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1. Introduction 3

Abstract

This article is a commentary of the work of Dumitrescu et al, which is based on a computer
simulation of a quantum computer program realizing unitary evolution believed to make sense
as a model for that of time quasi-lattice. We do not really understand what makes the time
(quasi-)lattices: the needed physics is not understood.

Therefore the key question is how time (quasi-)lattices are possible in TGD Universe: here
zero energy ontology (ZEO) provides a mechanism minimizing the dissipation: time reversal
occurring in state function reductions gives rise to time reversed dissipation and dissipation
in reversed time direction looking like automatic error correction. This relates to the long
lifetime of entanglement, easy to achieve in the unitary evolution but more difficult in the
dissipative real world.

The popular article at Phys.org talks somewhat misleadingly about 2-D time although
the time values in discretization span 2-D algebraic extension of rationals. The effective N-
dimensionality in the algebraic sense is a basic prediction of adelic physics, which involves
cognitive representations as unique number theoretical discretization of space-time surface
relying on the hierarchy of extensions of rationals. In the real physics sense one would have
1-D time but in algebraic sense N-dimensional time.

The claimed dynamical emergence of symmetries making possible symmetry protected
short range entanglement for edge states of the ion array is not really understood and is
therefore interesting from the TGD viewpoint. Same applies to the notion of topologically
preserved long range entanglement: also here the new physics predicted by TGD can help.

The article mentions also the possibility of quantum coherent units of N qubits behaving
like single multi-qubit. The notion of dark N-particles emerges naturally from the number
theoretical view of TGD. The dark N-particle would be an analog of the color singlet hadron,
and the color group would be replaced by the Galois group. The existence of these kinds of
states would mean a revolution in quantum computation and there already exists evidence for
N-photons.

1 Introduction

The popular article ”Strange phase quantum dimensions” at Phys.org (https://cutt.ly/XL5G2bi)
tells about the article ”Dynamical topological phase realized in a trapped-ion quantum simulator”
published by Dumitrescu et al [B1] (https://cutt.ly/6L5GNjI).

The popular article tells of a new phase of exotic matter created in a quantum computer. This
phase has a very long life-time challenging the standard wisdom about physics. This somewhat
hypish formulation might create the impression that the new phase was created in the lab: this is
not the case.

1.1 What has been done?

The abstract of the original article [B1] gives some idea of what is done.

Nascent platforms for programmable quantum simulation offer unprecedented access to
new regimes of far-from-equilibrium quantum many-body dynamics in (approximately)
isolated systems. Here, achieving precise control over quantum many-body entangle-
ment is an essential task for quantum sensing and computation.

Extensive theoretical work suggests that these capabilities can enable dynamical phases
and critical phenomena that exhibit topologically-robust methods to create, protect,
and manipulate quantum entanglement that self-correct against large classes of er-
rors. However, to date, experimental realizations have been confined to classical (non-
entangled) symmetry-breaking orders].

In this work, we demonstrate an emergent dynamical symmetry protected topological
phase (EDSPT) , in a quasiperiodically-driven array of ten 171Yb+ hyperfine qubits in
Honeywell s System Model H1 trapped-ion quantum processor.

This phase exhibits edge qubits that are dynamically protected from control errors,
cross-talk, and stray fields. Crucially, this edge protection relies purely on emergent
dynamical symmetries that are absolutely stable to generic coherent perturbations.

https://cutt.ly/XL5G2bi
https://cutt.ly/6L5GNjI
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This property is special to quasiperiodically driven systems: as we demonstrate, the
analogous edge states of a periodically driven qubit-array are vulnerable to symmetry-
breaking errors and quickly decohere.

Our work paves the way for implementation of more complex dynamical topological
orders [6] that would enable error-resilient techniques to manipulate quantum informa-
tion.

