
CONTENTS 1

Was von Neumann Right After All?

M. Pitkänen,

February 2, 2024
Email: matpitka6@gmail.com.

http://tgdtheory.com/public_html/.
Postal address: Rinnekatu 2-4 A 8, 03620, Karkkila, Finland. ORCID: 0000-0002-8051-4364.

Contents

1 Introduction 4
1.1 Philosophical Ideas Behind Von Neumann Algebras . . . . . . . . . . . . . . . . . . 5
1.2 Von Neumann, Dirac, And Feynman . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Von Neumann Algebras 6
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Basic Classification Of Von Neumann Algebras . . . . . . . . . . . . . . . . . . . . 6
2.3 Non-Commutative Measure Theory And Non-Commutative Topologies And Geome-

tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Non-commutative measure theory . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Non-commutative topology and geometry . . . . . . . . . . . . . . . . . . . 8

2.4 Modular Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Joint Modular Structure And Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Basic Facts About Hyper-Finite Factors Of Type III . . . . . . . . . . . . . . . . . 9

2.6.1 Basic definitions and facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2 Probabilistic view about factors of type III . . . . . . . . . . . . . . . . . . 10

3 Braid Group, Von Neumann Algebras, Quantum TGD, And Formation Of
Bound States 11
3.1 Factors Of Von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Sub-Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Ii1 Factors And The Spinor Structure Of WCW . . . . . . . . . . . . . . . . . . . . 12
3.4 About Possible Space-Time Correlates For The Hierarchy Of II1 Sub-Factors . . . 14
3.5 Could Binding Energy Spectra Reflect The Hierarchy Of Effective Tensor Factor

Dimensions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Four-Color Problem, II1 Factors, And Anyons . . . . . . . . . . . . . . . . . . . . . 16

http://tgdtheory.com/public_html/


CONTENTS 2

4 Inclusions Of II1 And III1 Factors 17
4.1 Basic Findings About Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 The Fundamental Construction And Temperley-Lieb Algebras . . . . . . . . . . . . 18
4.3 Connection With Dynkin Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Indices For The Inclusions Of Type III1 Factors . . . . . . . . . . . . . . . . . . . 20

5 TGD And Hyper-Finite Factors Of Type II1 20
5.1 What Kind Of Hyper-Finite Factors One Can Imagine In TGD? . . . . . . . . . . 20

5.1.1 WCW spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2 Bosonic degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3 How the bosonic cutoff is realized? . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.4 HFF of type III for field operators and HFF of type II1 for states? . . . . 21
5.1.5 HFF of type II1 for the maxima of Kähler function? . . . . . . . . . . . . . 22

5.2 Direct Sum Of HFFs Of Type II1 As A Minimal Option . . . . . . . . . . . . . . . 22
5.2.1 II∞ factor or direct sum of HFFs of type II1? . . . . . . . . . . . . . . . . 22
5.2.2 How HFF property reflects itself in the construction of geometry of WCW? 22

5.3 Bott Periodicity, Its Generalization, And Dimension D = 8As An Inherent Property
Of The Hyper-Finite II1 Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 The Interpretation Of Jones Inclusions In TGD Framework . . . . . . . . . . . . . 23
5.4.1 How Jones inclusions relate to the new view about sub-system? . . . . . . . 24
5.4.2 About the interpretation of M : N degrees of freedom . . . . . . . . . . . . 25

5.5 WCW, Space-Time, Embedding Space AndHyper-Finite Type II1 Factors . . . . . 26
5.5.1 Super-conformal symmetry and WCW Poisson algebra as hyper-finite type

II1 factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.2 How to understand the dimensions of space-time and embedding space? . . 26
5.5.3 Inner automorphisms as universal gauge symmetries? . . . . . . . . . . . . 28
5.5.4 Do unitary isomorphisms between tensor powers of II1 define vertices? . . . 28

5.6 Quaternions, Octonions, And Hyper-Finite Type II1Factors . . . . . . . . . . . . . 28
5.6.1 Quantum quaternions and quantum octonions . . . . . . . . . . . . . . . . . 28
5.6.2 Quaternionic or octonionic quantum mechanics? . . . . . . . . . . . . . . . 29
5.6.3 Hyper-finite factor II1 has a natural Hyper-Kähler structure . . . . . . . . 29
5.6.4 Von Neumann algebras and octonions . . . . . . . . . . . . . . . . . . . . . 30
5.6.5 Physical interpretation of quantum octonion structure . . . . . . . . . . . . 30

5.7 Does The Hierarchy Of Infinite Primes Relate To The Hierarchy Of II1 Factors? . 31

6 HFFs Of Type III And TGD 32
6.1 Problems Associated With The Physical Interpretation Of III1 Factors . . . . . . 32

6.1.1 Are the infinities of quantum field theories due the wrong type of von Neu-
mann algebra? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.2 Continuum of inequivalent representations of commutation relations . . . . 33
6.1.3 Entanglement and von Neumann algebras . . . . . . . . . . . . . . . . . . . 33

6.2 Quantum Measurement Theory And HFFs Of Type III . . . . . . . . . . . . . . . 33
6.2.1 Could the scalings of trace relate to quantum measurements? . . . . . . . . 33
6.2.2 Could the theory of HHFs of type III relate to the theory of Jones inclusions? 34
6.2.3 The end points of spectrum of preferred values of λ are physically special . 34

6.3 What Could One Say About II1 Automorphism Associated With The II∞ Auto-
morphism Defining Factor Of Type III? . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4 What Could Be The Physical Interpretation Of Two Kinds Of Invariants Associated
With HFFs Type III? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.5 Does The Time Parameter T Represent Time Translation Or Scaling? . . . . . . . 36
6.5.1 Could the time parameter correspond to scaling? . . . . . . . . . . . . . . . 36
6.5.2 Could the time parameter correspond to time translation? . . . . . . . . . . 37
6.5.3 p-Adic thermodynamics from first principles . . . . . . . . . . . . . . . . . . 37

6.6 HFFs Of Type III And The Dynamics In M4
± Degrees Of Freedom? . . . . . . . . 37

6.7 Could The Continuation Of Braidings To Homotopies Involve ∆It Automorphisms 38
6.8 HFFs Of Type III As Super-Structures Providing Additional Uniqueness? . . . . 38



CONTENTS 3

7 Appendix: Inclusions Of Hyper-Finite Factors Of Type II1 38
7.1 Jones Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Wassermann’s Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Generalization From Su(2) To Arbitrary Compact Group . . . . . . . . . . . . . . 40



1. Introduction 4

Abstract

The work with TGD inspired model for topological quantum computation led to the re-
alization that von Neumann algebras, in particular so called hyper-finite factors of type II1,
seem to provide the mathematics needed to develop a more explicit view about the construc-
tion of S-matrix. The original discussion has transformed during years from free speculation
reflecting in many aspects my ignorance about the mathematics involved to a more realistic
view about the role of these algebras in quantum TGD. The discussions of this chapter have
been restricted to the basic notions are discussed and only short mention is made to TGD
applications discussed in second chapter.

The goal of von Neumann was to generalize the algebra of quantum mechanical observ-
ables. The basic ideas behind the von Neumann algebra are dictated by physics. The algebra
elements allow Hermitian conjugation ∗ and observables correspond to Hermitian operators.
Any measurable function f(A) of operator A belongs to the algebra and one can say that
non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values
are expressible in terms of operator traces, this requires that unit operator has unit trace:
tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections
to 1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of
projection to 1-dimensional sub-space vanishes if each state is equally probable. The notion of
observable must thus be modified by excluding 1-dimensional minimal projections, and allow
only projections for which the trace would be infinite using the straightforward generalization
of the matrix algebra trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one
is that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing
projection probabilities. Quantum measurements can lead with a finite probability only to
mixed states with a density matrix which is projection operator to infinite-dimensional sub-
space. The simple von Neumann algebras for which unit operator has unit trace are known
as factors of type II1.

The definitions of adopted by von Neumann allow however more general algebras. Type
In algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞
associated with a separable infinite-dimensional Hilbert space does not allow bounded traces.
For algebras of type III non-trivial traces are always infinite and the notion of trace becomes
useless being replaced by the notion of state which is generalization of the notion of thermo-
dynamical state. The fascinating feature of this notion of state is that it defines a unique
modular automorphism of the factor defined apart from unitary inner automorphism and the
question is whether this notion or its generalization might be relevant for the construction of
M-matrix in TGD. It however seems that in TGD framework based on Zero Energy Ontology
identifiable as “square root” of thermodynamics a square root of thermodynamical state is
needed.

The inclusions of hyper-finite factors define an excellent candidate for the description of
finite measurement resolution with included factor representing the degrees of freedom below
measurement resolution. The would also give connection to the notion of quantum group
whose physical interpretation has remained unclear. This idea is central to the proposed
applications to quantum TGD discussed in separate chapter.

1 Introduction

The work with TGD inspired model [K1] for topological quantum computation [B2] led to the
realization that von Neumann algebras [A29, A41, A33, A20] , in particular so called hyper-finite
factors of type II1 [A14] , seem to provide the mathematics needed to develop a more explicit
view about the construction of S-matrix. The lecture notes of R. Longo [A32] give a concise and
readable summary about the basic definitions and results related to von Neumann algebras and I
have used this material freely in this chapter.

The original discussion has transformed during years from a free speculation reflecting in many
aspects my ignorance about the mathematics involved to a more realistic view about the role of
these algebras in quantum TGD. In this chapter I will discuss various aspects of hyperfinite factors
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with only a brief digression to TGD inspired applications whose evolution discussed in separate
chapter [K6].

1.1 Philosophical Ideas Behind Von Neumann Algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation ∗ and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is that
the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with
a density matrix which is projection operator to infinite-dimensional subspace. The simple von
Neumann algebras for which unit operator has unit trace are known as factors of type II1 [A14] .

The definitions of adopted by von Neumann allow however more general algebras. Type In
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras
of type III non-trivial traces are always infinite and the notion of trace becomes useless being
replaced by the notion of state which is generalization of the notion of thermodynamical state.
The fascinating feature of this notion of state is that it defines a unique modular automorphism
of the factor defined apart from unitary inner automorphism and the question is whether this
notion or its generalization might be relevant for the construction of M-matrix in TGD. It however
seems that in TGD framework based on Zero Energy Ontology identifiable as “square root” of
thermodynamics a square root of thermodynamical state is needed.

The inclusions of hyper-finite factors define an excellent candidate for the description of finite
measurement resolution with included factor representing the degrees of freedom below measure-
ment resolution. The would also give connection to the notion of quantum group whose physical
interpretation has remained unclear. This idea is central to the proposed applications to quantum
TGD discussed in separate chapter.

1.2 Von Neumann, Dirac, And Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac [A30]
based on the notion of delta function, plus the emergence of s [A35] , the possibility to formulate the
notion of delta function rigorously in terms of distributions [A15, A22] , and the emergence of path
integral approach [A34] meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [A37, A12] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic
structures known as bi-algebras, Hopf algebras, and ribbon algebras [A9] relate closely to type II1
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factors. In topological quantum computation [B2] based on braid groups [A42] modular S-matrices
they play an especially important role.

In algebraic quantum field theory [B3] defined in Minkowski space the algebras of observables
associated with bounded space-time regions correspond quite generally to the type III1 hyper-finite
factor [B1, B4].

I have restricted the considerations of this chapter mostly to the technical aspects and Appendix
includes sections about inclusions of HFFs. The evolution of ideas about possible applications to
quantum TGD is summarized in chapter, which was originally part of this chapter [K6].

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 Von Neumann Algebras

In this section basic facts about von Neumann algebras are summarized using as a background
material the concise summary given in the lecture notes of Longo [A32] .

2.1 Basic Definitions

A formal definition of von Neumann algebra [A41, A33, A20] is as a ∗-subalgebra of the set of
bounded operators B(H) on a Hilbert space H closed under weak operator topology, stable under
the conjugation J =∗: x→ x∗, and containing identity operator Id. This definition allows also von
Neumann algebras for which the trace of the unit operator is not finite.

Identity operator is the only operator commuting with a simple von Neumann algebra. A
general von Neumann algebra allows a decomposition as a direct integral of simple algebras, which
von Neumann called factors. Classification of von Neumann algebras reduces to that for factors.
B(H) has involution ∗ and is thus a ∗-algebra. B(H) has order order structure A ≥ 0 : (Ax, x) ≥

0. This is equivalent to A = BB∗ so that order structure is determined by algebraic structure.
B(H) has metric structure in the sense that norm defined as supremum of ||Ax||, ||x|| ≤ 1 defines
the notion of continuity. ||A||2 = inf{λ > 0 : AA∗ ≤ λI} so that algebraic structure determines
metric structure.

There are also other topologies for B(H) besides norm topology.

1. Ai → A strongly if ||Ax − Aix|| → 0 for all x. This topology defines the topology of
C∗ algebra. B(H) is a Banach algebra that is ||AB|| ≤ ||A|| × ||B|| (inner product is not
necessary) and also C∗ algebra that is ||AA∗|| = ||A||2.

2. Ai → A weakly if (Aix, y) → (Ax, y) for all pairs (x, y) (inner product is necessary). This
topology defines the topology of von Neumann algebra as a sub-algebra of B(H).

Denote by M ′ the commutant ofM which is also algebra. Von Neumann’s bicommutant theorem
says that M equals to its own bi-commutant. Depending on whether the identity operator has a
finite trace or not, one distinguishes between algebras of type II1 and type II∞. II1 factor allow
trace with properties tr(Id) = 1, tr(xy) = tr(yx), and tr(x∗x) > 0, for all x 6= 0. Let L2(M) be
the Hilbert space obtained by completing M respect to the inner product defined 〈x|y〉 = tr(x∗y)
defines inner product in M interpreted as Hilbert space. The normalized trace induces a trace in
M ′, natural trace TrM ′ , which is however not necessarily normalized. JxJ defines an element of
M ′: if H = L2(M), the natural trace is given by TrM ′(JxJ) = trM (x) for all x ∈M and bounded.

2.2 Basic Classification Of Von Neumann Algebras

Consider first some definitions. First of all, Hermitian operators with positive trace expressible as
products xx∗ are of special interest since their sums with positive coefficients are also positive.

In quantum mechanics Hermitian operators can be expressed in terms of projectors to the
eigen states. There is a natural partial order in the set of isomorphism classes of projectors by
inclusion: E < F if the image of H by E is contained to the image of H by a suitable isomorph
of F . Projectors are said to be metrically equivalent if there exist a partial isometry which maps

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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the images H by them to each other. In the finite-dimensional case metric equivalence means that
isomorphism classes are identical E = F .

The algebras possessing a minimal projection E0 satisfying E0 ≤ F for any F are called type
I algebras. Bounded operators of n-dimensional Hilbert space define algebras In whereas the
bounded operators of infinite-dimensional separable Hilbert space define the algebra I∞. In and
I∞ correspond to the operator algebras of quantum mechanics. The states of harmonic oscillator
correspond to a factor of type I.

The projection F is said to be finite if F < E and F ≡ E implies F = E. Hence metric
equivalence means identity. Simple von Neumann algebras possessing finite projections but no
minimal projections so that any projection E can be further decomposed as E = F +G, are called
factors of type II.

Hyper-finiteness means that any finite set of elements can be approximated arbitrary well with
the elements of a finite-dimensional sub-algebra. The hyper-finite II∞ algebra can be regarded as
a tensor product of hyper-finite II1 and I∞ algebras. Hyper-finite II1 algebra can be regarded as
a Clifford algebra of an infinite-dimensional separable Hilbert space sub-algebra of I∞.

Hyper-finite II1 algebra can be constructed using Clifford algebras C(2n) of 2n-dimensional
spaces and identifying the element x of 2n × 2n dimensional C(n) as the element diag(x, x)/2 of
2n+1 × 2n+1-dimensional C(n + 1). The union of algebras C(n) is formed and completed in the
weak operator topology to give a hyper-finite II1 factor. This algebra defines the Clifford algebra
of infinite-dimensional separable Hilbert space and is thus a sub-algebra of I∞ so that hyper-finite
II1 algebra is more regular than I∞.

von Neumann algebras possessing no finite projections (all traces are infinite or zero) are called
algebras of type III. It was later shown by [A10] [A4] that these algebras are labeled by a parameter
varying in the range [0, 1], and referred to as algebras of type IIIx. III1 category contains a unique
hyper-finite algebra. It has been found that the algebras of observables associated with bounded
regions of 4-dimensional Minkowski space in quantum field theories correspond to hyper-finite
factors of type III1 [A32] . Also statistical systems at finite temperature correspond to factors of
type III and temperature parameterizes one-parameter set of automorphisms of this algebra [B1]
. Zero temperature limit correspond to I∞ factor and infinite temperature limit to II1 factor.

