surfaces Y 4 in M8 is as the analog of momen-
tum space for particles identified as 3-D surfaces. In this interpretation the Y 4 would be
analog of time evolution with time replaced with energy. This is in conflict with the physical
intuition and suggests that maybe the minimal option is correct and indeed consistent with
the fact that for point-like particles the momenta are at 3-D mass shells. One must be
however extremely cautious here.

6. A further criticism against the M8−H duality is that its explicit realization is missing. The
problem is the identification of the CP2 coordinates for the normal space of Y 4 at a given
point.

In the following a formulation of M8 −H duality possibly solving these problems in terms of
local G2 invariance is proposed.

2 Understanding M 8−H duality in terms of local G2 invari-
ance

The motivation for reconsidering the M8−H duality came from the fact that the H-H hypothesis
works extremely nicely for the space-time surfacex X4 ⊂ H. The roots of two generalized analytic
functions f1, f2 of hypercomplex coordinate and 3 complex coordinates of H give as their roots
space-time surfaces as minimal surfaces and the ansatz works for any action, which is general
coordinate invariant and expressible in terms of the induced geometry. One would expect that
H-H hypothesis appears also at the level of M8: How?

One can also argue that the might be problems with the 3-D holographic data. How to fix
them in such a way that they are consistent with functions f1 and f2 as analytic functions of H
coordinates involving hypercomplex coordinate and 3 complex coordinates?

These issues led back to the original idea that the associative 4-surfaces Y 4 ⊂ M8 might be
definable in terms of real analytic functions f(o) of octonions as an octonionic generalization of
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the notion of holomorphy. The 3 alternative conditions f(o) = 0 , f(o) = 1 and the reality of f(o)
are promising since they are invariant under octonionic automorphism group G2. The argument
goes as follows.

1. Since G2 acts as automorphisms one has f(g2(o)) = g2(f(o)), where g2(0) is any local G2

automorphism. If f(o) = 0/1 is true then also f(g2(o)) is true for any g2 ⊂ G2. This is true
also for the roots of Im(f(o)) = 0, where Im refers to the octonionic imaginary part. Since
G2 maps the decomposition of octonion to quaternion and to a part orthogonal to it, also
the conditions RE(f(o) = 0 and IM(f) = 0, where RE refers to the quaternionic part of
the octonion is invariant under local G2.

One could have a huge dynamical spectrum generating symmetry analogous to the holomor-
phic symmetries of H-H vision. It would map the quaternionic normal spaces to quaternionic
normal spaces and complex subspaces to complex subpaces.

2. Consider first the condition f(o) = 0/1. The Taylor (or even Laurent -) expansion in powers
of o gives only two terms. The first term is proportional to the octonionic real unit 1 of o
and the second term to the octonionic imaginary part of Im(o) = o7 of o.

For o2 one obtains o2 = o20 − o7 · o7 + 2o0o7. The coefficients of these parts depend on the
real part o0 of o and the length r7 of the imaginary Im(o). The higher powers of o involve
products of two octonions of form o1 = α1 + β1o7 and o2 = α2 + β207 and the product is of
form o1o2 = (α1α2−β1β2)+(α1β2 +α3β1)o7. By induction one finds that the coefficients for
any power depend only on o0 and the radius r7 of 6-sphere only. In particular, the function
f(o) is expressible has the general form

f(o) = f1(o0, r7) + f2(o0, r7) . (2.1)

The detailed forms of these functions have been discussed in the earlier articles [L1, L2, L6]
but are not relevant for what follows.

3. The condition Im(f(o)) = 0 fixes the relationship between 00 and r7 and gives a time
evolution of the radius r7 of a 6-sphere as function of time parameter o0. The condition
RE(f(o)) = 0 requiring the vanishing of the quaternionic part implies the vanishing of both
Re(f) and Im(f) and reduces to the condition f(o) = 0. The condition IM(f(o)) = 0
implies the vanishing of Im(f(o)).

Consider now various G2 invariant options.

1. The condition f(o) = 0 or f(o) = 1 gives the roots of f1 and f2 as o0 = h1(r7) and o0 = h2(r7).
Together these conditions give a discrete set of roots (o0, r7)n.

