
CONTENTS 1

Twistors, N = 4 Super-Conformal Symmetry, and Quantum
TGD

M. Pitkänen,

January 27, 2014

Email: matpitka@luukku.com.
http://tgdtheory.com/public_html/.
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Abstract

Twistors - a notion discovered by Penrose - have provided a fresh approach to the construction
of perturbative scattering amplitudes in Yang-Mills theories and in N = 4 supersymmetric Yang-
Mills theory. This approach was pioneered by Witten. The latest step in the progress was
the proposal by Nima Arkani-Hamed and collaborators that super Yang Mills and super gravity
amplitudes might be formulated in 8-D twistor space possessing real metric signature (4, 4). The
questions considered in this chapter are following.

1. Could twistor space could provide a natural realization of N = 4 super-conformal theory
requiring critical dimension D = 8 and signature metric (4, 4)? Could string like objects in
TGD sense be understood as strings in twistor space? More concretely, could one in some
sense lift quantum TGD from M4 × CP2 to 8-D twistor space T so that one would have
three equivalent descriptions of quantum TGD.

2. Could one construct the preferred extremals of Kähler action in terms of twistors -may be
by mimicking the construction of hyper-quaternionic resp. co-hyper-quaternionic surfaces in
M8 as surfaces having hyper-quaternionic tangent space resp. normal space at each point
with the additional property that one can assign to each point x a plane M2(x) ⊂ M4 as
sub-space or as sub-space defined by light-like tangent vector in M4. Could one mimic this
construction by assigning to each point of X4 regarded as a 4-surface in T a 4-D plane
of twistor space satisfying some conditions making possible the interpretation as a tangent
plane and guaranteing the existence of a map of X4 to a surface in M4×CP2. Could twistor
formalism help to resolve the integrability conditions involved?

3. Could one define 8-D counterpart of twistors in order to avoid the problems posed by the
description of massive states by regarding them as massless states in 8-D context. Could
the octonionic realization of 8-D gamma matrices allow to define twistors in 8-D framework?
Could associativity constraint reducing twistors to quaternionic twistors locally imply effec-
tive reduction to four-dimensional twistors.

The arguments of this chapter suggest that some these questions might have affirmative an-
swers.

1 Introduction

Twistors - a notion discovered by Penrose [B5] - have provided a fresh approach to the construction
of perturbative scattering amplitudes in Yang-Mills theories and in N = 4 supersymmetric Yang-
Mills theory. This approach was pioneered by Witten [B6] . The latest step in the progress was
the proposal by Nima Arkani-Hamed and collaborators [B3] that super Yang Mills and super gravity
amplitudes might be formulated in 8-D twistor space possessing real metric signature (4, 4). The
questions considered below are following.

1. Could twistor space provide a natural realization of N = 4 super-conformal theory requiring
critical dimension D = 8 and signature metric (4, 4)? Could string like objects in TGD sense be
understood as strings in twistor space? More concretely, could one in some sense lift quantum
TGD from M4×CP2 to 8-D twistor space T so that one would have three equivalent descriptions
of quantum TGD.

2. Could one construct the preferred extremals of Kähler action in terms of twistors -may be by
mimicking the construction of hyper-quaternionic resp. co-hyper-quaternionic surfaces in M8

as surfaces having hyper-quaternionic tangent space resp. normal space at each point with the
additional property that one can assign to each point x a plane M2(x) ⊂ M4 as sub-space or
as sub-space defined by light-like tangent vector in M4. Could one mimic this construction by
assigning to each point of X4 regarded as a 4-surface in T a 4-D plane of twistor space satisfying
some conditions making possible the interpretation as a tangent plane and guaranteing the
existence of a map of X4 to a surface in M4×CP2. Could twistor formalism help to resolve the
integrability conditions involved?

3. Could one define 8-D counterpart of twistors in order to avoid the problems posed by the descrip-
tion of massive states by regarding them as massless states in 8-D context. Could the octonionic
realization of 8-D gamma matrices allow to define twistors in 8-D framework? Could associa-
tivity constraint reducing twistors to quaternionic twistors locally imply effective reduction to
four-dimensional twistors.
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4. Are 8-D counterparts of twistors needed at all? Could the reduction of the dynamics to that for
4-D surfaces and effective 2-dimensionality have twistorial counterparts in the sense that 4-D
twistors or their suitable generalization or even 2-D twistors could make sense at the fundamental
level? Number theoretical vision based on the requirement of not only associativity but also of
commutativity would suggest a reduction to M2-valued momenta having description in terms
of 2-D twistors. The preferred M2 ⊂M4 identified as hyper-complex plane plays also a key role
in the realization of the zero energy ontology and hierarchy of Planck constants.

The arguments of this chapter suggest that some these questions might have affirmative answers.
It must be of course emphasized that all considerations are highly speculative first thoughts of an
innocent novice. The proposals to be discussed do not form a single coherent picture but are just
alternatives between which one might choose in the lack of anything better. In the next chapter [K14]
a proposal for the realization of twistor program inspired by the Yangian symmetry [A3] to the twistor
Grasmannian program [B4] and looks much more realistic. I have however decided to keep this chapter
as a document about the development of ideas.

1.1 Twistors and classical TGD

Consider first the twistorialization at the classical space-time level.

1. One can assign twistors to only 4-D Minkowski space (also to other than Lorentzian signature).
One of the challenges of the twistor program is how to define twistors in the case of a general
curved space-time. In TGD framework the structure of the imbedding space allows to circumvent
this problem.

2. The lifting of classical TGD to twistor space level is a natural idea. Consider space-time surfaces
representable as graphs of maps M4 → CP2. At classical level the Hamilton-Jacobi structure
[K2] required by the number theoretic compactification means dual slicings of the M4 projection
of the space-time surface X4 by stringy word sheets and partonic two-surfaces. Stringy slicing
allows to assign to each point of the projection of X4 two light-like tangent vectors U and V
parallel to light-like Hamilton-Jacobi coordinate curves. These vectors define components µ̃
and λ of a projective twistor, and twistor equation assigns to this pair a point m of M4. The
conjecture is that for preferred extremals of Kähler action this point corresponds to the M4

projection of the point in the natural M4 coordinates associated with the upper or lower tip of
causal diamond CD. If this conjecture is correct one can lift the M4 projection of the space-time
surface in CD × CP2 ⊂ M4 × CP2 to a surface in PT × CP2, where CP3 is projective twistor
space PT = CP3. Also induced spinor fields and induced gauge fields can be lifted to twistor
space.

3. If one can fix the scales of the tangent vectors U and V and fix the phase of spinor λ one
can consider also the lifting to 8-D twistor space T rather than 6-D projective twistor space
PT . Kind of symmetry breaking would be in question. The proposal for how to achieve this
relies on the notion of finite measurement resolution. The scale of V at partonic 2-surface
X2 ⊂ δCD×X3

l would naturally correlate with the energy of the massless particle assignable to
the light-like curve beginning from that point and thus fix the scale of V coordinate. Symplectic
triangulation discussed in [K3] in turn allows to assign a phase factor to each strand of the
number theoretic braid as the Kähler magnetic flux associated with the triangle having the
point at its center. This allows to lift the stringy world sheets associated with number theoretic
braids to their twistor variants but not the entire space-time surface. String model in twistor
space is obtained in accordance with the fact that N = 4 super-conformal invariance is realized
as a string model in a target space with (4, 4) signature of metric. Note however that CP2 defines
additional degrees of freedom for the target space so that 12-D space is actually in question.

4. One can consider also a more general problem of identifying the counterparts for the preferred
extremals of Kähler action with arbitrary dimensions of M4 and CP2 projections in 10-D space
PT × CP2. The key idea is the reduction of field equations to holomorphy as in Penrose’s
twistor representation of solutions of positive and negative frequency parts of free fields in M4.
A very helpful observation is that CP2 as a sub-manifold of PT corresponds to the 2-D space of
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null rays of the complexified Minkowski space M4
c . For the 5-D space N ⊂ PT of null twistors

this 2-D space contains 1-dimensional light ray in M4 so that N parameterizes the light-rays
of M4. The idea is to consider holomorphic surfaces in PT± × CP2 (± correlates with positive
and negative energy parts of zero energy state) having dimensions D = 6, 8, 10; restrict them
to N × CP2, select a sub-manifold of light-rays from N , and select from each light-ray subset
of points which can be discrete or portion of the light-ray in order to get a 4-D space-time
surface. If integrability conditions for the resulting distribution of light-like vectors U and V
can be satisfied (in other words they are gradients), a good candidate for a preferred extremal of
Kähler action is obtained. Note that this construction raises light-rays to a role of fundamental
geometric object.

1.2 Twistors and Feynman diagrams

The recent successes of twistor concept in the understanding of 4-D gauge theories and N = 4 SYM
motivate the question of how twistorialization could help to understand construction of M -matrix in
terms of Feynman diagrammatics or its generalization.

1. One of the basic problems of twistor program is how to treat massive particles. Massive four-
momentum can be described in terms of two twistors but their choice is uniquely only modulo
SO(3) rotation. This is ugly and one can consider several cures to the situation.

(a) Number theoretic compactification and hierarchy of Planck constants leading to a general-
ization of the notion of imbedding space assign to each sector of configuration space defined
by a particular CD a unique plane M2 ⊂ M4 defining quantization axes. The line con-
necting the tips of the CD selects also unique rest frame (time axis). The representation of
a light-like four-momentum as a sum of four-momentum in this plane and second light-like
momentum is unique and same is true for the spinors λ apart from the phase factors (the
spinor associated with M2 corresponds to spin up or spin down eigen state).

(b) The tangent vectors of braid strands define light-like vectors in H and their M4 projection
is time-like vector allowing a representation as a combination of U and V . Could also
massive momenta be represented as unique combinations of U and V ?

(c) One can consider also the possibility to represent massive particles as bound states of
massless particles.

It will be found that one can lift ordinary Feynman diagrams to spinor diagrams and integrations
over loop momenta correspond to integrations over the spinors characterizing the momentum.

2. One assign to ordinary momentum eigen states spinor λ but it is not clear how to identify the
spinor µ̃ needed for a twistor.

(a) Could one assign µ̃ to spin polarization or perhaps to the spinor defined by the light-like M2

part of the massive momentum? Or could λ and µ̃ correspond to the vectors proportional
to V and U needed to represent massive momentum?

(b) Or is something more profound needed? The notion of light-ray is central for the proposed
construction of preferred extremals. Should momentum eigen states be replaced with light
ray momentum eigen states with a complete localization in degrees of freedom transversal
to light-like momentum? This concept is favored both by the notion of number theoretic
braid and by the massless extremals (MEs) representing ”topological light rays” as analogs
of laser beams and serving as space-time correlates for photons represented as wormhole
contacts connecting two parallel MEs. The transversal position of the light ray would bring
in µ̃. This would require a modification of the perturbation theory and the introduction
of the ray analog of Feynman propagator. This generalization would be M4 counterpart
for the highly successful twistor diagrammatics relying on twistor Fourier transform but
making sense only for the (2,2) signature of Minkowski space.
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1.3 Massive particles and the generalization of twistors to 8-D case

The basic problem of the twistor approach is that one cannot represent massive momenta in terms of
twistors in elegant manner. This problem might be circumvented.

1. In quantum TGD massive states in M4 can be regarded as massless states in M8 and CP2 (recall
M8 −H duality), and one can map any massive M4 momentum to a light-like M8 momentum
and hope that this association could be made in a unique manner.

2. One should assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality. The
spinor assigned with the light-like four-momentum is not unique without additional conditions.
The existence of covariantly constant right-handed neutrino in CP2 degrees generating the super-
conformal symmetries could allow to eliminate the non-uniqueness. 8-dimensional twistor in M8

would be a pair of this kind of spinors fixing the momentum of massless particle and the point
through which the corresponding light-geodesic goes through: the set of these points forms 8-D
light-cone and one can assign to each point a spinor. In M4 × CP2 definitions makes also in
the case of M4 × CP2 and twistor space would also now be a lifting of the space of light-like
geodesics.

3. The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma
matrix algebra which is not a matrix representation. The mapping of gamma matrices to this
representation allows to define a notion of hyper-quaternionicity in terms of the modified gamma
matrices both in M8 and H. In this case however hyper-quaternionic 4-plane associated with a
given point of X4 is not tangent plane in the general case. This approach allows to deduce an
ansatz to the modified Dirac equation working also in the general case.