2.3 Non-Commutative Measure Theory And Non-Commutative Topolo-
gies And Geometries

von Neumann algebras and C∗ algebras give rise to non-commutative generalizations of ordinary
measure theory (integration), topology, and geometry. It must be emphasized that these structures
are completely natural aspects of quantum theory. In particular, for the hyper-finite type II1
factors quantum groups and Kac Moody algebras [B5] emerge quite naturally without any need
for ad hoc modifications such as making space-time coordinates non-commutative. The effective
2-dimensionality of quantum TGD (partonic or stringy 2-surfaces code for states) means that these
structures appear completely naturally in TGD framework.

2.3.1 Non-commutative measure theory

von Neumann algebras define what might be a non-commutative generalization of measure theory
and probability theory [A32] .

1. Consider first the commutative case. Measure theory is something more general than topology
since the existence of measure (integral) does not necessitate topology. Any measurable
function f in the space L∞(X,µ) in measure space (X,µ) defines a bounded operator Mf

in the space B(L2(X,µ)) of bounded operators in the space L2(X,µ) of square integrable
functions with action of Mf defined as Mfg = fg.

2. Integral over M is very much like trace of an operator fx,y = f(x)δ(x, y). Thus trace is a
natural non-commutative generalization of integral (measure) to the non-commutative case
and defined for von Neumann algebras. In particular, generalization of probability measure
results if the case tr(Id) = 1 and algebras of type In and II1 are thus very natural from the
point of view of non-commutative probability theory.
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The trace can be expressed in terms of a cyclic vector Ω or vacuum/ground state in physicist’s
terminology. Ω is said to be cyclic if the completion MΩ = H and separating if xΩ vanishes only
for x = 0. Ω is cyclic for M if and only if it is separating for M ′. The expression for the trace
given by

Tr(ab) =

(
(ab+ ba)

2
,Ω

)
(2.1)

is symmetric and allows to defined also inner product as (a, b) = Tr(a∗b) in M. If Ω has unit
norm (Ω,Ω) = 1, unit operator has unit norm and the algebra is of type II1. Fermionic oscillator
operator algebra with discrete index labeling the oscillators defines II1 factor. Group algebra is
second example of II1 factor.

The notion of probability measure can be abstracted using the notion of state. State ω on a
C∗ algebra with unit is a positive linear functional on U , ω(1) = 1. By so called KMS construction
[A32] any state ω in C∗ algebra U can be expressed as ω(x) = (π(x)Ω,Ω) for some cyclic vector Ω
and π is a homomorphism U → B(H).

2.3.2 Non-commutative topology and geometry

C∗ algebras generalize in a well-defined sense ordinary topology to non-commutative topology.

1. In the Abelian case Gelfand Naimark theorem [A32] states that there exists a contravariant
functor F from the category of unital abelian C∗ algebras and category of compact topological
spaces. The inverse of this functor assigns to space X the continuous functions f on X
with norm defined by the maximum of f . The functor assigns to these functions having
interpretation as eigen states of mutually commuting observables defined by the function
algebra. These eigen states are delta functions localized at single point of X. The points
of X label the eigenfunctions and thus define the spectrum and obviously span X. The
connection with topology comes from the fact that continuous map Y → X corresponds to
homomorphism C(X)→ C(Y ).

2. In non-commutative topology the function algebra C(X) is replaced with a general C∗ al-
gebra. Spectrum is identified as labels of simultaneous eigen states of the Cartan algebra of
C∗ and defines what can be observed about non-commutative space X.

3. Non-commutative geometry can be very roughly said to correspond to ∗-subalgebras of C∗

algebras plus additional structure such as symmetries. The non-commutative geometry of
Connes [A5] is a basic example here.

2.4 Modular Automorphisms

von Neumann algebras allow a canonical unitary evolution associated with any state ω fixed by
the selection of the vacuum state Ω [A32] . This unitary evolution is an automorphism fixed apart
form unitary automorphisms A→ UAU∗ related with the choice of Ω.

Let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can map M to L2(M) defined
as a completion of M by x → xΩ. The conjugation ∗ in M has image at Hilbert space level as
a map S0 : xΩ → x∗Ω. The closure of S0 is an anti-linear operator and has polar decomposition
S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary involution. The
following conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (2.2)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian and
induces also the evolution of the expectation ω as π → ∆itπ∆−it.
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2.5 Joint Modular Structure And Sectors

Let N ⊂M be an inclusion. The unitary operator γ = JNJM defines a canonical endomorphisms
M → N in the sense that it depends only up to inner automorphism on N , γ defines a sector of
M. The sectors of M are defined as Sect(M) = End(M)/Inn(M) and form a semi-ring with
respected to direct sum and composition by the usual operator product. It allows also conjugation.

L2(M) is a normal bi-module in the sense that it allows commuting left and right multiplica-
tions. For a, b ∈ M and x ∈ L2(M) these multiplications are defined as axb = aJb∗Jx and it is
easy to verify the commutativity using the factor Jy∗J ∈M′. [A10] [A5] has shown that all normal
bi-modules arise in this way up to unitary equivalence so that representation concepts make sense.
It is possible to assign to any endomorphism ρ index Ind(ρ) ≡ M : ρ(M). This means that the
sectors are in 1-1 correspondence with inclusions. For instance, in the case of hyper-finite II1 they
are labeled by Jones index. Furthermore, the objects with non-integral dimension

√
[M : ρ(M)]

can be identified as quantum groups, loop groups, infinite-dimensional Lie algebras, etc...

2.6 Basic Facts About Hyper-Finite Factors Of Type III

Hyper-finite factors of type II1, II∞ and III1, III0, IIIλ, λ ∈ (0, 1), allow by definition hierarchy
of finite approximations and are unique as von Neumann algebras. Also hyper-finite factors of
type II∞ and type III could be relevant for the formulation of TGD. HFFs of type II∞ and III
could appear at the level operator algebra but that at the level of quantum states one would obtain
HFFs of type II1. These extended factors inspire highly non-trivial conjectures about quantum
TGD. The book of Connes [A5] provides a detailed view about von Neumann algebras in general.

2.6.1 Basic definitions and facts

A highly non-trivial result is that HFFs of type II∞ are expressible as tensor products II∞ =
II1 ⊗ I∞, where II1 is hyper-finite [A5] .

1. The existence of one-parameter family of outer automorphisms

The unique feature of factors of type III is the existence of one-parameter unitary group of
outer automorphisms. The automorphism group originates in the following manner.

1. Introduce the notion of linear functional in the algebra as a map ω :M→ C. ω is said to be
hermitian it respects conjugation inM; positive if it is consistent with the notion of positivity
for elements of M in which case it is called weight; state if it is positive and normalized
meaning that ω(1) = 1, faithful if ω(A) > 0 for all positive A; a trace if ω(AB) = ω(BA),
a vector state if ω(A) is “vacuum expectation” ωΩ(A) = (Ω, ω(A)Ω) for a non-degenerate
representation (H, π) of M and some vector Ω ∈ H with ||Ω|| = 1.

2. The existence of trace is essential for hyper-finite factors of type II1. Trace does not ex-
ist for factors of type III and is replaced with the weaker notion of state. State defines
inner product via the formula (x, y) = φ(y∗x) and * is isometry of the inner product. *-
operator has property known as pre-closedness implying polar decomposition S = J∆1/2 of
its closure. ∆ is positive definite unbounded operator and J is isometry which restores the
symmetry between M and its commutant M′ in the Hilbert space Hφ, where M acts via
left multiplication: M′ = JMJ .

3. The basic result of Tomita-Takesaki theory is that ∆ defines a one-parameter group σtφ(x) =

∆itx∆−it of automorphisms of M since one has ∆itM∆−it =M. This unitary evolution is
an automorphism fixed apart from unitary automorphism A→ UAU∗ related with the choice
of φ. For factors of type I and II this automorphism reduces to inner automorphism so that
the group of outer automorphisms is trivial as is also the outer automorphism associated with
ω. For factors of type III the group of these automorphisms divided by inner automorphisms
gives a one-parameter group of Out(M) of outer automorphisms, which does not depend at
all on the choice of the state φ.

More precisely, let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can mapM to L2(M)
defined as a completion ofM by x→ xΩ. The conjugation ∗ inM has image at Hilbert space level
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as a map S0 : xΩ→ x∗Ω. The closure of S0 is an anti-linear operator and has polar decomposition
S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary involution. The
following conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (2.3)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian and
induces also the evolution of the expectation ω as π → ∆itπ∆−it. What makes this result thought
provoking is that it might mean a universal quantum dynamics apart from inner automorphisms
and thus a realization of general coordinate invariance and gauge invariance at the level of Hilbert
space.

2. Classification of HFFs of type III

Connes achieved an almost complete classification of hyper-finite factors of type III completed
later by others. He demonstrated that they are labeled by single parameter 0 ≤ λ ≤ 1] and that
factors of type IIIλ, 0 ≤ λ < 1 are unique. Haagerup showed the uniqueness for λ = 1. The idea
was that the group has an invariant, the kernel T (M) of the map from time like R to Out(M),
consisting of those values of the parameter t for which σtφ reduces to an inner automorphism and to
unity as outer automorphism. Connes also discovered also an invariant, which he called spectrum
S(M) of M identified as the intersection of spectra of ∆φ\{0}, which is closed multiplicative
subgroup of R+.

Connes showed that there are three cases according to whether S(M) is

1. R+, type III1

2. {λn, n ∈ Z}, type IIIλ.

3. {1}, type III0.

The value range of λ is this by convention. For the reversal of the automorphism it would
be that associated with 1/λ.

Connes constructed also an explicit representation of the factors 0 < λ < 1 as crossed product
II∞ factor N and group Z represented as powers of automorphism of II∞ factor inducing the
scaling of trace by λ. The classification of HFFs of type III reduced thus to the classification of
automorphisms of N ⊗B(H. In this sense the theory of HFFs of type III was reduced to that for
HFFs of type II∞ or even II1. The representation of Connes might be also physically interesting.

2.6.2 Probabilistic view about factors of type III

Second very concise representation of HFFs relies on thermodynamical thinking and realizes factors
as infinite tensor product of finite-dimensional matrix algebras acting on state spaces of finite state
systems with a varying and finite dimension n such that one assigns to each factor a density
matrix characterized by its eigen values. Intuitively one can think the finite matrix factors as
associated with n-state system characterized by its energies with density matrix ρ defining a
thermodynamics. The logarithm of the ρ defines the single particle quantum Hamiltonian as
H = log(ρ) and ∆ = ρ = exp(H) defines the automorphism σφ for each finite tensor factor as
exp(iHt). Obviously free field representation is in question.

Depending on the asymptotic behavior of the eigenvalue spectrum one obtains different factors
[A5] .

1. Factor of type I corresponds to ordinary thermodynamics for which the density matrix as a
function of matrix factor approaches sufficiently fast that for a system for which only ground
state has non-vanishing Boltzmann weight.

2. Factor of type II1 results if the density matrix approaches to identity matrix sufficiently fast.
This means that the states are completely degenerate which for ordinary thermodynamics
results only at the limit of infinite temperature. Spin glass could be a counterpart for this
kind of situation.
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3. Factor of type III results if one of the eigenvalues is above some lower bound for all tensor
factors in such a way that neither factor of type I or II1 results but thermodynamics for
systems having infinite number of degrees of freedom could yield this kind of situation.

This construction demonstrates how varied representations factors can have, a fact which might
look frustrating for a novice in the field. In particular, the infinite tensor power of M(2, C) with
state defined as an infinite tensor power of M(2, C) state assigning to the matrix A the complex
number (λ1/2A11 +λ−1/2 φ(A) = A22)/(λ1/2 +λ−1/2) defines HFF IIIλ [A5] , [C1] . Formally the
same algebra which for λ = 1 gives ordinary trace and HFF of type II1, gives III factor only by
replacing trace with state. This simple model was discovered by Powers in 1967.

It is indeed the notion of state or thermodynamics is what distinguishes between factors. This
looks somewhat weird unless one realizes that the Hilbert space inner product is defined by the
“thermodynamical” state φ and thus probability distribution for operators and for their thermal
expectation values. Inner product in turn defines the notion of norm and thus of continuity and it
is this notion which differs dramatically for λ = 1 and λ < 1 so that the completions of the algebra
differ dramatically.

In particular, there is no sign about I∞ tensor factor or crossed product with Z represented
as automorphisms inducing the scaling of trace by λ. By taking tensor product of I∞ factor
represented as tensor power with induces running from −∞ to 0 and II1 HFF with indices running
from 1 to ∞ one can make explicit the representation of the automorphism of II∞ factor inducing
scaling of trace by λ and transforming matrix factors possessing trace given by square root of index
M : N to those with trace 2.

3 Braid Group, Von Neumann Algebras, Quantum TGD,
And Formation Of Bound States

The article of Vaughan Jones in [A42] discusses the relation between knot theory, statistical physics,
and von Neumann algebras. The intriguing results represented stimulate concrete ideas about how
to understand the formation of bound states quantitatively using the notion of join along boundaries
bond. All mathematical results represented in the following discussion can be found in [A42] and
in the references cited therein so that I will not bother to refer repeatedly to this article in the
sequel.

3.1 Factors Of Von Neumann Algebras

Von Neumann algebras M are algebras of bounded linear operators acting in Hilbert space. These
algebras contain identity, are closed with respect to Hermitian conjugation, and are topologically
complete. Finite-dimensional von Neuman algebras decompose into a direct sum of algebras Mn,
which act essentially as matrix algebras in Hilbert spacesHnm, which are tensor products Cn⊗Hm.
Here Hm is an m-dimensional Hilbert space in which Mn acts trivially. m is called the multiplicity
of Mn.

A factor of von Neumann algebra is a von Neumann algebra whose center is just the scalar
multiples of identity. The algebra of bounded operators in an infinite-dimensional Hilbert space is
certainly a factor. This algebra decomposes into “atoms” represented by one-dimensional projec-
tion operators. This kind of von Neumann algebras are called type I factors.

The so called type II1 factors and type III factors came as a surprise even for Murray and
von Neumann. II1 factors are infinite-dimensional and analogs of the matrix algebra factors Mn.
They allow a trace making possible to define an inner product in the algebra. The trace defines a
generalized dimension for any subspace as the trace of the corresponding projection operator. This
dimension is however continuous and in the range [0, 1]: the finite-dimensional analog would be the
dimension of the sub-space divided by the dimension of Hn and having values (0, 1/n, 2/n, ..., 1).
II1 factors are isomorphic and there exists a minimal “hyper-finite” II1 factor is contained by every
other II1 factor.

Just as in the finite-dimensional case, one can to assign a multiplicity to the Hilbert spaces
where II1 factors act on. This multiplicity, call it dimM (H) is analogous to the dimension of the
Hilbert space tensor factor Hm, in which II1 factor acts trivially. This multiplicity can have all
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positive real values. Quite generally, von Neumann factors of type I and II1 are in many respects
analogous to the coefficient field of a vector space.

3.2 Sub-Factors

Sub-factors N ⊂ M , where N and M are of type II1 and have same identity, can be also defined.
The observation that M is analogous to an algebraic extension of N motivates the introduction of
index |M : N |, which is essentially the dimension of M with respect to N . This dimension is an
analog for the complex dimension of CP2 equal to 2 or for the algebraic dimension of the extension
of p-adic numbers.

The following highly non-trivial results about the dimensions of the tensor factors hold true.

1. If N ⊂ M are II1 factors and |M : N | < 4, there is an integer n ≥ 3 such |M : N | = r =
4cos2(π/n), n ≥ 3.

2. For each number r = 4cos2(π/n) and for all r ≥ 4 there is a sub-factor Rr ⊂ R with
|R : Rr| = r.

One can say that M effectively decomposes to a tensor product of N with a space, whose
dimension is quantized to a certain algebraic number r. The values of r corresponding to
n = 3, 4, 5, 6... are r = 1, 2, 1 + Φ ' 2.61, 3, ... and approach to the limiting value r = 4. For
r ≥ 4 the dimension becomes continuous.

An even more intriguing result is that by starting from N ⊂M with a projection eN : M → N
one can extend M to a larger II1 algebra 〈M, eN 〉 such that one has

|〈M, eN 〉 : M | = |M : N | ,
tr(xeN ) = |M : N |−1tr(x) , x ∈M . (3.1)

One can continue this process and the outcome is a tower of II1 factors Mi ⊂ Mi+1 defined by
M1 = N , M2 = M , Mi+1 = 〈Mi, eMi−1

〉. Furthermore, the projection operators eMi
≡ ei define a

Temperley-Lieb representation of the braid algebra via the formulas

e2
i = ei ,

eiei±1ei = τei , τ = 1/|M : N |
eiej = ejei , |i− j| ≥ 2 . (3.2)

Temperley Lieb algebra will be discussed in more detail later. Obviously the addition of a tensor
factor of dimension r is analogous with the addition of a strand to a braid.

