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Abstract

This chapter is the first one of the two chapters providing a summary about evolution of
quantum TGD in nearly chronological order. By their nature these chapters are dynamical
and I cannot guarantee internal consistency since the ideas discussed are those under most
vigorous development.

The discussions are based on the general vision that quantum states of the Universe cor-
respond to the modes of classical spinor fields in the “world of the classical worlds” (WCW)
identified as the infinite-dimensional WCW of 3-surfaces of H = M4 × CP2 (more or less-
equivalently, the corresponding 4-surfaces defining generalized Bohr orbits). The following
topics are discussed on basis of this vision in this chapter.

In this chapter the discussion is mostly concentrated on general ideas whereas the topics
related to the construction of M-matrix are discussed on the second chapter. TGD relies
heavily on geometric and number theoretical ideas gradually generalized during the years.
The following summarizes the overall picture as it is now.

1. The basic vision is that it is possible to reduce quantum theory to WCW geometry
and spinor structure. The geometrization of loop spaces inspires the idea that the mere
existence of Riemann connection fixes WCW Kähler geometry uniquely. Accordingly,
WCW can be regarded as a union of infinite-dimensional symmetric spaces labelled by
zero modes labelling classical non-quantum fluctuating degrees of freedom. The huge
symmetries of the WCW geometry deriving from the light-likeness of 3-surfaces and
from the special conformal properties of the boundary of 4-D light-cone would guarantee
the maximal isometry group necessary for the symmetric space property.

2. Quantum criticality is the fundamental hypothesis allowing to fix the Kähler function
and thus dynamics of TGD uniquely. Quantum criticality leads to surprisingly strong
predictions about the evolution of coupling constants. Generalization of 2-D conformal
symmetries generalized so that it applies light-like surfaces is conjectured to define quan-
tum criticality mathematically: actually one has hierarchy of broken conformal symme-
tries defined by the hierarchy of sub-algebras of conformal algebra or associated algebra
(say Kac-Moody type algebra).

3. WCW spinors correspond to Fock states and anti-commutation relations for fermionic
oscillator operators correspond to anti-commutation relations for the gamma matrices of
the configuration space. WCW spinors define a von Neumann algebra known as hyper-
finite factor of type II1 (HFFs). This has led to a profound understanding of quantum
TGD.

4. p-Adic mass calculations relying on p-adic length scale hypothesis led to an understand-
ing of elementary particle masses using only super-conformal symmetries and p-adic
thermodynamics. The need to fuse real physics and various p-adic physics to single co-
herent whole led to a generalization of the notion of number obtained by gluing together
reals and p-adics together along common rationals and algebraics. The interpretation
of p-adic space-time sheets is as correlates for cognition and intentionality. p-Adic and
real space-time sheets intersect along common rationals and algebraics and the subset
of these points defines what I call number theoretic braid in terms of which both WCW
geometry and S-matrix elements should be expressible. Thus one would obtain number
theoretical discretization which involves no adhoc elements and is inherent to the physics
of TGD.

5. The work with HFFs combined with experimental input led to the notion of hierarchy
of Planck constants interpreted in terms of dark matter. The hierarchy is realized via
a generalization of the notion of imbedding space obtained by gluing infinite number
of its variants along common lower-dimensional quantum critical sub-manifolds. This
leads to the identification of number theoretical braids as points of partonic 2-surface
which correspond to the minima of generalized eigenvalue of Dirac operator, a scalar field
to which Higgs vacuum expectation is proportional to. Higgs vacuum expectation has
thus a purely geometric interpretation. This leads to an explicit formula for the Dirac
determinant. What is remarkable is that the construction gives also the 4-D space-time
sheets associated with the light-like orbits of partonic 2-surfaces: they should correspond
to preferred extremals of Kähler action.

Thus hierarchy of Planck constants is now an essential part of construction of quantum
TGD and of mathematical realization of the notion of quantum criticality. The hierarchy
of sub-algebras of conformal algebra consisting of generators for which conformal weight
is multiple of integer n, would correspond to the value heff = n× h of effective Planck
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constant. Conformal equivalence classes of space-time surfaces with same space-like ends
at boundaries of CD would contain n surfaces.

6. HFFs lead also to an idea about how entire TGD emerges from classical number fields,
actually their complexifications. In particular, CP2 could be interpreted as a structure
related to octonions. This would mean that TGD could be seen also as a generalized
number theory.

1 Introduction

This chapter is the first one of two chapters providing a summary about evolution of quantum TGD
in nearly chronological order. By their nature these chapters are dynamical and I cannot guarantee
internal consistency since the ideas discussed are those under most vigorous development.

The discussions are based on the general vision that quantum states of the Universe correspond
to the modes of classical spinor fields in the WCW or “world of the classical worlds” identified
as the infinite-dimensional WCW of 3-surfaces of H = M4 × CP2 (more or less-equivalently, the
corresponding 4-surfaces defining generalized Bohr orbits). The following topics are discussed on
basis this vision.

1.1 Geometric ideas

TGD relies heavily on geometric ideas, which have gradually generalized during the years.

1. The basic dynamical objects of TGD are 3-surfaces of 8-D imbedding space fixed uniquely
by the symmetries of particle physics and the structure of standard model. 4-D general
coordinate invariance allows to assume that these surfaces are light-like and the interpretation
is as random light-like orbits of 2-dimensional partons. This picture leads immediately to an
understanding of the fundamental super-conformal symmetries of the theory and realization
that TGD can be seen as an almost topological quantum field theory.

2. The basic vision is that it is possible to reduce quantum theory to WCW geometry and spinor
structure. The geometrization of loop spaces inspires the idea that the mere existence of Rie-
mann connection fixes WCW Kähler geometry uniquely. Accordingly, WCW can be regarded
as a union of infinite-dimensional symmetric spaces labelled by zero modes labelling classical
non-quantum fluctuating degrees of freedom. The huge symmetries of the WCW geometry
deriving from the light-likeness of 3-surfaces and from the special conformal properties of the
boundary of 4-D light-cone would guarantee the maximal isometry group necessary for the
symmetric space property. Quantum criticality is the fundamental hypothesis allowing to
fix the Kähler function and thus dynamics of TGD uniquely. Quantum criticality leads to
surprisingly strong predictions about the evolution of coupling constants.

3. WCW spinors correspond to Fock states and anti-commutation relations for fermionic os-
cillator operators correspond to anti-commutation relations for the gamma matrices of the
WCW. WCW Clifford algebra defines a von Neumann algebra known as hyper-finite factor of
type II1 (HFFs). This has led to a profound understanding of quantum TGD. The outcome
of this approach is that the exponents of Kähler function and Chern-Simons action are not
fundamental objects but reduce to the Dirac determinant associated with the Kähler-Dirac
operator assigned to the light-like 3-surfaces.

4. The reduction of the WCW geometrization to second quantization of induced spinor fields at
light-like 3-surface is crucial for the practical progress made in the geometrization. The Dirac
determinant defined as the product of generalized eigenvalues of the Kähler-Dirac operator
has identification as vacuum functional defined by Kähler function. By construction the
generalized eigenvalues carry information about the preferred extremal of Kähler action, and
their number for a given light-like 3-surface is finite so that finiteness of the theory is guar-
anteed and the notion of finite measurement resolution -forced originally by the properties
of hyper-finite factors- emerges automatically.
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5. p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of
elementary particle masses using only super-conformal symmetries and p-adic thermodynam-
ics. The need to fuse real physics and various p-adic physics to single coherent whole led to a
generalization of the notion of number obtained by gluing together reals and p-adics together
along common rationals and algebraics. The interpretation of p-adic space-time sheets is as
correlates for cognition and intentionality. p-Adic and real space-time sheets intersect along
common rationals and algebraics and the subset of these points defines what I call number
theoretic braid in terms of which both WCW geometry and S-matrix elements should be
expressible. Thus one would obtain number theoretical discretization which involves no ad
hoc elements and is inherent to the physics of TGD.

6. The work with HFFs combined with experimental input led to the notion of hierarchy of
Planck constants interpreted in terms of dark matter. The hierarchy is realized via a gener-
alization of the notion of imbedding space obtained by gluing infinite number of its variants
along common lower-dimensional quantum critical sub-manifolds.

7. HFFs lead also to an idea about how entire TGD emerges from classical number fields,
actually their complexifications. In particular, CP2 could be interpreted as a structure related
to octonions. This would mean that TGD could be seen also as a generalized number theory.
The vision about TGD as a generalized number theory involves also the notion of infinite
primes. This notion leads to a further generalization of the ideas about geometry: this
time the notion of space-time point generalizes so that it has an infinitely complex number
theoretical anatomy not visible in real topology.

1.2 Ideas related to the construction of S-matrix

The construction of S-matrix has been the most difficult challenge of TGD and involves several
ideas that have emerged during last years. It is not possible to represent explicit formulas yet but
the general principles behind S-matrix, or rather its generalization to M-matrix, are reasonably
well understood now.

1. Zero energy ontology motivated originally by TGD inspired cosmology means that physical
states have vanishing net quantum numbers and are decomposable to positive and negative
energy parts separated by a temporal distance characterizing the system as space-time sheet
of finite size in time direction. The particle physics interpretation is as initial and final
states of a particle reaction. S-matrix and density matrix are unified to the notion of M-
matrix expressible as a product of square root of density matrix and of unitary S-matrix.
Thermodynamics becomes therefore a part of quantum theory.

One must distinguish M-matrix from U-matrix defined between zero energy states and anal-
ogous to S-matrix and characterizing the unitary process associated with quantum jump.
U-matrix is most naturally related to the description of intentional action since in a well-
defined sense it has elements between physical systems corresponding to different number
fields.

2. The notion of measurement resolution represented in terms of inclusions of HFFs is an es-
sential element of the picture. Measurement resolution corresponds to the action of the
included sub-algebra creating zero energy states in time scales shorter than the cutoff scale.
This algebra effectively replaces complex numbers as coefficient fields and the condition that
its action commutes with the M-matrix implies that M-matrix corresponds to Connes tensor
product. Thus S-matrix is characterized by the measurement resolution analogous to length
scale cutoff of quantum field theories. Together with super-conformal symmetries this fixes
possible M-matrices to a very high degree. The amazing conclusion interpreted in terms of
asymptotic freedom is that at the never-reachable limit of infinite measurement resolution
the S-matrix becomes trivial.

3. An essential difference between TGD and string models is the replacement of stringy di-
agrams with generalized Feynman diagrams obtained by gluing 3-D light-like surfaces (in-
stead of lines) together at their ends represented as partonic 2-surfaces. This makes the
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construction of vertices very simple. The notion of number theoretic braid in turn implies
discretization having also interpretation in terms of non-commutativity due to finite measure-
ment resolution replacing anti-commutativity along stringy curves with anti-commutativity
at points of braids. Braids can replicate at vertices which suggests interpretation in terms of
topological quantum computation combined with non-faithful copying and communication of
information. The analogs of stringy diagrams have quite different interpretation in TGD: for
instance, photons travelling via two different paths in double slit experiment are represented
in terms of stringy branching of the photonic 2-surface.

4. Light-likeness of the basic fundamental objects implies that TGD is almost topological QFT
so that the formulation in terms of category theoretical notions is expected to work. M-
matrices form in a natural manner a functor from the category of cobordisms to the category
of pairs of Hilbert spaces and this gives additional strong constraints on the theory.

5. M8 −H duality or “number theoretical compactification” [K19] states that one can regard
space-time surfaces X4 either as associative (co-associative) surfaces in the space M8 of
hyper-octonions or as preferred extremals of Kähler action in M4×CP2. Associativity means
that the tangent space of X4 at each point is some hyperquaternionic subspace HQ = M4

of HO. Besides this a preferred plane M2 ⊂ M8 identifiable as a plane of non-physical
polarizations belongs to the tangent space at each point. This hypothesis provides a purely
number theoretic interpretation of gauge conditions and implies a large number of “must-
be-trues” of quantum TGD, and together with zero energy ontology leads to a precise view
about the realization of zero energy states in terms of causal diamonds allowing to deduce p-
adic length scale hypothesis and a general vision about coupling constant evolution in which
time scales appear as power of 2 multiples of a basic length scale.

One can ask whether this duality generalizes to H-H duality such that the image of associative
(co-associative) surface in duality is associative (co-associative). If this were the case the
dualities would make the space of space-time surfaces a category and one could iterate the
duality to construct new preferred extremals of Kähler action.

One important implication is a justification for the coset construction based on the lifting of
Super Kac-Moody algebra (SKM) at a given light-like 3-surface to a sub-algebra of super-
symplectic algebra (SC) lifted from δM± × CP2 to algebra in H.

6. The outcome is a generalization of Feynman diagrammatics in which the lines of Feynman
diagrams are replaced with 3-D light-like surfaces meeting at 2-D surfaces representing ver-
tices. The contribution of a given Feynman diagram is calculated using the fusion rules of
a generalized conformal field theory recursively rather than instead of the ordinary Feyn-
man rules. A new element is symplectically invariant (invariant under symplectic/contact
transformations of δM4

± × CP2) factor of N-point function and thus expressible in terms of
symplectic invariants constructed from the areas assignable to the geodesic triangles defined
by the subsets of N points and satisfying fusion rules. Simple argument shows that this
factor vanishes if any two arguments of N-point function are identical: this gives excellent
hopes that infinities are avoided as general arguments indeed predict. The construction
and classification of symplectic QFTs as analogs of conformal field theories becomes a basic
mathematical challenge.

The restriction of the arguments of N-point functions to a discrete set of points at partonic
2-surfaces and defining number theoretical braids is an essential ingredient of the approach
making it possible the completion of the theory to real and various p-adic domains. These
points correspond to the unique intersection of the hyper-quaternionic (and thus associative
subset M4 ⊂M8 with the partonic 2-surfaces, where M4 is now a fixed associative plane of
M8 which should not be confused with the varying associative plane assignable to each point
of X4.

A structure resembling stringy perturbation theory involving fermionic propagators express-
ible as inverses of the super-generator G0 is what one naively expects. The fact that G0

must carry fermion number seems however to be a problem: the stringy propagator actually
corresponds to G−1pkγk(G†))

−1

. There is thus no need for Majorana spinors leading to super
string models and imbedding space dimension D = 8 works.
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1.3 Some general predictions of quantum TGD

TGD is consistent with the symmetries of the standard model by construction although there are
definite deviations from the symmetries of standard model. TGD however predicts also a lot of
new physics. Below just some examples of the predictions of TGD.

1. Fractal hierarchies meaning the existence of scaled variants of standard model physics is the
basic prediction of quantum TGD. p-Adic length scale hypothesis predicts the possibility
that elementary particles can have scaled variants with mass scales related by power of

√
2.

Dark matter hierarchy predicts the existence of infinite number of scaled variants with same
mass spectrum with quantum scales like Compton length scaling like ~.

2. TGD predicts that standard model fermions and gauge bosons differ topologically in a pro-
found manner. Free fermions correspond to light-like wormhole throats associated with topo-
logically condensed CP2 type extremals whereas gauge bosons correspond to fermion-anti-
fermion states associated with the throats of wormhole contacts connecting two space-time
sheets with opposite time orientation. The implication is that Higgs vacuum expectation
value cannot contribute to fermion mass: this conforms with the results of p-adic mass
calculations. TGD predicts also so called super-symplectic quanta and these give dominat-
ing contribution to most hadron masses. These degrees of freedom correspond to those of
hadronic string and should not reduce to QCD.

3. The most fascinating applications of zero energy ontology are to quantum biology and TGD
inspired theory of consciousness. Basic new element are negative energy photons making
possible communications to the direction of geometric past. Here also dark matter hierarchy
is involved in an essential manner.

4. In cosmology the mere imbeddability required for Robertson-Walker cosmology implies that
critical and over-critical cosmologies are almost unique and characterized by their finite du-
ration. The cosmological expansion is accelerating for them and there is no need to assume
cosmological constant. Macroscopic quantum coherence of dark matter in astrophysical scales
is a dramatic prediction and allows also to assign periods of accelerating expansion to quan-
tum phase transition changing the value of gravitational Planck constant. The dark matter
parts of astrophysical systems are predicted to be quantum systems.

5. The notion of hyper-finite factors suggesting the representation of finite measurement resolu-
tion as gauge symmetry suggests that the physics of TGD Universe is universal in the sense
that it is possible to engineer a system able to mimic the physics of any consistent gauge
theory. Kind of analog of Turing machine would be in question.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://www.tgdtheory.fi/

cmaphtml.html [L5]. Pdf representation of same files serving as a kind of glossary can be found
at http://www.tgdtheory.fi/tgdglossary.pdf [L6].

2 Physics as geometry of WCW spinor fields

The construction of the geometry of WCW (“world of classical worlds” or simply WCW) has pro-
ceeded rather slowly. The experimentation with various ideas has however led to the identification
of the basic constraints on WCW geometry. The most recent vision is described in [K31].

The basic philosophical motivation for the hypothesis that quantum physics could reduce to
the construction of WCW Kähler metric and spinor structure, is that infinite-dimensional Kähler
geometric existence could be unique not only in the sense that the geometry of the space of 3-
surfaces could be unique but that also the dimension of the space-time is fixed to D = 4 by this
requirement and M4

+ ×CP2 is the only possible choice of imbedding space. This optimistic vision
derives from the work of Dan Freed with loops spaces demonstrating that they possess unique
Kähler geometry and from the fact that in D > 1 case the existence of Riemann connection,
finiteness of Ricci tensor, and general coordinate invariance poses even stronger constraints.

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
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2.1 Constraints on WCW geometry

The detailed considerations of the constraints on WCW geometry suggests that it should possess
at least the following properties.

1. Metric should be Kähler metric. This property is necessary if one wants to geometrize the
oscillator algebra used in the construction of the physical states and to obtain a well defined
divergence free functional integration in the configuration space.

2. Metric should allow Riemann connection, which, together with the Kähler property, very
probably implies the existence of an infinite dimensional isometry group as the construction
of Kähler geometry for the loop spaces demonstrates [A10].

3. The so called symmetric spaces classified by Cartan [A12] are Cartesian products of the coset
spaces G/H with maximal isometry group G. Symmetric spaces possess G invariant metric
and curvature tensor is constant so that all points of the symmetric space are metrically
equivalent. Symmetric space structure means that the Lie-algebra of G decomposes as

g = h⊕ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h ,

where g and h denote the Lie-algebras of G and H respectively and t denotes the complement
of h in g. The existence of the g = t+h decomposition poses an extremely strong constraint
on the symmetry group G.

In the infinite-dimensional context symmetric space property would mean a drastic calcula-
tional simplification. The most one can hope is that WCW is expressible as a union ∪i(G/H)i
of symmetric spaces. Reduction to a union of G/H is the best one can hope since 3-surface
of Planck size cannot be metrically equivalent with a 3-surface having the size of galaxy! The
coordinates labelling the symmetric spaces in this union do not appear as differentials in the
line element of WCW and are thus zero modes. They correspond to non-quantum fluctu-
ating degrees of freedom in a well defined sense and are identifiable as classical variables of
quantum measurement theory.

4. Metric should be Diff4 (not only Diff3!) invariant and degenerate and the definition of the
metric should associate a unique space-time surface X4(X3) to a given 3-surface X3 to act
on. This requirement is absolutely crucial for all developments.

5. Divergence cancellation requirement for the functional integral over WCW requires that the
metric is Ricci flat and thus satisfies vacuum Einstein equations.

2.2 WCW as a union of symmetric spaces

In the finite-dimensional context, globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. Good guess is that
same holds true in the infinite-dimensional context. The task is to identify the infinite-dimensional
groups G and H. Only quite recently, more than seven years after the discovery of the candidate
for Kähler function defining the metric, it became finally clear that these identifications follow
quite nicely from Diff4 invariance and Diff4 degeneracy.

The crux of the matter is Diff4 : all 3-surfaces on the orbit of 3-surface X3 must be physically
equivalent so that one can effectively replace all 3-surfaces Z3 on the orbit of X3 with a suitably
chosen surface Y 3 on the orbit of X3. The Lorentz and Diff4 invariant choice of Y 3 is as the
intersection of the 4-surface with the set δM4

+ × CP2, where δM4
+ denotes the boundary of the

light-cone: effectively the imbedding space can be replaced with the product δM4
+ × CP2 as far

as vibrational degrees of freedom are considered. More precisely: WCW has a fiber structure: the
3-surfaces Y 3 ⊂ δM4

+ ×CP2 correspond to the base space and the 3-surfaces on the orbit of given
Y 3 and diffeomorphic with Y 3 correspond to the fiber and are separated by a zero distance from
each other in WCW metric.

These observations lead to the identification of the isometry group as some subgroup G of
the group of the diffeomorphisms of δH = δM4

+ × CP2. These diffeomorphisms indeed act in
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a natural manner in δCH, the space of the 3-surfaces in δH. Therefore one can identify the
WCW as the union of the coset spaces G/H, where H corresponds to the subgroup of G acting as
diffeomorphisms for a given X3. H depends on the topology of X3 and since G does not change
the topology of the 3-surface, each 3-topology defines a separate orbit of G. Therefore, the union
involves the sum over all topologies of X3 plus possibly other “zero modes”.

The task is to identify correctly G as a sub-algebra of the diffeomorphisms of δH. The only
possibility seems to be that the symplectic transformations of δH generated by the function algebra
of δH act as isometries of WCW. The symplectic transformations act nontrivially also in δM4

+ since
δM4

+ allows Kähler structure and thus also symplectic structure.

2.2.1 The magic properties of the light like 3-surfaces

In case of the Kähler metric, G- and H Lie-algebras must allow a complexification so that the isome-
tries can act as holomorphic transformations. The unique feature of the δM4

+, realized already
seven years ago, is its metric degeneracy: the boundary of the light-cone is metrically 2-dimensional
sphere although it is topologically 3-dimensional! This implies that light-cone boundary allows an
infinite-dimensional group of conformal symmetries generated by an algebra, which is a general-
ization of the ordinary Virasoro algebra! There is actually also an infinite-dimensional group of
isometries (!) isomorphic with the group of the conformal transformations! Even more, in case of
δH the groups of the conformal symmetries and isometries are local with respect to CP2. Further-
more, light-cone boundary allows infinite dimensional group of symplectic transformations as the
symmetries of the symplectic structure automatically associated with the Kähler structure. There-
fore 4-dimensional Minkowski space is in a unique position in TGD approach. δM4

+ allows also
complexification and Kähler structure unlike the boundaries of the higher-dimensional light-cones
so that it becomes possible to define a complexification in the tangent space of the WCW, too.

The space of the vector fields on δH = δM4
+ × CP2 inherits the complex structure of the

light-cone boundary and CP2. The complexification can be induced from the complex conjugation
for the functions depending on the radial coordinate of the light-cone boundary playing the same
role as the time coordinate associated with string space-time sheet. In M4

+ degrees of freedom
complexification works only provided that the radial vector fields posses zero norm as WCW
vector fields (they have also zero norm as vector fields).

The effective two-dimensionality of the light-cone boundary allows also to circumvent the no-
go theorems associated with the higher-dimensional Abelian extensions. First, in the dimensions
D > 2 Abelian extensions of the gauge algebra are extensions by an infinite dimensional Abelian
group rather than central extensions by the group U(1). In the present case the extension is a
symplectic extension analogous to the extension defined by the Poisson bracket {p, q} = 1 rather
than the standard central extension but is indeed 1- dimensional and well defined provided that
the configuration space metric is Kähler. Secondly, D > 2 extensions possess no unitary faithful
representations (satisfying certain well motivated physical constraints) [A18]. The point is that
light-cone boundary is metrically and conformally 2-sphere and therefore the gauge algebra is
effectively the algebra associated with the 2-sphere and, as a consequence, also WCW metric is
Kähler.

There is counter argument against complexifixation. The Kähler structure of the light-cone
boundary is not unique: various complex structures are parameterized by SO(3, 1)/SO(3) (Lo-
batchewski space). The definition of the Kähler function as absolute minimum of Kähler action
however makes it possible to assign unique space-time surface X4(Y 3) to any Y 3 on the light-cone
boundary and the requirement that the group SO(3) specifying the Kähler structure is isotropy
group of the classical four-momentum associated with X4(Y 3), fixes the complex structure uniquely
as a function of Y 3. Thus it seems that Kähler action is necessary ingredient of the group theo-
retical approach.

2.2.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic ex-

amples are boundaries and elementary particle horizons at which Minkowskian signature of the
induced metric transforms to Euclidian one. This brings in a second conformal symmetry related
to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as TGD
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counterpart of the Kac Moody symmetry of string models. The challenge is to understand the
relationship of this symmetry to WCW geometry and the interaction between the two conformal
symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l )∩CD×CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super
Kac-Moody type Super Virasoro generators annihilated physical states. This construction in
turn led to the realization that WCW for fixed values of zero modes - in particular the values
of the induced Kähler form of δM4

± × CP2 - allows identification as a coset space obtained
by dividing the symplectic group of δM4

± × CP2 with Kac-Moody group, whose generators
vanish at X2 = X3

l × δM4
±×CP2. One can say that quantum fluctuating degrees of freedom

in a very concrete sense correspond to the local variant of S2 × CP2.