In the abstract authors tell that they have demonstrated an emergent dynamical symmetry
protected topological phase (EDSPT), in a quasi-periodically driven array of ten 171Yb+ hyperfine
qubits in Honeywell s System Model H1 trapped-ion quantum processor. The temperature is very
low since the energy scale for transitions between qubits is that of hyper-fine splittings.

The first challenge is to understand what the acronym EDSPT might mean.

1. One can consult the Wikipedia article (https://cutt.ly/rL5GK7Z) in order to understand
the meaning of symmetry protected topological phase (STP). STP is a kind of order in zero
temperature quantum state, which has emergent symmetry and a finite energy gap. STP has
short range entanglement. protected by a dynamically generated symmetry. Distinct SPT
states cannot be transformed to each other without a phase transition but all STP states
can be transformed to a trivial product state by a symmetry violating deformation. SPT
does not have emergent gauge symmetry nor emergent fractional charge/fractional statistics.
The gapless boundary excitations, edge states, are only symmetry (rather than topology)
protected.

2. The emergent dynamical symmetry (EDS) means that the symmetry emerges as a dynamical
symmetry. It would appear because of the quasiperiodic driving of the system by laser pulses
inducing spin rotations which are near 4π in which case the rotations are trivial: one is near
criticality.

These states exhibit edge qubits, which are absolutely stable against generic coherent per-
turbations unlike their analogs in periodically driven systems (see Fig 1. of https://cutt.
ly/6L5GNjI). Why should the aperiodic driving cause this?

1.1.1 Computer simulation of Fibonacci and Floquet processes

The results of computer simulations of time (quasi)-crystals [?] and Floquet time crystal [D1],
realized as unitary time evolutions represented by quantum computer programs, are compared.
These quantum computer programs leave the real physics behind (quasi-)time crystals open.

1. In the model of time quasi-crystal as a Fibonacci proces, the time values tn define an analog
of growth process. Fibonacci times tn = Fn = Fn−1 + Fn, which as such are rational, ap-
proach asymptotically to tn = Fn ' φn/

√
5, φ = (1 +

√
5)/2 so that one obtains 2 times in

algebraic sense defined by the extension of rationals generated by
√

5. The extension of ratio-
nals emerges only asymptotically. Note that the time values are asymptotically obtained as
scalings from the basic value by φn. In the simulation only rational values of time coordinate
appear. One must of course notice that there is a finite accuracy involved. Also the unitary
evolution can be regarded as an analog of the growth process, but at the level of state space.

2. The simulations of quantum Fibonacci process suggest the existence of a symmetry protected
phase of ordinary matter such that the symmetry protected edge states at the end of qubit
chain have period 3 stable correlations unlike in the bulk inside the chain. In the periodic
Floquet process these stable edge state correlations do not emerge. Why? A possible expla-
nation is that the Fibonacci evolution at step n+ 1 is a product of evolutions at levels n and
n− 1 so that there is a kind of repetition involved. Could this repetition prevent the decay
of the correlations for the edge states at ends of the ion array?

1.1.2 Description of the Fibonacci process

The authors study what they call Emergent Dynamical Symmetry Protected Topological Phase
(EDSPT) in Fibonacci drive, which is essentially a quasiperiodic unitary time evolution. I will

https://cutt.ly/rL5GK7Z
https://cutt.ly/6L5GNjI
https://cutt.ly/6L5GNjI
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talk about the Fibonacci process in the sequel. The Fibonacci process is assumed to create a time
quasi-crystal and it does so in absence of dissipation. The Fibonacci process is compared with a
Floquet process which is a periodic process supposed to create a time crystal.

1. Unitary time evolution for the Fibonacci process (see Fig 1. of https://cutt.ly/6L5GNjI)
is realized in terms of two non-commuting unitary evolutions Ux and Uz assignable to 2-
gates. These evolutions would start to act at times t = Fn, where Fn is Fibonacci number
and satisfy the recursion formula Un+1 = Un−1Un, U(0) = U(1) = 1. This is analogous to
Fn+1 = Fn−1 + Fn, F (0) = F (1) = 1 so that unitary evolution can be seen as an analog of
the growth process.

