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Abstract

TGD leads to several proposals for the exact solution of field equations defining space-time
surfaces as preferred extremals of twistor lift of Kähler action. So called M8 − H duality is
one of these approaches. The beauty of M8 −H duality is that it could reduce classical TGD
to octonionic algebraic geometry and would immediately provide deep insights to cognitive
representation identified as sets of rational points of these surfaces.

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coeffi-
cients can give rise to associative (co-associative) surfaces as the zero loci of their real
part RE(P ) (imaginary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic
sense. Contrary to the first naive working hypothesis, the identification M4 ⊂ O as as
a co-associative region turns out to be the correct choice making light-cone boundary
a counterpart of point-like singularity essential for the emergence of causal diamonds
(CDs).

The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for
complex numbers, and associativity for quaternions. This suggests a generalization of
Cauchy-Riemann conditions for complex analytic functions to quaternions and octonions.
Cauchy Riemann conditions are linear and constant value manifolds are 1-D and thus
well-ordered. Quaternionic polynomials with real coefficients define maps for which the
2-D spaces corresponding to vanishing of real/imaginary parts of the polynomial are
complex/co-complex or equivalently commutative/co-commutative. Commutativity is
expressed by conditions bilinear in partial derivatives. Octonionic polynomials with
real coefficients define maps for which 4-D surfaces for which real/imaginary part are
quaternionic/co-quaternionic, or equivalently associative/co-associative. The conditions
are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units
to octonionic algebra are power associative so that polynomials with real coefficients
define an associative and commutative algebra. Hence octonion analyticity and M8−H
correspondence could generalize.

2. It turns out that in the generic case associative surfaces are 3-D and are obtained
by requiring that one of the coordinates RE(Y )i or IM(Y )i in the decomposition
Y i = RE(Y )i + IM(Y )iI4 of the gradient of RE(P ) = Y = 0 with respect to the
complex coordinates zki , k = 1, 2, of O vanishes that is critical as function of quater-
nionic components zk1 or zk2 associated with q1 and q2 in the decomposition o = q1 +q2I4,
call this component Xi. In the generic case this gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD
and light-like partonic orbits to H, and only determines the boundary conditions of the
dynamics in H determined by the twistor lift of Kähler action. M8 −H duality would
allow to solve the gauge conditions for SSA (vanishing of infinite number of Noether
charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on
the coefficients of the octonionic polynomial P so that the criticality conditions do not
reduce the dimension: Xi would have possibly degenerate zero at space-time variety.
This can allow 4-D associativity with at most 3 critical components Xi. Space-time
surface would be analogous to a polynomial with a multiple root. The criticality of
Xi conforms with the general vision about quantum criticality of TGD Universe and
provides polynomials with universal dynamics of criticality. A generalization of Thom’s
catastrophe theory emerges. Criticality should be equivalent to the universal dynamics
determined by the twistor lift of Kähler action in H in regions, where Kähler action and
volume term decouple and dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative)
surfaces can be mapped by M8−H duality to preferred critical extremals for the twistor
lift of Kähler action obeying universal dynamics with no dependence on coupling con-
stants and due to the decoupling of Kähler action and volume term: these represent
external particles. M8−H duality does not apply to non-associative (non-co-associative)
space-time surfaces except at 3-D boundary surfaces. These regions correspond to inter-
action regions in which Kähler action and volume term couple and coupling constants
make themselves visible in the dynamics. M8 −H duality determines boundary condi-
tions.
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3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic
dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough
to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing
of space-time surfaces?

I have proposed commutativity or co-commutatitivity of string worlds sheets/partonic
2-surfaces in quaternionic sense as number theoretic explanation (tangent space as a
sub-space of quaternionic space is commutative/co-commutative at each point). Why
not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-
commutative? The answer to these questions is criticality again: in the generic case
commutative varieties are 1-D curves. In critical case one has 2-D string worlds sheets
and partonic 2-surfaces.

4. The super variant of the octonionic geometry relying on octonionic triality makes sense
and the geometry of the space-time variety correlates with fermion and antifermion
numbers assigned with it. This new view about super-geometry involving also automatic
SUSY breaking at the level of space-time geometry.

Also a sketchy proposal for the description of interactions is discussed.

1. The surprise that RE(P ) = 0 and IM(P ) = 0 conditions have as singular solutions
light-cone interior and its complement and 6-spheres S6(tn) with radii tn given by the
roots of the real P (t), whose octonionic extension defines the space-time variety X4. The
intersections X2 = X4 ∩ S6(tn) are tentatively identified as partonic 2-varieties defining
topological interaction vertices.

The idea about the reduction of zero energy states to discrete cognitive representations
suggests that interaction vertices at partonic varieties X2 are associated with the discrete
set of intersection points of the sparticle lines at light-like orbits of partonic 2-surfaces
belonging to extension of rationals.

2. CDs and therefore also ZEO emerge naturally. For CDs with different origins the prod-
ucts of polynomials fail to commute and associate unless the CDs have tips along real
(time) axis. The first option is that all CDs under observation satisfy this condition.
Second option allows general CDs.

The proposal is that the product
∏

Pi of polynomials associated with CDs with tips along
real axis the condition IM(

∏
Pi) = 0 reduces to IM(Pi) = 0 and criticality conditions

guaranteeing associativity and provides a description of the external particles. Inside
these CDs RE(

∏
Pi) = 0 does not reduce to RE(

∏
Pi) = 0, which automatically gives

rise to geometric interactions. For general CDs the situation is more complex.

3. The possibility of super octonionic geometry raises the hope that the twistorial construc-
tion of scattering amplitudes in N = 4 SUSY generalizes to TGD in rather straightfor-
ward manner to a purely geometric construction. Functional integral over WCW would
reduce to summations over polynomials with coefficients in extension of rationals and
criticality conditions on the coefficients could make the summation well-defined by bring-
ing in finite measurement resolution.

Scattering diagrams would be determined by points of space-time variety, which are in
extension of rationals. In adelic physics the interpretation is as cognitive representations.

1. Cognitive representations are identified as sets of rational points for algebraic varieties
with ”active” points containing fermion. The representations are discussed at both M8-
and H level. General conjectures from algebraic geometry support the vision that these
sets are concentrated at lower-dimensional algebraic varieties such as string world sheets
and partonic 2-surfaces and their 3-D orbits identifiable also as singularities of these
surfaces. For the earlier work related to adelic TGD and cognitive representations see [?]

2. Some aspects related to homology charge (Kähler magnetic charge) and genus-generation
correspondence are discussed. Both topological quantum numbers are central in the
proposed model of elementary particles and it is interesting to see whether the picture
is internally consistent and how algebraic variety property affects the situation. Also
possible problems related to heff/h = n hierarchy []adelicphysics realized in terms of
n-fold coverings of space-time surfaces are discussed from this perspective.
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1 Introduction

There are good reasons to hope that TGD is integrable theory in some sense. Classical physics is
an exact part of quantum physics in TGD and during years I have ended up with several proposals
for the general solution of classical field equations (classical TGD is an exact part of quantum
TGD).

1.1 Could one identify space-time surfaces as zero loci for octonionic
polynomials with real coefficients?

The identification of space-time surfaces as zero loci of real or imaginary part of octonionic poly-
nomial has several extremely nice features.

1. Octonionic polynomial is an algebraic continuation of a real valued polynomial on real line
so that the situation is effectively 1-dimensional! Once the degree of polynomial is known,
the value of polynomial at finite number of points are needed to determine it and cognitive
representation could give this information! This would strengthen the view strong form
of holography (SH) - this conforms with the fact that states in conformal field theory are
determined by 1-D data.

Remark: Why not rational functions expressible as ratios R = P1/P2 of octonionic polyno-
mials? It has become clear that one can develop physical arguments in favor of this option.
The zero loci for IM(Pi) would represent space-time varieties. Zero loci for RE(P1/P2) = 0
and RE(P1/P2) = ∞ would represent their interaction presumably realized as wormhole
contacts connecting these varieties. In the sequel most considerations are for polynomials:
the replacement of polynomials with rational functions does not introduce big differences
and its discussed in the section “Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view”.

2. One can add, sum, multiply, and functionally compose these polynomials provided they
correspond to the same quaternionic moduli labelled by CP2 points and share same time-
line containing the origin of quaternionic and octonionic coordinates and real octonions (or
actually their complexification by commuting imaginary unit). Classical space-time surfaces
- classical worlds - would form an associative and commutative algebra. This algebra induces
an analog of group algebra since these operations can be lifted to the level of functions defined
in this algebra. These functions form a basic building brick of WCW spinor fields defining
quantum states.

3. One can interpret the products of polynomials as correlates for free many-particle states
with interactions described by added interaction polynomial, which can vanish at boundaries
of CDs. This leads to the same picture as the view about preferred extremals reducing to
minimal surfaces near boundaries of CD [L1]. Also zero zero energy ontology (ZEO) could
be forced by the failure of number field property for quaternions at light-cone boundaries. It
indeed turns out that light-cone boundary emerges quite generally as singular zero locus of
polynomials P (o) containing no linear part: this is essentially due to the non-commutativity
of the octonionic units. Also the emergence of CDs can be understood. At this surface the
region with RE(P ) = 0 can transform to IM(P ) = 0 region. In Euclidian signature this
singularity corresponds to single point. A natural conjecture is that also the light-like orbits
of partonic 2-surfaces correspond to this kind of singularities for non-trivial Hamilton-Jacobi
structures.

4. The reduction to algebraic geometry would mean enormous boost to the vision about cogni-
tion with cognitive representations identified as generalized rational points common to reals
rationals and various p-adic number fields defining the adele for given extension of rationals.
Hamilton-Jacobi structure would result automatically from the decomposition of quaternions
to real and imaginary parts which would be now complex numbers.

5. Also a connection with infinite primes is suggestive [K22]. The light-like partonic orbits,
partonic 2-surfaces at their ends, and points at the corners of string world sheets might be
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interpreted in terms of singularities of varying rank and the analog of catastrophe theory
emerges.

The great challenge is to prove rigorously that these approaches - or at least some of them -
are indeed equivalent. Also it remains to be proven that the zero loci of real/imaginary parts of
octonionic polynomials with real coefficients are associative or co-associative. I shall restrict the
considerations of this article mostly to M8 −H duality. The strategy is simple: try to remember
all previous objections against M8 −H duality and invent new ones since this is the best way to
make real progress.

1.2 Topics to be discussed

1.2.1 Challenges of the octonionic algebraic geometry

TGD leads to several proposals for the exact solution of field equations defining space-time surfaces
as preferred extremals of twistor lift of Kähler action. So called M8 − H duality is one of these
approaches. The beauty of M8−H duality is that it could reduce classical TGD to octonionic alge-
braic geometry and would immediately provide deep insights to cognitive representation identified
as sets of rational points of these surfaces. The construction and interpretation of the octonionic
geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
determine associative (co-associative) surfaces as the zero loci of their real part RE(P ) (imag-
inary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic sense. Contrary to the
first naive working hypothesis, the identification M4 ⊂ O as as a co-associative region turns
out to be the correct choice making light-cone boundary a counterpart of point-like singularity
essential for the emergence of causal diamonds (CDs).

This suggests a generalization of Cauchy-Riemann conditions for complex analytic func-
tions to quaternions and octonions. Cauchy Riemann conditions are linear. Quaternionic
polynomials with real coefficients define maps for which the 2-D spaces corresponding to
vanishing of real/imaginary parts of the polynomial are complex/co-complex or equiva-
lently commutative/co-commutative. Commutativity is expressed by conditions bilinear in
partial derivatives. Octonionic polynomials with real coefficients define maps for which 4-
D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently
associative/co-associative. The conditions are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction (see http://tinyurl.com/

ybuyla2k) by adding imaginary unit repeatedly to octonionic algebra are power associative
so that polynomials with real coefficients define an associative and commutative algebra.
Hence octonion analyticity and a M8 − H correspondence could generalize (maybe even
TGD!).

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requir-
ing that one of the coordinates RE(Y )i or IM(Y )i in the decomposition Y i = RE(Y )i +
IM(Y )iI4 of the gradient of RE(P ) = Y = 0 with respect to the complex coordinates zki ,
k = 1, 2, of O vanishes that is critical as function of quaternionic components zk1 or zk2 as-
sociated with q1 and q2 in the decomposition o = q1 + q2I4, call this component Xi. In the
generic case this gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kähler action. M8 −H duality would allow to solve
the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on the
coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the
dimension: Xi would have possibly degenerate zero at space-time variety. This can allow 4-D
associativity with at most 3 critical components Xi. Space-time surface would be analogous
to a polynomial with a multiple root.

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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Various components of octonion polynomial P of degree n are polynomials of same degree.
Could criticality reduces to the degeneracy of roots for some component polynomials? Could
P as a polynomial of real variable have degenerate roots?

The criticality of Xi conforms with the general vision about quantum criticality of TGD
Universe and provides polynomials with universal dynamics of criticality. A generalization
of Thom’s catastrophe theory [A1] emerges. Criticality should be equivalent to the universal
dynamics determined by the twistor lift of Kähler action in H in regions, where Kähler action
and volume term decouple and dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) sur-
faces can be mapped by M8 − H duality to preferred critical extremals for the twistor lift
of Kähler action obeying universal dynamics with no dependence on coupling constants and
due to the decoupling of Kähler action and volume term: these represent external particles.
M8 − H duality does not apply to non-associative (non-co-associative) space-time surfaces
except at 3-D boundary surfaces. These regions correspond to interaction regions in which
Kähler action and volume term couple and coupling constants make themselves visible in the
dynamics. M8 −H duality determines boundary conditions.

3. This picture generalizes also to the level of complex/co-complex surfaces associated with
fermionic dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be
enough to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing of
space-time surfaces? I have proposed commutativity or co-commutatitivity of string worlds
sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation (tangent
space as a sub-space of quaternionic space is commutative/co-commutative at each point).
Why not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-
commutative? The answer to these questions is criticality again: in the generic case commu-
tative varieties are 1-D curves. In critical case one has 2-D string worlds sheets and partonic
2-surfaces.

4. The super variant of the octonionic geometry relying on octonionic triality makes sense and
the geometry of the space-time variety correlates with fermion and antifermion numbers as-
signed with it. This new view about super-geometry involving also automatic SUSY breaking
at the level of space-time geometry.

1.2.2 Description of interactions

Also a sketchy proposal for the description of interactions is discussed.

1. IM(P1P2) = 0 is satisfied for IM(P1) = 0 and IM(P2) = 0 since IM(o1o2) is linear in
IM(oi) and one obtains union of space-time varieties. RE(P1P2) = 0 cannot be satisfied in
this way since RE(o1o2) is not linear in RE(oi) so that the two varieties interact and this
interaction could give rise to a wormhole contact connecting the two space-time varieties.

2. The surprise that RE(P ) = 0 and IM(P ) = 0 conditions have as singular solutions light-cone
interior and its complement and 6-spheres S6(tn) with radii tn given by the roots of the real
P (t), whose octonionic extension defines the space-time variety X4. The intersections X2 =
X4 ∩ S6(tn) are tentatively identified as partonic 2-varieties defining topological interaction
vertices. S6 and therefore also X2 are doubly critical, S6 is also singular surface.

The idea about the reduction of zero energy states to discrete cognitive representations
suggests that interaction vertices at partonic varieties X2 are associated with the discrete set
of intersection points of the sparticle lines at light-like orbits of partonic 2-surfaces belonging
to extension of rationals.

3. CDs and therefore also ZEO emerge naturally. For CDs with different origins the products
of polynomials fail to commute and associate unless the CDs have tips along real (time) axis.
The first option is that all CDs under observation satisfy this condition. Second option allows
general CDs.



1.2 Topics to be discussed 9

The proposal is that the product
∏
Pi of polynomials associated with CDs with tips along

real axis the condition IM(
∏
Pi) = 0 reduces to IM(Pi) = 0 and criticality conditions

guaranteeing associativity and provides a description of the external particles. Inside these
CDs RE(

∏
Pi) = 0 does not reduce to RE(

∏
Pi) = 0, which automatically gives rise to

geometric interactions. For general CDs the situation is more complex.

4. The possibility of super-octonionic geometry raises the hope that the twistorial construction
of scattering amplitudes in N = 4 SUSY generalizes to TGD in rather straightforward way
to a purely geometric construction. Functional integral over WCW would reduce to sum-
mations over polynomials with coefficients in extension of rationals and criticality conditions
on the coefficients could make the summation well-defined by bringing in finite measurement
resolution.

If scattering diagrams are associated with discrete cognitive representations, one obtains a
generalization of twistor formalism involving polygons. Super-octonions as counterparts of
super gauge potentials are well-defined if octonionic 8-momenta are quaternionic. Indeed,
Grassmannians have quaternionic counterparts but not octonionic ones. There are good
hopes that the twistor Grassmann approach to N = 4 SUSY generalizes. The core part
in the calculation of the scattering diagram would reduce to the construction of octonionic
4-varieties and identifying the points belonging to the appropriate extension of rationals.

Twistor Grassmannian construction of scattering amplitudes at the level of M8 looks fea-
sible. The amplitudes decompose to M4 and CP2 parts with similar structure with E4

spin (electroweak isospin) replacing ordinary spin. The residue integrals over Grassmanni-
ans emerging from the conservation of M4 and E4 4-momenta would have same form and
guarantee Yangian supersymmetry in both sectors. The counterpart for the product of delta
functions associated with the “negative helicities” (weak isospins with negative sign) would
be expressible as a delta function in the complement of SU(3) Cartan algebra U(1) × U(1)
by using exponential map.

1.2.3 About the analogs of Gromow-Witten invariants and branes in TGD

Gromov-Witten (G-W) invariants belong to the realm of quantum enumerative geometry briefly
discussed in [L7]. They count numbers of points in the intersection of varieties (“branes”) with
quantum intersection identified as the existence of “string world sheet(s)” intersecting the branes.
Also octonionic geometry gives rise to brane like objects. G-W invariants are rational numbers but
it is proposed that they could be integers in TGD framework.

Riemann-Roch theorem (RR) and its generalization Atyiah-Singer index theorem (AS) relate
dimensions of various kinds of moduli spaces to topological invariants. The possible generalizations
of RR and AS to octonionic framework and the implications of M8 − H duality for the possible
generalizations are discussed. The adelic hierarchy of extensions of rationals and criticality condi-
tions make the moduli spaces discrete so that one expects kind of particle in box type quantization
selecting discrete points of moduli spaces about the dimension.

The discussion of RR as also the notion of infinite primes and infinite rationals as counterparts
of zero energy states suggests that rational functions R = P1/P2 could be more appropriate than
mere polynomials. The construction of space-time varieties would not be modified in essential
way: one would have zero loci of IM(Pi) identifiable as space-time sheets and zero- and ∞-loci of
RE(P1/P2) naturally identifiable as wormhole contacts connecting the space-time sheets.

In the sequel I will use some shorthand notations for key principles and key notions. Quantum
Field Theory (QFT); Relativity Principle (RP); Equivalence Principle (EP); General Coordinate
Invariance (GCI); Strong Form of GCI (SGCI); Quantum Criticality (QC); Strong Form of Holog-
raphy (SH); World of Classical Worlds (WCW); Preferred Extremal (PE); Zero Energy Ontology
(ZEO); Causal Diamond (CD); Number Theoretical Universality (NTU) are the most often occur-
ring acronyms.
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2 Some challenges of octonionic algebraic geometry

Space-time surfaces in H = M4 × CP2 identified as preferred extremals of twistor lift of Kähler
action leads to rather detailed view about space-time surfaces as counterparts of particles. Does
this picture follow from X4 ⊂ M8 picture and does this description bring in something genuinely
new?

2.1 Could free many-particle states as zero loci for real or imaginary
parts for products of octonionic polynomials

In algebraic geometry zeros for the products of polynomials give rise to disjoint varieties, which
are disjoint unions of surfaces assignable to the individual surfaces and possibly having lower-
dimensional intersections. For instance, for complex curves these intersections consist of points.
For complex surfaces they are complex curves.

In the case of octonionic polynomial P = RE(P ) + IM(P )I4 (Re and Im are defined in
quaternionic sense) one considers zeros of quaternionic polynomial RE(P ) or IM(P ).

1. Product polynomial P = P1P2 decomposes to

P = RE(P1)RE(P2)− IM(P1)IM(P2) + (RE(P1)IM(P1) + IM(P1)RE(P2)I4 .

One can require vanishing of RE(P ) or IM(P ).

(a) IM(P ) vanishes for

(RE(P1) = 0, RE(P2) = 0)

or

I(m(P1) = 0, IM(P2) = 0) .

(b) RE(P ) vanishes for

(RE(P1) = 0, IM(P2) = 0)

or

IM(P1) = 0, RE(P2) = 0) .

One could reduce the condition RE(P ) = 0 to IM(P ) = 0 by replacing P = P1 + P2I4 with
P2−P1I4. If this condition is satisfied for the factors, it is satisfied also for the product. The
set of surfaces is a commutative and associative algebra for the condition IM(P ) = 0. Note
that the quaternionic moduli must be same for the members of product. If one has quantum
superposition of quaternionic moduli, the many-particle state involves a superposition of
products with same moduli.

As found, the condition IM(P ) = 0 can transform to RE(P ) = 0 at singularities having
RE(P ) = 0, IM(P ) = 0.

2. The commutativity of the product means that the products are analogous to many-boson
states. Pn would define an algebraic analog of Bose-Einstein condensate. Does this surface
correspond to a state consisting of n identical particles or is this artefact of representation?
As a limiting case of product of different polynomials it might have interpretation as genuine
n-boson states.

3. The product of two polynomials defines a union of disjoint surfaces having discrete intersec-
tion in Euclidian signature. In Minkowskian signature the vanishing of qq (conjugation does
not affect the sign of i and changes only the sign of Ik!) can give rise to 3-D light-cone. The
non-commutativity of quaternions indeed can give rise to combinations of type qq in RE(P )
and IM(P ).
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What about interactions?

1. Could one introduce interaction by simply adding a polynomial Pint to the product? This
polynomial should be small outside interaction region. CD would would define naturally
interaction regions and the interaction terms should vanish at the boundaries of CD. This
might be possible in Minkowskian signature, where f(q2) multiplying the interaction term
might vanish at the boundary of CD: in Euclidian sector qq = 0 would imply q = 0 but in
Minkowskian sector it would give light-cone as solution. One should arrange IM(Pint) to be
proportional to qq vanishing at the boundary of CD. Minkowskian signature could be crucial
for the possibility to “turning interactions on”.

2. If the imaginary part of the interaction term is proportional f1(q2)f2((q − T )2) (T is real
and corresponds to the temporal distance between the tips of CD) with fi(0) = 0, one could
obtain asymptotic states reducing to disjoint unions of zero loci of P i at the boundaries of
CD. If the order of of the perturbation terms is higher than the total order of polynomials
P i, one would obtain new roots and particle emission. Non-perturbative situation would
correspond to a dramatic modification of the space-time surface as a zero locus of IM(P ).
This picture would be M8 counterpart for the reduction of preferred extremals to minimal
surfaces analogous to geodesic lines near the boundaries of CD: preferred extremals reduce
to extremals of both Kähler action and volume term in these regions [L1].

The singularities of scattering amplitudes at algebraic varieties of Grassmann manifolds are
central in the twistor Grassmann program [B1, B4, B3]. Since twistor lift of TGD seems to be the
correct manner to formulate classical TGD in H, one can wonder about the connection between
space-time surfaces in M8

c and scattering amplitudes. Witten’s formulation of twistor amplitudes
in terms of algebraic curves in CP3 suggests a formulation of scattering amplitudes in terms of the
4-D algebraic varieties in M8

c as of course, also TGD itself [K10, K20]! Could the huge multi-local
Yangian symmetries of twistor Grassmann amplitudes reduce to octonion analyticity.

2.2 Two alternative interpretations for the restriction to M4 subspace
of M8

c

One must complexify M8 so that one has complexified octonions M8
c . This means the addition of

imaginary unit i commuting with octonionic imaginary units. The vanishing of real or imaginary
part of octonionic polynomial in quaternionic sense (o = q1 + Jq2) defines the space-time surface.
Octonionic polynomial itself is obtained from a real polynomial by algebraic continuation so that in
information theoretic sense space-time is 1-D. The roots of this real polynomial fix the polynomial
and therefore also space-time surface uniquely. 1-D line degenerates to a discrete set of points of
an extension in information theoretic sense. In p-adic case one can allow p-adic pseudo constants
and this gives a model for imagination.

The octonionic roots x + iy of the real polynomial need not however be real. There are two
options.

1. The original proposal in [L6, L8] was that the projection from M8
c to real M4 (for which

M1 coordinate is real and E3 coordinates are imaginary with respect to i!) defines the real
space-time surface mappable by M8 −H duality to CP2.

2. An alternative option is that only the roots of the 4 vanishing polynomials as coordinates
of M4

c belong to M4 so that m0 would be real root and mk, k = 1, ..., 3 imaginary with
respect to i→ −i. M8

c coordinates would be invariant (“real”) under combined conjugation
i→ −i, Ik → −Ik. In the following I will speak about this property as Minkowskian reality.
This could make sense.

What is remarkable that this could allow to identify CDs in very elegant manner: outside
CD these 4 conditions would not hold true. This option looks more attractive than the first
one. Why these conditions can be true just inside CD, should be understood.

Consider now this in detail.



2.3 Questions related to ZEO and CDs 12

1. One can think of starting from one of the 4 vanishing conditions for the components of
octonionic polynomial guaranteeing associativity. Assuming real roots and continuing one
by one through all 4 conditions to obtain 4-D Minkowskian real regions. The time coordinate
of M4 coordinates is real and others purely imaginary with respect to i→ −i. If this region
does not connect 3-D surface at the boundaries of real CD, one must make a new trial.

Cusp catastrophe determined as the zero locus of third order polynomial provides an example.
There are regions with single real root, regions with two real roots (complex roots become
real and identical) defining V-shaped boundary of cusp and regions with 3 real roots (the
interior of the cusp).

2. The restriction of the octonionic polynomial to time axis m0 identifiable as octonionic real
axes is a real polynomial with algebraic coefficients. In this case the root and its conjugate
with respect to i would define the same surface. One could say that the Galois group of the
real polynomial characterizes the space-time surface although at points other than those at
real axis (time axis) the Galois group can be different.

One could consider the local Galois group of the fourth quaternionic valued polynomial, say
the part of quaternionic polynomial corresponding to real unit 1 when other components are
required to vanish and give rise to coordinates in M8 ⊂ M8

c - Minkowskian reality. The
extension and its Galois group would depend on the point of space-time surface.

An interesting question is how strong conditions Minkowskian reality poses on the extension.
Minkowskian reality seems to imply that E3 roots are purely real so that for an octonionic
polynomial obtained as a continuation of a real polynomial one expects that both root and
complex conjugate should be allow and that Galois group should contain Z2 reflection i→ −i.
Space-time surface would be at least 2-sheeted. Also the model for elementary particles forces
this conclusion on physical grounds. Real as opposite to imagined would mean Minkowskian
reality in mathematical sense. In the case of polynomials this description would make sense
in p-adic case by allowing the coefficients of the polynomial be pseudo constants.

3. What data one could use to fix the space-time surface? Can one start directly from the
real polynomial and regard its coefficients as WCW coordinates? This would be easy and
elegant. Space-time surface could be determined as Minkowskian real roots of the octonionic
polynomial. The condition that the space-time surface has ends at boundaries of given CD
and the roots are not Minkowskian real outside it would pose conditions on the polynomial.
If the coefficients of the polynomial are p-adic pseudo constants, this condition might be easy
to satisfy.

The situation depends also on the coordinates used. For linear coordinates such as Minkowski
coordinates Minkowskian reality looks natural. One can however consider also angle like coordi-
nates representable only in terms of complex phases p-adically and coming as roots of unity and
requiring complex extension: at H-side they are very natural. For instance, for CP2 all coordinates
would be naturally represented in this manner. For future light-cone one would have hyperbolic
angle and 2 ordinary angles plus light-cone proper time which would be real and positive coordinate.

This picture conforms with the proposed picture. The point is that the time coordinate mk

can be real in the sense that they are linear combinations of complex roots, say powers for the
roots of unity. E4

c ⊂ M8
c could be complex and contain also complex roots since M8 −H duality

does not depend on whether tangent space is complex or not. Therefore would could have complex
extensions.

2.3 Questions related to ZEO and CDs

Octonionic polynomials provide a promising approach to the understanding of ZEO and CDs.
Light-like boundary of CD as also light-cone emerge naturally as zeros of octonionic polynomials.
This does not yet give CDs and ZEO: one should have intersection of future and past directed
light-cones. The intuitive picture is that one has a hierarchy of CDs and that also the space-time
surfaces inside different CDs an interact.
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2.3.1 Some general observations about CDs

It is good to list some basic features of CDS, which appear as both 4-D and 8-D variants.

1. There are both 4-D and 8-D CDs defined as intersections of future and past directed light-
cones with tips at say origin 0 at real point T at quaternionic or octonionic time axis. CDs
can be contained inside each other. CDs form a fractal hierarchy with CDs within CDs: one
can add smaller CDs with given CD in all possible ways and repeat the process for the sub-
CDs. One can also allow overlapping CDs and one can ask whether CDs define the analog
of covering of O so that one would have something analogous to a manifold.

2. The boundaries of two CDs (both 4-D and 8-D) can intersect along light-like ray. For 4-D
CD the image of this ray in H is light-like ray in M4 at boundary of CD. For 8-D CD the
image is in general curved line and the question is whether the light-like curves representing
fermion orbits at the orbits of partonic 2-surfaces could be images of these lines.

3. The 3-surfaces at the boundaries of the two 4-D CDs are expected to have a discrete inter-
section since 4 + 4 conditions must be satisfied (say RE(P ki )) = 0 for i = 1, 2, k = 1, 4.
Along line octonionic coordinate reduces effectively to real coordinate since one has E2 = E
for E = (1 + in)/2, n octonionic unit. The origins of CDs are shifted by a light-like vector
kE so that the light-like coordinates differ by a shift: t2 = t1−k. Therefore one has common
zero for real polynomials RE(P k1 (t)) and RE(P k2 (t− k)).

Are these intersection points somehow special physically? Could they correspond to the ends
of fermionic lines? Could it happen that the intersection is 1-D in some special cases? The
example of o2 suggest that this might be the case. Does 1-D intersection of 3-surfaces at
boundaries of 8-D CDs make possible interaction between space-time surfaces assignable to
separate CDs as suggested by the proposed TGD based twistorial construction of scattering
amplitudes?

4. Both tips of CD define naturally an origin of quaternionic coordinates forD = 4 and the origin
of octonionic coordinates for D = 8. Real analyticity requires that the octonionic polynomials
have real coefficients. This forces the origin of octonionic coordinates to be along the real
line (time axis) connecting the tips of CD. Only the translations in this specified direction
are symmetries preserving the commutativity and associativity of the polynomial algebra.

5. One expects that also Lorentz boosts of 4-D CDs are relevant. Lorentz boosts leave second
boundary of CD invariant and Lorentz transforms the other one. Same applies to 8-D CDs.
Lorentz boosts define non-equivalent octonionic and quaternionic structures and it seems
that one assume moduli spaces of them.

One can of course ask whether the still somewhat ad hoc notion of CD general enough. Should
one generalize it to the analog of the polygonal diagram with light-like geodesic lines as its edges
appearing in the twistor Grassmannian approach to scattering diagrams? Octonionic approach
gives naturally the light-like boundaries assignable to CDs but leaves open the question whether
more complex structures with light-like boundaries are possible. How do the space-time surfaces
associated with different quaternionic structures of M8 and with different positions of tips of CD
interact?

2.3.2 The emergence of causal diamonds (CDs)

CDs are a key notion of zero energy ontology (ZEO). They should emerge from the number-
theoretic dynamics somehow. How? In the following this question is approached from two different
directions.

1. One can ask whether the emergence of CDs could be understood in terms of singularities of
octonion polynomials located at the light-like boundaries of CDs. In Minkowskian case the
complex norm qqi is present in P . Could this allow to blow up the singular point to a 3-D
boundary of light-cone and allow to understand the emergence of causal diamonds (CDs)
crucial in ZEO. This question will be considered below.
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2. These arguments were developed before the realization that the Minkowskian reality condi-
tion discussed in the previous section is natural for the space-time surfaces as roots of the 4
polynomials defining real or imaginary part of octonionic polynomial in quaternionic sense
and giving M4 point as a solution. Minkowskian reality can hold only in some regions of M4

and an attractive conjecture is that it fails outside CD. CD would be a prediction of number
theoretical dynamics and have counterpart also at the level of H.

Consider now the second approach in more detail. The study of the special properties for zero
loci of general polynomial P (o) at light-rays of O indeed demonstrated that both 8-D land 4-D
light-cones and their complements emerge naturally, and that the M4 projections of these light-
cones and even of their boundaries are 4-D future - or past directed light-cones. What one should
understand is how CDs as their intersections, and therefore ZEO, emerge.

1. One manner to obtain CDs naturally is that the polynomials are sums P (t) =
∑
k Pk(o)

of products of form Pk(o) = P1,k(o)P2,k(o − T ), where T is real octonion defining the time
coordinate. Single product of this kind gives two disjoint 4-varieties inside future and past
directed light-cones M4

+(0) and M4
−(T ) for either RE(P ) = 0 (or IM(P ) = 0) condition.

The complements of these cones correspond to IM(P ) = 0 (or RE(P ) = 0) condition.