The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l should be enough to determine WCW
geometry. This implies that the relevant data is contained to their intersection X2 at least for
finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving
light likeness corresponding to zero modes or gauge degrees of freedom and induce deformations
of X3 also acting as zero modes. The outcome is effective 2-dimensionality. One must be however
cautious in order to not make over-statements. The reduction to 2-D theory in global sense would
trivialize the theory and the reduction to 2-D theory must takes places for finite region of X3 only
so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation
of this vision is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-
CD: s brings in improved measurement resolution and means also that effective 2-dimensionality
is realized in the scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for WCW metric involving 3-dimensional integrals over X3 ⊂
M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is one-to-one.

2.2.3 Symmetric space property reduces to conformal and symplectic invariance

The idea about symmetric space is extremely beautiful but it millenium had to change before I was
ripe to identify the precise form of the Cartan decomposition. The solution of the puzzle turned
out to be amazingly simple.

The algebra is a direct sum g = g1⊕ g2 such that g1 has h = n as conformal weights and g2 has
more general conformal weights. This motivates the guess that the ground state conformal weights
are given by h = i/2 + y. It is actually possible to regard the imaginary part of h as a pseudo
conformal weight, which can be eliminated by a natural choice of the light-like radial coordinate
of δM4

+. Conformal invariance suggests integer spectrum for y whereas Riemann hypothesis favors
zeros of Riemann Zeta.

The requirement that ordinary Virasoro and Kac Moody generators annihilate physical states
corresponds now to the fact that the generators of h vanish at the point of WCW, which remains
invariant under the action of h. The maximum of Kähler function corresponds naturally to this
point and plays also an essential role in the integration over WCW by generalizing the Gaussian
integration of free quantum field theories.

The light-cone conformal invariance differs in many respects from the conformal invariance of
string theories. In particular, the finite-dimensional group defining Kac-Moody group is replaced
by an infinite-dimensional symplectic group.
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2.3 An educated guess for the Kähler function

The turning point in the attempts to construct WCW geometry was the realization that four-
dimensional Diff invariance (not only 3-dimensional Diff invariance!) of General Relativity
must have a counterpart in TGD. In order to realize this symmetry in the space of 3-surfaces, the
definition of WCW metric should somehow associate to a given 3-surface X3 a unique space-time
surface X4(X3) for Diff4 to act on. Physical considerations require that the metric should be, not
only Diff4 invariant, but also Diff4 degenerate so that infinitesimal Diff4 transformations should
correspond to zero norm vector fields of WCW.

Since Kähler function determines Kähler geometry, the definition of the Kähler function should
associate a unique space-time surface X4(X3) to a given 3-surface X3. The natural physical
interpretation for this space-time surface is as the classical space-time associated with X3 so that
in TGD classical physics (X4(X3)) becomes a part of WCW geometry and of the quantum theory.

2.3.1 Kähler function as Kähler action for preferred extremal

One could try to construct WCW geometry by finding the metric for a single representative 3-
surface at each orbit of G and extending it by left translations to the entire orbit of G. The metric
for this representative should be Diff3 invariant and somehow it should associate a unique space-
time surface to the 3-surface in question. The original attempt was however more indirect and
based on the realization that the construction of the Kähler geometry reduces to that of finding
Kähler function K(X3) with the property that it associates a unique space-time surface X4(X3)
to a given 3-surface X3 and possesses mathematically and physically acceptable properties. The
guess for the Kähler function is the following one.

By Diff4 invariance one can restrict the consideration on the set of 3-surfaces Y 3 on the “light-
cone boundary” δH = δM4

+ × CP2 since one can define the space-time surface associated with
X3 ⊂ X4(Y 3) to be X4(X3) = X4(Y 3) in case that the initial value problem for X3 has X4(Y 3)
as its solution. This implies K(X3) = K(Y 3).

The value of the Kähler function K for a given 3-surface Y 3 on light-cone boundary is obtained
in the following manner.

1. Consider all possible 4-surfaces X4 ⊂ M4
+ × CP2 having Y 3 as its sub-manifold: Y 3 ⊂ X4.

If Y 3 has boundary then it belongs to the boundary of X4: δY 3 ⊂ δX4.

2. Associate to each four surface Kähler action as the Maxwell action for the Abelian gauge field
defined by the projection of the CP2 Kähler form to the four-surface. For a Minkowskian
signature of the induced metric Kähler electric field gives a negative contribution to the
action density whereas for an Euclidian signature the action density is always non-positive.

3. Define the value of the Kähler functionK for Y 3 as the absolute minimum of the Kähler action
SK over all possible four-surfaces having Y 3 as its sub-manifold: K(Y 3) = Min{SK(X4)|X4 ⊃
Y 3}.

This definition of the Kähler function has several physically appealing features.

1. Kähler geometry associates with each X3 a unique four-surface, which will be interpreted as
the classical space-time associated with X3. This means that the so called classical space
time (and physics!) in TGD approach is not defined via some approximation procedure
(stationary phase approximation of the functional integral) but is an essential part of not only
quantum theory, but also of WCW geometry, which in turn might be determined by a mere
mathematical consistency! Since quantum states are superpositions over these classical space-
times, it is clear that the observed classical space-time is some kind of effective, quantum
average space-time, presumably defined as an absolute minimum for the effective action of
the theory.

2. The space-time surface associated with a given 3-surface is analogous to a Bohr orbit of the
old fashioned quantum theory. The point is that the initial value problem in question differs
from the ordinary initial value problem in that although the values of the H coordinates hk

as functions hk(x) of X3 coordinates can be chosen arbitrarily, the time derivatives ∂th
k(x)
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at X3 are uniquely fixed by the principle selecting preferred extremals as generalized Bohr
orbits (absolute minimization or probably something more delicate such as criticality [K27],
existence of quaternionic tangent space structure [K19], or Hamilton-Jacobi structure [K2] )
unlike in the ordinary variational problems encountered in the classical physics. This implies
something closely analogous to the quantization of the symplectic momenta so that the
space-time surface can be regarded as a generalized Bohr orbit. The classical quantization
of electric charge and mass are possible consequences of the Bohr orbit property.

3. Kähler function is Diff4 invariant in the sense that the value of the Kähler function is same for
all 3-surfaces belonging to the orbit of a given 3-surface. As a consequence, WCW metric is
Diff4 degenerate. The implications of the Diff4 invariance have turned out to be decisive, not
only for the geometrization of WCW, but also for the construction of the quantum theory.
For instance, time like vibrational modes tangential to the 4-surface imply tachyonic mass
spectrum unless they correspond to the zero modes of WCW metric. Diff4 invariance however
guarantees the required kind of degeneracy of the metric.

4. The non-determinism of Kähler action means that the complete reduction to the light-cone
boundary is not possible. This means a mathematical challenge but is physically a highly
desirable feature since otherwise time would be lost as it is lost in the canonically quantized
general relativity.

The most general expectation is that WCW can be regarded as a union of coset spaces: C(H) =
∪iG/H(i). Index i labels 3-topology and zero modes. The group G, which can depend on 3-
surface, can be identified as a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain
as its subgroup a group, whose action reduces to Diff(X3) so that these transformations leave
3-surface invariant.

The task is to identify plausible candidate for G and to show that the tangent space of WCW
allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow complexification.
One must also identify the zero modes and construct integration measure for the functional integral
in these degrees of freedom. Besides this one must deduce information about the explicit form of
WCW metric from symmetry considerations combined with the hypothesis that Kähler function
is determined as absolute minimum of Kähler action.

It will be found that in the case of M4
+ × CP2 Kähler geometry, or strictly speaking contact

Kähler geometry, characterized by a degenerate Kähler form (Diff4 degeneracy and plus possible
other degeneracies) seems possible. Although it seems that this construction must be generalized
by allowing all light like 7-surfaces X3

l ×CP2, at least those for which X3
l is boundary of light-cone

inside M4
+ or M4, with the physical interpretation differing dramatically from the original one, the

original construction discussed in the sequel involves the most essential aspects of the problem.

2.3.2 How to identify preferred extremals of Kähler action?

The first guess for preferred extremals of Kähler action defining the Bohr orbits was that they corre-
spond to absolute minima of Kähler action. One can criticize this assumption, and I have proposed
several identifications of preferred extremals [K2, K31] and some of them could be equivalent.

The number theoretical vision discussed in [K19] would suggest the separate minimization of
magnitudes of positive and negative contributions to the Kähler action. It must be emphasized that
this option need not conform nicely with number theoretical universality since in p-adic context
absolute minimization does not make sense and should be replaced by some algebraic notion. The
non non-vanishing determinant for Hessian of Kähler action would be such a purely algebraic
condition characterizing absolute minimum and maximum but would not be able to distinguish
between then. This notion is not consistent with the idea that quantum criticality has criticality
of preferred extremals as space-time correlate [K27] since at criticality the Hessian is degenerate.

For this option Universe would do its best to save energy, being as near as possible to vacuum.
Also vacuum extremals would become physically relevant: note that they would be only inertial
vacua and carry non-vanishing density gravitational energy. The non-determinism of the vacuum
extremals would have an interpretation in terms of the ability of Universe to engineer itself.

The 3-surfaces for which CP2 projection is at least 2-dimensional and not a Lagrange mani-
fold would correspond to non-vacua since conservation laws do not leave any other option. The
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variational principle would favor equally magnetic and electric configurations whereas absolute
minimization of action based on SK would favor electric configurations. The positive and negative
contributions would be minimized for 4-surfaces in relative homology class since the boundary of
X4 defined by the intersections with 7-D light-like causal determinants would be fixed. Without
this constraint only vacuum bubbles would result.

The attractiveness of the number theoretical variational principle from the point of calculability
of TGD would be that the initial values for the time derivatives of the imbedding space coordinates
at X3 at light-like 7-D causal determinant could be computed by requiring that the energy of the
solution is minimized. This could mean a computerizable solution to the construction of Kähler
function.

It should be noticed that the considerations of this chapter relate only to the extremals of
Kähler action which need not be absolute minima nor more general preferred extremals discussed
in [K19] although this is suggested by the high symmetries. The number theoretic approach based
on the properties of quaternions and octonions discussed in the chapter [K19] leads to a proposal for
the general solution of field equations based on the generalization of the notion of calibration [A11]
providing absolute minima of volume to that of Kähler calibration. This approach will not be
discussed in this chapter.

2.4 The construction of WCW geometry from symmetry principles

The most general expectation is that WCW can be regarded as a union of coset spaces which are
infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i).

Index i labels 3-topology and zero modes. The group G, which can depend on 3-surface, can be
identified as a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as its subgroup a
group, whose action reduces to Diff(X3) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and H and to show that the tangent space
of WCW allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow com-
plexification. One must also identify the zero modes and construct integration measure for the
functional integral in these degrees of freedom. Besides this one must deduce information about the
explicit form of WCW metric from symmetry considerations combined with the hypothesis that
Kähler function is Kähler action for a preferred extremal of Kähler action. One must of course
understand what “preferred” means.

The gigantic size of the isometry group suggests that it might be possible to deduce very detailed
information about the metric of the WCW by group theoretical arguments. This turns out to be
the case. In order to have a Kähler structure, one must define a complexification of WCW. Also
one should identify the Lie algebra of the isometry group and try to derive explicit form of the
Kähler metric using this information. One can indeed construct the metric in this manner but a
rigorous proof that the corresponding Kähler function is the one defined by Kähler action does not
exist yet although both approaches predict the same general qualitative properties for the metric.
The argument stating the equivalence of the two approaches reduces to the hypothesis stating
electric-magnetic duality of the theory. For the Bohr orbit like preferred extremals of Kähler
action magnetic WCW Hamiltonians derivable from group theoretical approach are essentially
identical with electric WCW Hamiltonians derivable from Kähler action.

2.4.1 General Coordinate Invariance and generalized quantum gravitational holog-
raphy

The basic motivation for the construction of WCW geometry is the vision that physics reduces
to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ ×
CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum theory and its
geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded into
Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler func-
tion reduces the construction of the geometry to that for the boundary of WCW consisting of
3-surfaces on δM4

+×CP2, the moment of big bang. The proposal was that Kähler function K(Y 3)
could be defined as absolute minimum of so called Kähler action for the unique space-time surface
X4(Y 3) going through given 3-surface Y 3 at δM4

+ × CP2. For Diff4 transforms of Y 3 at X4(Y 3)
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Kähler function would have the same value so that Diff4 invariance and degeneracy would be the
outcome.

This picture is however too simple.

1. The degeneracy of the absolute minima caused by the classical non-determinism of Kähler
action however brings in additional delicacies, and it seems that the reduction to the light-
cone boundary which in fact corresponds to what has become known as quantum gravitational
holography must be replaced with a construction involving more general light like 7-surfaces
X3
l × CP2.

2. It has also become obvious that the gigantic symmetries associated with δM4
+×CP2 manifest

themselves as the properties of propagators and vertices, and that M4 is favored over M4
+.

Cosmological considerations, Poincare invariance, and the new view about energy favor the
decomposition of WCW to a union of WCW s associated with various 7-D causal determi-
nants. The minimum assumption is that all possible unions of future and past light-cone
boundaries δM4

±×CP2 ⊂M4×CP2 label the sectors of CH: the nice feature of this option
is that the considerations of this chapter restricted to δM3

+×CP2 generalize almost trivially.
This option is beautiful because the center of mass degrees of freedom associated with the
different sectors of CH would correspond to M4 itself and its Cartesian powers. One can-
not exclude the possibility that even more general light like surfaces X3

l × CP2 of M4 are
important as causal determinants.

The definition of the Kähler function requires that the many-to-one correspondence X3 →
X4(X3) must be replaced by a bijective correspondence in the sense that X3 is unique among all
its Diff4 translates. This also allows physically preferred “gauge fixing” allowing to get rid of the
mathematical complications due to Diff4 degeneracy. The internal geometry of the space-time sheet
X4(X3) must define the preferred 3-surface X3 and also a preferred light like 7-surface X3

l ×CP2.
This is indeed possible. The possibility of negative values of Poincare energy(or equivalently

inertial energy) inspires the hypothesis that the total quantum numbers and classical conserved
quantities of the Universe vanish. This view is consistent with experimental facts if gravitational
energy is defined as a difference of Poincare energies of positive and negative energy matter. Space-
time surface consists of pairs of positive and negative energy space-time sheets created at some
moment from vacuum and branching at that moment. This allows to select X3 uniquely and
define X4(X3) as the absolute minimum of Kähler action in the set of 4-surfaces going through
X3. These space-time sheets should also define uniquely the light like 7-surface X3

l × CP2, most
naturally as the “earliest” surface of this kind. Note that this means that it become possible to
assign a unique value of geometric time to the space-time sheet.

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X3

l of M4 implies generalized conformal and
symplectic invariances allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

2.4.2 Symplectic transformations of δM4
+ × CP2 as isometries of WCW

The symplectic transformations of δM4
+ × CP2 are excellent candidates for inducing symplectic

transformations of WCW acting as isometries. There are however deep differences with respect to
the Kac Moody algebras.

1. The conformal algebra of WCW is gigantic when compared with the Virasoro + Kac Moody
algebras of string models as is clear from the fact that the Lie-algebra generator of a sym-
plectic transformation of δM4

+ × CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transforma-

tion of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the

notion of local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
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and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+×CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2

Hamiltonians involves a term analogous to a central extension term symmetric with respect
to CP2 Hamiltonians, and resulting from the δM4

+ bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish
and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.

The most natural option is that symplectic and Kac-Moody algebras together generate the
isometry algebra and that the corresponding transformations leaving invariant the partonic 2-
surfaces and their 4-D tangent space data act as gauge transformations and affect only zero modes.

2.4.3 Does the symmetric space property reduce to coset construction for Super
Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (2.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

WCW geometry allows two super-conformal symmetries assignable the coset space decomposi-
tion G/H for a sector of WCW with fixed values of zero moes. One can assign to the tangent space
algebras g resp. h of G resp. H analogous to Kac-Moody algebras super Virasoro algebras and
construct super-conformal representation as a coset representation meaning that the differences
of super Virasoro generators annihilate the physical states. This obviously generalizes Goddard-
Olive-Kent construction Sugawara.

The original conjecture was that the four-momenta associated with the two representations are
identical. The physical interpretation would be in terms of Equivalence Principle (EP). This need
not to be the case and the four-momenta associated with H vanish naturally. Later a more feasible
identification of quantal and classical variants of EP has emerged [K23].

The identification of the two algeras is not a mechanical task and has involved a lot of trial
and error. The algebra g should be be spanned by the generators of super-symplectic algebra
of light-cone boundary and by the Kac-Moody algebra acting on light-like orbits of partonic 2-
surfaces. The sub-algebra h should be spanned by generators which vanish for a preferred point of
WCW analogous to origin of CP2 = SU(3)/U(2). Now this point would correspond to maximum
or minimum of Kähler function (no saddle points are allowed if the WCW metric has definite
signature). In hindsight it is obvious that the generators of both symplectic and Kac-Moody
algebras are needed to generate g and h: already the effective 2-dimensionality meaning that 4-D
tangent space data of partonic surface matters requires this.

The maxima of Kähler function could correspond to this kind of points and could play also
an essential role in the integration over WCW by generalizing the Gaussian integration of free
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quantum field theories. It took quite a long time to realize that Kähler function must be identified
as Kähler action for the Euclidian region of preferred extremal. Kähler action for Minkowskian
regions gives imaginary contribution to the action exponential and has interpretation in terms of
Morse function. This part of Kähler action can have and is expected to have saddle points and to
define Hessian with signature which is not positive definite.

2.4.4 What effective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points,
which directly relate to what one means with holography.

1. Holography suggests that light-like 3-surfaces with fixed ends give rise to same WCW metric
and the deformations of these surfaces by Kac-Moody algebra correspond to zero modes
just like the interior degrees of freedom for space-like 3-surface do. The same would be
true for space-like 3-surfaces at the ends of space-time surface with respect to symplectic
transformations.

2. The non-trivial action of Kac-Moody algebra in the interior of X3
l together with effective

2-dimensionality and holography would encourage the interpretation of Kac-Moody symme-
tries acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic
2-surfaces at their ends would be equivalent physically and effective 2-dimensionality and
holography would be realized modulo gauge transformations. As a matter fact, the action
on WCW metric would be a change of zero modes so that one could identify it as analog
of conformal scaling. The action of symplectic transformations vanishing in the interior of
space-like 3-surface at the end of space-time surface affects only zero modes.

3. Gauge symmetry property means that the Kähler metric of the WCW is same for all gauge
equivalent choices of X3

l and Kac-Moody deformations correspond to zero modes. Kähler
function could differ by a real part of a holomorphic function of configuration space co-
ordinates representing now Kac-Moody transforms of X3

l . If Dirac determinant gives the
exponent of Kähler function, the eigenvalues of the Kähler-Dirac action can differ only by
scalings with are products of holomorphic function of WCW coordinates and its conjugates
labeling different Kac-Moody transforms of X3

l . This condition makes sense if one restricts
the consideration to the finite number of eigenvalues λk assigned to DK . The introduction
of instanton term transforming the eigenvalues to λk +

√
n would not allow his scaling.

Either one must assume more general spectrum of form λk +
√
nxk with λk and xk scaling

in identical manner or that n = 0 modes are enough to define Kähler function. The latter
option might be correct since the preferred extremal realizes effective 2-dimensionality at
space-time level and conformal excitations break it so that they should not contribute to
Kähler function. Also number theoretic universality favors this option. One cannot however
exclude the first option. It must be admitted that the situation is not completely understood.

2.5 Attempts to identify WCW Hamiltonians

I have made several attempts to identify WCW Hamiltonians. The first two candidates referred
to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third candidate
is based on the formulation of quantum TGD using 3-D light-like surfaces identified as orbits of
partons. The proposal is out-of-date but the most recent proposal is obtained by a very straight-
forward generalization from the proposal for magnetic Hamiltonians discussed below.

2.5.1 Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of δM4
+ have zero norm, one ends

up with an explicit identification of the symplectic structures of WCW. There is almost unique
identification for the symplectic structure. WCW counterparts of δM4 × CP2 Hamiltonians are
defined by the generalized signed and and unsigned Kähler magnetic fluxes
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Qm(HA, X
2) = Z

∫
X2 HAJ

√
g2d

2x ,

Q+
m(HA, rM ) = Z

∫
X2 HA|J |

√
g2d

2x ,

J ≡ εαβJαβ .

HA is CP2 Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CP2.

The most general flux is superposition of signed and unsigned fluxes Qm and Q+
m.

Qα,βm (HA, X
2) = αQm(HA, X

2) + βQ+
m(HA, X

2) .

Thus it seems that symmetry arguments fix the form of the WCW metric apart from the presence
of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the signed
and unsigned fluxes.

2.5.2 Generalization

The generalization for definition WCW super-Hamiltonians defining WCW gamma matrices is
discussed in detail in [K31] feeds in the wisdom gained about preferred extremals of Kähler action
and solutions of the Kähler-Dirac action: in particular, about their localization at string worlds
sheets (right handed neutrino could be an exception). Second quantized Noether charges in turn
define representation of WCW Hamiltonians as operators.

The basic formulas generalize as such: the only modification is that the super-Hamiltonian of
δM4
±×CP2 at given point of partonic 2-surface is replaced with the Noether super charge associated

with the Hamiltonian obtained by integrating the 1-D super current over string emanating from
partonic 2-surface. Right handed neutrino spinor is replaced with any mode of the Kähler-Dirac
operator localized at string world sheet in the case of Kac-Moody sub-algebra of super-symplectic
algebra corresponding to symplectic isometries at light-cone boundary and CP2. The original
proposal involved only the contractions with covariantly constant right- handed neutrino spinor
mode but now one can allow contractions with all spinor modes - both quark like and leptonic
ones. One obtains entire super-symplectic algebra and the direct sum of these algebras is used
to construct physical states. This step is analogous to the replacement of point like particle with
string.

The resulting super Hamiltonians define WCW gamma matrices. They are labelled by two con-
formal weights. The first one is the conformal weight associated with the light-like coordinate of
δM4
±×CP2. Second conformal weight is associated with the spinor mode and the coordinate along

stringy curve and corresponds to the usual stringy conformal weight. The symplectic conformal
weight can be more general - I have proposed its spectrum to be generated by the zeros of Rie-
mann zeta. The total conformal weight of a physical state would be non-negative integer meaning
conformal confinement. Symplectic conformal symmetry can be assumed to be broken: an entire
hierarchy of breakings is obtained corresponding to hierarchies of sub-algebra of the symplectic
algebra isomorphic with it quantum criticalities, Planck constants, and dark matter.

The presence of two conformal weights is in accordance with the idea that a generalization of
conformal invariance to 4-D situation is in question. If Yangian extension of conformal symmetries
is possible and would bring an additional integer n telling the degree of multilocality of Yangian
generators defined as the number of partonic 2-surfaces at which the generator acts. For conformal
algebra degree of multilocality equals to n = 1.

2.6 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states angular momentum (and possibly also of Lorentz
boost), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
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to “positive” frequencies and which to “negative frequencies” and which to zero frequencies that
is to decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0.
One must distinguish between Can0 and zero modes, which are not considered here at all. For
instance, CP2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector
Can0 could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2 , k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (2.2)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (2.3)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kähler form and Kähler metric is to use the “half Poisson bracket”

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (2.4)

Here the subscript + and − refer to complex isometry current and its complex conjugate in terms
of which the “half Poisson bracket” can be expressed.

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.

2.7 WCW spinor structure

Quantum TGD should be reducible to the classical spinor geometry of WCW. In particular, physical
states should correspond to the modes of WCW spinor fields. The immediate consequence is that
WCW spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit
fermion number. Concerning the construction of WCW spinor structure there are some important
clues.

1. The classical bosonic physics is coded into the definition of WCW metric; therefore the
classical physics associated with the spinors of the imbedding space should be coded into
the definition of WCW spinor structure. This means that the generalized massless Dirac
equation for the induced spinor fields on X4(X3) should be closely related to the definition
of WCW gamma matrices.
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2. Complex probability amplitudes (scalar fields) in the WCW correspond to the second quan-
tized boson fields in X4. Hence the spinor fields of WCW should correspond to the second
quantized, free, induced spinor fields on X4. The space of WCW spinors should be just the
Fock space of the second quantized fermions on X4!

3. Symplectic algebra might generalize to a super symplectic algebra and that super generators
should be linearly related to the gamma matrices of WCW. If this indeed is the case then
the construction of WCW spinor structure becomes a purely group theoretical problem.

The realization of these ideas is simple in principle. Perform a second quantization for the free
induced spinor field in X4. Express WCW gamma matrices and symplectic super generators as
superpositions of the fermionic oscillator operators. This means that WCW gamma matrices are
analogous to spin 3/2 fields and can be regarded as a superpartner of the gravitational field of
WCW. Deduce the anti-commutation relations of the spinor fields from the requirement of super
symplectic invariance. Generalize the flux representation for the WCW Hamiltonians to a spinorial
flux representation for their super partners.

2.7.1 WCW gamma matrices as super algebra generators

The basic idea is that the space of WCW spinors must correspond to the Fock space for the second
quantized induced spinor fields. In accordance with this the gamma matrices of the configuration
space must be expressible as superpositions of the fermionic oscillator operators for the second
quantized induced free spinor fields in X4 so that they are analogous to spin 3/2 fields. The Dirac
equation is fixed from the requirement of super symmetry and has same vacuum degeneracy as
Kähler action. A further assumption is that the contractions of the gamma matrices with isometry
currents correspond to super charges of the group of isometries of WCW so that the construction
reduces to group theory.