1.4 Twistors and electric-magnetic duality

The vision involves the notions of bosonic emergence, the identification of virtual states as pairs of on
mass shell states assignable to wormhole throats inspired by zero energy ontology and the associated
realization of Cutkosky rules in terms of manifestly finite Feynman diagrammatics, and as the latest
and most important piece the weak form of electric-magnetic duality and the notion of M2-valued
pseudo-momentum associated with the generalized eigen states of the Chern-Simons Dirac operator.
There must be a correlation between pseudo-momenta and real momenta and the identification of the
difference of pseudo-momenta of wormhole throats representing virtual particle as the difference of
corresponding on-mass-shell momenta is what gives a connection between ordinary virtual momenta
and pseudo-momenta. One would obtain not only 4-D twistors but much simpler 2-D twistors with a
discrete pseudo-momentum spectrum containing possibly only a finite number of momenta.

To sum up, the ideas about twistors are just ideas and it takes years to transform them to a
genuine theory. At this moment the simplest and most promising approach is the one inspired by zero
energy ontology combined with the implications of electric-magnetic duality and the combination of
this approach with the twistor Grassmannian program discussed in the next chapter looks much more
realistic than the considerations of this chapter.

2 Could the target space be identified in terms of twistors?

The problem of quantum theory in (2, 2) signature and corresponding real twistors is that a spacetime
with this metric signature does not conform with the standard view about causality. The challenge is
to find a physical interpretation consistent with the metric signature of Minkowski space: somehow
M4 or at least light-cone boundary should be lifted to twistor space. The (2,2) resp. (4,4) signature
of the metric of the target space is a problem of also N = 2 resp. N = 4 super-conformal string
theories, and N = 4 super-conformal string theory could be relevant for quantum TGD since TGD
has N = 4 superconformal symmetries as broken symmetries. The identification of the target space
of N = 4 theory as twistor space T looks natural.

Number theoretical compactification implies dual slicings of the space-time surface to string world
sheets and partonic 2-surfaces. Finite measurement resolution reduces light-like 3-surfaces to braids
defining boundaries of string world sheets. String model in T is obtained if one can lift the string world
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sheets from CD×CP2 to T . It turns out that this is possible and one can also find an interpretation
for the phases associated with the spinors defining the twistor.

A physically attractive realization of the braids - and more generally- of slicings of space-time
surface by 3-surfaces and string world sheets, is discussed in [K8] by starting from the observation
that TGD defines an almost topological QFT of braids, braid cobordisms, and 2-knots. The boundaries
of the string world sheets at the space-like 3-surfaces at boundaries of CDs and wormhole throats
would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface operators
used in gauge theory approach to knots [A4] to TGD framework. It leads to the identification of slicing
by three-surfaces as that induced by the inverse images of r = constant surfaces of CP2, where r is
U(2) invariant radial coordinate of CP2 playing the role of Higgs field vacuum expectation value in
gauge theories. r = ∞ surfaces correspond to geodesic spheres and define analogs of fractionally
magnetically charged Dirac strings identifiable as preferred string world sheets. The union of these
sheets labelled by subgroups U(2) ⊂ SU(3) would define the slicing of space-time surface by string
world sheets. The choice of U(2) relates directly to the choice of quantization axes for color quantum
numbers characterizing CD and would have the choice of braids and string world sheets as a space-time
correlate.

2.1 General remarks

Some remarks are in order before considering a detailed proposal for how to achieve the above described
goal.

1. Penrose ends up with the notion of twistor by expressing Pauli-Lubanski vector and four-
momentum vector of massless particle in terms of two spinors and their conjugates. Twistor ZA

consists of a pair (µ̃ȧ, λa) of spinors in representations (1/2, 0) and (0, 1/2) of Lorentz group. The
antisymmetric tensor εab defines Kähler form in the space of 2-spinors and iεab defines Kähler
metric which reduces to the (1, 1,−1,−1) diagonal form in real representation. The hermitian
matrix defined by the tensor product of λȧ and its conjugate characterizes the four-momentum
of massless particle in the representation paσa using Pauli’s sigma matrices. In Penrose’s origi-
nal approach µ̃ȧ characterizes the angular angular momentum of the particle: spin is given by
s = ZαZα. The representation is not unique since λa is fixed only apart from a phase factor,
which might be called ”twist”. The phases of two spinors are completely correlated.

2. This interpretation is not equivalent with that discussed mostly in [B6] and [B3] . Scattering
amplitudes are not functions of momenta and polarizations but of a spinor, its conjugate defining
light-like momentum, and helicity having values ±1. In Minkowski space with Lorentz signature
the momentum as kinematic variable is replaced with spinor and its conjugate and spinor is
defined apart from a phase factor. In the latter article the signature of Minkowski space is taken
to be (2,2) so that the situation changes dramatically. Light rays assignable to twistors are
2-D light-like light-like surfaces and the spinor associated with light-like point decomposes to
two independent real spinors replacing light-like momentum as a kinematic variable. The phase
factor as an additional kinematic variable is replaced by a real scaling factors t and 1/t for the
two spinors. Fourier transform with respect to the real spinor or its conjugate is possible and
gives scattering amplitude as a function of a twistor variable. In Lorentz signature the twistor
Fourier transform in this sense is not possible so one cannot replace spinor and its conjugate by
a twistor.

3. The space of 2-spinors has a Hermitian metric with real signature (2,2) since the Lorentz invariant
Hermitian metric iεab has diagonal form (1,−1) in complex coordinates. Twistors consist of two
spinors and the 8-D twistor space -call it T - has Kähler metric with complex metric signature
(2,2) and real metric signature (4,4), and could correspond to the target space of N = 4 super-
conformally symmetric theory and might define the target space of N = 4 super-conformally
symmetric string theory with strings identified as T lifts of the string world sheets having braid
strands at their ends. The minimum requirement is that one can assign to each point of string
world sheet a twistor.
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2.2 What twistor Fourier transform could mean in TGD framework?

For the existence of twistor Fourier transform the reality and independence of the spinors λ and µ̃
is essential and are satisfied for (2,2) signature. In Lorentzian signature these conditions fail. The
question is whether TGD framework could allow to construct twistor amplitudes.

1. From Witten’s paper [B6] one learns that twistor-space scattering amplitudes obtained as
Fourier-transforms with respect to the real conjugate spinor in Minkowski space with (2,2)
signature correspond to incoming and outgoing states for which the wave functions are not
plane waves but are located to 2-D sub-spaces of Minkowski space defined by the equation

µ̃ȧ + xȧaλ
a = 0 . (2.1)

In a more familiar notation one has xµσµλ = µ̃. This condition follows directly from twistor
Fourier transform.

2. In Lorentz signature similar equation is obtained from Penrose transform relating the solutions of
free wave equations for various spins to the elements of sheaf cohomology assignable to projective
twistor space (see the appendix of [B6] ). In this case the solution is unique apart from the shift
xµ → xµ + kpµ, where pµ is the light-like momentum associated with λ identified as a solution
of massless Dirac equation. Hence twistor corresponds to a wave function localized at light ray.

3. If the equivalent of twistor Fourier transform exists in some sense in Lorentz signature, the
geometric interpretation would be as a decomposition of massless plane wave to a superposition
of wave functions localized to light-like rays in the direction of momentum. Uncertainty Principle
does not deny the existence of this kind of wave functions. These highly singular wave functions
would be labeled by momentum and one point at the light ray or equivalently (apart from the
phase factor) by λa and µ̃ȧ defining the twistor. The wave functions would be constant at the
rays and thus wave functions in a 3-dimensional sub-manifold of M4 labeling the light rays.
This sub-manifold could be taken light-cone boundary as is easy to see so that the overlap of
wave function with different direction of 3-momentum would take place only at the tip of the
light-cone. Fields in twistor space would be fields in the space of light-rays characterized by a
wave vector.

4. Light-likeness fixes x and µ for given λ uniquely if one assumes that µ is in the plane M2

defined by λ and thus light-like dual of the momentum vector satisfying x · p = −1. Clearly,
momentum conservation gives to conservation of x and one can interpret x as a geometric
representation of momentum analogous to the representation momentum increment in X-ray
scattering at ”heavenly sphere”. Quantum classical correspondence encourages to consider at
least half seriously this kind of coding of momentum to a position of braid point at light-cone
boundary. Since twistor Fourier transform does not work, one must invent some other manner to
introduce these wave functions. Here the lifting of space-time surface to twistor space suggests
itself.

5. The basic challenge is to assign to space-time surface or to each point of space-time surface a
momentum like quantity. If this is achieved one can can assign to the point also λ and µ̃.

(a) One can assign to space-time sheet a conserved four-momentum identifiable by quantum
classical correspondence as its quantal variant. This option would fix λ to be same at each
point of the space-time surface about from a possible phase factor depending on space-time
point. The resulting surfaces in twistor space would be rather boring.

(b) Hamilton-Jacobi coordinates [K2] suggest the possibility of defining λ as a quantity depend-
ing on space-time point. The two light-like M4 coordinates u, v define preferred coordinates
for the string world sheets Y 2 appearing in the slicing of X4(X3

l ), and the light-like tan-
gent vectors U and V of these curves define a pair (λ, µ̃) of spinors defining twistor Z. The
vector V defining the tangent vector of the braid strand is analogous to four-momentum.
Twistor equation defines a point m of M4 apart from a shift along the light ray defined
by V and the consistency implying that the construction is not mere triviality is that m
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corresponds to the projection of space-time point to M4 in coordinates having origin at the
tip of CD. One could distinguish between negative and positive energy extremals according
to whether the tip is upper or lower one. One can assign to λ and µ̃ also two polarization
vectors by a standard procedure [B6] to be discussed later having identification as tangent
vectors of coordinate curves of transversal Hamilton-Jacobi coordinates. This would give
additional consistency conditions.

6. In this manner space-time surface representable as a graph of a map from M4 to CP2 would be
mapped to a 4-surface in twistor space apart from the non-uniqueness related to the phase factor
of λ. Also various field quantities, in particular induced spinor fields at space-time surface, could
be lifted to fields restricted to a 4-dimensional surface of the twistor space so that the classical
dynamics in twistor space would be induced from that in imbedding space.

7. This mapping would induce also a mapping of the string world sheets Y 2 ⊂ PM4(X4(X3
l ))

to twistor space. V would determine λ and U -taking the role of light-cone point m - would
determine µ̃ in terms of the twistor equation. 2-surfaces in twistor space would be defined as
images of the 2-D string world sheets if the integrability of the distribution for (U, V ) pairs
implies the integrability of (λ, µ̃) pairs.

8. Twistor scattering amplitude would describe the scattering of a set of incoming light-rays to
a set of outgoing light-rays so that the non-locality of interactions is obvious. Discretization
of partonic 2-surfaces to discrete point sets would indeed suggest wave functions localized at
light-like rays going through the braid points at the ends of X3

l as a proper basis so that
problems with Uncertainty Principle would be overcome. The incoming and outgoing twistor
braid points would be determined by M4 projections of the braid points at the ends of X3

l .
By quantum classical correspondence the conservation law of classical four-momentum would
apply to the total classical four-momentum although for individual braid strands classical four-
momenta would not conserved. The interpretation would be in terms of interactions. The orbits
of stringy curves connecting braid points wold give string like objects in T required by N = 4
super-conformal field theory.

2.3 Could one define the phase factor of the twistor uniquely?

The proposed construction says nothing about the phase of the spinors assigned to the tangent vectors
V and U . One can consider two possible interpretations.

1. Since the tangent vectors U and V are determined only apart from over all scaling the phase
indeterminacy could be interpreted by saying that projective twistors are in question.

2. If one can fix the absolute magnitude of U and V -say by fixing the scale of Hamilton Jacobi
coordinates by some physical argument- then the map is to twistors and one should be able to
fix the phase.

It turns out that the twistor formulation of field equations taking into account also CP2 degrees of
freedom to be discussed latter favors the first option. The reason why the following argument deserves
a consideration is that it would force braid picture and thus replacement of space-time sheets by string
world sheets in twistor formulation.

1. The phase of the spinor λa associated with the light-like four-momentum and light-like point of
δM4
± should represent genuine physical information giving the twistor its ”twist”. Algebraically

twist corresponds to a U(1) rotation along closed orbit with a physical significance, possibly
a gauge rotation. Since the induced CP2 Kähler form plays a central role in the construction
of quantum TGD, the ”twist” could correspond to the non-integrable phase factor defined as
the exponent of Kähler magnetic flux (to achieve symplectic invariance and thus zero mode
property) through an area bounded by some closed curve assignable with the point of braid
strand at X2. Both CP2 and δM4

± Kähler forms define fluxes of this kind so that two kinds of
phase factors are available but CP2 Kähler flux looks more natural.
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2. The symplectic triangulation defined by CP2 Kähler form allows to identify the closed curve as
the triangle defined by the nearest three vertices to which the braid point is connected by edges.
Since each point of X4(X3

l ) belongs to a unique partonic 2-surface X2, this identification can
be made for the braid strands contained by any light-like 3-surface Y 3

l parallel to X3
l so that

phase factors can be assigned to all points of string world sheets having braid strands as their
ends. One cannot assign phases to all points of X4(X3

l ). The exponent of this phase factor
is proportional to the coupling of Kähler gauge potential to fermion and distinguishes between
quarks and leptons.

