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Abstract

The idea of M® — H duality has progressed through frustratingly many several twists
and turns. I have discussed several variants of M® — H. Basic technical problem relates
to the lack of the concrete realization of the M® — H duality since explicit realization of the
parametrization of the quaternionic normal space has been missing. The second open question
is whether M® — H duality is between 4-D surfaces in M® and space-time surfaces in H or is
it enough that only the 3-D holographic data in H are fixed by M® — H duality. There are
indeed some intuitive arguments supporting the latter view. Could it be that M~ H duality
is not an alternative view to see the dynamics but a way to determine holographic data in H
so that a consistency with holography = holomorphy hypothesis is obtained.

It turns out that a modification of the original form of the M® — H duality formulated in
terms of a real analytic function of octonions leads to a possible solution of these problems.
The original form of the M® — H duality based on real analytic octonion valued functions of
octonions f(o0) representables as power series works. The conditions f(0) = 0 and f(o) =1 are
invariant under local G2 and the local G2 acts as a dynamical spectrum generating symmetry
group since f o gz = g2 o f holds true. The roots of f(0) = 0/1 for the simplest situation in
which the quaternionic normal space is fixed M*, are 4-spheres S°.

The 4-surface Y for the simplest solutions is identifiable as the intersection Y* = E*NS%,
where E* is the normal space of a fixed quaternionic M* C M®. This guarantees that the
normal space of Y* at each point is quaternionic M*. The assumption that M* contains
commutative subspace M? guarantees that the normal space correspond to a point of C'P;
so that the Y* can be mapped to X* ¢ H = M* x CP,. Local G2 transformations give
more general surfaces Y*. One can choose the function f(o) to be an analytic function of a
hypercomplex coordinate of M* and 3 complex coordinates of M®. One can hope that the
image X* of Y* satisfies the holography = holomorphy hypothesis.

1 Introduction

The idea of M8 — H duality has progressed through frustratingly many several twists and turns.
Consider first the development of the key ideas.
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1. The first key idea was that one can interpret octonions O as M?® by using the number
theoretic inner product defined by the real part of the octonion product. Later I gave up
this assumption and considered complexified octonions, which do not form a number field,
but finally found that the original option is the only sensible option.

2. The second key idea was that if either the tangent or normal space of the surface Y4 C M3
is quaternionic and therefore associative and if it also contains a commutative subspace, it
can be parameterized by a point of C P, and mapped to H = M* x C'P,. This would be the
first half or M® — H duality. How to map the M* C M?® projection to M* x CP,? This
question did not have an obvious answer. The simplest map is direct identification whereas
inversion is strongly suggested by Uncertainty Principle (UP) and the interpretation of M3
coordinates as components of 8-momentum. Note that one can considerably generalize the
simplest view by replacing the fixed commutative subspace of quaternion space M* with
an integrable distribution of them in M?8.

3. 1 considered first the option in which tangent space was assumed to be associative. The
cold shower was that this option allows only trivial solutions [LI, [L2]. Quaternionic normal
space however works: any integrable distribution of quaternionic normal spaces defines an
associative surface Y.

4. If M® is not complexified the surfaces Y4 in M® are necessarily Euclidean. [L8]. This is in
sharp conflict with the original intuitive idea that they have a number theoretic Minkowski
signature. It is the normal space, which must have a Minkowskian signature and this forces
us to rethink how the M® — H duality is realized in Minkowskian degrees of freedom.

5. I have considered also the minimal option in which M® — H duality determines only the
3-D holographic data as 3-surfaces Y3 C M8 mapped by M8 — H duality to H. The images
of Y2 could define holographic data consistent with the holography = holomorphy (H-H)
vision. Both M?® and H sides of the duality would be necessary.

The physical interpretation for the space of 4-surfaces Y4 in M? is as the analog of momen-
tum space for particles identified as 3-D surfaces. In this interpretation the Y* would be
analog of time evolution with time replaced with energy. This is in conflict with the physical
intuition and suggests that maybe the minimal option is correct and indeed consistent with
the fact that for point-like particles the momenta are at 3-D mass shells. One must be
however extremely cautious here.