The super Kac Moody algebra was assigned originally with light like 3-D causal determinants
but has a more natural identification as the Kac-Moody algebra of symplectic isometries. The
corresponding gammma matrices (super Hamiltonians) are essentially inner products of the modes
of induced spinor field with the second quantized spinor field and all modes of indued spinor
fields with all possible charge states are allow. For the entire symplectic algebra only the inner
products with right-handed neutrino spinors define the super-generators. This implies that super-
generators are labelled by two conformal weights. The first conformal weight is associated with
the imbedding space Hamiltonians and corresponds to the light-like radial coordinate of light-
cone boundary. Second conformal weight labels the spinor modes localized at 2-D string world
sheets. The super generators are integrals of the spinor modes localized at 1-D stringy curves
so that one has formally a 3-D situation [K27, K31]. Holography implied by the strong form of
general coordinate invariance however implies effective 2-dimensionality. Gamma matrices define
the components of WCW metric as anti-commutators.

2.7.2 The Kähler-Dirac equation and gamma matrices

The basic vision is that WCW geometry reduces to the second quantization of induced spinor
fields. This means that WCW gamma matrices are linear combinations of fermionic oscillator
operators and the vacuum functional of the theory is identifiable as Dirac determinant. An un-
proven conjecture is that this determinant equals to the exponent of Kähler action for its preferred
extremal.

The motivation for the Kähler-Dirac action came from the observation that the counterpart of
the ordinary Dirac equation is internally consistent only if the space-time surfaces are minimal sur-
faces. One can however assign to any general coordinate invariant action principle for space-time
surfaces a unique Kähler-Dirac action, which is internally consistent and super-symmetric. Space-
time geometry must carry information about conserved quantum charges assignable to partonic
2-surfaces and it took considerable to to realize that this is achieved via a measurement interac-
tion terms which are Lagrangian multiplier terms expressing that conserved classical charges are
identical with their quantum counterparts in Cartan algebra for the space-time surfaces in quan-
tum superposition representing the outcome of measurement. This makes sense if classical charges
parametrize zero modes.
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Second key idea [K27, K31] is that the well-definedness of em charge eigenvalue for spinor modes
requires their localization to 2-D string world sheets. It is quite possible that this localization is
consistent with Kähler-Dirac equation only in the Minkowskian regions where the effective metric
defined by Kähler-Dirac gamma matrices can be effectively 2-dimensional and parallel to string
world sheet. Due to the presence of classical W boson fields this is possible only if localization
takes plce at 2-D string world sheets and partonic 2-surfaces. Therefore string theory like structure
emerges as part of TGD. The super Hamiltoanians defined in terms fluxes of Hammiltonians over
partonic 2-surfaces are modified: a super-Hamiltonian at point of partonic 2-surface is replaced
with an integral over stringy curve connecting points of two partonic 2-surfaces.

2.8 What about infinities?

The construction of a divergence free and unitary inner product for the WCW spinor fields is one
of the major challenges. In the sequel constraints on the geometry of WCW posed by the finiteness
of the inner product are analyzed.

2.8.1 Inner product from divergence cancellation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product
is given by integrating the usual Fock space inner product defined at each point of WCW over
the reduced WCW containing only the 3-surfaces Y 3 belonging to δH = δM4

+ × CP2 (“light-cone
boundary” ) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (2.5)

The degeneracy for the absolute minima of Kähler action implies additional summation over the
degenerate minima associated with Y 3. The restriction of the integration on light-cone boundary
is Diff4 invariant procedure and resolves in elegant manner the problems related to the integration
over Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic
vacuum functional exp(K) from the definition of the inner product and by assuming that it is
included into the spinor fields themselves. Probably it is just a matter of taste how the necessary
bosonic vacuum functional is included into the inner product: what is essential that the vacuum
functional exp(K) is somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product
and from the unitarity of the standard L2 inner product defined by WCW integration in the set of
the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the reduction
of WCW integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function ap-
pears in the inner product also in the context of the finite dimensional group representations. For
the representations of the non-compact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1)
endowed with Kähler metric) the exponent of Kähler function is necessary in order to get square in-
tegrable representations [B10]. The scalar product for two complex valued representation functions
is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (2.6)

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancellation of the determinants. In
finite dimensional case this corresponds to the restriction to single unitary representation of the
group in question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system
is bound from above: the generation of electric Kähler fields gives negative contributions to the
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action. This implies that at the limit of the infinite system the average action per volume is non-
positive. For systems having negative average density of action vacuum functional exp(K) vanishes
so that only configurations with vanishing average action per volume have significant probability.
On the other hand, the choice exp(−K) would make theory unstable: probability amplitude would
be infinite for all configurations having negative average action per volume. In the fourth part of
the book it will be shown that the requirement that average Kähler action per volume cancels has
important cosmological consequences.

Consider now the divergence cancellation in the bosonic integration. One can develop the
Kähler function as a Taylor series around maximum of Kähler function and use the contravariant
Kähler metric as a propagator. Gaussian and metric determinants cancel each other for a unique
vacuum functional. Ricci flatness guarantees that metric determinant is constant in complex
coordinates so that one avoids divergences coming from it. The non-locality of the Kähler function
as a functional of the 3-surface serves as an additional regulating mechanism: if K(X3) were a
local functional of X3 one would encounter divergences in the perturbative expansion.

The requirement that quantum jump corresponds to a quantum measurement in the sense of
quantum field theories implies that quantum jump involves localization in zero modes. Localization
in the zero modes implies automatically p-adic evolution since the decomposition of the WCW into
sectors DP labelled by the infinite primes P is determined by the corresponding decomposition
in zero modes. Localization in zero modes would suggest that the calculation of the physical
predictions does not involve integration over zero modes: this would dramatically simplify the
calculational apparatus of the theory. Probably this simplification occurs at the level of practical
calculations if U -matrix separates into a product of matrices associated with zero modes and fiber
degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to
different values of zero modes and here one cannot actually avoid integrals over zero modes. To
achieve this one is forced to define the transition probabilities for quantum jumps involving a
localization in zero modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m→ s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level
of S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function
basis can be freely constructed so that divergence difficulties could be avoided. An open question
is whether this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since WCW metric is degenerate and the bosonic propagator is essentially the contravariant
metric, bosonic integration is expected to reduce to an integration over the zero modes. For
instance, isometry invariants are variables of this kind. These modes are analogous to the
parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in WCW integration. It should be noticed that
αK , when defined by the criticality condition, could also depend on the coordinates param-
eterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the
bosonic integral. Symmetric space property suggests that for the given values of the zero
modes there is only single extremum and corresponds to the maximum of the Kähler function.
There are theorems stating that semiclassical approximation is exact for certain systems (for
example Duistermaat-Hecke theorem for integrable systems [A7] ). Symmetric space prop-
erty suggests that Kähler function might possess the properties guaranteeing the exactness
of the semiclassical approximation. This would mean that the calculation of the integral∫
exp(K)

√
GdY 3 and even more complex integrals involving WCW spinor fields would be
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completely analogous to a Gaussian integration of free quantum field theory. This kind of
reduction actually occurs in string models and is consistent with the criticality of the Kähler
coupling constant suggesting that all loop integrals contributing to the renormalization of
the Kähler action should vanish. Also the condition that WCW integrals are continuable to
p-adic number fields requires this kind of reduction.

2.8.2 Divergence cancellation, Ricci flatness, and symmetric space and Hyper Kähler
properties

In the case of the loop spaces left invariance implies that Ricci tensor is a multiple of the metric
tensor so that Ricci scalar has an infinite value. Mathematical consistency (essentially the absence
of the divergences in the integration over WCW ) forces the geometry to be Ricci flat: in other
words, vacuum Einstein’s equations are satisfied. It can be shown that Hyper Kähler property
guarantees Ricci flatness. The reason is that the contractions of the curvature tensor appearing
in the components of the Ricci tensor transform to traces over Lie algebra generators, which are
SU(∞) generators instead of U(∞) generators as in case of loop spaces, so that the traces vanish.

Hyper Kähler property requires a quaternionic structure in the tangent space of WCW. Since
any direction on the sphere S2 defined by the linear combinations of quaternionic imaginary units
with unit norm defines a particular complexification physically, Hyper-Kähler property means the
possibility to perform complexification in S2-fold manners. An interesting possibility raised by
the notion of visionb is that hyper Kähler structure could be replaced with what might be called
“hyper-hyper-Kähler structure” resulting when quaternionic tangent space is replaced with its
hyper-quaternionic variant. This would conform with the Minkowski signature of the space-time
surface. In this framework also hyper-octonionic structure might be considered. An interesting
question not yet even touched, is whether the conjectured M8 − −M4 × CP2 duality is realized
also at the level of the WCW of 3-surfaces.

Consider now the arguments in favor of Ricci flatness of the WCW.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of
U(1) algebra. Since volume preserving transformations are in question, the traces of the
symplectic generators vanish identically and in finite-dimensional this should be enough for
Ricci flatness even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The ele-
ments of the Ricci tensor are expressible in terms of traces of the generators of the holonomy
group U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci
tensor is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of
Kähler function and holonomy group corresponds to super-symplectic generators labelled by
integer valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n
vanish at the maximum of the Kähler function, the curvature scalar should vanish at the
maximum and by the symmetric space property everywhere. These conditions correspond to
Virasoro conditions in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1+ iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing
even when the holonomy algebra does not contain U(1) factor. It will be found that symmetric
space property guarantees Ricci flatness even in this case and the reason is essentially the
vanishing of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property. In the following argument
reader can well consider replacing the attribute “quaternionic” with “hyper-quaternionic”.

1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of WCW in vibrational modes is indeed multiple of four as required by Hyper
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Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of WCW. Since any direction on the sphere S2 defined by the linear combinations of
quaternionic imaginary units with unit norm defines a particular complexification physically,
Hyper Kähler property means the possibility to perform complexification in S2-fold manners.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of WCW.
First of all, the direction of the quantization axis for the spherical harmonics or for the eigen
states of Lorentz Cartan algebra at X2

+×CP2 can be chosen in S2-fold manners. Quaternion
conformal invariance means Hyper Kähler property almost by definition and the S2-fold
degeneracy for the complexification is obvious in this case.

3. One can see the super-symplectic conformal weights as points in a particular complex plane
of the quaternionic space and the choice of this plane corresponds to a selection of one WCW
Kähler structure which are parameterized by S2. The necessity to restrict the conformal
weights to a complex plane brings in mind the commutativity constraint on simultaneously
measurable quantum observables.

If these naive arguments survive a more critical inspection, the conclusion would be that the
effective 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic
symmetries would also imply Hyper Kähler property of WCW and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension
of Minkowski space factor of the imbedding space.

3 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [B2] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric
monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kähler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K4] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.
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4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kähler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kähler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field
associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability
conditions boil down to two scalar functions: the first one satisfies massless d’Alembert
equation in the induced metric and the the gradients of the scalar functions are orthogonal.
The interpretation in terms of momentum and polarization directions is natural.

3.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Num-
ber theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the imbedding space coordinates in
the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This
is a condition on Kähler-Dirac gamma matrices and hyper-quaternionicity states that they span a
hyper-quaternionic sub-space.

3.1.1 Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kähler form assignable to the complement of the tangent
space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of CP2 type vacuum extremal



3.1 Could a weak form of electric-magnetic duality hold true? 26

and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kähler electric fluxes are apart from constant
proportional to Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (3.1)

A more general form of this duality is suggested by the considerations of [K8] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (3.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (3.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on
Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X2 depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.

3.1.2 Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux
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Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L1], [L1]
read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (3.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (3.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3V
2
−Qem , p = sin2(θW ) . (3.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L+sin2(θW )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2Z
4π~0

=
αem

p(1− p)
. (3.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the Kähler-Dirac operator to conserved charges implies cor-
relation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Qem and QZ would
be also seen as the identification of the fine structure constants αem and αZ . This however
requires weak isospin invariance.

3.1.3 The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric
field equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has αK = g2K/4π~0 = αem ' 1/137, where
αem is finite structure constant in electron length scale and ~0 is the standard value of Planck
constant.
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2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP2. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the “Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Qem
and QZ allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K15] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/αK and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2K/4π becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling α → α/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g2K/~ implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

K = n× g2K
~
, n ∈ Z . (3.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (3.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for CP2 type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP2 radius and αK the effective replacement g2K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kähler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP2 is such that in CP2 coordinates for the Euclidian region the tensor (gαβgµν − gανgµβ)/

√
g

remains invariant. This is certainly the case for CP2 type vacuum extremals since by the light-
likeness of M4 projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.
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3.1.4 Reduction of the quantization of Kähler electric charge to that of electromag-
netic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (3.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are effec-
tively absent. Only in phases with a large value of Planck constant classical Z0 field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K16]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and
CP2 are allowed as simplest possible solutions of field equations [K23]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with CP2 metric multiplied with the 3-volume
fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.
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3.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

3.2.1 How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3V cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!

3.2.2 Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced W boson
fields are vanishing. The vanishing of classical Z0 field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
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well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

3.2.3 Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state q±1/2 − X∓1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum
of color hyper charges coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kähler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP2

and believed on M4 × S2.
p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark

variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most

general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of M89 physics takes place in some shorter
scale and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons
would be by a factor 2(89−61)/2 = 214 higher and about 1.6 × 104 TeV. M89 quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths Le(k) =

√
5L(k): they are associated with Gaussian

Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D1].

3.2.4 Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [K7]. The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
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in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make
possible twistor description of virtual particles allowing only massless particles (in 4-D sense
usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense
only if one assumes in the interaction region a topological condensation creating another
wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.
In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K10]. If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K11].

3.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated



3.3 Could Quantum TGD reduce to almost topological QFT? 33

also for the Kähler-Dirac action action. I gave up this proposal but the following argument shows
that Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα
plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the

quantity J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however
give 1/r factor so that ~ would disappear from the Kähler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that Kähler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute “almost” would come from the fact that one has non-
vanishing classical Noether charges defined by Kähler action and non-trivial quantum dynamics in
M4 degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (“massless extremals” for which
weak self-duality condition does not make sense [K2] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kähler action. This implies that the M4 part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M4 degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kähler function must respect the weak electro-magnetic duality which relates
Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic
field. Therefore the dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβ gamma)

√
g4d

3x . (3.11)

The (1, 1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that for
rM = constant sphere - call it J1. The generalization of the weak form of self-duality
would be Jnβ = εnβγδK(Jγδ + εJ1

γδ). This form implies that the boundary term gives a

non-trivial contribution to the M4 part of the WCW metric even without the constraint
from electric-magnetic duality. Kähler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.
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4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (3.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kähler current: dt = φjK . This condition in turn
implies d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more
concretely,

εαβγδjKβ ∂γj
K
delta = 0 . (3.13)

jK is a four-dimensional counterpart of Beltrami field [B7] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K2]. The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton current:
jK = φjI , where jI = ∗(J ∧A) is the instanton current, which is not conserved for 4-D CP2

projection. The conservation of jK implies the condition jαI ∂αφ = ∂αj
αφ and from this φ can

be integrated if the integrability condition jI∧djI = 0 holds true implying the same condition
for jK . By introducing at least 3 or CP2 coordinates as space-time coordinates, one finds that
the contravariant form of jI is purely topological so that the integrability condition fixes the
dependence on M4 coordinates and this selection is coded into the scalar function φ. These
functions define families of conserved currents jαKφ and jαI φ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A→ A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence

a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (3.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the Kähler-Dirac in-
teraction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not affecting Kähler action. The gauge transformed Kähler gauge potential
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couples to the Kähler-Dirac equation and its effect could be visible in the value of Kähler
function and therefore also in the properties of the preferred extremal. The effect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD × CP2 generating the gauge transfor-
mation represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and
corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits
and Kähler-Dirac action with 1-D Dirac action in induced metric at partonic orbits emerged.
Measurement interaction terms would correspond to Lagrange multiplier terms at the ends
of space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to Kähler-Dirac action as
boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

9. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This suggests
strongly a connection with quantum field theory and an 8-D generalization of twistor Grass-
mannian approach. By field equations the bosonic part of this action does not contribute
to the Kähler action. Chern-Simons Dirac terms to which Kähler action reduces could be
responsible for the breaking of CP and T symmetries as they appear in CKM matrix.

4 Von Neumann algebras and TGD

The work with TGD inspired model [K24] for topological quantum computation [K24] led to the
realization that von Neumann algebras [A19, A25, A20, A6], in particular so called hyper-finite
factors of type II1 [A14], seem to provide the mathematics needed to develop a more explicit view
about the construction of S-matrix. In this chapter I will discuss various aspects of type II1 factors
and their physical interpretation in TGD framework. The lecture notes of R. Longo [A17] give
a concise and readable summary about the basic definitions and results related to von Neumann
algebras and I have used this material freely in this chapter.

4.1 Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation ∗ and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.
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In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is that
the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with
a density matrix which is projection operator to infinite-dimensional subspace. The simple von
Neumann algebras for which unit operator has unit trace are known as factors of type II1 [A14].

The definitions of adopted by von Neumann allow however more general algebras. Type In
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of
type III non-trivial traces are always infinite and the notion of trace becomes useless.

4.2 Von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac [K27]
based on the notion of delta function, plus the emergence of s [A9], the possibility to formulate the
notion of delta function rigorously in terms of distributions [A13, A23], and the emergence of path
integral approach [A21] meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [A22, A26] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic
structures known as bi-algebras, Hopf algebras, and ribbon algebras [A16] relate closely to type
II1 factors. In topological quantum computation [K24] based on braid groups [A27] modular
S-matrices they play an especially important role.

In algebraic quantum field theory [B5] defined in Minkowski space the algebras of observables
associated with bounded space-time regions correspond quite generally to the type III1 hyper-finite
factor [B9, B4].

4.3 Factors of type II1 and quantum TGD

For me personally the realization that TGD Universe is tailored for topological quantum compu-
tation [K24] led also to the realization that hyper-finite (ideal for numerical approximations) von
Neumann algebras of type II1 have a direct relevance for TGD.

The basic facts about hyper-finite von Neumann factors of type II1 suggest a more concrete
view about the general mathematical framework needed.

1. The effective 2-dimensionality of the construction of quantum states and WCW geometry
in quantum TGD framework makes hyper-finite factors of type II1 very natural as operator
algebras of the state space. Indeed, the generators of conformal algebras, the gamma matrices
of WCW, and the modes of the induced spinor fields are labelled by discrete labels. Hence
the tangent space of WCW is a separable Hilbert space and its Clifford algebra is a hyper-
finite type II1 factor. Super-symmetry requires that the bosonic algebra generated by WCW
Hamiltonians and the Clifford algebra of WCW both correspond to hyper-finite type II1
factors.

2. Four-momenta relate to the positions of tips of future and past directed light cones appear-
ing naturally in the construction of S-matrix. In fact, WCW can be regarded as union of
big-bang/big crunch type WCWs obtained as a union of light-cones parameterized by the
positions of their tips. The algebras of observables associated with bounded regions of M4
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are hyper-finite and of type III1 in algebraic quantum field theory [B9]. The algebras of
observables in the space spanned by the tips of these light-cones are not needed in the con-
struction of S-matrix so that there are good hopes of avoiding infinities coming from infinite
traces.

3. Many-sheeted space-time concept forces to refine the notion of sub-system. Jones inclusions
N ⊂M for factors of type II1 define in a generic manner to imbed interacting sub-systems to
a universal II1 factor which now naturally corresponds to the infinite Clifford algebra of the
tangent space of WCW of 3-surfaces and contains interaction as M : N -dimensional analog
of tensor factor. Topological condensation of space-time sheet to a larger space-time sheet,
the formation of bound states by the generation of join along boundaries bonds, interaction
vertices in which space-time surface branches like a line of Feynman diagram: all these
situations might be described by Jones inclusion [A1, A8] characterized by the Jones index
M : N assigning to the inclusion also a minimal conformal field theory and quantum group
in case of M : N < 4 and conformal theory with k = 1 Kac Moody for M : N = 4 [B6] .

4. von Neumann’s somewhat artificial idea about identical a priori probabilities for states could
replaced with the finiteness requirement of quantum theory. Indeed, it is traces which produce
the infinities of quantum field theories. That M : N = 4 option is not realized physically as
quantum field theory (it would rather correspond to string model type theory characterized
by a Kac-Moody algebra instead of quantum group), could correspond to the fact that
dimensional regularization works only in D = 4− ε. Dimensional regularization with space-
time dimension D = 4 − ε → 4 could be interpreted as the limit M : N → 4. M as an
M : N -dimensional N -module would provide a concrete model for a quantum space with
non-integral dimension as well as its Clifford algebra. An entire sequence of regularized
theories corresponding to the allowed values of M : N would be predicted.

4.4 Does quantum TGD emerge from local version of HFF?

There are reasons to hope that the entire quantum TGD emerges from a version of HFF made
local with respect to D ≤ 8 dimensional space H whose Clifford algebra Cl(H) raised to an
infinite tensor power defines the infinite-dimensional Clifford algebra. Bott periodicity meaning
that Clifford algebras satisfy the periodicity Cl(n + k8) ≡ Cl(n) ⊗ Cl(8k)is an essential notion
here [K26, K6]. The points m of Mk can be mapped to elements mkγk of the finite-dimensional
Clifford algebra Cl(H) appearing as an additional tensor factor in the localized version of the
algebra.

The requirement that the local version of HFF is not isomorphic with HFF itself is highly non-
trivial. The only manner to achieve non-triviality is to multiply the algebra with a non-associative
tensor factor representing the space of hyper-octonions M8 identifiable as sub-space of complexified
octonions with tangent space spanned by real unit and octonionic imaginary unit multiplied by
commuting imaginary unit (for a good review about properties of octonions see [A5] ).

Space-times could be regarded equivalently as surfaces in M8 or in M4 × CP2 and the dy-
namics would reduce to associativity (hyper-quaternionicity) or co-associativity condition. It is
rather remarkable that CP2 forced by the standard model symmetries has also a purely number
theoretic interpretation as parameterizing hyper-quaternionic four-planes containing a preferred
hyper-octonionic imaginary unit defining hyper-complex structure in M8. Physically this choice
corresponds to a choice of Cartan algebra of Poincare algebra for which the system is at rest so
that a connection with quantum measurement theory is suggestive. Color group is identifiable as
a subgroup of octonionic automorphism group G2 respecting this choice.

4.5 Quantum measurement theory with finite measurement resolution

Jones inclusions N ⊂ M [A1, A15] of these algebras lead to quantum measurement theory with
a finite measurement resolution characterized by N [K26, K6]. Quantum Clifford algebra M/N
interpreted as N -module creates physical states modulo measurement resolution. Complex rays of
the state space resulting in the ordinary state function reduction are replaced by N -rays and the
notions of unitarity, hermiticity, and eigenvalue generalize [K3, K6].
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Non-commutative physics would be interpreted in terms of a finite measurement resolution
rather than something emerging below Planck length scale. An important implication is that a
finite measurement sequence can never completely reduce quantum entanglement so that entire
universe would necessarily be an organic whole.

At the level of conscious experience, the entanglement below measurement resolution would
give rise to a pool of shared and fused mental images giving rise to “stereo consciousness” (say
stereovision) [K9] so that contents of consciousness would not be something completely private as
usually believed. Also fuzzy logic emerges naturally since ordinary spinors are replaced by quantum
spinors for which the discrete spectrum of the eigenvalues of the moduli of its spinor components
can be interpreted as probabilities that corresponding belief is true is [E2] [K26].

4.6 Cognitive consciousness, quantum computations, and Jones inclu-
sions

Large ~ phases provide good hopes of realizing topological quantum computation. There is an
additional new element. For quantum spinors state function reduction cannot be performed unless
quantum deformation parameter equals to q = 1. The reason is that the components of quantum
spinor do not commute: it is however possible to measure the commuting operators representing
moduli squared of the components giving the probabilities associated with “true” and “false”. The
universal eigenvalue spectrum for probabilities does not in general contain (1, 0) so that quantum
qubits are inherently fuzzy. State function reduction would occur only after a transition to q=1
phase and de-coherence is not a problem as long as it does not induce this transition.

4.7 Fuzzy quantum logic and possible anomalies in the experimental
data for the EPR-Bohm experiment

The experimental data for EPR-Bohm experiment [J2] excluding hidden variable interpretations
of quantum theory. What is less known that the experimental data indicates about possibility of
an anomaly challenging quantum mechanics [J3]. The obvious question is whether this anomaly
might provide a test for the notion of fuzzy quantum logic inspired by the TGD based quantum
measurement theory with finite measurement resolution.

The experimental situation involves emission of two photons from spin zero system so that
photons have opposite spins. What is measured are polarizations of the two photons with respect
to polarization axes which differ from standard choice of this axis by rotations around the axis of
photon momentum characterized by angles α and β. The probabilities for observing polarizations
(i, j), where i, j is taken Z2 valued variable for a convenience of notation are Pij(α, β), are predicted
to be P00 = P11 = cos2(α− β)/2 and P01 = P10 = sin2(α− β)/2.

Consider now the discrepancies.

1. One has four identities Pi,i + Pi,i+1 = Pii + Pi+1,i = 1/2 having interpretation in terms of
probability conservation. Experimental data of [J2] are not consistent with this prediction [J1]
and this is identified as the anomaly.

2. The QM prediction E(α, β) =
∑
i(Pi,i − Pi,i+1) = cos(2(α − β) is not satisfied neither: the

maxima for the magnitude of E are scaled down by a factor ' .9. This deviation is not
discussed in [J1].