3. The phase factor associated with the light-like four-momentum defined by V could be identified
as the non-integrable phase factor defined by -say- CP2 Kähler form. The basic condition would
fix the phase of µ̃. The phases could be permuted but the assignment of δM4

± Kähler form with
m is natural. Note that the phases of the twistors are symplectic invariants and not subject to
quantum fluctuations in the sense that they would contribute to the line element of the metric
of the world of classical worlds. This conforms with the interpretation as kinematical variables.

4. Rather remarkably, this construction can assign the non-integrable phase factor only to the
points of the number theoretic braid for each Y 3

l parallel to X3
l so that one obtains only a union

of string world sheets in T rather than lifting of the entire X4(X3
l ) to T 2. The phases of the

twistors would code for non-local information about space-time surface coded by the tangent
space of X4(X3

l ) at the points of stringy curves.

3 Could one regard space-time surfaces as surfaces in twistor
space?

Twistors are used to construct solutions of free wave equations with given spin and self-dual solutions
of both YM theories and Einstein’s equations [B5] . Twistor analyticity plays a key role in the
construction of construction of solutions of free field equations. In General Relativity the problem of
the twistor approach is that twistor space does not make sense for a general space-time metric [B5]
. In TGD framework this problem disappears and one can ask how twistors could possibly help to
construct preferred extremals. In particular, one can ask whether it might be possible to interpret
space-time surfaces as surfaces - not necessarily four-dimensional - in twistor space.

3.1 How M4 × CP2 emerges in twistor context?

The finding that CP2 emerges naturally in twistor space considerations is rather encouraging.

1. Twistor space allows two kinds of 2-planes in complexified M4 known as α- and β-planes and
assigned to twistor and its dual [B5] . This reflects the fundamental duality of the twistor
geometry stating that the points Z of PT label also complex planes (CP2) of PT via the
condition

ZaW
a = 0 . (3.1)

To the twistor Z one can assign via twistor equation complex α-plane, which contains only null
vectors and correspond to the plane defined by the twistors intersecting at Z.

For null twistors (5-D sub-space N of PT ) satisfying ZaZ̃a = 0 and identifiable as the space
of light-like geodesics of M4 α-plane contains single real light-ray. β-planes in turn correspond
to dual twistors which define 2-D null plane CP2 in twistor space via the equation ZaW

a = 0
and containing the point W = Z̃. Since all lines CP1 of CP2 intersect, also they parameterize a
2-D null plane of complexified M4. The β-planes defined by the duals of null twistors Z contain
single real light-like geodesic and intersection of two CP2:s defined by two points of line of N
define CP1 coding for a point of M4.
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2. The natural appearance of CP2 in twistor context suggests a concrete conjecture concerning
the solutions of field equations. Light rays of M4 are in 1-1 correspondence with the 5-D space
N ⊂ P of null twistors. Compactified M4 corresponds to the real projective space PN . The
dual of the null twistor Z defines 2-plane CP2 of PT .

3. This suggests the interpretation of the counterpart of M4×CP2 as a bundle like structure with
total space consisting of complex 2-planes CP2 determined by the points of N . Fiber would be
CP2 and base space 5-D space of light-rays of M4. The fact that N does not allow holomorphic
structure suggests that one should extend the construction to PT and restrict it to N . The
twistor counterparts of space-time surfaces in T would be holomorphic surfaces of PT ×CP2 or
possibly of PT± (twistor analogs of lower and upper complex plane and assignable to positive
and negative frequency parts of classical and quantum fields) restricted to N × CP2.

3.2 How to identify twistorial surfaces in PT ×CP2 and how to map them
to M4 × CP2?

The question is whether and how one could construct the correspondence between the points of M4

and CP2 defining space-time surface from a holomorphic correspondence between points of PT and
CP2 restricted to N .

1. The basic constraints are that space-time surfaces with varying values for dimensions of M4

and CP2 projections are possible and that these surfaces should result by a restriction from
PT × CP2 to N × CP2 followed by a map from N to M4 either by selecting some points from
the light ray or by identifying entire light rays or their portions as sub-manifolds of X4.

2. Quantum classical correspondence would suggest that surfaces holomorphic only in PT+ or PT−
should be used so that one could say that positive and negative energy states have space-time
correlates. This would mean an analogy with the construction of positive and negative energy
solutions of free massless fields. The corresponding space-time surfaces would emerge from the
lower and upper light-like boundaries of the causal diamond CD.

3. A rather general approach is based on an assignment of a sub-manifold of CP2 to each light ray
in PT± in holomorphic manner that is by n equations of form

Fi(ξ
1, ξ2, Z) = 0 , i = 1, ..., n ≤ 2 . (3.2)

The dimension of this kind of surface in PT × CP2 is D = 10 − 2n and equals to 6, 8 or 10 so
that a connection or at least analogy with M-theory and branes is suggestive. For n = 0 entire
CP2 is assigned with the point Z (CP2 type vacuum extremals with constant M4 coordinates):
this is obviously a trivial case. For n = 1 8-D manifold is obtained. In the case that Z is
expressible as a function of CP2 coordinates, one could obtain CP2 type vacuum extremals or
their deformations. Cosmic strings could be obtained in the case that there is no Z dependence.
For n = 4 discrete set of points of CP2 are assigned with Z and this would correspond to field
theory limit, in particular massless extremals. If the dimension of CP2 projection for fixed Z is
n, one must construct 4− n-dimensional subset of M4 for given point of CP2.

4. If one selects a discrete subset of points from each light ray, one must consider a 4−n-dimensional
subset of light rays. The selection of points of M4 must be carried out in a smooth manner in
this set. The light rays of M4 with given direction can be parameterized by the points of light-
cone boundary having a possible interpretation as a surface from which the light rays emerge
(boundary of CD).

5. One could also select entire light rays of portions of them. In this case a 4− n− 1-dimensional
subset of light rays must be selected. This option could be relevant for the simplest massless
extremals representing propagation along light-like geodesics (in a more general case the first
option must be considered). The selection of the subset of light rays could correspond to a choice
of 4−n−1-dimensional sub-manifold of light-cone boundary identifiable as part of the boundary
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of CD in this case. In this case one could worry about the intersections of selected light rays.
Generically the intersections occur in a discrete set of points of H so that this problem does not
seem to be acute. The lines of generalized Feynman diagrams interpreted as space-time surfaces
meet at 3-D vertex surfaces and in this case one must pose the condition that CP2 projections
at the 3-D vertices are identical.

6. The use of light rays as the basic building bricks in the construction of space-time surfaces
would be the space-time counterpart for the idea that light ray momentum eigen states are more
fundamental than momentum eigen states.

M8 − H duality is Kähler isometry in the sense that both induced metric and induced Kähler
form are identical in M8 and M4 ×CP2 representations of the space-time surface. In the recent case
this would mean that the metric induced to the space-time surface by the selection of the subset of
light-rays in N and subsets of points at them has the same property. This might be true trivially in
the recent case.

3.3 How to code the basic parameters of preferred extremals in terms of
twistors?

One can proceed by trying to code what is known about preferred extremals to the twistor language.

1. A very large class of preferred extremals assigns to a given point of X4 two light-like vectors U
and V of M4 and two polarization vectors defining the tangent vectors of the coordinate lines
of Hamilton-Jacobi coordinates of M4 [K2] . As already noticed, given null-twistor defines via
λ and µ̃ two light-like directions V and U and twistor equation defines M4 coordinate m apart
from a shift in the direction of V . The polarization vectors εi in turn can be defined in terms
of U and V . λ = µ corresponds to a degenerate case in which U and V are conjugate light-like
vectors in plane M2 and polarization vector is also light-like. This could correspond to the
situation for CP2 type vacuum extremals. For the simplest massless extremals light-like vector
U is constant and the solution depends on U and transverse polarization ε vector only. More
generally, massless extremals depend only on two M4 coordinates defined by U coordinate and
the coordinate varying in the direction of local polarization vector ε.

2. Integrable distribution of these light-like vectors and polarization vectors required. This means
that these vectors are gradients of corresponding Hamilton-Jacobi coordinate variables. This
poses conditions on the selection of the subset of light rays and the selection of M4 points at
them. Hyper-quaternionic and co-hyper-quaternionic surfaces of M8 are also defined by fixing
an integrable distribution of 4-D tangent planes, which are parameterized by points of CP2

provided one can assign to the tangent plane M2(x) either as a sub-space or via the assignment
of light-like tangent vector of x.

3. Positive (negative) helicity polarization vector [B6] can be constructed by taking besides λ
arbitrary spinor µa and defining

εaȧ =
λaµ̃ȧ[
λ̃, µ̃

] ,
[
λ̃, µ̃

]
≡ εȧḃλ

ȧµḃ (3.3)

for negative helicity and

εaȧ =
µaλ̃ȧ
〈λ, µ〉

, 〈λ, µ〉 ≡ εabµaλb (3.4)

for positive helicity. Real polarization vectors correspond to sums and differences of these vectors.
In the recent case a natural identification of µ would be as the second light-like vector defining
point of m. One should select one light-like vector and one real polarization vector at each
point and find the corresponding Hamilton-Jacobi coordinates. These vectors could also code
for directions of tangents of coordinate curves in transversal degrees of freedom.
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The proposed construction seems to be consistent with the proposed lifting of preferred extremals
representable as a graph of some map M4 → CP2 to surfaces in twistor space. What was done in one
variant of the construction was to assign to the light-like tangent vectors U and V spinors µ̃ and λ
assuming that twistor equation gives the M4 projection m of the point of X4(X3

l ). This is the inverse
of the process carried out in the recent construction and would give CP2 coordinates as functions of
the twistor variable in a 4-D subset of N determined by the lifting of the space-time surface. The
facts that tangent vectors U and V are determined only apart from overall scaling factor and the fact
that twistor is determined up to a phase, imply that projective twistor space PT is in question. This
excludes the interpretation of the phase of the twistor as a local Kähler magnetic flux. The next steps
would be extension to entire N and a further continuation to holomorphic field in PT or PT±.

To summarize, although these arguments are far from final or convincing and are bound to reflect
my own rather meager understanding of twistors, they encourage to think that twistors are indeed
natural approach in TGD framework. If the recent picture is correct, they code only for a distribution
of tangent vectors of M4 projection and one must select both a subset of light rays and a set of
M4 points from each light-ray in order to construct the space-time surface. What remains open is
how to solve the integrability conditions and show that solutions of field equations are in question.
The possibility to characterize preferred extremal property in terms of holomorphy and integrability
conditions would mean analogy with both free field equations in M4 and minimal surfaces. For known
extremals holomorphy in fact guarantees the extremal property.

3.4 Hyper-quaternionic and co-hyper-quaternionic surfaces and twistor
duality

In TGD framework space-time surface decomposes into two kinds of regions corresponding to hyper-
quaternionic and co-hyper-quaternionic regions of the space-time surface in M8 (hyper-quaternionic
regions were considered in preceding arguments). The regions of space-time with M4 (Euclidian)
signature of metric are identified tentatively as the counterparts of hyper-quaternionic (co-hyper-
quaternionic) space-time regions. Pieces CP2 type vacuum extremals representing generalized Feyn-
man diagrams and having light-like random curve as M4 projection represent the basic example here.
Also these space-time regions should have any twistorial counterpart and one can indeed assign to
M4 projection of CP2 type vacuum extremal a spinor λ as its tangent vector and spinor µ via twistor
equation once M4 projection is known.

The first guess would the correspondence hyper-quaternionic ↔ α and co-hyper-quaternionic ↔
β. Previous arguments in turn suggest that hyper-quaternionic space-time surfaces are mapped to
surfaces for which two null twistors are assigned with given point of M4 whereas co-hyper-quaternionic
space-time surfaces are mapped to the surfaces for which only single twistor corresponds to a given
M4 point.

4 Could one lift Feynman diagrams to twistor space?

In [B3] the possibility of twistor diagrammatics is considered and it is interesting to look this from
TGD perspective where standard beliefs about what quantum theory is must be given up.

1. The arguments start from ordinary momentum space perturbation theory. The amplitudes for
the scattering of massless particles are expressed in terms of twistors after which one performs
twistor Fourier transform obtaining amazingly simple expressions for the amplitudes. For in-
stance, the 4-point one loop amplitude in N=4 SYM is extremely simple in twistor space having
only values ’1’ and ’0’ in twistor space and vanishes for generic momenta.

2. Also IR divergences are absent in twistor transform of the scattering amplitude but are generated
by the transform to the momentum space. Since plane waves are replaced with light rays, it is
not surprising that the IR divergences coming from transversal degrees of freedom are absent.
Interestingly, TGD description of massless particles as wormhole throats connecting two massless
extremals extends ideal light-ray to massless extremal having finite transversal thickness so that
IR cutoff emerges purely dynamically.
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3. This approach fails at the level of loops unless one just uses the already calculated loops. The
challenge would be a generalization of the ordinary perturbation theory so that loops could be
calculated in twistor space formulation.