Fibonacci time n is essentially the logarithm of ordinary time for large values of n from tn =
Fn ' φn/

√
5. φ = (1+

√
5)/2. log(tn) = nlog(φ)−log(

√
5) gives n = (log(t)+log(

√
5)/log(φ).

The unitary time evolution has an approximate interpretation as a sequence of evolutions by
scalings with respect light-cone proper time a in good approximation identical with linear
Minkowski time near origin, which correspond to translations with respect to Fibonacci time
n.

2. The 2-gates used in Fibonacci drive represent spin rotations around x- and z-axis by angle
4π − ∆θ. The value of ∆θ = .05 × 4π = 2π/10 is rather near 4π. ∆Θ happens to be the
twist angle in the DNA strand and 1/2 of the angle 2π/5 assignable to the pentagon defining
a face of the dodecahedron.

The spin rotations around z and x-axis generate an infinite subgroup of SU(2). The repre-
sentations of 2-gates as spin rotations of neighboring 2 spins are UXXθ

= exp(−(i/2)σx⊗ σx

and UZZθ
= exp(−(i/2)σz ⊗ σz (see Fig 1. of https://cutt.ly/6L5GNjI). The value of

∆θ = 4π − θ = .05× 4π = 2π/10 is near 4π.

The spin rotation represented by UXXθ
corresponds to cos(θ)1⊗ 1 + sin(θ)σx ⊗ σx. There-

fore the actions of these unitaries is very near to a rotation by 4π so that the change of
the state is small. The spin rotations around z- and x-axis generate an infinite discrete sub-
group of SU(2), which at the limit θ = 4π reduces to identity by infinite degeneracy. The
interpretation in terms of near criticality makes sense.

3. Also 1-gates representing spin rotations, realized in terms of magnetic fields Bx and Bz

having random directions, used to represent perturbations, are involved (see Fig 1. of https:
//cutt.ly/6L5GNjI).

A couple of comments on the findings are in order.

1. Edge state correlation functions are found to have a characteristic 3-periodicity with respect
to Fibonacci time, which for light-cone proper time a corresponds to quasiperiodicity coming
as powers of 3: could this relate to 3-adicity? In the TGD framework, scalings define fun-
damental unitary time evolutions and this would be very relevant for the modelling of spin
glasses [L17].

2. Quasiperiodicity characterized in terms of Fibonacci numbers is reported to be essential for
the generation of stable edge states. The repetitive nature of the time evolutions could be
the underlying reason for this.

3. The generation of dynamical symmetries is a part of the proposed paradigm. The systems
considered would be characterized by the emergence of an extensive number of local conser-
vation laws, and associated local integrals of motion (LIOMs).

1.1.3 Questions raised by the article

The theoretical background in the model is ordinary condensed matter physics but, as Anderson
has said, there is no theory of condensed matter so that the models are phenomenological and to
my understanding, also highly speculative.

TGD leads to a new view of condensed matter [L18] involving several new notions. Therefore
it would be an instructive exercise to try to transform the notions and proposals of the article to

https://cutt.ly/6L5GNjI
https://cutt.ly/6L5GNjI
https://cutt.ly/6L5GNjI
https://cutt.ly/6L5GNjI
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the TGD context. This exercise could also makes it possible to learn about TGD and check the
internal consistency of various ideas.

Number theoretic (adelic) physics [L2, L3] is an essential element of TGD, as also M8 − H
duality relating number theoretical and geometric visions of physics.

In TGD, the speculative assumptions of the model could be perhaps reduced to new physics.

1. The zero energy ontology (ZEO) of TGD [K15, K16] [L7, L5, L12, L16, L24] suggests a first
principle explanation for the behavior of time (quasi-)crystals. In the article the existence of
time crystals is however taken as granted.