Both these findings raise the possibility that QM might not be consistent with the data. It
turns out that fuzzy quantum logic predicted by TGD and implying that the predictions for the
probabilities and correlation must be replaced by ensemble averages, can explain anomaly 2) but
not anomaly a). A “mundane” explanation for anomaly 1) can be imagined [K26].

5 Hierarchy of Planck constants and the generalization of
the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization
of Planck constant is summarized. The question is whether it might be possible in some sense
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to replace H or its Cartesian factors by their necessarily singular multiple coverings and factor
spaces. One can consider two options: either M4 or the causal diamond CD. The latter one is the
more plausible option from the point of view of WCW geometry.

5.1 The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter
as a hierarchy of phases of matter with non-standard value of Planck constants was much faster
than the evolution of mathematical ideas and quite a number of applications have been developed
during last five years.

1. The starting point was the proposal of Nottale [E3] that the orbits of inner planets corre-
spond to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck
constant ~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [K17, K14] was that ordinary
matter condenses around dark matter which is a phase of matter characterized by a non-
standard value of Planck constant whose value is gigantic for the space-time sheets mediating
gravitational interaction. The interpretation of these space-time sheets could be as magnetic
flux quanta or as massless extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Comp-
ton length meaning that the density of matter at these space-time sheets must be very slowly
varying. The string tension of string like objects implies effective negative pressure character-
izing dark energy so that the interpretation in terms of dark energy might make sense [K18].
TGD predicted a one-parameter family of Robertson-Walker cosmologies with critical or
over-critical mass density and the “pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different
worlds in the sense local interactions of particles with different values of ~ are not possible.
This inspires the idea about the book like structure of the imbedding space obtained by
gluing almost copies of H together along common “back” and partially labeled by different
values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at dif-
ferent pages of the book like structure cannot appear in the same vertex of the generalized
Feynman diagram. The phase transitions in which partonic 2-surface X2 during its travel
along X3

l leaks to another page of book are however possible and change Planck constant.
Particle (say photon -) exchanges of this kind allow particles at different pages to interact.
The interactions are strongly constrained by charge fractionization and are essentially phase
transitions involving many particles. Classical interactions are also possible. It might be that
we are actually observing dark matter via classical fields all the time and perhaps have even
photographed it [K21].

5. The realization that non-standard values of Planck constant give rise to charge and spin
fractionization and anyonization led to the precise identification of the prerequisites of anyonic
phase. If the partonic 2-surface, which can have even astrophysical size, surrounds the tip
of CD, the matter at the surface is anyonic and particles are confined at this surface. Dark
matter could be confined inside this kind of light-like 3-surfaces around which ordinary matter
condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces - glued
to a connected structure by flux tubes mediating gravitational interaction - are given by
Bohr rules, the findings of Nottale [E3] can be understood. Dark matter would resemble
to a high degree matter in black holes replaced in TGD framework by light-like partonic
2-surfaces with a minimum size of order Schwartschild radius rS of order scaled up Planck
length lPl =

√
~grG = GM . Black hole entropy is inversely proportional to ~ and predicted

to be of order unity so that dramatic modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic
currents through cell membrane (low dissipation, quantal character, no change when the
membrane is replaced with artificial one) has a natural explanation in terms of dark supra
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currents. This leads to a vision about how dark matter and phase transitions changing
the value of Planck constant could relate to the basic functions of cell, functioning of DNA
and amino-acids, and to the mysteries of bio-catalysis. This leads also a model for EEG
interpreted as a communication and control tool of magnetic body containing dark matter
and using biological body as motor instrument and sensory receptor. One especially amazing
outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as
nuclear strings [L2, K21], [L2].

5.2 The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space
or factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or
H. One can however construct singular covering spaces. The fixing of the quantization axes
implies a selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic
sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the
codimension of the excluded sub-manifold is equal to two and homotopically the situation is
like that for a punctured plane. The exclusion of these sub-manifolds defined by the choice
of quantization axes could naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one
is homologically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2

represents a straight cosmic string which is non-vacuum extremal of Kähler action (not
necessarily preferred extremal). One can argue that the many-valuedness of ~ is un-acceptable
for non-vacuum extremals so that only homologically trivial geodesic sphere S2 would be
acceptable. One could go even further. If the extremals in M2 × CP2 can be preferred
non-vacuum extremals, the singular coverings of M4 are not possible. Therefore only the
singular coverings and factor spaces of CP2 over the homologically trivial geodesic sphere S2

would be possible. This however looks a non-physical outcome.

(a) The situation changes if the extremals of type M2 × Y 2, Y 2 a holomorphic surface of
CP3, fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-
space and the product of the Kähler-Dirac gamma matrices associated with the tangent
spaces of Y 2 should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2×CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have
only piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the
Cartesian products of singular coverings and factor spaces. These options can be denoted by
C −C, C −F , F −C, and F −F , where C (F ) signifies for covering (factor space) and first
(second) letter signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga)× ( ˆCP2×̂Gb),
(ĈD×̂Ga)× ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tetrahedral, octahedral,
or icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally
in this framework if one allows the action of these groups on the singular sub-manifolds M2

or S2. This would replace the singular manifold with a set of its rotated copies in the case
that the subgroups have genuinely 3-dimensional action (the subgroups which corresponds
to exceptional groups in the ADE correspondence). For instance, in the case of M2 the
quantization axes for angular momentum would be replaced by the set of quantization axes
going through the vertices of tetrahedron, octahedron, or icosahedron. This would bring
non-commutative homotopy groups into the picture in a natural manner.
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5.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase
transition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that
the covariant metric of CD factor proportional to ~2 must be discontinuous at the singular
manifold since only in this manner the idea about different scaling factor of CD metric can
make sense. On the other hand, one can always scale the M4 coordinates so that the metric
is continuous but the sizes of CDs with different Planck constants differ by the ratio of the
Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instan-
taneous change of the size of partonic 2-surface in M4 degrees of freedom. This is not the
case. Light-likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where
X1 is light-like geodesic. The requirement that the partonic 2-surface X2 moving from one
sector of H to another one is light-like at M2×S2 irrespective of the value of Planck constant
requires that X2 has single point of M2 as M2 projection. Hence no sudden change of the
size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant
can occur purely classically or whether it is analogous to quantum tunnelling. Classical
non-vacuum extremals of Chern-Simons action have two-dimensional CP2 projection to ho-
mologically non-trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically

trivial geodesic sphere S2
II is not possible so that only combinations of partonic 2-surfaces

with vanishing total homology charge (Kähler magnetic charge) can in principle move from
sector to another one, and this process involves fusion of these 2-surfaces such that CP2

projection becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic
sphere S2

I of CP2 can be deformed to that of S2
II using 2-dimensional homotopy flattening

the piece of S2 to curve. If this homotopy cannot be chosen to be light-like, the phase
transitions changing Planck constant take place only via quantum tunnelling. Obviously the
notions of light-like homotopies (cobordisms) are very relevant for the understanding of phase
transitions changing Planck constant.

5.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the
covering and factors spaces, is far from trivial and I have considered several options. The basic
physical inputs are the condition that scaling of Planck constant must correspond to the scaling
of the metric of CD (that is Compton lengths) on one hand and the scaling of the gauge coupling
strength g2/4π~ on the other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that
Planck constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication
and division (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and
r(X) = 1/n for factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of
Kähler action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant
metric by r2 ≡ ~2/~20 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not
fix the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb.
The intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets
and multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one
effectively compresses the covering to CD × CP2. One would have ~(CP2) = ~0/nb and
~ = nanb~0. Note that the descriptions using ordinary Planck constant and coverings and
scaled Planck constant but contracting the covering would be alternative descriptions.
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This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

5.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22
s

+ 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF
of fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental
constant expressible as a combination of Kähler coupling strength, CP2 radius and Planck length
appearing in the expression for the tension of cosmic strings, and the powers of 211 seem to be
especially favored as values of na in living matter [K5].

5.6 How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anti-commutation relations of various super-
conformal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and
is due to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck constants. This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the
ideal case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths
and other quantal lengths and times. If so, large ~ phases could be crucial for understanding of
quantum critical superconductors, in particular high Tc superconductors.

5.7 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark matter and
also in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. The formula for the
Planck constant involves heuristic guess work and physical plausibility arguments. There are good
arguments in favor of the hypothesis that only coverings are possible. Only a finite number of pages
of the Big Book correspond to a given value of Planck constant, biological evolution corresponds to a
gradual dispersion to the pages of the Big Book with larger Planck constant, and a connection with
the hierarchy of infinite primes and p-adicization program based on the mathematical realization
of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible.
One finds also a precise geometric interpretation of preferred extremal property interpreted as
criticality in zero energy ontology.

5.7.1 1-1 correspondence between canonical momentum densities and time deriva-
tives fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantiza-
tion for TGD fails. To see what is involved let us try to perform a canonical quantization in zero
energy ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.
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1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where
∂0h

k denotes the time derivative of imbedding space coordinate, are the physically natural
quantities in terms of which to fix the initial values: once their value distribution is fixed
also conserved charges are fixed. Also the weak form of electric-magnetic duality given by
J03√g4 = 4παKJ12 and a mild generalization of this condition to be discussed below can be
interpreted as a manner to fix the values of conserved gauge charges (not Noether charges) to
their quantized values since Kähler magnetic flux equals to the integer giving the homology
class of the (wormhole) throat. This condition alone need not characterize criticality, which
requires an infinite number of deformations of X4 for which the second variation of the Kähler
action vanishes and implies infinite number conserved charges. This in fact gives hopes of
replacing πk with these conserved Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The

equation defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By

taking squares the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears
in contravariant and covariant metric at most quadratically and in the induced Kähler electric
field linearly and by multiplying the equations by det(g4)3 one can transform the equations
to a polynomial form so that in principle ∂0h

k can obtained as a solution of polynomial
equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space co-
ordinates as the coordinates of the space-time surface so that the initial value conditions
reduce to those for the canonical momentum densities associated with the remaining four
coordinates. For instance, for space-time surfaces representable as map M4 → CP2 M4

coordinates are natural and the time derivatives ∂0s
k of CP2 coordinates are multi-valued.

One would obtain four polynomial equations with ∂0s
k as unknowns. In regions where CP2

projection is 4-dimensional -in particular for the deformations of CP2 vacuum extremals the
natural coordinates are CP2 coordinates and one can regard ∂0m

k as unknowns. For the
deformations of cosmic strings, which are of form X4 = X2 × Y 2 ⊂M4 × CP2, one can use
coordinates of M2 × S2, where S2 is geodesic sphere as natural coordinates and regard as
unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situation
is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving
up the canonical quantization program was following. For the vacuum extremals of Kähler
action πk are however identically vanishing and this means that there is an infinite number of
value distributions for ∂0h

k. For small deformations of vacuum extremals one might however
hope a finite number of solutions to the conditions and thus finite number of space-time
surfaces carrying same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must
treat the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the
space of space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in
the covering space of CD × CP2 corresponding to different branches of the many-valued function
∂0h

k = F (πl) co-inciding at the ends of CD.

5.7.2 Do the coverings forces by the many-valuedness of ∂0h
k correspond to the

coverings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces
associated with the hierarchy of Planck constants. This would conform with quantum classical cor-
respondence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to
cure the failure of the perturbation theory at quantum level. At classical level the multi-valuedness
of ∂0h

k means a failure of perturbative canonical quantization and forces the introduction of the
covering spaces. The interpretation would be that when the density of matter becomes critical the
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space-time surface splits to several branches so that the density at each branches is sub-critical. It
is of course not at all obvious whether the proposed structure of the Big Book is really consistent
with this hypothesis and one also consider modifications of this structure if necessary. The manner
to proceed is by making questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and
allows also multi-valued solution. Since wormhole throats carry magnetic charge and
since weak form of electric-magnetic duality is assumed, one can assume that CP2

projection is four-dimensional so that one can use CP2 coordinates and regard ∂0m
k

as un-knows. The basic idea about topological condensation in turn suggests that M4

projection can be assumed to be 4-D inside space-like 3-surfaces so that here ∂0s
k are

the unknowns. At partonic 2-surfaces one would have conditions for both π0
k and πnk .

One might hope that the numbers of solutions are finite for preferred extremals because
of their symmetries and given by na for ∂0m

k and by nb for ∂0s
k. The optimistic guess

is that na and nb corresponds to the numbers of sheets for singular coverings of CD
and CP2. The covering could be visualized as replacement of space-time surfaces with
space-time surfaces which have nanb branches. nb branches would degenerate to single
branch at the ends of diagrams of the generaled Feynman graph and na branches would
degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to

the effective 2-dimensionality as an additional condition perhaps crucial for criticality.
One could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively

bring in dynamics in two directions so that X3 could be interpreted as a an orbit of
partonic 2-surface in space-like direction and X3

l as its orbit in light-like direction. The
additional conditions could be seen as gauge conditions made possible by symplectic and
Kac-Moody type conformal symmetries. The conditions for πk0 would give nb branches
in CP2 degrees of freedom and the conditions for πnk would split each of these branches
to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically
the conserved changes would be nanb times larger than for single branch. Kähler action need
not (but could!) be same for different branches but the total action is nanb times the average
action and this effectively corresponds to the replacement of the ~0/g2K factor of the action
with ~/g2K , r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one
could argue that r = nanb tells only that the charge conserved charge is nanb times larger
than without multi-valuedness. ~ would be only effectively nanb fold. This is of course poor
man’s argument but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be dis-
cussed below in this framework? The first observation is that the total Kähler electric charge
is by αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fraction-
ization meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I
have indeed suggested explanation of charge fractionization and quantum Hall effect based
on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbed-
ding space metric. The assumption that the M4 covariant metric is proportional to ~2 follows
from the physical idea about ~ scaling of quantum lengths as what Compton length is. One
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can always introduce scaled M4 coordinates bringing M4 metric into the standard form by
scaling up the M4 size of CD. It is not clear whether the scaling up of CD size follows au-
tomatically from the proposed scenario. The basic question is why the M4 size scale of the
critical extremals must scale like nanb? This should somehow relate to the weak self-duality
conditions implying that Kähler field at each branch is reduced by a factor 1/r at each
branch. Field equations should posses a dynamical symmetry involving the scaling of CD by
integer k and J0β√g4 and Jnβ

√
g4 by 1/k. The scaling of CD should be due to the scaling

up of the M4 time interval during which the branched light-like 3-surface returns back to a
non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for
the partonic 2-surface implies vacuum property for the entire space-time sheet as holography
indeed requires. This condition however generalizes. In weak self-duality conditions the value
of ~ is free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-
like throats cannot have M4 projection in M2 so that self-duality conditions for different
values of ~ do not lead to inconsistencies. For space-like 3-surfaces at the boundaries of
CD the condition would mean that the M4 projection becomes light-like geodesic. Straight
cosmic strings would have M2 as M4 projection. Also CP2 type vacuum extremals for which
the random light-like projection in M4 belongs to M2 would represent this of situation. One
can ask whether the degeneration of branches actually takes place along any string like object
X2×Y 2, where X2 defines a minimal surface in M4. For these the weak self-duality condition
would imply ~ =∞ at the ends of the string. It is very plausible that string like objects feed
their magnetic fluxes to larger space-times sheets through wormhole contacts so that these
conditions are not encountered.

5.7.3 Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and
light-like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the
space-time surface at the its ends and at wormhole throats is exactly what happens at criticality.
For instance, in catastrophe theory roots of the polynomial equation giving extrema of a potential
as function of control parameters co-incide at criticality. If this picture is correct the hierarchy
of Planck constants would be an outcome of criticality and of preferred extremal property and
preferred extremals would be just those multi-branched space-time surfaces for which branches
co-incide at the the boundaries of CD × CP2 and at the throats.

5.8 Updated view about the hierarchy of Planck constants

The original hypothesis was that the hierarchy of Planck constants is real. In this formulation
the imbedding space was replaced with its covering space assumed to decompose to a Cartesian
product of singular finite-sheeted coverings of M4 and CP2.

Few years ago came the realization that it could be only effective but have same practical impli-
cations. The basic observation was that the effective hierarchy need not be postulated separately
but follows as a prediction from the vacuum degeneracy of Kähler action. In this formulation
Planck constant at fundamental level has its standard value and its effective values come as its
integer multiples so that one should write ~eff = n~ rather than ~ = n~0 as I have done. For
most practical purposes the states in question would behave as if Planck constant were an integer
multiple of the ordinary one. In this formulation the singular covering of the imbedding space
became only a convenient auxiliary tool. It is no more necessary to assume that the covering
reduces to a Cartesian product of singular coverings of M4 and CP2 but for some reason I kept
this assumption.
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The formulation based on multi-furcations of space-time surfaces to N branches. For some
reason I assumed that they are simultaneously present. This is too restrictive an assumption. The
N branches are very much analogous to single particle states and second quantization allowing all
0 < n ≤ N -particle states for given N rather than only N -particle states looks very natural. As
a matter fact, this interpretation was the original one, and led to the very speculative and fuzzy
notion of N -atom, which I later more or less gave up. Quantum multi-furcation could be the root
concept implying the effective hierarchy of Planck constants, anyons and fractional charges, and
related notions- even the notions of N -nuclei, N -atoms, and N -molecules.

5.8.1 Basic physical ideas

The basic phenomenological rules are simple and there is no need to modify them.

1. The phases with non-standard values of effective Planck constant are identified as dark mat-
ter. The motivation comes from the natural assumption that only the particles with the same
value of effective Planck can appear in the same vertex. One can illustrate the situation in
terms of the book metaphor. Imbedding spaces with different values of Planck constant form
a book like structure and matter can be transferred between different pages only through
the back of the book where the pages are glued together. One important implication is that
light exotic charged particles lighter than weak bosons are possible if they have non-standard
value of Planck constant. The standard argument excluding them is based on decay widths
of weak bosons and has led to a neglect of large number of particle physics anomalies [K22].

2. Large effective or real value of Planck constant scales up Compton length - or at least de
Broglie wave length - and its geometric correlate at space-time level identified as size scale of
the space-time sheet assignable to the particle. This could correspond to the Kähler magnetic
flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets
and short flux tubes at ends with length of order CP2 size.

This rule has far reaching implications in quantum biology and neuroscience since macro-
scopic quantum phases become possible as the basic criterion stating that macroscopic quan-
tum phase becomes possible if the density of particles is so high that particles as Compton
length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One
implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG
frequency range on vertebrate brain: E = hf implies that the energies for the ordinary value
of Planck constant are much below the thermal threshold but large value of Planck constant
changes the situation. Also the phase transitions modifying the value of Planck constant and
changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also
reconnections of the flux tubes.

The hierarchy of Planck constants suggests also a new interpretation for FQHE (fractional
quantum Hall effect) [K15] in terms of anyonic phases with non-standard value of effective
Planck constant realized in terms of the effective multi-sheeted covering of imbedding space:
multi-sheeted space-time is to be distinguished from many-sheeted space-time.

3. In astrophysics and cosmology the implications are even more dramatic if one believes that
also ~gr corresponds to effective Planck constant interpreted as number of sheets of multi-
furcation. It was Nottale [E3] who first introduced the notion of gravitational Planck constant
as ~gr = GMm/v0, v0 < 1 has interpretation as velocity light parameter in units c = 1. This
would be true for GMm/v0 ≥ 1. The interpretation of ~gr in TGD framework is as an effec-
tive Planck constant associated with space-time sheets mediating gravitational interaction
between masses M and m. The huge value of ~gr means that the integer ~gr/~0 interpreted
as the number of sheets of covering is gigantic and that Universe possesses gravitational quan-
tum coherence in super-astronomical scales for masses which are large. This would suggest
that gravitational radiation is emitted as dark gravitons which decay to pulses of ordinary
gravitons replacing continuous flow of gravitational radiation.

It must be however emphasized that the interpretation of ~gr could be different, and it will
be found that one can develop an argument demonstrating how ~gr with a correct order
of magnitude emerges from the effective space-time metric defined by the anti-commutators

http: //tgdtheory.com/public_html/paddark/paddark.html#anyontgd
http: //arxiv.org/abs/astro-ph/0310036
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appearing in the Kähler-Dirac equation. Why Nature would like to have large effective value
of Planck constant? A possible answer relies on the observation that in perturbation theory
the expansion takes in powers of gauge couplings strengths α = g2/4π~. If the effective
value of ~ replaces its real value as one might expect to happen for multi-sheeted particles
behaving like single particle, α is scaled down and perturbative expansion converges for the
new particles. One could say that Mother Nature loves theoreticians and comes in rescue in
their attempts to calculate. In quantum gravitation the problem is especially acute since the
dimensionless parameter GMm/~ has gigantic value. Replacing ~ with ~gr = GMm/v0 the
coupling strength becomes v0 < 1.

5.8.2 Space-time correlates for the hierarchy of Planck constants

The hierarchy of Planck constants was introduced to TGD originally as an additional postulate
and formulated as the existence of a hierarchy of imbedding spaces defined as Cartesian products
of singular coverings of M4 and CP2 with numbers of sheets given by integers na and nb and
~ = n~0. n = nanb.

With the advent of zero energy ontology, it became clear that the notion of singular covering
space of the imbedding space could be only a convenient auxiliary notion. Singular means that
the sheets fuse together at the boundary of multi-sheeted region. The effective covering space
emerges naturally from the vacuum degeneracy of Kähler action meaning that all deformations
of canonically imbedded M4 in M4 × CP2 have vanishing action up to fourth order in small
perturbation. This is clear from the fact that the induced Kähler form is quadratic in the gradients
of CP2 coordinates and Kähler action is essentially Maxwell action for the induced Kähler form.
The vacuum degeneracy implies that the correspondence between canonical momentum currents
∂LK/∂(∂αh

k) defining the Kähler-Dirac gamma matrices [K27] and gradients ∂αh
k is not one-to-

one. Same canonical momentum current corresponds to several values of gradients of imbedding
space coordinates. At the partonic 2-surfaces at the light-like boundaries of CD carrying the
elementary particle quantum numbers this implies that the two normal derivatives of hk are many-
valued functions of canonical momentum currents in normal directions.

Multi-furcation is in question and multi-furcations are indeed generic in highly non-linear sys-
tems and Kähler action is an extreme example about non-linear system. What multi-furcation
means in quantum theory? The branches of multi-furcation are obviously analogous to single par-
ticle states. In quantum theory second quantization means that one constructs not only single
particle states but also the many particle states formed from them. At space-time level single
particle states would correspond to N branches bi of multi-furcation carrying fermion number.
Two-particle states would correspond to 2-fold covering consisting of 2 branches bi and bj of multi-
furcation. N−particle state would correspond to N -sheeted covering with all branches present and
carrying elementary particle quantum numbers. The branches co-incide at the partonic 2-surface
but since their normal space data are different they correspond to different tensor product factors
of state space. Also now the factorization N = nanb occurs but now na and nb would relate to
branching in the direction of space-like 3-surface and light-like 3-surface rather than M4 and CP2

as in the original hypothesis.
In light of this the working hypothesis adopted during last years has been too limited: for some

reason I ended up to propose that only N -sheeted covering corresponding to a situation in which
all N branches are present is possible. Before that I quite correctly considered more general option
based on intuition that one has many-particle states in the multi-sheeted space. The erratic form
of the working hypothesis has not been used in applications.

Multi-furcations relate closely to the quantum criticality of Kähler action. Feigenbaum bifur-
cations represent a toy example of a system which via successive bifurcations approaches chaos.
Now more general multi-furcations in which each branch of given multi-furcation can multi-furcate
further, are possible unless on poses any additional conditions. This allows to identify additional
aspect of the geometric arrow of time. Either the positive or negative energy part of the zero
energy state is “prepared” meaning that single n-sub-furcations of N -furcation is selected. The
most general state of this kind involves superposition of various n-sub-furcations.

http: //en.wikipedia.org/wiki/Logistic_map
http: //en.wikipedia.org/wiki/Logistic_map
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5.8.3 Basic phenomenological rules of thumb in the new framework

It is important to check whether or not the refreshed view about dark matter is consistent with
existent rules of thumb.

1. The interpretation of quantized multi-furcations as WCW anyons explains also why the
effective hierarchy of Planck constants defines a hierarchy of phases which are dark relative
to each other. This is trivially true since the phases with different number of branches in
multi-furcation correspond to disjoint regions of WCW so that the particles with different
effective value of Planck constant cannot appear in the same vertex.

2. The phase transitions changing the value of Planck constant are just the multi-furcations and
can be induced by changing the values of the external parameters controlling the properties
of preferred extremals. Situation is very much the same as in any non-linear system.

3. In the case of massless particles the scaling of wavelength in the effective scaling of ~ can be
understood if dark n-photons consist of n photons with energy E/n and wavelength nλ.

4. For massive particle it has been assumed that masses for particles and they dark counterparts
are same and Compton wavelength is scaled up. In the new picture this need not be true.
Rather, it would seem that wave length are same as for ordinary electron.

On the other hand, p-adic thermodynamics predicts that massive elemenetary particles are
massless most of the time. ZEO predicts that even virtual wormhole throats are massless.
Could this mean that the picture applying on massless particle should apply to them at least
at relativistic limit at which mass is negligible. This might be the case for bosons but for
fermions also fermion number should be fractionalized and this is not possible in the recent
picture. If one assumes that the n-electron has same mass as electron, the mass for dark
single electron state would be scaled down by 1/n. This does not look sensible unless the
p-adic length defined by prime is scaled down by this fact in good approximation.