The vision about lifting TGD from 8-D M4 × CP2 to 8-D twistor space suggests that it should
be possible to lift also ordinary M4 propagators to propagators to twistor space. The first problem
is that the momenta of massive virtual particles do not allow any obvious unique representation in
terms of twistors. Second problem relates to massive incoming momenta necessarily encountered in
stringy picture even if one forgets massivation of light states by p-adic thermodynamics.

4.1 The treatment of massive case in terms of twistors

Massive incoming momenta and loop momenta are problematic from the point of view of twistor
description. TGD suggests two alternative approaches two the problem.

1. One can express arbitrary four-momentum as a sum of two light-like momenta. What makes
this representation inelegant is its non-uniqueness. For time-like momentum the two light-
like momenta in opposite directions can have any direction so that sphere SO(3)/SO(2) = S2

labels the degeneracy and for space-like case the degeneracy corresponds to the hyperboloid
SL(2, R)/SO(2) of M3. This degeneracy has no obvious physical meaning unless virtual mo-
mentum corresponds physically to a pair of light-like momenta which can have also opposite
signs of energy. This would however mean effectively introduction of two light-like loop mo-
menta instead of one and therefore doubling of the loop. A possible interpretation would be as
an introduction of an additional braid strand.

2. Also massive particles should be treated in practical approach. The existence of preferred
M2 ⊂M4 forced both by the number theoretic compactification and by the hierarchy of Planck
constants would allow to express massive four-momenta uniquely as sums of two light-like mo-
menta, with second momentum in the plane M2. This would bring in two twistors with second
twistor corresponding to a spin ±1/2 spinor depending on the direction of the momentum.
Whether it is possible to interpret the momentum in terms of a genuine composition to a state
of two massless particles with second particle moving in the preferred plane M2 remains an
open question. This would allow also to treat massive particles by assuming that loop momenta
are on shell momenta. For both stringy excitations and particles receiving their mass by p-adic
thermodynamics this might be an appropriate approach.

3. From the twistor point of view a more satisfactory description would be the identification of
the massive states as bound states of massless fermions associated with braid strands. If braid
strands carry light-like momenta which are not parallel, one can obtain massive off mass shell
momenta. For conformal excitations it would be natural to assign the action of the Kac-Moody
generators and corresponding Virasoro generators creating the state to separate braid strands.
In QCD description of hadrons in terms of massless partons this kind of description is of course
already applied.

4. A further possibility making sense in massless theories is the restriction of the momenta rotating
in loops to be light-like. This idea turned out to be short lived but led to a first quantitatively
precise proposal for how QFT like Feyman diagrammatics could emerge from TGD framework.

4.2 Purely twistorial formulation of Feynman graphs

In the following twistorial formulation of Feynman diagrammatics in TGD framework is considered. If
only light-like loop momenta are allowed one can lift the 3-dimensional integral d3k/2E appearing in
the propagators to an integral over twistor variables, which means that complete twistorialization of
Feynman diagrams is possible if the loop integrals involve only light-like momenta. This formulation
generalizes to the case when loop momenta are massive but requires the introduction of an auxiliary
twistor corresponding to momenta restricted to the preferred plane M2 ⊂M4predicted by the number
theoretical compactification and hierarchy of Planck constants.
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1. It is convenient to introduce double cylindrical coordinates λi = ρiexp(i(φ±ψ)) in twistor space.
The integration over overall phase φ gives only a 2π factor since ordinary Feynman amplitude
has no dependence on this variable so that the non-redundant variables are ρ1, ρ2, ψ.

2. The condition is that the integral measure d4uX of the spinor space with a suitable weight
function X is equivalent with the measure d3k/2E in cylindrical coordinates. This gives

d4uX = dφ
d3k

2E
(4.1)

when the integrand does not depend on φ.

3. In cylindrical coordinates this gives

2ρ1ρ2dρ1dρ2dψXδ(U − kz)δ(V − kx)δ(W − ky) = 1 ,

U =
ρ21−ρ

2
2

2 , V = ρ1ρ2cos(ψ)
2 , W = ρ1ρ2sin(ψ)

2 .

(4.2)

Here the functions U , V , and W are obtained form the representations of kz, kx, ky in terms of
spinor and its conjugate.

4. Taking U, V,W as integration variables one has

2ρ1ρ2
∂(ρ1, ρ2, ψ)

∂(U, V,W )
X = 1 .

(4.3)

5. The calculation of the Jacobian gives X = (ρ21 + ρ22)/4 = E/2 so that one has the equivalence

1

4π
d4u↔ d3k

2E
. (4.4)

6. Similar lifting can be carried out for the integration measure defined at light-cone boundary in
M4. If the integrations in generalized Feynman diagrams are over amplitudes depending on light-
like momenta and coordinates of the light-like boundaries of CDs in given length scales coming
as Tn = 2nT0 or Tp = pT0 the integrals of momentum space and light-one can be transformed to
integrals over twistor space in given length scale. Twistorialization requirement obviously gives
a justification for the basic assumption of zero ontology that all transition amplitudes can be
formulated in terms of data at the intersections of light-like 3-surfaces with the boundaries of
CDs.

7. It should be emphasized that there is no need to keep the phase angle φ as a redundant variable
is the interpretation as Kähler magnetic flux is accepted. In fact, Kähler magnetic fluxes are
expected to appear as zero modes define external parameters in the amplitudes.

One can carry out similar calculation for d4k assuming the representation of p as a sum of two
light-like momenta k1 and k2 with another one lying in the preferred plane M2. The representation
is unique and given by

p = k1 + k ,

k1 = (|pT |cosh(η), |pT |sinh(η), pT ) , k = |k|(1, ε, 0, 0) , ε = ±1 ,

exp(η) = [
|pT |

p0 − εpz
]ε ,

|k| = p0 − |pT |cosh(η) .

(4.5)
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Both signs of ε = k02/k
z
2 are needed and correspond to spin up and spin down spinor µ with an indefinite

phase whereas k1 corresponds to λ as in previous example. The 6-dimensional volume element in the
space of the spinors is

dV = ρ1ρ2ρ3dρ1dρ2dρ3dΨdΦ1dΦ2 . (4.6)

Φ1 and Φ2 represent the phases of the spinors λ and µ and are redundant variables in the momentum
integration. The expression for d4k in terms of spinor variables reads as

d4k =
1

16π2

[
ρ21(1− ε) + ρ22(1 + ε)

]
timesdV . (4.7)

Here the redundant integral over dΦi is included. The integration measure does not have so nice
structure as in the case of light-cone. Whether one might combine the spinors to single twistor is
an interesting question: conformal invariance does not encourage this. Second option is to combine
spinors and their complex conjugates to twistors.

4.3 What could be the propagator in twistor space?

The mere lifting of Feynman diagrams is probably not enough since the propagator in momentum
space corresponds to momentum eigen states whereas in TGD framework a more natural notion is the
propagator in the space of light-rays, which correspond to states totally localized in the direction of
light-like momentum and thus could be seen as superpositions of momentum eigen states with virtual
momentum components in transversal directions so that all momenta would be actually space-like in
standard sense. Topological light rays (massless extremals) are the direct space-time correlate for this
picture and also braid picture and direct physical intuition about what particles are support the idea
about ray propagator.

What could propagation mean assuming that one allows only the propagation of light-like momenta
in loops in order to achieve an elegant expression of loop diagrams in terms of spinors λ?

1. The points of M4 are effectively replaced with parallel light-rays for given four-momentum and
so that it does not make sense to speak about propagation in the direction of light-like four-
momentum. Rather, the propagation would be in the space defined by transversal degrees of
freedom which can be parameterized by the points of light-cone. x is fixed uniquely if one assumes
it to lie in the plane defined by p as dual of p and conservation p gives rise to conservation of x
with the already suggests interpretation as a geometric representation of momentum. One could
construct oscillator operators basis creating light-ray states. The task is to guess an expression
for the commutators [a†(p1,m1), a(p2,m2)].

If one accepts the parametrization of the space of parallel light rays in terms of points m1 and m2

of light-cone, one can argue that only the complete overlap of light rays occurring for m1 = m2

should contribute to the commutator. This would give

[a†(p1,m1), a(p2,m2)] = i2E1 × 2|m0
1| × δ3(p1 − p2)δ3(m1 −m2) .

This picture is consistent with the classical intuitive picture and also with the idea that signals
propagate only along light-rays. In twistor space this would give commutation relations which
are completely local and there would be no propagation. Note the complete symmetry between
momentum space and x-space.

2. This would give for the counterpart of massless scalar propagator G− allowing only the propa-
gation of light-like virtual momenta the expression

G−(p1, p2,m1,m2) = iδ3(p1 − p2)δ3(m1 −m2)4E1 × |m0
1| . (4.8)
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3. From this one can construct the counterpart of G− in the twistor space. This would give

G−(λ1, µ̃1, λ2, µ̃2) = iδ(λ1λ̃1 − λ2λ̃2)δ(µ1µ̃1 − µ2µ̃2)× 4E|m0
1| . (4.9)

Note that m1 and therefore also m0
1 can be fixed uniquely from the basic twistor equation by

using the constraint that m1 ≡ x is light-like so that one has xaḃ = µaµ̃ḃ if µaλ
a = 1 is satisfied.

4. One can express the momentum conserving delta function in terms of delta function δ4(λ1−λ2)
if one assumes that the irrelevant phase exp(iφ) of λ (as far as ordinary Feynman diagrams are
considered) is conserved. The alternative is the the propagator does not depend at all on the
phase difference φ1− φ2. The proposed interpretation of the phase in terms of Kähler magnetic
flux which can be interpreted as non-quantum fluctuating zero mode given for all points of
braids as classical variable would suggest that it does not make sense to speak about correlation
function for φ in quantal sense. Going to the cylindrical coordinates (ρ1, ρ2, ψ, φ) repeating the
calculation of the Jacobian for the transformations λ → (ρ1, ρ2, ψ, φ) → (k1, k2, k3, φ) and its
variant for m coordinate, one obtains that for massless virtual states the propagator for the two
options is apart from normalization constants equal to

G−(λ1, µ̃1, λ2, µ̃2) = i
δ4(λ1 − λ2)

δ(φ1 − φ2)

δ4(µ̃1 − µ̃2)

δ(φ1 − φ2)
.

(4.10)

The division by δ(φ1 − φ2) symbolizes the assumption of that φ is not quantum fluctuating variable.
Consider next the twistor counterpart of Feynman propagator

GF (p1, p2) = iδ4(p1 − p2)
1

p21 + iε
. (4.11)

p1 can be expressed as a sum of p1 = p1a + p1b of light-like momenta expressible in terms of λ1a and
λ2a. One can assign to p1a and p1b also light-cone points m1a and m1b as their duals and thus also
µ̃1ȧ and µ2ȧ. Note that the momentum defined by m would be conserved and provide a geometric
space-time representation for the real momentum.

It is however not clear whether twistor space counterpart of Feynman propagator makes sense.
Should one assume that the two light-like momenta propagate independently so that the ray prop-
agator would be proportional to the product of delta functions δ(m1a − m2a)δ(m1b − m2b) and
δ(p1a − p2a)δ(p1b − p2b)? These expressions could be translated to delta functions in twistor de-
grees of freedom just as above and the only difference would be the presence of 1/p21 factor. One
could perhaps say that effectively the off mass shell particle is a state of two massless particles with
correlation between them characterized by the 1/p21 factor.

4.4 What to do with the perturbation theory?

The basic question is whether one should replace the perturbation theory based on momentum eigen-
states with a perturbation theory relying on ray momentum eigen states completely localized in trans-
verse degrees of freedom and allowing only light-like loop momenta or just restrict the loop momenta
of ordinary Feynman diagrams to be light-like? Depending on answer to this question one ends up
with different scenarios raising further questions.

1. Suppose that one uses ordinary momentum eigen states. The minimum option of the ordinary
perturbation theory or of its stringy variant in TGD framework means the replacement of loop
momenta with light-like momenta using G− instead of GF . In this approach spinors λ are
enough and one can do without µ and m. One could of course introduce them but m would be
simply the light-like dual of p in the minimal scenario and completely constrained.
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2. If one introduces ray eigen states, then also m and µ̃ emerge naturally. In TGD based perturba-
tion theory m can be assumed to reside at light-cone boundary (at δCD). Since braid points at
X2 vary it seems that one must allow m to be dynamical so that µ is also dynamical. If m and
p are duals then braid points come representatives of momenta and m and µ disappear again
from the theory. This hypothesis is however ad hoc and un-necessary. For this option the naive
generalization of Feynman diagrammatics is not enough. A possible guess for the generalization
has been already proposed.