The hyper-finite algebra R is generated by the set of braid generators {e1, e2, .....} in the
braid representation corresponding to r. Sub-factor R1 is obtained simply by dropping the lowest
generator e1, R2 by dropping e1 and e2, etc..

3.3 Ii1 Factors And The Spinor Structure Of WCW

The following observations serve as very suggestive guidelines for how one could interpret the above
described results in TGD framework.

1. The discrete spectrum of dimensions 1, 2, 1 + Φ, 3, .. below r < 4 brings in mind the discrete
energy spectrum for bound states whereas the for r ≥ 4 the spectrum of dimensions is
analogous to a continuum of unbound states. The fact that r is an algebraic number for
r < 4 conforms with the vision that bound state entanglement corresponds to entanglement
probabilities in an extension of rationals defining a finite-dimensional extension of p-adic
numbers for every prime p.
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2. The discrete values of r correspond precisely to the angles φ allowed by the unitarity of
Temperley-Lieb representations of the braid algebra with d = −

√
r. For r ≥ 4 Temperley-

Lieb representation is not unitary since cos2(π/n) becomes formally larger than one (n would
become imaginary and continuous). This could mean that r ≥ 4, which in the generic case is
a transcendental number, represents unbound entanglement, which in TGD Universe is not
stable against state preparation and state function reduction processes.

3. The formula tr(xeN ) = |M : N |−1tr(x) is completely analogous to the formula characterizing
the normalization of the link invariant induced by the second Markov move in which a new
strand is added to a braid such that it braids only with the leftmost strand and therefore
does not change the knot resulting as a link closure. Hence the addition of a single strand
seems to correspond to an introduction of an r-dimensional sub-factor to II1 factor.

In TGD framework the generation of bound state has the formation of (possibly braided join
along boundaries bonds as a space-time correlate and this encourages a rather concrete interpre-
tation of these findings. Also the I1 factors themselves have a nice interpretation in terms of the
WCW spinor structure.

1. The interpretation of II1 factors in terms of Clifford algebra of WCW

The Clifford algebra of an infinite-dimensional Hilbert space defines a II1 factor. The counter-
parts for ei would naturally correspond to the analogs of projection operators (1 + σi)/2 and thus
to operators of form (1 + Σij)/2, defined by a subset of sigma matrices. The first guess is that
the index pairs are (i, j) = (1, 2), (2, 3), (3, 4), ..... The dimension of the Clifford algebra is 2N for
N -dimensional space so that ∆N = 1 would correspond to r = 2 in the classical case and to one
qubit. The problem with this interpretation is r > 2 has no physical interpretation: the formation
of bound states is expected to reduce the value of r from its classical value rather than increase it.

One can however consider also the sequence (i, j) = (1, 1+k), (1+k, 1+2k), (1+2k, 1+3k), ....
For k = 2 the reduction of r from r = 4 would be due to the loss of degrees of freedom due
to the formation of a bound state and (r = 4,∆N = 2) would correspond to the classical limit
resulting at the limit of weak binding. The effective elimination of the projection operators from
the braid algebra would reflect this loss of degrees of freedom. This interpretation could at least
be an appropriate starting point in TGD framework.

In TGD Universe physical states correspond to WCW spinor fields, whose gamma matrix
algebra is constructed in terms of second quantized free induced spinor fields defined at space-time
sheets. The original motivation was the idea that the quantum states of the Universe correspond
to the modes of purely classical free spinor fields in the infinite-dimensional configuration space
of 3-surfaces (the “world of classical worlds”, WCW) possessing general coordinate invariant (in
4-dimensional sense!) Kähler geometry. Quantum information-theoretical motivation could have
come from the requirement that these fields must be able to code information about the properties
of the point (3-surface, and corresponding space-time sheet). Scalar fields would treat the 3-surfaces
as points and are thus not enough. Induced spinor fields allow however an infinite number of modes:
according to the näıve Fourier analyst’s intuition these modes are in one-one correspondence with
the points of the 3-surface. Second quantization gives much more. Also non-local information
about the induced geometry and topology must be coded, and here quantum entanglement for
states generated by the fermionic oscillator operators coding information about the geometry of
3-surface provides enormous information storage capacity.

In algebraic geometry also the algebra of the embedding space of algebraic variety divided
by the ideal formed by functions vanishing on the surface codes information about the surface:
for instance, the maximal ideals of this algebra code for the points of the surface (functions of
embedding space vanishing at a particular point). The function algebra of the embedding space
indeed plays a key role in the construction of WCW-geometry besides second quantized fermions.

The Clifford algebra generated by the WCW gamma matrices at a given point (3-surface)
of WCW of 3-surfaces could be regarded as a II1-factor associated with the local tangent space
endowed with Hilbert space structure (WCW Kähler metric). The counterparts for ei would
naturally correspond to the analogs of projection operators (1 + σi)/2 and thus operators of form
(GAB × 1 + ΣAB) formed as linear combinations of components of the Kähler metric and of the
sigma matrices defined by gamma matrices and contracted with the generators of the isometries
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of WCW. The addition of single complex degree of freedom corresponds to ∆N = 2 and r = 4 and
the classical limit and would correspond to the addition of single braid. (r < 4,∆N < 2) would
be due to the binding effects.

r = 1 corresponds to ∆N = 0. The first interpretation is in terms of strong binding so that the
addition of particle does not increase the number of degrees of freedom. In TGD framework r = 1
might also correspond to the addition of zero modes which do not contribute to the WCW metric
and spinor structure but have a deep physical significance. (r = 2,∆N = 1) would correspond to
strong binding reducing the spinor and space-time degrees of freedom by a factor of half. r = Φ2

(n = 5) resp. r = 3 (n = 6) corresponds to ∆Nr ' 1.3885 resp. ∆Nr = 1.585. Using the
terminology of quantum field theories, one might say that in the infinite-dimensional context a
given complex bound state degree of freedom possesses anomalous real dimension r < 2. r ≥ 4
would correspond to a unbound entanglement and increasingly classical behavior.

3.4 About Possible Space-Time Correlates For The Hierarchy Of II1
Sub-Factors

By quantum classical correspondence the infinite-dimensional physics at WCW level should have
definite space-time correlates. In particular, the dimension r should have some fractal dimension
as a space-time correlate.

1. Quantum classical correspondence

Join along boundaries bonds serve as correlates for bound state formation. The presence of join
along boundaries bonds would lead to a generation of bound states just by reducing the degrees of
freedom to those of connected 3-surface. The bonds would constrain the two 3-surfaces to single
space-like section of embedding space.

This picture would allow to understand the difficulties related to Bethe-Salpeter equations for
bound states based on the assumption that particles are points moving in M4. The restriction of
particles to time=constant section leads to a successful theory which is however non-relativistic.
The basic binding energy would relate to the entanglement of the states associated with the bonded
3-surfaces. Since the classical energy associated with the bonds is positive, the binding energy tends
to be reduced as r increases.

By spin glass degeneracy join along boundaries bonds have an infinite number of degrees of
freedom in the ordinary sense. Since the system is infinite-dimensional and quantum critical, one
expects that the number r of degrees freedom associated with a single join along boundaries bond is
universal. Since join along boundaries bonds correspond to the strands of a braid and are correlates
for the bound state formation, the natural guess is that r = 4cos2(π/n), n = 3, 4, 5, ... holds true.
r < 4 should characterize both binding energy and the dimension of the effective tensor factor
introduced by a new join along boundaries bond.

The assignment of 2 “bare” and ∆N ≤ 2 renormalized real dimensions to single join along
boundaries bond is consistent with the effective two-dimensionality of anyon systems and with the
very notion of the braid group. The picture conforms also with the fact that the degrees of freedom
in question are associated with metrically 2-dimensional light-like boundaries (of say magnetic flux
tubes) acting as causal determinants. Also vibrational degrees of freedom described by Kac-Moody
algebra are present and the effective 2-dimensionality means that these degrees of freedom are not
excited and only topological degrees of freedom coded by the position of the puncture remain.

(r ≥ 4,∆N ≥ 2), if possible at all, would mean that the tensor factor associated with the
join along boundaries bond is effectively more than 4-dimensional due to the excitation of the
vibrational Kac-Moody degrees of freedom. The finite value of r would mean that most of theme
are eliminated also now but that their number is so large that bound state entanglement is not
possible anymore.

The introduction of non-integer dimension could be seen as an effective description of an infinite-
dimensional system as a finite-dimensional system in the spirit of renormalization group philosophy.
The non-unitarity of r ≥ 4 Temperley-Lieb representations could mean that they correspond to
unbound entanglement unstable against state function reduction and preparation processes. Since
this kind of entanglement does not survive in quantum jump it is not representable in terms of
braid groups.
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2. Does r define a fractal dimension of CP2 projection of partonic 2-surface?

On basis of the quantum classical correspondence one expects that r should define some fractal
dimension at the space-time level. Since r varies in the range 1, .., 4 and corresponds to the fractal
dimension of 2-D Clifford algebra the corresponding spinors would have dimension d =

√
r. There

are two options.

1. D = r/2 is suggested on basis of the construction of quantum version of Md.

2. D = log2(r) is natural on basis of the dimension d = 2D/2 of spinors in D-dimensional space.

r can be assigned with CP2 degrees of freedom in the model for the quantization of Planck
constant based on the explicit identification of Josephson inclusions in terms of finite subgroups
of SU(2) ⊂ SU(3). Hence D should relate to the CP2 projection of the partonic 2-surface and
one could have D = D(X2), the latter being the average dimension of the CP2 projection of the
partonic 2-surface for the preferred extremals of Kähler action.

Since a strongly interacting non-perturbative phase should be in question, the dimension for
the CP2 projection of the space-time surface must be at least D(X4) = 2 to guarantee that non-
vacuum extremals are in question. This is true for D(X2) = r/2 ≥ 1. The logarithmic formula
D(X2) = log2(r) ≥ 0 gives D(X2) = 0 for n = 3 meaning that partonic 2-surfaces are vacua:
space-time surface can still be a non-vacuum extremal.

As n increases, the number of CP2 points covering a given M4 point and related by the finite
subgroup of G ⊂ SU(2) ⊂ SU(3) defining the inclusion increases so that the fractal dimension of
the CP2 projection is expected to increase also. D(X2) = 2 would correspond to the space-time
surfaces for which partons have topological magnetic charge forcing them to have a 2-dimensional
CP2 projection. There are reasons to believe that the projection must be homologically non-trivial
geodesic sphere of CP2.

3.5 Could Binding Energy Spectra Reflect The Hierarchy Of Effective
Tensor Factor Dimensions?

If one takes completely seriously the idea that join along boundaries bonds are a correlate of binding
then the spectrum of binding energies might reveal the hierarchy of the fractal dimensions r(n).
Hydrogen atom and harmonic oscillator have become symbols for bound state systems. Hence it
is of interest to find whether the binding energy spectrum of these systems might be expressed in
terms of the “binding dimension” x(n) = 4− r(n) characterizing the deviation of dimension from
that at the limit of a vanishing binding energy. The binding energies of hydrogen atom are in a
good approximation given by E(n)/E(1) = 1/n2 whereas in the case of harmonic oscillator one
has E(n)/E0 = 2n + 1. The constraint n ≥ 3 implies that the principal quantum number must
correspond n− 2 in the case of hydrogen atom and to n− 3 in the case of harmonic oscillator.

Before continuing one must face an obvious objection. By previous arguments different values
of r correspond to different values of ~. The value of ~ cannot however differ for the states of
hydrogen atom. This is certainly true. The objection however leaves open the possibility that the
states of the light-like boundaries of join along boundaries bonds correspond to reflective level and
represent some aspects of the physics of, say, hydrogen atom.

In the general case the energy spectrum satisfies the condition

EB(n)

EB(3)
=

f(4− r(n))

f(3)
, (3.3)

where f is some function. The simplest assumption is that the spectrum of binding energies
EB(n) = E(n)− E(∞) is a linear function of r(n)− 4:

EB(n)

EB(3)
=

4− r(n)

3
=

4

3
sin2(

π

n
)→ 4π2

3
× 1

n2
. (3.4)

In the linear approximation the ratio E(n + 1)/E(n) approaches (n/n + 1)2 as in the case of
hydrogen atom but for small values the linear approximation fails badly. An exact correspondence
results for
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E(n)
E(1) = 1

n2 ,

n = 1

π arcsin
(√

1−r(n+2)/4
) − 2 .

Also the ionized states with r ≥ 4 would correspond to bound states in the sense that two particle
would be constrained to move in the same space-like section of space-time surface and should be
distinguished from genuinely free states when particles correspond to disjoint space-time sheets.

For the harmonic oscillator one express E(n)− E(0) instead of E(n)− E(∞) as a function of
x = 4− r and one would have

E(n)
E(0) = 2n+ 1 ,

n = 1

π arcsin
(√

1−r(n+3)/4
) − 3 .

In this case ionized states would not be possible due to the infinite depth of the harmonic oscillator
potential well.

3.6 Four-Color Problem, II1 Factors, And Anyons

The so called four-color problem can be phrased as a question whether it is possible to color the
regions of a plane map using only four colors in such a way that no adjacent regions have the
same color (for an enjoyable discussion of the problem see [A21] ). One might call this kind of
coloring complete. There is no loss of generality in assuming that the map can be represented as
a graph with regions represented as triangle shaped faces of the graph. For the dual graph the
coloring of faces becomes coloring of vertices and the question becomes whether the coloring is
possible in such a way that no vertices at the ends of the same edge have same color. The problem
can be generalized by replacing planar maps with maps defined on any two-dimensional surface
with or without boundary and arbitrary topology. The four-color problem has been solved with
an extensive use of computer [A7] but it would be nice to understand why the complete coloring
with four colors is indeed possible.

There is a mysterious looking connection between four-color problem and the dimensions r(n) =
4cos2(π/n), which are in fact known as Beraha numbers in honor of the discoverer of this connection
[A17] . Consider a more general problem of coloring two-dimensional map using m colors. One can
construct a polynomial P (m), so called chromatic polynomial, which tells the number of colorings
satisfying the condition that no neighboring vertices have the same color. The vanishing of the
chromatic polynomial for an integer value of m tells that the complete coloring using m colors is
not possible.

P (m) has also other than integer valued real roots. The strange discovery due to Beraha is that
the numbersB(n) appear as approximate roots of the chromatic polynomial in many situations. For
instance, the four non-integral real roots of the chromatic polynomial of the truncated icosahedron
are very close to B(5), B(7), B(8) and B(9). These findings led Beraha to formulate the following
conjecture. Let Pi be a sequence of chromatic polynomials for a graph for which the number of
vertices approaches infinity. If ri is a root of the polynomial approaching a well-defined value at
the limit i→∞, then the limiting value of r(i) is Beraha number.

A physicist’s proof for Beraha’s conjecture based on quantum groups and conformal theory has
been proposed [A17] . It is interesting to look for the a possible physical interpretation of 4-color
problem and Beraha’s conjecture in TGD framework.

1. In TGD framework B(n) corresponds to a renormalized dimension for a 2-spin system con-
sisting of two qubits, which corresponds to 4 different colors. For B(n) = 4 two spin 1/2
fermions obeying Fermi statistics are in question. Since the system is 2-dimensional, the
general case corresponds to two anyons with fractional spin B(n)/4 giving rise to B(n) < 4
colors and obeying fractional statistics instead of Fermi statistics. One can replace coloring
problem with the problem whether an ideal antiferro-magnetic lattice using anyons with frac-
tional spin B(n)/4 is possible energetically. In other words, does this system form a quantum
mechanical bound state even at the limit when the lengths of the edges approach to zero.
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2. The failure of coloring means that there are at least two neighboring vertices in the lattice
with the property that the spins at the ends of the same edge are in the same direction.
Lattice defect would be in question. At the limit of an infinitesimally short edge length the
failure of coloring is certainly not an energetically favored option for fermionic spins (m = 4)
but is allowed by anyonic statistics for m = B(n) < 4. Thus one has reasons to expect that
when anyonic spin is B(n)/4 the formation of a purely 2-anyon bound states becomes possible
and they form at the limit of an infinitesimal edge length a kind of topological macroscopic
quantum phase with a non-vanishing binding energy. That B(n) are roots of the chromatic
polynomial at the continuum limit would have a clear physical interpretation.