This suggests that for fermions the basic scaling rule does not hold true for Compton length
λc = ~m. Could it however hold for de-Broglie lengths λ = ~/p defined in terms of 3-
momentum? The basic overlap rule for the formation of macroscopic quantum states is
indeed formulated for de Broglie wave length. One could argue that an 1/N -fold reduction of
density that takes place in the de-localization of the single particle states to the N branches
of the cover, implies that the volume per particle increases by a factor N and single particle
wave function is de-localized in a larger region of 3-space. If the particles reside at effectively
one-dimensional 3-surfaces - say magnetic flux tubes - this would increase their de Broglie
wave length in the direction of the flux tube and also the length of the flux tube. This seems
to be enough for various applications.

One important notion in TGD inspired quantum biology is dark cyclotron state.

1. The scaling ~→ k~ in the formula En = (n+ 1/2)~eB/m implies that cyclotron energies are
scaled up for dark cyclotron states. What this means microscopically has not been obvious
but the recent picture gives a rather clearcut answer. One would have k-particle state formed
from cyclotron states in N -fold branched cover of space-time surface. Each branch would
carry magnetic field B and ion or electron. This would give a total cyclotron energy equal
to kEn. These cyclotron states would be excited by k-photons with total energy E = khf
and for large enough value of k the energies involved would be above thermal threshold. In
the case of Ca++ one has f = 15 Hz in the field Bend = .2 Gauss. This means that the value
of ~ is at least the ratio of thermal energy at room temperature to E = hf . The thermal
frequency is of order 1012 Hz so that one would have k ' 1011. The number branches would
be therefore rather high.

2. It seems that this kinds of states which I have called cyclotron Bose-Einstein condensates
could make sense also for fermions. The dark photons involved would be Bose-Einstein
condensates of k photons and wall of them would be simultaneously absorbed. The biological
meaning of this would be that a simultaneous excitation of large number of atoms or molecules
can take place if they are localized at the branches of N -furcation. This would make possible
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coherent macroscopic changes. Note that also Cooper pairs of electrons could be n = 2-
particle states associated with N -furcation.

There are experimental findings suggesting that photosynthesis involves de-localized excitations
of electrons and it is interesting so see whether this could be understood in this framework.

1. The TGD based model relies on the assumption that cyclotron states are involved and that
dark photons with the energy of visible photons but with much longer wavelength are in-
volved. Single electron excitations (or single particle excitations of Cooper pairs) would
generate negentropic entanglement automatically.

2. If cyclotron excitations are the primary ones, it would seem that they could be induced
by dark n-photons exciting all n electrons simultaneously. n-photon should have energy of
a visible photon. The number of cyclotron excited electrons should be rather large if the
total excitation energy is to be above thermal threshold. In this case one could not speak
about cyclotron excitation however. This would require that solar photons are transformed
to n-photons in N -furcation in biosphere.

3. Second - more realistic looking - possibility is that the incoming photons have energy of
visible photon and are therefore n = 1 dark photons de-localized to the branches of the
N -furcation. They would induce de-localized single electron excitation in WCW rather than
3-space.

5.8.4 Charge fractionalization and anyons

It is easy to see how the effective value of Planck constant as an integer multiple of its standard
value emerges for multi-sheeted states in second quantization. At the level of Kähler action one can
assume that in the first approximation the value of Kähler action for each branch is same so that
the total Kähler action is multiplied by n. This corresponds effectively to the scaling αK → αK/n
induced by the scaling ~0 → n~0.

Also effective charge fractionalization and anyons emerge naturally in this framework.

1. In the ordinary charge fractionalization the wave function decomposes into sharply localized
pieces around different points of 3-space carrying fractional charges summing up to integer
charge. Now the same happens at at the level of WCW (“world of classical worlds” ) rather
than 3-space meaning that wave functions in E3 are replaced with wave functions in the
space-time of 3-surfaces (4-surfaces by holography implied by General Coordinate Invariance)
replacing point-like particles. Single particle wave function in WCW is a sum of N sharply
localized contributions: localization takes place around one particular branch of the multi-
sheeted space time surface. Each branch carries a fractional charge q/N for teh analogs of
plane waves.

Therefore all quantum numbers are additive and fractionalization is only effective and observ-
able in a localization of wave function to single branch occurring with probability p = 1/N
from which one can deduce that charge is q/N .

2. The is consistent with the proposed interpretation of dark photons/gravitons since they
could carry large spin and this kind of situation could decay to bunches of ordinary pho-
tons/gravitons. It is also consistent with electromagnetic charge fractionalization and frac-
tionalization of spin.

3. The original - and it seems wrong - argument suggested what might be interpreted as a
genuine fractionalization for orbital angular momentum and also of color quantum numbers,
which are analogous to orbital angular momentum in TGD framework. The observation was
that a rotation through 2π at space-time level moving the point along space-time surface
leads to a new branch of multi-furcation and N + 1: th branch corresponds to the original
one. This suggests that angular momentum fractionalization should take place for M4 angle
coordinate φ because for it 2π rotation could lead to a different sheet of the effective covering.

The orbital angular momentum eigenstates would correspond to waves exp(iφm/N), m =
0, 2, ..., N − 1 and the maximum orbital angular momentum would correspond the sum

http: //en.wikipedia.org/wiki/Fractional_quantum_Hall_effect


5.8 Updated view about the hierarchy of Planck constants 50

∑N−1
m=0m/N = (N − 1)/2. The sum of spin and orbital angular momentum be therefore

fractional.

The different prediction is due to the fact that rotations are now interpreted as flows rotating
the points of 3-surface along 3-surface rather than rotations of the entire partonic surface
in imbedding space. In the latter interpretation the rotation by 2π does nothing for the 3-
surface. Hence fractionalization for the total charge of the single particle states does not take
place unless one adopts the flow interpretation. This view about fractionalization however
leads to problems with fractionalization of electromagnetic charge and spin for which there
is evidence from fractional quantum Hall effect.

5.8.5 What about the relationship of gravitational Planck constant to ordinary Planck
constant?

Gravitational Planck constant is given by the expression ~gr = GMm/v0, where v0 < 1 has
interpretation as velocity parameter in the units c = 1. Can one interpret also ~gr as effective
value of Planck constant so that its values would correspond to multi-furcation with a gigantic
number of sheets. This does not look reasonable.

Could one imagine any other interpretation for ~gr? Could the two Planck constants correspond
to inertial and gravitational dichotomy for four-momenta making sense also for angular momentum
identified as a four-vector? Could gravitational angular momentum and the momentum associated
with the flux tubes mediating gravitational interaction be quantized in units of ~gr naturally?

1. Gravitational four-momentum can be defined as a projection of the M4-four-momentum to
space-time surface. It’s length can be naturally defined by the effective metric gαβeff defined
by the anti-commutators of the modified gamma matrices. Gravitational four-momentum
appears as a measurement interaction term in the Kähler-Dirac action and can be restricted
to the space-like boundaries of the space-time surface at the ends of CD and to the light-like
orbits of the wormhole throats and which induced 4- metric is effectively 3-dimensional.

2. At the string world sheets and partonic 2-surfaces the effective metric degenerates to 2-D
one. At the ends of braid strands representing their intersection, the metric is effectively
4-D. Just for definiteness assume that the effective metric is proportional to the M4 metric
or rather - to its M2 projection: gkleff = K2mkl.

One can express the length squared for momentum at the flux tubes mediating the gravita-
tional interaction between massive objects with masses M and m as

gαβeffpαpβ = gαβeff∂αh
k∂βh

lpkpl ≡ gkleffpkpl = n2
~2

L2
. (5.1)

Here L would correspond to the length of the flux tube mediating gravitational interaction
and pk would be the momentum flowing in that flux tube. gkleff = K2mkl would give

p2 =
n2~2

K2L2
.

~gr could be identifed in this simplified situation as ~gr = ~/K.

3. Nottale’s proposal requires K = GMm/v0 for the space-time sheets mediating gravitational
interacting between massive objects with masses M and m. This gives the estimate

pgr =
GMm

v0

1

L
. (5.2)

For v0 = 1 this is of the same order of magnitude as the exchanged momentum if gravitational
potential gives estimate for its magnitude. v0 is of same order of magnitude as the rotation
velocity of planet around Sun so that the reduction of v0 to v0 ' 2−11 in the case of inner
planets does not mean that the propagation velocity of gravitons is reduced.
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4. Nottale’s formula requires that the order of magnitude for the components of the energy mo-
mentum tensor at the ends of braid strands at partonic 2-surface should have value GMm/v0.
Einstein’s equations T = κG+Λg give a further constraint. For the vacuum solutions of Ein-
stein’s equations with a vanishing cosmological constant the value of hgr approaches infinity.
At the flux tubes mediating gravitational interaction one expects T to be proportional to the
factor GMm simply because they mediate the gravitational interaction.

5. One can consider similar equation for gravitational angular momentum:

gαβeffLαLβ = gkleffLkLl = l(l + 1)~2 . (5.3)

This would give under the same simplifying assumptions

L2 = l(l + 1)
~2

K2
. (5.4)

This would justify the Bohr quantization rule for the angular momentum used in the Bohr
quantization of planetary orbits.

Maybe the proposed connection might make sense in some more refined formulation. In par-
ticular the proportionality between mkl

eff = Kmkl could make sense as a quantum average. Also

the fact, that the constant v0 varies, could be understood from the dynamical character of mkl
eff .

5.8.6 Could hgr = heff hold true?

The obvious question is whether the gravitational Planck constant deduced from the Nottale’s
considerations and the effective Planck constant heff = nh deduced from ELF effects on vertebrate
brain and explained in terms of non-determinism of Kähler action could be identical. At first this
seems to be non-sensical idea since hgr = GMm/v0 has gigantic value.

It is however essential to realize that by Equivalence Principle one describe gravitational inter-
action by reducing it to elementary particle level. For instance, gravitational Compton lengths do
not depend at all on the masses of particles. Also the radii of the planetary orbits are independent
of the mass of particle mass in accordance with Equivalence Principle. For elementary particles
the values of hgr are in the same range as in quantum biological applications. Typically 10 Hz
ELF radiation should correspond to energy E = hefff of UV photon if one assumes that dark
ELF photons have energies of biophotons and transform to them. The order of magnitude for n
would be therefore n ' 1014.

The experiments of M. Tajmar et al [E1, E4] discussed in [K30] provide a support for this
picture. The value of gravimagnetic field needed to explain the findings is 28 orders of magnitude
higher than theoretical value if one extrapolates the model of Meissner effect to gravimagnetic
context. The amazing finding is that if one replaces Planck constant in the formula of gravimagnetic
field with hgr associated with Earth-Cooper pair system and assumes that the velocity parameter
v0 appearing in it corresponds to the Earth’s rotation velocity around its axis, one obtains correct
order of magnitude for the effect requiring r ' 3.6× 1014.

The most important implications are in quantum biology and Penrose’s vision about importance
of quantum gravitation in biology might be correct.

1. This result allows by Equivalence Principle the identification hgr = heff at elementary
particle level at least so that the two views about hierarchy of Planck constants would be
equivalent. If the identification holds true for larger units it requires that space-time sheet
identifiable as quantum correlates for physical systems are macroscopically quantum coherent
and gravitation causes this. If the values of Planck constant are really additive, the number of
parallel space-time sheets corresponding to non-determinism evolution for the flux tube con-
necting systems with masses M and m is proportional to the masses M and m using Planck
mass as unit. Information theoretic interpretation is suggestive since hierarchy of Planck
constants is assumed to relate to negentropic entanglement very closely in turn providing
physical correlate for the notions of rule and concept.
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2. That gravity would be fundamental for macroscopic quantum coherence would not be sur-
prising since by EP all particles experience same acceleration in constant gravitational field,
which therefore has tendency to create coherence unlike other basic interactions. This in
principle allows to consider hierarchy in which the integers hgr,i are additive but give rise to
the same universal dark Compton length.

3. The model for quantum biology relying on the notions of magnetic body and dark matter
as hierarchy of phases with heff = nh, and biophotons [K29, K28] identified as decay pro-
duces of dark photons. The assumption hgr ∝ m becomes highly predictable since cyclotron
frequencies would be independent of the mass of the ion.

(a) If dark photons with cyclotron frequencies decay to biophotons, one can conclude that
biophoton spectrum reflects the spectrum of endogenous magnetic field strengths. In
the model of EEG [K5] it has been indeed assumed that this kind spectrum is there:
the inspiration came from music metaphors suggesting that musical scales are realized
in terms of values of magnetic field strength. The new quantum physics associated with
gravitation would also become key part of quantum biophysics in TGD Universe.

(b) For the proposed value of hgr 1 Hz cyclotron frequency associated to DNA sequences
would correspond to ordinary photon frequency f = 3.6 × 1014 Hz and energy 1.2 eV
just at the lower limit of visible frequencies. For 10 Hz alpha band the energy would
be 12 eV in UV. This plus the fact that molecular energies are in eV range suggests
very simple realization of biochemical control by magnetic body. Each ion has its own
cyclotron frequency but same energy for the corresponding biophoton.

(c) Biophoton with a given energy would activate transitions in specific bio-molecules or
atoms: ionization energies for atoms except hydrogen have lower bound about 5 eV
(http://en.wikipedia.org/wiki/Ionization_energy ). The energies of molecular
bonds are in the range 2-10 eV (http://en.wikipedia.org/wiki/Bond-dissociation_
energy ). If one replaces v0 with 2v0 in the estimate, DNA corresponds to.62 eV photon
with energy of order metabolic energy currency and alpha band corresponds to 6 eV
energy in the molecular region and also in the region of ionization energies.

Each ion at its specific magnetic flux tubes with characteristic palette of magnetic
field strengths would resonantly excite some set of biomolecules.This conforms with the
earlier vision about dark photon frequencies as passwords.

It could be also that biologically important ions take care of their ionization self. This
would be achieved if the magnetic field strength associated with their flux tubes is such
that dark cyclotron energy equals to ionization energy. EEG bands labelled by magnetic
field strengths could reflect ionization energies for these ions.

(d) The hypothesis means that the scale of energy spectrum of biophotons depends on the
ratio M/v0 of the planet and on the strength of the endogenous magnetic field, which
is.2 Gauss for Earth (2/5 of the nominal value of the Earth’s magnetic field). Therefore
the astrophysical characteristics of planets should be tuned for molecular life. Taking v0
to be rotational velocity one obtains for the ratio M(planet)/v0(planet) using the ratio
for Earth as unit the following numbers for the planets (Mercury, Venus, Earth, Mars,
Jupiter, Saturnus, Uranus, Neptune): M/v0 = (8.5, 209, 1, .214223, 1613, 6149, 9359).
If the energy scale of biophotons is required to be the same, the scale of endogenous
magnetic field should be divided by this ratio in order to obtain the same situation as in
Earth. For instance, in Mars the magnetic field should be roughly 5 times stronger: in
reality the magnetic field of Mars is much weaker. Just for fun one can notice that for
Sun the ratio is 1.4× 106 so that magnetic field should be by the inverse of this factor
weaker.

4. An interesting question is how large systems can behave as coherent units with hgr =
GMm/v0. In living matter one might consider the possibility that entire organism might
be this kind of system. Interestingly, for larger masses the gravitational quantum coher-
ence would be easier. For particle with mass m hgr/h > 1 requires larger mass to satisfy
M > M2

P /me. The first guess that life has evolved from long to shorter scales and reached

http: //en.wikipedia.org/wiki/Ionization_energy
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elementary particle last. Planck mass is the critical mass corresponds to the mass of water
blog with volume of size scale of 10−4 m (big neuron) is the limit.

5. The Universal gravitational Compton wave length of GM/v0 ' 864 meters gives an idea
about largest possible living matter system if Earth is the second body. Of course, also
other large bodies are possible.In the case of solar system this length is 3 × 103 km. The
radius of Earth is 6.37× 103 km - roughly twice the Compton length. The radii of Mercury,
Venus, Earth, Mars, Jupiter, Saturnus, Uranus, Neptunus are (.38, .99, .533, 1, 10.6, 8.6,
4.0, 3.9) using Earth radius as unit the value of hgr is by factor 5 larger than for three inner
planets so that the values are reasonably near to gravitational Compton length or twice it.
Does this mean that dark matter associated with Earth and maybe also other planets is in
macroscopic quantum state at some level of the hierarchy of space-time sheets? Does this
mean that Mother Gaia as conscious entity might make sense. One can of course make same
question in the case of Sun. The universal gravitational Compton length in Sun would be 18
per cent of the radius of Sun if v0 is taken to be the rotational velocity at the surface of Sun.
The radius of solar core, where fusion takes place, is 20-25 per cent of solar radius.

6. There are further interesting numerical co-incidences. One can for a moment forget the
standard hostility of scientist towards horoscopes and ask whether Sun and Moon could have
somehow affect our life via astrocopic quantum coherence. The gravitational Compton length
for particle-Moon or particle-Sun system multiplied by the natural value of magnetic field is
the relevant parameter. For Sun the parameters in question are mass of Sun, and rotational
velocity of Earth with respect to Sun, plus magnetic fields of Sun at flux tubes associated
with solar magnetic field measured to be about 5 nT at the position of Earth and 100 times
stronger than expected from dipole field behavior. This gives that the range of biophoton
energies is scaled down with factor of 1/4 in good approximation so that Father Sun might
affect terrestrial biology! If one uses for the rotational velocity of particle at surface of Moon
as parameter v0 (particle would be at Moon), biophoton energy scaled scaled up by factor
1.2.

The general proposal discussed above is testable. In particular, a detailed study of molecular
energies with those associated with resonances of EEG could be highly rewarding and reveal the
speculated spectroscopy of consciousness.

5.8.7 Summary

The hierarchy of Planck constants reduces to second quantization of multi-furcations in TGD
framework and the hierarchy is only effective. Anyonic physics and effective charge fractionalization
are consequences of second quantized multi-furcations. This framework also provides quantum
version for the transition to chaos via quantum multi-furcations and living matter represents the
basic application. The key element of dynamics of TGD is vacuum degeneracy of Kähler action
making possible quantum criticality having the hierarchy of multi-furcations as basic aspect. The
potential problems relate to the question whether the effective scaling of Planck constant involves
scaling of ordinary wavelength or not. For particles confined inside linear structures such as
magnetic flux tubes this seems to be the case.

There is also an intriguing connection with the vision about physics as generalized number
theory. The conjecture that the preferred extremals of Kähler action consist of quaternionic or
co-quaternionic regions led to a construction of them using iteration and also led to the hierarchy
of multi-furcations [K27]. Therefore it seems that the dynamics of preferred extremals might
indeed reduce to associativity/co-associativity condition at space-time level, to commutativity/co-
commutativity condition at the level of string world sheets and partonic 2-surfaces, and to reality
at the level of stringy curves (conformal invariance makes stringy curves causal determinants [K20]
so that conformal dynamics represents conformal evolution) [K19].

6 Number theoretic compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the
classical dynamics to associativity or co-associativity. Originally M8 −H duality was introduced

http: //tgdtheory.com/public_html/tgdquant/tgdquant.html#Yangian
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as a number theoretic explanation for H = M4×CP2. Much later it turned out that the completely
exceptional twistorial properties of M4 and CP2 are enough to justify X4 ⊂ H hypothesis. Skeptic
could therefore criticize the introduction of M8 (actually its complexification) as an un-necessary
mathematical complication producing only unproven conjectures and bundle of new statements to
be formulated precisely. However, if quaternionicity can be realized in terms of M8

c using Oc-real
analytic functions and if quaternionicity is equivalent with preferred extremal property, a huge
simplification results and one can say that field equations are exactly solvable.

One can question the feasibility of M8 −H duality if the dynamics is purely number theoretic
at the level of M8 and determined by Kähler action at the level of H. Situation becomes more
democratic if Kähler action defines the dynamics in both M8 and H: this might mean that
associativity could imply field equations for preferred extremals or vice versa or there might be
equivalence between two. This means the introduction Kähler structure at the level of M8, and
motivates also the coupling of Kähler gauge potential to M8 spinors characterized by Kähler charge
or em charge. One could call this form of duality strong form of M8 −H duality.

The strong form M8 − H duality boils down to the assumption that space-time surfaces can
be regarded either as 4-surfaces of H or as surfaces of M8 or even M8

c composed of associative
and co-associative regions identifiable as regions of space-time possessing Minkowskian resp. Eu-
clidian signature of the induced metric. They have the same induced metric and Kähler form and
WCW associated with H should be essentially the same as that associated with M8. Associativity
corresponds to hyper-quaterniocity at the level of tangent space and co-associativity to co-hyper-
quaternionicity - that is associativity/hyper-quaternionicity of the normal space. Both are needed
to cope with known extremals. Since in Minkowskian context precise language would force to in-
troduce clumsy terms like hyper-quaternionicity and co-hyper-quaternionicity, it is better to speak
just about associativity or co-associativity.

Remark: The original assumption was that space-times could be regarded as surfaces in M8

rather than in its complexification M8
c identifiable as complexified octonions. This assumption is

un-necessarily strong and if one assumes that octonion-real analytic functions characterize these
surfaces M8

c must be assumed.
For the octonionic spinor fields the octonionic analogs of electroweak couplings reduce to mere

Kḧler or electromagnetic coupling and the solutions reduce to those for spinor d’Alembertian in
4-D harmonic potential breaking SO(4) symmetry. Due to the enhanced symmetry of harmonic
oscillator, one expects that partial waves are classified by SU(4) and by reduction to SU(3)×U(1)
by em charge and color quantum numbers just as for CP2 - at least formally.

Harmonic oscillator potential defined by self-dual em field splits M8 to M4 × E4 and implies
Gaussian localization of the spinor modes near origin so that E4 effectively compactifies. The The
resulting physics brings strongly in mind low energy physics, where only electromagnetic interaction
is visible directly, and one cannot avoid associations with low energy hadron physics. These are
some of the reasons for considering M8−H duality as something more than a mere mathematical
curiosity.

Remark: The Minkowskian signatures of M8 and M4 produce technical nuisance. One could
overcome them by Wick rotation, which is however somewhat questionable trick. M8

c = Oc provides
the proper formulation.

1. The proper formulation is in terms of complexified octonions and quaternions involving the
introduction of commuting imaginary unit j. If complexified quaternions are used for H,
Minkowskian signature requires the introduction of two commuting imaginary units j and i
meaning double complexification.

2. Hyper-quaternions/octonions define as subspace of complexified quaternions/octonions spanned
by real unit and jIk, where Ik are quaternionic units. These spaces are obviously not closed
under multiplication. One can however however define the notion of associativity for the sub-
space of M8 by requiring that the products and sums of the tangent space vectors generate
complexified quaternions.

3. Ordinary quaternions Q are expressible as q = q0 + qkIk. Hyper-quaternions are expressible
as q = q0 + jqkIk and form a subspace of complexified quaternions Qc = Q ⊕ jQ. Similar
formula applies to octonions and their hyper counterparts which can be regarded as subspaces
of complexified octonions O⊕ jO. Tangent space vectors of H correspond hyper-quaternions
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qH = q0 + jqkIk + jiq2 defining a subspace of doubly complexified quaternions: note the
appearance of two imaginary units.

The recent definitions of associativity and M8 duality has evolved slowly from in-accurate
characterizations and there are still open questions.

1. Kähler form forM8 non-trivial only in E4 ⊂M8 implies unique decompositionM8 = M4×E4

needed to define M8−H duality uniquely. This applies also to M8
c . This forces to introduce

also Kähler action, induced metric and induced Kähler form. Could strong form of duality
meant that the space-time surfaces in M8 and H have same induced metric and induced
Kähler form? Could the WCWs associated with M8 and H be identical with this assumption
so that duality would provide different interpretations for the same physics?

2. One can formulate associativity in M8 (or M8
c ) by introducing octonionic structure in tangent

spaces or in terms of the octonionic representation for the induced gamma matrices. Does
the notion have counterpart at the level of H as one might expect if Kähler action is involved
in both cases? The analog of this formulation in H might be as quaternionic “reality”
since tangent space of H corresponds to complexified quaternions: I have however found no
acceptable definition for this notion.

The earlier formulation is in terms of octonionic flat space gamma matrices replacing the
ordinary gamma matrices so that the formulation reduces to that in M8 tangent space.
This formulation is enough to define what associativity means although one can protest.
Somehow H is already complex quaternionic and thus associative. Perhaps this just what is
needed since dynamics has two levels: imbedding space level and space-time level. One must
have imbedding space spinor harmonics assignable to the ground states of super-conformal
representations and quaternionicity and octonionicity of H tangent space would make sense
at the level of space-time surfaces.

3. Whether the associativity using induced gamma matrices works is not clear for massless
extremals (MEs) and vacuum extremals with the dimension of CP2 projection not larger
than 2.

4. What makes this notion of associativity so fascinating is that it would allow to iterate duality
as a sequence M8 → H → H... by mapping the space-time surface to M4×CP2 by the same
recipe as in case of M8. This brings in mind the functional composition of Oc-real analytic
functions (Oc denotes complexified octonions: complexification is forced by Minkowskian
signature) suggested to produced associative or co-associative surfaces. The associative (co-
associative) surfaces in M8 would correspond to loci for vanishing of imaginary (real) part
of octonion-real-analytic function.

It might be possible to define associativity in H also in terms of Kähler-Dirac gamma matrices
defined by Kähler action (certainly not M8).