5 Could one generalize the notion of twistor to 8-D case?

The basic problem of the twistor approach is that one cannot represent massive momenta in terms of
twistors in elegant manner. I have proposed a possible representation of massive states based on the
existence of preferred plane of M2 in the basic definition of theory allowing to express four-momentum
as some of two light-like momenta allowing twistor description. One could however ask whether some
more elegant representation of massive M4 momenta might be possible by generalizing the notion of
twistor -perhaps by starting from the number theoretic vision.

The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as massless states
in M8 and CP2 (recall M8−H duality). One can therefore map any massive M4 momentum to a light-
like M8 momentum and hope that this association could be made in a unique manner. One should
assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality. The spinor assigned with
the light-like four-momentum is not unique without additional conditions. The existence of covariantly
constant right-handed neutrino in CP2 degrees generating the super-conformal symmetries could allow
to eliminate the non-uniqueness. 8-dimensional twistor in M8 would be a pair of this kind of spinors
fixing the momentum of massless particle and the point through which the corresponding light-geodesic
goes through: the set of these points forms 8-D light-cone and one can assign to each point a spinor.
In M4 × CP2 definitions makes also in the case of M4 × CP2 and twistor space would also now be a
lifting of the space of light-like geodesics.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma matrix
algebra which is not a matrix representation. The mapping of gamma matrices to this representation
allows to define a notion of hyper-quaternionicity in terms of the modified gamma matrices both in
M8 and H.

5.1 Octo-twistors defined in terms of ordinary spinors

It is possible to define octo-twistors in terms of ordinary spinors of M8 or H.

1. The condition for the octo-twistor makes sense also for ordinary spinors and the explicit repre-
sentation can be obtained by using triality. The ansatz is pk = ΨγkΨ. The condition pkpk = 0
gives Dirac equation pkγkΨ = 0 and its conjugate solved by Ψ = pkγkΨ0. The expression of pk

in turn gives the normalization condition Ψ0γ
kpkΨ0 = 1/2.

2. Without further conditions almost any Ψ0 not annihilated by γkpk is possible solution. One
can map the spinor basis to hyper-octonion basis and assume Ψ0 → 1 = σ0. This would give
octo-twistor spinors as Ψ = pkγkΨ0 and its conjugate and there would be natural mapping to
pkσk so that Ψ and pk would correspond to each other in 1-1 manner apart from the phase factor
of Ψ.

3. A highly unique choice for Ψ0 is the covariantly constant (with respect to CP2 coordinates) right-
handed neutrino spinor of M4 × CP2 since the Dirac operators of M8, H, and X4 reduce to
free Dirac operator when acting on it in both M8 and H and giving also rise to super-conformal
symmetry. The choice is unique apart from SO(3) rotation but the condition that spin eigen
state is in question for the choice of quantization axis fixed by the choice of hyper-octonion
units and also by the definition of the hierarchy of Planck constants fixes Ψ0 apart from the
sign of the spin if reality is assumed. When pkγkΨ0 = 0 holds true for fixed Ψ0, the ansatz fails
so that the gauge choice is not global. There are two gauge patches corresponding to the two
signs of the spin of Ψ0. Right handed neutrino spinor reflects directly the homological magnetic
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monopole character of the Kähler form of CP2 so that the monopole property is in well defined
sense transferred from CP2 to M4. Note that this argument fails for quark spinors which do not
allow any covariantly constant spinor.

4. For ordinary twistors the existence of the antisymmetric tensor ε acting as Kähler form in the
space of spinors is what allows to define second spinor and these spinors together form twistor.
Ordinary twistors are pairs of spinors and also in the recent case one would have pairs of octo-
spinors. The geometric interpretation would be as a light-like geodesic of M8 or tangent vector
of light-like geodesic of M4×CP2 and the two spinors would code for the momentum associated
with the ray and the transverse position of the ray expressible in terms of a light-like vector.
This would double the dimension to D=16 which happens to be the dimension of complexified
octonions. The standard definition of twistors would suggest that one has 2 triplets of this kind
so that Dirac equation and above argument would reduce the situation to 16-dimensional one.
Twistors space would be C8 and 14-D projective twistor space would correspond to CP7.

5. 2-D spinor and its conjugate as independent representations of Lorentz group define twistor. In
an analogous manner M8 vector, M8-spinor, and its conjugate define a triplet as independent
representations. One can therefore ask whether a triplet of these independent representations
could define octo-twistor so that two triplets would not be needed. Together they would form
an entity with 24 components when the overall complex phase is eliminated and if no gauge
choice fixing Ψ0 is made apart from the assumption Ψ0 has real components. If the overall
phase is allowed, the number of components is 26 (the momentum constraint of course reduces
the number of degrees of freedom to 8). It seems that the magic dimensions of string models
are unavoidable! Perhaps it might be a possible to reduce 26-D string theory to 8-D theory by
posing triality symmetry and additional gauge symmetry. The problem of this identification is
that one does not geometric interpretation as a lifting of the space of light-like geodesics. One
could of course define octo-twistors as a pair of triplets with the members of triplet obtained
from each other via triality symmetry.

5.2 Could right handed neutrino spinor modes define octo-twistors?

There is no absolute need to interpret induced spinor fields as parts of octo-twistors. One can how-
ever ask whether this might make sense for the solutions of the modified Dirac equation DΨ = 0
representing right-handed neutrino and expressible as Ψ = DΨ0.

1. In the modified Dirac equation gamma matrices are replaced by the modified gamma matrices
defined by the variation of Kähler action and the massless momentum pkσk is replaced with
the modified Dirac operator D. In plane wave basis the derivatives in D reduce to an algebraic
multiplication operators in the case of right handed neutrino since right-handed neutrino has no
gauge couplings.

2. A non-trivial consistency condition comes from the condition D2Ψ0 = 0 giving sum of two terms.

(a) The first term is the analog of scalar d’Alembertian and given by

GµνDµDνΨ0 , Gµν = hklT
µkT νl , Tµk = ∂LK

∂hkα
,

and has quantum numbers of right handed neutrino as it should.

(b) Second term is given by

TµkDµT
νlΣklDνΨ0 ,

and in the general case contains charged components. Only electromagnetically neutral
CP2 sigma matrices having right handed neutrino as eigen state are allowed if one wants
twistor interpretation. This is not be true in the general case but might be implied by the
preferred extremal property.
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(c) This property would allow to choose the induced spinor fields to be eigenstates of elec-
tromagnetic charge globally and would be therefore physically very attractive. After all,
one of the basic interpretational problems has been the fact that classical W fields seems
to induce mixing of quarks and leptons with different electro-magnetic charges. If this is
the case one could assign to each point of the space-time surface octo-twistor like abstract
entity as the triplet (Ψ0D,D,DΨ0). This would map space-time sheet to a 4-D surface (in
real sense) in the space of 8-D (in complex sense) leptonic spinors.

5.3 Octo-twistors and modified Dirac equation

Classical number fields define one vision about quantum TGD. This vision about quantum TGD has
evolved gradually and involves several speculative ideas.

1. The hard core of the vision is that space-time surfaces as preferred extremals of Kähler action
can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 × CP2. This
requires only the mapping of the modified gamma matrices to octonions or to a basis of subspace
of complexified octonions. This means also the mapping of spinors to octonionic spinors. There
is no need to assume that imbedding space-coordinates are octonionic.

2. I have considered also the idea that quantum TGD might emerge from the mere associativity.

(a) Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms second
quantized spinor fields and add center of mass degrees of freedom by replacing 8-D gamma
matrices with their octonionic counterparts - which can be constructed as tensor products of
octonions providing alternative representation for the basis of 7-D Euclidian gamma matrix
algebra - and of 2-D sigma matrices. Spinor components correspond to tensor products of
octonions with 2-spinors: different spin states for these spinors correspond to leptons and
baryons.

(b) Construct a local Clifford algebra by considering Clifford algebra elements depending on
point of M8 or H. The octonionic 8-D Clifford algebra and its local variant are non-
accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by restricting the
elements so any quaternionic 4-plane. Doing the same for the local algebra means restriction
of the Clifford algebra valued functions to any 4-D hyper-quaternionic sub-manifold of M8

or H which means that the gamma matrices span complexified quaternionic algebra at each
point of space-time surface. Also spinors must be quaternionic.

(c) The assignment of the 4-D gamma matrix sub-algebra at each point of space-time surface
can be done in many manners. If the gamma matrices correspond to the tangent space of
space-time surface, one obtains just induced gamma matrices and the standard definition of
quaternionic sub-manifold. In this case induced 4-volume is taken as the action principle.
If Kähler action defines the space-time dynamics, the modified gamma matrices do not
span the tangent space in general.

(d) An important additional element is involved. If the M4 projection of the space-time surface
contains a preferred subspace M2 at each point, the quaternionic planes are labeled by
points of CP2 and one can equivalently regard the surfaces of M8 as surfaces of M4×CP2

(number-theoretical ”compactification”). This generalizes: M2 can be replaced with a
distribution of planes of M4 which integrates to a 2-D surface of M4 (for instance, for
string like objects this is necessarily true). The presence of the preferred local plane M2

corresponds to the fact that octonionic spin matrices ΣAB span 14-D Lie-algebra of G2 ⊂
SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas octonionic imaginary units
provide 7-D fundamental representation of G2. Also spinors must be quaternionic and
this is achieved if they are created by the Clifford algebra defined by induced gamma
matrices from two preferred spinors defined by real and preferred imaginary octonionic
unit. Therefore the preferred plane M3 ⊂ M4 and its local variant has direct counterpart
at the level of induced gamma matrices and spinors.

(e) This framework implies the basic structures of TGD and therefore leads to the notion of
world of classical worlds (WCW) and from this one ends up with the notion WCW spinor
field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1. Note
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that M8 is exceptional: in other dimensions there is no reason for the restriction of the
local Clifford algebra to lower-dimensional sub-manifold to obtain associative algebra.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quantum
TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic sub-manifold
formulated in terms of modified gamma matrices). One can pose some further questions.

1. Quantum TGD reduces basically to the second quantization of the induced spinor fields. Could
it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces in M8

(equivalently in M4×CP2) in the sense than one can solve the modified Dirac equation exactly
only in these cases?

2. The construction of quantum TGD -including the construction of vacuum functional as exponent
of Kähler function reducing to Kähler action for a preferred extremal - should reduce to the
modified Dirac equation defined by Kähler action. Could it be that the modified Dirac equation
can be solved exactly only for Kähler action.

3. Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma matrices
and sigma matrices with their standard counterparts? Could the associativity conditions for
octospinors and modified Dirac equation allow to pin down the form of solutions to such a high
degree that the solution can be constructed explicitly?

4. Octonionic gamma matrices provide also a non-associative representation for 8-D version of Pauli
sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Does the quaternionicity condition
imply that octo-twistors reduce to something closely related to ordinary twistors as the fact
that 2-D sigma matrices provide a matrix representation of quaternions suggests?

In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze for the
modes of the modified Dirac equation.

5.3.1 The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group of spinor
connection with G2. This has some rather unexpected consequences.

1. Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (5.1)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (5.2)

2. The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (5.3)
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where ei are the octonionic units. e2i = −1 guarantees that the M4 signature of the metric comes
out correctly. Note that γ7 =

∏
γi is the counterpart for choosing the preferred octonionic unit

and plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (5.4)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary octonion
units and their conjugates as the fundamental representation and its conjugate. The Cartan
algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to a quaternionic
sub-algebra.

4. The lower dimension of the G2 algebra means that some combinations of sigma matrices vanish.
All left or right handed generators of the algebra are mapped to zero: this explains why the
dimension is halved from 28 to 14. From the octonionic triangle expressing the multiplication
rules for octonion units [A2] one finds e4e5 = e1 and e6e7 = −e1 and analogous expressions for
the cyclic permutations of e4, e5, e6, e7. From the expression of the left handed sigma matrix
I3L = σ23 + σ30 representing left handed weak isospin (see the Appendix about the geometry
of CP2 [L1] , [L1] ) one can conclude that this particular sigma matrix and left handed sigma
matrices in general are mapped to zero. The quaternionic sub-algebra SU(2)L × SU(2)R is
mapped to that for the rotation group SO(3) since in the case of Lorentz group one cannot
speak of a decomposition to left and right handed subgroups. The elements of the complement
of the quaternionic sub-algebra are expressible in terms of Σij in the quaternionic sub-algebra.

2. Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equiva-
lent with the standard one.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonization. The right handed part is neutral containing only photon and Z0 so that the
gauge field becomes Abelian. Z0 and photon fields become proportional to each other (Z0 →
sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would obtain just
electrodynamics. This might provide a deeper reason for why electrodynamics is an excellent
description of low energy physics and of classical physics. This is consistent with the fact that
CP2 coordinates define 4 field degrees of freedom so that single Abelian gauge field should
be enough to describe classical physics. This would remove also the interpretational problems
caused by the transitions changing the charge state of fermion induced by the classical W boson
fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should have
only neutral components. The isospin matrix associated with the electromagnetic charge is e1×1
and represents the preferred imaginary octonionic unit so that that the image of the electro-weak
gauge algebra respects associativity condition. An open question is whether octonionization
is part of M8-H duality or defines a completely independent duality. The objection is that
information is lost in the mapping so that it becomes questionable whether the same solutions
to the modified Dirac equation can work as a solution for ordinary Clifford algebra.

2. If SU(2)R were mapped to zero only left handed parts of the gauge fields would remain. All
classical gauge fields would remain in the spectrum so that information would not be lost. The
identification of the electro-weak gauge fields as three covariantly constant quaternionic units
would be possible in the case of M8 allowing Hyper-Kähler structure [A1] , which has been
speculated to be a hidden symmetry of quantum TGD at the level of WCW. This option would
lead to difficulties with associativity since the action of the charged gauge potentials would lead
out from the local quaternionic subspace defined by the octonionic spinor.
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3. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields
in SO(2) ⊂ SU(2)×U(1) in quaternionic sub-algebra which in a well-defined sense corresponds
to M4 degrees of freedom! Since the resulting interactions are of gravitational character, one
might say that electro-weak interactions are mapped to manifestly gravitational interactions.
Since SU(2) corresponds to rotational group one cannot say that spinor connection would give
rise only to left or right handed couplings, which would be obviously a disaster.

3. Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (5.5)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in the
space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds nat-
urally to the two spin states of the right handed neutrino. In quark sector this would mean that
right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as
representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(5.6)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states
with vanishing color isospin correspond to right handed fermions and the states with non-vanishing
SU(3) isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions. The only difference between quarks and leptons is that the induced Kähler
gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies
involved due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can
corresponds to a sub-manifold M2 ⊂M4.

5.3.2 Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed below
makes sense also for ordinary modified Dirac equation which raises the hope that the same ansatz,
and even same solution could provide a solution in both cases.

1. The general structure of the modified Dirac equation

In accordance with quantum holography and the notion of generalized Feynman diagram, the
modified Dirac equation involves two equations which must be consistent with each other.

1. There is 3-dimensional generalized eigenvalue equation for which the modified gamma matrices
are defined by Chern-Simons action defined by the sum Jtot = J +J1 of Kähler forms of S2 and
CP2 [K4, K6] .
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D3Ψ = [DC−S +QC−S ] Ψ = λkγkΨ ,

QC−S = QαΓ̂αC−S , Qα = QAg
ABjBα .

(5.7)

The gamma matrices γk are M4 gamma matrices in standard Minkowski coordinates and thus
constant. Given eigenvalue λk defines pseudo momentum which is some function of the gen-
uine momenta pk and other quantum numbers via the boundary conditions associated with the
generalized eigenvalue equation.

The charges QA correspond to real four-momentum and charges in color Cartan algebra. The
term Q can be rather general since it provides a representation for the measurement interaction
by mapping observables to Cartan algebra of isometry group and to the infinite hierarchy of
conserved currents implied by quantum criticality. The operator O characterizes the quantum
critical conserved current. The surface Y 3

l can be chosen to be any light-like 3-surface ”parallel”
to the wormhole throat in the slicing of X4: this means an additional symmetry. Formally the
measurement interaction term can be regarded as an addition of a gauge term to the Kähler
gauge potential associated with the Kähler form Jtot of S2 × CP2.

The square of the equation gives the spinor analog of d’Alembert equation and generalized
eigenvalue as the analog of mass squared. The propagator associated with the wormhole throats
is formally massless Dirac propagator so that standard twistor formalism applies also without
the octonionic representation of the gamma matrices although the physical particles propagating
along the opposite wormhole throats are massive on mass shell particles with both signs of
energy [K6] .

2. Second equation is the 4-D modified Dirac equation defined by Kähler action.

DKΨ = 0 . (5.8)

The dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-like 3-
surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like 3-surfaces in
the slicing would allow to assign eigenvalues to DK,3 as analogs of energy eigenvalues for ordinary
Schrödinger equation. One proposal has been that Dirac determinant could be identified as the
product of these eigen values. Another and more plausible identification is as the product of
pseudo masses assignable to D3 defined by Chern-Simons action [B1] . It must be however made
clear that the identification of the exponent of the Kähler function to Chern-Simons term makes
the identification as Dirac determinant un-necessary.

3. There are two options depending on whether one requires that the eigenvalue equation applies
only on the wormhole throats and at the ends of the space-time surface or for all 3-surfaces
in the slicing of the space-time surface by light-like 3-surfaces. In the latter case the condition
that the pseudo four-momentum is same for all the light-like 3-surfaces in the slicing gives a
consistency condition stating that the commutator of the two Dirac operators vanishes for the
solutions in the case of preferred extremals, which depend on the momentum and color quantum
numbers also:

[DK , D3] Ψ = 0 . (5.9)

This condition is quite strong and there is no deep reason for it since λk does not correspond to
the physical conserved momentum so that its spectrum could depend on the light-like 3-surface
in the slicing. On the other hand, if the eigenvalues of D3 belong to the preferred hyper-complex
plane M2, D3 effectively reduces to a 2-dimensional algebraic Dirac operator λkγk commuting
with DK : the values of λk cannot depend on slice since this would mean that DK does not
commute with D3.
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2. About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead to a
provide precise information about the solution spectrum of modified Dirac equation is the condition
that everything in the equation should be associative. Hence the terms which are by there nature
non-associative should vanish automatically.

1. The first implication is that the besides octonionic gamma matrices also octonionic spinors should
belong to the local quaternionic plane at each point of the space-time surface. Spinors are also
generated by quaternionic Clifford algebra from two preferred spinors defining a preferred plane
in the space of spinors. Hence spinorial dynamics seems to mimic very closely the space-time
dynamics and one might even hope that the solutions of the modified Dirac action could be seen
as maps of the space-time surface to surfaces of the spinor space. The reduction to quaternionic
sub-algebra suggest that some variant of ordinary twistors emerges in this manner in matrix
representation.

2. The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1). On
the other hand, the holonomies are identical in the two cases if right-handed charge matrices
are mapped to zero so that there are indeed hopes that the solutions of the octonionic Dirac
equation cannot be mapped to those of ordinary Dirac equation. If left-handed charge matrices
are mapped to zero, the resulting theory is essentially the analog of electrodynamics coupled to
gravitation at classical level but it is not clear whether this physically acceptable. It is not clear
whether associativity condition leaves only this option under consideration.

3. The solution ansatz to the modified Dirac equation is expected to be of the form Ψ = DK(Ψ0u0+
Ψ1u1), where u0 and u1 are constant spinors representing real unit and the preferred unit e1.
Hence constant spinors associated with right handed electron and neutrino and right-handed d
and u quark would appear in Ψ and Ψi could correspond to scalar coefficients of spinors with
different charge. This ansatz would reduce the modified Dirac equation to D2

KΨi = 0 since
there are no charged couplings present. The reduction of a d’Alembert type equation for single
scalar function coupling to U(1) gauge potential and U(1) ”gravitation” would obviously mean
a dramatic simplification raising hopes about integrable theory.

4. The condition D2
KΨ = 0 involves products of three octonions and involves derivatives of the

modified gamma matrices which might belong to the complement of the quaternionic sub-space.
The restriction of Ψ to the preferred hyper-complex plane M2 simplifies the situation dramati-
cally but (D2

K)DKΨ = DK(D2
K)Ψ = 0 could still fail. The problem is that the action of DK is

not algebraic so that one cannot treat reduce the associativity condition to (AA)A = A(AA).

5.3.3 Could the notion of octo-twistor make sense?

Twistors have led to dramatic successes in the understanding of Feynman diagrammatics of gauge
theories, N = 4 SUSYs, and N = 8 supergravity [B5, B6, B3] . This motivated the question whether
they might be applied in TGD framework too [K13] - at least in the description of the QFT limit. The
basic problem of the twistor program is how to overcome the difficulties caused by particle massivation
and TGD framework suggests possible clues in this respect.

1. In TGD it is natural to regard particles as massless particles in 8-D sense and to introduce 8-D
counterpart of twistors by relying on the geometric picture in which twistors correspond to a
pair of spinors characterizing light-like momentum ray and a point of M8 through which the
ray traverses. Twistors would consist of a pair of spinors and quark and lepton spinors define
the natural candidate for the spinors in question. This approach would allow to handle massive
on-mass-shell states but cannot cope with virtual momenta massive in 8-D sense.

2. The emergence of pseudo momentum λk from the generalized eigenvalue equation for DC−S
suggest a dramatically simpler solution to the problem. Since propagators are effectively massless
propagators for pseudo momenta, which are functions of physical on shell momenta (with both
signs of energy in zero energy ontology) and of other quantum numbers, twistor formalism can
be applied in its standard form. An attractive assumption is that also λk are conserved in the
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vertices but a good argument justifying this is lacking. One can ask whether also N = 4 SUSY,
N = 8 super-gravity, and even QCD could have similar interpretation.

This picture should apply also in the case of octotwistors with minor modifications and one might
hope that octotwistors could provide new insights about what happens in the real case.

1. In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices γi,
i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1, σk = γk,

k = 1, .., 7 The problem is that masslessness condition does not correspond to the vanishing of
the determinant for the matrix pkσ

k.

2. In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion units
{σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined by the
multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn are the
structure constants characterizing multiplication by hyper-octonion. The norm squared for
octonion is the fourth root for the determinant of this matrix. Since pkσ

k maps its octonionic
conjugate to zero so that the determinant must vanish (as is easy to see directly by reducing the
situation to that for hyper-complex numbers by considering the hyper-complex plane defined by
P ).

3. Associativity condition for the octotwistors requires that the gamma matrix basis appearing in
the generalized eigenvalue equation for Chern-Simons Dirac operator must differs by a local G2

rotation from the standard hyper-quaternionic gamma matrix for M4 so that it is always in the
local hyper-quaternionic plane. This suggests that octo-twistor can be mapped to an ordinary
twistor by mapping the basis of hyper-quaternions to Pauli sigma matrices. A stronger condition
guaranteing the commutativity of D3 with λkγk is that λk belongs to a preferred hyper-complex
plane M2 assignable to a given CD. Also the two spinors should belong to this plane for the
proposed solution ansatz for the modified Dirac equation. Quaternionization would also allow
to assign momentum to the spinors in standard manner.

The spectrum of pseudo-momenta would be 2-dimensional (continuum at worst) and this should
certainly improve dramatically the convergence properties for the sum over the non-conserved
pseudo-momenta in propagators which in the worst possible of worlds might destroy the man-
ifest finiteness of the theory based on the generalized Feynman diagrams with the throats of
wormholes carrying always on mass shell momenta. This effective 2-dimensionality should apply
also in the real case and would have no catastrophic consequences since pseudo momenta are in
question.

As a matter fact, the assumption the decomposition of quark momenta to longitudinal and
transversal parts in perturbative QCD might have interpretation in terms of pseudo-momenta
if they are conserved.

4. M8 − H duality suggests a possible interpretation of the pseudo-momenta as M8 momenta
which by purely number theoretical reasons must be commutative and thus belong to M2 hyper-
complex plane. One ends up with the similar outcome as one constructs a representation for
the quantum states defined by WCW spinor fields as superpositions of real units constructed as
ratios of infinite hyper-octonionic integers with precisely defined number theoretic anatomy and
transformation properties under standard model symmetries having number theoretic interpre-
tation [K11] .

6 What one really means with a virtual particle?

Massive particles are the basic problem of the twistor program. The twistorialization of massive
particles does not seem to be a problem in TGD framework thanks to the possibility to interpret them
as massless particles in 8-D sense but the situation is unsatisfactory for virtual particles.

The ideas possibly allowing to circumvent this problem emerged from a totally unexpected di-
rection. The inspiration came from the finding of Martin Grusenick [E1] who discovered that a
Mickelson-Morley interferometer rotating in plane gives rise a non-trivial interference pattern when
the plane is orthogonal to the Earth’s surface but no effect when parallel to the Earth’s surface. The
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effect could be due to a contraction of the system in the vertical direction caused by the own weight
of the system and would thus involve no new physics. If not, then one must try to find General
Relativistic explanation for it. Schwartschild metric predicts this kind of effect but it is by a factor
10−4 too small.

In TGD framework one can however consider an explanation of the effect [K12] .

1. By relaxing the empty space assumption to the assumption that only the energy density (that is
Gtt) vanishes but the other diagonal components of Einstein tensor in Schwartschild coordinates
can be non-vanishing allows to explain the effect in terms of the deviation of the radial component
grr of the metric from Schwartschild metric. The predicted deviation decreases as 1/r and does
not affect planetary orbits appreciably even if present for all astrophysical objects. The value
of G determined from radial acceleration at the surface of Earth is predicted to deviate from
the actual value as a consequence. The deviation of the metric from empty space metric could
also explain the known surprisingly large variation in the measured values of G since nearby
gravitational fields are involved.