2. If one has nontrivial sum over the products, one obtains a connected 4-variety due the
interaction terms. One has also as special solutions M4

± and the 6-spheres associated with
the zeros P (t) or equivalently P1(t1) ≡ P (t), t1 = T − t vanishing at the upper tip of CD.
The causal diamond M4

+(0) ∩M4
−(T ) belongs to the intersection.

Remark: Also the union M4
−(0) ∪M4

+(T ) past and future directed light-cones belongs to
the intersection but the latter is not considered in the proposed physical interpretation.

3. The time values defined by the roots tn of P (t) define a sequence of 6-spheres intersecting 4-D
CD along 3-balls at times tn. These time slices of CD must be physically somehow special.
Space-time variety intersects 6-spheres along 2-varieties X2

n at times tn. The varieties X2
n

are perhaps identifiable as 2-D interaction vertices, pre-images of corresponding vertices in
H at which the light-like orbits of partonic 2-surfaces arriving from the opposite boundaries
of CD meet.

The expectation is that in H one as generalized Feynman diagram with interaction vertices at
times tn. The higher the evolutionary level in algebraic sense is, the higher the degree of the
polynomial P (t), the number of tn, and more complex the algebraic numbers tn. P (t) would
be coded by the values of interaction times tn. If their number is measurable, it would provide
important information about the extension of rationals defining the evolutionary level. One
can also hope of measuring tn with some accuracy! Octonionic dynamics would solve the
roots of a polynomial! This would give a direct connection with adelic physics [K3] [L9].

Remark: Could corresponding construction for higher algebras obtained by Cayley-Dickson
construction solve the “roots” of polynomials with larger number of variables? Or could
Cartesian product of octonionic spaces perhaps needed to describe interactions of CDs with
arbitrary positions of tips lead to this?

4. Above I have considered only the interiors of light-cones. Also their complements are possible.
The natural possibility is that varieties with RE(P ) = 0 and IM(P ) = 0 are glued at
the boundary of CD, where RE(P ) = IM(P ) = 0 is satisfied. The complement should
contain the external (free) particles, and the natural expectation is that in this region the
associativity/co-associativity conditions can be satisfied.

5. The 4-varieties representing external particles would be glued at boundaries of CD to the
interacting non-associative solution in the complement of CD. The interaction terms should
be non-vanishing only inside CD so that in the exterior one would have just product P (o) =
P1,k0(o)P2,k0(o−T ) giving rise to a disjoint union of associative varieties representing external
particles. In the interior one could have interaction terms proportional to say t2(T − t)2

vanishing at the boundaries of CD in accordance with the idea that the interactions are
switched one slowly. These terms would spoil the associativity.
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Remark: One can also consider sums of the products
∏
k Pk(o−Tk) of n polynomials and this

gives a sequence CDs intersecting at their tips. It seems that something else is required to make
the picture physical.

2.4 About singularities of octonionic algebraic varieties

In Minkowskian signature the notion of singularity for octonionic polynomials involves new aspects
as the study of o2 singular at origin shows (see Appendix). The region in which RE(o2) =
0, IM(o2) = 0 holds true is 4-D rather than a discrete set of points as one would näıvely expect.

1. At singularity the local dimension of the algebraic variety is reduced. For instance, double
cone of 3-space has origin as singular point where it becomes 0-dimensional. A more general
example is local pinch in which cylinder becomes infinitely thin at some point. This kind of
pinching could occur for fibrations as the fiber contracts to a lower-dimensional space along
a sub-variety of the base space.

A very simple analogy for this kind of singularity is the singularity of P (x, y) = y2 − x = 0
at origin: now the sheets y = ±

√
x co-incide at origin. The algebraic functions y ∓

√
x

defining the factorization of P (x, y) co-incide at origin. Quite generally, two or more factors
in the factorization of polynomial using algebraic functions co-incide at the singularity. This
is completely analogous to the degeneracy or roots of polynomials of single variable.

The signature of the singularity of algebraic variety determined by the conditions P i(zj) = 0
is the reduction of the maximal rank r for the matrix formed by the partial derivatives
P ij ≡ ∂IM(P )i/∂zj (”RE” could replace ”IM”). Rank corresponds to the largest dimension

of the minor of P ij with non-vanishing determinant. Determinant vanishes when two rows of
the minor are proportional to each other meaning that two tangent vectors become linearly
dependent. When the rank is reduced by ∆r, one has r = rmax−∆r and the local dimension
is locally reduced by ∆r. One has hierarchy of singularities within singularities.

The conditions that all independent minors of the P ij have reduced rank gives additional
constraints and define a sub-variety of the algebraic variety. Note that the dimension of
the singularity corresponds to ds = ∆r in the sense that the dimension of tangent space at
singularity is effectively ds.

2. In the recent case there are 4 polynomials and 4 complex variables so that IM(P )ij is 4× 4-
matrix. Its rank r can have values in r = 1, 2, 3, 2, 4. One can use Thom’s catastrophe
theory as a guideline. Catastrophe decomposes to pieces of various dimensions characterized
by the reduction of the rank of the matrix defined by the second derivatives Vij = ∂i∂jV
of the potential function defining the catastrophe. For instance, for cusp catastrophe with
V (x, a, b) = x4 + ax2 + bx one has V-shaped region in (a, b) plane with maximal reduction
of rank to r = 0 (∂2xV = 0) at the tip (a, b) = 0 at reduction to r = 1 at the sides of V ,
where two roots of ∂xV = 4x3 + 2ax+ b = 0 co-incide requiring that the discriminant of this
equation vanishes.

3. In the recent case IM(P ) takes the role of complex quaternion valued potential function and

the 4 coordinates z
k)
1 that of behavior variable x for cusp and z

k)
2 that of control parameters

(a, b). The reduction of the rank of n × n matrix by ∆r means that there are r linearly
independent rows in the matrix. These give ∆r additional conditions besides IM(P ) = 0 so
that the sub-variety along which the singularity takes places as dimension r. One can say
that the r-dimensional tangent spaces integrate to the singular variety of dimension r.

The analogy with branes would be realized as a hierarchical structure of singularities of the
spacetime surfaces. This hierarchy of singularities would realize space-time correlates for
quantum criticality, which is basic principle of quantum TGD. For instance, the reduction
by 3-units would correspond to strings - say at the ends of CD and along the partonic orbits
(fermion lines), and maximal reduction might correspond to discrete points - say the ends
of fermion lines at partonic 2-surfaces. Also isolated intersection points can be regarded as
singularities and are stably present but it does not make sense to add fermions to these points
so that cognitive representations are not possible.
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4. Note that also the associativity - and commutativity conditions already discuss involved the
gradients of IM(P )i and RE(P )i, which would suggests that these regions can be inter-
preted as singularities for which the dimension is not lowered by on unit since the vanishing
conditions hold true identically by criticality.

There are two cases to be considered. The usual Euclidian case in which pinch reducing the
dimension and the Minkowskian case in which metric dimension is reduced locally.

Consider first the Euclidian case.

1. In Euclidian case it is difficult to tell whether all values of ∆r are possible since octonion
analyticity poses strong conditions on the singularities. The pinch could correspond to the
singularity of the covering associated with the space-time surface defined by Galois group for
the covering associated with heff/h = n identifiable as the dimension of the extension [L4].
Therefore there would be very close connection between the extensions of rationals defining
the Galois group and the extension of polynomial ring of 8 complex variables zki , i = 1, 2,
k = 1, .., 4 by algebraic functions. At the pinch, which would be algebraic point, the Galois
group would have subgroup leaving the coordinates of the point invariant and some sheets
of the covering defining roots would co-incide.

2. A very simple analogy for this kind of singularity is the singularity of P (x, y) = y2 − x = 0
at origin: now the sheets y = ±

√
x co-incide at origin. The algebraic functions y ∓

√
x

defining the factorization of P (x, y) co-incide at origin. Quite generally, two or more factors
in the factorization of polynomial using algebraic functions co-incide at the singularity. This
is completely analogous to the degeneracy or roots of polynomials of single variable.

3. Quaternion structure predicts the slicing of M4 by string world sheets inducing that of space-
time surfaces. One must ask whether singular space-time sheets emerge already for the slicing
of M4 by string world sheets. String world sheets could be considered as candidates for
∆r = 2 singularities of this kind. The physical intuition strongly suggests that there indeed
physically preferred string world sheets and identification as ∆r = 2 singularities of Euclidian
type is attractive. Partonic 2-surfaces are also candidates in this respect. Could some sheets
of the heff/h = n covering co-incide at string world sheets?

Consider next the Minkowskian case. At the level of H the rank of the induced metric is
reduced. This reduction need not be same as that for the matrix P ij and it is of course not obvious
that the partonic orbit allows description as a singularity of algebraic variety.

1. Could the matrix P ij take a role analogous to the dual of induced metric and one might

hope that the change of the sign for P ij for a fixed polynomial at singular surface could be
analogous to the change of the sign of

√
g4 so that the idea about algebraization of this

singularity at level of M8 might make sense. The information about metric could come from
the fact that IM(P ) depends on complex valued quaternion norm reducing to Minkowskian
metric in Minkowskian sub-space.

2. The condition for the reduction of rank from its maximal value of r = 4 to r = 3 occurs if one
has det(P ) = 0, which defines co-dimension 1 surface as a sub-variety of space-time surface.
The interpretation as co-incidence of two roots should make sense if IM(P ) = 0. Root pairs
would now correspond now to the points at different sides of the singular 3-surface.

Minkowskian singularity cannot be identified as the 3-D space-like boundary of many-sheeted
space-time surface located at the boundary of CD (induced metric is space-like).

Could this sub-variety be identified as partonic orbit, the common boundary of the Euclidian
and Minkowskian regions? This would require that associative region transforms to co-
associative one here. IM(P ) = 0 condition can transform to RE(P ) = 0 condition if one has
P = 0 at this surface. Minkowskian variant of point singularity (P ij vanishes) would explode
it to a light-like partonic orbit.

What does this imply about the rank of singularity? The condition IM(P ) = RE(P ) = 0
does not reduce the rank if P is linear polynomial and one could consider a hierarchy of
reductions of rank. Since qq vanishes in Minkowskian sub-space at light-cone boundary
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rather than at point q = 0 only, there are reasons to expect that it appears in P and reduces
the rank by ∆r = 4 (see Appendix for the discussion of o2 case). The rank of the induced
4-metric is however reduced only by ∆r = 1 at partonic orbit. If the complexified complex
norm zz, z = z1 + z2I2 can take the role of qq, one has ∆r = 2.

3. The reduction of rank to r = 2 would give rise to 2-surfaces, which are at the boundaries
of 3-D singularities. If partonic orbits correspond to ∆r = 1 singularities one could identify
them as partonic 2-surfaces at the ends partonic orbits.

Could the singularity at partonic 2-surface correspond to the reduction of the rank of the
induced metric by 2 units? This is impossible in strict sense since there is only one light-like
direction in signature (1,−1,−1,−1). Partonic 2-surface singularity would however corre-
spond to a corner for both Euclidian and Minkowskian regions at which the metrically 2-D
but topologically 3-D partonic orbit meets the the space-like 3-surface along the light-like
boundary of CD. Also the radial direction for space-like 3-surface could become light-like at
partonic 2-surface if the CP2 coordinates have vanishing gradient with respect to the light-
like radial coordinate rM at the partonic 2-surface. In this sense the rank could be reduced
by 2 units. The situation is analogous to that for fold singularity y2 − x = 0.

String world sheets cannot be subsets of r = 3 singularities, which suggests different inter-
pretation for partonic 2-surfaces and string world sheets.

What could this different interpretation be?

1. Perhaps the most convincing interpretation of string world sheets/partonic 2-surfaces has
been already discussed (this interpretation would generalize to associative space-time sur-
faces). They could be commutative/co-commutative (here permutation might be allowed!)
sub-manifolds of associative regions of the space-time surface allowing quaternionic tangent
spaces so that the notions of commutative and co-commutative make sense. The criticality
conditions are satisfied without the reduction of dimension from d = 2 to d = 1. In non-
associative regions string world sheets would reduce to 1-D curves. This would happen at
the boundaries of partonic orbits and 3-surfaces at the ends of space-time surface and only
the ends of strings at partonic orbits carrying fermion number would be needed to determine
twistorial scattering amplitudes [K10, K20].

2. I have also considered an interpretation in terms of singularities of space-time surfaces repre-
sented as a sections of their own twistor bundle. Self-intersections of the space-time surface
would correspond to 2-D surfaces in this case [L4] and perhaps identifiable as string world
sheets. The interpretation mentioned above would be in terms of Euclidian singularities. If
this is true, the question is only about whether these two interpretations are consistent with
each other.

If I were forced to draw conclusion on basis of these notices, it would be that only r = 4
Minkowskian singularities could be interesting and at them RE(P ) = 0 regions could be trans-
formed to IM(P ) = 0 regions. Furthermore, the reduction of rank for the induced metric cannot
be equal to the reduction of the rank for P ij .

2.5 The decomposition of space-time surface to Euclidian and Minkowskian
regions in octonionic description

The unavoidable outcome of H picture is the decomposition of space-time surface to regions with
Minkowskian or Euclidian signature of the induced metric. These regions are bounded by 3-D
regions at which the signature of the induced metric is (0,−1,−1,−1) due to the vanishing of
the determinant of the induced metric. The boundary is naturally the light-like orbit of partonic
2-surface although one can consider also the possibility that these regions have boundaries inter-
secting along light-like curves defining boundaries of string world sheets. A more detailed view
inspired by the study of extremals is following.

1. Let us assume that the above picture about decomposition of space-time surfaces in H to
two kinds regions takes place. The regions where the dynamicis universal minimal surface
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dynamics have associative pre-image in M8. The regions where Kähler action and volume
term couple the associative pre-image in M8 exists only at the 3-D boundary regions and
M8 dynamics determines the boundary conditions for H dynamics, which by hologaphy is
enough.

2. In the space-time regions having associative pre-image in M8 one has a fibration of X4 with
with partonic surface as a local base and string world sheet as local fiber. In the interior
of space-time region there are no singularities but at the boundary 2-D string world sheets
becomes metrically 1-D as 1-D string boundary reduces metrically to 0-D structure analogous
to a point. This reduction of dimension would be metric, but not topological.

The singularity for plane curve P (x, y) = y2 − x3 = 0 at origin illustrates the difference
between Minkowskian and Euclidian singularity. One has (∂xP, ∂yP ) = (−3x2, 2y) vanishing
at origin so that ∆r = 1 singularity is in question and the dimension of singular manifold is
indeed r = 0. From y = ±x3/2, x ≥ 0. The induced metric gxx = 1 + (dy/dx)2 = 1 + (9/4)x,
x ≥ 0 is however non-singular at origin.

3. If the Euclidian region with pre-image corresponds to a deformation of wormhole contact,
the identification as image of a co-associative space-time region in M8 is natural so that
normal space is associative and contains also the preferred M2(x). In Minkowskian regions
the identification as image of associative space-time region in M8 is natural.

What can one say about the relationship of the M8 counterparts of neighboring Minkowskian
and Euclidian regions?

1. Do these regions intersect along light-like 3-surfaces, 1-D light-like curve (orbit of fermion)
or is the intersection disrete set of points possibly assignable to the partonic 2-surface at the
boundaries of CD? The M4 projections of the inverse image of the light-like partonic orbit
should co-incide but E4 projections need not do so. They could be however mappable to the
same partonic two surface in M8−H correspondence or the images could have at least have
light-like curve as common.

2. Is seems impossible for the space-time surfaces determined as zeros of octonionic polynomials
to have boundaries. Rather, it seems that the boundary must be between Minkowskian and
Euclidian regions of the space-time surface determined by the same octonionic polynomial.
At the boundary also associate region would transform to co-associative region suggesting
that IM(P ) = RE(P ) = 0 holds allowing to change the condition from IM(P ) = 0 to
RE(P ) = 0.

Consider now in more detail whether this view can be realized.

1. In H = M4×CP2 the boundary between the Minkowskian and Euclidian space-time regions -
light-like partonic 3-surface - is a singularity possible only in Minkowskian signature. Space-
time surface X4 at the boundary is effectively 3-D since one has

√
g4 = 0 meaning that

tangent space is effectively 3-D. The 3-D boundary itself is metrically 2-D and this gives rise
to the extended conformal invariance defining crucial distinction between TGD and super
string models.

2. The singularities of P (o) for o identified as linear coordinate of M8
c were already considered.

The singularities correspond to the boundaries of light-cone and the emergence of CDs can
be understood. Could also the light-like orbits of partonic 2-surfaces be understood in the
same manner? Does the pre-image of this singularity in M8 emerge as a singularity of an
algebraic variety determined by the vanishing of IM(P ) for the octonionic polynomial?

What is common is that the rank of the induced metric by one unit also now. Now one has
however also det(g4) = 0. The singularities correspond to curved light-like 3-surfaces inside
space-time surfaces rather than light-like surfaces in M8: induced metric matters rather than
M4 metric.

3. Could also these regions correspond to singularities of octonionic polynomials at which P (o) =
0 is satisfied and associative region transforms to a co-associative region? For M2(x) = M2

0
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this is impossible. Partonic 2-surfaces are planes E2 now. One should have closed partonic
2-surfaces.

Could the allowance of quaternionic structures with slicing of X4 by string world sheets and
partonic 2-surfaces help? If one has slicing of string world sheets by dual light-like curves
corresponding to light-like coordinates u and v, this slicing gives also rise to a slicing of light-
like 3-surfaces and dual light-like coordinate. The pair (u, v) in fact defines the analog of z
and z in hypercomplex case. Could the singularity of P (o) using the quaternionic coordinates
defined by (u, v) and coordinates of partonic 2-surface allow to identify light-like partonic
orbits with det(g4) = 0 as a generalization of light-cone boundaries in M4?

The decomposition M4
0 = M2

x ×E2(x) associated with quaternionic structure is independent
of E4. In the other hand, tangent space of space-time surface at point decomposes M2(x)×
E2
T (x), where E2

T (x) is in general different from E2(x). Is this enough to obtain partonic
2-surfaces as singularities with RE(P ) = IM(P ) = 0?

The question whether the boundaries between Minkowskian and Euclidian can correspond to
singular regions at which P (o) vanishes and the surface RE(P ) = 0 transforms to IM(P ) = 0
surface remains open. What remains poorly understood is the role of the induced metric. My hope
is that with a further work the picture could be made more detailed.

2.6 About rational points of space-time surface

What one can say about rational points of space-time surface?

1. An important special case corresponds to a generalization of so called rational surfaces for
which a parametric representation in terms of 4 complex coordinates tk exists such that ok1
are rational functions of tk. The singularities for 2-complex dimensional surfaces in C3 or
equivalently CP3 are classified by Du Val [A3, A4] (see http://tinyurl.com/ydz93hle).

2. In [L4] [K4] I considered possible singularities of the twistor bundle. These would correspond
typically 2-D self-intersections of the embedding of space-time surfaces as 4-D base space
of 6-D twistor bundle with sphere as a fiber. They could relate to string world sheets and
partonic 2-surfaces and - as already found - are different from singularities at the level of
M8
c . The singularities of string world sheets and partonic 2-surfaces as hyper-complex and

co-complex surfaces consist of points and could relate to the singularities at octonionic level.

As already mentioned, Bombieri-Lang conjecture (see http://tinyurl.com/y887yn5b) states
that, for any variety X of general type over a number field k, the set of k-rational points of X is
not Zariski dense (see http://tinyurl.com/jm9fh74) in X. Even more, the k-rational points are
contained in a finite union of lower-dimensional sub-varieties of X.

This conjecture is highly interesting from TGD point of view if one believes in M8−H duality.
Space-time surfaces X4 ⊂ M8

c can be seen as M8 = M4 × E4 projections of zero loci for real
or imaginary parts of octonionic polynomials in o. In complex sense they reduce to M4 × E4

projections of algebraic co-dimension 4 surfaces in C8. If Bombieri-Lang conjectures makes sense
in this context, it would state that for a space-time surface X4 ⊂M8 of general type the rational
points are contained in a finite union of lower-dimensional sub-varieties. Also the conjecture
of Vojta (see http://tinyurl.com/y9sttuu4) stating that varieties of general type cannot be
potentially dense is known to be true for curves and support this general vision.

Could the finite union of sub-varieties correspond to string world sheets, partonic 2-surfaces, and
their light-like orbits define singularities? But why just singular sub-varieties would be cognitively
simple and have small Kodaira dimension dK allowing large number of rational points? In the
case of partonic orbits one might understand this as a reduction of metric dimension. The orbit
is effectively 2-dimensional partonic surface metrically and for the genera g = 0, 1 rational points
are dense. For string world sheets with handle number smaller than 2 the situation is same.

The proposed realizations of associativity and commutativity provide additional support for
this picture. Criticality guaranteeing associativity/commutativity would select preferred space-
time surfaces as also string world sheets and partonic 2-surfaces.

Concluding, the general wisdom of algebraic geometry conforms with SH and with the vision
about the localization of cognitive representations at 2-surfaces. There are of many possible options
for detailed interpretation and certainly the above sketch cannot be correct at the level of details.

http://tinyurl.com/ydz93hle
http://tinyurl.com/y887yn5b
http://tinyurl.com/jm9fh74
http://tinyurl.com/y9sttuu4
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2.7 About heff/h = n as the number of sheets of Galois covering

The following considerations were motivated by the observation of a very stupid mistake that I have
made repeatedly in some articles about TGD. Planck constant heff/h = n corresponds naturally
to the number of sheets of the covering space defined by the space-time surface.

I have however claimed that one has n = ord(G), where ord(G) is the order of the Galois group
G associated with the extension of rationals assignable to the sector of “world of classical worlds”
(WCW) and the dynamics of the space-time surface (what this means will be considered below).

This claim of course cannot be true since the generic point of extension G has some subgroup
H leaving it invariant and one has n = ord(G)/ord(H) dividing ord(G). Equality holds true
only for Abelian extensions with cyclic G. For singular points isotropy group is H1 supH so that
ord(H1)/ord(H) sheets of the covering touch each other. I do not know how I have ended up to
a conclusion, which is so obviously wrong, and how I have managed for so long to not notice my
blunder.

This observation forced me to consider more precisely what the idea about Galois group acting
as a number theoretic symmetry group really means at space-time level and it turned out that
M8 − H correspondence [L6] (see http://tinyurl.com/yd43o2n2) gives a precise meaning for
this idea.

Consider first the action of Galois group (see http://tinyurl.com/y8grabt2 and http://

tinyurl.com/ydze5psx).

1. The action of Galois group leaves invariant the number theoretic norm characterizing the
extension. The generic orbit of Galois group can be regarded as a discrete coset space G/H,
H ⊂ G. The action of Galois group is transitive for irreducible polynomials so that any two
points at the orbit are G-related. For the singular points the isotropy group is larger than
for generic points and the orbit is G/H1, H1 supH so that the number of points of the orbit
divides n. Since rationals remain invariant under G, the orbit of any rational point contains
only single point. The orbit of a point in the complement of rationals under G is analogous
to an orbit of a point of sphere under discrete subgroup of SO(3).

n = ord(G)/ord(H) divides the order ord(G) of Galois group G. The largest possible Galois
group for n-D algebraic extension is permutation group Sn. A theorem of Frobenius states
that this can be achieved for n = p, p prime if there is only single pair of complex roots (see
http://tinyurl.com/y8grabt2). Prime-dimensional extensions with heff/h = p would
have maximal number theoretical symmetries and could be very special physically: p-adic
physics again!

2. The action of G on a point of space-time surface with embedding space coordinates in n-D
extension of rationals gives rise to an orbit containing n points except when the isotropy
group leaving the point is larger than for a generic point. One therefore obtains singular
covering with the sheets of the covering touching each other at singular points. Rational
points are maximally singular points at which all sheets of the covering touch each other.

3. At QFT limit of TGD the n dynamically identical sheets of covering are effectively replaced
with single one and this effectively replaces h with heff = n × h in the exponent of action
(Planck constant is still the familiar h at the fundamental level). n is naturally the dimension
of the extension and thus satisfies n ≤ ord(G). n = ord(G) is satisfied only if G is cyclic
group.

The challenge is to define what space-time surface as Galois covering does really mean!

1. The surface considered can be partonic 2-surface, string world sheet, space-like 3-surface at
the boundary of CD, light-like orbit of partonic 2-surface, or space-time surface. What one
actually has is only the data given by these discrete points having embedding space coordi-
nates in a given extension of rationals. One considers an extension of rationals determined by
irreducible polynomial P but in p-adic context also roots of P determine finite-D extensions
since ep is ordinary p-adic number.

2. Somehow this data should give rise to possibly unique continuous surface. At the level of
H = M4 × CP2 this is impossible unless the dynamics satisfies besides the action principle

http://tinyurl.com/yd43o2n2
http://tinyurl.com/y8grabt2
http://tinyurl.com/ydze5psx
http://tinyurl.com/ydze5psx
http://tinyurl.com/y8grabt2
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also a huge number of additional conditions reducing the initial value data ans/or boundary
data to a condition that the surface contains a discrete set of algebraic points.

This condition is horribly strong, much more stringent than holography and even strong
holography (SH) implied by the general coordinate invariance (GCI) in TGD framework.
However, preferred extremal property at level of M4 × CP2 following basically from GCI in
TGD context might be equivalent with the reduction of boundary data to discrete data if
M8 −H correspondence [L6] (see http://tinyurl.com/yd43o2n2) is accepted. These data
would be analogous to discrete data characterizing computer program so that an analog of
computationalism would emerge [L3] (see http://tinyurl.com/y75246rk).

One can argue that somehow the action of discrete Galois group must have a lift to a continuous
flow.

1. The linear superposition of the extension in the field of rationals does not extend uniquely
to a linear superposition in the field reals since the expression of real number as sum of units
of extension with real coefficients is highly non-unique. Therefore the näıve extension of the
extension of Galois group to all points of space-time surface fails.

2. The old idea already due to Riemann is that Galois group is represented as the first homotopy
group of the space. The space with homotopy group π1 has coverings for which points remain
invariant under subgroup H of the homotopy group. For the universal covering the number
of sheets equals to the order of π1. For the other coverings there is subgroup H ⊂ π1 leaving
the points invariant. For instance, for homotopy group π1(S1) = Z the subgroup is nZ
and one has Z/nZ = Zp as the group of n-sheeted covering. For physical reasons its seems
reasonable to restrict to finite-D Galois extensions and thus to finite homotopy groups.

π1 − G correspondence would allow to lift the action of Galois group to a flow determined
only up to homotopy so that this condition is far from being sufficient.

3. A stronger condition would be that π1 and therefore also G can be realized as a discrete
subgroup of the isometry group of H = M4 × CP2 or of M8 (M8 −H correspondence) and
can be lifted to continuous flow. Also this condition looks too weak to realize the required
miracle. This lift is however strongly suggested by Langlands correspondence [K15, K16] (see
http://tinyurl.com/y9x5vkeo).

The physically natural condition is that the preferred extremal property fixes the surface or at
least space-time surface from a very small amount of data. The discrete set of algebraic points in
given extension should serve as an analog of boundary data or initial value data.

1. M8−H correspondence [L6] (see http://tinyurl.com/yd43o2n2) could indeed realize this
idea. At the level of M8 space-time surfaces would be algebraic varieties whereas at the level
of H they would be preferred extremals of an action principle which is sum of Kähler action
and minimal surface term.

They would thus satisfy partial differential equations implied by the variational principle
and infinite number of gauge conditions stating that classical Noether charges vanish for a
subgroup of symplectic group of δM4

± ×CP2. For twistor lift the condition that the induced
twistor structure for the 6-D surface represented as a surface in the 12-D Cartesian product
of twistor spaces of M4 and CP2 reduces to twistor space of the space-time surface and is
thus S2 bundle over 4-D space-time surface.

The direct map M8 → H is possible in the associative space-time regions of X4 ⊂M8 with
quaternionic tangent or normal space. These regions correspond to external particles arriving
into causal diamond (CD). As surfaces in H they are minimal surfaces and also extremals
of Kähler action and do not depend at all on coupling parameters (universality of quantum
criticality realized as associativity). In non-associative regions identified as interaction regions
inside CDs the dynamics depends on coupling parameters and the direct map M8 → CP2 is
not possible but preferred extremal property would fix the image in the interior of CD from
the boundary data at the boundaries of CD.

http://tinyurl.com/yd43o2n2
http://tinyurl.com/y75246rk
http://tinyurl.com/y9x5vkeo
http://tinyurl.com/yd43o2n2
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2. At the level of M8 the situation is very simple since space-time surfaces would correspond
to zero loci for RE(P ) or IM(P ) (RE and IM are defined in quaternionic sense) of an
octonionic polynomial P obtained from a real polynomial with coefficients having values
in the field of rationals or in an extension of rationals. The extension of rationals would
correspond to the extension defined by the roots of the polynomial P .

If the coefficients are not rational but belong to an extension of rationals with Galois group
G0, the Galois group of the extension defined by the polynomial has G0 as normal subgroup
and one can argue that the relative Galois group Grel = G/G0 takes the role of Galois group.

It seems that M8−H correspondence could allow to realize the lift of discrete data to obtain
continuous space-time surfaces. The data fixing the real polynomial P and therefore also its
octonionic variant are indeed discrete and correspond essentially to the roots of P .

3. One of the elegant features of this picture is that the at the level of M8 there are highly
unique linear coordinates of M8 consistent with the octonionic structure so that the notion
of a M8 point belonging to extension of rationals does not lead to conflict with GCI. Linear
coordinate changes of M8 coordinates not respecting the property of being a number in
extension of rationals would define moduli space so that GCI would be achieved.

Does this option imply the lift of G to π1 or to even a discrete subgroup of isometries is not
clear. Galois group should have a representation as a discrete subgroup of isometry group in order
to realize the latter condition and Langlands correspondence supports this as already noticed. Note
that only a rather restricted set of Galois groups can be lifted to subgroups of SU(2) appearing
in McKay correspondence and hierarchy of inclusions of hyper-finite factors of type II1 labelled
by these subgroups forming so called ADE hierarchy in 1-1 correspondence with ADE type Lie
groups [K25, K9] (see http://tinyurl.com/ybavqvvr). One must notice that there are additional
complexities due to the possibility of quaternionic structure which bring in the Galois group SO(3)
of quaternions.

Remark: After writing this article a considerable progress in understanding of heff/h = n
as number of sheets of Galois covering emerged. By M8-duality space-time surface can be seen
as zero locus for real or imaginary part (regarding octonions as sums of quaternionic real and
imaginary parts) allows a nice understanding of space-time surface as an heff/h = n-fold Galois
covering. M8 is complexified by adding an imaginary unit i commuting with octonionic imaginary
units. Also space-time surface is complexified to 8-D surface in complexified M8. One can say that
ordinary space-time surface is the “real part” of this complexified space-time surface just like x is
the real part of a complex number x + iy. Space-time surface can be also seen as a root of n:th
order polynomial with n complex branches and the projections of complex roots to “real part” of
M8 define space-time surface as an n-fold covering space in which Galois group acts.

2.8 Connection with infinite primes

The idea about space-time surfaces as zero loci of polynomials emerged for the first time as I tried
to understand the physical interpretation of infinite primes [K21], which were motivated by TGD
inspired theory of consciousness. Infinite primes form an infinite hierarchy. At the lowest level the
basic entity is the product X =

∏
p p of all finite primes. The physical interpretation could be as

an analog of fermionic sea with fermion states labelled by finite primes p.

1. The simplest infinite primes are of form P = X±1 as is easy to see. One can construct more
complex infinite primes as infinite integers of form nX/r+mr. Here r is square free integer,
n is integer having no common factors with r, and m can have only factors possessed also by
r.

The interpretation is that r defines fermionic state obtained by kicking from Dirac sea the
fermions labelled by the prime factors of r. The integers n and m define bosonic excitations in
which k:th power of p corresponds to k bosons in state labelled by p. One can also construct
more complex infinite primes as polynomials of X and having no rational factors. In fact, X
becomes coordinate variable in the correspondence with polynomials.

http://tinyurl.com/ybavqvvr
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2. This process can be repeated at the next level. Now one introduces product Y =
∏
P P of

all primes at the previous level and repeats the same construction. These infinite correspond
to polynomials of Y with coefficients given by rational functions of X. Primality means
irreducibility in the field of rational functions so that solving Y in terms of X would give
algebraic function.

3. At the lowest level are ordinary primes. At the next level the infinite primes are indeed infinite
in real sense but have p-adic norms equal to unity. They can be mapped to polynomials
P (x1) with rational coefficients and the simplest polynomials are monomials with rational
root. Higher polynomials are irreducible polynomials with algebraic roots. At the third level
of hierarchy one has polynomials P (x2|x1) of two variables. They are polynomials of x1 with
coefficients with are rational functions of x1. This hierarchy can be continued.

One can define also infinite integers as products of infinite primes at various levels of hierarchy
and even infinite rationals.

4. This hierarchy can be interpreted in terms of a repeated quantization of an arithmetic super-
symmetric quantum field theory with elementary particles labelled by primes at given level
of hierarchy. Physical picture suggests that the hierarchy of second quantizations is realized
also in Nature and corresponds to the hierarchy of space-time sheets.