1. All known extremals are associative or co-associative in H in this sense. This would also
give direct correlation with the variational principle. For the known preferred extremals this
variant is successful partially because the Kähler-Dirac gamma matrices need not span the
entire tangent space. The space spanned by the Kähler-Dirac gammas is not necessarily tan-
gent space. For instance for CP2 type vacuum extremals the Kähler-Dirac gamma matrices
are CP2 gamma matrices plus an additional light-like component from M4 gamma matrices.

If the space spanned by Kähler-Dirac gammas has dimensionD smaller than 3 co-associativity
is automatic. If the dimension of this space is D = 3 it can happen that the triplet of gammas
spans by multiplication entire octonionic algebra. For D = 4 the situation is of course non-
trivial.

2. For Kähler-Dirac gamma matrices the notion of co-associativity can produce problems since
Kähler-Dirac gamma matrices do not in general span the tangent space. What does co-
associativity mean now? Should one replace normal space with orthogonal complement
of the space spanned by Kähler-Dirac gamma matrices? Co-associativity option must be
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considered for D = 4 only. CP2 type vacuum extremals provide a good example. In this
case the Kähler-Dirac gamma matrices reduce to sums of ordinary CP2 gamma matrices and
ligt-like M4 contribution. The orthogonal complement for the Kähler-Dirac gamma matrices
consists of dual light-like gamma matrix and two gammas orthogonal to it: this space is
subspace of M4 and trivially associative.

6.1 Basic idea behind M8 −M4 × CP2 duality

If four-surfaces X4 ⊂ M8 under some conditions define 4-surfaces in M4 × CP2 indirectly, the
spontaneous compactification of super string models would correspond in TGD to two different
manners to interpret the space-time surface. This correspondence could be called number theoret-
ical compactification or M8 −H duality.

The hard mathematical facts behind the notion of number theoretical compactification are
following.

1. One must assume that M8 has unique decomposition M8 = M4 × E4. This decomposition
generalizes also to the case of M8

c . This would be most naturally due to Kähler structure
in E4 defined by a self-dual Kähler form defining parallel constant electric and magnetic
fields in Euclidian sense. Besides Kähler form there is vector field coupling to sigma matrix
representing the analog of strong isospin: the corresponding octonionic sigma matrix however
is imaginary unit times gamma matrix - say ie1 in M4 - defining a preferred plane M2 in
M4. Here it is essential that the gamma matrices of E4 defined in terms of octonion units
commute to gamma matrices in M4. What is involved becomes clear from the Fano triangle
illustrating octonionic multiplication table.

2. The space of hyper-complex structures of the hyper-octonion space - they correspond to the
choices of plane M2 ⊂ M8 - is parameterized by 6-sphere S6 = G2/SU(3). The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure
and thus leaves invariant one octonionic imaginary unit, call it e1. Fixed complex structure
therefore corresponds to a point of S6.

3. Quaternionic sub-algebras of M8 (and M8
c ) are parametrized by G2/U(2). The quaternionic

sub-algebras of octonions with fixed complex structure (that is complex sub-space defined
by real and preferred imaginary unit and parametrized by a point of S6) are parameterized
by SU(3)/U(2) = CP2 just as the complex planes of quaternion space are parameterized by
CP1 = S2. Same applies to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would
thus have an interpretation as the isometry group of CP2, as the automorphism sub-group of
octonions, and as color group. Thus the space of quaternionic structures can be parametrized
by the 10-dimensional space G2/U(2) decomposing as S6 × CP2 locally.

4. The basic result behind number theoretic compactification and M8 − H duality is that
associative sub-spaces M4 ⊂ M8 containing a fixed commutative sub-space M2 ⊂ M8 are
parameterized by CP2. The choices of a fixed hyper-quaternionic basis 1, e1, e2, e3 with a
fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice of e2 and e3
amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup of SU(3).

U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2) induces
rotations of the spinor having e2 and e3 components. Hence all possible completions of 1, e1
by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

Consider now the formulation of M8 −H duality.

1. The idea of the standard formulation is that associative manifold X4 ⊂ M8 has at its each
point associative tangent plane. That is X4 corresponds to an integrable distribution of
M2(x) ⊂M8 parametrized 4-D coordinate x that is map x→ S6 such that the 4-D tangent
plane is hyper-quaternionic for each x.

2. Since the Kähler structure of M8 implies unique decomposition M8 = M4×E4, this surface
in turn defines a surface in M4 × CP2 obtained by assigning to the point of 4-surface point
(m, s) ∈ H = M4 × CP2: m ∈M4 is obtained as projection M8 →M4 (this is modification
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to the earlier definition) and s ∈ CP2 parametrizes the quaternionic tangent plane as point of
CP2. Here the local decomposition G2/U(2) = S6×CP2 is essential for achieving uniqueness.

3. One could also map the associative surface in M8 to surface in 10-dimensional S6×CP2. In
this case the metric of the image surface cannot have Minkowskian signature and one cannot
assume that the induced metrics are identical. It is not known whether S6 allows genuine
complex structure and Kähler structure which is essential for TGD formulation.

4. Does duality imply the analog of associativity for X4 ⊂ H? The tangent space of H can be
seen as a sub-space of doubly complexified quaternions. Could one think that quaternionic
sub-space is replaced with sub-space analogous to that spanned by real parts of complexi-
fied quaternions? The attempts to define this notion do not however look promising. One
can however define associativity and co-associativity for the tangent space M8 of H using
octonionization and can formulate it also terms of induced gamma matrices.

5. The associativity defined in terms of induced gamma matrices in both in M8 and H has
the interesting feature that one can assign to the associative surface in H a new associative
surface in H by assigning to each point of the space-time surface its M4 projection and point
of CP2 characterizing its associative tangent space or co-associative normal space. It seems
that one continue this series ad infinitum and generate new solutions of field equations! This
brings in mind iteration which is standard manner to generate fractals as limiting sets. This
certainly makes the heart of mathematician beat.

6. Kähler structure in E4 ⊂M8 guarantees natural M4×E4 decomposition. Does associativity
imply preferred extremal property or vice versa, or are the two notions equivalent or only
consistent with each other for preferred extremals?

A couple of comments are in order.

1. This definition generalizes to the case of M8
c : all that matters is that tangent space-is is

complexified quaternionic and there is a unique identification M4 ⊂ M8
c : this allows to

assign the point of 4-surfaces a point of M4×CP2. The generalization is needed if one wants
to formulate the hypothesis about Oc real-analyticity as a manner to build quaternionic
space-time surfaces properly.

2. This definition differs from the first proposal for years ago stating that each point of X4

contains a fixed M2 ⊂ M4 rather than M2(x) ⊂ M8 and also from the proposal assuming
integrable distribution of M2(x) ⊂ M4. The older proposals are not consistent with the
properties of massless extremals and string like objects for which the counterpart of M2

depends on space-time point and is not restricted to M4. The earlier definition M2(x) ⊂M4

was problematic in the co-associative case since for the Euclidian signature is is not clear
what the counterpart of M2(x) could be.

3. The new definition is consistent with the existence of Hamilton-Jacobi structure meaning
slicing of space-time surface by string world sheets and partonic 2-surfaces with points of
partonic 2-surfaces labeling the string world sheets [K2]. This structure has been proposed
to characterize preferred extremals in Minkowskian space-time regions at least.

4. Co-associative Euclidian 4-surfaces, say CP2 type vacuum extremal do not contain integrable
distribution of M2(x). It is normal space which containsM2(x). Does this have some physical
meaning? Or does the surface defined by M2(x) have Euclidian analog?

A possible identification of the analog would be as string world sheet at which W boson
field is pure gauge so that the modes of the modified Dirac operator [K27] restricted to the
string world sheet have well-defined em charge. This condition appears in the construction
of solutions of Kähler-Dirac operator.

For octonionic spinor structure the W coupling is however absent so that the condition
does not make sense in M8. The number theoretic condition would be as commutative or
co-commutative surface for which imaginary units in tangent space transform to real and
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imaginary unit by a multiplication with a fixed imaginary unit! One can also formulate co-
associativity as a condition that tangent space becomes associative by a multiplication with
a fixed imaginary unit.

There is also another justification for the distribution of Euclidian tangent planes. The idea
about associativity as a fundamental dynamical principle can be strengthened to the state-
ment that space-time surface allows slicing by hyper-complex or complex 2-surfaces, which
are commutative or co-commutative inside space-time surface. The physical interpretation
would be as Minkowskian or Euclidian string world sheets carrying spinor modes. This would
give a connection with string model and also with the conjecture about the general structure
of preferred extremals.

5. Minimalist could argue that the minimal definition requires octonionic structure and asso-
ciativity only in M8. There is no need to introduce the counterpart of Kähler action in M8

since the dynamics would be based on associativity or co-associativity alone. The objection
is that one must assumes the decomposition M8 = M4 × E4 without any justification.

The map of space-time surfaces to those of H = M4 × CP2 implies that the space-time
surfaces in H are in well-defined sense quaternionic. As a matter of fact, the standard spinor
structure of H can be regarded as quaternionic in the sense that gamma matrices are essen-
tially tensor products of quaternionic gamma matrices and reduce in matrix representation
for quaternions to ordinary gamma matrices. Therefore the idea that one should introduce
octonionic gamma matrices in H is questionable. If all goes as in dreams, the mere associa-
tivity or co-associativity would code for the preferred extremal property of Kähler action in
H. One could at least hope that associativity/co-associativity in H is consistent with the
preferred extremal property.

6. One can also consider a variant of associativity based on modified gamma matrices - but only
in H. This notion does not make sense in M8 since the very existence of quaternionic tangent
plane makes it possible to define M8−H duality map. The associativity for modified gamma
matrices is however consistent with what is known about extremals of Kähler action. The
associativity based on induced gamma matrices would correspond to the use of the space-time
volume as action. Note however that gamma matrices are not necessary in the definition.

6.2 Hyper-octonionic Pauli “matrices” and the definition of associativ-
ity

Octonionic Pauli matrices suggest an interesting possibility to define precisely what associativity
means at the level of M8 using gamma matrices (for background see [K25] ).

1. According to the standard definition space-time surface X4 ⊂M8 is associative if the tangent
space at each point of X4 in X4 ⊂ M8 picture is associative. The definition can be given
also in terms of octonionic gamma matrices whose definition is completely straightforward.

2. Could/should one define the analog of associativity at the level of H? One can identify the
tangent space of H as M8 and can define octonionic structure in the tangent space and this
allows to define associativity locally. One can replace gamma matrices with their octonionic
variants and formulate associativity in terms of them locally and this should be enough.

Skeptic however remindsM4 allows hyper-quaternionic structure and CP2 quaternionic struc-
ture so that complexified quaternionic structure would look more natural for H. The tangent
space would decompose as M8 = HQ+ ijQ, weher j is commuting imaginary unit and HQ
is spanned by real unit and by units iIk, where i second commutating imaginary unit and Ik
denotes quaternionic imaginary units. There is no need to make anything associative.

There is however far from obvious that octonionic spinor structure can be (or need to be!) de-
fined globally. The lift of the CP2 spinor connection to its octonionic variant has questionable
features: in particular vanishing of the charged part and reduction of neutral part to photon.
Therefore is is unclear whether associativity condition makes sense for X4 ⊂M4×CP2. What
makes it so fascinating is that it would allow to iterate duality as a sequencesM8 → H → H....
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This brings in mind the functional composition of octonion real-analytic functions suggested
to produced associative or co-associative surfaces.

I have not been able to settle the situation. What seems the working option is associativity
in both M8 and H and Kähler-Dirac gamma matrices defined by appropriate Kähler action and
correlation between associativity and preferred extremal property.

6.3 Are Kähler and spinor structures necessary in M8?

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of M8

Kähler action with same value of Kähler action defining Kähler function. As found, this leads to
the conclusion that the M8−H duality is Kähler isometry. Coupling of spinors to Kähler potential
is the next step and this in turn leads to the introduction of spinor structure so that quantum
TGD in H should have full M8 dual.

6.3.1 Are also the 4-surfaces in M8 preferred extremals of Kähler action?

It would be a mathematical miracle if associative and co-associative surfaces in M8 would be in 1-1
correspondence with preferred extremals of Kähler action. This motivates the question whether
Kähler action make sense also in M8. This does not exclude the possibility that associativity
implies or is equivalent with the preferred extremal property.

One expects a close correspondence between preferred extremals: also now vacuum degeneracy
is obtained, one obtains massless extremals, string like objects, and counterparts of CP2 type
vacuum extremals. All known extremals would be associative or co-associative if modified gamma
matrices define the notion (possible only in the case of H).

The strongest form of duality would be that the space-time surfaces in M8 and H have same
induced metric same induced Kähler form. The basic difference would be that the spinor connection
for surfaces in M8 would be however neutral and have no left handed components and only em
gauge potential. A possible interpretation is that M8 picture defines a theory in the phase in which
electroweak symmetry breaking has happened and only photon belongs to the spectrum.

The question is whether one can define WCW also for M8. Certainly it should be equivalent
with WCW for H: otherwise an inflation of poorly defined notions follows. Certainly the general
formulation of the WCW geometry generalizes from H to M8. Since the matrix elements of
symplectic super-Hamiltonians defining WCW gamma matrices are well defined as matrix elements
involve spinor modes with Gaussian harmonic oscillator behavior, the non-compactness of E4 does
not pose any technical problems.

6.3.2 Spinor connection of M8

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2

of covariantly constant Kähler forms so that one can accommodate free independent Abelian
gauge fields assuming that the independent gauge fields are orthogonal to each other when
interpreted as realizations of quaternionic imaginary units. This is possible but perhaps a
more natural option is the introduction of just single Kähler form as in the case of CP2.

2. One should be able to distinguish between quarks and leptons also in M8, which suggests
that one introduce spinor structure and Kähler structure in E4. The Kähler structure of
E4 is unique apart form SO(3) rotation since all three quaternionic imaginary units and the
unit vectors formed from them allow a representation as an antisymmetric tensor. Hence one
must select one preferred Kähler structure, that is fix a point of S2 representing the selected
imaginary unit. It is natural to assume different couplings of the Kähler gauge potential
to spinor chiralities representing quarks and leptons: these couplings can be assumed to be
same as in case of H.
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3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving
coupling to Kähler form and Z0 contains both axial and vector parts. The naive replacement
of sigma matrices appearing in the coupling of electroweak gauge fields takes the left handed
parts of these fields to zero so that only neutral part remains. Further, gauge fields correspond
to curvature of CP2 which vanishes for E4 so that only Kähler form form remains. Kähler
form couples to 3L and q so that the basic asymmetry between leptons and quarks remains.
The resulting field could be seen as analog of photon.

4. The absence of weak parts of classical electro-weak gauge fields would conform with the
standard thinking that classical weak fields are not important in long scales. A further
prediction is that this distinction becomes visible only in situations, where H picture is
necessary. This is the case at high energies, where the description of quarks in terms of SU(3)
color is convenient whereas SO(4) QCD would require large number of E4 partial waves.
At low energies large number of SU(3) color partial waves are needed and the convenient
description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

6.3.3 Dirac equation for leptons and quarks in M8

Kähler gauge potential would also couple to octonionic spinors and explain the distinction between
quarks and leptons.

1. The complexified octonions representing H spinors decompose to 1 + 1 + 3 + 3 under SU(3)
representing color automorphisms but the interpretation in terms of QCD color does not
make sense. Rather, the triplet and single combine to two weak isospin doublets and quarks
and leptons corresponds to to “spin” states of octonion valued 2-spinor. The conservation of
quark and lepton numbers follows from the absence of coupling between these states.

2. One could modify the coupling so that coupling is on electric charge by coupling it to elec-
tromagnetic charge which as a combination of unit matrix and sigma matrix is proportional
to 1 + kI1, where I1 is octonionic imaginary unit in M2 ⊂M4. The complexified octonionic
units can be chosen to be eigenstates of Qem so that Laplace equation reduces to ordinary
scalar Laplacian with coupling to self-dual em field.

3. One expects harmonic oscillator like behavior for the modes of the Dirac operator of M8

since the gauge potential is linear in E4 coordinates. One possibility is Cartesian coordinates
is A(Ax, Ay, Az, At) = k(−y, x, t,−z). Thhe coupling would make E4 effectively a compact
space.

4. The square of Dirac operator gives potential term proportional to r2 = x2 + y2 + z2 + t2 so
that the spectrum of 4-D harmonic oscillator operator and SO(4) harmonics localized near
origin are expected. For harmonic oscillator the symmetry enhances to SU(4).

If one replaces Kähler coupling with em charge symmetry breaking of SO(4) to vectorial
SO(3) is expected since the coupling is proportional to 1 + ike1 defining electromagnetic
charge. Since the basis of complexified quaternions can be chosen to be eigenstates of e1
under multiplication, octonionic spinors are eigenstates of em charge and one obtains two
color singles 1 ± e1 and color triplet and antitriplet. The color triplets cannot be however
interpreted in terms of quark color.

Harmonic oscillator potential is expected to enhance SO(3) to SU(3). This suggests the
reduction of the symmetry to SU(3)×U(1) corresponding to color symmetry and em charge
so that one would have same basic quantum numbers as tof CP2 harmonics. An interesting
question is how the spectrum and mass squared eigenvalues of harmonics differ from those
for CP2.

5. In the square of Dirac equation JklΣkl term distinguishes between different em charges (Σkl
reduces by self duality and by special properties of octonionic sigma matrices to a term
proportional to iI1 and complexified octonionic units can be chosen to be its eigenstates with
eigen value ±1. The vacuum mass squared analogous to the vacuum energy of harmonic
oscillator is also present and this contribution are expected to cancel themselves for neutrinos
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so that they are massless whereas charged leptons and quarks are massive. It remains to be
checked that quarks and leptons can be classified to triality T = ±1 and t = 0 representations
of dynamical SU(3) respectively.

6.3.4 What about the analog of Kähler Dirac equation

Only the octonionic structure in T (M8) is needed to formulate quaternionicity of space-time sur-
faces: the reduction to Oc-real-analyticity would be extremely nice but not necessary (Oc denotes
complexified octonions needed to cope with Minkowskian signature). Most importantly, there
might be no need to introduce Kähler action (and Kähler form) in M8. Even the octonionic
representation of gamma matrices is un-necessary. Neither there is any absolute need to define oc-
tonionic Dirac equation and octonionic Kähler Dirac equation nor octonionic analog of its solutions
nor the octonionic variants of imbedding space harmonics.

It would be of course nice if the general formulas for solutions of the Kähler Dirac equation
in H could have counterparts for octonionic spinors satisfying quaternionicity condition. One can
indeed wonder whether the restriction of the modes of induced spinor field to string world sheets
defined by integrable distributions of hyper-complex spaces M2(x) could be interpretated in terms
of commutativity of fermionic physics in M8. M8 −H correspondence could map the octonionic
spinor fields at string world sheets to their quaternionic counterparts in H. The fact that only
holomorphy is involved with the definition of modes could make this map possible.

6.4 How could one solve associativity/co-associativity conditions?

The natural question is whether and how one could solve the associativity/-co-associativity con-
ditions explicitly. One can imagine two approaches besides M8 → H → H... iteration generating
new solutions from existing ones.

6.4.1 Could octonion-real analyticity be equivalent with associativity/co-associativity?

Analytic functions provide solutions to 2-D Laplace equations and one might hope that also the
field equations could be solved in terms of octonion-real-analyticity at the level of M8 perhaps also
at the level of H. Signature however causes problems - at least technical. Also the compactness of
CP2 causes technical difficulties but they need not be insurmountable.

For E8 the tangent space would be genuinely octonionic and one can define the notion octonion-
real analytic map as a generalization of real-analytic function of complex variables (the coefficients
of Laurent series are real to guarantee associativity of the series). The argument is complexified
octonion in O⊕iO forming an algebra but not a field. The norm square is Minkowskian as difference
of two Euclidian octonionic norms: N(o1 + io2) = N(o1)−N(o2) and vanishes at 15-D light cone
boundary. Obviously, differential calculus is possible outside the light-cone boundary. Rational
analytic functions have however poles at the light-cone boundary. One can wonder whether the
poles at M4 light-cone boundary, which is subset of 15-D light-cone boundary could have physical
significance and relevant for the role of causal diamonds in ZEO.

The candidates for associative surfaces defined by Oc-real-analytic functions (I use Oc for
complexified octonions) have Minkowskian signature of metric and are 4-surfaces at which the
projection of f(o1 + io2) to Im(O1), iIm(O2), and iRe(Q2) ⊕ Im(Q1) vanish so that only the
projection to hyper-quaternionic Minkowskian sub-space M4 = Re(Q1) + iIm(Q2) with signature
(1,−1,−, 1−, 1) is non-vanishing. The inverse image need not belong to M8 and in general it
belongs to M8

c but this is not a problem: all that is needed that the tangent space of inverse
image is complexified quaternionic. If this is the case then M8 − H duality maps the tangent
space of the inverse image to CP2 point and image itself defines the point of M4 so that a point
of H is obtained. Co-associative surfaces would be surfaces for which the projections of image to
Re(O1), iRe(O2), and to Im(O1) vanish so that only the projection to iIm(O2) with signature
(−1,−1,−1,−1) is non-vanishing.

The inverse images as 4-D sub-manifolds of M8
c (not M8!) are excellent candidates for associa-

tive and co-associative 4-surfaces since M8 −H duality assignes to them a 4-surface in M4 ×CP2

if the tangent space at given point is complexified quaternionic. This is true if one believes on the
analytic continuation of the intuition from complex analysis (the image of real axes under the map



6.4 How could one solve associativity/co-associativity conditions? 62

defined by Oc-real-analytic function is real axes in the new coordinates defined by the map: the
intuition results by replacing “real” by “complexified quaternionic” ). The possibility to solve field
equations in this manner would be of enormous significance since besides basic arithmetic oper-
ations also the functional decomposition of Oc-real-analytic functions produces similar functions.
One could speak of the algebra of space-time surfaces.

What is remarkable that the complexified octonion real analytic functions are obtained by
analytic continuation from single real valued function of real argument. The real functions form
naturally a hierarchy of polynomials (maybe also rational functions) and number theoretic vision
suggests that there coefficients are rationals or algebraic numbers. Already for rational coefficients
hierarchy of algebraic extensions of rationals results as one solves the vanishing conditions. There
is a temptation to regard this hierarchy coding for space-time sheets as an analog of DNA.

Note that in the recent formulation there is no need to pose separately the condition about
integrable distribution of M2(x) ⊂M4.

6.4.2 Quaternionicity condition for space-time surfaces

Quaternionicity actually has a surprisingly simple formulation at the level of space-time surfaces.
The following discussion applies to both M8 and H with minor modifications if one accepts that
also H can allow octonionic tangent space structure, which does not require gamma matrices.

1. Quaternionicity is equivalent with associativity guaranteed by the vanishing of the associator
A(a, b, c) = a(bc)− (ab)c for any triplet of imaginary tangent vectors in the tangent space of
the space-time surface. The condition must hold true for purely imaginary combinations of
tangent vectors.

2. If one is able to choose the coordinates in such a manner that one of the tangent vectors
corresponds to real unit (in the imbedding map imbedding space M4 coordinate depends
only on the time coordinate of space-time surface), the condition reduces to the vanishing of
the octonionic product of remaining three induced gamma matrices interpreted as octonionic
gamma matrices. This condition looks very simple - perhaps too simple!- since it involves
only first derivatives of the imbedding space vectors.

One can of course whether quaternionicity conditions replace field equations or only select
preferred extremals. In the latter case, one should be able to prove that quaternionicity
conditions are consistent with the field equations.

3. Field equations would reduce to tri-linear equations in in the gradients of imbedding space co-
ordinates (rather than involving imbedding space coordinates quadratically). Sum of analogs
of 3× 3 determinants deriving from a× (b× b) for different octonion units is involved.

4. Written explicitly field equations give in terms of vielbein projections eAα , vielbein vectors eAk ,
coordinate gradients ∂αh

k and octonionic structure constants fABC the following conditions
stating that the projections of the octonionic associator tensor to the space-time surface
vanishes:

eAαe
B
β e

C
γ A

E
ABC = 0 ,

AEABC = f E
AD f D

BC − f D
AB f E

DC ,

eAα = ∂αh
keAk ,

Γk = eAk γA .

(6.1)

The very naive idea would be that the field equations are indeed integrable in the sense that
they reduce to these tri-linear equations. Tri-linearity in derivatives is highly non-trivial
outcome simplifying the situation further. These equations can be formulated as the as
purely algebraic equations written above plus integrability conditions

FAαβ = Dαe
A
β −Dβe

A
α = 0 . (6.2)
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One could say that vielbein projections define an analog of a trivial gauge potential. Note
however that the covariant derivative is defined by spinor connection rather than this effective
gauge potential which reduces to that in SU(2). Similar formulation holds true for field
equations and one should be able to see whether the field equations formulated in terms of
derivatives of vielbein projections commute with the associatitivity conditions.

5. The quaternionicity conditions can be formulated as vanishing of generalization of Cayley’s
hyperdeterminant for “hypermatrix” aijk with 2-valued indiced
(see http://en.wikipedia.org/wiki/Hyperdeterminant ). Now one has 8 hyper-matrices
with 3 8-valued indices associated with the vanishing AEBCDx

ByCzD = 0 of trilinear forms
defined by the associators. The conditions say somethig only about the octonioni structure
constants and since octonionic space allow quaternionic sub-spaces these conditions must be
satisfied.