6. A further criticism against the M® — H duality is that its explicit realization is missing. The
problem is the identification of the C'P, coordinates for the normal space of Y at a given
point.

In the following a formulation of M® — H duality possibly solving these problems in terms of
local G5 invariance is proposed.

2 Understanding M® — H duality in terms of local G, invari-
ance

The motivation for reconsidering the M® — H duality came from the fact that the H-H hypothesis
works extremely nicely for the space-time surfacex X* C H. The roots of two generalized analytic
functions fi, fo of hypercomplex coordinate and 3 complex coordinates of H give as their roots
space-time surfaces as minimal surfaces and the ansatz works for any action, which is general
coordinate invariant and expressible in terms of the induced geometry. One would expect that
H-H hypothesis appears also at the level of M8: How?

One can also argue that the might be problems with the 3-D holographic data. How to fix
them in such a way that they are consistent with functions f; and f; as analytic functions of H
coordinates involving hypercomplex coordinate and 3 complex coordinates?

These issues led back to the original idea that the associative 4-surfaces Y4 C M® might be
definable in terms of real analytic functions f(o) of octonions as an octonionic generalization of
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the notion of holomorphy. The 3 alternative conditions f(0) =0, f(0) =1 and the reality of f(o)
are promising since they are invariant under octonionic automorphism group Go. The argument
goes as follows.

1. Since G2 acts as automorphisms one has f(g2(0)) = g2(f(0)), where g2(0) is any local G2
automorphism. If f(o) = 0/1 is true then also f(g2(0)) is true for any g» C G3. This is true
also for the roots of I'm(f(0)) = 0, where Im refers to the octonionic imaginary part. Since
G2 maps the decomposition of octonion to quaternion and to a part orthogonal to it, also
the conditions RE(f(0) = 0 and IM(f) = 0, where RE refers to the quaternionic part of
the octonion is invariant under local Gs.

One could have a huge dynamical spectrum generating symmetry analogous to the holomor-
phic symmetries of H-H vision. It would map the quaternionic normal spaces to quaternionic
normal spaces and complex subspaces to complex subpaces.

2. Consider first the condition f(0) = 0/1. The Taylor (or even Laurent -) expansion in powers
of o gives only two terms. The first term is proportional to the octonionic real unit 1 of o
and the second term to the octonionic imaginary part of Im(o) = o7 of o.

For 02 one obtains 0? = 03 — 07 - 07 + 20007. The coefficients of these parts depend on the

real part oy of o and the length r7 of the imaginary Im(o). The higher powers of o involve
products of two octonions of form 01 = ay + f107 and 05 = as + $207 and the product is of
form 0109 = (aye — $102) + (a1 82 + a3 B1)o7. By induction one finds that the coefficients for
any power depend only on o and the radius r7 of 6-sphere only. In particular, the function
f (o) is expressible has the general form

f(0) = fi(ov,77) + faloo,77) - (2.1)

The detailed forms of these functions have been discussed in the earlier articles [L1l [L.2] [L6]
but are not relevant for what follows.

3. The condition Im(f(0)) = O fixes the relationship between 0y and r7 and gives a time
evolution of the radius 77 of a 6-sphere as function of time parameter og. The condition
RE(f(0)) = 0 requiring the vanishing of the quaternionic part implies the vanishing of both
Re(f) and Im(f) and reduces to the condition f(o) = 0. The condition IM(f(0)) = 0
implies the vanishing of Im(f(0)).

Consider now various G invariant options.

1. The condition f(0) = 0 or f(0) = 1 gives the roots of f; and f2 as 0og = hi(r7) and og = ha(r7).
Together these conditions give a discrete set of roots (09, r7).

These roots define a discrete set of 6-spheres S® with oy constant and r; = constant . Can
one assign an associative 4-surface Y+ C M8 to a given S5? The condition that the normal
space is quaternionic is satisfied if one fixes complement E* of quaternionic sub-space M*
and restricts the points of S¢ to the intersection E*(0p) N S%(0g). The normal space M*
of E* would define the quaternionic subspace M*, and it should be the same for all points
of Y4, What is the 4-dimension of E*(0g) N SS. It deserves to be noticed that S can be
represented as a coset space Ga/SU(3). S® has an almost complex structure induced by the
octonionic cross product, which makes it nearly Kahler manifold.