5. One could consider a mapping P (xn|xn−1|..|x1) by a diagonal projection xi = x to polynomi-
als of single variable x. One could replace x with complexified octonic coordinate oc. Could
this correspondence give rise to octonionic polynomials and could the connection with second
quantization give classical space-time correlates of real quantum states assignable to infinite
primes and integers? Even quantum states defining counterparts of infinite rationals could
be considered. One could require that the real norm of these infinite rationals equals to one.
They would define infinite number of real units with arbitrarily complex number theoretical
anatomy. The extension of real numbers by these units would mean huge extension of the
notion of real number and one could say that each real point corresponds to platonic defined
by these units closed under multiplication.

In ZEO zero energy states formed by pairs of positive and negative energy could correspond
to these states physically. The condition that the ratio is unit would have also a physical
interpretation in terms of particle content.

6. As already noticed, the notions of analyticity, quaternionicity, and octonionicity could be
seen as a manifestation of polynomials in algebras defined by adding repeatedly a new non-
commuting imaginary unit to already existing algebra. The dimension of the algebra is
doubled in each step so that dimension comes as a power of 2. The algebra of polynomials
with real coefficients is commutative and associative. This encourages the crazy idea that
the spaces are indeed realized and the generalization of M8 −H duality holds true at each
level. At level k the counterpart for CP2 (for k = 3) would be as moduli space for sub-spaces
of dimension 2k−1 for which tangent space reduces to the algebra at level k − 1. For k = 2
CP1 is the moduli space and could correspond to twistor sphere. Essentially Grassmannian
Gl(2k, 2k−1) would be in question. This brings in mind twistor Grassmann approach involving
hierarchy of Grassmannians too, which however allows all dimensions. What is interesting
that the spinor bundle for space of even dimension d has fiber with dimension 2d/2.

The number of arguments for the hierarchy of polynomials assignable to the hierarchy of
infinite primes increases by one at each step. Hence these two hierarchies are different.

The vanishing of the octonionic polynomials indeed allow a decomposition to products of prime
polynomials with roots which in general are algebraic numbers and an exciting possibility is that
the prime polynomials have interpretation as counterparts of elementary particles in very general
sense.

Infinite primes can be mapped to polynomials and the most natural counterpart for the infinite
rational would be as a complexified octonionic rational function P1(t)/P2(t − T ), where T is real
octonion, with coefficients in extension of rationals. This would naturally give the geometry CD.
The assignment of opposite boundaries of CD to P1(t) and P2(t−T ) is suggestive and identification
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of zero loci of IM(P1) and IM(P2) as incoming and outgoing particles would be natural. The zero
and ∞ loci for RE(P1/P2) would define interaction between these space-time varieties and should
give rise to wormhole contacts connecting them. Note that the linearity of IM(o1o2) in IM(oi)
and non-linearity of RE(o1o2) in RE(oi) would be a key element behind this identification. This
idea will be discussed in more detail in the section “Gromov-Witten invariants, Riemann-Roch
theorem, and Atyiah-Singer index theorem from TGD point of view”.

3 Super variant of octonionic algebraic geometry and space-
time surfaces as correlates for fermionic states

Could the octonionic level provide an elegant description of fermions in terms of super variant of
octonionic algebraic geometry? Could one even construct scattering amplitudes at the level of M8

using the variant of the twistor approach discussed in [K10, K20]?
The idea about super-geometry is of course very different from the idea that fermionic statistics

is realized in terms of the spinor structure of “world of classical worlds” (WCW) but M8−H duality
could however map these ideas and also number theoretic and geometric vision to each other. The
angel of geometry and the devil of algebra could be dual to each other.

In the following I start from the notion of emergence generalized to the vision that entire
physics emerges from the notion of number. This naturally leads to an identification of super-
variants of various number fields, in particular of complexified octonions. After that super variants
of RE(P ) = 0 and IM(P ) = 0 conditions are discussed, and the surprising finding is that the
conditions might allow only single fermion states localized at strings. This would allow only single
particle in the super-multiplet and would mean breaking of SUSY. This picture would be consistent
with the earlier H picture about construction of scattering amplitudes [K10, K20]. Finally the
problems related to the detailed physical interpretation are discussed.

3.1 About emergence

The notion of emergence is fashionable in the recent day physics, in particular, he belief is that 3-
space emerges in some manner. In the sequel I consider briefly the standard view about emergence
idea from TGD point of view, then suggest that the emergence in the deepest sense requires
emergence of physics from the notion of number and that complexified octonions [L6] [L7, L8, L2,
L5] are the most plausible candidate in this respect. After that I will show that number theory
generalizes to super-number theory: super-number fields make sense and one can define the notion
of super-prime. Every new step of progress creates worry about consistency with the earlier work,
now the work done during last months with physics as octonionic algebraic geometry and also this
aspect is discussed.

1. The notion of holography is behind the emergence of 3-space and implies that the notion of
2-space is taken as input. This could be justified by conformal invariance.

2. The key idea is that 3-space emerges somehow from entanglement. There is something that
must entangle and this something must be labelled by points of space: one must introduce a
discretised space. Then one must do some handwaving to make it 3-D - perhaps by arguing
that holography based on 2-D holograms is unique by conformal invariance. The next hand-
wave would replace this as a 3-D continuous space at infrared limit.

3. How to get space-time and how to get general coordinate invariance? How to get the sym-
metries of standard model and special relativity? Somehow all this must be smuggled into
the theory when the audience is cheated to direct its attention elsewhere. This Münchausen
trick requires a professional magician!

4. One attempt could take as starting point what I call strong form of holography (SH) in
which 2-D data determine 4-D physics. Just like 2-D real analytic function determines
analytic function of two complex variables in spacetime of 2 complex dimensions by analytic
continuation (this hints strongly to quaternions). This is possible if conformal invariance is
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generalized to that for light-like 3-surfaces such as light-cone boundary. But the emergence
magician should do the same without these.

In TGD one could make this even simpler. Octonionic polynomials and rational functions
are obtained from real polynomials of real variable by octonion-analytic continuation. And
since polynomials and rational functions P1/P2 are in question their values at finite number
of discrete points determined them if the orders of P1 and P2 are known!

If one accepts adelic hierarchy based on extensions of rationals the coefficients of polynomials
are in extensions of rationals and the situation simplifies further. The criticality conditions
guaranteeing associativity for external particles is one more simplification: everything b
becomes discrete. The physics at fundamental level could be incredibly simple: discrete
number of points determines space-time surfaces as zero loci for RE(P ) or IM(P ) (octonions
are decomposed to two quaternions gives RE(o) and IM(o)).

How this is mapped to physics leading to standard model emerging from the formulation
in M × CP2 This map exists - I call it M8 − H duality - and takes space-time varieties in
Minkowskian sector of complexified octonions to a space-time surface in M4 × CP2 coding
for standard model quantum numbers and classical fields.

How to get all this without bringing in octonionic embedding space: this is the challenge for the
emergence-magician! I am afraid this this trick is impossible. I will however propose a deeper for
what emergence is. It would not be emergence of space-time and all physics from entanglement but
from the notion of number, which is at the base of all mathematics. This view led to a discovery
of the notion of super-number field, a completely new mathematical concept, which should show
how deep the idea is.

3.2 Does physics emerge from the notion of number field?

Concerning emergence one can start from a totally different point of view. Even if one gets rid
of space as something fundamental from Hilbert sapce and entanglement, one has not reached
the most fundamental level. Structures like Hilbert space, manifold, etc. are not fundamental
mathematical structures: they require the notion of number field. Number field is the fundamental
notion.

Could entire physics emerge from the notion of number field alone: space-time, fermions, stan-
dard model interactions, gravitation? There are good hopes about this in TGD framework if one
accepts M8 −H duality and physics as octonionic algebraic geometry! One could however argue
that fermions do not follow from the notion of number field alone. The real surprise was that
formalizing this more precisely led to a realization that the very notion of number field generalizes
to what one could call super-number field!

3.2.1 Emergence of physics from complexified octonionic algebraic geometry

Consider first the situation for number fields postponing the addition of attribute “super” later.

1. Number field endowed with basic arithmetic operations +, −, ·, / is the basic notion for
anyone wanting to make theoretical physics. There is a rich repertoire of number fields.
Finite fields, rationals and their extensions, real numbers, complex numbers, quaternions,
and octonions. There also p-adic numbers and their extensions induced by extensions of
rationals and fusing into adele forming basic structure of adelic physics. Even the complex,
quaternionic, and octonionic rationals and their extensions make sense. p-Adic variants of
say octonions must be however restricted to have coefficients belonging to an extension of
rationals unless one is willing to give up field property (the p-adic analog of norm squared
can vanish in higher p-adic dimensions so that inverse need not exist).

There are also function fields consisting of functions with local arithmetic operations. Ana-
lytic functions of complex variable provides the basic example. If function vanishes at some
point its inverse element diverges at the same point. Function fields are derived objects
rather than fundamental.
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2. Octonions are the largest classical number field and are therefore the natural choice if one
wants to reduce physics to the notion of number. Since one wants also algebraic extensions
of rationals, it is natural to introduce the notion of complexified octonion by introducing an
additional imaginary unit - call it i, commuting with the 7 octonionic imaginary units Ik.
One obtains complexified octonions.

That this is not a global number field anymore turns out to be a blessing physically. Com-
plexified octonion zkE

k has zk = zk + iyk. The complex valued norm of octonion is given
by z20 + ...z27 (there is no conjugation involved. The norm vanishes at the complex surface
z20 + ...z27 = 0 defining a 7-D surface in 7-D Oc (the dimension is defined in complex sense).
At this surface - complexified light-cone boundary - number field theory property fails but is
preserved elsewhere since one can construct the inverse of octonion.

At the real section M8 (8-D Minkowski space with one real (imaginary) coordinate and 7
imaginary (real) coordinates the vanishing takes place also. This surface corresponds to
the 7-D light-cone boundary of 8-D Minkowskian light-cone. This suggests that light-like
propagation is basically due to the complexification of octonions implying local failure of
the number field property. Same happens also in other real sections with 0 < n < 8 real
coordinates and 0 < m = 8− n < 8 imaginary coordinates and one obtains variant of light-
cone with different signatures. Euclidian signature corresponding to m = 0 or m = 8 is
an exception: light-cone boundary reduces to single point in this case and one has genuine
number field - no propagation is possible in Euclidian signature.

Similar argument applies in the case of complexified quaternionsQc and complexified complex
numbers z1 + z2I ∈ Cc, where I is octonionic imaginary unit. For Qc one obtains ordinary
3-D light-cone boundary in real section and 1-D light-cone boundary in the case of Cc. It
seems that physics demands complexification! The restriction to real sector follows from the
requirement that norm squared reduces to a real number. All real sectors are possible and I
have already considered the question whether this should be taken as a prediction of TGD
and whether it is testable.

3.2.2 Super-octonionic algebraic geometry

There is also a natural generalization of octonionic TGD to super-octonionic TGD based on oc-
tonionic triality. SO(1, 7) allows besides 8-D vector representations also spinor representations 8c
and 8c. This suggests that super variant of number field of octonions might make sense. One
would have o = o8 + oc,8 + 0c,8.

1. Should one combine o8, oc,8 and oc,8 to a coordinate triplet (o8, oc,8, oc,8) as done in super-
symmetric theories to construct super-fields? The introduction of super-fields as primary
dynamical variables is a good idea now since the very idea is to reduce physics to algebraic
geometry at the level of M8. Polynomials of super-octonions defining space-time varieties as
zero loci for their real or imaginary part in quaternionic sense could however take the role of
super fields. Space-time surface would correspond to zero loci for RE(P ) or IM(P ).

2. The idea about super-octonions should be consistent with the idea that we live in a complex-
ified number field. How to define the notion of super-octonion? The tensor product 8 ⊗ 8c
contains 8c and 8 ⊗ 8c contains 8c and one can use Glebsch-Gordan coefficients to contract
o and θc and o and θc,n. The tensor product of 8c and 8c defined using structure constants
defining octonion product gives 8. Therefore one must have

os = o+ Ψc × θc + Ψc × θc , (3.1)

where the products are octonion products. Super parts of super-coordinates would not be
just Grassmann numbers but octonionic products of Grassmann numbers with octonionic
spinors in 8c and 8c. This would bring in the octonionic analogs of spinor fields into the
octonionic geometry.

This seems to be consistent with super field theories since octonionic polynomials and even
rational functions would give the analogs of super-fields. What TGD would provide would
be an algebraic geometrization of super-fields.
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3. What is the meaning of the conditions RE(P ) = 0 and IM(P ) = 0 for super-octonions? Does
this condition hold true for all dG = 216 super components of P (os) or is it enough to pose
the condition only for the octonionic part of P (o)? In the latter case Ψc and Ψc would be
free and this does not seem sensical and does not conform with octonionic super-symmetry.
Therefore the first option will be studied in the sequel.

If super-octonions for a super variant of number field so that also inverse of super-octonion is
well-defined, then even rational functions of complexified super-octonions makes sense and poles
have interpretation in terms of 8-D light-fronts (partonic orbits at level of H). The notion must
make sense also for other classical number fields, finite fields, rationals and their extensions, and
p-adic numbers and their extensions. Does this structure form a generalization of number field to
a super counter part of number field? The easiest manner to kill the idea is to check what happens
in the case of reals.

1. The super-real would be of form s = x + yθ, θ2 = 0. Sum and product are obviously well-
defined. The inverse is also well-defined and given by 1/s = (x − yθ))/x2. Note that for
complex number x + iy the inverse would be z/zz = (x − yi)/(x2 + y2). The formula for
super-inverse follows from the same formula as the inverse of complex number by defining
conjugate of super-real s as s = x− yθ and the norm squared of s as |s|2 = ss = x2.

One can identify super-integers as N = m + nθ. One can also identify super-real units as
number of unit norm. Any number 1n = 1+nθ has unit norm and the norms form an Abelian
group under multiplication: 1m1n = 1m+n. Similar non-uniqueness of units occurs also for
algebraic extensions of rationals.

2. Could one have super variant of number theory? Can one identify super-primes? Super-norm
satisfies the usual defining property |xy| = |x||y|. Super-prime is defined only apart from the
multiplicative factor 1m giving not contribution to the norm. This is not a problem but a
more rigorous formulation leads to the replacement of primes with prime ideals labelled by
primes already in the ordinary number theory.

If the norm of super-prime is ordinary prime it cannot decompose to a product of super-
primes. Not all super-primes having given ordinary prime as norm are however independent.
If super-primes p + nθ and p + mθ differ by a multiplication with unit 1r = 1 + rθ, one
has n −m = pr. Hence there are only p super-primes with norm p and they can be taken
ps = p+ kθ, k ∈ {0, p− 1}. A structure analogous to a cyclic group Zp emerges.

Note that also θ is somewhat analogous to prime although its norm is vanishing.

3. Just for fun, one an ask what is the super counterpart of Riemann Zeta. Riemann zeta can
be regarded as an analog of thermodynamical partition function reducing to a product for
partition functions for bosonic systems labelled by primes p. The contribution from prime p
is factor 1/(1−p−s). p−s is analogous to Boltzmann weight N(E)exp(−E/T ), where N(E) is
number of states with energy E. The degeneracy of states labelled by prime p is for ordinary
primes N(p) = 1. For super-primes the degeneracy is N(p) = p and the weight becomes
1/(1−N(p)p−s) = 1/(1−p−s+1). Super Riemann zeta is therefore zeta(s−1) having critical
line at s = 3/2 rather than at s = 1/2 and trivial zeros at real points s = −1,−3,−5, rather
than at s = −2,−4,−6, ...

There are good reasons to expect that the above arguments work also for algebraic extensions
of super-rationals and in fact for all number fields, even for super-variants of complex numbers,
quaternions and octonions. This because the conditions for invertibility reduce to that for real
numbers. One would have a generalization of number theory to super-number theory! Net search
gives no references to anything like this. Perhaps the generalization has not been noticed because
the physical motivation has been lacking. M8−H duality would imply that entire physics, including
fermion statistics, standard model interactions and gravitation reduces to the notion of number in
accordance with number theoretical view about emergence.

3.2.3 Is it possible to satisfy super-variants of IM(P ) = 0 and RE(P ) = 0 conditions?

Instead of super-fields one would have a super variant of octonionic algebraic geometry.
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1. Super variants of the polynomials and even rational functions make sense and reduce to
a sum of octonionic polynomials Pklθ

k
1θ
l
2, where the integers k and l would be tentatively

identified as fermion numbers and θk is a shorthand for a monomial of k different thetas.
The coefficients in Pkl = Pkl,no

n would be given by Pkl,n = Pn+k+lB(n+ k+ l, k+ l), where
B(r, s) = r!/(r − s)!s! is binomial coefficient. The space-time surfaces associated with Pkl
would be different and they need not be simultaneously critical, which could give rise to a
breaking of supersymmetry.

One would clearly have an upper bound for k and l for given CD. Therefore these many-
fermion states must correspond to fundamental particles rather than many-fermion Fock
states. One would obtain bosons with non-vanishing fermion numbers if the proposed iden-
tification is correct. Octonionic algebraic geometry for single CD would describe only funda-
mental particles or states with bounded fermion numbers. Fundamental particles would be
indeed fundamental also geometrically.

2. One can also now define space-time varieties as zero loci via the conditions RE(Ps)(os) = 0
or IM(Ps)(os) = 0. One obtains a collection of 4-surfaces as zero loci of Pkl. One would have
a correlation with between fermion content and algebraic geometry of the space-time surface
unlike in the ordinary super-space approach, where the notion of the geometry remains rather
formal and there is no natural coupling between fermionic content and classical geometry.
At the level of H this comes from quantum classical correspondence (QCC) stating that the
classical Noether charges are equal to eigenvalues of fermionic Noether charges.

In the definition of the first variant of super-octonions I followed the standard idea about
what super-coordinates assuming that the super-part of super-octonion is just an anti-commuting
Grassmann number without any structure: I just replaced o with o+ θkE

k + θkE
k regarding θk as

anticommiting coordinates. Now θk receives octonionic coefficient: θk → okθk. θk is now analogous
to unit vector.

For the super-number field inspired formulation the situation is different since one assigns in-
dependent octonionic coordinates to anticommuting degrees of freedom. One has linear space with
partially anti-commutative basis. Oc is effectively replaced with O3

c so that one has 8+8+8=24-
dimensional Cartesian product (it is amusing that the magic dimension 24 for physical polarizations
of bosonic string models emerges).

What is the number of equations in the new picture? For N super-coordinates one has 2N

separate monomials analogous to many-fermion states. Now one has N = 8 + 8 = 16 and this
gives 216 monomials! In the general case RE = 0 or IM = 0 gives 4 equations for each of the
dG = 216 monomials: the number of equations RE = 0 or IM = 0 is 4 × 216 and exceeds the
number dO = 24 of octonion valued coordinates. In the original interpretation these equations
were regarded as independent and gave different space-time variety for each many-fermion state.

In the new framework these equations cannot be treated independently. One has 24 octonionic
coordinates and 216 equations. In the generic case there are no solutions. This is actually what
one hopes since otherwise one would have a state involving superposition of many-fermion states
with several fermion numbers.

The freedom to pose constraints on the coefficients of Grassmann parameters however allows to
reduce degrees of freedom. All coefficients must be however expressible as products of 3× 8 = 24
components of super-octonion.

1. One can have solutions for which both 8c part and 8c parts vanish. This gives the familiar 4
equations for 8 variables and 4-surfaces.

2. Consider first options, which fail. If 8c- or 8c part vanishes one has dG = 28 and 4×dG = 4×64
equations for dO=8+8 = 16 variables having no solutions in the generic case. The restriction
of 8c to its 4-D quaternionic sub-space would give dO = 4 and 4dG = 4× 24 = 64 conditions
and 16 variables. The reduction to complex sub-space z1 +z2I of super-octonions would give
dO = 22 and 4× 22 = 16 conditions for 8 + 2 = 10 variables.

3. The restriction to 1-D sub-space of super-octonions would give 4 × 21 = 8 conditions and
8 + 1 = 9 variables. Could the solution be interpreted as 1-D fermionic string assignable to
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the space-like boundary of space-time surface at the boundary of CD? Skeptic inside me asks
whether this could mean the analog of N = 1 SUSY, which is not consistent with H picture.

Second possibility is restriction to light-like subspace for which powers of light-like octonion
reduce effectively to powers of real coordinate. Fermions would be along light-lines in M8 and
along light-like curves in H. The powers of super-octonion have super-part, which belongs
to the 1-D super-space in question: only single fermion state is present besides scalar state.

4. There are probably other solutions to the conditions but the presence of fermions certainly
forces a localization of fermionic states to lower-dimensional varieties. This is what happens
also in H picture. During years the localization of fermion to string worlds sheets and their
boundaries has popped up again and again from various arguments. Could one hope that
super-number theory provides the eventual argument.

But how could one understand string world sheets in this framework? If they do not carry
fermions at H-level, do they appear naturally as 2-D structures in the ordinary sense?

To sum up, although many details must be checked and up-dated, super-number theory provides
and extremely attractive approach promising ultimate emergence as a reduction of physics to the
notion of number. When physical theory leads to a discovery of new mathematics, one must take
it seriously.

3.3 About physical interpretation

Super-octonionic algebraic geometry should be consistent with the H picture in which baryon and
lepton numbers as well as other standard model quantum numbers can be understood. There are
still many details, which are not properly understood.

3.3.1 The interpretation of theta parameters

The interpretation of theta parameters is not completely straightforward.

1. The first interpretation is that θc and θc correspond to objects with opposite fermion numbers.
If this is not the case, one could perhaps define the conjugate of super-coordinate as octonionic
conjugate os = o+ θ1 + θ2. This looks ugly but cannot be excluded.

There is also the question about spinor property. Octonionic spinors are 2-spinors with
octonion valued components. Could one say that the coefficients of octonion units have been
replaced with Grassmann numbers and the entire 2-component spinor is represented as a
pair of θc and θc? The two components of spinor in massless theories indeed correspond to
massless particle and its antiparticle.

2. One should obtain particles and antiparticles naturally as also separately conserved baryon
and lepton numbers (I have also considered the identification of hadrons in terms of anyonic
bound states of leptons with fractional charges).

Quarks and leptons have different coupling to the induced Kähler form at the level of H.
It seems impossible to understand this at the level of M8, where the dynamics is purely
algebraic and contains no gauge couplings.

The difference between quarks and leptons is that they allow color partial waves with triality
t = ±1 and triality t = 0. Color partial waves correspond to wave functions in the moduli
space CP2 for M4

0 ⊃ M2
0 . Could the distinction between quarks and leptons emerge at the

level of this moduli space rather than at the fundamental octonionic level? There would be
no need for gauge couplings to distinguish between quarks and leptons at the level of M8.
All couplings would follow from the criticality conditions guaranteeing 4-D associativity for
external particles (on mass shell states would be critical).

If so, one would have only the super octonions and θc and θc would correspond to fermions and
antifermions with no differentiation to quarks or leptons. Fermion number conservation would
be coded by the Grassmann algebra. Quantum classical correspondence (QCC) however
suggests that it should be possible to distinguish between quarks and leptons already at M8

level. Is it really enough that the distinction comes at the level of moduli space for CDs?
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One can imagine also other options but they have their problems. Therefore this option will
be considered in the sequel.

3.3.2 Questions about quantum numbers

The first questions relate to fermionic statistics.

1. Do super-octonions really realize fermionic statistics and how? The polynomials of super-
octonions can have only finite degree in θ and θc. One an say that only finite number of
fermions are possible at given space-time point. As found, the conditions IM(P ) = 0 and
RE(P ) = 0 might allow only single fermion strings as solutions perhaps assignable to partonic
2-surfaces.

Can one allow for given CD arbitrary number of this kind of points as the idea that identical
fermions can reside at different points suggests? Or is the number of fermions finite for given
CD or correspond to the highest degree monomial of θ and θc in P?

Finite fermion number of CD looks somewhat disappointing at first. The states with high
fermion numbers would be described in terms of Cartesian products just like in condensed
matter physics. Note however that space-time varieties with different octonionic time axes
must be in any case described in this manner. It seems possible to describe the interactions
using super-space delta functions stating that the interaction occur only in the intersection
points of the space-time surfaces. The delta function would have also super-part as in SUSYs.

2. As found, the theta degree effectively reduces to d = 1 for the pointlike solutions, which
by above argument are the only possible solutions besides purely bosonic solutions. Only
single fermion would be allowed at given point. I have already earlier considered the question
whether the partonic 2-surfaces can carry also many-fermion states or not [K10, K20], and
adopted the working hypothesis that fermion numbers are not larger than 1 for given worm-
hole throat, possibly for purely dynamical reasons. This picture however looks too limited.
The many fermion states might not however propagate as ordinary particles (the proposal
has been that their propagator pole corresponds to higher power of p2).

The M8 description of particle quantum numbers should be consistent with H description.

1. Can octonionic super geometry code for the quantum numbers of the particle states? It
seems that super-octonionic polynomials multiplied by octonionic multi-spinors inside single
CD can code only for the electroweak quantum numbers of fundamental particles besides
their fermion and anti-fermion numbers. What about color?

As already suggested, color corresponds to partial waves in CP2 serving as moduli space for
M4

0 ⊃ M2
0 . Also four-momentum and angular momentum are naturally assigned with the

translational degrees for the tip of CD assignable with the fundamental particle.

2. Quarks and leptons have different trialities at H level. How can one understand this at
M8 level. Could the color triality of fermion be determined by the color representation
assignable to the color decomposition of octonion as 8 = 1 + 1 + 3 + 3. This decomposition
occurs for all 3 terms in the super-octonion. Could the octet in question correspond to the
term D(8⊗ 8c; 8c)

mn
k oc,mθc,nE

k and analogous θc term in super octonion. Only this kind of
term survives from the entire super-octonion polynomial at fermionic string for the solutions
found.

3. There is however a problem: 8 = 1 + 1 + 3 + 3 decomposition is not consistent with the idea
that θc and θc have definite fermion numbers. Quarks appear only as 3, not 3. Why 3 from
θ term and 3 from θc term should drop out as allowed single fermion state?

There are also other questions.

1. What about twistors in this framework? M4×CP1 as twistor space with CP1 coding for the
choice of M2

0 ⊂M4
0 allows projection to the usual twistor space CP3. Twistor wave functions

describing spin elegantly would correspond to wave functions in the twistor space and one
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expects that the notion of super-twistor is well-defined also now. The 6-D twistor space
SU(3)/U(2)×U(1) of CP2 would code besides the choice of M4

0 ⊃M2
0 also quantization axis

for color hypercharge and isospin.

2. The intersection of space-time surfaces with S6 giving analogs of partonic 2-surfaces might
make possible for two sparticle lines to fuse to form a third one at these surfaces. This would
define sparticle 3-vertex in very much the same manner as in twistor Grassmann approach
to N = 4 SUSY.

H-picture however supports the alternative option that sparticles just scatter but there is no
contact interaction defining analog of 3-vertex. If the lines can carry only single fermion, the
H picture about twistor diagrams [K10, K20] would be realized also at the level of M8! This
means breaking of SUSY since only single fermion states from the octonionic SUSY multiplet
are realized. This would provide and easy - perhaps too easy - explanation for the failure to
find SUSY at LHC.

3. What about the sphere S6 serving as the moduli space for the choices of M8
+? Should one

have wave functions in S6 or can one restrict the consideration to single M8
+? As found, one

obtains S6 also as the zero locus of Im(P ) = 0 for some radii identifiable as values tn of time
coordinates given as roots of P (t): as matter of fact, S6(tn) is a solution of both RE(P ) = 0
and IM(P ) = 0. Can one identify the intersections X4 ∩ S6 are 2-D as partonic 2-surfaces
serving as topological vertices?

4 Could scattering amplitudes be computed in the octo-
nionic framework?

Octonionic algebraic geometry might provide incredibly simple framework for constructing scat-
tering amplitudes since now variational principle is involved and WCW reduces to a discrete set
of points in extension of rationals.

4.1 Could scattering amplitudes be computed at the level of M8?

It would be extremely nice if the scattering amplitudes could be computed at the octonionic level
by using a generalization of twistor approach in ZEO finding a nice justification at the level of M8.
Something rather similar to N = 4 twistor Grassmann approach suggests itself.

1. In ZEO picture one would consider the situation in which the passive boundary of CD and
members of state pairs at it appearing in zero energy state remain fixed during the sequence
of state function reductions inducing stepwise drift of the active boundary of CD and change
of states at it by unitary U-matrix at each step following by a localization in the moduli
space for the positions of the active boundary.

2. At the active boundary one would obtain quantum superposition of states corresponding to
different octonionic geometries for the outgoing particles. Instead of functional integral one
would have sum over discrete points of WCW. WCW coordinates would be the coefficients
of polynomial P in the extension of rationals. This would give undefined result without
additional constraints since rationals are a dense set of reals.

Criticality however serves as a constraint on the coefficients of the polynomials and is expected
to realize finite measurement resolution, and hopefully give a well defined finite result in the
summation. Criticality for the outgoing states would realize purely number theoretically
the cutoff due to finite measurement resolution and would be absolutely essential for the
finiteness and well-definedness of the theory.

4.2 Interaction vertices for space-time surfaces with the same CD

Consider interaction vertices for space-time surfaces associated with given CD. At the level of H
the fundamental interactions vertices are partonic 2-surfaces at which 3 light-like partonic orbits
meet. The incoming light-like sparticle lines scatter at this surface and they are not assumed to
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meet at single vertex. This assumption is motivated because it allows to avoid infinities but one
must be ready to challenge it. It is essential that wormhole throats appear in pairs assignable to
wormhole contacts and also contacts form pairs by the conservation of Kähler magnetic flux.

What could be the counterpart of this picture at level of M8?

1. The simplest interaction could be associated with the common stable intersection points of
the space-time regions. By dimensional consideration these intersections are stable and form
a discrete set. This would however allow only 2-vertices involved in processes like mixing of
states. In the generic case the intersection would consist of discrete points.

2. A stronger condition would be that these points belong to the extension of rationals defining
adeles or is extension defined by the polynomial P . This would conform with the idea that
scattering amplitudes involve only data associated with the points in the extension. The
interaction points could be ramified points at which the action of a subgroup H of Galois
group G would leave sheets of the Galois covering invariant so that some number of sheets
would touch each other. I have discussed this proposal in [L4]. These points could be
seen as analogs of interaction points in QFT description in terms of n-point functions and
the sum over polynomials would give rise to the analog over integral over different n-point
configurations.

3. A possible interpretation is that if the subgroup H ⊂ G has k-elements the vertex represents
meeting of k sparticle lines and thus k-vertex would be in question. This picture is not what
the H view about twistor diagrams [K20] suggests: in these diagrams sparticle lines at the
light-like orbits of partonic 2-surfaces do not meet at single point but only scatter at partonic
2-surface, where three light-like orbits of partonic 2-surfaces meet.

4. An alternative interpretation is that k-vertex describes the decay of particle to k fractional
particles at partonic 2-surfaces and has nothing do with the usual interaction vertex.

This proposal need not describe usual particle scattering. Could the intersection of space-
time varieties defined as zero loci for RE(Pi) and IM(Pi) with the special solutions S6(tn) and
CD = M4

+ ∩M4
− define the loci of interaction? It is difficult to believe that these special solutions

could be only a beauty spot of the theory. X2 = X4 ∩ S6(tn) is 2-D and X0 = X4 ∩ CD consists
of discrete points.

Consider now the possible role of the singular (RE(P ) = IM(P ) = 0) maximally critical surface
S6(tn) in the scattering.

1. As already found, the 6-D spheres S6 with radii tn given by the zeros of P (t) are universal
and have interpretation as t = tn snapshots of 7-D spherical light front projection to t = tn
3-balls as cross sections of 4-D CD. Could the 2-D intersection X2 = X4 ∩ S6(tn) play a
fundamental role in the description of interaction vertices?

2. Suppose that 3-vertices realize the dynamical realization of octonionic SUSY predicting large
number of sparticles. Could one understand in this framework the 3-vertex for the orbits X3

i

of partonic 2-surfaces meeting each other along their 2-D end defining partonic 2-surface and
undersand how 3 fermions lines meet at single point in this picture?

3. Assume that 3 partonic orbits X3
i , i = 1, 2, 3 meet at X2 = X4 ∩ S6(tn). That this occurs

could be part of boundary conditions, which should follow from interaction consistency. If
fermions just go through the X2

i in time direction they cannot meet at single point in the
generic case. If the sparticle lines however can move along X2 - maybe due the fact that an
intersection X2 = X4 ∩S6(tn) is in question - they intersect in the generic case and fuse to a
third fermion line. Note that this portion of fermion line would be space-like whereas outside
X2 the line would be light-like. This can be used as an objection against the idea.

The picture allowing 3-vertices would be different from H picture in which fermion lines only
scatter and only 2+2 fermion vertex assignable to topological 3-vertex is fundamental.
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1. One would have 2 wormhole contacts carrying fermion and third one carrying fermion anti-
fermion pair at its opposite throats and analogous to boson. Of course, one can reproduce the
earlier picture by giving up the condition about supersymmetric fermionic 3-vertex. On the
other hand, the idea that interactions occur only at discrete points in extension of rationals
is extremely attractive.

2. The surprising outcome from the construction of solutions of super-variants of RE(P ) = 0
and IM(P ) = 0 conditions was that if the superpart of super-octonion is non-vanishing, the
variety can be only 1-D string like entity carrying one-fermion state. This does allow strings
with higher fermion number so that the 3-vertex would not be possible! This suggests that
fermionic lines appear as sub-varieties of space-time variety.