3. Only B(n) < 4 defines a sub-factor of von Neumann algebra allowing unitary Temperley-Lieb
representations. This is consistent with the fact that for m = 4 complete coloring must exists.
The physical argument is that otherwise a macroscopic quantum phase with non-vanishing
binding energy could result at the continuum limit and the upper bound for r from unitarity
would be larger than 4. For m = 4 the completely anti-ferromagnetic state would represent
the ground state and the absence of anyon-pair condensate would mean a vanishing binding
energy.

4 Inclusions Of II1 And III1 Factors

Inclusions N ⊂ M of von Neumann algebras have physical interpretation as a mathematical
description for sub-system-system relation. For type I algebras the inclusions are trivial and
tensor product description applies as such. For factors of II1 and III the inclusions are highly
non-trivial. The inclusion of type II1 factors were understood by Vaughan Jones [A2] and those
of factors of type III by Alain Connes [A4] .

Sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be a sub-
factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M
as N module is in question.

4.1 Basic Findings About Inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by indexM : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only
the embedding.

The basic facts proved by Jones are following [A2] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(4.1)

the numbers at right hand side are known as Beraha numbers [A17] . The comments below
give a rough idea about what finiteness of principal graph means.

2. As explained in [B5] , for M : N < 4 one can assign to the inclusion Dynkin graph of ADE
type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in terms
of its dimension and dimension r of Cartan algebra r as h = (dimg(g) − r)/r. The Lie
algebras of SU(n), E7 and D2n+1 are however not allowed. For M : N = 4 one can assign
to the inclusion an extended Dynkin graph of type ADE characterizing Kac Moody algebra.
Extended ADE diagrams characterize also the subgroups of SU(2) and the interpretation
proposed in [A39] is following. The ADE diagrams are associated with the n = ∞ case
having M : N ≥ 4. There are diagrams corresponding to infinite subgroups: SU(2) itself,
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circle group U(1), and infinite dihedral groups (generated by a rotation by a non-rational
angle and reflection. The diagrams corresponding to finite subgroups are extension of An
for cyclic groups, of Dn dihedral groups, and of En with n=6,7,8 for tetrahedron, cube,
dodecahedron. For M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed.

The interpretation of [A39] is that the subfactors correspond to inclusions N ⊂ M defined in
the following manner.

1. Let G be a finite subgroup of SU(2). Denote by R the infinite-dimensional Clifford algebras
resulting from infinite-dimensional tensor power of M2(C) and by R0 its subalgebra obtained
by restricting M2(C) element of the first factor to be unit matrix. Let G act by automor-
phisms in each tensor factor. G leaves R0 invariant. Denote by RG0 and RG the sub-algebras
which remain element wise invariant under the action of G. The resulting Jones inclusions
RG0 ⊂ RG are consistent with the ADE correspondence.

2. The argument suggests the existence of quantum versions of subgroups of SU(2) for which
representations are truncations of those for ordinary subgroups. The results have been gen-
eralized to other Lie groups.

3. Also SL(2, C) acts as automorphisms of M2(C). An interesting question is what happens
if one allows G to be any discrete subgroups of SL(2,C). Could this give inclusions with
M : N > 4?. The strong analogy of the spectrum of indices with spectrum of energies with
hydrogen atom would encourage this interpretation: the subgroup SL(2,C) not reducing to
those of SU(2) would correspond to the possibility for the particle to move with respect to
each other with constant velocity.

4.2 The Fundamental Construction And Temperley-Lieb Algebras

It was shown by Jones [A16] that for a given Jones inclusion with β =M : N <∞ there exists a
tower of finite II1 factors Mk for k = 0, 1, 2, .... such that

1. M0 = N , M1 =M,

2. Mk+1 = EndMk−1
Mk is the von Neumann algebra of operators on L2(Mk) generated by

Mk and an orthogonal projection ek : L2(Mk)→ L2(Mk−1) for k ≥ 1, whereMk is regarded
as a subalgebra of Mk+1 under right multiplication.

It can be shown that Mk+1 is a finite factor. The sequence of projections on M∞ = ∪k≥0Mk

satisfies the relations

e2
i = ei , e=

i ei ,
ei = βeiejei for |i− j| = 1 ,
eiej = ejei for |i− j| ≥ 2 .

(4.2)

The construction of hyper-finite II1 factor using Clifford algebra C(2) represented by 2 ×
2 matrices allows to understand the theorem in β = 4 case in a straightforward manner. In
particular, the second formula involving β follows from the identification of x at (k − 1)th level
with (1/β)diag(x, x) at kth level.

By replacing 2 × 2 matrices with
√
β ×
√
β matrices one can understand heuristically what is

involved in the more general case. Mk is Mk−1 module with dimension
√
β and Mk+1 is the

space of
√
β×
√
β matricesMk−1 valued entries acting inMk. The transition fromMk toMk−1

linear maps of Mk happens in the transition to the next level. x at (k − 1)th level is identified as
(x/β)× Id√β×√β at the next level. The projection ek picks up the projection of the matrix with
Mk−1 valued entries in the direction of the Id√β×

√
β .

The union of algebras Aβ,k generated by 1, e1, ..., ek defines Temperley-Lieb algebra Aβ [A38]
. This algebra is naturally associated with braids. Addition of one strand to a braid adds one
generator to this algebra and the representations of the Temperley Lieb algebra provide link, knot,
and 3-manifold invariants [A42] . There is also a connection with systems of statistical physics and
with Yang-Baxter algebras [A8] .
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A further interesting fact about the inclusion hierarchy is that the elements in Mi belonging
to the commutator N ′ of N form finite-dimensional spaces. Presumably the dimension approaches
infinity for n→∞.

4.3 Connection With Dynkin Diagrams

The possibility to assign Dynkin diagrams (β < 4) and extended Dynkin diagrams (β = 4 to Jones
inclusions can be understood heuristically by considering a characterization of so called bipartite
graphs [A40] , [B5] by the norm of the adjacency matrix of the graph.

Bipartite graphs Γ is a finite, connected graph with multiple edges and black and white vertices
such that any edge connects white and black vertex and starts from a white one. Denote by
w(Γ) (b(Γ)) the number of white (black) vertices. Define the adjacency matrix Λ = Λ(Γ) of size
b(Γ)× w(Γ) by

wb,w =

{
m(e) if there exists e such that δe = b− w ,
0 otherwise .

(4.3)

Here m(e) is the multiplicity of the edge e.
Define norm ||Γ|| as

||X|| = max{||X||; ||x|| ≤ 1} ,

||Γ|| = ||Λ(Γ)|| =
∣∣∣∣∣∣ 0 Λ(Γ)

Λ(Γ)t 0

∣∣∣∣∣∣ . (4.4)

Note that the matrix appearing in the formula is (m+ n)× (m+ n) symmetric square matrix so
that the norm is the eigenvalue with largest absolute value.

Suppose that Γ is a connected finite graph with multiple edges (sequences of edges are regarded
as edges). Then

1. If ||Γ|| ≤ 2 and if Γ has a multiple edge, ||Γ|| = 2 and Γ = Ã1, the extended Dynkin diagram
for SU(2) Kac Moody algebra.

2. ||Γ|| < 2 if and only Γ is one of the Dynkin diagrams of A,D,E. In this case ||Γ|| = 2cos(π/h),
where h is the Coxeter number of Γ.

3. ||Γ|| = 2 if and only if Γ is one of the extended Dynkin diagrams Ã, D̃, Ẽ.

This result suggests that one can indeed assign to the Jones inclusions Dynkin diagrams. To really
understand how the inclusions can be characterized in terms bipartite diagrams would require a
deeper understanding of von Neumann algebras. The following argument only demonstrates that
bipartite graphs naturally describe inclusions of algebras.

1. Consider a bipartite graph. Assign to each white vertex linear space W (w) and to each edge
of a linear space W (b, w). Assign to a given black vertex the vector space ⊕δe=b−wW (b, w)⊗
W (w) where (b, w) corresponds to an edge ending to b.

2. Define N as the direct sum of algebras End(W (w)) associated with white vertices andM as
direct sum of algebras ⊕δe=b−wEnd(W (b, w))⊗ End(W (w)) associated with black vertices.

3. There is homomorphism N →M defined by embedding direct sum of white endomorphisms
x to direct sum of tensor products x with the identity endomorphisms associated with the
edges starting from x.

It is possible to show that Jones inclusions correspond to the Dynkin diagrams of An, D2n, and
E6, E8 and extended Dynkin diagrams of ADE type. In particular, the dual of the bi-partite graph
associated with Mn−1 ⊂ Mn obtained by exchanging the roles of white and black vertices de-
scribes the inclusionMn ⊂Mn+1 so that two subsequent Jones inclusions might define something
fundamental (the corresponding space-time dimension is 2× log2(M : N ) ≤ 4.
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4.4 Indices For The Inclusions Of Type III1 Factors

Type III1 factors appear in relativistic quantum field theory defined in 4-dimensional Minkowski
space [B1] . An overall summary of basic results discovered in algebraic quantum field theory is
described in the lectures of Longo [A32] . In this case the inclusions for algebras of observables are
induced by the inclusions for bounded regions of M4 in axiomatic quantum field theory. Tomita’s
theory of modular Hilbert algebras [A28] , [B4] forms the mathematical corner stone of the theory.

The basic notion is Haag-Kastler net [A27] consisting of bounded regions of M4. Double cone
serves as a representative example. The von Neumann algebra A(O) is generated by observables
localized in bounded region O. The net satisfies the conditions implied by local causality:

1. Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2).

2. Locality: O1 ⊂ O′2 implies A(O1) ⊂ A(O2)′ with O′ defined as {x : 〈x, y〉 < 0 for all y ∈ O}.

3. Haag duality A(O′)′ = A(O).

Besides this Poincare covariance, positive energy condition, and the existence of vacuum state
is assumed.

DHR (Doplicher-Haag-Roberts) [A11] theory allows to deduce the values of Jones index and
they are squares of integers in dimensions D > 2 so that the situation is rather trivial. The 2-
dimensional case is distinguished from higher dimensional situations in that braid group replaces
permutation group since the paths representing the flows permuting identical particles can be
linked in X2 × T and anyonic statistics [D1, D2] becomes possible. In the case of 2-D Minkowski
space M2 Jones inclusions with M : N < 4 plus a set of discrete values of M : N in the range
(4, 6) are possible. In [A32] some values are given (M : N = 5, 5.5049..., 5.236...., 5.828...).

At least intersections of future and past light cones seem to appear naturally in TGD framework
such that the boundaries of future/past directed light cones serve as seats for incoming/outgoing
states defined as intersections of space-time surface with these light cones. III1 sectors cannot
thus be excluded as factors in TGD framework. On the other hand, the construction of S-matrix
at space-time level is reduced to II1 case by effective 2-dimensionality.

5 TGD And Hyper-Finite Factors Of Type II1

By effective 2-dimensionality of the construction of quantum states the hyper-finite factors of type
II1 fit naturally to TGD framework. In particular, infinite dimensional spinors define a canonical
representations of this kind of factor. The basic question is whether only hyper-finite factors of type
II1 appear in TGD framework. Affirmative answer would allow to interpret physical M -matrix as
time like entanglement coefficients.

5.1 What Kind Of Hyper-Finite Factors One Can Imagine In TGD?

The working hypothesis has been that only hyper-finite factors of type II1 appear in TGD. The
basic motivation has been that they allow a new view about M -matrix as an operator representable
as time-like entanglement coefficients of zero energy states so that physical states would represent
laws of physics in their structure. They allow also the introduction of the notion of measurement
resolution directly to the definition of reaction probabilities by using Jones inclusion and the
replacement of state space with a finite-dimensional state space defined by quantum spinors. This
hypothesis is of course just an attractive working hypothesis and deserves to be challenged.

5.1.1 WCW spinors

For WCW spinor s the HFF II1 property is very natural because of the properties of infinite-
dimensional Clifford algebra and the inner product defined by the WCW geometry does not allow
other factors than this. A good guess is that the values of conformal weights label the factors
appearing in the tensor power defining WCW spinor s. Because of the non-degeneracy and super-
symplectic symmetries the density matrix representing metric must be essentially unit matrix for
each conformal weight which would be the defining characteristic of hyper-finite factor of type II1.
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5.1.2 Bosonic degrees of freedom

The bosonic part of the super-symplectic algebra consists of Hamiltonians of CH in one-one corre-
spondence with those of δM4

±×CP2. Also the Kac-Moody algebra acting leaving the light-likeness
of the partonic 3-surfaces intact contributes to the bosonic degrees of freedom. The commutator
of these algebras annihilates physical states and there are also Virasoro conditions associated with
ordinary conformal symmetries of partonic 2-surface [K3] . The labels of Hamiltonians of WCW
and spin indices contribute to bosonic degrees of freedom.

Hyper-finite factors of type II1 result naturally if the system is an infinite tensor product
finite-dimensional matrix algebra associated with finite dimensional systems [A5] . Unfortunately,
neither Virasoro, symplectic nor Kac-Moody algebras do have decomposition into this kind of
infinite tensor product. If bosonic degrees for super-symplectic and super-Kac Moody algebra
indeed give I∞ factor one has HFF if type II∞. This looks the most natural option but threatens
to spoil the beautiful idea about M -matrix as time-like entanglement coefficients between positive
and negative energy parts of zero energy state.

The resolution of the problem is surprisingly simple and trivial after one has discovered it. The
requirement that state is normalizable forces to project M -matrix to a finite-dimensional sub-space
in bosonic degrees of freedom so that the reduction I∞ → In occurs and one has the reduction
II∞ → II1 × In = II1 to the desired HFF.

One can consider also the possibility of taking the limit n→∞. One could indeed say that since
I∞ factor can be mapped to an infinite tensor power of M(2, C) characterized by a state which is
not trace, it is possible to map this representation to HFF by replacing state with trace [A5] . The
question is whether the forcing the bosonic foot to fermionic shoe is physically natural. One could
also regard the II1 type notion of probability as fundamental and also argue that it is required
by full super-symmetry realized also at the level of many-particle states rather than mere single
particle states.

5.1.3 How the bosonic cutoff is realized?

Normalizability of state requires that projection to a finite-dimensional bosonic sub-space is car-
ried out for the bosonic part of the M -matrix. This requires a cutoff in quantum numbers of
super-conformal algebras. The cutoff for the values of conformal weight could be formulated by
replacing integers with Zn or with some finite field G(p, 1). The cutoff for the labels associated
with Hamiltonians defined as an upper bound for the dimension of the representation looks also
natural.

Number theoretical braids which are discrete and finite structures would define space-time
correlate for this cutoff. p-Adic length scale p ' 2k hypothesis could be interpreted as stating
the fact that only powers of p up to pk are significant in p-adic thermodynamics which would
correspond to finite field G(k, 1) if k is prime. This has no consequences for p-adic mass calculations
since already the first two terms give practically exact results for the large primes associated with
elementary particles [K8] .

Finite number of strands for the theoretical braids would serve as a correlate for the reduction
of the representation of Galois group S∞ of rationals to an infinite produce of diagonal copies of
finite-dimensional Galois group so that same braid would repeat itself like a unit cell of lattice i
condensed matter [A3] .

5.1.4 HFF of type III for field operators and HFF of type II1 for states?

One could also argue that the Hamiltonians with fixed conformal weight are included in fermionic
II1 factor and bosonic factor I∞ factor, and that the inclusion of conformal weights leads to a
factor of type III. Conformal weight could relate to the integer appearing in the crossed product
representation III = Z ×cr II∞ of HFF of type III [A5] .

The value of conformal weight is non-negative for physical states which suggests that Z reduces
to semigroup N so that a factor of type III would reduce to a factor of type II∞ since trace
would become finite. If unitary process corresponds to an automorphism for II∞ factor, the action
of automorphisms affecting scaling must be uni-directional. Also thermodynamical irreversibility
suggests the same. The assumption that state function reduction for positive energy part of state
implies unitary process for negative energy state and vice versa would only mean that the shifts
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for positive and negative energy parts of state are opposite so that Z → N reduction would still
hold true.

5.1.5 HFF of type II1 for the maxima of Kähler function?

Probabilistic interpretation allows to gain heuristic insights about whether and how hyper-finite
factors of type type II1 might be associated with WCW degrees of freedom. They can appear both
in quantum fluctuating degrees of freedom associated with a given maximum of Kähler function
and in the discrete space of maxima of Kähler function.