These roots define a discrete set of 6-spheres S6 with o0 constant and r7 = constant . Can
one assign an associative 4-surface Y 4 ⊂ M8 to a given S6? The condition that the normal
space is quaternionic is satisfied if one fixes complement E4 of quaternionic sub-space M4

and restricts the points of S6 to the intersection E4(o0) ∩ S6(o0). The normal space M4

of E4 would define the quaternionic subspace M4, and it should be the same for all points
of Y 4. What is the 4-dimension of E4(o0) ∩ S6. It deserves to be noticed that S6 can be
represented as a coset space G2/SU(3). S6 has an almost complex structure induced by the
octonionic cross product, which makes it nearly Kähler manifold.

Since both surfaces in the intersection are contained in the hyper-plane E7(o0), the dimension
of E4(o0)∩S6(o0) is from the basic rule 6 + 6−7 = 3. Clearly, the intersection is identifiable
as 3-sphere S3(o0). It is difficult to understand how this 3-sphere could serve as a holographic
data allowing us to construct 4-D Y 4 ⊂ M8. Since 00 corresponds to M4 time coordinate,
M8 −H duality could cannot map this surface to a time-like or light-like 3-D parton orbit
contributing to the holographic data in holography= holomorphy vision.

2. The third option for which Im(f(o)) = 0 invariant under local G2 would give a 4-D union
of 3-spheres Y 4 = S3(o0) = E4 ∩ S6(o0) and could work. If this proposal indeed works, one
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can construct more general solutions for Y 4 by applying local G2 automorphisms to these
basic solutions for which the CP2 coordinate for X4 ⊂ H is constant. The CP2 points for
the image of Y 4 in H would not be constant anymore.

3. The condition IM(f(o)) = 0 is equivalent with the condition Im(f(o)) = 0. The condition
RE(f(o)) = 0 gives a discrete set of 3-spheres as roots is equivalent with the condition f(o) =
0. An interesting question is whether these roots correspond to ”very special moments of
time”, which emerged in the original form of M8−H duality. Could these spheres correspond
at the level of H singularities at which the local G2 element becomes multiple-valued so that
the quaternionic normal space is not unique. The situation is analogous to a singularity
of a vector field. This would give rise to cosmic strings and CP2 type extremals. These
singularities could be also associated with the classical non-determinism of holography =
holomorphy principle.

Some remarks are in order.

1. M8 − H duality requires that M4 contains M2 ⊂ M4 defining a commutative sub-space.
Since U(2) ⊂ SU(3) respects this choice, the normal spaces satisfying this condition are
parameterized by CP2 = SU(3)/U(2) and M8 −H duality allows to assign to a given point
of Y 4 a point of CP2.

An integrable distribution of these subspaces is possible. The local elements of G2 map these
distributions to each other. The subgroup leaving the distribution invariant corresponds to
local SU(3), which at the H side has interpretation as color group whereas U(2) leaving the
normal space invariant corresponds to the electroweak gauge group.

The distribution of these choices together with generalized complex coordinates for M8 de-
fines the analog of Hamilton-Jacobi structure (H-J) [L3] in M4 ⊂M8 mapped to its counter-
part in H and playing a key role in H-H vision [L8]. Rather remarkably, the local G2/U(2)
can therefore be identified as the moduli space of H-J structures [L3]. The division by U(2) is
because the quaternionic normal space with complex subspace is invariant under U(2) ⊂ G2.
Note that G2/U(2) is 10-D (here Google AI claims that the dimension is 7).

2. What about M8 −H duality for M4 coordinates? Could the M4 ⊂ H point correspond to
the projection of the Y 4 = E4×S6 point to M4 ⊂M8 as such or is an inversion suggested by
Uncertainty Principle and the interpretation of M8 as 8-D momentum space? This question
remains open.

3. What can one say about the elements g2(o) of the local G2? The action of G2 on octonions
allows a matrix representation but the matrix elements are octonions so that the rules of
multiplication are not standard and non-associative. Associativity is obtained if one considers
only elements of G2 belonging to a local SU(3) subgroup having physical interpretation as a
color group.

Holomorphy= holography vision [L7, L9, L10] inspires the question whether g2(o) can be
regarded as a real part of an analytic function of the generalized complex coordinates of M8

for the Hamilton-Jacobi structure in question. Could this guarantee that the image of Y 4 in
H is consistent with the holomorphy in H?