If so the original picture [K20] applying at the level of H applies also at the level of M8. SUSY
is broken dynamically allowing only single fermion states localized at strings and scattering
of these occurs by classical interactions at the partonic 2-surfaces defining the topological
vertices.

3. The only manner to have a point/line containing sparticle with higher fermion number
would be as a singularity along which several branches of super-variety degenerate to single
point/line: each variety would carry one fermion line. Unbroken octonionic SUSY would
characterize singularities of the space-time varieties, which would be unstable so that SUSY
would break. Singularities are indeed critical and thus unstable and also tend to possess
enhanced symmetries.

What could be the interpretation of X0 = X4∩CD? For instance, could it be that these points
code for 4-momenta classically so that quantum classical correspondence (QCC) would be realized
also at the level of M8 although there are no Noether charges now. But what about angular
momenta? Could twistorialization realized in terms of the quaternionic structure of M4

0 help here.
What is the role of the intersections of 6-D twistor bundle of X4 with 6-D twistor bundle of M4

0

consisting of discrete points?
The interaction vertex would involve delta function telling that the interacting space-time

varieties or their regions touch at same point of M8. Delta function in theta parameter degrees of
freedom and Grassmann integral over them would be also involved and guarantee fermion number
conservation. Vertex factor should be determined by arguments used in Grassmannian twistor
approach. I have developed a proposal in [K20] but this proposal allows only fermion number ±1
at fermion lines. Now all members of the multiplet would be allowed.

4.3 How could the space-time varieties associated with different CDs
interact?

The interaction of space-time surfaces inside given CD is well-defined in the octonionic algebraic
geometry. The situation is not so clear for different CDs for which the choice of the origin of octo-
nionic coordinates is in general different and polynomial bases for different CDs do not commute
nor associate.

The intuitive expectation is that 4-D/8-D CDs can be located everywhere in M4/M8. The
polynomials with different origins neither commute nor are associative. Their sum is a polynomial
whose coefficients are not real. How could one avoid losing the extremely beautiful associative and
commutative algebra of polynomials?

1. Should one assume that the physics observable by single conscious observer corresponds to
single CD defining the perceptive field of this observer [L10].

2. Or should one give up associativity and allow products (but not sums since one should give
up the assumption that the coefficients of polynomials are real) of polynomials associated
with different CDs as an analog for the formation of free many-particle states.

Consider first what happens for the single particle solutions defined as solutions of either
RE(Pi) = 0 or IM(Pi) = 0.
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1. The polynomials associated with different 8-D CDs do not commute nor associate. Should
one allow their products so that one would still effectively have a Cartesian product of com-
mutative and associative algebras? This would realize non-commutative and non-associative
physics emerging in conformal field theories also at the level of space-time geometry.

2. If the CDs differ by a real (time) translation o2 = o1 + T one still obtains IM(P1) = 0 and
IM(P2) = 0 as solutions to IM(P1P2) = 0. This applies also to states with more particles.
The identification would be in terms of external particles. For RE(P1P2) = 0 this is not the
case. If the interior of CD corresponds to RE(P1P2) = 0, the dynamics in the interior is not
only non-trivial but also non-commutative and non-associative. Non-trivial interaction would
be obtained even without interaction terms in the polynomial vanishing at the boundaries of
CD!

Could one consider allowing only CDs with tips at the same real axis but having all sizes
scales? This hierarchy of CD would characterize a particular hierarchy of conscious observers -
selves having sub-selves (sub-CDs) [L10]. The allowance of only these CD would be analogous
to a fixing of quantization axes.

3. What happens if one allows CDs differing by arbitrary octonion translation? Consider
external particles. For P1 and P2 RE and IM are defined for different decompositions
oi = RE(oi) + niIm(oi), where ni, i = 1, 2 is a unit octonion.

What decomposition should one use for P1P2? The decomposition for P1 or P2 or some other
decomposition? One can express P2(o2) using o1 as coordinate but the coefficients multiplying
powers of o1 from right would not be real numbers anymore implying IM(P2)1 6= IM(P2)2.
IM(P2)1 = 0 makes sense but the presence of particle 1 would have affected particle 2 or
vice versa.

Could one argue that the coordinate systems satisfying the condition that some external
particles described by Pi have real coefficients and perhaps serving in the role of observers
are preferred? Or could one imagine that o12 is a kind of center of mass coordinate? In this
case the 4-varieties associated with both particles would be affected. What is clear that the
choice of the octonionic coordinate origin would affect the space-time varieties of external
particles even if they could remain associative/critical.

4. Are there preferred coordinates in which criticality is preserved? For instance, can one
achiever criticality for P2 on coordinates of o1 if P1 is critical. Could one see this as a kind
of number theoretic observer effect at the level of space-time geometry?

Remark: Pi(o) would reduce to a real polynomial at light-like rays with origin for oi irre-
spective of the octonionic coordinate used so that the spheres S6

i with origin at the origin of
oi as solutions of Pi(o) = 0 would not be lost.

If one does not give up associativity and commutativity for polynomials, how can one describe
the interactions between space-time surfaces inside different CDs at the level of M8? The following
proposal is the simplest one that one can imagine by assuming that interactions take place at
discrete points of space-time surfaces with coordinates belonging an extension of rationals.

1. The most straightforward manner would be to introduce Cartesian powers of O and CD:s
inside these powers to describe the interaction between CDs with different origin. This
would be analogous to what one does in condensed matter physics. What seems clear is that
M8 − H correspondence should map all the factors of (M8)n to the same M4 × CP2 by a
kind of diagonal projection.

In topological 3-parton vertex X2 three light-like partonic orbits along X4 would meet. X2

would be the contact of X4 with S6 associated with second 8-D CD. Together with SH this
gives hopes about an elegant description of interactions in terms of connected space-time
varieties.

2. The intersection X4
i ∩ X4

j consists of discrete set of points. This would suggest that the

interaction means transfer of fermion between X4
1 and X4

2 . The intersection of X = S6
1(tm)∩

S6
2(tn) is 4-D and space-like. The intersection X4

i ∩X consists of discrete points could these
discrete points allow to construct interaction vertices.
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To make this more concrete, assume that the external particles outside the interaction CD
(CDint) defining the interaction region correspond to associative (or co-associative) space-time
varieties with different CDs.

Remark: CDs are now 8-dimensional.

1. One can assign the external particles to the Cartesian factors of (M8)n giving (P1, ..., Pn)
just like one does in condensed matter physics for particles in 3-space E3. Inside CDint the
Cartesian factors would fuse to single factor and instead of Cartesian product one would have
the octonionic product P =

∏
Pi plus the condition RE(P ) = 0 (or IM(P ) = 0: one should

avoid too strong assumptions at this stage) would give to the space-time surface defining the
interaction region.

2. RE(P ) = 0 and IM(P ) = 0 conditions make sense even, when the polynomials do not have
origin at common real axis and give rise to 4 conditions for 8 polynomials of 8 complexified
octonion components P i. It is not possible to reduce the situation at the light-like boundaries
of 8-D light-cone to a vanishing of polynomial P (t) of real coordinate t anymore, and one
loses the the surfaces S6

i as special solutions and therefore also the partonic 2-surfaces X2
i =

X4 ∩ S6
i . Should one assign all X2

i with the intersections of external particles with the two
boundaries δ± CD of CD defining the interaction region. They would intersect δ±CD at
highly unique discrete points defining the sparticle interaction vertices. By 7-dimensionality
of δ±CD the intersection points would be at the boundaries of 4-D CD and presumably at
light-like partonic orbits at which the induced metric is singular at H side at least just as
required by H picture.

The most general external single-sparticle state would be defined by a product P of mutually
commuting and associating polynomials with tips of CD along common real axis and satisfy-
ing IM(Pi) = 0 or RE(Pi) = 0. This could give both free and bound states of constituents.

3. Different orders and associations for P =
∏
Pi give rise to different interaction regions. This

requires a sum over the scattering amplitudes
∑
p T (

∏
i Pp(i)) associated with the permuta-

tions p: (1, ..., n)→ (p(1), .., p(n)) and T =
∑
p U(p)T (Pp(1)...Pp(n)) (T (AB) +T (BA) in the

simplest case) with suitable phase factors U(p). Note that one does not have a sum over the
polynomials Pp(1)...Pp(n) but over the scattering amplitudes associated with them.

4. Depending on the monomial of theta parameters in super-octonion part of Pi, one has plus
or minus signs under the exchange of Pi and Pj . One can also have braid group as a lift
of the permutation group. In this case given contribution to the scattering amplitude has a
phase factor depending on the permutation (say T = T (AB) + exp(iθ)T (BA).

One must also form the sum T =
∑
Ass U(Ass)T (Ass(P )) over all associations for a given

permutation with phase factors U(Ass). Here T = T ((AB)C) + UT (A(BC)), U phase
factor, is the simplest case. One has “association statistics” as the analog of braid statistics.
Permutations and associations have now a concrete geometric meaning at the level of space-
time geometry - also at the level of H.

5. The geometric realization of permutations and associations could relate to the basic problem
encountered in the twistorial construction of the scattering amplitudes. One has essentially
sum over the cyclic permutations of the external particles but does not know how to construct
the amplitudes for general permutations, which correspond to non-planar Feynman diagrams.
The geometric realization of the permutations and associations would solve this problem in
TGD framework.

4.4 Twistor Grassmannians and algebraic geometry

Twistor Grassmannians provide an application of algebraic geometry involving the above described
notions [B2] (see http://tinyurl.com/yd9tf2ya). This approach allows extremely elegant ex-
pressions for planar amplitudes of N = 4 SYM theory in terms of amplitudes formulated in
Grassmannians G(k, n).

It seems that this approach generalizes to TGD in such a way that CP2 degrees of freedom give
rise to additional factors in the amplitudes having form very similar to the M4 part of amplitudes

http://tinyurl.com/yd9tf2ya
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and involving also G(k, n) with ordinary twistor space CP3 being replaced with the flag manifold
SU(3)/U(1)×U(1): k would now correspond to the number sparticles with negative weak isospin.
Therefore the understanding of the algebraic geometry of twistor amplitudes could be helpful also
in TGD framework.

4.4.1 Twistor Grassmannian approach very concisely

I try to compress my non-professional understanding of twistor Grassmann approach to some key
points.

1. Twistor Grassmannian approach constructs the scattering amplitudes by fusing 3-vertices
(+,-,-) (one positive helicity) and (-,+,+) (one negative helicity) to a more complex diagrams.
All particles are on mass shell and massless but complex. If only real massless momenta are
allowed the scattering amplitudes would allow only collinear gluons. Incoming particles have
real momenta.

Remark: Remarkably, M4×CP2 twistor lift of TGD predicts also complex Noether charges,
in particular momenta, already at classical level. Quantal Noether charges should be her-
mitian operators with real eigenvalues, which suggests that total Noether charges are real.
For conformal weights this condition corresponds to conformal confinement. Also M8 − H
duality requires a complexification of octonions by adding commuting imaginary unit and
allows to circumvent problems related to the Minkowski signature since the metric tensor can
be regarded as Euclidian metric tensor defining complex value norm as bilinear mkmklm

l

in complexified M8 so that real metric is obtained only in sub-spaces with real or purely
imaginary coordinates. The additional imaginary unit allows also to define what complex
algebraic numbers mean.

The unique property of 3-vertex is that the twistorial formulation for the conservation of
four-momentum implies that in the vertex one has either λ1 ∝ λ2 ∝ λ3 or λ1 ∝ λ2 ∝ λ3.
These cases correspond to the 2 3-vertices distinguished notationally by the color of the
vertex taken to be white or black [B2].

Remark: One must allow octonionic super-space in M8 formulation so that octonionic SUSY
broken by CP2 geometry reducing to the quaternionicity of 8-momenta in given scattering
diagram is obtained.

2. The conservation condition for the total four-momentum is quadratic in twistor variables for
incoming particles. One can linearize this condition by introducing auxiliary Grassmannian
G(k, n) over which the tree amplitude can be expressed as a residue integral. The number
theoretical beauty of the multiple residue integral is that it can make sense also p-adically
unlike ordinary integral.

The outcome of residue integral is a sum of residues at discrete set of points. One can
construct general planar diagrams containing loops from tree diagrams with loops by BCFW
recursion. I have considered the possibility that BCFW recursion is trivial in TGD since
coupling constants should be invariant under the addition of loops: the proposed scattering
diagrammatics however assumed that scattering vertices reduce to scattering vertices for 2
fermions. The justification for renormalization group invariance would be number theoretical:
there is no guarantee that infinite sum of diagrams gives simple function defined in all number
fields with parameters in extension of rationals (say rational function).

3. The general form of the Grassmannian integrand in G(k, n) can be deduced and follows from
Yangian invariance meaning that one has conformal symmetries and their duals which ex-
pand to full infinite-dimensional Yangian symmetry. The denominator of the integrand of
planar tree diagram is the product of determinants of k × k minors for the k × n matrix
providing representation of a point of G(k, n) unique apart from SL(k, k) transformations.
Only minors consisting of k consecutive columns are assumed in the product. The residue
integral is determined by the poles of the denominator. There are also dynamical singular-
ities allowing the amplitude to be non-vanishing only for some special configurations of the
external momenta.
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4. On mass-shell diagrams obtained by fusing 3-vertices are highly redundant. One can describe
the general diagram by using a disk such that its boundary contains the external particles
with positive or negative helicity. The diagram has certain number nF of faces. There are
moves, which do not affect the amplitude and it is possible to reduce the number of faces to
minimal one: this gives what is called reduced diagram. Reduced diagrams with nF faces
define a unique nF − 1-dimensional sub-manifold of G(k, n) over which the residue integral
can be defined. Since the dimension of G(k, n) is finite, also nF is finite so that the number
of diagrams is finite.

5. On mass shell diagrams can be labelled by the permutations of the external lines. This gives
a connection with 1+1-dimensional QFTs and with braid group. In 1+1-D integral QFTs
however scattering matrix induces only particle exchanges.

The permutation has simple geometric description: one starts from the boundary point of
the diagram and moves always from left or right depending on the color of the point from
which one started. One arrives some other point at the boundary and the final points are
different for different starting points so that the process assigns a unique perturbation for
a given diagram. Diagrams which are obtained by moves from each other define the same
permutation. BFCW bridge which is a way to obtain new Yangian invariant corresponds to
a permutation of consecutive external particles in the diagram.

6. The poles of the denominator determine the value of the multiple residue integrals. If one al-
lowed all minors, one would have extremely complex structure of singularities. The allowance
only cyclically taken minors simplifies the situation dramatically. Singularities correspond to
n subgroups of more than 2 collinear k-vectors implying vanishing of some of the minors.

7. Algebraic geometry comes in rescue in the understanding of singularities. Since residue
integral is in question, the choice is rather free and only the homology equivalence class of
the cell decomposition matters. The poles for a hierarchy with poles inside poles since given
singularity contains sub-singularities. This hierarchy gives rise to a what is known as cell
composition - stratification - of Grassmannian consisting of varieties with various dimensions.
These sub-varieties define representatives for the homology group of Grassmannian. Schubert
cells already mentioned define this kind of stratification.

Remark: The stratification has very strong analogy of the decomposition of catastrophe in
Thom’s catastrophe theory to pieces of various dimensions. The smaller the dimension, the
higher the criticality involved. A connection with quantum criticality of TGD is therefore
highly suggestive.

Cyclicity implies a reduction of the stratification to that for positive Grassmannians for which
the points are representable as k × n matrices with non-negative k × k determinants. This
simplifies the situation even further.

Yangian symmetries have a geometric interpretation as symmetries of the stratification: level
1 Yangian symmetries are diffeomorphisms preserving the cell decomposition.

4.4.2 Problems of twistor approach

Twistor approach is extremely beautiful and elegant but has some problems.

1. The notion of twistor structure is problematic in curved space-times. In TGD framework
the twistor structures of M4 and CP2 (E4) induce twistor structure of space-time surface
and the problem disappears just like the problems related to classical conservation laws are
circumvented. Complexification of octonions allows to solve the problems related to the
metric signature in twistorialization.

2. The description of massive particles is a problem. In TGD framework M8 approach allows
to replace massive particles with particles with octonionic momenta light-like in 8-D sense
belonging to quaternionic subspace for a given diagram. The situation reduces to that for
ordinary twistors in this quaternionic sub-space but since quaternionic sub-space can vary,
additional degrees of freedom bringing in CP2 emerge and manifest themselves as transversal
8-D mass giving real mass in 4-D sense.
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3. Non-planar diagrams are also a problem. In TGD framework a natural guess is that they
correspond to various permutations of free particle octonionic polynomials. Their product
defines interaction region in the interior of CD to which free particles satisfying associativity
conditions (quantum criticality) arrive. If the origins of polynomials are not along same time
axis, the polynomials do not commute nor associate. One must sum over their permutations
and for each permutation over its associations.

4.5 About the concrete construction of twistor amplitudes

At H-side the ground states of super-conformal representations are given by the anti-symmetrized
products of the modes of H-spinor fields labelled by four-momentum, color quantum numbers,
and electroweak (ew) quantum numbers. At partonic 2-surface one has finite number of many
fermion states. Single fermion states are assigned with H-spinor basis and the fermion states form
a representation of a finite-D Clifford algebra.

M8 picture should reproduce the physical equivalent of H picture: in particular, one should
understand four-momentum, color quantum numbers, ew quantum numbers, and B and L. M8−H
correspondence requires that the super-twistorial description of scattering amplitudes in M8 is
equivalent with that in H.

The M8 picture is roughly following.

1. The ground states of super-conformal representations expressible in terms of spinor modes
of H correspond at level of M8 wave functions in super variant of the product T (M4) ×
T (CP2) of twistor spaces of M4 and CP2. This twistor space emerges naturally in M8 −H
correspondence from the quaternionicity condition for 8-momenta.

2. Bosonic M8 degrees of freedom translate to wave functions in the product T (M4)× T (CP2)
labelled by four-momentum and color. Super parts of the M4 and CP2 twistors code for spin
and ew degrees of freedom and fermion numbers. Only a finite number of spin-ew spin states
is possible for a given fundamental particle since one has finite-D Grassmann algebra.

3. Contrary to the earlier expectations [K20], the view about scattering diagrams is very similar
to that in N = 4 SUSY. The analog of 3-gluon vertex is fundamental and emerges naturally
from number theoretic vision in which scattering diagrams defines a cognitive representation
and vertices of the diagram correspond to fusion of sparticle lines.

4.5.1 Identification of H quantum numbers in terms of M8 quantum numbers

The first challenge is to understand how M8 −H correspondence maps M8 quantum numbers to
H quantum numbers. At the level of M8 one does not have action principle and conservation laws
must follow from the properties of wave functions in various moduli spaces assignable to 4-D and
8-D CDs that is quaternion and octonion structures. The symmetries of the moduli spaces would
dictate the properties of wave functions.

There are three types of symmetries and quantum numbers.

1. WCW quantum numbers

At level of H the quantum numbers in WCW“vibrational”degrees of freedom are associated
with the representations of super-symplectic group acting as isometries of WCW. Super-symplectic
generators correspond to Hamiltonians labelled by color and angular momentum quantum numbers
for SU(3) × SO(3). In M4

± there are also super-symplectic conformal weights assignable to the
radial light-coordinate in δM4

±. These conformal weights could be complex and might relate closely
to the zeros of Riemann zeta [K8]. Physical states should however have integer valued conformal
weights (conformal confinement).

At the level of M8 WCW “vibrational”degrees of freedom are discrete and correspond to the
degree of the octonionic polynomial P and its coefficients in the extension of rationals considered.
WCW integration reduces to a discrete sum, which should be well-defined by the criticality con-
ditions on the coefficients of the polynomials. M8 −H correspondence guarantees that 4-varieties
in M8 are mappable to space-time surfaces in H. Therefore also quantum numbers should be
mappable to each other.
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There are also spinorial degrees of freedom associated with WCW spinors with spin-like quan-
tum numbers assignable to fermionic oscillator operators labelled by spin, ew quantum numbers,
fermion numbers, and by super-symplectic conformal weights.

2. Quantum numbers assignable to isometries of H.

These quantum numbers are special assignable to the ground states of the representations of
Kac-Moody algebras associated with light-like partonic orbits.

1. The isometry group of H consists of Poincare group and color group for CP2. M8 isometries
correspond to 8 − D Poincare group. Only G2 respects given octonion structure and 8-D
Lorentz transformations transform to each other different octonion structures. Quantum
numbers consist of 8-momentum and analogs of spin and ew spin. M8 −H correspondence
is non-trivial since one must map light-like quaternionic 8-momenta to 4-momenta and color
quantum numbers.

2. There are quantum numbers assignable to cm spinor degrees of freedom. They correspond
for both M8 and H to 8-D spinors and give rise to spin and ew quantum numbers. For these
quantum numbers M8 − H correspondence is trivial. At the level of H baryon and lepton
numbers are assignable to the conserved chiralities of H-spinors.

Quantum classical correspondence (QCC) is a key piece of TGD.

1. At the level of H QCC states that the eigenvalues of the fermionic Noether charges are equal
to the classical bosonic Noether charges in Cartan algebra implies that fermionic quantum
number as also ew quantum numbers and spin have correlates at the level of space-time
geometry.

2. A the level of M8 QCC is very concrete. Both bosonic and superpart of octonions have the de-
composition 1+1+3+3 under color rotations. Each monomial of theta parameters character-
izes one particular many-fermion state containing leptons/antileptons and quarks/antiquarks.
Leptons/antileptons are assignable to complexified octonionic units (1 ± iI1)/

√
2 defining

preferred octonion plane M2 and quarks/antiquarks are assignable to triplet and antitriplet,
which also involve complexified octonion units. One obtains breaking of SUSY in the sense
that space-time varieties assignable to different theta monomials are different (one can argue
that the sum 8s + 8s can be regarded as real).

Purely leptonic and antileptonic varieties correspond to 1 and 1 and quark and antiquark
varieties to 3 and 3 and the monomial transforms as a tensor product of thetas. The monomial
has well defined quark and lepton numbers and the interpretation is that it characterizes
fundamental sparticle. At the level of H this kind of correspondence follows form QCC.

3. Also super-momentum leads to a characterization of spin and fermion numbers of the state
since delta function expressing conservation of super-momentum codes the supersymmetry
for scattering amplitudes and gives rise to vertices conserving fermion numbers. Does this
mean QCC in the sense that the super parts of super-momentum and super twistor should
be associated with space-time varieties with same fermion and spin content?

How the light-like quaternionic 8-momenta are mapped to H quantum numbers?

The key challenge is to understand how the light-like quaternionic 8-momenta are mapped to
massive M4 momenta and color quantum numbers.

1. One has wave function in the space of CP2 quaternionic four-momenta. M4
0 momentum

can be identified as M2
0 projection and in general massive unless M2

0 and M4
0 are chosen so

that the light-like M8 momentum belongs to M2
0 . The situation is analogous to that in the

partonic description of hadron scattering.

The space of quaternionic sub-spaces M4
0 ⊃M2

0 with this property is parameterized by CP2,
and one obtains color partial waves. The inclusion of the choice of quantization axis extends
this space to T (CP2) = SU(3)/U(1)×U(1). Without quaternionicity/associativity condition
the space of momenta would correspond to M8.
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The wave functions in the moduli space for the position of the tip of CD and for the choice
M2

0 ⊃M4
0 specifying M4

0 twistor structure and choice of quantization axis of spin correspond
to wave functions in the twistor space CP3 of M4

± coding for momentum and spin.

Remark: The inclusion of M4 spin quantization axis characterized by the choice of M2
0

extends M4
0 to geometric twistor space T (M4) = M4

0 ×S2 ⊃M2
0 having bundle projection to

CP3. Twistorialization means essentially the inclusion of the choice of various quantization
axis as degrees of freedom. This space is for symmetry group G the space G/H, where
H is the Cartan sub-group of G. This description might make sense also at the level of
super-symplectic and super-Kac-Moody symmetries.

2. Ordinary octonionic degrees of freedom for super-octonions in M8 must be mapped to M4×
CP2 cm degrees of freedom. Super octonionic parts should correspond to fermionic and spin
and electroweak degrees of freedom. The space of super-twistorial states should same as the
space of the super-symplectic grounds states describable in terms H-spinor modes.

3. One has wave function in the moduli space of CDs. The states in M8 are labelled by
quaternionic super-momenta. Bosonic part must correspond to four-momentum and color
and super-part to spin and ew quantum numbers of CP2. This part of the moduli space
wave function is characterized by the spin and ew spin quantum numbers of the fundamental
particle. Wave functions in the super counterpart of T (M4)× T (CP2) allow to characterize
these degrees of freedom without the introduction of spinors and should correspond to the
ground states of super-conformal representations in H.

It seems that H-description is an abstract description at the level moduli spaces and M8

description for single space-time variety represents reduction to the primary level, where number
theory dictates the dynamics.

4.5.2 Octonionic twistors and super-twistors

How to define octonionic twistors? Or is it enough to identify quaternionic/associative twistors as
sub-spaces of octonionic twistors?

1. Ordinary twistors and super-twistors

Consider first how ordinary twistors and their super counterparts could be defined, and how
they could allow an elegant description of spin and ew quantum numbers as quantum numbers
analogous to angular momenta.

1. Ordinary twistors are defined as pairs of 2-spinors giving rise to a representation of four-
momentum. The spinors are complex spinors transforming as a doublet representation of
SL(2,C) and its conjugate.

The 2-spinors are related by incidence relation, a linear condition in which M4 coordinates
represented as 2 × 2 matrix appears linearly [K20]. The expression of four-momentum is
bilinear in the spinors and invariant under complex scalings of the 2-spinors compensating
each other so that instead of 8-D space one has actually 6-D space, which reduces to CP3 to
which the geometric twistor space M4 × S2 has a projection.

2. For light-like four-momenta p the determinant of the matrix having the two 2-spinors as
rows and representing p as a point of M4 vanishes. Wave functions in CP3 allow to describe
spin in terms of bosonic wave function. What is so beautiful is that this puts particles with
different spin in a democratic position.

Super-twistors allow to integrate the states constructible as many-fermion states of N el-
ementary fermions in the same representations involving several spins. The many-fermion
states - sparticles - are in 1-1-correspondence with Grassmann algebra basis.

3. The description of massless particles in terms of M4 (super-)twistors is elegant but one
encounters problems in the case of massive particles [K23, K10, K20].
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2. Octonionic twistors at the level of M8?

How to define octonionic twistors at the level of M8?

1. At the level of M8 one has light-like 8-momenta. The M4 momentum identified as M4
0

projection can there be massive. This solves the basic problem of the standard twistor
approach.

2. The additional assumption is that the 8-momenta in given vertex of scattering diagram
belong to the same quaternionic sub-space M4

0 ⊂ M8 satisfying M4
0 ⊃ M2

0 . This effectively
transforms momentum space M4×E4 to M4×CP2. A stronger condition is that all momenta
in a given diagram belong to the same sub-space M4

0 ⊃M2
0 .

Remark: Quaternionicity implies that the 8-momentum is time-like or light-like if one re-
quires that quaternionicity for an arbitrary choice of the octonionic structure (the action of
8-D Poincare group gives rise transforms octonionic structures to each other).

3. Complex 2-spinors are replaced with complexified octonionic spinors which must be consistent
quaternionicity condition for 8-momenta. A good guess is that the spinors belong to a
quaternionic sub-space of octonions too. This is expected to transform them effectively to
quaternionic spinors. Without effective quaternionicity the number of 2-spinor components
would be 8 rather than 4 times larger than for ordinary 2-spinors.

Remark: One has complexified octonions (i commutes with the octonionic imaginary units
Ek).

4. Octonionic/quaternionic twistors should be pairs of octonionic/quaternionic 2-spinors de-
termined only modulo octonionic/quaternionic scaling. If quaternionicity holds true, the
number of 2-spinor components is 4 times larger than usually. Does this mean that one has
basically quaternionic twistors plus moduli space CP2 for M4

0 ⊃ M2
0 . One should be able

to express octonionic twistors as bi-linears formed from 2 octonionic/quaternionic 2-spinors.
Octonionic option should give the octonionic counterpart OP3 of Grassmannian CP3, which
does not however exist.

Remark: Octonions allow only projective plane OP2 as the octonionic counterpart of
CP2 (see http://tinyurl.com/ybwaeu2s) but do not allow higher-D projective spaces nor
Grassmannians (see http://tinyurl.com/ybm8ubef, whereas reals, complex numbers, and
quaternions do so. The non-existence of Grassmannians for rings obtained by Cayley-Dickson
construction could mean that M8 −H correspondence and TGD do not generalize beyond
octonions.

Does the restriction to quaternionic 8-momenta the Grassmannians to be quaternionic (sub-
spaces of octonions). This would give quaternionic counterpart HP3 of CP3. Quaternions
indeed allow projective spaces and Grassmannians and (see http://tinyurl.com/y9htjstc

and http://tinyurl.com/y87gpq8l).

Remark: One can wonder whether non-commutativity forces to distinguish between left- and
right Grassmannians (points as lines {c(q1, .., qn)|c ∈ H} or as lines as lines {(q1, .., qn)c|c ∈
H}.

5. Concerning the generalization to octonionic case, it is crucial to realize that the 2× 2-matrix
representing four-momentum as a pair 2-spinor can be regarded as an element in the sub-
space of complexified quaternions. The representation of four-momentum would be as sum
of p8 = pk1σk + I4p

k
2σk, where I4 octonionic imaginary unit orthogonal to σk representing

quaternionic units.

No! The twistorial representation of the 4-momentum is already quaternionic! Choosing
the decomposition of M8 to quaternionic sub-space and its complement suitably, one has
IM(p8) = 0 for quaternionic 8-momenta and one obtains standard representation of 4-
momentum in this sub-space! The only new element is that one has now moduli specifying
the quaternionic sub-space. If the sub-space contains a fixed M2

0 one obtains just CP2 and
ordinary twistor codes for the choices of M2

0 . If the choice of color quantization axes matters

http://tinyurl.com/ybwaeu2s
http://tinyurl.com/ybm8ubef
http://tinyurl.com/y9htjstc
http://tinyurl.com/y87gpq8l
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as it indeed does, one has twistor space SU(3)/U(1)×U(1) instead of CP2. This would sug-
gest that ordinary representation of scattering amplitudes reduces apart from the presence
of CP2 twistor to the usual representation.

One can hope for a reduction to ordinary twistors and projective spaces, moduli space CP2

for quaternion structures, and moduli space for the choices of real axis of octonion structures.
One can even consider the possibility [K20] of using standard M2

0 with the property that M8

momentum reduces to M2
0 momentum and coding the information about real M2

0 to moduli.
This could reduce the twistor space to RP (3) associated with M2

0 is considered and solve the
problems related to the signature of M4. Note however that the complexification of octonions
in any case allow to regard the metric as Euclidian albeit complexified so that these problems
should disappear.

3. Octonionic super-twistors at the level of M8?

Should one generalize the notion of super-twistor to octonionic context or can one do by using
only the moduli space and the fact that octonionic geometry codes for various components of
octonion as analog of super-field? It seems that super-twistors are needed.

1. It seems that super-twistors are needed. Octonionic super-momentum would appear in the
super variant of momentum conserving delta function resulting in the integration over trans-
lational moduli. In twistor Grassmann approach this delta function is super-twistorialized
and this leads to the amazingly simple expressions for the scattering amplitudes.

2. At the level of M8 one should generalize ordinary momentum to super-momentum and per-
form super-twistorialization. Different monomials of theta parameters emerging from super
part of momentum conserving delta function (for N = 1 one has δ(θ− θ0) = exp(iθ− θ0)/i)
correspond to different spin states of the super multiplet and anti-commutativity guarantees
correct statistics. At the level of H the finite-D Clifford algebra of 8-spinors at fixed point of
H gives states obtained as monomials or polynomials for the components of super-momentum
in M8.

3. Octonionic super-momentum satisfying quaternionicity condition can be defined as a combi-
nation of ordinary octonionic 8-momentum and super-parts transforming like 8s and 8s. One
can express the octonionic super-momentum as a bilinear of the super-spinors defining quater-
nionic super-twistor. Quaternionicity is assumed at least for the octonionic super-momenta
in the same vertex. Hence the M4 part of the super-twistorialization reduces to that in
SUSYs and one obtains standard formulas. The new elements is the super-twistorialization
of T (CP2).

Remark: Octonionic SUSY involving 8 + 8s + 8s would be an analog of N = 8 SUSY as-
sociated with maximal supergravity (see http://tinyurl.com/nv3aajy) and in M4 degrees
of freedom twistorialization should be straightforward.

The octonionic super-momentum belongs to a quaternionic sub-space labelled by CP2 point
and corresponds to a particular sub-space M2

0 in which it is light-like (has no other octonionic
components). M2

0 is characterized by point of S2 point of twistor spaceM4×S2 having bundle
projection to CP3.

4. That the twistor space T (CP2) = SU(3)/U(1)×U(1) coding for the color quantization axes
rather than only CP2 emerges must relate to the presence of electroweak quantum numbers
related to the super part of octonionic momentum. Why the rotations of SU(2) × U(1) ⊂
SU(3) have indeed interpretation also as tangent space-rotations interpreted as electroweak
rotations. The transformations having an effect on the choice of quantization axies are
parameterized by S2 relating naturally to the choice of SO(4) quantization axis in E4 and
coded by the geometric twistor space T (E4) = E4 × S2.