Since both surfaces in the intersection are contained in the hyper-plane E7(og), the dimension
of E*(09) NS%(0p) is from the basic rule 6 + 6 —7 = 3. Clearly, the intersection is identifiable
as 3-sphere S®(0p). It is difficult to understand how this 3-sphere could serve as a holographic
data allowing us to construct 4-D Y* C M3. Since 0y corresponds to M* time coordinate,
M?® — H duality could cannot map this surface to a time-like or light-like 3-D parton orbit
contributing to the holographic data in holography= holomorphy vision.

2. The third option for which Im(f(0)) = 0 invariant under local G2 would give a 4-D union
of 3-spheres Y* = $3(0g) = E* N S%(0p) and could work. If this proposal indeed works, one
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can construct more general solutions for Y* by applying local G5 automorphisms to these
basic solutions for which the CP, coordinate for X* C H is constant. The C'P, points for
the image of Y* in H would not be constant anymore.

The condition IM(f(0)) = 0 is equivalent with the condition Im(f(0)) = 0. The condition
RE(f(0)) = 0 gives a discrete set of 3-spheres as roots is equivalent with the condition f (o) =
0. An interesting question is whether these roots correspond to ”very special moments of
time”, which emerged in the original form of M®— H duality. Could these spheres correspond
at the level of H singularities at which the local G5 element becomes multiple-valued so that
the quaternionic normal space is not unique. The situation is analogous to a singularity
of a vector field. This would give rise to cosmic strings and C'P, type extremals. These
singularities could be also associated with the classical non-determinism of holography =
holomorphy principle.

Some remarks are in order.

1.

M8 — H duality requires that M* contains M? C M* defining a commutative sub-space.
Since U(2) C SU(3) respects this choice, the normal spaces satisfying this condition are
parameterized by CP, = SU(3)/U(2) and M® — H duality allows to assign to a given point
of Y* a point of C'P,.

An integrable distribution of these subspaces is possible. The local elements of G2 map these
distributions to each other. The subgroup leaving the distribution invariant corresponds to
local SU(3), which at the H side has interpretation as color group whereas U(2) leaving the
normal space invariant corresponds to the electroweak gauge group.

The distribution of these choices together with generalized complex coordinates for M2 de-
fines the analog of Hamilton-Jacobi structure (H-J) [L3] in M* C M® mapped to its counter-
part in H and playing a key role in H-H vision [L8]. Rather remarkably, the local G5/U(2)
can therefore be identified as the moduli space of H-J structures [L3]. The division by U(2) is
because the quaternionic normal space with complex subspace is invariant under U(2) C Gs.
Note that G2/U(2) is 10-D (here Google Al claims that the dimension is 7).

What about M?® — H duality for M* coordinates? Could the M* C H point correspond to
the projection of the Y4 = E* x S6 point to M* C M? as such or is an inversion suggested by
Uncertainty Principle and the interpretation of M® as 8-D momentum space? This question
remains open.

What can one say about the elements g2(0) of the local G37 The action of G on octonions
allows a matrix representation but the matrix elements are octonions so that the rules of
multiplication are not standard and non-associative. Associativity is obtained if one considers
only elements of G5 belonging to a local SU(3) subgroup having physical interpretation as a
color group.

Holomorphy= holography vision [L7), [L9, [L10] inspires the question whether go(0) can be
regarded as a real part of an analytic function of the generalized complex coordinates of M®
for the Hamilton-Jacobi structure in question. Could this guarantee that the image of Y in
H is consistent with the holomorphy in H?

The real analytic functions f(0) and g(o0) can be multiplied and summed so that the analog
of a function field is in question. Also iterations of f(o) are possible. The roots I'm(g) =
0 of g = fof. of contain the roots of f plus roots of higher iterates. A complexity
hierarchy analogous to that appearing for function pairs (f1, f2) at H sides emerges and
the interpretation in terms of cognitive hierarchies is suggestive An interesting question is
whether there is a simple relationship between functions f(0) and function pairs (f1, f2).