Spin glass degeneracy is the basic prediction of classical TGD and means that instead of a
single maximum of Kähler function analogous to single free energy minimum of a thermodynamical
system there is a fractal spin glass energy landscape with valleys inside valleys. The discretization
of WCW in terms of the maxima of Kähler function crucial for the p-adicization problem, leads
to the analog of spin glass energy landscape and hyper-finite factor of type II1 might be the
appropriate description of the situation.

The presence of the tensor product structure is a powerful additional constraint and something
analogous to this should emerge in WCW degrees of freedom. Fractality of the many-sheeted
space-time is a natural candidate here since the decomposition of the original geometric structure
to parts and replacing them with the scaled down variant of original structure is the geometric
analog of forming a tensor power of the original structure.

5.2 Direct Sum Of HFFs Of Type II1 As A Minimal Option

HFF II1 property for the Clifford algebra of WCW means a definite distinction from the ordinary
Clifford algebra defined by the fermionic oscillator operators since the trace of the unit matrix of
the Clifford algebra is normalized to one. This does not affect the anti-commutation relations at the
basic level and delta functions can appear in them at space-time level. At the level of momentum
space I∞ property requires discrete basis and anti-commutators involve only Kronecker deltas. This
conforms with the fact that HFF of type II1 can be identified as the Clifford algebra associated
with a separable Hilbert space.

5.2.1 II∞ factor or direct sum of HFFs of type II1?

The expectation is that super-symplectic algebra is a direct sum over HFFs of type II1 labeled by
the radial conformal weight. In the same manner the algebra defined by fermionic anti-commutation
relations at partonic 2-surface would decompose to a direct sum of algebras labeled by the conformal
weight associated with the light-like coordinate of X3

l . Super-conformal symmetry suggests that
also the configuration space degrees of freedom correspond to a direct sum of HFFs of type II1.

One can of course ask why not II∞ = I∞× II1 structures so that one would have single factor
rather than a direct sum of factors.

1. The physical motivation is that the direct sum property allow to decompose M-matrix to
direct summands associated with various sectors with weights whose moduli squared have an
interpretation in terms of the density matrix. This is also consistent with p-adic thermody-
namics where conformal weights take the place of energy eigen values.

2. II∞ property would predict automorphisms scaling the trace by an arbitrary positive real
number λ ∈ R+. These automorphisms would require the scaling of the trace of the projectors
of Clifford algebra having values in the range [0, 1] and it is difficult to imagine how these
automorphisms could be realized geometrically.

5.2.2 How HFF property reflects itself in the construction of geometry of WCW?

The interesting question is what HFF property and finite measurement resolution realizing itself
as the use of projection operators means concretely at the level of WCW geometry.

Super-Hamiltonians define the Clifford algebra of the configuration space. Super-conformal
symmetry suggests that the unavoidable restriction to projection operators instead of complex
rays is realized also WCW degrees of freedom. Of course, infinite precision in the determination
of the shape of 3-surface would be physically a completely unrealistic idea.



5.3 Bott Periodicity, Its Generalization, And Dimension D = 8As An Inherent
Property Of The Hyper-Finite II1 Factor 23

In the fermionic situation the anti-commutators for the gamma matrices associated with WCW
individual Hamiltonians in 3-D sense are replaced with anti-commutators where Hamiltonians are
replaced with projectors to subspaces of the space spanned by Hamiltonians. This projection is
realized by restricting the anti-commutator to partonic 2-surfaces so that the anti-commutator
depends only the restriction of the Hamiltonian to those surfaces.

What is interesting that the measurement resolution has a concrete particle physical meaning
since the parton content of the system characterizes the projection. The larger the number of
partons, the better the resolution about WCW degrees of freedom is. The degeneracy of WCW
metric would be interpreted in terms of finite measurement resolution inherent to HFFs of type
II1, which is not due to Jones inclusions but due to the fact that one can project only to infinite-D
subspaces rather than complex rays.

Effective 2-dimensionality in the sense that WCW Hamiltonians reduce to functionals of the
partonic 2-surfaces of X3

l rather than functionals of X3
l could be interpreted in this manner. For

a wide class of Hamiltonians actually effective 1-dimensionality holds true in accordance with
conformal invariance.

The generalization of WCW Hamiltonians and super-Hamiltonians by allowing integrals over
the 2-D boundaries of the patches of X3

l would be natural and is suggested by the requirement of
discretized 3-dimensionality at the level of WCW.

By quantum classical correspondence the inclusions of HFFs related to the measurement reso-
lution should also have a geometric description. Measurement resolution corresponds to braids in
given time scale and as already explained there is a hierarchy of braids in time scales coming as neg-
ative powers of two corresponding to the addition of zero energy components to positive/negative
energy state. Note however that particle reactions understood as decays and fusions of braid
strands could also lead to a notion of measurement resolution.

5.3 Bott Periodicity, Its Generalization, And Dimension D = 8As An
Inherent Property Of The Hyper-Finite II1 Factor

Hyper-finite II1 factor can be constructed as infinite-dimensional tensor power of the Clifford
algebra M2(C) = C(2) in dimension D = 2. More precisely, one forms the union of the Clifford
algebras C(2n) = C(2)⊗n of 2n-dimensional spaces by identifying the element x ∈ C(2n) as block
diagonal elements diag(x, x) of C(2(n + 1)). The union of these algebras is completed in weak
operator topology and can be regarded as a Clifford algebra of real infinite-dimensional separable
Hilbert space and thus as sub-algebra of I∞. Also generalizations obtained by replacing complex
numbers by quaternions and octions are possible.

1. The dimension 8 is an inherent property of the hyper-finite II1 factor since Bott periodicity
theorem states C(n+8) = Cn(16). In other words, the Clifford algebra C(n+8) is equivalent
with the algebra of 16× 16 matrices with entries in C(n). Or articulating it still differently:
C(n+8) can be regarded as 16×16 dimensional module with C(n) valued coefficients. Hence
the elements in the union defining the canonical representation of hyper-finite II1 factor are
16n × 16n matrices having C(0), C(2), C(4) or C(6) valued valued elements.

2. The idea about a local variant of the infinite-dimensional Clifford algebra defined by power
series of space-time coordinate with Taylor coefficients which are Clifford algebra elements
fixes the interpretation. The representation as a linear combination of the generators of
Clifford algebra of the finite-dimensional space allows quantum generalization only in the
case of Minkowski spaces. However, if Clifford algebra generators are representable as gamma
matrices, the powers of coordinate can be absorbed to the Clifford algebra and the local
algebra is lost. Only if the generators are represented as quantum versions of octonions
allowing no matrix representation because of their non-associativity, the local algebra makes
sense. From this it is easy to deduce both quantum and classical TGD.

5.4 The Interpretation Of Jones Inclusions In TGD Framework

By the basic self-referential property of von Neumann algebras one can consider several interpre-
tations of Jones inclusions consistent with sub-system-system relationship, and it is better to start
by considering the options that one can imagine.
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5.4.1 How Jones inclusions relate to the new view about sub-system?

Jones inclusion characterizes the embedding of sub-system N toMandM as a finite-dimensional
N -module is the counterpart for the tensor product in finite-dimensional context. The possibility
to expressM as N moduleM/N states fractality and can be regarded as a kind of self-referential
“Brahman=Atman identity” at the level of infinite-dimensional systems.

Also the mysterious looking almost identity CH2 = CH for the WCW would fit nicely with the
identity M ⊕M = M . M ⊗M ⊂ M in WCW Clifford algebra degrees of freedom is also implied
and the construction of M as a union of tensor powers of C(2) suggests that M ⊗ M allows
M : N = 4 inclusion to M. This paradoxical result conforms with the strange self-referential
property of factors of II1.

The notion of many-sheeted space-time forces a considerable generalization of the notion of
sub-system and simple tensor product description is not enough. Topological picture based on the
length scale resolution suggests even the possibility of entanglement between sub-systems of un-
entangled sub-systems. The possibility that hyper-finite II1-factors describe the physics of TGD
also in bosonic degrees of freedom is suggested by WCW super-symmetry. On the other hand,
bosonic degrees could naturally correspond to I∞ factor so that hyper-finite II∞ would be the net
result.

The most general view is that Jones inclusion describes all kinds of sub-system-system inclu-
sions. The possibility to assign conformal field theory to the inclusion gives hopes of rather detailed
view about dynamics of inclusion.

1. The topological condensation of space-time sheet to a larger space-time sheet mediated by
wormhole contacts could be regarded as Jones inclusion. N would correspond to the condens-
ing space-time sheet, M to the system consisting of both space-time sheets, and

√
M : N

would characterize the number of quantum spinorial degrees of freedom associated with the
interaction between space-time sheets. Note that by general resultsM : N characterizes the
fractal dimension of quantum group (M : N < 4) or Kac-Moody algebra (M : N = 4) [B5] .

2. The branchings of space-time sheets (space-time surface is thus homologically like branching
like of Feynman diagram) correspond naturally to n-particle vertices in TGD framework.
What is nice is that vertices are nice 2-dimensional surfaces rather than surfaces having
typically pinch singularities. Jones inclusion would naturally appear as inclusion of operator
spaces Ni (essentially Fock spaces for fermionic oscillator operators) creating states at various
lines as sub-spaces Ni ⊂M of operators creating states in common von Neumann factorM.
This would allow to construct vertices and vertices in natural manner using quantum groups
or Kac-Moody algebras.

The fundamental N ⊂M ⊂M⊗NM inclusion suggests a concrete representation based on
the identification Ni = M , where M is the universal Clifford algebra associated with incoming
line and N is defined by the condition thatM/N is the quantum variant of Clifford algebra
of H. N -particle vertices could be defined as traces of Connes products of the operators
creating incoming and outgoing states. It will be found that this leads to a master formula
for S-matrix if the generalization of the old-fashioned string model duality implying that all
generalized Feynman diagrams reduce to diagrams involving only single vertex is accepted.

3. If 4-surfaces can branch as the construction of vertices requires, it is difficult to argue that 3-
surfaces and partonic/stringy 2-surfaces could not do the same. As a matter fact, the master
formula for S-matrix to be discussed later explains the branching of 4-surfaces as an apparent
effect. Despite this one can consider the possibility that this kind of joins are possible so that
a new kind of mechanism of topological condensation would become possible. 3-space-sheets
and partonic 2-surfaces whose p-adic fractality is characterized by different p-adic primes
could be connected by “joins” representing branchings of 2-surfaces. The structures formed
by soap film foam provide a very concrete illustration about what would happen. In the TGD
based model of hadrons [K9] it has been assumed that join along boundaries bonds (JABs)
connect quark space-time space-time sheets to the hadronic space-time sheet. The problem
is that, at least for identical primes, the formation of join along boundaries bond fuses two
systems to single bound state. If JABs are replaced joins, this objection is circumvented.
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4. The space-time correlate for the formation of bound states is the formation of JABs. Standard
intuition tells that the number of degrees of freedom associated with the bound state is smaller
than the number of degrees of freedom associated with the pair of free systems. Hence the
inclusion of the bound state to the tensor product could be regarded as Jones inclusion. On
the other hand, one could argue that the JABs carry additional vibrational degrees of freedom
so that the idea about reduction of degrees of freedom might be wrong: free system could be
regarded as sub-system of bound state by Jones inclusion. The self-referential holographic
properties of von Neumann algebras allow both interpretations: any system can be regarded
as sub-system of any system in accordance with the bootstrap idea.

5. Maximal deterministic regions inside given space-time sheet bounded by light-like causal
determinants define also sub-systems in a natural manner and also their inclusions would
naturally correspond to Jones inclusions.

6. The TGD inspired model for topological quantum computation involves the magnetic flux
tubes defined by join along boundaries bonds connecting space-time sheets having light-like
boundaries. These tubes condensed to background 3-space can become linked and knotted
and code for quantum computations in this manner. In this case the addition of new strand to
the system corresponds to Jones inclusion in the hierarchy associated with inclusion N ⊂M.
The anyon states associated with strands would be represented by a finite tensor product of
quantum spinors assignable to M/N and representing quantum counterpart of H-spinors.

One can regardM : N degrees of freedom correspond to quantum group or Kac-Moody degrees
of freedom. Quantum group degrees of freedom relate closely to the conformal and topological
degrees of freedom as the connection of II1 factors with topological quantum field theories and
braid matrices suggests itself. For the canonical inclusion this factorization would correspond to
factorization of quantum H-spinor from WCW spinor .

A more detailed study of canonical inclusions to be carried out later demonstrates what this
factorization corresponds at the space-time level to a formation of space-time sheets which can be
regarded as multiple coverings of M4 and CP2 with invariance group G = Ga ×Gb ⊂ SL(2, C)×
SU(2), SU(2) ⊂ SU(3). The unexpected outcome is that Planck constants assignable to M4 and
CP2 degrees of freedom depend on the canonical inclusions. The existence of macroscopic quantum
phases with arbitrarily large Planck constants is predicted.

It would seem possible to assign the M : N degrees quantum spinorial degrees of freedom to
the interface between subsystems represented by N and M. The interface could correspond to
the wormhole contacts, joins, JABs, or light-like causal determinants serving as boundary between
maximal deterministic regions, etc... In terms of the bipartite diagrams representing the inclusions,
joins (say) would correspond to the edges connecting white vertices representing sub-system (the
entire system without the joins) to black vertices (entire system).

5.4.2 About the interpretation of M : N degrees of freedom

The Clifford algebra N associated with a system formed by two space-time sheet can be regarded
as 1 ≤ M : N ≤ 4-dimensional module having N as its coefficients. It is possible to imagine
several interpretations the degrees of freedom labeled by β.

1. The β =M : N degrees of freedom could relate to the interaction of the space-time sheets.
Beraha numbers appear in the construction of S-matrices of topological quantum field theories
and an interpretation in terms of braids is possible. This would suggest that the interaction
between space-time sheets can be described in terms of conformal quantum field theory
and the S-matrices associated with braids describe this interaction. Jones inclusions would
characterize the effective number of active conformal degrees of freedom. At n = 3 limit
these degrees of freedom disappear completely since the conformal field theory defined by
the Chern-Simons action describing this interaction would become trivial (c = 0 as will be
found).

2. The interpretation in terms of embedding space Clifford algebra would suggest that β-
dimensional Clifford algebra of

√
β-dimensional spinor space is in question. For β = 4
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the algebra would be the Clifford algebra of 2-dimensional space. M/N would have in-
terpretation as complex quantum spinors with components satisfying z1z2 = qz2z1 and its
conjugate and having fractal complex dimension

√
β. This would conform with the effective 2-

dimensionality of TGD. For β < 4 the fractal dimension of partonic quantum spinors defining
the basic conformal fields would be reduced and become d = 1 for n = 3: the interpretation is
in terms of strong correlations caused by the non-commutativity of the components of quan-
tum spinor. For number theoretical generalizations of infinite-dimensional Clifford algebras
Cl(C) obtained by replacing C with Abelian complexification of quaternions or octonions
one would obtain higher-dimensional spinors.

5.5 WCW, Space-Time, Embedding Space AndHyper-Finite Type II1
Factors

The preceding considerations have by-passed the question about the relationship of WCW tangent
space to its Clifford algebra. Also the relationship between space-time and embedding space and
their quantum variants could be better. In particular, one should understand how effective 2-
dimensionality can be consistent with the 4-dimensionality of space-time.

5.5.1 Super-conformal symmetry and WCW Poisson algebra as hyper-finite type II1
factor

It would be highly desirable to achieve also a description of the WCW degrees of freedom using
von Neumann algebras. Super-conformal symmetry relating fermionic degrees of freedom and
WCW degrees of freedom suggests that this might be the case. Super-symplectic algebra has as
its generators configuration space Hamiltonians and their super-counterparts identifiable as CH
gamma matrices. Super-symmetry requires that the Clifford algebra of CH and the Hamiltonian
vector fields of CH with symplectic central extension both define hyper-finite II1 factors. By
super-symmetry Poisson bracket corresponds to an anti-commutator for gamma matrices. The
ordinary quantized version of Poisson bracket is obtained as {Pi, Qj} → [Pi, Qj ] = JijId. Finite
trace version results by assuming that Id corresponds to the projector CH Clifford algebra having
unit norm. The presence of zero modes means direct integral over these factors.

WCW gamma matrices anti-commuting to identity operator with unit norm corresponds to the
tangent space T (CH) of CH. Thus it would be not be surprising if T (CH) could be imbedded in
the sigma matrix algebra as a sub-space of operators defined by the gamma matrices generating
this algebra. At least for β = 4 construction of hyper-finite II1 factor this definitely makes sense.

The dimension of WCW defined as the trace of the projection operator to the sub-space spanned
by gamma matrices is obviously zero. Thus WCW has in this sense the dimensionality of single
space-time point. This sounds perhaps absurd but the generalization of the number concept implied
by infinite primes indeed leads to the view that single space-time point is infinitely structured in
the number theoretical sense although in the real sense all states of the point are equivalen. The
reason is that there is infinitely many numbers expressible as ratios of infinite integers having unit
real norm in the real sense but having different p-adic norms.