5. Since the super-structure is very closely related to the construction of the exterior algebra in
the tangent space, super-twistorialization of T (CP2) should be possible. Octonionic triality
could be also in a key role and octonionic structure in the tangent space of SU(3) is highly
suggestive. SU(3) triality could relate to the octonionic triality.

http://tinyurl.com/nv3aajy
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SU(3)/U(1)×U(1) is analogous with the ordinary twistor space CP3 obtained from C4 as a
projective space. Now however U(1)×U(1) instead of group of complex scalings would define
the equivalence classes. Generalization of projective space would be in question. The super-
part of twistor would be obtained as U(1)× U(1) equivalence class and gauge choice should
be possible to get manifestly 6-D representation. One can ask whether the CP2 counterparts
of higher- D Grassmannians appear at the level of generalized twistor diagrams: could the
spaces SU(n)/G, H Cartan group correspond to these spaces?

4. How the wave functions in super-counterpart of T (CP2) correspond to quantum states in
CP2 degrees of freedom?

In CP2 spinor partial waves have vanishing triality t = 0 for leptonic chirality and t = ±1
for quarks and antiquarks. One can say that the triality t 6= 1 states are possible thanks to the
anomalous hypercharge equal to fractional electromagnetic charge YA = Qem of quarks: this gives
also correlation between color quantum numbers and electroweak quantum numbers which is wrong
for spinor partial waves. The super-symplectic and super Kac-Moody algebras however bring in
vibrationals degrees of freedom and one obtains correct quantum number assignments [K17].

This mechanism should have a counterpart at the level of the super variant of the twistor
space T (CP2) = SU(3)/U(1)× U(1). The group algebra of SU(3) gives the scalar wave functions
for all irreps of SU(3) as matrix elements. Allowing only matrix elements that are left- or right
invariant under U(1) × U(1) one obtains all irreps realized in T (CP2) as scalar wave functions.
These representations have t = 0. The situation would be analogous for scalar functions in CP2.
One must however obtain also electroweak quantum numbers and t 6= 0 colored states. Here the
octonionic algebraic geometry and superpart of the T (CP2) should come in rescue. The electroweak
degrees of freedom in CP2 should correspond to the super-parts of twistors.

The SU(3) triplets assignable to the triplets 3 and 3 of space-time surfaces would make possible
also the t = ±1 states. Color would be associated with the octonionic geometry. The simplest
possibility would be that one has just tensor products of the triplets with SU(3)/U(1) × U(1)
partial waves. In the case of CP2 there is however a correlation between color partial waves and
electroweak quantum numbers and the same is expected also now between super-part of the twistor
and geometric color wave function: minimum correlation is via YA = Qem. The minimal option is
that the number theoretic color for the octonionic variety modifies the transformation properties
of T (CP2) wave function only by a phase factor due to YA = Qem as in the case of CP2.

The most elegant outcome would be that super-twistorial state basis in T (M4)timesT (CP2) is
equivalent with the state basis defined by super-symplectic and super Kac-Moody representations
in H.

4.5.3 About the analogs of twistor diagrams

There seems to be a strong analogy with the construction of twistor amplitudes in N = 4 SUSY
[B1, B4, B3] and one can hope of obtaining a purely geometric analog of SUSY with dynamics of
fields replaced by the dynamics of algebraic super-octonionic surfaces.

1. Number theoretical vision leads to the proposal that the scattering amplitudes involve only
data at discrete points of the space-time variety belonging to extension of rationals defining
cognitive representation. The identification of these points has been already considered in
the case of partonic orbits entering to the partonic 2-vertex and for the regions of space-
time surfaces intersecting at discrete set of points. Scattering diagrams should therefore
correspond to polygons with vertices of polygons defining cognitive representation and lines
assignable to the external fundamental particles with given quark and lepton numbers having
correlates at the level of space-time geometry. This occurs also in twistor Grassmannian
approach [B1, B4, B3].

Since polynomials determine space-time surfaces, this data is enough to determine the space-
time variety completely. Indeed, the zeros of P (t) determining the space-time variety give also
rise to a set of spheres S6(tn) and partonic 2-surfaces X2(tn) = X4∩S6(tn), where tn is root
of P (t). The discretization need not mean a loss of information. The scattering amplitudes
would be expressible as an analog of n-point function with points having coordinates in the
extension of rationals.
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2. (Super) octonion as“field”in X4 is dynamically analogous to (super) gauge potentials and
super-octonion to its super variant. (Super) gauge potentials are replaced with M8 (super-)
octonion coordinate and gauge interactions are geometrized. Here I encounter a problem with
terminology. Neither sparticle nor sboson sounds good. Hence I will talk about sparticles.

3. The amplitude for a given space-time variety contains no information M8-momentum. M8-
momentum emerges as a label for a wave function in the moduli space of 4-D and 8-D CDs
involving both translational and orientational degrees of freedom. For fixed time axis the
orientational degrees of freedom reduce to rotational degrees of freedom identifiable in terms
of the twistor sphere S2. The delta functions expressing conservation of 8-D quaternionic
super-momentum in M8 coming from the integration over the moduli space of 8-D transla-
tions.

As found, quaternionicity of 8-momenta implies that standard M4 twistor description of
momenta applies but one obtains CP2 twistors as additional contribution. This is of course
what one would intuitively expect.

8-D momentum conservation in turn translates to the conservation of momentum and color
quantum numbers in the manner described. The amplitudes in momentum and color degrees
of freedom reduce to kinematics as in SUSYs. It is however not clear whether one should
also perform number theoretical discretization of various moduli spaces.

In any case, it seems that all the details of the scattering amplitudes related to moduli spaces
reduce to symmetries and the core of calculations reduces to the construction of space-time
varieties as zero loci of octonionic polynomials and identification of the points of the 4-
varieties in extension of rationals. Classical theory would indeed be an exact part of the
quantum theory.

4. Quaternionic 8-D light-likeness reduces the situation to the level of ordinary complex and
thus even positive (real) Grassmannians. This is crucial from the p-adic point of view. CP2

twistors characterizes the moduli related to the choice of quaternionic sub-space, where 8-
momentum reduces to ordinary 4-momentum. M4 parts of the scattering amplitudes in
twistor Grassmann approach should be essentially the same as in N = 4 SUSY apart from
the replacement of super degrees of freedom with super-octonionic ones. The challenge is
to generalize the formalism so that it applies also to CP2 twistors. The challenge would
be to generalize the formalism so that it applies also to CP2 twistors. The M4 and CP2

degrees of freedom are expected to factorize in twistorial amplitudes. A good guess is that
the scattering amplitudes are obtained as residue integrals in the analogs of Grassmannians
associated with T (CP2). Could one have Grassmannians also now?

Consider the formula of tree amplitude for n gluons with k negative helicities conjectured
Arkani-Hamed et al in the twistor Grassmannian approach [B3]. The amplitude follows from
the twistorial representation for momentum conservation and is equal to an k × n-fold mul-
tiple residue integral over the complex variables Cαa defining coordinates for Grassmannian
Gl(n, k) and reduces to a sum over residues. The integrand is the inverse for the product of all
k×k minors of the matrix Cαa in cyclic order and the resides corresponds to zeros for one or
more minors. This part does not depend on twistor variables. The dependence on n twistor
variables comes from the product

∏k
α=1 δ(CαaW

a) of k delta functions related to momentum
conservation. W a denotes super-twistors in the 8-D representation, which is linear. One has
projective invariance and therefore a reduction to T (M4) = CP3 = SU(4)/SU(3)× U(1).

Could this formula generalize almost as such to T (CP2) and come from the conservation of E4

momentum? One has n sparticles to which super-twistors in T (CP2) are assigned. The first
guess is that the sign of helicity are replaced by the sign of electroweak isospin - essentially
E4 spin at the level of M8. For electromagnetic charge identified as the analog of helicity
one would have problems in the case of neutrinos. T (M4) = CP3 = SU(4)/SU(3)× U(1) is
replaced with T (CP2) = SU(3)/U(1) × U(1). T (CP2) does not have a representation as a
projective space but there is a close analogy since the group of complex scalings is replaced
with U(1) × U(1). The (apparent) linearity is lost but one represent the points of T (CP2)
as exponentials of su(3) Lie-algebra elements with vanishing u(1)× u(1) part. The resulting
3 complex coordinates are analogous to two complex CP2 coordinates. The basic difference
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between M4 and CP2 degrees of freedom would come from the exponential representation of
twistors.

5. By Yangian invariance one should obtain very similar formulas for the amplitudes except
that one has instead of N = 4 SUSY N = 8 octonionic SUSY analogous to N = 8 SUGRA.

4.5.4 Trying to understand the fundamental 3-vertex

Due to its unique twistorial properties as far as realization of four-momentum conservation is con-
sidered 3-vertex is fundamental in the construction of scattering diagrams in twistor Grassmannian
approach toN = 4 SYM [B2] (see http://tinyurl.com/yd9tf2ya). Twistor Grassmann approach
suggests that 3-vertex with complexified light-like 8-momenta represents the basic building brick
representing from which more complex diagrams can be constructed using the BCFW recursion
formula [B2]. In TGD 3-vertex generalized to 8-D light-like quaternionic momenta should be highly
analogous to the 4-D 3-vertex and in a well-defined sense reduce to it if all momenta of the diagram
belong to the same quaternionic sub-space M4

0 . It is however not completely clear how 3-vertex
emerges in TGD framework.

1. A possible identification of the 3-vertex at the level of M8 would be as a vertex at which 3
sparticle lines with light-like complexified quaternionic 8-momenta meet. This vertex would
be associated with the partonic vertex X2(tn) = X4∩S6(tn). Incoming sparticle lines at the
light-like partonic orbits identified as boundaries of string world sheets (for entangled states
at least) would be light-like.

Does the fusion of two sparticle lines to third one require that either or both fusing lines
become space-like - say pieces of geodesic line inside the Euclidian space-time region- bounded
by the partonic orbit? The identification of the lines of twistor diagrams as carriers of light-
like complexified quaternionic momenta in 8-D sense does not encourage this interpretation
(also classical momenta are complex). Should one pose the fusion of the light-like lines as a
boundary condition? Or should one give up the idea that sparticle lines make sense inside
interaction region?

2. As found, one can challenge the assumption about the existence of string world sheets as
commutative regions in the non-associative interaction region. Could one have just fermion
lines as light-like curves at partonic orbits inside CD? Or cannot one have even them?

Even if the polynomial
∏
i Pi defining the interaction region is product of polynomials with

origins of octonionic coordinates not along the same real line, the 7-D light-cones of M8

associated with the particles still make sense in the sense that Pi(oi) = 0 reduces at it to
Pi(ti) = 0, ti real number, giving spheres S6(ti(n)) and partonic 2-surfaces and vertices
X2(ti(n)). The light-like curves as geodesics the boundary of 7-D light-cones mapped to
light-like curves along partonic orbits in H would not be lost inside interaction regions.

3. At the level of H this relates to a long standing interpretational problem related to the notion
of induced spinor fields. SH suggests strongly the localization of the induced spinor fields at
string world sheets and even at sparton lines in absence of entanglement. Super-conformal
symmetry however requires that induced spinor fields are 4-D and thus seems to favor de-
localization. The information theoretic interpretation is that the induced spinor fields at
string world sheets or even at sparton lines contain all information needed to construct the
scattering amplitudes. One can also say that string world sheets and sparton lines correspond
to a description in terms of an effective action.

4.5.5 Could the M8 view about twistorial scattering amplitudes be consistent with
the earlier H picture?

The proposed M8 picture involving super coordinates of M8 and super-twistors does not conform
with the earlier proposal for the construction of scattering amplitudes at the level of H [K20]. In
H picture the introduction of super-space does not look natural, and one can say that fundamental
fermions are the only fundamental particles [K10, K20]. The H view about super-symmetry is as

http://tinyurl.com/yd9tf2ya
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broken supersymmetry in which many fermion states at partonic 2-surfaces give rise to supermulti-
plets such that fermions are at different points. Fermion 4-vertex would be the fundamental vertex
and involve classical scattering without fusion of fermion lines. Only a redistribution of fermion
and anti-fermion lines among the orbits of partonic 2-surfaces would take place in scattering and
one would have kind of OZI rule.

Could this H view conform with the recent M8 view much closer to the SUSY picture. The
intuitive idea without a rigorous justification has been that the fermion lines at partonic 2-surfaces
correspond to singularities of many-sheeted space-time surface at which some sheets co-incide. M8

sparticle consists effectively of n fermions at the same point in M8. Could it be mapped by M8−H
duality to n fermions at distinct locations of partonic 2-surface in H?

M8−H correspondence maps the points of M4 ⊂M4×E4 to points of M4 ⊂M4×CP2. The
tangent plane of space-time surface containing a preferred M2 is mapped to a point of CP2. If the
effective n-fermion state M8 is at point at which n sheets of space-time surface co-incide and if the
tangent spaces of different sheets are not identical, which is quite possible and even plausible, the
point is indeed mapped to n points of H with same M4 coordinates but different CP2 coordinates
and sparticle would be mapped to a genuine many-fermion state. But what happens to scalar
sparticle. Should one regard it as a pure gauge degree of freedom in accordance with the chiral
symmetry at the level of M8 and H?

5 From amplituhedron to associahedron

Lubos has a nice blog posting (see http://tinyurl.com/y7ywhxew) explaining the proposal rep-
resented in the newest article by Nima Arkani-Hamed, Yuntao Bai, Song He, Gongwang Yan [?]see
http://tinyurl.com/ya8zstll). Amplituhedron is generalized to a purely combinatorial notion
of associahedron and shown to make sense also in string theory context (particular bracketing).
The hope is that the generalization of amplituhedron to associahedron allows to compute also the
contributions of non-planar diagrams to the scattering amplitudes - at least in N = 4 SYM. Also
the proposal is made that color corresponds to something less trivial than Chan-Paton factors.

The remaining problem is that 4-D conformal invariance requires massless particles and TGD
allows to overcome this problem by using a generalization of the notion of twistor: masslessness is
realized in 8-D sense and particles massless in 8-D sense can be massive in 4-D sense.

In TGD non-associativity at the level of arguments of scattering amplitude corresponds to that
for octonions: one can assign to space-time surfaces octonionic polynomials and induce arithmetic
operations for space-time surface from those for polymials (or even rational or analytic functions).
I have already earlier [L6] demonstrated that associahedron and construction of scattering ampli-
tudes by summing over different permutations and associations of external particles (space-time
surfaces). Therefore the notion of associahedron makes sense also in TGD framework and sum-
mation reduces to “integration” over the faces of associahedron. TGD thus provides a concrete
interpretation for the associations and permutations at the level of space-time geometry.

In TGD framework the description of color and four-momentum is unified at the level and
the notion of twistor generalizes: one has twistors in 8-D space-time instead of twistors in 4-D
space-time so Chan-Paton factors are replaced with something non-trivial.

5.1 Associahedrons and scattering amplitudes

The following describes briefly the basic idea between associahedrons.

5.1.1 Permutations and associations

One starts from a non-commutative and non-associative algebra with product (in TGD framework
this algebra is formed by octonionic polynomials with real coefficients defining space-time surfaces
as the zero loci of their real or imaginary parts in quaternionic sense. One can indeed multiply
space-time surface by multiplying corresponding polynomials! Also sum is possible. If one allows
rational functions also division becomes possible.

All permutations of the product of n elements are in principle different. This is due to non-
commutativity. All associations for a given ordering obtained by scattering bracket pairs in the
product are also different in general. In the simplest case one has either a(bc) or (ab)c and these

http://tinyurl.com/y7ywhxew
http://tinyurl.com/ya8zstll
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2 give different outcomes. These primitive associations are building bricks of general associations:
for instance, abc does not have well-defined meaning in non-associative case.

If the product contains n factors, one can proceed recursively to build all associations allowed
by it. Decompose the n factors to groups of m and n−m factors. Continue by decomposing these
two groups to two groups and repeat until you have have groups consisting of 1 or two elements.
You get a large number of associations and you can write a computer code computing recursively
the number N(n) of associations for n letters.

Two examples help to understand. For n = 3 letters one obviously has N(n = 3) = 2. For
n = 4 one has N(4) = 5: decompose first abcd to (abc)d, a(bcd) and (ab)(cd) and then the two 3
letter groups to two groups: this gives N(4) = 2 + 2 + 1 = 5associations and associahedron in 3-D
space has therefore 5 faces.

5.1.2 Geometric representation of association as face of associahedron

Associations of n letters can be represented geometrically as so called Stasheff polytope (see http:

//tinyurl.com/q9ga785). The idea is that each association of n letters corresponds to a face of
polytope in n− 2-dimensional space with faces represented by the associations.

Associahedron is constructed by using the condition that adjacent faces (now 2-D polygons)
intersecting along common face (now 1-D edges). The number of edges of the face codes for the
structure particular association. Neighboring faces are obtained by doing minimal change which
means replacement of some (ab)c with a(bc) appearing in the association as a building bricks or
vice versa. This means that the changes are carried out at the root level.

5.1.3 How does this relate to particle physics?

In scattering amplitude letters correspond to external particles. Scattering amplitude must be
invariant under permutations and associations of the external particles. In particular, this means
that one sums over all associations by assigning an amplitude to each association. Geometrically
this means that one ”integrates” over the boundary of associahedron by assigning to each face an
amplitude. This leads to the notion of associahedron generalizing that of amplituhedron.

Personally I find it difficult to believe that the mere combinatorial structure leading to associ-
ahedron would fix the theory completely. It is however clear that it poses very strong conditions
on the structure of scattering amplitudes. Especially so if the scattering amplitudes are defined in
terms of ”volumes” of the polyhedrons involved so that the scattering amplitude has singularities
at the faces of associahedron.

An important constraint on the scattering amplitudes is the realization of the Yangian gen-
eralization of conformal symmetries of Minkowski space. The representation of the scattering
amplitudes utilizing moduli spaces (projective spaces of various dimensions) and associahedron
indeed allows Yangian symmetries as diffeomorphisms of associahedron respecting the positivity
constraint. The hope is that the generalization of amplituhedron to associahedron allows to gen-
eralize the construction of scattering amplitudes to include also the contribution of non-planar
diagrams of at N = 4 SYM in QFT framework.

5.2 Associations and permutations in TGD framework

Also in the number theoretical vision about quantum TGD one encounters associativity constraings
leading to the notion of associahedron. This is closely related to the generalization of twistor
approach to TGD forcing to introduce 8-D analogs of twistors [L6] (see http://tinyurl.com/

yd43o2n2).

5.2.1 Non-associativity is induced by octonic non-associativity

As found in [L6], non-associativity at the level of space-time geometry and at the level of scattering
amplitudes is induced from octonionic non-associativity in M8.

1. By M8−H duality (H = M4×CP2) the scattering are assignable to complexified 4-surfaces
in complexified M8. Complexified M8 is obtained by adding imaginary unit i commutating
with octonionic units Ik, k = 1, , .., 7. Real space-time surfaces are obtained as restrictions

http://tinyurl.com/q9ga785
http://tinyurl.com/q9ga785
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yd43o2n2
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to a Minkowskian subspace complexified M8 in which the complexified metric reduces to
real valued 8-D Minkowski metric. This allows to define notions like Kähler structure in
Minkowskian signature and the notion of Wick rotations ceases to be ad hoc concept. Without
complexification one does not obtain algebraic geometry allowing to reduces the dynamics
defined by partial differential equations for preferred extremals in H to purely algebraic
conditions in M8. This means huge simplications but the simplicity is lost at the QFT-GRT
limit when many-sheeted space-time is replaced with slightly curved piece of M4.

2. The real 4-surface is determined by a vanishing condition for the real or imaginary part of
octonionic polynomial with RE(P ) and IM(P ) defined by the composition of octonion to two
quaternions: o = RE(o) + I4IM(o), where I4 is octonionic unit orthogonal to a quaternionic
sub-space and RE(o) and IM(o) are quaternions. The coefficients of the polynomials are
assumed to be real. The products of octonionic polynomials are also octonionic polynomials
(this holds for also for general power series with real coefficients (no dependence on Ik. The
product is not however neither commutative nor associative without additional conditions.
Permutations and their associations define different space-time surfaces. The exchange of
particles changes space-time surface. Even associations do it. Both non-commutativity and
non-associativity have a geometric meaning at the level of space-time geometry!

3. For space-time surfaces representing external particles associativity is assumed to hold true:
this in fact guarantees M8−H correspondence for them! For interaction regions associativity
does not hold true but the field equations and preferred extremal property allow to construct
the counterpart of space-time surface in H from the boundary data at the boundaries of CD
fixing the ends of space-time surface.

Associativity poses quantization conditions on the coefficients of the polynomial determining
it. The conditions are interpreted in terms of quantum criticality. In the interaction region
identified naturally as causal diamond (CD), associativity does not hold true. For instance, if
external particles as space-time surfaces correspond to vanishing of RE(Pi) for polynomials
representing particles labelled by i, the interaction region (CD) could correspond to the
vanishing of IM(Pi) and associativity would fail. At the level ofH associativity and criticality
corresponds to minimal surface property so that quantum criticality corresponds to universal
free particle dynamics having no dependence on coupling constants.

4. Scattering amplitudes must be commutative and associative with respect to their arguments
which are now external particles represented by polynomials Pi This requires that scat-
tering amplitude is sum over amplitudes assignable to 4-surfaces obtained by allowing all
permutations and all associations of a given permutation. Associations can be described
combinatorially by the associahedron!

Remark:. In quantum theory associative statistics allowing associations to be represented
by phase factors can be considered (this would be associative analog of Fermi statistics).
Even a generalization of braid statistics can be considered.

Yangian variants of various symmetries are a central piece also in TGD although supersymme-
tries are realized in different manner and generalized to super-conformal symmetries: these include
generalization of super-conformal symmetries by replacing 2-D surfaces with light-like 3-surfaces,
supersymplectic symmetries and dynamical Kac-Moody symmetries serving as remnants of these
symmetries after supersymplectic gauge conditions characterizing preferred extremals are applied,
and Kac-Moody symmetries associated with the isometries of H . The representation of Yangian
symmetries as diffeomorphisms of the associahedron respecting positivity constraint encourages to
think that associahedron is a useful auxiliary tool also in TGD.

5.2.2 Is color something more than Chan-Paton factors?

Nima et al talk also about color structure of the scattering amplitudes usually regarded as trivial.
It is claimed that this is actually not the case and that there is non-trivial dynamics involved. This
is indeed the case in TGD framework. Also color quantum numbers are twistorialized in terms of
the twistor space of CP2, and one performs a twistorialization at the level of M8 and M4 × CP2.
At the level of M8 momenta and color quantum numbers correspond to associative 8-momenta.



5.3 Questions inspired by quantum associations 49

Massless particles are now massless in 8-D sense but can be massive in 4-D sense. This solves one
of the basic difficulty of the ordinary twistor approach. A further bonus is that the choice of the
embedding space H becomes unique: only the twistor spaces of S4 (and generalized twistor space
of M4 and CP2 have Kähler structure playing a crucial role in the twistorialization of TGD. To
sum up, all roads lead to Rome. Everyone is well-come to Rome!

5.3 Questions inspired by quantum associations

Associations have (or seem to have) different meaning depending on whether one is talking about
cognition or mathematics. In mathematics the associations correspond to different bracketings
of mathematical expressions involving symbols denoting mathematical objects and operations be-
tween them. The meaning of the expression - in the case that it has meaning - depends on the
bracketing of the expression. For instance, one has a(b+ c) 6= (ab) + c , that is ab+ ac 6= ab+ c).
Note that one can change the order of bracket and operation but not that of bracket and object.

For ordinary product and sum of real numbers one has associativity: a(bc) = (ab)c and a+(b+
c) = (a + b) + c. Most algebraic operations such as group product are associative. Associativity
of product holds true for reals, complex numbers, and quaternions but not for octonions and this
would be fundamental in both classical and quantum TGD.

The building of different associations means different groupings of n objects. This can be done
recursively. Divide first the objects to two groups, divide these tow groups to two groups each,
and continue until you jave division of 3 objects to two groups - that is abc divided into (ab)c or
a(bc). Numbers 3 and 2 are clearly the magic numbers.

This inspire several speculative quetions related to the twistorial construction of scattering
amplitudes as associative singlets, the general structure of quantum entanglement, quantum mea-
surement cascade as formation of association, the associative structure of many-sheeted space-time
as a kind of linguistic structure, spin glass as a strongly associative system, and even the tendency
of social structures to form associations leading from a fully democratic paradise to cliques of
cliques of ... .

1. In standard twistor approach 3-gluon amplitude is the fundamental building brick of twistor
amplitudes constructed from on-shell-amplitudes with complex momenta recursively. Also in
TGD proposal this holds true. This would naturally follow from the fact that associations
can be reduced recursively to those of 3 objects. 2- and 3-vertex would correspond to a fun-
damental associations. The association defined 2-particle pairing (both associated particles
having either positive or negative helicities for twistor amplitudes) and 3-vertex would have
universal structure although the states would be in general decompose to associations.

2. Consider first the space-time picture about scattering [L6]. CD defines interaction region for
scattering amplitudes. External particles entering or leaving CD correspond to associative
space-time surfaces in the sense that the tangent space or normal space for these space-time
surfaces is associative. This gives rise to M8 −H correspondence.

These surfaces correspond to zero loci for the imaginary parts (in quaternionic sense) for
octonionic polynomial with coefficients, which are real in octonionic sense. The product of∏
i Pi) of polynomials with same octonion structure satisfying IM(Pi) = 0 has also vanishing

imaginary part and space-time surface corresponds to a disjoint union of surfaces associated
with factors so that these states can be said to be non-interacting.

Neither the choice of quaternion structure nor the choice of the direction of time axis
assignable to the octonionic real unit need be same for external particles: if it is the particles
correspond to same external particle. This requires that one treats the space of external
particles (4-surfaces) as a Cartesian product of of single particle 4-surfaces as in ordinary
scattering theory.

Space-time surfaces inside CD are non-associative in the sense that the neither normal nor
tangent space is associative: M8−M4×CP2 correspondence fails and space-time surfaces in-
side CD must be constructed by applying boundary conditions defining preferred extremals.
Now the real part of RE(

∏
i Pi) in quaternionic sense vanishes: there is genuine interac-

tion even when the incoming particles correspond to the same octonion structure since one
does not have union of surfaces with vanishing RE(Pi). This follows from s rather trivial



5.3 Questions inspired by quantum associations 50

observation holding true already for complex numbers: imaginary part of zw vanishes if it
vanishes for z and w but this does not hold true for the real part. If octonionic structures
are different, the interaction is present irrespective of whether one assumes RE(

∏
i Pi) = 0

or IM(
∏
i Pi) = 0. RE(

∏
i Pi) = 0 is favoured since for IM(

∏
i Pi) = 0 one would obtain

solutions for which IM(Pi) = 0 would vanish for the i:th particle: the scattering dynamics
would select i:th particle as non-interacting one.

3. The proposal is that the entire scattering amplitude defined by the zero energy state - is
associative, perhaps in the projective sense meaning that the amplitudes related to different
associations relate by a phase factor (recall that complexified octonions are considered), which
could be even octonionic. This would be achieved by summing over all possible associations.

4. Quantum classical correspondence (QCC) suggests that in ZEO the zero energy states - that
is scattering amplitudes determined by the classically non-associative dynamics inside CD -
form a representation for the non-associative product of space-time surfaces defined by the
condition RE(

∏
i Pi) = 0. Could the scattering amplitude be constructed from products of

octonion valued single particle amplitudes. This kind of condition would pose strong con-
straints on the theory. Could the scattering amplitudes associated with different associations
be octonionic - may be differing by octonion-valued phase factors - and could only their sum
be real in octonionic sense (recall that complexified octonions involving imaginary unit i
commuting with the octonionic imaginary units are considered)?

One can look the situation also from the point of view of positive and negative energy states
defining zero energy states as they pairs.

1. The formation of association as subset is like formation of bound state of bound states of ...
. Could each external line of zero energy state have the structure of association? Could also
the internal entanglement associated with a given external line be characterized in terms of
association.

Could the so called monogamy theorem stating that only two-particle entanglement can
be maximal correspond to the decomposing of n = 3 association to one- and two-particle
associations? If quantum entanglement is behind associations in cognitive sense, the cognitive
meaning of association could reduce to its mathematical meaning.

An interesting question relates to the notion of identical particle: are the many-particle states
of identical particles invariant under associations or do they transform by phase factor under
association. Does a generalization of braid statistics make sense?

2. In ZEO based quantum measurement theory the cascade of quantum measurements proceeds
from long to short scales and at each step decomposes a given system to two subsystems.
The cascade stops when the reduction of entanglement is impossible: this is the case if the
entanglement probabilities belong to an extension of extension of rationals characterizing the
extension in question. This cascade is nothing but a formation of an association! Since only
the state at the second boundary of CD changes, the natural interpretation is that state
function reduction mean a selection of association in 3-D sense.

3. The division of n objects to groups has also social meaning: all social groups tend to divide
into cliques spoiling the dream about full democracy. Only a group with 2 members - Romeo
and Julia or Adam and Eve - can be a full democracy in practice. Already in a group
of 3 members 2 members tend to form a clique leaving the third member outside. Jules
and Catherine, Jim and Catherine, or maybe Jules and Jim! Only a paradise allows a
full democracy in which non-associativity holds true. In ZEO it would be realized only
at the quantum critical external lines of scattering diagram and quantum criticality means
instability. Quantum superposition of all associations could realize this democracy in 4-D
sense.

A further perspective is provided by many-sheeted space-time providing classical correlate for
quantum dynamics.
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1. Many-sheeted space-time means that physical states have a hierarchical structure - just like
associations do. Could the formation of association (AB) correspond basically to a formation
of flux tube bond between A and B to give AB and serve as space-time correlate for (ne-
gentropic) entanglement. Could ((AB)C) would correspond to (AB) and (C) “topologically
condensed” to a larger surface. If so, the hierarchical structure of many-sheeted space-time
would represent associations and also the basic structures of language.

2. Spin glass (see http://tinyurl.com/y9yyq8ga) is a system characterized by so called frus-
trations. Spin glass as a thermodynamical system has a very large number of minima of
free energy and one has fractal energy landscape with valleys inside valleys. Typically there
is a competition between different pairings (associations) of the basic building bricks of the
system.

Could spin glass be describable in terms of associations? The modelling of spin glass leads to
the introduction of ultrametric topology characterizing the natural distance function for the
free energy landscape. Interestingly, p-adic topologies are ultrametric. In TGD framework I
have considered the possibility that space-time is like 4-D spin glass: this idea was originally
inspired by the huge vacuum degeneracy of Kähler action. The twistor lift of TGD breaks
this degeneracy but 4-D spin glass idea could still be relevant.

6 Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view

Gromov-Witten (G-W) invariants, Riemann-Roch theorem (RR), and Atyiah-Singer index theorem
(AS) are applied in advanced algebraic geometry, and it is interesting to see whether they could have
counterparts in TGD framework. The basic difference between TGD and conventional algebraic
geometry is due to the adelic hierarchy demanding that the coefficients of polynomials involved
are in given extension of rationals. Continuous moduli spaces are replaced with discrete ones
by number theoretical quantization due to the criticality guaranteeing associativity of tangent or
normal space. M8 − H duality brings in powerful consistency conditions: counting of allowed
combinations of coefficients of polynomials on M8 side and counting of dimensions on H side using
AS should give same results. M8 −H duality might be in fact analogous to the mirror symmetry
of M-theory.

6.1 About the analogs of Gromow-Witten invariants and branes in TGD

Gromow-Witten invariants, whose definition was discussed in [L7], play a central role in superstring
theories and M-theory and are closely related to branes. For instance, partition functions can
be expressed in terms of these invariants giving additional invariants of symplectic and algebraic
geometries. Hence it is interesting to look whether they could be important also in TGD framework.

1. As such the definition of G-W invariants discussed in [L7] do not make sense in TGD frame-
work. For instance, space-time surface is not a closed symplectic manifold whereas M8

and H are analogs of symplectic spaces. Minkowskian regions of space-time surface have
Hamilton-Jacobi structure at the level of both M8 and H and this might replace the sym-
plectic structure. Space-time surfaces are not closed manifolds.

Physical intuition however suggests that the generalization exists. The fact that Minkowskian
metric and Euclidian metric for complexified octonions are obtained in various sectors for
which complex valued length squared is real suggests that signature is not a problem. Kähler
form for complexified z gives as special case analog of Kähler form for E4 and M4.

2. The quantum intersection defines a description of interactions in terms of string world sheets.
If I have understood G-W invariant correctly, one could have for D > 4-dimensional symplec-
tic spaces besides partonic 2k − 2-D surfaces also surfaces with smaller but even dimension
identifiable as branes of various dimensions. Branes would correspond to a generalization of
relative cohomology. In TGD framework one has 2k = 4 and the partonic 2-surfaces have

http://tinyurl.com/y9yyq8ga
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dimension 2 so that classical intersections consisting of discrete points are possible and stable
for string world sheets and partonic 2-surfaces. This is a unique feature of 4-D space-time.

One might think a generalization of G-W invariant allowing to see string world sheets as con-
necting the spaced-like 3-surfaces at the boundaries of CDs and light-like orbits of partonic
2-surfaces. The intersection is not discrete now and marked points would naturally corre-
spond to the ends points of strings at partonic 2-surfaces associated with the boundaries of
CD and with the vertices of topological scattering diagrams.

3. The idea about 2-D string world sheet as interaction region could generalize in TGD to
space-time surface inside CD defining 4-D interaction region. In [L8] one indeed ends up
with amazingly similar description of interactions for n external particles entering CD and
represented as zero loci for quaternion valued “real” part RE(P ) or “imaginary” part IM(P )
for the complexified octonionic polynomial.