4. The real analytic functions f(o) and g(o) can be multiplied and summed so that the analog
of a function field is in question. Also iterations of f(o) are possible. The roots Im(g) =
0 of g = f ◦ f... ◦ f contain the roots of f plus roots of higher iterates. A complexity
hierarchy analogous to that appearing for function pairs (f1, f2) at H sides emerges and
the interpretation in terms of cognitive hierarchies is suggestive An interesting question is
whether there is a simple relationship between functions f(o) and function pairs (f1, f2).

5. The ramified primes of a polynomial of a single variable are expected to play an important role
in the number theoretic view of TGD. If f assigned to M8−H duality [L11] is a polynomial
P with rational coefficients, the ramified primes would be assigned with the discriminant
of P . The conjecture has been that the classical action defining the space-time surface
is expressible as a power of discriminant of some polynomial P defined by the differences
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of ramified primes [L4]. This would be a central aspect of the 4-D version of Langlands
duality [L7, L9].

This would imply a huge degeneracy since all space-time surfaces related by local G2 trans-
formations as analogs of conformal transformations would have the same classical action
defining the Kähler metric of WCW and give excellent hopes that also the functional integral
over the 4-D ”Bohr orbits” is calculable [L4]. Local G2 would define zero modes for the
WCW metric and symplectic degrees of freedom would correspond to non-zero modes as also
conjectured [L5].

6. Besides space-time surfaces X4 representable as graphs of maps M4 → CP2 also surfaces for
which M4 projection has dimension smaller than 4, are possible. These could correspond to
the singularities of the map g2 such that the quaternionic normal space M4 labelled by a
CP2 point depends on the direction in which one approaches a lower-dimensional surface X
of M8. This would give rise to CP2 type extremals with 1-D X and cosmic strings with 2-D
X.

The above mentioned conjecture that the classical action equals some kind of discriminant and
is thus a number theoretic invariant, can be sharpened in the recent picture.

1. The condition Im(f) = 0 (Re(f) = 0) has a discrete set of roots Y 4(n) ⊂ M8 as time
evolutions r7 = hn(o0) of S6, in turn giving rise to 4-surfaces Y 4(n) as time evolutions
S3(o0) = E4(o0) ∩ S6(o0) with respect to time coordinate o0 mapped. Different roots Y 4(i)
as 4-surfaces can be interpreted as free particles, mapped to space-time surfaces X4(i) in H
by M8 −H duality.

2. For each orbit Y 4(i) of S3, the condition f(o) = 0 defines a discrete set of ”very special
moments of time” o0(n, i) as its roots. The roots can be also complex but for real poly-
nomials appear as complex conjugate pairs. One can define discriminant D as the product
of differences of squares of roots in the usual manner [L7, L9]. This is true also when f is
analytic function rather than only polynomial.

One can assign a discriminant D(i) to each Y 4(i). The product
∏

i∈U D(i) is well defined for
the system of all Y 4(i) or a subset U of them. These discriminants would define exponents
of ”free” actions for each Y 4(i). Interactions are not taken into account yet.

3. How to assign ”interaction action” to this system as a discriminant. The proposal is that the
interactions between particles are at the level of H are contact interactions made possible by
the intersection of space-time surfaces. For identical H-J structures the intersection X4

1 ∩X4
2

consists of 2-D string world sheets rather than a discrete set of points. Identical H-J structures
would mean that they correspond to same element of local G2/U(2) since U(2) leaves the
quaternionic normal space containing a preferred commutative plane invariant.

4. As found, the H-J structures of M8 and H naturally correspond to each other. If so then
also the intersection Y 4

1 ∩ Y 4
2 consists of string world sheets. One should be able to assign

to the intersection an ”interaction action”. The conditions o0(1) = o0(2) and r7(1) = r7(2)
(radii of S6) must be satisfied. This gives a set {o0(n)} of roots. These 6-spheres now define
”very special moments” for the interaction. The 3-spheres S3(o0, i) = E4(o0, i) ∩ S6(o0),
i = 1, 2 must intersect in Y 4

1 ∩ Y 4
2 . The intersection of two 3-spheres should consist of 2-D

string world sheets for the same H-J structures. This looks sensical since the hypercomplex
M4 coordinates appearing in the functions f1 and f2 are the same and one condition is
eliminated. Also self-intersections for Y 4 are possible and would contribute to the action
terms having an interpretation in terms of self-interactions of Y 4.

One can assign discriminant D12 to the intersection Y 4
1 ∩ Y 4

2 as a product of squares of root
differences in {o0(n)}. This would define an additional multiplicative contribution to the
action exponential.
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