5.5.2 How to understand the dimensions of space-time and embedding space?

One should be able to understand the dimensions of 3-space, space-time and embedding space in a
convincing matter in the proposed framework. There is also the question whether space-time and
embedding space emerge uniquely from the mathematics of von Neumann algebras alone.

1. The dimensions of space-time and embedding space

Two sub-sequent inclusions dual to each other define a special kind of inclusion giving rise to
a quantum counterpart of D = 4 naturally. This would mean that space-time is something which
emerges at the level of cognitive states.

The special role of classical division algebras in the construction of quantum TGD [K12] , D = 8
Bott periodicity generalized to quantum context, plus self-referential property of type II1 factors
might explain why 8-dimensional embedding space is the only possibility.
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State space has naturally quantum dimension D ≤ 8 as the following simple argument shows.
The space of quantum states has quark and lepton sectors which both are super-symmetric implying
D ≤ 4 for each. Since these sectors correspond to different Hamiltonian algebras (triality one for
quarks and triality zero for leptonic sector), the state space has quantum dimension D ≤ 8.

2. How the lacking two space-time dimensions emerge?

3-surface is the basic dynamical unit in TGD framework. This seems to be in conflict with
the effective 2-dimensionality [K12] meaning that partonic 2-surface code for quantum states, and
with the fact that hyper-finite II1 factors have intrinsic quantum dimension 2.

A possible resolution of the problem is that the foliation of 3-surface by partonic two-surfaces
defines a one-dimensional direct integral of isomorphic hyper-finite type II1 factors, and the zero
mode labeling the 2-surfaces in the foliation serves as the third spatial coordinate. For a given
3-surface the contribution to the WCW metric can come only from 2-D partonic surfaces defined
as intersections of 3-D light-like CDs with X7

± [K4] . Hence the direct integral should somehow
relate to the classical non-determinism of Kähler action.

1. The one-parameter family of intersections of light-like CD with X7
± inside X4 ∩ X7

± could
indeed be basically due to the classical non-determinism of Kähler action. The contribution
to the metric from the normal light-like direction to X3 = X4∩X7

± can cause the vanishing of
the metric determinant

√
g4 of the space-time metric at X2 ⊂ X3 under some conditions on

X2. This would mean that the space-time surface X4(X3) is not uniquely determined by the
minimization principle defining the value of the Kähler action, and the complete dynamical
specification of X3 requires the specification of partonic 2-surfaces X2

i with
√
g4 = 0.

2. The known solutions of field equations [K2] define a double foliation of the space-time sur-
face defined by Hamilton-Jacobi coordinates consisting of complex transversal coordinate
and two light-like coordinates for M4 (rather than space-time surface). Number theoretical
considerations inspire the hypothesis that this foliation exists always [K12] . Hence a natural
hypothesis is that the allowed partonic 2-surfaces correspond to the 2-surfaces in the restric-
tion of the double foliation of the space-time surface by partonic 2-surfaces to X3, and are
thus locally parameterized by single parameter defining the third spatial coordinate.

3. There is however also a second light-like coordinate involved and one might ask whether
both light-like coordinates appear in the direct sum decomposition of II1 factors defining
T (CH). The presence of two kinds of light-like CDs would provide the lacking two space-time
coordinates and quantum dimension D = 4 would emerge at the limit of full non-determinism.
Note that the duality of space-like partonic and light-like stringy 2-surfaces conforms with
this interpretation since it corresponds to a selection of partonic/stringy 2-surface inside
given 3-D CD whereas the dual pairs correspond to different CDs.

4. That the quantum dimension would be 2Dq = β < 4 above CP2 length scale conforms
with the fact that non-determinism is only partial and time direction is dynamically frozen
to a high degree. For vacuum extremals there is strong non-determinism but in this case
there is no real dynamics. For CP2 type extremals, which are not vacuum extremals as far
action and small perturbations are considered, and which correspond to β = 4 there is a
complete non-determinism in time direction since the M4 projection of the extremal is a
light-like random curve and there is full 4-D dynamics. Light-likeness gives rise to conformal
symmetry consistent with the emergence of Kac Moody algebra [K2] .

3. Time and cognition

In a completely deterministic physics time dimension is strictly speaking redundant since the
information about physical states is coded by the initial values at 3-dimensional slice of space-time.
Hence the notion of time should emerge at the level of cognitive representations possible by to the
non-determinism of the classical dynamics of TGD.

Since Jones inclusion means the emergence of cognitive representation, the space-time view
about physics should correspond to cognitive representations provided by Feynman diagram states
with zero energy with entanglement defined by a two-sided projection of the lowest level S-matrix.
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These states would represent the “laws of quantum physics” cognitively. Also space-time surface
serves as a classical correlate for the evolution by quantum jumps with maximal deterministic
regions serving as correlates of quantum states. Thus the classical non-determinism making possible
cognitive representations would bring in time. The fact that quantum dimension of space-time is
smaller than D = 4 would reflect the fact that the loss of determinism is not complete.

4. Do space-time and embedding space emerge from the theory of von Neumann algebras and number theory?

The considerations above force to ask whether the notions of space-time and embedding space
emerge from von Neumann algebras as predictions rather than input. The fact that it seems
possible to formulate the S-matrix and its generalization in terms of inherent properties of infinite-
dimensional Clifford algebras suggest that this might be the case.

5.5.3 Inner automorphisms as universal gauge symmetries?

The continuous outer automorphisms ∆it of HFFs of type III are not completely unique and one
can worry about the interpretation of the inner automorphisms. A possible resolution of the worries
is that inner automorphisms act as universal gauge symmetries containing various super-conformal
symmetries as a special case. For hyper-finite factors of type II1 in the representation as an infinite
tensor power of M2(C) this would mean that the transformations non-trivial in a finite number
of tensor factors only act as analogs of local gauge symmetries. In the representation as a group
algebra of S∞ all unitary transformations acting on a finite number of braid strands act as gauge
transformations whereas the infinite powers P×P× ..., P ∈ Sn, would act as counterparts of global
gauge transformations. In particular, the Galois group of the closure of rationals would act as local
gauge transformations but diagonally represented finite Galois groups would act like global gauge
transformations and periodicity would make possible to have finite braids as space-time correlates
without a loss of information.

5.5.4 Do unitary isomorphisms between tensor powers of II1 define vertices?

What would be left would be the construction of unitary isomorphisms between the tensor products
of the HFFs of type II1 ⊗ In = II1 at the partonic 2-surfaces defining the vertices. This would be
the only new element added to the construction of braiding M -matrices.

As a matter fact, this element is actually not completely new since it generalizes the fusion
rules of conformal field theories, about which standard example is the fusion rule φi = c jk

i φjφk
for primary fields. These fusion rules would tell how a state of incoming HFF decomposes to the
states of tensor product of two outgoing HFFs.

These rules indeed have interpretation in terms of Connes tensor products M⊗N ... ⊗N M
for which the sub-factor N takes the role of complex numbers [A13] so that one has M becomes
N bimodule and “quantum quantum states” have N as coefficients instead of complex numbers.
In TGD framework this has interpretation as quantum measurement resolution characterized by
N (the group G characterizing leaving the elements of N invariant defines the measured quantum
numbers).

5.6 Quaternions, Octonions, And Hyper-Finite Type II1Factors

Quaternions and octonions as well as their hyper counterparts obtained by multiplying imaginary
units by commuting

√
−1 and forming a sub-space of complexified division algebra, are in in a

central role in the number theoretical vision about quantum TGD [K12] . Therefore the question
arises whether complexified quaternions and perhaps even octonions could be somehow inherent
properties of von Neumann algebras. One can also wonder whether the quantum counterparts
of quaternions and octonions could emerge naturally from von Neumann algebras. The following
considerations allow to get grasp of the problem.

5.6.1 Quantum quaternions and quantum octonions

Quantum quaternions have been constructed as deformation of quaternions [A36] . The key ob-
servation that the Glebsch Gordan coefficients for the tensor product 3⊗ 3 = 5⊕⊕3⊕ 1 of spin 1
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representation of SU(2) with itself gives the anti-commutative part of quaternionic product as spin
1 part in the decomposition whereas the commutative part giving spin 0 representation is identifi-
able as the scalar product of the imaginary parts. By combining spin 0 and spin 1 representations,
quaternionic product can be expressed in terms of Glebsh-Gordan coefficients. By replacing GGC:s
by their quantum group versions for group sl(2)q, one obtains quantum quaternions.

There are two different proposals for the construction of quantum octonions [A25, A1] . Also
now the idea is to express quaternionic and octonionic multiplication in terms of Glebsch-Gordan
coefficients and replace them with their quantum versions.

1. The first proposal [A25] relies on the observation that for the tensor product of j = 3
representations of SU(2) the Glebsch-Gordan coefficients for 7 ⊗ 7 → 7 in 7 ⊗ 7 = 9 ⊕ 7 ⊕
5⊕ 3⊕ 1 defines a product, which is equivalent with the antisymmetric part of the product
of octonionic imaginary units. As a matter fact, the antisymmetry defines 7-dimensional
Malcev algebra defined by the anti-commutator of octonion units and satisfying b definition
the identity

[[x, y, z] , x] = [x, y, [x, z]] , [x, y, z] ≡ [x, [y, z]] + [y, [z, x]] + [z, [x, y]] . (5.1)

7-element Malcev algebra defining derivations of octonionic algebra is the only complex Mal-
cev algebra not reducing to a Lie algebra. The j = 0 part of the product corresponds also
now to scalar product for imaginary units. Octonions are constructed as sums of j = 0 and
j = 3 parts and quantum Glebsch-Gordan coefficients define the octonionic product.

2. In the second proposal [A1] the quantum group associated with SO(8) is used. This repre-
sentation does not allow unit but produces a quantum version of octonionic triality assigning
to three octonions a real number.

5.6.2 Quaternionic or octonionic quantum mechanics?

There have been numerous attempts to introduce quaternions and octonions to quantum theory.
Quaternionic or octonionic quantum mechanics, which means the replacement of the complex
numbers as coefficient field of Hilbert space with quaternions or octonions, is the most obvious
approach (for example and references to the literature see for instance [A23] .

In both cases non-commutativity poses serious interpretational problems. In the octonionic
case the non-associativity causes even more serious obstacles [B6, A23] , [B6] .

1. Assuming that an orthonormalized state basis with respect to an octonion valued inner prod-
uct has been found, the multiplication of any basis with octonion spoils the orthonormality.
The proposal to circumvent this difficulty discussed in [B6] , [B6] eliminates non-associativity
by assuming that octonions multiply states one by one (rather than multiplying each other
before multiplying the state). Effectively this means that octonions are replaced with 8× 8-
matrices.

2. The definition of the tensor product leads also to difficulties since associativity is lost (recall
that Yang-Baxter equation codes for associativity in case of braid statistics [A9] ).

3. The notion of hermitian conjugation is problematic and forces a selection of a preferred
imaginary unit, which does not look nice. Note however that the local selection of a preferred
imaginary unit is in a key role in the proposed construction of space-time surfaces as

hyper-quaternionic or co-hyper-quaternionic surfaces and allows to interpret space-time sur-
faces either as surfaces in 8-D Minkowski space M8 of hyper-octonions or in M4×CP2. This
selection turns out to have quite different interpretation in the proposed framework.

5.6.3 Hyper-finite factor II1 has a natural Hyper-Kähler structure

In the case of hyper-finite factors of type II1 quaternions a more natural approach is based on
the generalization of the Hyper-Kähler structure rather than quaternionic quantum mechanics.
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The reason is that also WCW tangent space should and is expected to have this structure [K4]
. The Hilbert space remains a complex Hilbert space but the quaternionic units are represented
as operators in Hilbert space. The selection of the preferred unit is necessary and natural. The
identity operator representing quaternionic real unit has trace equal to one, is expected to give rise
to the series of quantum quaternion algebras in terms of inclusions N ⊂M having interpretation
as N -modules.

The representation of the quaternion units is rather explicit in the structure of hyper-finite
II1 factor. The M : N ≡ β = 4 hierarchical construction can be regarded as Connes tensor
product of infinite number of 4-D Clifford algebras of Euclidian plane with Euclidian signature of
metric (diag(−1,−1)). This algebra is nothing but the quaternionic algebra in the representation
of quaternionic imaginary units by Pauli spin matrices multiplied by i.

The imaginary unit of the underlying complex Hilbert space must be chosen and there is
whole sphere S2 of choices and in every point of WCW the choice can be made differently. The
space-time correlate for this local choice of preferred hyper-octonionic unit [K12] . At the level
of WCW geometry the quaternion structure of the tangent space means the existence of Hyper-
Kähler structure guaranteeing that WCW has a vanishing Einstein tensor. It it would not vanish,
curvature scalar would be infinite by symmetric space property (as in case of loop spaces) and
induce a divergence in the functional integral over 3-surfaces from the expansion of

√
g [K4] .

The quaternionic units for the II1 factor, are simply limiting case for the direct sums of 2× 2
units normalized to one. Generalizing from β = 4 to β < 4, the natural expectation is that
the representation of the algebra as β = M : N -dimensional N -module gives rise to quantum
quaternions with quaternion units defined as infinite sums of

√
β ×
√
β matrices.

At Hilbert space level one has an infinite Connes tensor product of 2-component spinor spaces
on which quaternionic matrices have a natural action. The tensor product of Clifford algebras gives
the algebra of 2 × 2 quaternionic matrices acting on 2-component quaternionic spinors (complex
4-component spinors). Thus double inclusion could correspond to (hyper-)quaternionic structure
at space-time level. Note however that the correspondence is not complete since hyper-quaternions
appear at space-time level and quaternions at Hilbert space level.

5.6.4 Von Neumann algebras and octonions

The octonionic generalization of the Hyper-Kähler manifold does not make sense as such since
octonionic units are not representable as linear operators. The allowance of anti-linear operators
inherently present in von Neumann algebras could however save the situation. Indeed, the Cayley-
Dickson construction for the division algebras (for a nice explanation see [A21] ), which allows to
extend any ∗ algebra, and thus also any von Neumann algebra, by adding an imaginary unit it and
identified as ∗, comes in rescue.

The basic idea of the Cayley-Dickson construction is following. The ∗ operator, call it J ,
representing a conjugation defines an anti-linear operator in the original algebra A. One can
extend A by adding this operator as a new element to the algebra. The conditions satisfied by J
are

a(Jb) = J(a∗b) , (aJ)b = (ab∗)J , (Ja)(bJ−1) = (ab)∗ . (5.2)

In the associative case the conditions are equivalent to the first condition.
It is intuitively clear that this addition extends the hyper-Kähler structure to an octonionic

structure at the level of the operator algebra. The quantum version of the octonionic algebra
is fixed by the quantum quaternion algebra uniquely and is consistent with the Cayley-Dickson
construction. It is not clear whether the construction is equivalent with either of the earlier
proposals [A25, A1] . It would however seem that the proposal is simpler.

5.6.5 Physical interpretation of quantum octonion structure

Without further restrictions the extension by J would mean that vertices contain operators, which
are superpositions of linear and anti-linear operators. This would give superpositions of states and
their time-reversals and mean that state could be a superposition of states with opposite values
of say fermion numbers. The problem disappears if either the linear operators A or anti-linear
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operators JA can be used to construct physical states from vacuum. The fact, that space-time
surfaces are either hyper-quaternionic or co-hyper-quaternionic, is a space-time correlate for this
restriction.

The HQ − coHQ duality discussed in [K12] states that the descriptions based on hyper-
quaternionic and co-hyper-quaternionic surfaces are dual to each other. The duality can have
two meanings.

1. The vacuum is invariant under J so that one can use either complexified quaternionic oper-
ators A or their co-counterparts of form JA to create physical states from vacuum.

2. The vacuum is not invariant under J . This could relate to the breaking of CP and T
invariance known to occur in meson-antimeson systems. In TGD framework two kinds of
vacua are predicted corresponding intuitively to vacua in which either the product of all
positive or negative energy fermionic oscillator operators defines the vacuum state, and these
two vacua could correspond to a vacuum and its J conjugate, and thus to positive and
negative energy states. In this case the two state spaces would not be equivalent although
the physics associated with them would be equivalent.