Associativity forces quantum criticality posing conditions on the coefficients of the polyno-
mials. Polynomials with the origin of octonion coordinate along the same real axis commute
and associate. Since the origins are different for external particles in the general case, the
polynomials representing particles neither commute nor associate inside the interaction re-
gion defined by CD but one can also now define zero loci for both RE(

∏
Pi) and IM(

∏
Pi)

giving Pi = 0 for some i. Now different permutations and different associations give rise to
different interaction regions and amplitude must be sum over all these.

3-vertices would correspond to conditions Pi = 0 for 3 indices i simultaneously. The strongest
condition is that 3 partonic 2-surfaces X2

i co-incide: this condition does not satisfy classical
dimension rule and should be posed as essentially 4-D boundary condition. Two partonic
2-surfaces X2

i (ti(n)) intersect at discrete set of points: could one assume that the sparticle
lines intersect and there fusion is forced by boundary condition? Or could one imagine that
partonic 2-surfaces turns back in time and second partonic 2-surface intersects it at the
turning point?

4. In 4-D context string world sheets are associated with magnetic flux tubes connecting partonic
orbits and together with strings serve as correlates for negentropic entanglement assignable
to the p-adic sectors of the adele considered, to attention in consciousness theory, and to
remote mental interactions in general and occurring routinely between magnetic body and
biological body also in ordinary biology. This raises the question whether “quantum touch”
generalizes from 2-D string world sheets to 4-D space-time surface (magnetic flux tubes)
connecting 3-surfaces at the orbits and partonic orbits.

5. The above formulation applies to closed symplectic manifolds X. One can however generalize
the formulation to algebraic geometry. Now the algebraic curve X2 is characterized by genus
g and order of polynomial n defining it. This formulation looks very natural in M8 picture.

An interesting question is whether the notion of brane makes sense in TGD framework.

1. In TGD branes inside space-time variety are replaced by partonic 2-surfaces and possibly
by their light-like orbits at which the induced metric changes signature. These surfaces are
metrically 2-D. String world sheets inside space-time surfaces have discrete intersection with
the partonic 2-surfaces. The intersection of strings as space-like resp. light-like boundaries of
string world sheet with partonic orbit sheet resp. space-like 3-D ends of space-time surface
at boundaries of CD is also discrete classically.

2. An interesting question concerns the role of 6-spheres S6(tn) appearing as special solutions
to the octonionic zero locus conditions solving both RE(Pn) = 0 and IM(Pn) = 0 requiring
Pn(o) = 0. This can be true at 7-D light cone o = et, e light-like vector and t a real parameter.
The roots tn of P (t) = 0 give 6-spheres S6(tn) with radius tn as solutions to the singularity
condition. As found, one can assign to each factor Pi in the product of polynomials defining
many-particle state in interaction region its own partonic 2-surfaces X2(tn) related to the
solution of Pi(t) = 0

Could one interpret 6-spheres as brane like objects, which can be connected by 2-D “free”
string world sheets as 2-varieties in M8 and having discrete intersection with them implied
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by the classical dimension condition for the intersection. Free string world sheets would be
something new and could be seen as trivially associative surfaces whereas 6-spheres would
represent trivially co-associative surfaces in M8.

The 2-D intersections of S6(tn) with space-time surfaces define partonic 2-surfaces X2 ap-
pearing at then ends of space-time and as vertices of topological diagrams. Light-like sparticle
lines along parton orbits would fuse at the partonic 2-surfaces and give rise to the analog of
3-vertex in N = 4 SUSY.

Some further TGD inspired remarks are in order.

1. Virasoro conjecture generalizing Witten conjecture involves half Virasoro algebra. Super-
Virasoro algebra algebra and its super-symplectic counterpart (SSA) play a key role in the
formulation of TGD at level of H. Also these algebras are half algebras. The analogs of
super-conformal conformal gauge conditions state that sub-algebra of SSA with conformal
weights coming as n-ples of those for entire algebra and its commutator with entire SSA give
rise to vanishing Noether charges and annihilate physical states.

These conditions are conjecture to fix the preferred extremals and serve as boundary con-
ditions allowing the formulation of M8 − H correspondence inside space-time regions (in-
teraction regions), where the associativity conditions fail to be true and direct M8 − H
correspondence does not make sense. Non-trivial solutions to these conditions are possi-
ble only if one assumes half super-conformal and half super-symplectic algebras. Otherwise
the generators of the entire SSA annihilate the physical states and all SSA Noether charges
vanish. The invariance of partition function for string world sheets in this sense could be
interpreted in terms of emergent dynamical symmetries.

2. Just for fun one can consider the conjecture that the reduction of quantum intersections to
classical intersections mediated by string world sheets implies that the numbers of string
world sheets as given by the analog of G-W invariants are integers.

6.2 Does Riemann-Roch theorem have applications to TGD?

Riemann-Roch theorem (RR) (see http://tinyurl.com/mdmbcx6) is a central piece of algebraic
geometry. Atyiah-Singer index theorem is one of its generalizations relating the solution spectrum
of partial differential equations and topological data. For instance, characteristic classes classifying
bundles associated with Yang-Mills theories (see http://tinyurl.com/y9xvkhyy) have applica-
tions in gauge theories and string models.

The advent of octonionic approach to the dynamics of space-time surfaces inspired by M8−H
duality [L6] [L7, L8] gives hopes that dynamics at the level of complexified octonionic M8 could
reduce to algebraic equations plus criticality conditions guaranteeing associativity for space-time
surfaces representing external particles, in interaction region commutativity and associativity would
be broken. The complexification of octonionic M8 replacing norm in flat space metric with its
complexification would unify various signatures for flat space metric and allow to overcome the
problems due to Minkowskian signature. Wick rotation would not be a mere calculational trick.

For these reasons time might be ripe for applications of possibly existing generalization of RR
to TGD framework. In the following I summarize my admittedly unprofessional understanding of
RR discussing the generalization of RR for complex algebraic surfaces having real dimension 4:
this is obviously interesting from TGD point of view.

I will also consider the possible interpretation of RR in TGD framework. One interesting idea
is possible identification of light-like 3-surfaces and curves (string boundaries) as generalized poles
and zeros with topological (but not metric) dimension one unit higher than in Euclidian signature.

6.2.1 Could a generalization of Riemann-Roch theorem be useful in TGD frame-
work?

The generalization of RR for algebraic varieties, in particular for complex surfaces (real dimension
equal to 4) exists. In M8 picture the complexified metric Minkowskian signature need not cause
any problems since the situation can be reduced to Euclidian sector. Clearly, this picture would
provide a realization of Wick rotation as more than a trick to calculate scattering amplitudes.

http://tinyurl.com/mdmbcx6
http://tinyurl.com/y9xvkhyy
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Consider first the motivations for the desire of having analog of Riemann-Roch theorem (RR)
at the level of space-time surfaces in M8.

1. It would be very nice if partonic 2-surfaces would have interpretation as analogs of zeros
or poles of a meromorphic function. RR applies to the divisors characterizing meromorphic
functions and 2-forms, and one could hope of obtaining information about the dimensions of
these function spaces giving rise to octonionic space-time varieties. Note however that the
reduction to real polynomials or even rational functions might be already enough to give the
needed information. Rational functions are required by the simplest generalization whereas
the earlier approach assumed only polynomials. This generalization does not however change
the construction of space-time varieties as zero loci of polynomials in an essential manner as
will be found.

2. One would like to count the degeneracies for the intersections of 2-surfaces of space-time sur-
face and here RR might help since its generalization to complex surfaces involves intersection
form as was found in the brief summary of RR for complex surfaces with real dimension 4
(see Eq. ??).

In particular, one would like to know about the intersections of partonic 2-surfaces and
string world sheets defining the points at which fermions reside. The intersection form
reduces the problem via Poincare duality to 2-cohomology of space-time surfaces. More
generally, it is known that the intersection form for 2-surfaces tells a lot about the topology
of 4-D manifolds (see http://tinyurl.com/y8tmqtef). This conforms with SH. Gromow-
Witten invariants [L2] (see http://tinyurl.com/ybobccub) are more advanced rational
valued invariants but might reduce to integer valued in variants in TGD framework [L8].

There are also other challenges to which RR might relate.

1. One would like to know whether the intersection points for string world sheets and partonic
2-surfaces can belong in an extension of rationals used for adele. If the points belong to
cognitive representations and subgroup of Galois group acts trivially then the number of
points is reduces as the points at its orbit fuse together. The sheets of the Galois covering
would intersect at point. The images of the fused points in H could be disjoint points since
tangent spaces need not be parallel.

2. One would also like to have idea about what makes partonic 2-surfaces and string world sheets
so special. In 2-D space-time one would have points instead of 2-surfaces. The obvious idea
is that at the level of M8 these 2-surfaces are in some sense analogous to poles and zeros of
meromorphic functions. At the level of H the non-local character of M8−H would imply that
preferred extremals are solutions of an action principle giving partial differential equations.

6.2.2 What could be the analogs of zeros and poles of meromorphic function?

The basic challenge is to define what notions like pole, zero, meromorphic function, and divisor
could mean in TGD context. The most natural approach based on a simple observation that
rational functions need not define map of space-time surface to itself. Even though rational function
can have pole inside CD, the point∞ need not belong to the space-time variety defined the rational
functions. Hence one can try the modification of the original hypothesis by replacing the octonionic
polynomials with rational functions. One cannot exclude the possibility that although the interior
of CD contains only finite points, the external particles outside CD could extend to infinity.

1. For octonionic analytic polynomials the notion of zero is well-defined. The notion of pole
is well-defined only if one allows rational functions R = P1(o)/P2(o) so that poles would
correspond to zeros for the denominator of rational function. 0 and ∞ are both unaffected
by multiplication and ∞ also by addition so that they are algebraically special. There are
several variants of this picture. The most general option is that for a given variety zeros of
both Pi are allowed.

2. The zeros of IM(P1) = 0 and IM(P2) = 0 would give solutions as unions of surfaces asso-
ciated with Pi. This is because IM(o1o2) = IM(o1)RE(o2) + IM(o2)RE(o1). There is no

http://tinyurl.com/y8tmqtef
http://tinyurl.com/ybobccub
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need to emphasize how important this property of IM for product is. One might say that
one has two surfaces which behave like free non-interacting particles.

3. These surfaces should however interact somehow. The intuitive expectation is that the two
solutions are glued by wormhole contacts connecting partonic 2-surfaces corresponding to
IM(P1) = 0 and IM(P2) = 0 =∞. For RE(Pi) = 0 and RE(Pi) =∞ the solutions do not
reduce to separate solutions RE(P1) = 0 and RE(P2) = 0. The reason is that the real part
of o1o2 satisfies Re(o1o2) = Re(o1)Re(o2) − Im(o1)Im(o2). There is a genuine interaction,
which should generate the wormhole contact. Only at points for which P1 = 0 and P2 = 0
holds true, RE(P1) = 0 and RE(P2) = 0 are satisfied simultaneously. This happens in the
discrete intersection of partonic 2-surfaces.

4. Elementary particles correspond even for heff = h to two-sheeted structures with partonic
surfaces defining wormhole throats. The model for elementary particles requires that parti-
cles are minimally 2-sheeted structures since otherwise the conservation of monopole Kähler
magnetic flux cannot be satisfied: the flux is transferred between space-time sheets through
wormhole contacts with Euclidian signature of induced metric and one obtains closed flux
loop. Euclidian wormhole contact would connect the two Minkowskian sheets. Could the
Minkowskian sheets corresponds to zeros IM(Pi) for P1 and P2 and could wormhole contacts
emerge as zeros of RE(P1/P2)?

One can however wonder whether this picture could allow more detailed specification. The
simplest possibility would be following. The basic condition is that CD emerges automatically
from this picture.

1. The simplest possibility is that one has P1(o) and P2(T − o) with the origin of octions at the
“lower” tip of CD. One would have P1(0) = 0 and P2(0) = 0. P1(o) would give rise to the
“lower” boundary of CD and P2(T − o) to the “upper” boundary of CD.

ZEO combined with the ideas inspired by infinite rationals as counterparts of space-time
surfaces connecting 3-surfaces at opposite boundaries of CD [K21] would suggest that the
opposite boundaries of CD could correspond zeros and poles respectively and the ratio
P1(o)/P2(T − o) and to zeros of P1 resp. P2 assignable to different boundaries of CD. Both
light-like parton orbits and string world sheets would interpolate between the two boundaries
of CD at which partonic 2-surface would correspond to zeros and poles.

The notion divisor would be a straightforward generalization of this notion in the case of
complex plane. What would matter would be the rational function P1(t)/P2(T − t) extended
from the real (time) axis of octonions to the entire space of complexified octonions. Positive
degree of divisor would multiply P1(t) with (t− t1)m inducing a new zero at or increasing the
order of existing zero at t1. Negative orders n would multiply the denominator by (t− t1)n.

2. One can also consider the possibility that both boundaries of CD emerge for both P1 and
P2 and without assigning either boundary of CD with Pi. In this case Pi would be sum
over terms Pik = Piak(o)Pibk(T − o) of this kind of products satisfying Piak(0) = 0 and
Pibk(0) = 0.

One can imagine also an alternative approach in which 0 and ∞ correspond to opposite tips
of CD and have geometric meaning. Now zeros and poles would correspond to 2-surfaces, which
need not be partonic. Note that in the case of Riemann surfaces ∞ can represent any point. This
approach does not however look attractive.

6.2.3 Could one generalize RR to octonionic algebraic varieties?

RR is associated with complex structure, which in TGD framework seems to make sense inde-
pendent of signature thanks to complexification of octonions. Divisors are the key notion and
characterize what might be called local winding numbers. De-Rham cohomology is replaced with
much richer Dolbeault cohomology (see http://tinyurl.com/y7cvs5sx) since the notion of con-
tinuity is replaced with that of meromorphy. Symplectic approach about which G-W invariants
for symplectic manifolds provide an example define a different approach and now one has ordinary
cohomology.

http://tinyurl.com/y7cvs5sx
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An interesting question is whether M8 − H-duality corresponds to the mirror symmetry of
string models (see http://tinyurl.com/yc2m2e5m) relating complex structures and symplectic
structures. If this were the case, M8 would correspond to complex structure and H to symplectic
structure.

RR for curves gives information about dimensions for the spaces of meromorphic functions
having poles with order not higher than specified by divisor. This kind of interpretation would
be very attractive now since the poles and zeros represented as partonic 2-surfaces would have
direct physical interpretation in terms of external particles and interaction vertices. RR for curves
involves poles with orders not higher than specified by the divisor and gives a formula for the
dimension of the space of meromorphic functions fora given divisor. As a special case give the
dimension l(nD) for a given divisor.

Could something similar be true in TGD framework?

1. Arithmetic genus makes sense for polynomials P (t) since t can be naturally complexified
giving a complex curve with well-defined arithmetic genus. What could correspond to the
intersection form for 2-surfaces representing D and K −D? The most straightforward pos-
sibility is that partonic 2-surfaces correspond to poles and zeros.

Divisor −D would correspond to the inverse of P2/P1 representing it. D −K would also a
well-defined meaning provided the canonical divisor associated with holomorphic 2-form has
well-defined meaning in the Dolbeault cohomology of the space-time surface with complex
structure. RR would give direct information about the space of space-time varieties defined
by RE(P ) = 0 or IM(P ) = 0 condition.

One could hope of obtaining information about intersection form for string world sheets and
partonic 2-surfaces. Whether the divisor D−K has anything to do string world sheets, is of
course far from clear.

2. Complexification means that field property fails in the sense that complexified Euclidian norm
vanishes and the inverse of complexified octonion/quaternion/complex number is infinite
formally. For Euclidian sector with real coordinates this does not happen but does take
place when some coordinates are real and some imaginary so that signature is effectively
Minkowskian signature.

At 7-D light-cone of M8 the condition P (o) = 0 reduces to a condition for real polynomial
P (t) = 0 giving roots tn. Partonic 2-varieties are intersections of 4-D space-time varieties
with 6-spheres with radii tn. There are good reasons to expect that the 3-D light-like orbits
of partonic 3-surfaces are intersections of space-time variety with 7-D light-cone boundary
and their H counterparts are obtained as images under M8 −H duality.

For light-like complefixied octonionic points the inverse of octonion does not exist since the
complexified norm vanishes. Could the light-like 3-surfaces as partonic orbits correspond
to images under M8 − H duality for zeros and/or poles as 3-D light-like surfaces? Could
also the light-like boundaries of strings correspond to this kind of generalized poles or zeros?
This could give a dynamical realization for the notions of zero and pole and increase the
topological dimension of pole and zero for both 2-varieties and 4-varieties by one unit. The
metric dimension would be unaffected and this implies huge extension of conformal symme-
tries central in TGD since the light-like coordinate appears as additional parameter in the
infinitesimal generators of symmetries.

Could one formulate the counterpart of RR at the level of H? The interpretation of M8 −H
duality as analog of mirror symmetry (see http://tinyurl.com/yc2m2e5m) suggests this. In this
case the first guess for the identification of the counterpart of canonical divisor could be as Kähler
form of CP2. This description would provide symplectic dual for the description based on divisors
at the level of M8. G-W invariants and their possible generalization are natural candidates in this
respect.

http://tinyurl.com/yc2m2e5m
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6.3 Could the TGD variant of Atyiah-Singer index theorem be useful
in TGD?

Atyiah-Singer index theorem (AS) is one of the generalizations of RR and has shown its power in
gauge field theories and string models as a method to deduce the dimensions of various moduli
spaces for the solutions of field equations. A natural question is whether AS could be useful in TGD
and whether the predictions of AS at H side could be consistent with M8 −H duality suggesting
very simple counting for the numbers of solutions at M8 side as coefficient combinations of poly-
nomials in given extension of rationals satisfying criticality conditions. One can also ask whether
the hierarchy of degrees n for octonion polynomials could correspond to the fractal hierarchy of
generalized conformal sub-algebras with conformal weights coming as n-multiples for those for the
entire algebras.

Atyiah-Singer index theorem (AS) and other generalizations of RR involve extremely abstract
concepts. The best manner to get some idea about AS is to learn the motivations for it. The
article http://tinyurl.com/yc49lljp gives a very nice general view about the motivations of
Atyiah-Singer index theorem and also avoids killing the reader with details.

Solving problems of algebraic geometry is very demanding. The spectrum of solutions can be
discrete (say number of points of space-time surface having linear M8 coordinates in an extension of
rationals) or continuous such as the space of roots for n:th order polynomials with real coefficients.

An even more difficult challenge is solving of partial differential equations in some space, call
it X, of say Yang-Mills gauge field coupled to matter fields. In this case the set of solutions is
typically continuous moduli space.

One can however pose easier questions. What is the number of solutions in counting problem?
What is the dimension of the moduli space of solutions? Atiyiah-Singer index theorem relates
this number - analytic index - to topological index expressible in terms of topological invariants
assignable to complexified tangent bundle of X and to the bundle structure - call it field bundle -
accompanying the fields for which field equations are formulated.

6.3.1 AS very briefly

Consider first the assumptions of AS.

1. The idea is to study perturbations of a given solution and linearize the equations in some
manifold X often assumed to be compact. This leads to a linear partial differential equations
defined by linear operator P . One can deduce the dimension of the solution space of P . This
number defines the dimension of the tangent space of solution space of full partial differential
equations, call it moduli space.

2. The idea is to assign to the partial differential operator P its symbol σ(P ) obtained by
replacing derivatives with what might be called momentum components. The reversal of this
operaion is familiar from elementary wave mechanics: pi → id/dxi. This operation can be
formulated in terms of co-tangent bundle. The resulting object is purely algebraic. If this
matrix is reversible for all momentum values and points of X, one says that the operator is
elliptic.

Note that for field equations in Minkowski space M4 the invertibility constraint is not satisfied
and this produces problems. For instance, for massive M4 d’Alembertian for scalar field
the symbol is four-momentum squared, which vanishes, when on-mass shell condition is
satisfied. Wick rotation is somewhat questionable manner to escape this problem. One
replaces Minkowski space with its Euclidian counterpart or by 4-sphere. If all goes well the
dimension of the solution space does not depend on the signature of the metric.

3. In the general case one studies linear equation of form DP = f , where f is homogenuity
term representing external perturbation. f can also vanish. Quite generally, one can write
the dimension of the solution space as

Indanal(P ) = dim(ker(P ))− dim(coker(P )) . (6.1)

http://tinyurl.com/yc49lljp
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ker(P ) denotes the solution space for DP = 0 without taking into account the possible re-
strictions coming from the fact that f can involve part f0 satisfying Df0 = 0 (for instance,
f0 corresponds to resonance frequency of oscillator system) nor boundary conditions guar-
anteing hermiticity. Indeed, the hermitian conjugate D† of D is not automatically identical
with D. D† is defined in terms of the inner product for small perturbations as

〈D†P ∗1 |DP2〉 = 〈P1|DP2〉 . (6.2)

The inner product involves integration over X and partial integrations transfer the action
of partial derivatives from P2 to P ∗1 . This however gives boundary terms given by surface
integral and hermiticity requires that they vanish. This poses additional conditions on P
and contributes to dim(coker(P )).

The challenge is to calculate Indanal(P ) and here AS is of enormous help. AS relates analytical
index Indanal(P ) for P to topological index Indtop(σ(P )) for its symbol σ(P ).

1. Indtop(σ(P )) involves only data associated with the topology X and with the bundles as-
sociated with field variables. In the case of Yang-Mills fields coupled to matter the bundle
is the bundle associated with the matter fields with a connection determined by Yang-Mills
gauge potentials. So called Todd class Td(X) brings in information about the topology of
complexified tangent bundle.

2. Indtop(σ(P )) is not at all easy to define but is rather easily calculable as integrals of various
invariants assignable to the bundle structure involved. Say instanton density for YM fields
and various topological invariants expressing the topological invariants associated with the
metric of the space. What is so nice and so non-trivial is that the dimension of the moduli
space for non-linear partial differential equations is determined by topological invariants.
Much of the dynamics reduces to topology.

The expression for Indtop(σ(P )) involves besides σP topological data related to the field bundle
and to the complexified tangent bundle. The expression Indtop as a function of the symbol σ(P )
is given by

Indtop(σ(P )) = (−1)n〈ch(σ(P )) · Td(TC(X), [X])〉 . (6.3)

The expression involves various topological data.

1. Dimension of X.

2. The quantity 〈x.y〉 involving cup product x.y of cohomology classes, which contains a con-
tribution in the highest homology group Hn(X) of X corresponding to the dimension of X
and is contracted with this fundamental class [X]. 〈x.y〉 denotes matrix trace for the oper-
ator ch(σ(P )) formed as polynomial of σ(P ). [X] denotes so called fundamental class fr X
belonging to Hn and defines the orientation of X.

3. Chern character chE(t) (see http://tinyurl.com/ybavu66h). I must admit that I ended
up to a garden of branching paths while trying to understand the definition of chE is. In
any case, chE(t) characterizes complex vector bundle E expressible in terms of Chern classes
(see http://tinyurl.com/y8jlaznc) of E. E is the bundle assignable to field variables, say
Yang Mills fields and various matter fields.

Both direct sums and tensor products of fiber spaces of bundles are possible and the nice
feature of Chern class is that it is additive under tensor product and multiplicative under
direct sum. The fiber space of the entire bundle is now direct sum of the tangent space of X
and field space, which suggests that Ind(top) is actually the analog of Chern character for
the entire bundle.

t = σP has interpretation as an argument appearing in the definition of Chern class general-
ized to Chern character. t = σ(P ) would naturally correspond to a matrix valued argument

http://tinyurl.com/ybavu66h
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of the polynomial defining Chern class as cohomology element. ch(σ(P )) is a polynomial of
the linear operator defined by symbol σ(P ). chE for given complex vector bundle is a poly-
nomial, whose coefficients are relatively easily calculable as topological invariants assignable
to bundle E. E must be the field bundle now.

4. Todd class Td(TC(X)) for the complexified tangent bundle (see http://tinyurl.com/yckv4w84)
appears also in the expression. Note that also now the complexification occurs. The cup prod-
uct gives element in Hn(X), which is contracted with fundamental class [X] and integrated
over X.

6.3.2 AS and TGD

The dynamics of TGD involves two levels: the level of complexified M8 (or equivalently E8) and
the level of H related to M8 −H correspondence.

1. At the level of M8 one has algebraic equations rather than partial differential equations and
the situation is extremely simple as compared to the situation for a general action principle.
At the level of H one has action principle and partial differential equations plus infinite
number of gauge conditions selecting preferred extremals and making dynamics for partial
differential equations dual to the dynamics determined by purely number theoretic conditions.

The space-time varieties representing external particles outside CDs in M8 satisfy associa-
tivity conditions for tangent space or normal space and reducing to criticality conditions for
the real coefficients of the polynomials defining the space-time variety. In the interior of CDs
associativity conditions are not satisfied but the boundary conditions fix the values of the
coefficients to be those determined by criticality conditions guaranteing associativity outside
the CD.

In the interiors space-time surfaces of CDs M8-duality does not apply but associativity of
tangent spaces or normal spaces at the boundary of CD fixes boundary values and minimal
surface dynamics and strong form of holography (SH) fixes the space-time surfaces in the
interior of CD.

2. For the H-images of space-time varieties in H under M8−H duality the dynamics is universal
coupling constant independent critical dynamics of minimal surfaces reducing to holomorphy
in appropriate sense. For minimal surfaces the 4-D Kähler current density vanishes so that
the solutions are 4-D analogs of geodesic lines outside CD. Inside CD interactions are coupled
on and this current is non-vanishing. Infinite number of gauge conditions for various half
conformal algebras in generalized sense code at H side for the number theoretical critical
conditions at M8 side. The sub-algebra with conformal weights coming as n-ples of the
entire algebra and its commutator with entire algebra gives rise to vanishing classical Noether
charges. An attractive assumption is that the value of n at H side corresponds to the order
n of the polynomials at M8 side.

3. The coefficients of polynomials P (o) determining space-time varieties are real numbers (also
complexified reals can be considered without losing associativity) restricted to be numbers in
extension of rationals. This makes it possible to speak about p-adic variants of the space-time
surfaces at the level of M8 at least.

Could Atyiah-Singer theorem have relevance for TGD?

1. For real polynomials it is easy to calculate the dimension of the moduli space by counting
the number of independent real (in octonionic sense) coefficients of the polynomials of real
variable (one cannot exclude that the coefficients are in complex extension of rationals).
Criticality conditions reduce this number and the condition that coefficients are in extension
of rationals reduces it further. One has quite nice overall view about the number of solutions
and one can see them as subset of continuous moduli space. If M8 −H duality really works
then this gives also the number of preferred extremals at H side.

http://tinyurl.com/yckv4w84
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2. This picture is not quite complete. It assumes fixing of 8-D CD in M8 as well as fixing of
the decomposition M2 ⊂ M4 ⊂ M4 × E4. This brings in moduli space for different choices
of octonion structures (8-D Lorentz group is involved). Also moduli spaces for partonic 2-
surfaces are involved. Number theoretical universality seems to require that also these moduli
spaces have only points with coordinates in extension of rationals involved.

3. In principle one can try to formulate the counterpart of AS at H side for the linearization of
minimal surface equations, which are nothing but the counterpart of massless field equations
in a fixed background metric. Note that additional conditions come from the requirement
that the term from Kähler action reduces to minimal surface term.

Discrete sets of solutions for the extensions of rationals should correspond to each other at
the two sides. One can also ask whether the dimensions for the effective continuous moduli
spaces labelled by n characterizing the sub-algebras of various conformal algebras isomorphic
to the entire algebra and those for the polynomials of order n satisfying criticality conditions.
One would have a number theoretic analog for a particle in box leading to the quantization
of momenta.

All this is of course very speculative and motivated only by the general physical vision. If the
speculations were true, they would mean huge amount of new mathematics.

7 Intersection form for 4-manifolds, knots and 2-knots, smooth
exotics, and TGD

Gary Ehlenberger sent a highly interesting commentary related to smooth structures in R4 dis-
cussed in the article of Gompf [A7] (https://cutt.ly/eMracmf) and more generally to exotics
smoothness discussed from the point of view of mathematical physics in the book of Asselman-
Maluga and Brans [A8] (https://cutt.ly/DMu0dYr). I am grateful for these links for Gary.

7.1 Basic ideas

7.1.1 The role of intersection forms in TGD

The intersection form of 4-manifold (https://cutt.ly/jMriNdI) characterizing partially its 2-
homology is a central notion in the study of the smooth structures. I am not a topologist but have
two good reasons to get interested on intersection forms.

1. In the TGD framework [L18], the intersection form describes the intersections of string world
sheets and partonic 2-surfaces and therefore is of direct physical interest [K14, L8].

2. Knots have an important role in TGD. The 1-homology of the knot complement characterizes
the knot. Time evolution defines a knot cobordism as a 2-surface consisting of knotted string
world sheets and partonic 2-surfaces. A natural guess is that the 2-homology for the 4-D
complement of this cobordism characterizes the knot cobordism. Also 2-knots are possible
in 4-D space-time and a natural guess is that knot cobordism defines a 2-knot.

The intersection form for the complement for cobordism as a way to classify these two-
knots is therefore highly interesting in the TGD framework. One can also ask what the
counterpart for the opening of a 1-knot by repeatedly modifying the knot diagram could
mean in the case of 2-knots and what its physical meaning could be in the TGD Universe.
Could this opening or more general knot-cobordism of 2-knot take place in zero energy
ontology (ZEO) [L13, L17, L19] as a sequence of discrete quantum jumps leading from the
initial 2-knot to the final one.

7.1.2 Why exotic smooth structures are not possible in TGD?

The existence of exotic 4-manifolds [A7, A8, A2] could be an anomaly in the TGD framework. In
the articles [A7, A2] the term anomaly is indeed used. Could these anomalies cancel in the TGD
framework?

https://cutt.ly/eMracmf
https://cutt.ly/DMu0dYr
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The first naive guess was that the exotic smooth structures are not possible in TGD but it
turned out that this is not trivially true. The reason is that the smooth structure of the space-time
surface is not induced from that of H unlike topology. One could induce smooth structure by
assuming it given for the space-time surface so that exotics would be possible. This would however
bring an ad hoc element to TGD. This raises the question of how it is induced.

1. This led to the idea of a holography of smoothness, which means that the smooth structure
at the boundary of the manifold determines the smooth structure in the interior. Suppose
that the holography of smoothness holds true. In ZEO, space-time surfaces indeed have
3-D ends with a unique smooth structure at the light-like boundaries of the causal diamond
CD = cd×CP2 ⊂ H = M4 ×CP2, where cd is defined in terms of the intersection of future
and past directed light-cones of M4. One could say that the absence of exotics implies that
D = 4 is the maximal dimension of space-time.

2. The differentiable structure for X4 ⊂ M8, obtained by the smooth holography, could be
induced to X4 ⊂ H by M8 − H-duality. Second possibility is based on the map of mass
shell hyperboloids to light-cone proper time a = constant hyperboloids of H belonging to
the space-time surfaces and to a holography applied to these.

3. There is however an objection against holography of smoothness (https://cutt.ly/3MewYOt).
In the last section of the article, I develop a counter argument against the objection. It states
that the exotic smooth structures reduce to the ordinary one in a complement of a set con-
sisting of arbitrarily small balls so that local defects are the condensed matter analogy for
an exotic smooth structure.

7.2 Intersection form in the case of 4-surfaces

Intersection form (https://cutt.ly/jMriNdI) for homologically trivial 2-surfaces of the space-
time surface and 2-homology for the complement of these surfaces can be physically important in
tGD framework.

7.2.1 Intersection forms in 2-D case

It is good to explain the notion of intersection form by starting from 1-homology. The intersection
form for 1-homology is encountered for a cylinder with ends fixed. In this case, one has relative ho-
mology and homologically trivial curves are curves connecting the ends of string and characterized
by a winding number.

In the case of torus obtained by identifying the ends of cylinder, one obtains two winding
numbers (m,n) corresponding to to homologically non-trivial circles at torus. The intersection
number for curves (m,n) and (p, q) at torus is N = mq − np and for curves at cylinder one as
(m,n) = (1, n) giving N = n− q.

The antisymmetric intersection form is defined as 2 × 2 matrix defining intersections for the
basis of the homology with (m,n) = (1, 0) and (n,m) = (0, 1) and is given by (0, 1;−1, 0).

7.2.2 Intersection for 4-surfaces in TGD context

In TGD, the intersection form for a 4-surface identified as space-time surface could have a rather
concrete physical interpretation and the stringy part of TGD physics would actually realize it
concretely.

1. M8−H duality requires that the 4-surface in M8 has quaternionic/associative normal space:
this distribution of normal spaces is integrable and integrates to the 4-surface in M8.

The normal must also contain a commutative (complex) sub-space at each point. Only this
allows us to parametrize normal spaces by points of CP2 and map them to space-time surfaces
in H = M4 × CP2. The integral distribution of these commutative sub-spaces defines a 2-
D surface. Physically, these surfaces would correspond to string world sheets and partonic
2-surfaces.

https://cutt.ly/3MewYOt
https://cutt.ly/jMriNdI
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2. String world sheets and partonic 2-surfaces, regarded as objects in relative homology (modulo
ends of the space-time surfaces at the boundaries of causal diamond (CD)), can intersect as
2-D objects inside the space-time surface and the intersection form characterizes them.