2. The Einstein tensor in regions with vanishing energy density would obviously correspond to a
tachyonic matter. This led to a series of ideas allowing to sharpen the physical meaning of
Einstein’s equations in TGD framework. The basic result would be the extension of quantum
classical correspondence. The Einstein tensor in matter free regions would describe the presence
of virtual particles and would fail to satisfy causality constraint since it corresponds to the
space-like momentum exchange of the system with the external world (space-likeness follows if
the scattering is elastic).

3. It is difficult to understand how the energy momentum tensor of matter could behave like Gαβ

does if the latter describes tachyons. The resolution of the problem could be very simple in zero
energy ontology. In zero energy ontology bosons (and their super counterparts) correspond to
wormhole contacts carrying fermion and antifermion numbers at the light-like wormhole throats
and having opposite signs of energy. This allows the possibility that the fermions at the throats
are on mass shell and the sum of their momenta gives rise to off mass shell momentum which
can be also space-like. In zero energy ontology Gαβ would naturally correspond to the sum
of on mass shell energy energy momentum tensors Tαβ± associated with positive and negative
energy fermions and their super-counterparts. Note that for the energy momentum tensor
Tαβ = (ρ + p)uαuβ − pgαβ of fluid with uαuα = 1 constraint stating on mass shell condition
the allowance of virtual particles would mean giving up the condition uαuα = 1 for the velocity
field.

6.1 Could virtual particles be regarded as pairs of on mass shell particles
with opposite energies?

This identification suggests a concrete identification of virtual particle as pairs of positive and negative
energy on mass shell particles allowing an elegant formulation of the twistor program in the case of
virtual particles [K13, K7] .

1. The basic idea is that massive on mass shell states can be regarded as massless states in 8-
dimensional sense so that twistor program generalizes to the case of massive on mass shell
states associated with the representations of super-conformal algebras. One has however allow
now also off mass shell states, in particular those with space-like momenta, and the question
is how to describe them in terms of generalized twistors. In the case of wormhole contacts the
answer looks obvious. Bosons and their super partners could correspond to pairs of positive and
negative energy on mass shell states and could be described using a pair of twistors associated
with composite momenta massless in 8-D sense.

2. It took some time to realize that the most elegant identification of the on mass shall bosons
would be as wormhole contacts for which both throats have either positive or negative energy.
This would imply automatically on-mass shell property. The basic objection against this has
been that one cannot construct massless spin 1 states in this manner. Dirac equation in M4

implies that the momenta are parallel and for fermion and antifermion the helicities are therefore



6.2 How to treat the new degrees of freedom? 28

opposite and only longitudinal polarization representing pure gauge degree of freedom is possible.
It is amazing how long time it required to realize that I had swallowed this objection completely
uncritically. After all, the first thing that I learned from the Dirac equation for massless induced
spinors is that it mixes unavoidably M4 chiralities except for very special vacuum extremals
like canonically imbedded M4. Same applies to the modified Dirac equation. Therefore there is
no problem! Of course, also the p-adic mass calculations involve imbedding spaced spinors for
which M4 helicities are mixed strongly since only covariantly constant right handed neutrino
is massless and possesses a well defined M4 helicity. At space-time level a pair of massless
extremals (topological light rays) with same (opposite) energies and connected by wormhole
contacts could serve as a space-time correlate for on (off) mass shell boson.

3. How can one then identify virtual fermions and their super-counterparts? These particles have
been assumed to consist of single wormhole throat associated with a deformation of CP2 vacuum
extremal so that the proposed definition would allow only on mass shell states. A possible reso-
lution of the problem is the identification of also virtual fermions and their super-counterparts
as wormhole contacts in the sense that the second wormhole throats is fermionic Fock vac-
uum carrying purely bosonic quantum numbers and corresponds to a state generated by purely
bosonic generators of the super-symplectic algebra whose elements are in 1-1 correspondence
with Hamiltonians of δM4

±×CP2. Thus the distinction between on mass shell and of mass shell
states would be purely topological for fermions and their super partners.

4. The concrete physical interpretation would be that particle scattering event involves at least
two parallel space-time sheets. Incoming (outgoing) fermion is topologically condensed at posi-
tive energy (negative energy) sheet and corresponds to single throat. In the interaction region
fermionic spaced-time sheet touches with a high probably the large space-time sheet sheet since
the distance between sheets is about 104 Planck lengths. The touching (topological sum) gen-
erates a second wormhole throat with a spherical topology and carrying no fermion number but
having on mass shell momentum. Virtual fermions would be interacting fermions. Since only
topological sum contacts are formed, also virtual fermions are labeled by the genus g of the 2-D
wormhole throat whereas bosons are labeled by the pair (g1, g2) of the genera of two wormhole
throats. This classification is consistent with the mechanism giving rise to virtual bosons.

The proposed identification of virtual and on mass shell particles is beautiful but it is of course
far from obvious whether it really make sense. Bosonic emergence means that the fundamental loop
integrals are for fermionic loops. One could in principle get rid of bosonic loop integrals by using
generalized Cutkosky rules [K9, K7] but it would be highly satisfying to have a concrete physical
interpretation for the loops. It interesting to see whether the proposed picture picture works in
practice. Bosonic emergence means that one path integrates first over fermions to get bosonic action
as radiative corrections. Only 3-vertices (or rather, 3 momenta are associated with the vertex [K7] )
are involved at the fermion level whereas at the bosonic level arbitrary high vertiecs appear.

6.2 How to treat the new degrees of freedom?

The identification of off mass shell states as on mass shell states of positive and negative energy throats
brings in new degrees of freedom. Let us first look what happens if the momenta of the two throats
of wormhole contact are completely uncorrelated apart from the condition p1 − p2 = p coming from
the energy conservation in the 3-vertex. Here p1 (−p2) is the momentum of on mass shell positive
(negative) energy throat and p is the momentum of outgoing (incoming) wormhole contact. On mass
shell conditions eliminate two degrees of freedom so that in absence of correlations the 4-D integral
over loop momenta should be extended to a 6-D integral. For a given time-like virtual momentum
p these degrees of freedom corresponds to 2-dimensional sphere as one finds by looking the situation
in the rest system of p (the direction of p1 = −p2 is arbitrary) so that additional loop integration is
finite. For light-like p the additional degrees of freedom correspond to 2-D light-cone boundary δM3

+

defined by the condition t2 − x2 − y2 = 0: δM3
+ SO(1, 2) invariant 2-volume does not exist. This is

not a catastrophe since massless momenta define lower-dimensional sub-manifold of the momentum
space. For space-like p one has hyperboloid t2 − x2 − y2 = −1 and the 2-D loop integral would be
infinite in absence of additional constraints.
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A 2-dimensional integral appears at each line of Feynman diagram and if the only constraint comes
from p1 − p2 = p one obtains new divergences for space-like momenta p. One can imagine several
approaches to the problem.

1. The most conservative approach assumes that the freedom to select the decomposition p = p1+p2
is completely analogous to a gauge symmetry. This is the case if the propagators are just the
usual ones. Although this decomposition would take place it would not have any physical
consequences since scattering amplitudes do not depend on the choices of these decompositions.
For each line the integral over the decompositions normalized by the volume of S2 or hyperboloid
would give the same result as an arbitrary gauge choice fixing the decompositions.

2. For the second option the new degrees of freedom would be present for each line of the generalized
Feynman diagram in a non-trivial manner, and the dependence of the emission vertices on the
decompositions should allow to avoid the infinities for space-like p. The vertices would depend
on Lorentz invariant quantities such as k · ·p1 and k · ·p2, where k denotes the momentum of any
line coming to the vertex, and in an optimist mood one could ask whether this dependence could
allow to smooth out also the standard loop divergences by bringing in the effective momentum
cutoff through the new momentum degrees of freedom. In twistorial description this kind of
dependence could allow especially elegant realization. Note that also a sum over mass shells is
involved and can cause divergences.

3. For the third option the new degrees of freedom would be eliminated by some physical mechanism
fixing the direction of the projection of p1 (and p2) in the hyperplane normal to p. The minimum
option would eliminate the additional 2-dimensional integral but would not pose conditions on
the loop momenta p1 and p2. One should be able to fix the direction of the projection of p1 in
the hyperplane P (p) whose normal is p by some rule having a physical justification. As a matter
fact, this option would be special case of the first one.

Bosonic sector (with super partners included) poses additional conditions. N-boson vertices are
defined by fermionic loops and N-boson vertices with arbitrary large value of N are possible. Bosonic
propagators emerge as inverses of 2-boson vertices defined by fermionic loops. Let pB = p1+p2 denote
the sought for decomposition to on mass shell momenta. For the first and second options there are no
obvious problems in the bosonic sector. For the third option there is a serious difficulty involvedthe
decompositions pB = p1 + p2 defined by the vertices at the opposite ends of the boson line are not in
general consistent. This kind of conditions lead to a hopelessly clumsy formalism.

6.3 Could additional degrees of freedom allow natural cutoff in loop inte-
grals?

Second option involving two new degrees of freedom for each internal line deserves a more detailed
discussion. The masses assignable to on mass shell throats define an inherent momentum cutoff
allowing to get rid of infinities without giving up conformal invariance. Of course, mass squared cutoff
comes also from the breakdown of the QFT limit at CP2 length scale but one might hope that this
cutoff is not actually needed.

1. To see what is involved, consider a BFF vertex with the fermionic momenta p1 = p11 + p12
and p2 = p21 + p22, and bosonic momentum p3 = p31 + p32. As a concrete example, one might
consider the calculation of bosonic propagator as the inverse of the bosonic 2-vertex involving
fermion loop for which a model was discussed in [K9] . For definiteness restrict the consideration
to the decomposition of the fermionic momentum p1. The natural direction in the orthogonal
complement P (p1) of p1 is defined by p2 (equivalently by p3). The corresponding momentum
projections

Pi1 = pi −
pi · p1p1
p21

, i = 2, 3

are the same. Pi1 in general diverges for p21 = 0.
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2. Conformal invariance allows only dimensionless Lorentz invariants constructed from the mo-
menta. Strong form of the conformal invariance does not allow dependence on the masses of the
throats. For time-like (space-like) p1 the dimensionless variable

c12 ≡
p11 · P21√
p211
√
P 2
21

= c13

describes the cosine (hyperbolic cosine) of the angle (hyperbolic angle) between p11 and P21.
The corresponding sine (hyperbolic sine) si,i+1 vanishes when p11 is parallel to the projection
of p2 (p3) in P (p1). Similar variables can be assigned to p2 and p3. Together with the three
analogous variables

ci,i =
pi1 · pi√
p2i1
√
p2i

measuring the hyperbolic angle between between pi1 and pi, one has 6 variables. p2i1 and p2i
can have both signs and also vanish and this might lead difficulties if one wants Gaussians and
analyticity.

3. The on mass shell property for throats allows to consider a milder form of conformal invariance
for which one has variables

C12 ≡
p11 · P21

m1m2
= C13 ,

where mi, i = 1, 2 denote that throat masses. This introduces a cutoff in P21 when p1 is
space-like. These variables have infinite values for massless throats so that massless throats
cannot appear as building bricks of the virtual particles. The assumption that on mass-shell
bosons involve massless wormhole throat would distinguish them from virtual bosons in a unique
manner.

4. One can also identify dimensionless quantities formed from the loop momenta. Strong form of
conformal invariance allows only

dij =
pi · pj√
p2i

√
p2j

possible also for ordinary loops. These variables give hope about cutoff with respect to Lorentz
boost for pi in the rest system of pj but again the signs are problematic. The weaker form of
conformal invariance allows also the variables

Dij =
pi · pj
mimj

not plagued by the sign problems and giving hopes also about mass squared cutoff. Indeed, if on
mass shell throats are present they should take a key role in the physics of the virtual particles.

The following two simple examples give an idea about what might be involved.

1. Consider first a vertex factor which is a Gaussian of form exp(−
∑
ij S

2
ij) = exp(−2

∑
i(Si,i+1)2−∑

i S
2
i,i) suppressing the the momenta pi1 for which the projections in P (pi) are not parallel to

those of pj and also large boosts of pi1 in the rest system of pi. Massless throats would not
appear at all in internal lines. The additional 2-D integrals together with the correlation between
pk and pi1 do not probably smooth out the standard loop divergences in momentum squared and
hyperbolic angle. The replacement of Sij with sij together with analyticity leads to difficulties
since sij does not have a definite sign.
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2. The exponential exp(−
∑
i6=j D

2
ij) forces the decoupling of massless throats from virtual states,

is free of the sign difficulties, and allowes a stronger hyperbolic cutoff as well as mass scale
cutoff. The replacement of Dij with dij leads to the same problems as encountered in the first
example. The simple model for the hyperbolic cutoff discussed in [K9] could allow a more refined
formulation in this framework. It is however important to realize that this kind of cutoffs look
rather adhoc for the generalization of supersymmetric action for fermions [K7] . They might be
present in the radiatively generated bosonic action.