The inspection of the Fano triangle [A5] (see Fig. 6.4.2 ) expressing the multiplication table
for octonionic imaginary units reveals that give any two imaginary octonion units e1 and e2 their
product e1e2 (or equivalently commutator) is imaginary octonion unit (2 times octonion unit) and
the three units span together with real unit quaternionic sub-algebra. There it seems that one can
generate local quaternionic sub-space from two imaginary units plus real unit. This generalizes to
the vielbein components of tangent vectors of space-time surface and one can build the solutions
to the quaternionicity conditions from vielbein projections e1, e2, their product e3 = k(x)e1e2 and
real fourth “time-like” vielbein component which must be expressible as a combination of real unit
and imaginary units:

e0 = a× 1 + biei

For static solutions this condition is trivial. Here summation over i is understood in the latter
term. Besides these conditions one has integrability conditions and field equations for Kähler
action. This formulation suggests that quaternionicity is additional - perhaps defining - property
of preferred extremals.

Figure 1: Octonionic triangle: the six lines and one circle containing three vertices define the seven
associative triplets for which the multiplication rules of the ordinary quaternion imaginary units
hold true. The arrow defines the orientation for each associative triplet. Note that the product for
the units of each associative triplets equals to real unit apart from sign factor.

6.5 Quaternionicity at the level of imbedding space quantum numbers

From the multiplication table of octonions as illustrated by Fano triangle [A5] one finds that all
edges of the triangle, the middle circle and the three the lines connecting vertices to the midpoints

http: //en.wikipedia.org/wiki/Hyperdeterminant
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of opposite side define triplets of quaternionic units. This means that by taking real unit and any
imaginary unit in quaternionic M4 algebra spanning M2 ⊂ M4 and two imaginary units in the
complement representing CP2 tangent space one obtains quaternionic algebra. This suggests an
explanation for the preferred M2 contained in tangent space of space-time surface (the M2: s could
form an integrable distribution). Four-momentum restricted to M2 and I3 and Y interpreted as
tangent vectors in CP2 tangent space defined quaterionic sub-algebra. This could give content for
the idea that quantum numbers are quaternionic.

I have indeed proposed that the four-momentum belongs to M2. If M2(x) form a distribution as
the proposal for the preferred extremals suggests this could reflect momentum exchanges between
different points of the space-time surface such that total momentum is conserved or momentum
exchange between two sheets connected by wormhole contacts.

6.6 Questions

In following some questions related to M8 −H duality are represented.

6.6.1 Could associativity condition be formulated using modified gamma matrices?

Skeptic can criticize the minimal form of M8 − H duality involving no Kähler action in M8 is
unrealistic. Why just Kähler action? What makes it so special? The only defense that I can
imagine is that Kähler action is in many respects unique choice.

An alternative approach would replace induced gamma matrices with the modified ones to get
the correlation In the case of M8 this option cannot work. One cannot exclude it for H.

1. For Kähler action the Kähler-Dirac gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, assign to a

given point of X4 a 4-D space which need not be tangent space anymore or even its sub-space.

The reason is that canonical momentum current contains besides the gravitational contri-
bution coming from the induced metric also the “Maxwell contribution” from the induced
Kähler form not parallel to space-time surface. In the case of M8 the duality map to H is
therefore lost.

2. The space spanned by the Kähler-Dirac gamma matrices need not be 4-dimensional. For
vacuum extremals with at most 2-D CP2 projection Kähler-Dirac gamma matrices vanish
identically. For massless extremals they span 1- D light-like subspace. For CP2 vacuum
extremals the modified gamma matrices reduces to ordinary gamma matrices for CP2 and the
situation reduces to the quaternionicity of CP2. Also for string like objects the conditions are
satisfied since the gamma matrices define associative sub-space as tangent space of M2×S2 ⊂
M4×CP2. It seems that associativity is satisfied by all known extremals. Hence Kähler-Dirac
gamma matrices are flexible enough to realize associativity in H.

3. Kähler-Dirac gamma matrices in Dirac equation are required by super conformal symmetry
for the extremals of action and they also guarantee that vacuum extremals defined by surfaces
in M4 × Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces.
The modified definition of associativity in H does not affect in any manner M8 −H duality
necessarily based on induced gamma matrices in M8 allowing purely number theoretic in-
terpretation of standard model symmetries. One can however argue that the most natural
definition of associativity is in terms of induced gamma matrices in both M8 and H.

Remark: A side comment not strictly related to associativity is in order. The anti-commutators
of the Kähler-Dirac gamma matrices define an effective Riemann metric and one can assign to it
the counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would
have two different metrics associated with the space-time surface. Only if the action defining
space-time surface is identified as the volume in the ordinary metric, these metrics are equivalent.
The index raising for the effective metric could be defined also by the induced metric and it is not
clear whether one can define Riemann connection also in this case. Could this effective metric have
concrete physical significance and play a deeper role in quantum TGD? For instance, AdS-CFT
duality leads to ask whether interactions be coded in terms of the gravitation associated with the
effective metric.
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Now skeptic can ask why should one demand M8 − H correspondence if one in any case
is forced to introduced Kähler also at the level of M8? Does M8 − H correspondence help to
construct preferred extremals or does it only bring in a long list of conjectures? I can repeat the
questions of the skeptic.

6.6.2 Minkowskian-Euclidian ↔ associative–co-associative?

The 8-dimensionality of M8 allows to consider both associativity of the tangent space and as-
sociativity of the normal space- let us call this co-associativity of tangent space- as alternative
options. Both options are needed as has been already found. Since space-time surface decomposes
into regions whose induced metric possesses either Minkowskian or Euclidian signature, there is a
strong temptation to propose that Minkowskian regions correspond to associative and Euclidian
regions to co-associative regions so that space-time itself would provide both the description and
its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an in-
teresting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer
as preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size

of the space-time sheet at which elementary particle represented as CP2 type extremal is topolog-
ically condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of

the wormhole contacts associated with the CP2 type extremal and CP2 size is the natural length
unit now. Obviously the quantitative formulation for associative-co-associative duality would be
in terms p→ k duality.

6.6.3 Can M8 −H duality be useful?

Skeptic could of course argue that M8−H duality generates only an inflation of unproven conjec-
tures. This might be the case. In the following I will however try to defend the conjecture. One
can however find good motivations for M8 −H duality: both theoretical and physical.

1. If M8 −H duality makes sense for induced gamma matrices also in H, one obtains infinite
sequence if dualities allowing to construct preferred extremals iteratively. This might relate
to octonionic real-analyticity and composition of octonion-real-analytic functions.

2. M8 − H duality could provide much simpler description of preferred extremals of Kähler
action as hyper-quaternionic surfaces. Unfortunately, it is not clear whether one should
introduce the counterpart of Kähler action in M8 and the coupling of M8 spinors to Kähler
form. Note that the Kähler form in E4 would be self dual and have constant components:
essentially parallel electric and magnetic field of same constant magnitude.

3. M8 − H duality provides insights to low energy physics, in particular low energy hadron
physics. M8 description might work when H-description fails. For instance, perturbative
QCD which corresponds to H-description fails at low energies whereas M8 description might
become perturbative description at this limit. Strong SO(4) = SU(2)L × SU(2)R invariance
is the basic symmetry of the phenomenological low energy hadron models based on conserved
vector current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC).
Strong SO(4) = SU(2)L×SU(2)R relates closely also to electro-weak gauge group SU(2)L×
U(1) and this connection is not well understood in QCD description. M8 −H duality could
provide this connection. Strong SO(4) symmetry would emerge as a low energy dual of
the color symmetry. Orbital SO(4) would correspond to strong SU(2)L × SU(2)R and by
flatness of E4 spin like SO(4) would correspond to electro-weak group SU(2)L × U(1)R ⊂
SO(4). Note that the inclusion of coupling to Kähler gauge potential is necessary to achieve
respectable spinor structure in CP2. One could say that the orbital angular momentum in
SO(4) corresponds to strong isospin and spin part of angular momentum to the weak isospin.

This argument does not seem to be consistent with SU(3)×U(1) ⊂ SU(4) symmetry for Mx
Dirac equation. One can however argue that SU(4) symmetry combines SO(4) multiplets
together. Furthermore, SO(4) represents the isometries leaving Kähler form invariant.
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6.6.4 M8 −H duality in low energy physics and low energy hadron physics

M8−H can be applied to gain a view about color confinement. The basic idea would be that SO(4)
and SU(3) provide provide dual descriptions of quarks using E4 and CP2 partial waves and low
energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies.

A possible interpretation is that the space-time surfaces vary so slowly in CP2 degrees of
freedom that can approximate CP2 with a small region of its tangent space E4. One could also
say that color interactions mask completely electroweak interactions so that the spinor connection
of CP2 can be neglected and one has effectively E4. The basic prediction is that SO(4) should
appear as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks
and gluons are expected to appear at the confinement limit. Since WCW degrees of freedom
begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly
relate to the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong
SO(4) quantum numbers can be identified as orbital counterparts of right and left handed
electro-weak isospin coinciding with strong isospin for lowest quarks. In sigma model pion
and sigma boson form the components of E4 valued vector field or equivalently collection
of four E4 Hamiltonians corresponding to spherical E4 coordinates. Pion corresponds to S3

valued unit vector field with charge states of pion identifiable as three Hamiltonians defined
by the coordinate components. Sigma is mapped to the Hamiltonian defined by the E4 radial
coordinate. Excited mesons corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4)
partial waves. At the low energy limit only lowest representations would be be important
whereas at higher energies higher partial waves would be excited and the description based
on CP2 partial waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left
resp. right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin
statistics problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both
cases so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-
adic mass calculations allowing fractally scaled up versions of various quarks allow to replace
Gell-Mann mass formula with highly successful predictions for hadron masses [K13].

To my opinion these observations are intriguing enough to motivate a concrete attempt to
construct low energy hadron physics in terms of SO(4) gauge theory.

6.7 Summary

The overall conclusion is that the most convincing scenario relies on the associativity/co-associativity
of space-time surfaces define by induced gamma matrices and applying both for M8 and H. The
fact that the duality can be continued to an iterated sequence of duality maps M8 → H → H... is
what makes the proposal so fascinating and suggests connection with fractality.

The introduction of Kähler action and coupling of spinors to Kähler gauge potentials is highly
natural. One can also consider the idea that the space-time surfaces in M8 and H have same
induced metric and Kähler form: for iterated duality map this would mean that the steps in the
map produce space-time surfaces which identical metric and Kähler form so that the sequence might
stop. M8

H duality might provide two descriptions of same underlying dynamics: M8 description
would apply in long length scales and H description in short length scales.
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7 Does Kähler-Dirac action define the fundamental action
principle?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the Kähler-Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional of
the theory having interpretation as the exponent of Kähler function of world of classical worlds
(WCW) expressible and that Kähler function reduces to Kähler action for a preferred extremal of
Kähler action. One cannot however get rid of Kähler action since the gamma matrices appearing
in Kähler-Dirac action are defined in terms of canonical momentum densities of Kähler action.
The most one can hope is that Dirac determinant reduces to the exponent of Kähler action for
preferred extremals.

7.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two
kinds of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second variation
vanishes for critical deformations representing zero modes. This condition guarantees that
corresponding fermionic currents are conserved. An infinite hierarchy of these currents is
expected and they would define fermionic counterparts for zero modes. In number theoretic
vision space-time surfaces are proposed to be identifiable as associative (co-associative) sur-
faces. What these statements precisely mean has become clear only during this year. A
rigorous proof for the equivalence of these two identifications is still lacking [?]

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the Kähler-Dirac (Kähler-Dirac) equation. The requirement that there are
deformations of the space-time surface -actually infinite number of them - giving rise to
conserved fermionic charges implies quantum criticality at the level of Kähler action in the
sense of critical deformations. The precise form of the Kähler-Dirac equation is not however
completely fixed without further input. Quantal equations involve also generalized Feynman
rules for M -matrix generalizing S-matrix to a “complex square root” of density matrix and
defined by time-like entanglement coefficients between positive and negative energy parts of
zero energy states is certainly the basic goal of quantum TGD.

3. The notion of weak electric-magnetic duality generalizing the notion of electric-magnetic du-
ality [K27], [L4] leads to a detailed understanding of how TGD reduces to almost topological
quantum field theory [K27], [L4]. If Kähler current defines Beltrami flow [B7] it is possible to
find a gauge in which Coulomb contribution to Kähler action vanishes so that it reduces to
Chern-Simons term. If light-like 3-surfaces and ends of space-time surface are extremals of
Chern-Simons action also effective 2-dimensionality is realized. The condition that the the-
ory reduces to almost topological QFT and the hydrodynamical character of field equations
leads to a detailed ansatz for the general solution of field equations and also for the solutions
of the modified Dirac equation relying on the notion of Beltrami flow for which the flow
parameter associated with the flow lines defined by a conserved current extends to a global
coordinate. This makes the theory is in well-defined sense completely integrable. Direct
connection with massless theories emerges: every conserved Beltrami currents corresponds
to a pair of scalar functions with the first one satisfying massless d’Alembert equation in the
induced metric. The orthogonality of the gradients of these functions allows interpretation
in terms of polarization and momentum directions. The Beltrami flow property can be also
seen as one aspect of quantum criticality since the conserved currents associated with critical
deformations define this kind of pairs.
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4. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark mat-
ter and also in biology. The realization of the hierarchy in terms of the singular coverings
and possibly also factor spaces of CD and CP2 emerged from consistency conditions. It
however seems that TGD actually predicts this hierarchy of covering spaces. The extreme
non-linearity of the field equations defined by Kähler action means that the correspondence
between canonical momentum densities and time derivatives of the imbedding space co-
ordinates is 1-to-many. This leads naturally to the introduction of the covering space of
CD × CP2, where CD denotes causal diamond defined as intersection of future and past
directed light-cones.

At the level of WCW there is the generalization of the Dirac equation, which can be regarded
as a purely classical Dirac equation. The Kähler-Dirac operators associated with quarks and
leptons carry fermion number but the Dirac equations are well-defined. An orthogonal basis of
solutions of these Dirac operators define in zero energy ontology a basis of zero energy states. The
M -matrices defining entanglement between positive and negative energy parts of the zero energy
state define what can be regarded as analogs of thermal S-matrices. The M-matrices associated
with the solution basis of the WCW Dirac equation define by their orthogonality unitary U-matrix
between zero energy states. This matrix finds the proper interpretation in TGD inspired theory of
consciousness. WCW Dirac equation as the analog of super-Virasoro conditions for the “gamma
fields” of superstring models defining super counterparts of Virasoro generators was the main focus
during earlier period of quantum TGD but has not received so much attention lately and will not
be discussed in this chapter.

7.2 Quantum criticality and Kähler-Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic chal-
lenges of quantum TGD. The question leading to a considerable progress in the problem was simple:
Under what conditions the Kähler-Dirac action allows to assign conserved fermionic currents with
the deformations of the space-time surface? The answer was equally simple: These currents exists
only if these deformations correspond to vanishing second variations of Kähler action - which is
what criticality is. The vacuum degeneracy of Kähler action strongly suggests that the number
of critical deformations is always infinite and that these deformations define an infinite inclusion
hierarchy of super-conformal algebras. This inclusion hierarchy would correspond to a fractal hier-
archy of breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies of
gauge theories. These super-conformal inclusion hierarchies would realize the inclusion hierarchies
for hyper-finite factors of type II1.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal equivalence
classes of the deformations can be finite and n would naturally relate to the hierarchy of Planck
constants heff = n× h (see fig. http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg,
which is also in the appendix of this book).

7.2.1 Quantum criticality and fermionic representation of conserved charges associ-
ated with second variations of Kähler action

It is rather obvious that TGD allows a far reaching generalization of conformal symmetries. The
development of the understanding of conservation laws has been slow. Kähler-Dirac action provides
excellent candidates for quantum counterparts of Noether charges. Unfortunately, the isometry
charges vanish for Cartan algebras.

1. Conservation of the fermionic current requires the vanishing of the second variation of
Kähler action

1. The Kähler-Dirac action assigns to a deformation of the space-time surface a conserved
charge expressible as bilinears of fermionic oscillator operators only if the first variation of
the Kähler-Dirac action under this deformation vanishes. The vanishing of the first variation

http: //www.tgdtheory.fi/appfigures/planckhierarchy.jpg
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for the Kähler-Dirac action is equivalent with the vanishing of the second variation for the
Kähler action. This can be seen by the explicit calculation of the second variation of the
Kähler-Dirac action and by performing partial integration for the terms containing derivatives
of Ψ and Ψ to give a total divergence representing the difference of the charge at upper and
lower boundaries of the causal diamond plus a four-dimensional integral of the divergence
term defined as the integral of the quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (7.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-
time coordinates. This term must vanish:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. It is essential that the Kähler-Dirac equation holds true so that the Kähler-Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the Kähler-Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined
by the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (7.2)

Here 1/D is the inverse of the Kähler-Dirac operator defining the counterpart of the fermionic
propagator.

3. The fermionic conserved currents associated with the deformations are obtained from the
standard conserved fermion current

Jα = ΨΓαΨ . (7.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler
action: this is also needed to guarantee Hermiticity and same form for the Kähler-Dirac
equation for Ψ and its conjugate as well as absence of mass term essential for super-conformal
invariance [A3, A4]. Note also that ordinary divergence rather only covariant divergence of
the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing Kähler-Dirac gamma matrices with their increments in the deformation keeping Ψ
and its conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ.
The third term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (7.4)

These currents provide a representation for the algebra defined by the conserved charges
analogous to a fermionic representation of Kac-Moody algebra [A2].
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4. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right-handed neutrino spinor
or its conjugate in the expression for the conserved fermion current and performing the
above procedure giving two terms since nothing happens to the covariantly constant right
handed-neutrino spinor. Second class of conserved currents is defined by the solutions of
the Kähler-Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same
procedure gives three terms appearing in the super current.

5. The existence of vanishing of second variations is analogous to criticality in systems defined
by a potential function for which the rank of the matrix defined by second derivatives of
the potential function vanishes at criticality. Quantum criticality becomes the prerequisite
for the existence of quantum theory since fermionic anti-commutation relations in principle
can be fixed from the condition that the algebra in question is equivalent with the algebra
formed by the vector fields defining the deformations of the space-time surface defining second
variations. Quantum criticality in this sense would also select preferred extremals of Kähler
action as analogs of Bohr orbits and the the spectrum of preferred extremals would be more
or less equivalent with the expected existence of infinite-dimensional symmetry algebras.

2. About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P×SU(3) (there are two types of them for P corre-
sponding to linear and cylindrical Minkowski coordinates) defines critical deformations (one
could require that the isometries respect the geometry of CD). The corresponding charges are
conserved but vanish since the corresponding conjugate coordinates are cyclic for the Kähler
metric and Kähler form so that the conserved current is proportional to the gradient of a
Killing vector field which is constant in these coordinates. Therefore one cannot represent
isometry charges as fermionic bilinears. Four-momentum and color quantum numbers are
defined for Kähler action as classical conserved quantities but this is probably not enough.
This can be seen as a problem.

(a) Four-momentum and color Cartan algebra emerge naturally in the representations of
super-conformal algebras. In the case of color algebra the charges in the complement of
the Cartan algebra can be constructed in standard manner as extension of those for the
Cartan algebra using free field representation of Kac-Moody algebras. In string theories
four-momentum appears linearly in bosonic Kac-Moody generators and in Sugawara
construction [A24] of super Virasoro generators as bilinears of bosonic Kac-Moody gen-
erators and fermionic super Kac-Moody generators [A2]. Also now quantized transversal
parts for M4 coordinates could define a second quantized field having interpretation as
an operator acting on spinor fields of WCW. The angle coordinates conjugate to color
isospin and hyper charge take the role of M4 coordinates in case of CP2.

(b) The understanding of the contributions to Kähler-Dirac action has been slow. It seems
that what is needed is Chern-Simons Dirac action assigned to partonic orbits: this was
the original proposal. The condition that the action of C-S-D operator reduces to that of
massless M4 Dirac operator. GammanΨ = pkγkΨ would be space-time counterpart for
the massless Dirac equation at the level of imbedding space. I have called this condition
earlier generalized eigenvalue condition.

The assumption that C-S-D is present strongly suggests that also Kähler action contains
C-S term meaning that the C-S terms from Kähler action are cancelled at partonic
orbits for preferred extremals. If C-S term is present also at space-like ends of space-
time surface Kähler action and therefore also Kähler function vanishes identically. At
the ends of space-time surface one would therefore have ΓnΨ = 0 if C-S-D term is
not present. Hence this assumption seems unphysical. One would have massless Dirac
propagator at the fermionic lines defined by the partonic boundaries of Kähler-Dirac
equation and on-mass-shell condition at the space-like ends of the space-time surface.

If this is correct interpretation then the fermionic lines identified as boundaries of string
world sheets correspond to massless fermion propagators and the stringy propagators



7.2 Quantum criticality and Kähler-Dirac action 71

1/L0 could be associated with fermion fermion scattering at wormhole contacts (see fig.
?? in the appendix of this book). The generalized Feynman diagrammatics would be a
combination of stringy and Feynman diagrammatics. External fermion lines would carry
massless on-shell momenta and wormhole contacts could be seen as massive bound states
of massless fermions falling into representations of super-conformal algebras assignable
to wormhole contacts. This would allow stringy variant of twistor approach.

2. The action defined by four-volume gives a first glimpse about what one can expect. In this
case Kähler-Dirac gamma matrices reduce to the induced gamma matrices. Second variations
satisfy d’Alembert type equation in the induced metric so that the analogs of massless fields
are in question. Mass term is present only if some dimensions are compact. The vanishing
of excitations at light-like boundaries is a natural boundary condition and might well imply
that the solution spectrum could be empty. Hence it is quite possible that four-volume action
leads to a trivial theory.

3. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations
vanishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation
for second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a on-vanishing term and an equation analogous
to massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also
for the vacuum extremals of Kähler action with 2-D CP2 projection all terms involving
induced Kähler form vanish and the field equations reduce to d’Alembert type equations for
CP2 coordinates. A possible interpretation is as the classical analog of Higgs field. For the
deformations of non-vacuum extremals this would suggest the presence of terms analogous
to mass terms: these kind of terms indeed appear and are proportional to δsk. M4 degrees
of freedom decouple completely and one obtains QFT type situation.

4. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies
of inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of
inclusions of the super conformal algebras defined by the critical deformations.

5. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would
correspond to maximal criticality analogous to that encountered at the tip of the cusp catas-
trophe. The natural guess would be that as one deforms the vacuum extremal the previously
critical degrees of freedom are transformed to non-critical ones. The dimension of the critical
manifold could remain infinite for all preferred extremals of the Kähler action. For instance,
for cosmic string like objects any complex manifold of CP2 defines cosmic string like objects
so that there is a huge degeneracy is expected also now. For CP2 type vacuum extremals
M4 projection is arbitrary light-like curve so that also now infinite degeneracy is expected
for the deformations.

3. Critical super algebra and zero modes

The relationship of the critical super-algebra to WCW geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler
action for preferred extremals means that the critical variations are orthogonal to all defor-
mations of the space-time surface with respect to the configuration space metric and thus
correspond to zero modes. This conforms with the fact that WCW metric vanishes identi-
cally for canonically imbedded M4. Zero modes do not seem to correspond to gauge degrees
of freedom so that the super-conformal algebra associated with the zero modes has genuine
physical content.

2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quan-

tum fluctuating degrees of freedom, critical deformations cannot correspond to this kind of
Hamiltonians.
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3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond
to this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give
WCW metric as their anti-commutator. This would also lead to a conflict with the effective
2-dimensionality stating that WCW line-element is expressible as sum of contribution coming
from partonic 2-surfaces as also with fermionic anti-commutation relations.

4. Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical,
in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp
catastrophe. For some mysterious reason I failed to realize that quantum criticality realized as the
vanishing of the second variation makes possible a more or less unique identification of preferred
extremals and considered alternative identifications such as absolute minimization of Kähler action
which is just the opposite of criticality. Both the super-symmetry of DK and conservation Dirac
Noether currents for Kähler-Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are character-
ized by the matrix defined by the second derivatives of the potential function and the rank of
system classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to
the complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies,
when the numbers of behavior and control variables are small (smaller than 5). In the recent
case the situation is infinite-dimensional and the criticality conditions give additional field
equations as existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy
of criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection
the matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the

matrix (Jαk + J α
k )(Jβl + J β

l ) vanishes by the antisymmetry Jαk = −J α
k . The conserva-

tion of fermionic Noether currents defining gravitational four-momentum and other Poincare
quantum numbers requires additional conditions to be satisfied and the holomorphy of string
world sheets (partonic 2-surfaces) and associated Kähler-Dirac gamma matrices makes this
possible [K27].

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in
terms of the fermionic oscillator operators if the second variations defined by the infinitesi-
mal isometries vanish for the Kähler-Dirac action. For vacuum extremals the dimension of
the critical manifold is infinite: maybe there is hierarchy of quantum criticalities for which
this dimension decreases step by step but remains always infinite. This hierarchy could
closely relate to the hierarchy of inclusions of hyper-finite factors of type II1. Also the
conserved charges associated with Super-symplectic and Super Kac-Moody algebras would
require infinite-dimensional critical manifold defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the
hierarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [K6] with degrees of freedom
below the measurement resolution identified as gauge degrees of freedom.