There is an analogy with the cylinder: time-like direction corresponds to the cylinder axis
and a homologically non-trivial 2-surface of CP2 corresponds to the circle at the cylinder.

3. If the second homology of the space-time surface is trivial, the naive expectation is that the
intersections of string world sheets are not stable under large enough deformations of the
string world sheets. Same applies to intersecting plane curves. At the cylinder, the situation
is different since the relative first homology is non-trivial and spanned by two generators:
the circle and a line connecting the ends of the cylinder.

The intersection form is however non-trivial as in the case of the cylinder for 2-surfaces having
2-D homologically non-trivial CP2 projection. They would represent M4 deformations of 2-D
homologically trivial surfaces of CP2 just like a helical orbit along a cylinder surface. A 2-D
generalization of CP2 type extremal would have a light-like curve or light-like geodesic as
M4 projection and could define light-partonic orbit.

4. The intersection of string world sheet and partonic 2-surface can be stable however. Partonic
2-surface is a boundary of a wormhole contact connecting two space-time sheets.

Consider a string arriving along space-time sheet A, going through the wormhole contact,
and continuing along sheet B. The string has an intersection point with both wormhole
throats. This intersection is stable against deformations. The orbit of this string intersects
the light-like orbit of the partonic 2-surface along the light-like curve.

One has a non-trivial intersection form with the number of intersections with partonic 2-
surfaces equal to 1. In analogy with cylinder, also the intersections of 2-surfaces with 2-D
homologically trivial CP2 projection are unavoidable and reflect the non-trivial intersection
form of CP2.

7.3 About ordinary knots

Ordinary knots and 3-topologies are related and the natural expectation is that also 2-knots and
4-topologies are related.

7.3.1 About knot invariants

Consider first knot invariants (https://cutt.ly/DMrgs14)at the general level.

1. One important knot invariant of ordinary knots is the 1-homology of the complement and
the associated first homotopy group whose abelianization gives the homology group.

2. The complement of the knot can be given a metric of a hyperbolic 3-manifold, which corre-
sponds to a unit cell for a tessellation of the mass shell. M8 −H duality suggests that the
intersection X3 of 4-surface of M8 with mass shell H3

m ⊂M4 ⊂M8 is a hyperbolic manifold
and identical with the hyperbolic manifold associated with the complement of a knot of H3

a

realized as light-cone proper time a = constant hyperboloid of M4 ⊂ H and closed knotted
and linked strings as ends of string world sheets at H3

a .

The evolution of the strings defined by the string world sheets would define a 1-knot cobor-
dism. The 2-homology of the knot complement should characterize the topological evolution
of the 1-homology of the knot.

7.3.2 Opening of knots and links by knot cobordisms

The procedure leading to the trivialization of knot or link can be used to define knot invariants
and the procedure itself characterizes knot.

1. Ordinary knot is described by a knot diagram obtained as a projection of the knot to the
plane. It contains intersections of lines and the intersection contains information telling which
line is above and which line is below.

https://cutt.ly/DMrgs14
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2. The opening of the knot or link to give a trivial knot or link, which is used in the construction
of knot invariants, is a sequence of violent operations. In the basic step strings portions go
through each other and therefore suffer a reconnection. This operation can therefore change
the 1-homology of the 3-D knot complement.

Knot or link can be modified by forcing two intersecting strands of the plane projection to
go through each other. Locally the basic operation for two links is the same as for the pieces
of knot. The transformation of the knot or link to a trivial knot or link corresponds to some
sequence of these operations and can be used to define a knot invariants. This operation is
not unique since there are moves which do not affect the knot.

The basic opening operation can be also seen as a time evolution, knot cobordism, in which
the first portion, call it A, remains unchanged and the second portion, call it B, draws a 2-D
surface in E3. A intersects the 2-D orbit at a single point.

3. The 2-homology for the string world sheets and partonic 2-surfaces as 2-surfaces in space-time
serves as an invariant of knot cobordism and represents the topological dynamics of ordinary
1-knots of 3-surface and links formed by strings or flux tubes in 3-surface as cobordism
defining the time evolution of a knot to another knot.

In particular, the intersection form for the 2-homology of the complement of the cobordism
defines an invariant of cobordism. This intersection form must be distinguished from the
intersection form for the second homology of the space-time surface rather than the 2-knot
complement.

4. One can also consider more general sequences of basic operations transforming two knots or
links to each other as knot-/link cobordisms, which involve self intersections of the knots.
Does this mean that the intersection form characterizes the knot cobordism. Could a string
diagram involving reconnections describe the cobordism process.

7.3.3 Stringy description of knot cobordisms

M8 − H duality [L14, L15, L21, L20] requires string word sheets and partonic 2-surfaces. This
implies that TGD physics represents the 2-homology of both space-time surfaces and the homology
of the complement of the knotted links defined by them.

Although the ”non-homological” intersections of string world sheets can be eliminated by a
suitable deformation of the string world sheet, they should have a physical meaning. This comes
from the observation that they affect nontrivially the 1-homology of the knot complement as 3-D
time=constant slice.

The first thing that I am able to imagine is that strings reconnect. This is nothing but the
trouser vertex for strings so that intersection form would define topological string dynamics in
some sense. These reconnections play a key role in TGD, also in TGD inspired quantum biology.

The dynamics of partonic 2-surfaces and string world sheets could relate to knot cobordisms,
possibly leading to the opening of ordinary knot,

7.4 What about 2-knots and their cobordisms?

2-D closed surfaces in 4-D space give rise to 2-knots. What is the physical meaning of 2-knots of
string world sheets? What could 2-knots for orbits of linear molecules or associated magnetic flux
tubes mean physically and from the point of view of quantum information theory? One can try to
understand 2-knots by generalizing the ideas related to the ordinary knots.

1. Intuitively it seems that the cobordism of a 1-knot defines a 2-knot. It is not clear to me
whether all 2-knots for space-time surfaces connecting the boundaries of CD can be regarded
as this kind of cobordisms of 1-knots.

2. The 2-homology of the complement of 2-knot should define a 2-knot invariant. In particular,
the intersection form should define a 2-knot invariant.
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3. The opening of 1-knot by repeating the above described basic operation is central in the
construction of knot invariants and the sequence of the operations can be said to be knot
invariant modulo moves leaving the knot unaffected.

The opening or a more general cobordism of a 2-knot could be seen as a time evolution with
respect to a time parameter t5 parametrizing the isotopy of space-time surface. The local
cobordism can keep the first portion of 2-knot, call it A, unchanged and deform another
portion, call it B, so that a 3-D orbit at the space-time surface is obtained. For each value
of t5, the portions A and B of 2-knot have in the generic case only points as intersections.

This would suggest that an intersection point of A and B is generated in the operation and
moves during the t5 time evolution along A along 1-D curve during the process. This process
would be the basic operation used repeatedly to open 2-knot or to transform it to another
2-knot.

4. In quantum TGD, a sequence of quantum jumps, quantum cobordism, would have the same
effect as t5 time evolution. This brings in mind DNA transcription and replication as a
process proceeding along a DNA strand parallel to the monopole flux tube as a sequence of
SFRs involving direct contact between DNA strand and enzymes catalyzing the process and
also of corresponding flux tubes. An interesting possibility is that these quantum cobordisms
appear routinely in biochemistry of the fundamental linear bio-molecules such as DNA, RNA,
tRNA, and amino-acids [K11, K2, K24, K1, K27, K12] [L12].

The quantum cobordism of 2-knot is possible only in ZEO, where the quantum state as a
time= constant snapshot is replaced with a superposition of space-time surfaces.

7.5 Could the existence of exotic smooth structures pose problems for
TGD?

The article of Gabor Etesi [A2] (https://cutt.ly/2Md7JWP) gives a good idea about the physical
significance of the existence of exotic smooth structures and how they destroy the cosmic censorship
hypothesis (CCH of GRT stating that spacetimes of GRT are globally hyperbolic so that there are
no time-like loops.

7.5.1 Smooth anomaly

No compact smoothable topological 4-manifold is known, which would allow only a single smooth
structure. Even worse, the number of exotics is infinite in every known case! In the case of non-
compact smoothable manifolds, which are physically of special interest, there is no obstruction
against smoothness and they typically carry an uncountable family of exotic smooth structures.

One can argue that this is a catastrophe for classical general relativity since smoothness is
an essential prerequisite for tensory analysis and partial differential equations. This also destroys
hopes that the path integral formulation of quantum gravitation, involving path integral over all
possible space-time geometries, could make sense. The term anomaly is certainly well-deserved.

Note however that for 3-geometries appearing as basic objects in Wheeler’s superspace ap-
proach, the situation is different since for D < 3 there is only a single smooth structure. If one
has holography, meaning that 3-geometry dictates 4-geometry, it might be possible to avoid the
catastrophe.

The failure of the CCH is the basic message of Etesi’s article. Any exotic R4 fails to be globally
hyperbolic and Etesi shows that it is possible to construct exact vacuum solutions representing
curved space-times which violate the CCH. In other words, GRT is plagued by causal anomalies.

Etesi constructs a vacuum solution of Einstein’s equations with a vanishing cosmological con-
stant which is non-flat and could be interpreted as a pure gravitational radiation. This also repre-
sents one particular aspect of the energy problem of GRT: solutions with gravitational radiation
should not be vacua.

1. Etesi takes any exotic R4 which has the topology of S3×R and has an exotic smooth structure,
which is not a Cartesian product. Etesi maps maps R4 to CP2, which is obtained from C2

by gluing CP1 to it as a maximal ball B3
r for which the radial Eguchi-Hanson coordinate

approaches infinity: r →∞. The exotic smooth structure is induced by this map. The image

https://cutt.ly/2Md7JWP
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of the exotic atlas defines atlas. The metric is that of CP2 but SU(3) does not act as smooth
isometries anymore.

2. After this Etesi performs Wick rotation to Minkowskian signature and obtains a vacuum
solution of Einstein’s equations for any exotic smooth structure of R4.

In TGD, the question of exotic smoothness is encountered both at the level of embedding space
and associated fixed spaces and at the level of space-time surfaces and their 6-D twistor space
analogies. Could TGD solve the smooth anomaly?

7.5.2 Can embedding space and related spaces have exotic smooth structure?

One can first worry about the exotic smooth structures possibly associated with the M4, CP2,
H = M4 × CP2, causal diamond CD= cd × CP2, where cd is the intersection of the future and
past directed light-cones of M4, and with M8. One can also worry about the twistor spaces CP3

resp. SU(3)/U(1)× U(1) associated with M4 resp. CP2.
The key assumption of TGD is that all these structures have maximal isometry groups so that

they relate very closely to Lie groups, whose unique smooth structures are expected to determine
their smooth structures.

1. The first sigh of relief is that all Lie groups have the standard smooth structure. In par-
ticular, exotic R4 does not allow translations and Lorentz transformations as isometries. I
dare to conclude that also the symmetric spaces like CP2 and hyperbolic spaces such as
Hn = SO(1, n)/SO(n) are non-exotic since they provide a representation of a Lie group as
isometries and the smoothness of the Lie group is inherited. This would mean that the charts
for the coset space G/H would be obtained from the charts for G by an identification of
the points of charts related by action of subgroup H.

Note that the mass shell H3, as any 3-surface, has a unique smooth structure by its
dimension.

2. Second sigh of relief is that twistor spaces CP3 and SU(3)/U(1) × U(1) have by their
isometries and their coset space structure a standard smooth structure.

In accordance with the vision that the dynamics of fields is geometrized to that of surfaces,
the space-time surface is replaced by the analog of twistor space represented by a 6-surface
with a structure of S2 bundle with space-time surface X4 as a base-space in the 12-D product
of twistor spaces of M4 and CP2 and by its dimension D = 6 can have only the standard
smooth structure unless it somehow decomposes to (S3×R)×R2. Holography of smoothness
would prevent this since it has boundaries because X4 as base space has boundaries at the
boundaries of CD.

If exotic smoothness is allowed at the space-time level in the proposed sense ordinary smooth
structure could be possible at the level of twistor space in the complement of a Cartesian
product of the fiber space S2 with a discrete set of points associated with partonic 2-surfaces.

3. cd is an intersection of future and past directed light-cones of M4. Future/past directed
light-cone could be seen as a subset of M4 and implies standard smooth structure is possible.
Coordinate atlas of M4 is restricted to cd and one can use Minkowski coordinates also inside
the cd. cd could be also seen as a pile of light-cone boundaries S2×R+ and by its dimension
S2 ×R allows only one smooth structure.

4. M8 is a subspace of complexified octonions and has the structure of 8-D translation group,
which implies standard smooth structure.

The conclusion is that continuous symmetries of the geometry dictate standard smoothness
at the level of embedding space and related structures.
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7.5.3 Could TGD eliminate the smoothness anomaly or provide a physical interpre-
tation for it?

The question of exotic smoothness is encountered both at the level of embedding space and asso-
ciated fixed spaces and at the level of space-time surfaces and their 6-D twistor space analogies.

What does the induction of a differentiable structure really mean? Here my naive expectations
turn out to be wrong. If a sub-manifold S ⊂ H can be regarded as an embedding of
smooth manifold N to S ⊂ H, the embedding N → S ⊂ H induces a smooth structure in S
(https://cutt.ly/tMtvG79). The problem is that the smooth structure would not be induced
from H but from N and for a given 4-D manifold embedded to H one could also have exotic
smooth structures. This induction of smooth structure is of course physically adhoc.

It is not possible to induce the smooth structure from H to sub-manifold. The atlas defining
the smooth structure in H cannot define the charts for a sub-manifold (surface). For standard R4

one has only one atlas.

1. Could holography of smoothness make sense in the general case?

The first trial to get rid of exotics [A8] was based on the holography of smoothness and did
not involve TGD. Could a smooth structure at the boundary of a 4-manifold could dictate that of
the manifold uniquely. Could one speak of holography for smoothness? Manifolds with boundaries
would have the standard smooth structure.

1. The obvious objection is that the coordinate atlas for 3-D boundary cannot determine 4-
D atlas in any way because the boundary cannot have information of the topology of the
interior.

2. The holography for smoothness is also argued to fail (https://cutt.ly/3MewYOt). Assume
a 4-manifold W with 2 different smooth structures. Remove a ball B4 belonging to an
open set U and construct a smooth structure at its boundary S3. Assume that this smooth
structure can be continued to W . If the continuation is unique, the restrictions of the 2
smooth structures in the complement of B4 would be equivalent but it is argued that they
are not.

3. The first layman objection is that the two smooth structures of W are equivalent in the
complement W −B3 of an arbitrary small ball B3 ⊂W but not in the entire W . This would
be analogous to coordinate singularity. For instance, a single coordinate chart is enough for
a sphere in the complement of an arbitrarily small disk.

An exotic smooth structure would be like a local defect in condensed matter physics. In fact it
turned out that this intuitive idea is correct: it can be shown that the exotic smooth structures
are equivalent with standard smooth structure in a complement of a set having co-dimension
zero (https://cutt.ly/7MbGqx2). This does not save the holography of smoothness in the
general case but gives valuable hints for how exotic smoothness might be realized in TGD
framework.

2. Could holography of smoothness make sense in the TGD framework?

Could M8 − H duality and holography make holography of smoothness possible in the TGD
framework?

1. In the TGD framework space-time is 4-surface rather than abstract 4-manifold. 4-D general
coordinate invariance, assuming that 3-surfaces as generalization of point-like particles are
the basic objects, suggests a fully deterministic holography. A small failure of determinism is
however possible and expected, and means that space-time surfaces analogous to Bohr orbits
become fundamental objects. Could one avoid the smooth anomaly in this framework?

The 8-D embedding space topology induces 4-D topology. My first naive intuition was that
the 4-D smooth structure, which I believed to be somehow inducible from that of H =
M4 × CP2, cannot be exotic so that in TGD physics the exotics could not be realized. But
can one really exclude the possibility that the induced smooth structure could be exotic as a
4-D smooth structure?

https://cutt.ly/tMtvG79
https://cutt.ly/3MewYOt
https://cutt.ly/7MbGqx2
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2. In the TGD framework and at the level of H = M4×cP2, one can argue that the holography
implied by the general coordinate invariance somehow determines the smooth structure in
the interior of space-time surface from the coordinate atlas at the boundary. One would have
a holography of smoothness. It is however not obvious why this unique structure should be
the standard one.

3. One has also holography in M8 and this induces holography in H by M8 −H duality. The
3-surfaces X3 inducing the holography in M8 are parts of mass shells, which are hyperbolic
spaces H3 ⊂M4 ⊂M8. 3-surfaces X3 could be even hyperbolic 3-manifolds as unit cells of
tessellations of H3. These hyperbolic manifolds have unique smooth structures as manifolds
with dimension D < 4.

The hypothesis is that one can assign to these 3-surfaces a 4-surface by a number theoretic
dynamics requiring that the normal space is associative, that is quaternionic [L14, L15].
The additional condition is that the normal space contains commutative subspace makes it
possible to parametrize normal spaces by points of CP2. M8−H duality would map a given
normal space to a point of CP2. M8 −H duality makes sense also for the twistor lift.

4. A more general statement would be as follows. A set of 3-surfaces as sub-manifolds of mass
shells H3

m determined by the roots of polynomial P having interpretation as mass square
values defining the 4-surface in M8 take the role of the boundaries. Mass-shells H3

m or
partonic 2-surfaces associated with them having particle interpretation could correspond to
discontinuities of derivatives and even correspond to failure of manifold property analogous to
that occurring for Feybman diagrams so that the holography of smoothness would decompose
to a piece-wise holography.

The regions of X4 ⊂M8 connecting two sub-sequent mass shells would have a unique smooth
structure induced by the hyperbolic manifolds H3 at the ends.

It is important to notice that the holography of smoothness does not force the smooth 4-D
structure to be the standard one.

3. Could the exotic smooth structures have a physical interpretation in the TGD framework?

In the TGD framework, exotic smooth structures could also have a physical interpretation. As
noticed, the failure of the standard smooth structure can be thought to occur at a point set of
dimension zero and correspond to a set of point defects in condensed matter physics. This could
have a deep physical meaning.

1. The space-time surfaces in H = M4 × CP2 are images of 4-D surfaces of M8 by M8 − H-
duality. The proposal is that they reduce to minimal surfaces analogous to soap films spanned
by frames. Regions of both Minkowskian and Euclidean signature are predicted and the
latter correspond to wormhole contacts represented by CP2 type extremals. The boundary
between the Minkowskian and Euclidean region is a light-like 3-surface representing the orbit
of partonic 2-surface identified as wormhole throat carrying fermionic lines as boundaries of
string world sheets connecting orbits of partonic 2-surfaces.

2. These fermionic lines are counterparts of the lines of ordinary Feynman graphs, and have
ends at the partonic 2-surfaces located at the light-like boundaries of CD and in the interior
of the space-time surface. The partonic surfaces, actually a pair of them as opposite throats
of wormhole contact, in the interior define topological vertices, at which light-like partonic
orbits meet along their ends.

3. These points should be somehow special. Number theoretically they should correspond points
with coordinates in an extension of rationals for a polynomial P defining 4-surface in H
and space-time surface in H by M8 − H duality. What comes first in mind is that the
throats touch each other at these points so that the distance between Minkowskian space-
time sheets vanishes. This is analogous to singularities of Fermi surface encountered in
topological condensed matter physics: the energy bands touch each other. In TGD, the
partonic 2-surfaces at the mass shells of M4 defined by the roots of P are indeed analogs
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of Fermi surfaces at the level of M4 ⊂ M8, having interpretation as analog of momentum
space.

Could these points correspond to the defects of the standard smooth structure in X4? Note
that the branching at the partonic 2-surface defining a topological vertex implies the local
failure of the manifold property. Note that the vertices of an ordinary Feynman diagram
imply that it is not a smooth 1-manifold.

4. Could the interpretation be that the 4-manifold obtained by removing the partonic 2-surface
has exotic smooth structure with the defect of ordinary smooth structure assignable to the
partonic 2-surface at its end. The situation would be rather similar to that for the represen-
tation of exotic R4 as a surface in CP2 with the sphere at infinity removed [A2].

5. The failure of the cosmic censorship would make possible a pair creation. As explained, the
fermionic lines can indeed turn backwards in time by going through the wormhole throat
and turn backwards in time. The above picture suggests that this turning occurs only at the
singularities at which the partonic throats touch each other. The QFT analog would be as a
local vertex for pair creation.

6. If all fermions at a given boundary of CD have the same sign of energy, fermions which have
returned back to the boundary of CD, should correspond to antifermions without a change
in the sign of energy. This would make pair creation without fermionic 4-vertices possible.

If only the total energy has a fixed sign at a given boundary of CD, the returned fermion
could have a negative energy and correspond to an annihilation operator. This view is nearer
to the QFT picture and the idea that physical states are Galois confined states of virtual
fundamental fermions with momentum components, which are algebraic integers. One can
also ask whether the reversal of the arrow of time for the fermionic lines could give rise to
gravitational quantum computation as proposed in [A8].

4. A more detailed model for the exotic smooth structure associated with a topological 3-vertex

One can ask what happens to the 4-surface near the topological 3-particle vertex and what
is the geometric interpretation of the point defect. The first is whether the description of the
situation is possible both in M8 and H. Here one must consider momentum conservation.

1. By Uncertainty Principle and momentum conservation at the level of M8, the incoming real
momenta of the particle reaction are integers in the scale defined by CD. In the standard
QFT picture, the momenta at the vertex of physical particles are at different mass shells.

In M8 picture, the mass squared values of virtual fermions are in general algebraic and also
complex roots of a polynomial defining the 3-D mass shells H3

m of M4 ⊂ M8, determining
4-surface by associative holography.

In the standard wave mechanical picture assumed also in TGD, a given topological vertex,
describable in terms of partonic 2-surfaces, would correspond to a multi-local vertex in M8

in accordance with the representation of a local n-vertex in M4 as convolution of n-local
vertices in momentum space realizing momentum conservation.

2. M8−H duality maps M4 momenta by inversion to positions in M4 ⊂ H. This encourages the
question whether the topological vertex could be described also in M8 as a partonic surface
at single algebraic mass shell in M8, mapped by M8 − H duality to a single a = constant
hyperboloid in M4 ⊂ H.

The virtual momenta at the level of M8 are algebraic, in general complex, integers. The
algebraic mass squared values at the mass shell of M8 would be the same for all particles of
the vertex. This kind of correspondence does not make sense if M8 −H duality applies to
the full algebraic momenta. The assumption has been that it applies to the rational parts of
the momenta.

3. The rational parts of the algebraic integer valued 4-momenta of virtual fermions are in general
not at the same mass shell. Could this make possible a description in terms of partonic 2-
surfaces at fixed mass resp. a = consant shell at the level of M8 resp. H?
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The classical space-time surface in H, partonic 2-surfaces and fermion lines at them are
characterized by classical momenta by Noether’s theorem. Quantum classical correspon-
dence, realized in ZEO as Bohr orbitology, suggests that the classical 4-momenta assignable
to these objects correspond to the rational parts of the momenta at M8 mass shell. Could
the rational projections of M8 momenta at H3

n correspond to different mass squared values
at given H3?

4. Note that this additional symmetry for complexified momentum space and position space
descriptions would be analogous to the duality of twistor amplitudes position space and the
space of area momenta.

How to describe the topological vertex in H? The goal is to understand how exotic smooth
structure and its point defects could emerge from this picture. The physical picture applied hitherto
is as follows.

1. 3 partonic orbits meet at a vertex described by a partonic 2-surface. Assume that they are
located to single a = constant H3 ⊂M4 ⊂ H.

2. The partonic wormhole throats appear as pairs at the opposite Minkowskian space-time
sheets. There are three pairs corresponding to 3 external particle lines and one line which
must be a bosonic line describing fermion-antifermion bound state disappears: this corre-
sponds to a boson absorption (or emission).

The opposite throats carry opposite magnetic monopole charges. The only possibility, not
noticed before, is that the opposite wormhole throats for the partoni orbit, which ends at the
vertex, must coincide at the vertex. The minimal option is that the exotic smooth structure
is associated with this partonic orbit turning back in time. The two partonic orbits, which
bind 4-D Euclidean regions as wormhole throats, would fuse to a larger 4-D surface with an
exotic smooth structure.

Fermion-antifermion annihilation occurs at a point at which fermion and antifermion lines
meet. The first guess is that this point corresponds to the defect of the smooth structure.

3. There is an analogy with the construction of Etesi [A2]in which a homologically non-trivial
ball CP1 glued to the C2 at infinity to construct an exotic smooth structure. One dimension
disappears for the glued 3-surface at infinity.

In the partonic vertex, one has actually two homologically non-trivial 2-surfaces with opposite
homology charges as boundaries between wormhole contact and Minkowskian regions and
they fuse together in the partonic vertex. Also now, one dimension disappears as the partonic
2-surfaces become identical so that 3-D wormhole contact contracts to single 2-D partonic
2-surface.

4. The defect for the smooth structure associated with the fusion of the pair of wormhole orbits
should correspond to a point at which fermion and antifermion lines meet.

This suggests that the throats do not fuse instantaneously but gradually. The fusion would
start from a single touching point identifiable asd the fermion-antifermion vertex, serving as
a seed of a phase transition, and would proceed to the entire wormhole contact so that it
reduces to a partonic 2-surface.

One can argue that one has a problem if this surface is homologically non-trivial. Could the
process make the closed partonic 2-surface homologically trivial. A simplified example is the
fusion of two circles with opposite winding numbers ±1 on a cylinder. The outcome is two
homologically non-trivial circles of opposite orientations on top of each other. The phase
transition starting from a point would correspond to a touching of the circles.

A couple of further comments are in order.

1. The connection of the pair of wormhole throats to the associative holography is an interesting
question. The 4-D tangent planes of X4 ⊂M8 mass shell correspond to points of CP2. They
would be different at the two parallel sheets.
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At the mass shell H3
m the branches would coincide. The presence of two tangent planes

could give rise to two different holographic orbits, which coincide at the initial mass shell
and gradually diverge from each other just as in the above model for the fusion of partonic 2-
surfaces. The failure of the strict determinism for the associative holography at the partonic
2-surface would make in TGD the analogy of fermion-antifermion annihilation vertex possible.

2. There is also an analogy with the cusp catastrophe in which the projection of the cusp catas-
trophe as a 2-surface in 3-D space with behavior variable x and two control parameters (a, b)
has a boundary at which two real roots of a polynomial of degree 3 coincide. The projection
to the (a, b) plane gives a sharp shape, whose boundary is a V-shaped curve in which the
sides of V become parallel at the vertex. The vertex corresponds to maximal criticality. The
particle vertex would be a critical phenomenon in accordance with the interpretation as a
phase transition.

7.6 Is a master formula for the scattering amplitudes possible?

Marko Manninen asked whether TGD can in some sense be reduced to a single equation or principle
is very interesting. My basic answer is that one could reduce TGD to a handful of basic principles
but formula analogous to F = ma is not possible. However, at the level of classical physics,
one could perhaps say that general coordinate invariance → holography ← 4-D generalization
of holomorphy [?]educe the representations of preferred extremals as analogs of Bohr orbits for
particles as 3-surfaces to a representation analogous to that of a holomorphic function.

Can one hope something analogous to happen at the level of scattering amplitudes? Is some
kind of a master formula possible? I have considered many options, even replacing the S-matrix
with the Kähler metric in the fermionic degrees of freedom [L16]. The motivation was that the
rows of the matrix defining Kähler metric define unit vectors allowing interpretation in terms of
probability conservation. However, it seems that the concept of zero energy state alone makes the
definition unambiguous and unitarity is possible without additional assumptions.

1. In standard quantum field theory, correlation functions for quantum fields give rise to scat-
tering amplitudes. In TGD, the fields are replaced by the spinor fields of the ”world of
classical worlds” (WCW) which can regarded as superpositions of pairs of multi-fermion
states restricted at the 3-D surfaces at the ends of the 4-D Bohr orbits at the boundaries of
CD.

These 3-surfaces are extremely strongly but not completely correlated by holography implied
by 4-D general coordinate invariance. The modes of WCW spinor fields at the 3-D surfaces
correspond to irreducible unitary representations of various symmetries, which include super-
symplectic symmetries of WCW and Kac-Moody type symmetries [K6, K19] [L18, L21, L24].
Hence the inner product is unitary.

2. Whatever the detailed form of the 3-D parts of the modes of WCW spinor fields at the
boundaries of CD is, they can be constructed from ordinary many fermion states. These
many-fermion state correspond in the number theoretic vision of TGD to Galois singlets
realizing Galois confinement [L24, L22, L23]. They are states constructed at the level of M8

from fermion with momenta whose components are possibly complex algebraic integers in
the algebraic extension of rationals defining the 4-D region of M8 mapped to H by M8 −H
duality. Complex momentum means that the corresponding state decomposes to plane waves
with a continuum of momenta. The presence of Euclidian wormhole contact makes already
the classical momenta complex.

Galois confined states have momenta, whose components are integers in the momentum scale
defined by the causal diamond (CD). Galois confinement defines a universal mechanism for the
formation of bound states. The induced spinor fields are second quantized free spinor fields
in H and their Dirac propagators are therefore fixed. This means an enormou calculational
simplification.

3. The inner products of these WCW spinor fields restricted to 3-surfaces determine the scat-
tering amplitudes. They are non-trivial since the modes of WCW spinor fields are located at
opposite boundaries of CD. These inner products define the zero energy state identifiable as
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such as scattering amplitudes. This is the case also in wave mechanics and quantum TGD is
indeed wave mechanics for particles identified as 3-surfaces.

4. There is also a functional integral of these amplitudes over the WCW, i.e. over the 4-D
Bohr orbits. This defines a unitary inner product. The functional integral replaces the
path integral of field theory and is mathematically well-defined since the Kähler function,
appearing in the exponent defining vacuum functional, is a non-local function of the 3-surface
so that standard local divergences due to the point-like nature of particles disappear. Also
the standard problems due to the presence of a Hessian coming from a Gaussian determinant
is canceled by the square foot of the determinant of the Kähler metric appearing in the
integration measure [K13, K19].

5. The restriction of the second quantized spinor fields to 4-surfaces and zero-energy ontology
are absolutely essential. Induction turns free fermion fields into interacting ones. The spinor
fields of H are free and define a trivial field theory in H. The restriction to space-time
surfaces changes the situation. Non-trivial scattering amplitudes are obtained since the
fermionic propagators restricted to the space-time surface are not anymore free propagators
in H. Therefore the restriction of WCW spinors to the boundaries of CD makes the fermions
interact in exactly the same way as it makes the induced spinor connection and the metric
dynamical.

There are a lot of details involved that I don’t understand, but it would seem that a simple
”master formula” is possible. Nothing essentially new seems to be needed. There is however one
more important ”but”.

7.6.1 Are pair production and boson emission possible?

The question that I have pondered a lot is whether the pair production and emission of bosons
are possible in the TGD Universe. In this process the fermion number is conserved, but fermion
and antifermion numbers are not conserved separately. In free field theories they are, and in
the interacting quantum field theories, the introduction of boson fermion interaction vertices is
necessary. This brings infinities into the theory.

1. In TGD, the second quantized fermions in H are free and the boson fields are not included
as primary fields but are bound states of fermions and antifermions. Is it possible to produce
pairs at all and therefore also bosons? For example, is the emission of a photon from an
electron possible? If a photon is a fermion-antifermion pair, then the fermion and antifermion
numbers cannot be preserved separately. How to achieve this?

2. If fundamental fermions correspond to light-like curves at light-like orbit of partonic 2-
surfaces, pair creation requires that that fermion trajectory turns in time direction. At
this point velocity is infinite and this looks like a causal anomaly. There are two options:
the fermion changes the sign of its energy or transforms to antiferion with the same sign of
energy.

Different signs of energy is not possible since the annihilation operator creating the fermion
with opposite energy would annihilate either the final state or some fermion in the final state
so that both fermion and antifermion numbers of the final state would be the same as those
of the initial state.

On the other hand, it can be said that positive energy antifermions propagate backwards
in time because in the free fermion field since the terms proportional to fermion creation
operators and antifermion annihilation operators appear in the expression of the field as sum
of spinor modes.

Therefore a fermion-antifermion pair with positive energies can be created and corresponds
to a pair of creation operators. It could also correspond to a boson emission and to a field
theory vertex, in which the fermion, antifermion and boson occur. In TGD, however, the
boson fields are not included as primary fields. Is such a ”vertex without a vertex” possible
at all?
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3. Can one find an interpretation for this creation of a pair that is in harmony with the standard
view. Space-time surfaces are associated with induced classical gauge potentials. In standard
field theory, they couple to fermion-antifermion pairs, and pairs can be created in classical
fields. The modified Dirac equation [K26] and the Dirac equation in H also have such a
coupling. Now the modified Dirac equation holds true at the fermion lines at the light-like
orbits of the partonic 2-surface. Does the creation of pairs happen in this way? It might
do so: also in the path integral formalism of field theories, bosons basically correspond to
classical fields and the vertex is just this except that in TGD fermions are restricted to 1-D
lines.

7.6.2 Fundamental fermion pair creation vertices as local defects of the standard
smooth structure of the space-time surface?

Here comes the possible connection with a very general mathematical problem of general relativity
that I have already discussed.

1. Causal anomalies as time loops that break causality are more the rule than an exception
in general relativity the essence of the causal anomaly is the reversal of the arrow of time.
Causal anomalies correspond to exotic diffeo-structures that are possible only in dimension
D = 4! Their number is infinite.