The considerations of [K12] related to the detailed dynamics of HQ − coHQ duality demon-
strate that the variational principles defining the dynamics of hyper-quaternionic and co-hyper-
quaternionic space-time surfaces are antagonistic and correspond to world as seen by a conscientous
book-keeper on one hand and an imaginative artist on the other hand. HQ case is conservative:
differences measured by the magnitude of Kähler action tend to be minimized, the dynamics is
highly predictive, and minimizes the classical energy of the initial state. coHQ case is radical:
differences are maximized (this is what the construction of sensory representations would require).
The interpretation proposed in [K12] was that the two space-time dynamics are just different pre-
dictions for what would happen (has happened) if no quantum jumps would occur (had occurred).
A stronger assumption is that these two views are associated with systems related by time reversal
symmetry.

What comes in mind first is that this antagonism follows from the assumption that these
dynamics are actually time-reversals of each other with respect to M4 time (the rapid elimination
of differences in the first dynamics would correspond to their rapid enhancement in the second
dynamics). This is not the case so that T and CP symmetries are predicted to be broken in
accordance with the CP breaking in meson-antimeson systems [K7] and cosmological matter-
antimatter asymmetry [K10] .

5.7 Does The Hierarchy Of Infinite Primes Relate To The Hierarchy Of
II1 Factors?

The hierarchy of Feynman diagrams accompanying the hierarchy defined by Jones inclusionsM0 ⊂
M1 ⊂ ... gives a concrete representation for the hierarchy of cognitive dynamics providing a
representation for the material world at the lowest level of the hierarchy. This hierarchy seems to
relate directly to the hierarchy of space-time sheets.

Also the construction of infinite primes [K11] leads to an infinite hierarchy. Infinite primes
at the lowest level correspond to polynomials of single variable x1 with rational coefficients, next
level to polynomials x1 for which coefficients are rational functions of variable x2, etc... so that a
natural ordering of the variables is involved.

If the variables xi are hyper-octonions (subs-space of complexified octonions for which elements
are of form x+

√
−1y, where x is real number and y imaginary octonion and

√
−1 is commuting

imaginary unit, this hierarchy of states could provide a realistic representation of physical states
as far as quantum numbers related to embedding space degrees of freedom are considered in M8

picture dual to M4 × CP2 picture [K12] . Infinite primes are mapped to space-time surfaces in
a way analogous to the mapping of polynomials to the loci of their zeros so that infinite primes,
integers, and rationals become concrete geometrical objects.

Infinite primes are also obtained by a repeated second quantization of a super-symmetric arith-
metic quantum field theory. Infinite rational numbers correspond in this description to pairs of
positive energy and negative energy states of opposite energies having interpretation as pairs of
initial and final states so that higher level states indeed represent transitions between the states.
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For these reasons this hierarchy has been interpreted as a correlate for a cognitive hierarchy coding
information about quantum dynamics at lower levels. This hierarchy has also been assigned with
the hierarchy of space-time sheets. Just as the hierarchy of generalized Feynman diagrams provides
self representations of the lowest matter level and is coded by it, finite primes code the hierarchy
of infinite primes.

Infinite primes, integers, and rationals have finite p-adic norms equal to 1, and one can wonder
whether a Hilbert space like structure with dimension given by an infinite prime or integer makes
sense, and whether it has anything to do with the Hilbert space for which dimension is infinite in
the sense of the limiting value for a dimension of sub-space. The Hilbert spaces with dimension
equal to infinite prime would define primes for the tensor product of these spaces. The dimension
of this kind of space defined as any p-adic norm would be equal to one.

One cannot exclude the possibility that infinite primes could express the infinite dimensions
of hyper-finite III1 factors, which cannot be excluded and correspond to that part of quantum
TGD which relates to the embedding space rather than space-time surface. Indeed, infinite primes
code naturally for the quantum numbers associated with the embedding space. Secondly, the
appearance of 7-D light-like causal determinants X7

± = M4
± × CP2 forming nested structures in

the construction of S-matrix brings in mind similar nested structures of algebraic quantum field
theory [B1] . If this is were the case, the hierarchy of Beraha numbers possibly associated with
the phase resolution could correspond to hyper-finite factors of type II1, and the decomposition of
space-time surface to regions labeled by p-adic primes and characterized by infinite primes could
correspond to hyper-finite factors of type III1 and represent embedding space degrees of freedom.

The state space would in this picture correspond to the tensor products of hyper-finite factors
of type II1 and III1 (of course, also factors In and I∞ are also possible). III1 factors could be
assigned to the sub-WCWs defined by 3-surfaces in regions of M4 expressible in terms of unions
and intersections of X7

± = M4
±×CP2. By conservation of four-momentum, bounded regions of this

kind are possible only for the states of zero net energy appearing at the higher levels of hierarchy.
These sub-WCWs would be characterized by the positions of the tips of light cones M4

± ⊂ M4

involved. This indeed brings in continuous spectrum of four-momenta forcing to introduce non-
separable Hilbert spaces for momentum eigen states and necessitating III1 factors. Infinities would
be avoided since the dynamics proper would occur at the level of space-time surfaces and involve
only II1 factors.

6 HFFs Of Type III And TGD

One can imagine several ways for how HFFs of type III could emerge in TGD although the
proposed view about M -matrix in zero energy ontology suggests that HFFs of type III1 should be
only an auxiliary tool at best. Same is suggested with interpretational problems associated with
them. Both TGD inspired quantum measurement theory, the idea about a variant of HFF of type
II1 analogous to a local gauge algebra, and some other arguments, suggest that HFFs of type III
could be seen as a useful idealization allowing to make non-trivial conjectures both about quantum
TGD and about HFFs of type III. Quantum fields would correspond to HFFs of type III and II∞
whereas physical states (M -matrix) would correspond to HFF of type II1. I have summarized first
the problems of III1 factors so that reader can decide whether the further reading is worth of it.

6.1 Problems Associated With The Physical Interpretation Of III1 Fac-
tors

Algebraic quantum field theory approach [B3, B1] has led to a considerable understanding of
relativistic quantum field theories in terms of hyper-finite III1 factors. There are however several
reasons to suspect that the resulting picture is in conflict with physical intuition. Also the infinities
of non-trivial relativistic QFTs suggest that something goes wrong.
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6.1.1 Are the infinities of quantum field theories due the wrong type of von Neumann
algebra?

The infinities of quantum field theories involve basically infinite traces and it is now known that
the algebras of observables for relativistic quantum field theories for bounded regions of Minkowski
space correspond to hyper-finite III1 algebras, for which non-trivial traces are always infinite. This
might be the basic cause of the divergence problems of relativistic quantum field theory.

On basis of this observations there is some temptation to think that the finite traces of hyper-
finite II1 algebras might provide a resolution to the problems but not necessarily in QFT context.
One can play with the thought that the subtraction of infinities might be actually a process in
which III1 algebra is transformed to II1 algebra. A more plausible idea suggested by dimensional
regularization is that the elimination of infinities actually gives rise to II1 inclusion at the limit
M : N → 4. It is indeed known that the dimensional regularization procedure of quantum field
theories can be formulated in terms of bi-algebras assignable to Feynman diagrams and [A6] and the
emergence of bi-algebras suggests that a connection with II1 factors and critical role of dimension
D = 4 might exist.

6.1.2 Continuum of inequivalent representations of commutation relations

There is also a second difficulty related to type III algebras. There is a continuum of inequivalent
representations for canonical commutation relations [A31] . In thermodynamics this is blessing
since temperature parameterizes these representations. In quantum field theory context situation
is however different and this problem has been usually put under the rug.

6.1.3 Entanglement and von Neumann algebras

In quantum field theories where 4-D regions of space-time are assigned to observables. In this case
hyper-finite type III1 von Neumann factors appear. Also now inclusions make sense and has been
studiedin fact, the parameters characterizing Jones inclusions appear also now and this due to the
very general properties of the inclusions.

The algebras of type III1 have rather counter-intuitive properties from the point of view of
entanglement. For instance, product states between systems having space-like separation are not
possible at all so that one can speak of intrinsic entanglement [A19] . What looks worse is that
the decomposition of entangled state to product states is highly non-unique.

Mimicking the steps of von Neumann one could ask what the notion of observables could mean
in TGD framework. Effective 2-dimensionality states that quantum states can be constructed using
the data given at partonic or stringy 2-surfaces. This data includes also information about normal
derivatives so that 3-dimensionality actually lurks in. In any case this would mean that observables
are assignable to 2-D surfaces. This would suggest that hyper-finite II1 factors appear in quantum
TGD at least as the contribution of single space-time surface to S-matrix is considered. The
contributions for WCW degrees of freedom meaning functional (not path-) integral over 3-surfaces
could of course change the situation.

Also in case of II1 factors, entanglement shows completely new features which need not however
be in conflict with TGD inspired view about entanglement. The eigen values of density matrices
are infinitely degenerate and quantum measurement can remove this degeneracy only partially.
TGD inspired theory of consciousness has led to the identification of rational (more generally
algebraic entanglement) as bound state entanglement stable in state function reduction. When an
infinite number of states are entangled, the entanglement would correspond to rational (algebraic
number) valued traces for the projections to the eigen states of the density matrix. The symplectic
transformations of CP2 are almost U(1) gauge symmetries broken only by classical gravitation.
They imply a gigantic spin glass degeneracy which could be behind the infinite degeneracies of
eigen states of density matrices in case of II1 factors.

6.2 Quantum Measurement Theory And HFFs Of Type III

The attempt to interpret the HFFs of type III in terms of quantum measurement theory based
on Jones inclusions leads to highly non-trivial conjectures about these factors.
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6.2.1 Could the scalings of trace relate to quantum measurements?

What should be understood is the physical meaning of the automorphism inducing the scaling of
trace. In the representation based of factors based on infinite tensor powers the action of g should
transform single n × n matrix factor with density matrix Id/n to a density matrix e11 of a pure
state.

Obviously the number of degrees of freedom is affected and this can be interpreted in terms of
appearance or disappearance of correlations. Quantization and emergence of non-commutativity
indeed implies the emergence of correlations and effective reduction of degrees of freedom. In
particular, the fundamental quantum Clifford algebra has reduced dimension M : N = r ≤ 4
instead of r = 4 since the replacement of complex valued matrix elements with N valued ones
implies non-commutativity and correlations.

The transformation would be induced by the shift of finite-dimensional state to right or left so
that the number of matrix factors overlapping with I∞ part increases or is reduced. Could it have
interpretation in terms of quantum measurement for a quantum Clifford factor? Could quantum
measurement forM/N degrees of freedom reducing the state in these degrees of freedom to a pure
state be interpreted as a transformation of single finite-dimensional matrix factor to a type I factor
inducing the scaling of the trace and could the scalings associated with automorphisms of HFFs
of type III also be interpreted in terms of quantum measurement?

This interpretation does not as such say anything about HFF factors of type III since only a
decomposition of II1 factor to Ik2 factor and II1 factor with a reduced trace of projector to the
latter. However, one can ask whether the scaling of trace for HFFs of type III could correspond
to a situation in which infinite number of finite-dimensional factors have been quantum measured.
This would correspond to the inclusion N ⊂M∞ = ∪nMn where N ⊂M ⊂ ...Mn... defines the
canonical inclusion sequence. Physicist can of course ask whether the presence of infinite number
of I2-, or more generally, In-factors is at all relevant to quantum measurement and it has already
become clear that situation at the level of M -matrix reduces to In.

6.2.2 Could the theory of HHFs of type III relate to the theory of Jones inclusions?

The idea about a connection of HFFs of type III and quantum measurement theory seems to be
consistent with the basic facts about inclusions and HFFs of type III1.

1. Quantum measurement would scale the trace by a factor 2k/
√
M : N since the trace would

become a product for the trace of the projector to the newly born M(2, C)⊗k factor and
the trace for the projection to N given by 1/

√
M : N . The continuous range of values

M : N ≥ 4 gives good hopes that all values of λ are realized. The prediction would be that
2k
√
M : N ≥ 1 holds always true.

2. The values M : N ∈ {rn = 4cos2(π/n)} for which the single M(2, C) factor emerges in
state function reduction would define preferred values of the inverse of λ =

√
M : N/4

parameterizing factors IIIλ. These preferred values vary in the range [1/2, 1].

3. λ = 1 at the end of continuum would correspond to HFF III1 and to Jones inclusions defined
by infinite cyclic subgroups dense in U(1) ⊂ SU(2) and this group combined with reflection.
These groups correspond to the Dynkin diagrams A∞ and D∞. Also the classical values
of M : N = n2 characterizing the dimension of the quantum Clifford M : N are possible.
In this case the scaling of trace would be trivial since the factor n to the trace would be
compensated by the factor 1/n due to the disappearance of M/N factor III1 factor.

4. Inclusions with M : N = ∞ are also possible and they would correspond to λ = 0 so that
also III0 factor would also have a natural identification in this framework. These factors
correspond to ergodic systems and one might perhaps argue that quantum measurement in
this case would give infinite amount of information.

5. This picture makes sense also physically. p-Adic thermodynamics for the representations of
super-conformal algebra could be formulated in terms of factors of type I∞ and in excellent
approximation using factors In. The generation of arbitrary number of type II1 factors in
quantum measurement allow this possibility.
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6.2.3 The end points of spectrum of preferred values of λ are physically special

The fact that the end points of the spectrum of preferred values of λ are physically special, supports
the hopes that this picture might have something to do with reality.

1. The Jones inclusion with q = exp(iπ/n), n = 3 (with principal diagram reducing to a Dynkin
diagram of group SU(3)) corresponds to λ = 1/2, which corresponds to HFF III1 differing
in essential manner from factors IIIλ, λ < 1. On the other hand, SU(3) corresponds to
color group which appears as an isometry group and important subgroup of automorphisms
of octonions thus differs physically from the ADE gauge groups predicted to be realized
dynamically by the TGD based view about McKay correspondence [A3] .

2. For r = 4 SU(2) inclusion parameterized by extended ADE diagrams M(2, C)⊗2 would be
created in the state function reduction and also this would give λ = 1/2 and scaling by
a factor of 2. Hence the end points of the range of discrete spectrum would correspond
to the same scaling factor and same HFF of type III. SU(2) could be interpreted either as
electro-weak gauge group, group of rotations of th geodesic sphere of δM4

±, or a subgroup of
SU(3). In TGD interpretation for McKay correspondence a phase transition replacing gauge
symmetry with Kac-Moody symmetry.

3. The scalings of trace by factor 2 seem to be preferred physically which should be contrasted
with the fact that primes near prime powers of 2 and with the fact that quantum phases
q = exp(iπ/n) with n equal to Fermat integer proportional to power of 2 and product of the
Fermat primes (the known ones are 5, 17, 257, and 216 + 1) are in a special role in TGD
Universe.

6.3 What Could One Say About II1 Automorphism Associated With
The II∞ Automorphism Defining Factor Of Type III?

An interesting question relates to the interpretation of the automorphisms of II∞ factor inducing
the scaling of trace.

1. If the automorphism for Jones inclusion involves the generator of cyclic automorphism sub-
group Zn of II1 factor then it would seem that for other values of λ this group cannot be
cyclic. SU(2) has discrete subgroups generated by arbitrary phase q and these are dense in
U(1) ⊂ SU(2) sub-group. If the interpretation in terms of Jones inclusion makes sense then
the identification λ =

√
M : N/2k makes sense.

2. If HFF of type II1 is realized as group algebra of infinite symmetric group [A3] , the outer
automorphism induced by the diagonally imbedded finite Galois groups can induce only
integer values of n and Zn would correspond to cyclic subgroups. This interpretation conforms
with the fact that the automorphisms in the completion of inner automorphisms of HFF of
type II1 induce trivial scalings. Therefore only automorphisms which do not belong to this
completion can define HFFs of type III.

6.4 What Could Be The Physical Interpretation Of Two Kinds Of In-
variants Associated With HFFs Type III?

TGD predicts two kinds of counterparts for S-matrix: M -matrix and U -matrix. Both are expected
to be more or less universal.

There are also two kinds of invariants and automorphisms associated with HFFs of type III.

1. The first invariant corresponds to the scaling λ ∈]0, 1[ of the trace associated with the auto-
morphism of factor of II∞. Also the end points of the interval make sense. The inverse of
this scaling accompanies the inverse of this automorphism.

2. Second invariant corresponds to the time scales t = T0 for which the outer automorphism
σt reduces to inner automorphism. It turns out that T0 and λ are related by the formula
λiT0 = 1, which gives the allowed values of T0 as T0 = n2π/log(λ) [A5] . This formula can
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be understood intuitively by realizing that λ corresponds to the eigenvalue of the density
matrix ∆ = eH in the simplest possible realization of the state φ.

The presence of two automorphisms and invariants brings in mind U matrix characterizing the
unitary process occurring in quantum jump and M -matrix characterizing time like entanglement.