5. A breakthrough in understanding of the criticality was the discovery that the realization
that the hierarchy of singular coverings of CD × CP2 needed to realize the hierarchy of
Planck constants could correspond directly to a similar hierarchy of coverings forced by
the factor that classical canonical momentum densities correspond to several values of the
time derivatives of the imbedding space coordinates led to a considerable progress if the
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understanding of the relationship between criticality and hierarchy of Planck constants [K8],
[L3]. Therefore the problem which led to the geometrization program of quantum TGD,
also allowed to reduce the hierarchy of Planck constants introduced on basis of experimental
evidence to the basic quantum TGD. One can say that the 3-surfaces at the ends of CD
resp. wormhole throats are critical in the sense that they are unstable against splitting to nb
resp. na surfaces so that one obtains space-time surfaces which can be regarded as surfaces
in na × nb fold covering of CD × CP2. This allows to understand why Planck constant is
effectively replaced with nanb~0 and explains charge fractionization.

7.2.2 Preferred extremal property as classical correlate for quantum criticality, holog-
raphy, and quantum classical correspondence

The Noether currents assignable to the Kähler-Dirac equation are conserved only if the first vari-
ation of the Kähler-Dirac operator DK defined by Kähler action vanishes. This is equivalent with
the vanishing of the second variation of Kähler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below
measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to

quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should have
noticed for more than decade ago!

The vanishing of second variations of preferred extremals - at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kähler action would represent extremals for which the second variation vanishes
identically (the “tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that WCW metric is deter-
mined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with boundaries
of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense correspond to
zero modes so that there is indeed huge number of them. Also the variables characterizing
2-surface, which cannot be complexified and thus cannot contribute to the Kähler metric of
configuration space represent zero modes. Fixing the interior of the 3-surface would mean
fixing of control variables. Extremum property would fix the 4-surface and behavior variables
if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D “causal boundary” X2 of X3(X2) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X2 is known and give rise to the
holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X3

l involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.
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5. There is a possible connection with the notion of self-organized criticality [B3] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to
lead “to the edge”. The challenge is to understand how system ends up to a critical state,
which by definition is unstable. Mechanisms for this have been discovered and based on
phase transitions occurring in a wide range of parameters so that critical point extends to
a critical manifold. In TGD Universe quantum criticality suggests a universal mechanism
of this kind. The criticality for the preferred extremals of Kähler action would mean that
classically all systems are critical in well-defined sense and the question is only about the
degree of criticality. Evolution could be seen as a process leading gradually to increasingly
critical systems. One must however distinguish between the criticality associated with the
preferred extremals of Kähler action and the criticality caused by the spin glass like energy
landscape like structure for the space of the maxima of Kähler function.

7.3 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It
is essential to make trials, even if one is aware that they are probably wrong. When stares long
enough to the letters which do not quite fit, one suddenly realizes what one particular crossword
must actually be and it is soon clear what those other crosswords are. In the following I describe
an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma matrices
and propose Kähler-Dirac action (or Kähler Dirac action as solution). After that I will describe the
general structures of Kähler action and Kähler Dirac action. The non-trivial terms are associated to
3-D boundary like surfaces - that is ends of space-time surface inside CD and light-like 3-surfaces
at which the signature of the induced metric changes. These terms are induced as Lagrange
multiplier terms guaranteeing weak form of E-M duality and quantum classical correspondence
(QCC) between classical and quantal Cartan charges. The condition guaranteeing that Chern-
Simons Dirac propagator reduces to ordinary massless Dirac propagator must be however assumed
as a property of the modes of Kähler Dirac equation rather than forced by a separate term in the
Kähler-Dirac action as thought originally.

7.3.1 Why Kähler-Dirac action?

1. Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of
Kähler-Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to a
complex-analytic map. This implies that induced metric is hermitian so that it has no diagonal
components in complex coordinates (z, z) and the second fundamental form has only diagonal
components of type Hk

zz. This implies that minimal surface is in question since the trace of the
second fundamental form vanishes. At first it seems that the same must happen also in the more
general case with the consequence that the space-time surface is a minimal surface. Although
many basic extremals of Kähler action are minimal surfaces, it seems difficult to believe that
minimal surface property plus extremization of Kähler action could really boil down to the absolute
minimization of Kähler action or some other general principle selecting preferred extremals as Bohr
orbits [K4, K19].

This brings in mind a similar long-standing problem associated with the Dirac equation for the
induced spinors. The problem is that right-handed neutrino generates super-symmetry only pro-
vided that space-time surface and its boundary are minimal surfaces. Although one could interpret
this as a geometric symmetry breaking, there is a strong feeling that something goes wrong. In-
duced Dirac equation and super-symmetry fix the variational principle but this variational principle
is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors
is consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously
require that for vacuum extremals of Kähler action also induced spinor fields represent vacua. This
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is however not the case. This super-symmetry is however assumed in the construction of WCW
geometry so that there is internal inconsistency.

2. Super-symmetry forces Kähler-Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed
neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations
can be written as

DαT
α
k = 0 ,

Tαk =
∂

∂hkα
LK . (7.5)

Here Tαk is canonical momentum current of Kähler action. If super-symmetry is present one can
assign to this current its super-symmetric counterpart

Jαk = νRΓkTαl ΓlΨ ,

DαJ
αk = 0 . (7.6)

having a vanishing divergence. The isometry currents currents and super-currents are obtained by
contracting Tαk and Jαk with the Killing vector fields of super-symmetries. Note also that the
super current

Jα = νRT
α
l ΓlΨ (7.7)

has a vanishing divergence.
By using the covariant constancy of the right-handed neutrino spinor, one finds that the diver-

gence of the super current reduces to

DαJ
αk = νRΓkTαl ΓlDαΨ .

(7.8)

The requirement that this current vanishes is guaranteed if one assumes that Kähler-Dirac equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tαl Γl . (7.9)

This equation must be derivable from a Kähler-Dirac action. It indeed is. The action is given by

L = ΨΓ̂αDαΨ . (7.10)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with Kähler-Dirac gamma matrices and the requirement

DµΓ̂µ = 0 (7.11)

guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are satis-
fied. For the ordinary Dirac action this condition would lead to the minimal surface property.
What sounds strange that the essentially hydrodynamical equations defined by Kähler action have
fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very seriously.
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As a matter fact, any mode of Kähler-Dirac equation contracted with second quantized induced
spinor field or its conjugate defines a conserved super charge. Also super-symplectic Noether
charges and their super counterparts can be assigned to symplectic generators as Noether charges
but they need not be conserved.

3. Does the Kähler-Dirac action define the fundamental action principle?

There is quite fundamental and elegant interpretation of the modified Dirac action as a funda-
mental action principle discussed also in [K19]. In this approach vacuum functional can be defined
as the Grassmannian functional integral associated with the exponent of the Kähler-Dirac action.
This definition is invariant with respect to the scalings of the Dirac action so that theory contains
no free parameters.

An alternative definition is as a Dirac determinant which might be calculated in TGD framework
without applying the poorly defined functional integral. There are good reasons to expect that the
Dirac determinant equals to the exponent of Kähler function for a preferred Bohr orbit like extremal
of the Kähler action with the value of Kähler coupling strength coming out as a prediction. Hence
the dynamics of the modified Dirac action at light-like partonic 3-surfaces X3

l , even when restricted
to almost-topological dynamics induced by Chern-Simons action, would dictate the dynamics at
the interior of the space-time sheet.

The knowledge of the symplectic currents and super-currents, together with the anti-commutation
relations stating that the fermionic super-currents SA and SB associated with HamiltoniansHA and
HB anti-commute to a bosonic current H[A,B], allows in principle to deduce the anti-commutation
relations satisfied by the induced spinor field. In fact, these conditions replace the usual anti-
commutation relations used to quantize free spinor field. Since the normal ordering of the Dirac
action would give Kähler action,

Kähler coupling strength would be determined completely by the anti-commutation relations
of the super-symplectic algebra. Kähler coupling strength would be dynamical and the selection
of preferred extremals of Kähler action would be more or less equivalent with quantum criticality
because criticality corresponds to conformal invariance and the hyper-quaternionic version of the
super-conformal invariance results only for the extrema of Kähler action. p-Adic (or possibly
more general) coupling constant evolution and quantum criticality would come out as a prediction
whereas in the case that Kähler action is introduced as primary object, the value of Kähler coupling
strength must be fixed by quantum criticality hypothesis.

The mixing of the M4 chiralities of the imbedding space spinors serves as a signal for particle
massivation and breaking of super-conformal symmetry. The induced gamma matrices for the
space-time surfaces which are deformations of M4 indeed contain a small contribution from CP2

gamma matrices: this implies a mixing of M4 chiralities even for the Kähler-Dirac action so that
there is no need to introduce this mixing by hand.

7.3.2 Overall view about Kähler action and Kähler Dirac action

In the following the most recent view about Kähler action and the Kähler-Dirac action (Kähler-
Dirac action) is explained in more detail. The proposal is one of the many that I have considered.

1. The minimal formulation involves in the bosonic case only 4-D Kähler action. The action
could contain also Chern-Simons boundary term localized to partonic orbits at which the
signature of the induced metric changes. The coefficient of Chern-Simons term could be
chosen so that this contribution to bosonic action cancels the Chern-Simons term coming
from Kähler action (by weak form of electric-magnetic duality) so that for preferred extremals
Kähler action reduces to Chern-Simons terms at the ends of space-time surface at boundaries
of causal diamond (CD). For Euclidian wormhole contacts Chern-Simons term need not
reduce to a mere boundary terms since the gauge potential is not globally defined. One
can also consider the possibility that only Minkowskian regions involve the Chern-Simons
boundary term. One can also argue that Chern-Simons term is actually an un-necessary
complication not needed in the recent interpretation of TGD.

There are constraint terms expressing weak form of electric-magnetic duality and constraints
forcing the total quantal charges for Kähler-Dirac action in Cartan algebra to be identical
with total classical charges for Kähler action. This realizes quantum classical correspondence.
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The constraints do not affect quantum fluctuating degrees of freedom if classical charges
parametrize zero modes so that the localization to a quantum superposition of space-time
surfaces with same classical charges is possible.

The vanishing of conformal Noether charges for sub-algebras of various conformal algebras
are also posed. They could be also realized as Lagrange multiplied terms at the ends of
3-surface.

2. By supersymmetry requirement the Kähler-Dirac action corresponding to the bosonic action
is obtained by associating to the various pieces in the bosonic action canonical momentum
densities and contracting them with imbedding space gamma matrices to obtain K-D gamma
matrices. This gives rise to Kähler-Dirac equation in the interior of space-time surface. As
explained, it is assumed that localiztion to 2-D string world sheets occurs. At the light-like
boundaries the limit of K-D equation gives K-D equation at the ferminonic liness expressing
8-D light-likeness or 4-D light-likeness in effective metric.

1. Lagrange multiplier terms in Kähler action

Weak form of E-M duality can be realized by adding to Kähler action 3-D constraint terms
realized in terms of Lagrange multipliers.

Quantum classical correspondence (QCC) is the principle motivating further additional terms
in Kähler action.

1. QCC suggests a correlation between 4-D geometry of space-time sheet and quantum numbers.
This could result if the classical charges in Cartan algebra are identical with the quantal ones
assignable to Kähler-Dirac action. This would give very powerful constraint on the allowed
space-time sheets in the superposition of space-time sheets defining WCW spinor field. An
even strong condition would be that classical correlation functions are equal to quantal ones.

2. The equality of quantal and classical Cartan charges could be realized by adding constraint
terms realized using Lagrange multipliers at the space-like ends of space-time surface at the
boundaries of CD. This procedure would be very much like the thermodynamical procedure
used to fix the average energy or particle number of the the system using Lagrange multipliers
identified as temperature or chemical potential. Since quantum TGD can be regarded as
square root of thermodynamics in zero energy ontology (ZEO), the procedure looks logically
sound.

2. Boundary terms for Kähler-Dirac action

Weak form of E-M duality implies the reduction of Kähler action to Chern-Simons terms for
preferred extremals satisfying j ·A = 0 (contraction of Kähler current and Kähler gauge potential
vanishes). One obtains Chern-Simons terms at space-like 3-surfaces at the ends of space-time
surface at boundaries of causal diamond and at light-like 3-surfaces defined by parton orbits having
vanishing determinant of induced 4-metric. The naive guess has been that consistency requires
Kähler-Dirac-Chern Simons equation at partonic orbits. This is however a mere guess and need
not be correct.

One should try to make first clear what one really wants.

1. What one wants are generalized Feynman diagrams demanding massless Dirac propagators
in 8-D sense at the light-like boundaries of string world sheets interpreted as fermionic lines
of generalized Feynman diagrams. This gives hopes that 8-D generalization of the twistor
Grassmannian approach works. The localization of spinors at string world sheets is crucial
for achieving this.

In ordinary QFT fermionic propagator results from the kinetic term in Dirac action. Could
the situation be same also now at the boundary of string world sheet associated with parton
orbit? One can consider the Dirac action

Lind =

∫
ΨΓtind∂tΨ

√
g1dt
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defined by the induced gamma matrix Γtind and induced 1-metric. This action need to be
associated only to the Minkowskian side of the space-surface. By supersymmetry Dirac
action must be accompanied by a bosonic action

∫ √
g1dt. It forces the boundary line to be

a geodesic line. Dirac equation gives

ΓtindDtΨ = ipk(M8)γkΨ = 0 .

The square of the Dirac operator gives (Γtind)
2 = 0 for geodesic lines (the components of the

second fundamental form vanish) so that one obtains 8-D light-likeness.

Boundary line would behave like point-like elementary particle for which conserved 8-momentum
is conserved and light-like: just as twistor diagrammatics suggests. 8-momentum must be
real since otherwise the particle orbit would belong to the complexification of H. These con-
ditions can be regarded as boundary conditions on the string world sheet and spinor modes.
There would be no additional contribution to the Kähler action.

2. The special points are the ends of the fermion lines at incoming and outgoing partonic
2-surfaces and at these points M4 mass squared is assigned to the imbedding space spinor
harmonic associated with the incoming fermion. CP2 mass squared corresponds to the eigen-
value of CP2 spinor d’Alembertian for the spinor harmonic.

At the end of the fermion line p(M4)k corresponds to the incoming fermionic four-momentum.
The direction of p(E4)k is not fixed and one has SO(4) harmonic at the mass shell p(E4)2 =
m2, m the mass of the incoming particle. At imbedding space level color partial waves
correspond to SO(4) partial waves (SO(4) could be seen as the symmetry group of low
energy hadron physics giving rise to vectorial and axial isospin).

3. Constraint terms at space-like ends of space-time surface

There are constraint terms coming from the condition that weak form of electric-magnetic
duality holds true and also from the condition that classical charges for the space-time sheets in
the superposition are identical with quantal charges which are net fermionic charges assignable to
the strings.

These terms give additional contribution to the algebraic equation ΓnΨ = 0 making in partial
differential equation reducing to ordinary differential equation if induced spinor fields are local-
ized at 2-D surfaces. These terms vanish if Ψ is covariantly constant along the boundary of the
string world sheet so that fundamental fermions remain massless. By 1-dimensionality covariant
constancy can be always achieved.

7.3.3 A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests
an interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commut-
ing isometry charges is not unique. Cartan algebra corresponds naturally to the measured
observables. For instance, one could choose the Cartan algebra of Poincare group to consist
of energy and momentum, angular momentum and boost (velocity) in particular direction
as generators of the Cartan algebra of Poincare group. In fact, the choices of a preferred
plane M2 ⊂M4 and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-algebra
to a high degree are implied by the replacement of the imbedding space with a book like
structure forced by the hierarchy of Planck constants. Therefore the hierarchy of Planck
constants seems to be required by quantum measurement theory. One cannot overemphasize
the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the cur-
rents whose existence and conservation is guaranteed by quantum criticality. It is essential
that one maps the observables to Cartan algebra coupled to critical current characterizing
the observable in question. The coupling should have interpretation as a replacement of
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the induced Kähler gauge potential with its gauge transform. Quantum classical correspon-
dence encourages the identification of the classical charges associated with Kähler action with
quantal Cartan charges. This would support the interpretation in terms of a measurement
interaction feeding information to classical space-time physics about the eigenvalues of the
observables of the measured system. The resulting field equations remain second order par-
tial differential equations since the second order partial derivatives appear only linearly in
the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains
this correlation in terms of the properties of quantum states: the coupling of electro-weak
charges to Chern-Simons term could give the correlation in stationary phase approximation.
It would be however very strange if the coupling of electro-weak charges with the geometry
of the space-time sheet would not have the same universal description based on quantum
measurement theory as isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-
answered question motivated by the fact that electro-weak gauge group identifiable as
the holonomy group of CP2 can be identified as U(2) subgroup of color group. Could
the electro-weak charges be identified as classical color charges? This might make sense
since the color charges have also identification as fermionic charges implied by quantum
criticality. Or could electro-weak charges be only represented as classical color charges
by mapping them to classical color currents in the measurement interaction term in the
Kähler-Dirac action? At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All
the following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (7.12)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents correspond-
ing to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural
to couple of electromagnetic charge to the the projection of Killing vector field of color
hyper charge and coupling it to the current defined by Oem = a + bJ . This allows to
interpret the puzzling finding that electromagnetic charge can be identified as anoma-
lous color hyper-charge for induced spinor fields made already during the first years
of TGD. There exist no conserved axial isospin currents in accordance with CVC and
PCAC hypothesis which belong to the basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple
of the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1
color partial waves). If electro-weak resp. couplings to H-chirality are proportional to
1 resp. Γ9, the fermionic currents assigned to color and electro-weak charges can be
regarded as independent. This explains why the possibility of both vectorial and axial
couplings in 8-D sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical
space-time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
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couplings. In the case of momentum the coupling would be proportional to
√
G/~0=

kR/~0 and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant
evolution should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surpris-
ing that quantum criticality is needed to produce a correlation between quantal degrees of
freedom and macroscopic degrees of freedom. Note that quantum classical correspondence
can be regarded as an abstract form of entanglement induced by the entanglement between
quantum charges QA and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpre-
tation in terms of measurement theory coupling short and long length scales suggests that
the measurement interaction terms are localizable at the wormhole throats. This would fa-
vor Chern-Simons term or possibly instanton term if reducible to Chern-Simons terms. The
breaking of CP and T might relate to the fact that state function reductions performed in
quantum measurements indeed induce dissipation and breaking of time reversal invariance.

The formulation of quantum TGD in terms of the Kähler-Dirac action requires the ad-
dition of CP and T breaking Chern-Simons term and corresponding Chern-Simons Dirac
term to partonic orbits such that it cancels the similar contribution coming from Kähler ac-
tion. Chern-Simons Dirac term fixed by superconformal symmetry and gives rise to massless
fermionic propagators at the boundaries of string world sheets. This seems to be a natural
first principle explanation for the CP breaking as it manifests at the level of CKM matrix
and perhaps also in breaking of matter antimatter asymmetry.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in
the superposition corresponds to different space-time sheet already before the realization of
state function reduction. This relates interestingly to the question whether state function
reduction really occurs or whether only a branching of wave function defined by WCW spinor
field takes place as in multiverse interpretation in which different branches correspond to dif-
ferent observers. TGD inspired theory consciousness requires that state function reduction
takes place. Maybe multiversalist might be able to find from this picture support for his own
beliefs.

7. One can argue that “free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the Kähler-Dirac action dictating in turn the
Kähler function defining the Kähler metric of WCW representing the “laws of physics”. This
need not to be the case. The choice of CD fixes M2 and the geodesic sphere S2: this does
not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are different. The corresponding Kähler metrics do not differ if the real
parts of the Kähler functions associated with the two choices differ by a term f(Z) + f(Z),
where Z denotes complex coordinates of WCW, the Kähler metric remains the same. The
function f can depend also on zero modes. If this is the case then one can allow in given CD
superpositions of WCW spinor fields for which the measurement interactions are different.
This condition is expected to pose non-trivial constraints on the measurement action and
quantize coupling parameters appearing in it.

7.3.4 How to calculate Dirac determinant?

If the modes of the Kähler-Dirac equation (or Kähler-Dirac equation) are localized to 2-D string
world sheets as the well-definedness of em charge eigenvalue for the modes of induced spinor field
strongly suggests, the definition of Dirac determinant could be rather simple as following argument
shows.

The modes of Kähler-Dirac operator (Kähler-Dirac operator) are localized at string world sheets
and are holomorphic spinors. K-D operator annihilates these modes so that Dirac determinant
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must be assigned with the 1-D Dirac operator associated with the induced metric at the light-like
partonic orbits with vanishing metric determinant g4.

The spectrum of light-like 8-momenta pk is determined by the boundary conditions for 1-D
Dirac operator at the ends of CD and periodic boundary conditions is one natural possibility. As
in massless QFTs Dirac determinant could be identified as a square root of the product of - now
8-D - mass squared eigenvalues p2. If the spectrum is unbounded, a regularization must be used.
Finite measurement resolution means UV and IR cutoffs and would make Dirac determinant finite.
Finite IR resolution would be due to the fact that only space-time surfaces within CD and thus
having finite size scale are considered. UV resolution would be due to the lower limit on the size
of sub-CDs.

One can however define Dirac determinant directly as the product of the generalized eigenvalues
pkγk or as product of octonions in quaternionic sub-algebra defined by pk. For

The full Dirac determinant would be product of Dirac determinants associated with various
string world sheets. Needless to say that this is an enormous calculational advantage. If Dirac
determinant identified in this manner reduces to exponent of Kähler action for preferred extremal
this definition of Dirac determinant should give exponent of Kähler function reducing by weak form
of electric-magnetic duality to exponent of Chern-Simons terms associated with the space-like ends
of the space-time surface. Euclidian and Minkowskian regions would give contributions different
by a phase factor

√
−1. The reduction of determinant to exponent of Chern-Simons terms would

guarantee its finiteness.
Before trying to calculate Dirac determinant it is good to try to guess what the reduction to

Chern Simons action could give as a result. This kind of guesses are of course highly speculative
but nothing prevents from trying.

1. Chern Simons action to which Kähler action is expected to reduce for the preferred extremals
should be expressible in terms of invariants associated with string world sheets. By the
generalizaton of AdS/CFT duality the action in question should be proportional to the area
of the string world sheet in the effective metric defined by the anti-commutators of Kähler-
Dirac gamma matrices at string world sheet.

2. The arguent about finite measurement resolution can be of course criticized. An alternative
argument relies on idea that the sum over logariths of eigenvalues reduces to integral using as
measure the transversal induced Kähler form JT and the magnetic flux J over string world
sheet. This conforms with the existence of slicing by string world sheets labelled by points
of partonic 2-surface.

REFERENCES

Mathematics

[A1] Atyiah-Singer index-theorem. http://en.wikipedia.org/wiki/Atiyah-Singer_index_

theorem.

[A2] Kac-Moody algebra. http://en.wikipedia.org/wiki/KacMoody_algebra.

[A3] Scale invariance vs. conformal invariance. http://en.wikipedia.org/wiki/Conformal_

field_theory#Scale_invariance_vs._conformal_invariance.

[A4] Super Virasoro algebra. http://en.wikipedia.org/wiki/Super_Virasoro_algebra.

[A5] J. C. Baez. The Octonions. Bull. Amer. Math. Soc.. http: // math. ucr. edu/ home/ baez/
Octonions/ octonions. html , 39(2002), 2001.

[A6] J. Dixmier. Von Neumann Algebras. North-Holland, Amsterdam, 1981.

[A7] J. J. Duistermaat and G. J. Heckmann. Inv. Math., 69, 1982.

[A8] P. de la Harpe F. M. Goodman and V. F. R. Jones. Coxeter graphs and towers of algebras.
Springer Verlag, 1989.

http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem
http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem
http://en.wikipedia.org/wiki/Kac–Moody_algebra
http://en.wikipedia.org/wiki/Conformal_field_theory#Scale_invariance_vs._conformal_invariance
http://en.wikipedia.org/wiki/Conformal_field_theory#Scale_invariance_vs._conformal_invariance
http://en.wikipedia.org/wiki/Super_Virasoro_algebra
http://math.ucr.edu/home/baez/Octonions/octonions.html
http://math.ucr.edu/home/baez/Octonions/octonions.html


THEORETICAL PHYSICS 82

[A9] R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of
Modern Physics, 20:367–387, 1948.

[A10] D. S. Freed. The Geometry of Loop Groups, 1985.

[A11] R. Harvey. Spinors and Calibrations. Academic Press, New York, 1990.

[A12] S. Helgason. Differential Geometry and Symmetric Spaces. Academic Press, New York,
1962.

[A13] R. A. Minklos I. M. Gelfand and Z. Ya. Shapiro. Representations of the rotation and Lorentz
groups and their applications. Pergamon Press, 1963.

[A14] F. R. Jones. Braid groups, Hecke algebras and type II1 factors. 1983.

[A15] V. Jones. In and around the origin of quantum groups. http://arxiv.org/abs/math/

0309199, 2003.

[A16] C. Kassel. Quantum Groups. Springer Verlag, 1995.

[A17] R. Longo. Operators algebras and Index Theorems in Quantum Field Theory, 2004.

[A18] J. Mickelson. Current Algebras and Groups. Plenum, New York, 1989.

[A19] F. J. Murray and J. von Neumann. On Rings of Operators. Ann. Math., pages 37116–229,
1936.
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