2. Quite generally, the exotic smooth structures reduce to defects of the usual differentiable
structure and have measure zero. Assume that they are point like defects. Exotic differen-
tiable structures are also possible in TGD, and the proposal is that the associated defects
correspond to a creation of fermion-fermion pairs for emission of fermion pairs of of gauge
bosons and Higgs particle identified in TGD as bound states of fermion-antifermion pairs.
This picture generalizes also to the case of gravitons, which would involve a pair of vertices
of this kind. The presence of 2 vertices might relate to the weakness of the gravitational
interaction.

The reversal of the fermion line in time direction would correspond to a creation of a fermion-
antifermion pair: fermion and antiferion would have the same sign of energy. This would be
a causal anomaly in the sense that the time direction of the fermion line is reversed so that
it becomes an antifermion.

I have proposed that this causal anomaly is identifiable as an anomaly of differentiable
structure so that emission of bosons and fermion pairs would only be possible in dimension
4: the space-time dimension would be unique!

3. But why would a point-like local defect of the differentiable structure correspond to a fermion
pair creation vertex. In TGD, the point-like fermions correspond to 1-D light-like curves at
the light-like orbit of the partonic 2-surface.

In the pair creation vertex in presence of classical induced gauge potentials, one would have
a V-shaped world line of fermion turning backwards in time meaning that antifermion is
transformed to fermion. The antifermion and fermion numbers are not separately conserved
although the total fermion number is. If one assumes that the modified Dirac equation holds
true along the entire fermion worldline, there would be no pair creation.

If it holds true only outside the V-shaped vertex the modified Dirac action for the V-shaped
fermion libe can be transformed to a difference of antifermion number equal to the disconti-
nuity of the antifermion part of the fermion current identified as an operator at the vertex.
This would give rise to a non-trivial vertex and the modified gamma matrices would code
information about classical bosonic action.

4. The 1-D curve formed by fermion and antifermion trajectories with opposite time direction
turns backwards in time at the vertex. At the vertex, the curve is not differentiable and this is
what the local defect of the standard smooth differentiable structure would mean physically!
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7.6.3 Master formula for the scattering amplitudes: finally?

Most pieces that have been identified over the years in order to develop a master formula for the
scattering amplitudes are as such more or less correct but always partially misunderstood. Maybe
the time is finally ripe for the fusion of these pieces to a single coherent whole. I will try to list
the pieces into a story in the following.

1. The vacuum functional, which is the exponential Kähler function defined by the classical
bosonic action defining the preferred extremal a an analog of Bohr orbit, is the starting
point. Physically, the Kähler function corresponds to the bosonic action (e.g. EYM) in field
theories.

Because holography is almost unique, it replaces the path integral by a sum over 4-D Bohr
trajectories as a functional integral over 3-surfaces plus discrete sum.

2. However, the fermionic part of the action is missing. I have proposed a long time ago a
super symmetrization of the WCW Kähler function by adding to it what I call modified
Dirac action. It relies on modified gamma matrices modified gamma matrices Γα, which are
contractions ΓkT

αk of H gamma matrices Γk with the canonical momentum currents Tαk =
∂L/∂∂αhk defined by the Lagrangian L. Modified Dirac action is therefore determined by
the bosonic action from the requirement of supersymmetry. This supersymmetry is however
quite different from the SUSY associated with the standard model and it assigns to fermonic
Noether currents their super counterparts.

Bosonic field equations for the space-time surface actually follow as hermiticity conditions
for the modified Dirac equation. These equations also guarantee the conservation of fermion
number(s). The overall super symmetrized action that defines super symmetrized Kähler
function in WCW would be unambiguous. One would get exactly the same master formula
as in quantum field theories, but without the path integral.

3. The overall super symmetrized action is sum of contributions assignable to the space-time
surface itself, its 3-D light-like parton orbits as boundaries between Minkowskian regions and
Euclidian wormhole contact, 2-D string world sheets and their 1-D boundaries as orbits of
point-like fermions. These 1-D boundaries are the most important and analogous to the lines
of ordinary Feynman diagrams. One obtains a dimensional hierarchy.

4. One can assign to these objects of varying dimension actions defined in terms of the induced
geometry and spinor structure. The supersymmetric actions for the preferred extremals
analogous to Bohr orbit in turn give contributions to the super symmetrized Kähler function
as an analogue of the YM action so that, apart from the reduction of path integral to a sum
over 4-D Bohr orbits, there is a very close analogy with the standard quantum field theory.

However, some problems are encountered.

1. It seems natural to assume that a modified Dirac equation holds true. I have presented an
argument for how it indeed emerges from the induction for the second quantized spinor field
in H restricted to the space-time surface assuming modified Dirac action.

The problem is, however, that the fermionic action, which should define vertex for fermion
pair creation, disappears completely if Dirac’s equation holds everywhere! One would not
obtain interaction vertices in which pairs of fermions arise from classical induced fields.
Something goes wrong. In this vertex total fermion number is conserved but fermion and
antifermion numbers are changed since antifermion transforms to fermion at the V-shaped
vertex: this condition should be essential.

2. If one gives up the modified Dirac equation, the fermionic action does not disappear. In
this case, one should construct a Dirac propagator for the modified Dirac operator. This
is an impossible task in practice.

Moreover, the construction of the propagator is not even necessary and in conflict with
the fact that the induced spinor fields are second quantized spinors of H restricted to the
space-time surface and the propagators are therefore well-defined and calculable and define
the propagation at the space-time surface.
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3. Should we conclude that the modified Dirac equation cannot hold everywhere? What these,
presumably lower-dimensional regions of space-time surface, are and could they give the
interaction vertices as topological vertices?

The key question is how to understand geometrically the emission of fermion pairs and bosons
as their bound states?

1. I have previously derived a topological description for reaction vertices. The fundamental 1
→ 2 vertex (for example e→e+ gamma) generalizes the basic vertex of Feynman diagrams,
where a fermion emits a boson or a boson decays into a pair of fermions. Three lines meet
at the ends.

In TGD, this vertex can topologically correspond to the decomposition of a 3-surface into
two 3-surfaces, to the decomposition of a partonic 2-surface into two, to the decomposition
of a string into two, and finally, to the turning of the fermion line backwards from time. One
can say that the n-surfaces are glued together along their n − 1-dimensional ends, just like
the 1-surfaces are glued at the vertex in the Feynman diagram.

2. In the previous section, I already discussed how to identify vertex for fermion-antifermion
pair creation as a V-shaped turning point of a 1-D fermion line. The fermion line turns back
in time and fermion becomes an antifermion. In TGD, the quantized boson field at the vertex
is replaced by a classical boson field. This description is basically the same as in the ordinary
path integral where the gauge potentials are classical.

The problem was that if the modified Dirac equation holds everywhere, there are no pair
creation vertices. The solution of the problem is that the modified Dirac equation at the
V-shaped vertex cannot hold true.

What this means physically is that fermion and antifermion numbers are not separately con-
served in the vertex. The modified Dirac action for the fermion line can be transformed to the
change of antifermion number as operator (or fermion number at the vertex) expressible as
the change of the antifermion part of the fermion number. This is expressible as the discon-
tinuity of a corresponding part of the conserved current at the vertex. This picture conforms
with the appearance of gauge currents in gauge theory vertices. Notice that modified gamma
matrices determined by the bosonic action appear in the current.

3. This argument was limited to 1-D objects but can be generalized to higher-dimensional
defects by assuming that the modified Dirac equation holds true everywhere except at defects
represented as vertices, which become surfaces. The modified Dirac action reduces to an
integral of the discontinuity of say antifermion current at the vertex, i.e. the change of the
antifermion charge as an operator.

What remains more precisely understood and generalized, is the connection with the irreducible
exotic smooth structures possible only in 4-D space-time.

1. TGD strongly suggests that 0-dimensional vertices generalize to topological vertices repre-
sentable as surfaces of dimension n = 0, 1, 2, 3 assignable to objects carrying induced spinor
field. In the 1→ 2 vertex, the orbit of an n < 4- dimensional surface would turn back in
the direction of time and would define a V-shaped structure in time direction. These would
be the various topological vertices that I have previously arrived at, but guided by a phys-
ical intuition. Also now the vertex would boild down to the discontinuity of say antifermion
current instead of the current itself at the vertex.

2. It is known that exotic smooth structures reduce to standard ones except in a set of defects
having measure zero. Also non-point-like defects might be possible in contrast to what I
assumed at first. If the defects are surfaces, their dimension is less than 4. If not, then only
the direction of fermion lines could change.

If the generalization is possible, also 1-D, 2-D, and 3-D defects, defining an entire hierarchy
of particles of different dimensions, is possible. As a matter of fact, a longstanding issue has
been whether this prediction should be taken seriously. Note that in topological condensed
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matter physics, defects with various dimensions are commonplace. One talks about bulk
states, boundary states, edge states and point-like singularities. In this would predict
hierarchy of fermionic object of various dimensions.

To summarize, exotic smooth structures would give vertices without vertices assuming only
free fermions fields and no primary boson fields! And this is possible only in space-time dimension
4!

8 A possible connection with family replication phenomenon?

In TGD framework the genus g of the partonic 2-surfaces is proposed to label fermion families
[K5, K17, K18]. One can characterize by genus g the topology of light-like partonic orbits and
identify the three fermion generators as 2-surfaces with genus g = 0, 1, 2 with the special property
that they are always hyper-elliptic. Quantum mechanically also topological mixing giving rise to
CKM mixing is possible. The view is that given connected 3-surface can contain several light-like
3-surface with different genera. For instance, hadrons would be such surfaces.

There are however questions to be answered.

1. The genera g = 0, 1, 2 assigned with the free fermion families correspond to Riemann surfaces,
which are always hyper-elliptic allowing therefore Z2 as a global conformal symmetry. These
complex curves correspond to degrees n = 2, 3, 4 for the corresponding polynomials. For
n ≤ 4 can write explicit solutions for the roots of the polynomials. Could there be a deep
connection between particle physics and mathematical cognition?

2. The homology and genus for 2-surfaces of CP2 correlate with each other [A5]: is this consis-
tent with the proposed topologicization of color hypercharge implying color confinement?

3. heff/h = n hypothesis means that dark variant of particle particle characterized by genus
g is n-fold covering of this surface. In the general case the genus of covering is different. Is
this consistent with the genus-generation correspondence?

4. The degree of complex curve correlates with the genus of the curve. Is generation-genus
correspondence consistent with the assumption that partonic 2-surfaces have algebraic curve
as CP2 projection (this need not be the case)?

8.1 How the homology charge and genus correlate?

Complex surfaces in CP2 are highly interesting from TGD point of view.

1. The model for elementary particles assumes that the partonic 2-surfaces carrying fermion
number are homologically non-trivial, in other words they carry Kähler magnetic monopole
flux having values q = ±1 and q = ±2. The idea is that color hyper charge Y = {±2/3,±1/3}
is proportional to n for quarks and color confinement topologizes to the vanishing of total
homology charge [K18].

2. The explanation of the family replication phenomenon [K5] in terms of genus-generation
correspondence states that the three quarks and lepton generations correspond to the three
lowest genera g = 0, 1, 2 for partonic 2-surfaces. Only these genera are always hyper-elliptic
allowing thus a global Z2 conformal symmetry. The physical vision is that for higher genera
the handles behave like free particles. Is this proposal consistent with the proposal for the
topologization of color confinement?

There is a result [A5] (page 124) stating that if the homology charge q is divisible by 2 then
one must have g ≥ q2/4 − 1. If q is divisible by h, which is odd power of prime, one has g ≥
(q2/4 − 1) − (q2/4h2). For q = 2 the theorem allows g ≥ 0 so that all genera with color hyper
charge Y = ±2/3 are realized.

The theorem says however nothing about q = 0, 1. These charges can be assigned to the two
different geodesic spheres of CP2 with g = 0 remaining invariant under SO(3) and U(2) subgroups
of SU(3) respectively. Is g > 0 possible for q = 1 as the universality of topological color confinement
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would require? For q = 3 one would have g ≥ 1. For q = 4 h = 2 divides q and one has g ≥ 2. It
would seem g ≥ 5. The conditions become more restrictive for higher q, which suggests that for
q = 0, 1 one has g ≥ 0 so that the topologization of color hypercharge would make sense.

8.2 Euler characteristic and genus for the covering of partonic 2-surface

Hierarchy of Planck constants heff/h = n means a hierarchy of space-time surfaces identifiable as
n-fold coverings. The proposal is that the number of sheets in absence of singularities is maximal
possible and equals to the dimension of the extension dividing the order of its Galois group.

The Euler characteristic of n-fold covering in absence of singular points is χn = nχ. If there
are singular (ramified) points these give a correction term given by Riemann-Hurwitz formula (see
http://tinyurl.com/y7n2acub.)

In absence of singularities one has from χ = −2(g − 1) and χn = nχ

gn = n(g − 1) + 1 . (8.1)

For n = 1 this indeed gives g1 = g independent of g. One can also combine this with the formula
g = (d− 1)(d− 2)/2 holding for non-singular algebraic curves of degree d.

Singularities are unavoidable at algebraic points of cognitive representations at which some
subgroup of Galois group leaves the point invariant (say rational point in ordinary sense). One can
consider the possibility that fermions are located at the singular points at which several sheets of
covering touch each other. This would give a correction factor to the formula. If the projection map
from the covering to based is of form Π(z) = zn at the singular point P , one says that singularity
has ramimifaction index eP = n and the algebraic genus would increase to

gn = n(g − 1) + 1 +
1

2

∑
P

(eP − 1) . (8.2)

Indeed, singularities mean that sheets touch each other at singular points and this increases con-
nectivity.

Under what conditions the genus of dark partonic surface with n > 1 can be same as that of
the ordinary partonic surface representing visible matter? For the genera g = 0 and g = 1 this is
possible so that these genera would be in an exceptional role also from the point of view of dark
matter.

1. For g = 1 one has gn = g = 1 independent of n in absence of singular point. Torus topology
(assignable to muon and (c,s) quarks) is exceptional. In presence of singularities the genus
would increase by the

∑
P (eP − 1)/2 independent of the value of n. The lattice of points for

elliptic surfaces would suggest existence of infinite number of singular points if the abelian
group operations preserve the singular character of the points so that the genus would become
infinite.

2. For g = 0 one would have gn = −n + 1 in absence of singularities. Only n = 1 - ordinary
matter - is possible without singularities. Dark matter is however possible if singularities are
allowed. For sphere one would obtain gn = −n + 1 +

∑
P (eP − 1)/2 ≥ 0. The condition

n ≤
∑
P (eP − 1)/2 + 1 must therefore hold true for g ≥ 0.

The condition gn = −n + 1 +
∑
P (eP − 1)/2 = g = 0 gives

∑
P (eP − 1) = 2(n − 1). For

spherical topology it is possible to have dense set of rational points so that it is possible
create cognitive representations with arbitrary number of points which can be also singular.
One might argue that this kind of situation corresponds to a non-perturbative phase.

3. For g = 2 one would have gn = n+ 1 +
∑
P (eP − 1)/2 and genus would grow with n even in

absence of singularities and would be very large for large values of heff . gn = 2 is obtained
with n = 1 (ordinary matter) and no singular points not even allowed for n = 1. gn = g = 2
is not possible for n > 1.

Note that dark g ≥ 2 fermions cannot correspond to lower generation fermions with singular
points of covering. More generally, one could say that g ≥ 2 fermions can exists only with
standard value of Planck constant unless they are singular coverings of g < 2 fermions.

http://tinyurl.com/y7n2acub
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What is clear that the model of dark matter predicts breaking of universality. This breaking is
not seen in the standard model couplings but makes it visible in amore delicate manner and might
allow to understand why the masses of fermions increase with generation index.

8.3 All genera are not representable as non-singular algebraic curves

Suppose for a moment that partonic 2-surfaces correspond to rational maps of algebraic curves in
CP2 to M4 that is deformations of these curves in M4 direction. This assumption is of course
questionable but deserves to be sttudied.

The formula (for algebraic curve see http://tinyurl.com/nt6tkey)

g =
(d− 1)(d− 2)

2
+

∑
δs

2
,

where δs > 0 characterizes the singularity, does not allow all genera for algebraic curves for∑
δs = 0: one has g = 0, 0, 1, 3, 6, 10, .. for d = 1, 2, ....
For instance, g = 2, which would correspond in TGD to third quark or lepton generation is not

possible without singularities for d = 3 curve having g = 1 without singularities!
This raises questions. Could the third fermion generation actually correspond to g = 3? Or

does it correspond to g = 2 2-surface of CP2, which is more general surface than algebraic curve
meaning that it is not representable as complex surface? Or could third generation fermions
correspond to g = 0 or g = 1 curves with singular point of covering by Galois group so that several
sheets touch each other?

To sum up, if the results for algebraic varieties generalize to TGD framework, they suggest
notable differences between different fermion families. Universality of standard model interactions
says that the only differences between fermion families are due to the differ masses. It is not clear
whether the different masses could be due to the differences at number theoretical level and dark
matter sectors.

1. All genera can appear as as ordinary matter (d = 1). Dark variants of g = 1 states have
gd = 1 automatically in absence of singular points. Dark variants of g = 0 states must have
singular point in order to give gn = 0. Dark variants of g = 2 states with gd = 2 are obtained
from g = 1 states with singularities. The special role of the two lowest is analogous to their
special role for algebraic curves.

2. If one assumes that partonic 2-surfacs correspond to algebraic curves, one obtains again that
g = 2 surfaces must correspond to singular g = 0 and g = 1 which could be dark in TGD
sense.

9 Summary and future prospects

In the following I give a brief summary about what has been done. I concentrate on M8 − H
duality since the most significant results are achieved here.

It is fair to say that the new view answers the following a long list of open questions.

1. When M8−H correspondence is true (to be honest, this question emerged during this work!)?
What are the explicit formulas expressing associativity of the tangent space or normal space
of the 4-surface?

The key element is the formulation in terms of complexified M8 - M8
c - identified in terms

of octonions and restriction M8
c →M8. One loses the number field property but for polyno-

mials ring property is enough. The level surfaces for real and imaginary parts of octonionic
polynomials with real coefficients define 4-D surfaces in the generic case.

Associativity condition is an additional condition reducing the dimension of the space-time
surface unless some components of RE(P ) or IM(P ) are critical meaning that also their
gradients vanish. This conforms with the quantum criticality of TGD and provides a concrete
first principle realization for it.

An important property of IM(P1P2) is its linearity with respect to IM(Pi) implying that
this condition gives the surfaces IM(Pi) = 0 as solutions. This generalizes by induction

http://tinyurl.com/nt6tkey
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to IM(P1P2...Pn). For RE(P1P2) = 0 linearity does not hold true and there is a genuine
interaction. A physically attractive idea idea is that RE(P1P2) = 0 holds true inside CDs
and for wormhole contacts between space-time sheets with Minkoskian signature. One can
generalizes this also to IM(P1/P2) and RE(P1/P2) if rational functions are allowed. Note
however that the origins of octonionic coordinates in Pi must be on the octonionic real line.

2. How this picture corresponds to twistor lift? The twistor lift of Kähler action (dimension-
ally reduced Kähler action in twistor space of space-time surface) one obtains two kinds of
space-time regions. The regions, which are minimal surfaces and obey dynamics having no
dependence on coupling constants, correspond naturally to the critical regions in M8 and H.

There are also regions in which one does not have extremal property for both Kähler action
and volume term and the dynamics depends on coupling constant at the level of H. These
regions are associative only at their 3-D ends at boundaries of CD and at partonic orbits,
and the associativity conditions at these 3-surfaces force the initial values to satisfy the
conditions guaranteeing preferred extremal property. The non-associative space-time regions
are assigned with the interiors of CDs. . The particle orbit like space-time surfaces entering
to CD are critical and correspond to external particles.

It has later turned out [L11] that it might be possible to take the associativity conditions to
extreme in the sense that they would hold everywhere apart from a set of discrete points and
space-time surface would be minimal surfaces at all points except this finite set of points.
There would be transfer of conserved quantities assignable to the volume term and the 4-D
Kähler action (coming as dimensionally reduced 6-D Kähler action for the twistor lift of
TGD) only at these points and elementary fermions would be naturally assignable to these
points.

3. The surprise was that M4 ⊂ M8 is naturally co-associative. If associativity holds true also
at the level of H, M4 ⊂ H must be associative. This is possible if M8 − H duality maps
tangent space in M8 to normal space in H and vice versa.

4. The connection to the realization of the preferred extremal property in terms of gauge con-
ditions of subalgebra of SSA is highly suggestive. Octonionic polynomials critical at the
boundaries of space-time surfaces would determine by M8 −H correspondence the solution
to the gauge conditions and thus initial values and by holography the space-time surfaces in
H.

5. A beautiful connection between algebraic geometry and particle physics emerges. Free many-
particle states as disjoint critical 4-surfaces can be described by products of corresponding
polynomials satisfying criticality conditions. These particles enter into CD , and the non-
associative and non-critical portions of the space-time surface inside CD describe the interac-
tions. One can define the notion of interaction polynomial as a term added to the product of
polynomials. It can vanish at the boundary of CD and forces the 4-surface to be connected
inside CD. It also spoils associativity: interactions are switched on. For bound states the
coefficients of interaction polynomial are such that one obtains a bound state as associative
space-time surface.

6. This picture generalizes to the level of quaternions. One can speak about 2-surfaces of space-
time surface with commutative or co-commutative tangent space. Also these 2-surfaces would
be critical. In the generic case commutativity/co-commutativity allows only 1-D curves.

At partonic orbits defining boundaries between Minkowskian and Euclidian space-time re-
gions inside CD the string world sheets degenerate to the 1-D orbits of point like particles at
their boundaries. This conforms with the twistorial description of scattering amplitudes in
terms of point like fermions.

For critical space-time surfaces representing incoming states string world sheets are possible
as commutative/co-commutative surfaces (as also partonic 2-surfaces) and serve as correlates
for (long range) entaglement) assignable also to macroscopically quantum coherent system
(heff/h = n hierarchy implied by adelic physics).
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7. The octonionic polynomials with real coefficients form a commutative and associative algebra
allowing besides algebraic operations function composition. Space-time surfaces therefore
form an algebra and WCW has algebra structure. This could be true for the entire hierarchy
of Cayley-Dickson algebras, and one would have a highly non-trivial generalization of the
conformal invariance and Cauchy-Riemann conditions to their n-linear counterparts at the
n:th level of hierarchy with n = 1, 2, 3, .. for complex numbers, quaternions, octonions,... One
can even wonder whether TGD generalizes to this entire hierarchy!

8. In the original version of this article I did not realize that there are two options for realizing
the idea that the M4

c projection of space-time surface in M8
c must belong to M4.

(a) I proposed that the projection from M8
c to real M4 (for which M1 coordinate is real

and E3 coordinates are imaginary with respect to i!) defines the real space-time surface
mappable by M8 −H duality to CP2 [L6].

(b) An alternative option, which I have not considered in the original versions of [L6, L8] is
that only the roots of the 4 vanishing polynomials as coordinates of M4

c belong to M4 so
that m0 would be real root and mk, k = 1, ..., 3 imaginary with respect to i→ −i. M8

c

coordinates would be invariant (“real”) under combined conjugation i→ −i, Ik → −Ik.
In the following I will speak about this property as Minkowskian reality. This could
make sense. Outside CD these conditions would not hold true. This option looks more
attractive than the first one. Why these condition can be true just inside CD, should
be understood.

9. The use of polynomials or rational functions could be also an approximation. Analytic
functions of real variable extended to octonionic functions would define the most general
space-time surfaces but the limitations of cognition would force to use polynomial approxi-
mation. The degree n of the polynomial determining also heff = nh0 would determine the
quality of the approximation and at the same time the “IQ” of the system.

All big pieces of quantum TGD are now tightly interlinked.

1. The notion of causal diamond (CD) and therefore also ZEO can be now regarded as a conse-
quence of the number theoretic vision and M8−H correspondence, which is also understood
physically.

2. The hierarchy of algebraic extensions of rationals defining evolutionary hierarchy corresponds
to the hierarchy of octonionic polynomials.

3. Associative varieties for which the dynamics is critical are mapped to minimal surfaces with
universal dynamics without any dependence on coupling constants as predicted by twistor lift
of TGD. The 3-D associative boundaries of non-associative 4-varieties are mapped to initial
values of space-time surfaces inside CDs for which there is coupling between Kähler action
and volume term.

4. Free many particle states as algebraic 4-varieties correspond to product polynomials in the
complement of CD and are associative. Inside CD the addition of interaction terms vanishing
at its boundaries spoils associativity and makes these varieties connected.

5. The super variant of the octonionic algebraic geometry makes sense, and one obtains a
beautiful correlation between the fermion content of the state and corresponding space-time
variety. This suggests that twistorial construction indeed generalizes. Criticality for the
external particles giving rise to additional constraints on the coefficients of polynomials could
make possible to have well-define summation over corresponding varieties.

What mathematical challenges one must meet?

1. One should prove more rigorously that criticality is possible without the reduction of dimen-
sion of the space-time surface.
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2. One must demonstrate that SSA conditions can be true for the images of the associative
regions (with 3-D or 4-D). This would obviously pose strong conditions on the values of
coupling constants at the level of H.

Concerning the description of interactions there are several challenges.

1. Do associative space-time regions have minimal surface extremals as images in H and indeed
obeying universal critical dynamics? As found, the study of the known extremals supports
this view.

2. Could one construct the scattering amplitudes at the level of M8? Here the possible problems
are caused by the exponents of action (Kähler action and volume term) at H side. Twistorial
construction [K20] however leads to a proposal that the exponents actually cancel. This
happens if the scattering amplitude can be thought as an analog of Gaussian path integral
around single extremum of action and conforms with the integrability of the theory. In fact,
nothing prevents from defining zero energy states in this manner! If this holds true then it
might be possible to construct scattering amplitudes at the level of M8.

3. What about coupling constants? Coupling constants make themselves visible at H side
both via the vanishing conditions for Noether charges in sub-algebra of SSA and via the
values of the non-vanishing Noether charges. M8 − H correspondence determining the 3-
D boundaries of interaction regions within CDs suggests that these couplings must emerge
from the level M8 via the criticality conditions posing conditions on the coefficients of the
octonionic polynomials coding for interactions.

Could all coupling constant emerge from the criticality conditions at the level of M8? The
ratio of R2/l2P of CP2 scale and Planck length appears at H level. Also this parameter should
emerge from M8 −H correspondence and thus from criticality at M8 level. Physics would
reduce to a generalization of the catastrophe theory of Rene Thom!

4. The description of interactions at the space-time surface associated with single CD should be
M8 counterpart of the H picture in which 3 light-like partonic orbits meet at common end
topological vertex - defined by a partonic 2-surface and fermions scatter without touching.
Now one has octonionic sparticle lines and interaction vertex becomes possible. This conforms
with the idea that interactions take place at discrete points belonging to the extension of
rationals. The partonic 2-surfaces defining topological vertices would naturally correspond
to the intersections X2 = X4 ∩ S6(tn). If sparticle lines are allowed to move along this
space-like 2-surface (the line becomes space-like) they can intersect and give rise to a fusion
vertex producing the third fermionic line.

The partonic 2-surfaces defining topological vertices would naturally correspond to the inter-
sections X2 = X4 ∩ S6(tn), which satisfy RE(P ) = IM(P ) = 0 and are singular and doubly
critical. If sparticle lines are allowed to move along this space-like 2-surface (the line becomes
space-like) they can intersect and give rise to a fusion vertex producing the third fermionic
line.

5. Real analyticity requires that the octonionic polynomials have real coefficients. This forces
the origin of octonionic coordinates to be at real line (time axis) in the octonionic sense, and
guarantees the associativity and commutativity of the polynomials. Arbitrary CDs cannot
be located along this line. Can one assume that all CDs involved with observable processes
satisfy this condition?

If not, how do the 4-varieties associated with octonionic polynomials with different origins
interact? How could one avoid losing the extremely beautiful associative and commutative
algebra? It seems that one cannot form their products and sums and must form the Cartesian
product of M8:s with different tips for CDS and formulate the interaction in this framework.
In the case of space-time surfaces associated with different CDs the discrete intersections of
space-time surfaces would define the interaction vertices.

6. Super-octonionic geometry suggests that the twistorial construction of scattering amplitudes
in N = 4 SUSY generalizes to TGD in rather straightforward manner to a purely geometric
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construction. Functional integral over WCW would reduce to summations over polynomi-
als with coefficients in an appropriate extension of rationals and criticality conditions on
the coefficients could make the summation well-defined by bringing in finite measurement
resolution.

If scattering diagrams are associated with discrete cognitive representations, one obtains a
generalization of super-twistor formalism involving polygons. Super-octonions as counter-
parts of super gauge potentials are well-defined if octonionic 8-momenta are quaternionic:
indeed, Grassmannians have quaternionic counterparts but not octonionic ones. There are
good hopes that the twistor Grassmann approach to N = 4 SUSY generalizes. The core part
in the calculation of the scattering diagram would reduce to the construction of octonionic
4-varieties and identifying the points belonging to the extension of rationals considered. The
rest would be dictated by symmetries and integrations over various moduli spaces, which
should be number theoretically universal so that residue calculus strongly suggests itself.

7. What is the connection with super conformal variant of Yangian symmetry, whose generaliza-
tion in TGD framework is highly suggestive? Twistorial construction of scattering amplitudes
at the level of M8 looks highly promising idea and could also realize Yangian supersymmetry.
The conjecture is that the twistorial amplitudes decompose to M4 and CP2 parts with similar
structure with E4 spin (electroweak isospin) replacing ordinary spin and that the integrands
in Grassmannians emerging from the conservation of M4 and E4 4-momenta are identical in
the two cases and thus guarantee Yangian supersymmetry in both sectors. The only differ-
ence would be due to the product of delta functions associated with the “negative helicities”
(weak isospins with negative sign) expressible as a delta function in the complement of SU(3)
Cartan algebra U(1)× U(1) by using exponential map.

It is appropriate to close with a question about fundamentals.

1. The basic structure at M8 side consists of complexified octonions. The metric tensor for the
complexified inner product for complexified octonions (no complex conjugation with respect
to i for the vectors in the inner product) can be taken to have any signature (ε1, ..., ε8),
εi = ±1. By allowing some coordinates to be real and some coordinates imaginary one
obtains effectively any signature from say purely Euclidian signature. What matters is that
the restriction of complexified metric to the allowed sub-space is real. These sub-spaces are
linear Lagrangian manifolds for Kähler form representing the commuting imaginary unit i.
There is analogy with wave mechanics. Why M8 -actually M4 - should be so special real
section? Why not some other signature?

2. The first observation is that the CP2 point labelling tangent space is independent of the
signature so that the problem reduces to the question why M4 rather than some other signa-
ture (ε1, .., ε4). The intersection of real subspaces with different signatures and same origin
(t, r) = 0 is the common sub-space with the same signature. For instance, for (1,−1,−1,−1)
and (−1,−1,−1,−1) this subspace is 3-D t = 0 plane sharing with CD the lower tips of CD.
For (−1, 1, 1, 1) and (1, 1, 1, 1) the situation is same. For (1,−1,−1,−1) and (1, 1,−1,−1)
z = 0 holds in the intersection having as common with the lower boundary of CD the bound-
ary of 3-D light-cone. One obtains in a similar manner boundaries of 2-D and 1-D light-cones
as intersections.

3. What about CDs in various signatures? For a fully Euclidian signature the counterparts
for the interiors of CDs reduce to 4-D intervals t ∈ [0, T ] and their exteriors and thus the
space-time varieties representing incoming particles reduce to pairs of points (t, r) = (0, 0)
and (t, r) = (T, 0): it does not make sense to speak about external particles. For other
signatures the external particles correspond to 4-D surfaces and dynamics makes sense. The
CDs associated with the real sectors intersect at boundaries of lower dimensional CDs: these
lower-dimensional boundaries are analogous to subspaces of Big Bang (BB) and Big Crunch
(BC).

4. I have not found any good argument for selecting M4 = M1,3 as a unique signature. Should
one allow also other real sections? Could the quantum numbers be transferred between
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sectors of different signature at BB and BC? The counterpart of Lorentz group acting as a
symmetry group depends on signature and would change in the transfer. Conservation laws
should be satisfied in this kind of process if it is possible. For instance, in the leakage from
M4 = M1,3 to Mi, j, say M2,2, the intersection would be M1,2. Momentum components
for which signature changes, should vanish if this is true. Angular momentum quantization
axis normal to the plane is defined by two axis with the same signature. If the signatures of
these axes are preserved, angular momentum projection in this direction should be conserved.
The amplitude for the transfer would involve integral over either boundary component of the
lower-dimensional CD.

Could the leakage between signatures be detected as disappearance of matter for CDs in
elementary particle scales or lab scales?

5. One can also raise a question about the role of WCW geometry as a continuous infinite-
D geometry: could the discretization by cognitive representations making WCW effectively
discrete mean its loss? It seems that this cannot be the case. At least in the real sector
continuum must be present and the discretization reflects only the discreteness of cognitive
representations. In principle continuous WCW could make sense also in p-adic sectors of the
adele.

The identification of space-time surfaces as zero loci of polynomials generalizes to rational
functions and even transcendental functions although the existence of the p-adic counterparts
of these functions requires additional conditions. Could one interpret the representation
in terms of polynomials and possibly rational functions as an approximation? Could the
hierarchy of approximations obtained in this manner give rise to a hierarchy of hyper-finite
factors of type II1 defining a hierarchy of measurement resolutions [K25]?
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