The ramified primes of a polynomial of a single variable are expected to play an important role
in the number theoretic view of TGD. If f assigned to M® — H duality [L11] is a polynomial
P with rational coefficients, the ramified primes would be assigned with the discriminant
of P. The conjecture has been that the classical action defining the space-time surface
is expressible as a power of discriminant of some polynomial P defined by the differences
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of ramified primes [L4]. This would be a central aspect of the 4-D version of Langlands
duality [L7, [L9].

This would imply a huge degeneracy since all space-time surfaces related by local G5 trans-
formations as analogs of conformal transformations would have the same classical action
defining the Kéhler metric of WCW and give excellent hopes that also the functional integral
over the 4-D ”Bohr orbits” is calculable [L4]. Local G2 would define zero modes for the
WCW metric and symplectic degrees of freedom would correspond to non-zero modes as also
conjectured [L5].

6. Besides space-time surfaces X* representable as graphs of maps M* — CP, also surfaces for
which M* projection has dimension smaller than 4, are possible. These could correspond to
the singularities of the map go such that the quaternionic normal space M* labelled by a
CP; point depends on the direction in which one approaches a lower-dimensional surface X
of M8. This would give rise to CP, type extremals with 1-D X and cosmic strings with 2-D
X.

The above mentioned conjecture that the classical action equals some kind of discriminant and
is thus a number theoretic invariant, can be sharpened in the recent picture.

1. The condition Im(f) = 0 (Re(f) = 0) has a discrete set of roots Y4(n) C M3 as time
evolutions r7 = hy(0g) of SY in turn giving rise to 4-surfaces Y4(n) as time evolutions
S3(0p) = E*(09) N S%(0g) with respect to time coordinate oy mapped. Different roots Y (i)
as 4-surfaces can be interpreted as free particles, mapped to space-time surfaces X*(i) in H
by M® — H duality.

2. For each orbit Y*(i) of S3, the condition f(0o) = 0 defines a discrete set of ”very special
moments of time” og(n,i) as its roots. The roots can be also complex but for real poly-
nomials appear as complex conjugate pairs. One can define discriminant D as the product
of differences of squares of roots in the usual manner [L7, [L9]. This is true also when f is
analytic function rather than only polynomial.

One can assign a discriminant D(i) to each Y4(). The product [],.,; D(4) is well defined for
the system of all Y4(i) or a subset U of them. These discriminants would define exponents
of "free” actions for each Y'4(i). Interactions are not taken into account yet.

3. How to assign ”interaction action” to this system as a discriminant. The proposal is that the
interactions between particles are at the level of H are contact interactions made possible by
the intersection of space-time surfaces. For identical H-J structures the intersection XN X3
consists of 2-D string world sheets rather than a discrete set of points. Identical H-J structures
would mean that they correspond to same element of local G3/U(2) since U(2) leaves the
quaternionic normal space containing a preferred commutative plane invariant.

4. As found, the H-J structures of M® and H naturally correspond to each other. If so then
also the intersection Y;* N Y3t consists of string world sheets. One should be able to assign
to the intersection an "interaction action”. The conditions og(1) = 00(2) and r7(1) = r7(2)
(radii of S®) must be satisfied. This gives a set {og(n)} of roots. These 6-spheres now define
"very special moments” for the interaction. The 3-spheres S3(0g,i) = E*(0g,i) N S%(0p),
i = 1,2 must intersect in Y;* N Yt The intersection of two 3-spheres should consist of 2-D
string world sheets for the same H-J structures. This looks sensical since the hypercomplex
M* coordinates appearing in the functions f; and f» are the same and one condition is
eliminated. Also self-intersections for Y* are possible and would contribute to the action
terms having an interpretation in terms of self-interactions of Y.

One can assign discriminant Djs to the intersection Y;* N Y3t as a product of squares of root
differences in {0g(n)}. This would define an additional multiplicative contribution to the
action exponential.
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