1. If one accepts the vision based on quantum measurement theory then λ corresponds to the
scaling of the trace resulting when quantum Clifford algebraM/N reduces to a tensor power
of M(2, C) factor in the state function reduction. The proposed interpretation for U process
would be as the inverse of state function reduction transforming this factor back to M/N .
Thus U process and state function reduction would correspond naturally to the scaling and
its inverse. This picture might apply not only in single particle case but also for zero energy
states which can be seen as states associated the a tensor power of HFFs of type II1 associated
with partons.

2. The implication is that U process can occur only in the direction in which trace is reduced.
This would suggest that the full III1 factor is not a physical notion and that one must restrict
the group Z in the crossed product Z ×cr II∞ to the group N of non-negative integers. In
this kind of situation the trace is well defined since the traces for the terms in the crossed
product comes as powers λ−n so that the net result is finite. This would mean a reduction
to II∞ factor.

3. Since time t is a natural parameter in elementary particle physics experiment, one could argue
that σt could define naturally M -matrix. Time parameter would most naturally correspond
to a parameter of scaling affecting all M4

± coordinates rather than linear time. This conforms
also with the fundamental role of conformal transformations and scalings in TGD framework.

The identification of the full M -matrix in terms of σ does not seem to make sense generally.
It would however make sense for incoming and outgoing number theoretic braids so that σ could
define universal braiding M -matrices. Inner automorphisms would bring in the dependence on
experimental situation. The reduction of the braiding matrix to an inner automorphism for critical
values of t which could be interpreted in terms of scaling by power of p. This trivialization would
be a counterpart for the elimination of propagator legs from M -matrix element. Vertex itself could
be interpreted as unitary isomorphism between tensor product of incoming and outgoing HFFs of
type II1 would code all what is relevant about the particle reaction.

6.5 Does The Time Parameter T Represent Time Translation Or Scal-
ing?

The connection Tn = n2π/log(λ) would give a relationship between the scaling of trace and value of
time parameter for which the outer automorphism represented by σ reduces to inner automorphism.
It must be emphasized that the time parameter t appearing in σ need not have anything to do
with time translation. The alternative interpretation is in terms of M4

± scaling (implying also time
scaling) but one cannot exclude even preferred Lorentz boosts in the direction of quantization axis
of angular momentum.

6.5.1 Could the time parameter correspond to scaling?

The central role of conformal invariance in quantum TGD suggests that t parameterizes scaling
rather than translation. In this case scalings would correspond to powers of (Kλ)n. The numerical
factor K which cannot be excluded a priori, seems to reduce to K = 1.

1. The scalings by powers of p have a simple realization in terms of the representation of HFF of
type II∞ as infinite tensor power of M(p, C) with suitably chosen densities matrices in factors
to get product of I∞ and II1 factor. These matrix algebras have the remarkable property of
defining prime tensor power factors of finite matrix algebras. Thus p-adic fractality would
reflect directly basic properties of matrix algebras as suggested already earlier. That scalings
by powers of p would correspond to automorphism reducing to inner automorphisms would
conform with p-adic fractality.
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2. Also scalings by powers [
√
M : N/2k]n would be physically preferred if one takes previous

arguments about Jones inclusions seriously and if also in this case scalings are involved.
For q = exp(iπ/n), n = 5 the minimal value of n allowing universal topological quantum
computation would correspond to a scaling by Golden Mean and these fractal scalings indeed
play a key role in living matter. In particular, Golden Mean makes it visible in the geometry
of DNA.

6.5.2 Could the time parameter correspond to time translation?

One can consider also the interpretation of σt as time translation. TGD predicts a hierarchy of
Planck constants parameterized by rational numbers such that integer multiples are favored. In
particular, integers defining ruler and compass polygons are predicted to be in a very special role
physically. Since the geometric time span associated with zero energy state should scale as Planck
constant one expects that preferred values of time t associated with σ are quantized as rational
multiples of some fundamental time scales, say the basic time scale defined by CP2 length or p-adic
time scales.

1. For λ = 1/p, p prime, the time scale would be Tn = nT1, T1 = T0 = 2π/log(p) which is not
what p-adic length scale hypothesis would suggest.

2. For Jones inclusions one would have Tn/T0 = n2π/log(22k/M : N ). In the limit when λ
becomes very small (the number k of reduced M(2, C) factors is large one obtains Tn =
(n/k)t1, T1 = T0π/log(2). Approximate rational multiples of the basic length scale would be
obtained as also predicted by the general quantization of Planck constant.

6.5.3 p-Adic thermodynamics from first principles

Quantum field theory at non-zero temperature can be formulated in the functional integral formal-
ism by replacing the time parameter associated with the unitary time evolution operator U(t) with
a complexified time containing as imaginary part the inverse of the temperature: t→ t+ i~/T . In
the framework of standard quantum field theory this is a mere computational trick but the time
parameter associated with the automorphisms σt of HFF of type III is a temperature like param-
eter from the beginning, and its complexification would naturally lead to the analog of thermal
QFT.

Thus thermal equilibrium state would be a genuine quantum state rather than fictive but use-
ful auxiliary notion. Thermal equilibrium is defined separately for each incoming parton braid
and perhaps even braid (partons can have arbitrarily large size). At elementary particle level
p-adic thermodynamics could be in question so that particle massivation would have first prin-
ciple description. p-Adic thermodynamics is under relatively mild conditions equivalent with its
real counterpart obtained by the replacement of pL0 interpreted as a p-adic number with p−L0

interpreted as a real number.

6.6 HFFs Of Type III And The Dynamics In M4
± Degrees Of Freedom?

HFFs of type III could be also assigned with the poorly understood dynamics in M4
± degrees of

freedom which should have a lot of to do with four-dimensional quantum field theory. Hyper-finite
factors of type III1 might emerge when one extends II1 to a local algebra by multiplying it with
hyper-octonions replaced as analog of matrix factor and considers hyper-quaternionic subalgebra.
The resulting algebra would be the analog of local gauge algebra and the elements of algebra
would be analogous to conformal fields with complex argument replaced with hyper-octonionic,
-quaternionic, or -complex one. Since quantum field theory in M4 gives rise to hyper-finite III1
factors one might guess that the hyper-quaternionic restriction indeed gives these factors.

The expansion of the local HFF II∞ element as O(m) =
∑
nm

nOn, where M4 coordinate m
is interpreted as hyper-quaternion, could have interpretation as expansion in which On belongs to
N gn in the crossed product N ×cr {gn, n ∈ Z}. The analogy with conformal fields suggests that
the power gn inducing λn fold scaling of trace increases the conformal weight by n.

One can ask whether the scaling of trace by powers of λ defines an inclusion hierarchy of sub-
algebras of conformal sub-algebras as suggested by previous arguments. One such hierarchy would
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be the hierarchy of sub-algebras containing only the generators Om with conformal weight m ≥ n,
n ∈ Z.

It has been suggested that the automorphism ∆ could correspond to scaling inside light-cone.
This interpretation would fit nicely with Lorentz invariance and TGD in general. The factors IIIλ
with λ generating semi-subgroups of integers (in particular powers of primes) could be of special
physical importance in TGD framework. The values of t for which automorphism reduces to inner
automorphism should be of special physical importance in TGD framework. These automorphisms
correspond to scalings identifiable in terms of powers of p-adic prime p so that p-adic fractality
would find an explanation at the fundamental level.

If the above mentioned expansion in powers of mn of M4
± coordinate makes sense then the

action of σt representing a scaling by pn would leave the elements O invariant or induce a mere
inner automorphism. Conformal weight n corresponds naturally to n-ary p-adic length scale by
uncertainty principle in p-adic mass calculations.

The basic question is the physical interpretation of the automorphism inducing the scaling of
trace by λ and its detailed action in HFF. This scaling could relate to a scaling in M4 and to
the appearance in the trace of an integral over M4 or subspace of it defining the trace. Fractal
structures suggests itself strongly here. At the level of construction of physical states one always
selects some minimum non-positive conformal weight defining the tachyonic ground state and
physical states have non-negative conformal weights. The interpretation would be as a reduction
to HHF of type II∞ or even II1.

6.7 Could The Continuation Of Braidings To Homotopies Involve ∆It

Automorphisms

The representation of braidings as special case of homotopies might lead from discrete automor-
phisms for HFFs type II1 to continuous outer automorphisms for HFFs of type III1. The question
is whether the periodic automorphism of II1 represented as a discrete sub-group of U(1) would be
continued to U(1) in the transition.

The automorphism of II∞ HFF associated with a given value of the scaling factor λ is unique.
If Jones inclusions defined by the preferred values of λ as λ =

√
M : N/2k (see the previous con-

siderations), then this automorphism could involve a periodic automorphism of II1 factor defined
by the generator of cyclic subgroup Zn for M : N < 4 besides additional shift transforming II1
factor to I∞ factor and inducing the scaling.

6.8 HFFs Of Type III As Super-Structures Providing Additional Unique-
ness?

If the braiding M -matrices are as such highly unique. One could however consider the possibility
that they are induced from the automorphisms σt for the HFFs of type III restricted to HFFs of
type II∞. If a reduction to inner automorphism in HFF of type III implies same with respect to
HFF of type II∞ and even II1, they could be trivial for special values of time scaling t assignable
to the partons and identifiable as a power of prime p characterizing the parton. This would allow
to eliminate incoming and outgoing legs. This elimination would be the counterpart of the division
of propagator legs in quantum field theories. Particle masses would however play no role in this
process now although the power of padic prime would fix the mass scale of the particle.

7 Appendix: Inclusions Of Hyper-Finite Factors Of Type
II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[A26] . It would seem to me that the notion Jones inclusion includes them all so that various
names would correspond to different concrete realizations of the inclusions conjugate under outer
automorphisms.

1. According to [A26] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a

countable infinity of sub-factors with are pairwise non inner conjugate but conjugate to N .
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2. Also for any finite group G and its outer action there exists uncountably many sub-factors
which are pairwise non inner conjugate but conjugate to the fixed point algebra of G [A26] .
For any amenable group G the inclusion is also unique apart from outer automorphism [A13]
.

Thus it seems that not only Jones inclusions but also more general inclusions are unique apart
from outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines a
sub-factor of type II1 factor [A26] . The construction of Jones leads to a standard inclusion
sequence N ⊂ M ⊂ M1 ⊂ .... This sequence means addition of projectors ei, i < 0, having
visualization as an addition of braid strand in braid picture. This hierarchy exists for all factors of
type II. At the limitM∞ = ∪iMi the braid sequence extends from −∞ to∞. Inclusion hierarchy
can be understood as a hierarchy of Connes tensor powersM⊗NM....⊗NM. Also the ordinary
tensor powers of hyper-finite factors of type II1 (HFF) as well as their tensor products with finite-
dimensional matrix algebras are isomorphic to the original HFF so that these objects share the
magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For a
finite index an infinite inclusion hierarchy of factors results with the same value of index. σ is
said to be basic if it can be extended to *-endomorphisms from M1 to M. This means that
the hierarchy of inclusions can be continued in the opposite direction: this means elimination of
strands in the braid picture. For finite factors (as opposed to hyper-finite ones) there are no basic
*-endomorphisms of M having fixed point algebra of non-abelian G as a sub-factor [A26] .

7.1 Jones Inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist for
all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [A26] . They are defined for an
algebra defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute. λ = 1/r
appears in the relations for the generators of the algebra given by eiejei = λei, |i−j| = 1. N ⊂M
is identified as the double commutator of algebra generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by projectors
can be continued not only to −∞ but that also the dropping of arbitrary number of strands is
possible [A26] . It would seem that ADE property of the principal graph meaning single root
length codes for the duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′∩P = P ′∩P = C. For
r ≥ 4 one has dim(Q′∩P ) = 2. The operators commuting with Q contain besides identify operator
of Q also the identify operator of P . Q would contain a single finite-dimensional matrix factor less
than P in this case. Basic *-endomorphisms with σ(P ) = Q is σ(ei) = ei+1. The difference between
genuine symmetries of quantum TGD and symmetries which can be mimicked by TGD could relate
to the irreducibility for r < 4 and raise these inclusions in a unique position. This difference
could partially justify the hypothesis [K5] that only the groups Ga × Gb ⊂ SU(2) × SU(2) ⊂
SL(2, C)× SU(3) define orbifold coverings of H± = M4

± × CP2 → H±/Ga ×Gb.

7.2 Wassermann’s Inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2) for these
inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G ⊂ SU(2) and is
given by (1⊗M)G ⊂ (M2(C)×M)G. According to [A26] Jones inclusions are irreducible also for
r = 4. The definition of Wasserman inclusion for r = 4 seems however to imply that the identity
matrices of both MG and (M(2, C) ⊗M)G commute with MG so that the inclusion should be
reducible for r = 4.

Note that G leaves both the elements of N andM invariant whereas SU(2) leaves the elements
of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with G acting as
automorphisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as MG ⊂ M . The representation of G as outer automorphism
must change step by step in the inclusion sequence ... ⊂ N ⊂M ⊂ ... since otherwise G would act
trivially as one proceeds in the inclusion sequence. This is true since each step brings in additional
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finite-dimensional tensor factor in which G acts as automorphisms so that although M can be
invariant under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N =MG ⊂M with G acting non-trivially inM/N quantum Clifford algebra. N
would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking the role of G. N/N1 quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2 to the
orbifold S2/G. The coverings H± → H±/Ga × Gb should relate to these double inclusions and
SU(2) inclusion could mean Kac-Moody type gauge symmetry for N . Note that the presence of
the factor containing only unit matrix should relate directly to the generator d in the generator
set of affine algebra in the McKay construction [A3] . The physical interpretation of the fact that

almost all ADE type extended diagrams (D
(1)
n must have n ≥ 4) are allowed for r = 4 inclusions

whereas D2n+1 and E6 are not allowed for r < 4, remains open.

7.3 Generalization From Su(2) To Arbitrary Compact Group

The inclusions with indexM : N < 4 have one-dimensional relative commutant N ′∪M. The most
obvious conjecture thatM : N ≥ 4 corresponds to a non-trivial relative commutant is wrong. The
index for Jones inclusion is identifiable as the square of quantum dimension of the fundamental
representation of SU(2). This identification generalizes to an arbitrary representation of arbitrary
compact Lie group.

In his thesis Wenzl [A18] studied the representations of Hecke algebras Hn(q) of type An
obtained from the defining relations of symmetric group by the replacement e2

i = (q−1)ei+ q. Hn

is isomorphic to complex group algebra of Sn if q is not a root of unity and for q = 1 the irreducible
representations of Hn(q) reduce trivially to Young’s representations of symmetric groups. For
primitive roots of unity q = exp(i2π/l), l = 4, 5..., the representations of Hn(∞) give rise to
inclusions for which index corresponds to a quantum dimension of any irreducible representation
of SU(k), k ≥ 2. For SU(2) also the value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and taking
double commutant of both H∞ and the resulting algebra. The relative commutant corresponds
to Hm(q). By reducing by the minimal projection to relative commutant one obtains an inclusion
with a trivial relative commutant. These inclusions are analogous to a discrete states superposed
in continuum. Thus the results of Jones generalize from the fundamental representation of SU(2)
to all representations of all groups SU(k), and in fact to those of general compact groups as it
turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (7.1)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes characterizing
the representations and the condition 1 ≤ k ≤ l − 1 holds true. Only Young diagrams satisfying
the condition l − k = λ1 − λrmax

are allowed.
The result would allow to restrict the generalization of the embedding space in such a way that

only cyclic group Zn appears in the covering of M4 →M4/Ga or CP2 → CP2/Gb factor. Be as it
may, it seems that quantum representations of any compact Lie group can be realized using the gen-
eralization of the embedding space. In the case of SU(2) the interpretation of higher-dimensional
quantum representations in terms of Connes tensor products of 2-dimensional fundamental repre-
sentations is highly suggestive.

The groups SO(3, 1) × SU(3) and SL(2, C) × U(2)ew have a distinguished position both in
physics and quantum TGD and the vision about physics as a generalized number theory implies
them. Also the general pattern for inclusions selects these groups, and one can say that the
condition that all possible statistics are realized is guaranteed by the choice M4 × CP2.

1. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means that
braid statistics for Jones inclusions cannot give the usual fermionic statistics. That Fermi
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statistics cannot “emerge” conforms with the role of infinite-D Clifford algebra as a canonical
representation of HFF of type II1. SO(3, 1) as isometries of H gives Z2 statistics via the
action on spinors of M4 and U(2) holonomies for CP2 realize Z2 statistics in CP2 degrees of
freedom.

2. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the
general case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but trivial
action at the embedding space level so that Z3 statistics would be in question.
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