6.4 Could quantum classical correspondence fix the correct option?

Concerning the dynamics in the new degrees of freedom the above argument lead two options under
consideration. The first option assumes M2 gauge invariance and can be criticized as being somewhat
ad hoc unless one can find a convincing interpretation for the restriction of the momenta p1 and p2
to M2 ∩ P (p), where M2 denotes a sub-space of M4 defining the space of non-physical polarizations
and P (p) is the orthogonal complement of p = p1 + p2. For both options one can argue that the
decomposition p = p1 + p2 should have same space-time correlate.

1. Preferred extremals of Kähler action are characterized by a local choice of M2(x) ⊂M4 in such
a manner that the subspaces M2(x) integrate to a 2-D surface in M4. M2(x) has a physical
interpretation as the sub-space of non-physical polarizations. Number theoretical interpretation
is as a hyper-complex plane of complexified octonions. In the generalized Feynman diagram-
matics only the choice of M2(x) at the 2-D partonic 2-surfaces X2 identified as the ends the 3-D
light-like wormhole throats X3

l matters. For a given line one can also restrict the consideration
to single point x of X2 since fermion numbers is carried by a light-like curve along X3

l : the is an
integral over possible choices of course. The additional degrees of freedom would therefore have
a concrete interpretation in terms of space-time surfaces. The effective two-dimensionality states
that M -matrix depends only the partonic 2-surfaces and their 4-D tangent spaces containing
M2(x) at the ends of the lines of generalized Feynman diagrams.

2. The first option would mean a complete independence on M2(x) at partonic 2-surface implied
by the first option would mean actual 2-dimensionality instead of only effective one. This is not
quite in spirit of quantum TGD although it might make sense at QFT limit.

3. For the second option preferred extremals would reflect in their properties the decomposition
p = p1 + p2 for the internal lines and the dependence of vertices on the decomposition could
correspond to the value of the vacuum functional for a given distribution of the planes M2(x).
The locality of the choice M2(x) would mean that p1 and p2 are not separately conserved during
the propagation along the internal line and physical picture suggests that the choice M2(x) is
constant for light-like 3-surfaces representing lines of the generalized Feynman diagrams.

6.5 Could the formulation of SUSY limit of TGD allow the new view about
off mass shell particles?

Could the proposed heuristic ideas about off mass shell particles and diagram-wise finiteness of the
perturbation theory, the suggested manner to fix the direction of the projections of p1 and p2 in P (p)
in terms of the preferred polarization plane M2 ⊂M4 characterizing a given line of Feynman diagram,
and the formulation of super-symmetric QFT limit of TGD [K7] be consistent with each other?

1. There are good arguments that the generalized SUSY based on bosonic emergence and the
generalization of super field concept guarantees the cancelation of divergences associated with
particles and their super-partners. The new view about off mass shell particles encourages a
dream about the finiteness of the individual diagrams justifying the motivations for the primitive
model of [K9] .

2. The description of bosons and their superpartners as wormhole throats requires at the fundamen-
tal level the introduction of new degrees of freedom associated with p = p1 − p2 decomposition.
On mass shell property is possible and would realize twistorial dreams. If one keeps the original
view about virtual fermions and their super-partners as single throated objects, there is no need
to describe virtual fermions as wormhole contacts.
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3. Quantum classical correspondence suggests that the projections of p1 and p2 into P (p) lie in
the intersection M2 ∩ P (p), where M2 characterizes the line of the generalized Feynman di-
agram. If so, then the new degrees of freedom mean integral over the planes M2 labeled by
the points of s ∈ S2. If also virtual fermions correspond to wormhole contacts, BFF-vertices
would contain an amplitude f(α, s1, s2, s3) with si characterizing the lines. The parameters α
would code information about the momenta of virtual particles, about the masses of on mass
shell particles comprising the virtual particles, and also about the dynamics of Kähler action
involving exponent of Kähler function for the extremal in question. If virtual fermions are sin-
gle throated, one has f(α, s) with s characterizing the bosonic line. The generalization would
require a characterization of the form factor f(α, s1, s2, s3) or f(α, s) in principle predicted by
TGD proper but probably only modelable at QFT limit. The view about preferred extremals
allows the possibility that si is not conserved along line. If the values of si at the ends of the
line are not correlated, the integral over si gives a form factor F (α).

4. The propagators for the generalized chiral super-field describing fermions would not be affected,
and the effects of f would be only seen at the level of propagators and vertices for bosons and
their super-parterns. f could in principle guarantee the finiteness of individual contributions to
both fermionic and bosonic loops without the need for Wick rotation.

6.6 Trying to sum up

The proposed replacement of virtual particles as a convenient mathematical abstraction with some-
thing very real suggests that the black box of the loop integrals could be opened and one might even
construct concrete models for off mass shell particles using twistorial formulation. The conservative
approach would interpret the non-uniqueness of the decomposition of the loop momenta to on mass
shell momenta in terms of gauge invariance. A more radical approach would assign two additional
degrees of freedom to each line of generalized Feynman diagram and allow vertices to depend on the
decomposition. This would give even hopes about the smoothing out of the standard divergences. As
a matter fact, this idea was followed already in the chapter about bosonic emergence [K9] , where
it was proposed that natural physical cutoffs on mass squared and hyperbolic angle characterizing
the energy of virtual particle could guarantee the finiteness of fermionic loops. The construction of
the super-symmetric QFT limit of TGD [K7] however suggests that the cancelation of infinities takes
place by super-symmetry even without cutoffs. One interpretation is that this cancelation justifies
the neglect of the physical cutoff as an excellent approximation. An interesting question is whether
the loop integrals could make sense even without Wick rotation.

7 The first attempt to formulate twistorial description

This section summarizes a further vision about how twistors might emerge from quantum TGD. It is
only loosely related to the other visions and is certainly the simplest one and also very closely related
to the recent picture about generalized Feynman diagrams. Of course, it is bound to be speculative
just like all other considerations of this chapter and one cannot take the details of the proposal too
seriously.

7.1 The simplest vision about how twistors might emerge from TGD

The vision involves the notions of bosonic emergence, the identification of virtual states as pairs of
on mass shell states assignable to wormhole throats inspired by zero energy ontology and associated
realization of Cutkosky rules in terms of manifestly finite Feynman diagrammatics, and as the latest
piece the weak form of electric-magnetic duality and the notion of pseudo-momentum emerging from
the generalized eigenstates of the Chern-Simons Dirac operator.

There must be a correlation between pseudo-momenta and real momenta. One can imagine two
identifications.

1. Chern-Simons action emerges as boundary term in variation of Kähler Dirac action [K6] and
variation gives Chern-Simons Dirac equation with an additional contribution to modified gamma
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matrices from the 3-D Lagrange multiplier term expressing electric-magnetic duality. The Chern-
Simons Dirac propagator is very difficult to handle mathematically. One also wants a correlation
between incoming quantum numbers and also those assignable to fermionic lines and action of
Chern-Simons Dirac operator. This is achieved by adding a 3-D measurement interaction term
having same form as massless Dirac interaction in M4 but obtained by replacing the derivatives
with components of light-like four-momentum [K6]. The outcome is that Chern-Simons Dirac
operator effective acts as the massless Dirac operator pkγk of M4.

What is important is that pkγk does not annihilate fermions with unphysical helicities so that
on virtual fermions can be taken as on mass shell massless fermions with unphysical helicity.
Indeed, the integration over loop momentum interpreted as residue integral reduces for fermion
propagator to D with 3-D integral over light-like four-momenta. A result highly analogous to
that obtained for gauge bosons in twistor approach.

2. Second possibility is that the eigenvalues of C-S Dirac operator (this identification does not follow
from action principle) are identified as analogs of region momenta whose differences define the
incoming massless momenta in twistor diagram. This does not give direct connection with
the quantum numbers of the fermions appearing in incoming lines and brings in additional
complications. As one might expect, I chose just this option when I wrote this chapter for the
first time!

In the following the basic arguments supporting this still speculative picture are described.

7.2 Generalized eigen modes for the modified Chern-Simons Dirac equa-
tion and hydrodynamical picture

Hydrodynamical picture and the reduction of TGD to almost topological QFT discussed in detail
in [K6] helps to understand also the construction of generalized eigen modes of 3-D Chern-Simons
Dirac equation.

7.3 Generalized Feynman diagrams at fermionic and momentum space
level

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

7.3.1 Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
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at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
reduce to integrals over over light-like mass shell momenta for fermions with unphysical helicity
by interpreting 4-D momentum integral as residue integral. This if all wormhole throats are
assumed to carry light-like on mass shell momenta. In each vertex of the loop mass incoming
on mass shell momenta must sum up to on mass shell momentum.

The original hope was that these constraints improve the behavior of loop integrals dramatically
and give rise to finiteness.

It does not however seem that only a finite number of diagrams contribute to the scattering
amplitude besides tree diagrams. The point is that if a the reactions N1 → N2 and N2 → N3,,
where Ni denote particle numbers, are possible in a common kinematical region for N2-particle
states then also the diagrams N1 → N2 → N2 → N3 are possible. The virtual states N2 include
all all states in the intersection of kinematically allow regions for N1 → N2 and N2 → N3. Hence
the dream about finite number possible diagrams is not fulfilled if one allows massless particles.
If all particles are massive then the particle number N2 for given N1 is limited from above and
the dream is realized.

It has also tgurned out that finiteness is too much to hope. To achieve finiteness one must
replace Feynman diagrams with stringy diagrams and these indeed emerge naturally in TGD
framework as became clear after writing the first draft of this chapter.

3. The original argument suggesting finiteness went as follows. For instance, in gauge theories loops
are not possible in the massless case or are highly singular (bringing in mind twistor diagrams)
since the conservation laws at vertices imply that the momenta are parallel. In the massive case
and allowing mass spectrum the situation is not so simple. As a first example one can consider a
loop with three vertices and thus three internal lines. Three on mass shell conditions are present
so that the four-momentum can vary in 1-D subspace only. For a loop involving four vertices
there are four internal lines and four mass shell conditions so that loop integrals would reduce
to discrete sums. Loops involving more than four vertices are expected to be impossible.

There is however an important distinction between TGD and gauge theories. At microcopic
level one has four-fermion vertices although wormhole contacts with fermion and antifermion
at throats behave effectively as virtual bosons. This means that momentum conservation for
massless momenta does not force them to be parallel.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.

7.3.2 Are loop integrals manifestly finite?

One can make also more detailed observations about loops.
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1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (7.1)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.

4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [K7] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

There is however a heavy objection against this line of thought [K10]. In TGD framework the ver-
tices are four-fermion vertices with on fermion-antifermion pair forming virtual boson. This effectively
gives BFF vertices.

1. One can generalize the idea about residue integration over virtual four-momenta for bosons
allowing to reduce everything to on mass shell particles. For bosons the massless particles have
complex momenta. For fermions the situation is simpled: momentum integration gives the
inverse of the propagator as D = pkγk. For non-physical helicities this does not annihilate the
spinor at the end of the line. All particles could be regarded as massless on mass shell particles
but virtual ones would have unphysical helicity.

2. There is however cold shower waiting: the study of the behavior of diagrams discussed in [K10]
suggests that the resulting diagrams involving 3-D integrals over mass shell and need not give
finite results! One cannot avoid logarithmic divergences, which should be the standard diver-
gences of massless theories.
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3. It seems that the only manner to escape difficulties is to start from stringy diagrams [K10],
which are indeed forced by the fact that the modes of induced spinor fields are localized at
string world sheets with one exception: right-handed neutrino. These diagrams are manifestly
finite and right handed neutrino cannot spoil the situation since it has no electroweak couplings.

When D is slashed between fermionic stringy propagator and its hermitian conjugate one obtains
well-defined propagator lines although fermionic stringy propagator identified as super Virasoro
generator G carries quark or lepton number so that the old problem caused by non-Majorana
property of fermions in TGD framework disappears.

In the light of after wisdom the observation that stringy diagrammatics is necessary to achieve
finiteness does not give rise to a hot news! The paths to the truth are sometimes very tortuous.

7.3.3 Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B2] leads
to the picture about elementary particles as pairs of magnetic monopoles inspiring the notions of
weak confinement based on magnetic monopole force. Also color confinement would have magnetic
counterpart. This means that elementary particles would behave like string like objects in weak boson
length scale. Therefore one must also consider the stringy case with wormhole throats replaced with
fermion-X± pairs (X± is electromagnetically neutral and ± refers to the sign of the weak isospin
opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [K7] .

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [K5] .

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.
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