2. Edge spin states, possibly identifiable as anyons, could in TGD be replaced with entire irreps
of the Galois group Gal or its isotropy group GalI leaving a given root invariant, which could
be assigned to the edge and boundary states.

3. Multi-spin interactions treating subsets of spins as coherent units would be natural in TGD,
which predicts so-called N -particles as quantum coherent units.

4. The automorphism group of quaternions, which defines an analog of the Galois group acting
in electron spin degrees of freedom, is a possible candidate for the emergent symmetries
responsible for short range entanglement.

1.1.4 What makes possible long range entanglement?

In the TGD framework, long range entanglement could be protected by topology or by Galois
symmetry, which might closely relate to the hierarchy of subalgebras of super symplectic algebra
(SSA) acting as gauge symmetries [L6].

1. Topological order, which leads to long range entanglement, would be associated with topo-
logical quantum computation (TQC) realized in terms of braids represented by monopole
flux tube structures [L29, L31].

2. In the number theoretic vision, the Galois group of extensions of rationals associated with the
monic polynomial P determining space-time surface acts as a number theoretic symmetry
group.

Galois confinement [L32, L22, L23, L24] means that physical states are Galois singlets and
implies that momentum components are ordinary integers rather than algebraic integers.

The weaker form of Galois confinement states that states are singlets with respect to the
isotropy group of a given root, whose value corresponds to a value of mass squared. Galois
confinement defines a universal mechanism for the formation of bound states: for instance,
Cooper pairs could be formed in this way [L18].

The Galois group is an ideal candidate for a dynamically emerging symmetry, which hower
defines a long range order rather than short range order.

3. In the H picture, hierarchies of dynamically emerging symmetries could correspond to hierar-
chies of supersymplectic symmetry algebras (SSA) [L6] generating groups acting as isometries
of the ”world of classical worlds” WCW [K9, L20].

Each level in the hierarchy of subalgebras SSAn of SSA corresponds to a transformation in
which SSAn acts as a gauge symmetry and its complement acts as genuine isometries of
WCW: gauge symmetry breaking in the complement generates a genuine symmetry, which
could correspond to Kac-Moody symmetry. By Noether’s theorem, the isometries of WCW
give rise to local integrals of motion: also super-charges are involved.

The symmetries would naturally correspond to a long range order. The hierarchies of SSAn:s,
of relative Galois groups and of inclusions of hyperfinite factors [K13, K4] could relate to each
other as M8 −H duality suggests [L28].
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1.1.5 What could make possible symmetry protected entanglement?

What about the symmetry protected entanglement?

1. The number theoretic dynamics involves associativity as a dynamical principle. The normal
space of 4-surface inM8 is quaternionic so that the automorphism group SO(3) of quaternions
define a natural candidate for a number theoretic symmetry group analogous to the Galois
group. These rotations naturally induce rotations of the tangent space of the space-time
surface and the idea that the ordinary rotation group of E3 could be cognitively represented
in terms of quaternion automorphisms is natural.

In the TGD framework, the covering group SU(2) of the quaternionic automorphism group
SO(3) plays the role of the Galois group in spin degrees of freedom.

2. The discrete subgroups of quaternionic automorphisms define a natural candidate for the
emerging short scale symmetries.

1.1.6 Is there a connection with the physics of DNA?

The work of Dumitrescu et al [B1] also shows intriguing numerical co-incidences suggesting that
the TGD analog of the Fibonacci process could have connections with DNA.

1. ∆Θ = 2π/10 happens to be the twist angle between nucleotides in the DNA strand and 1/2
of the angle 2π/5 assignable to the pentagon appearing in the dodecahedron.

2. One can wonder whether the reported 3-periodicity could relate to the fact that DNA codon
consists of 3 nucleotides.

3. The TGD based model for the genetic code [L15] involves the symmetries of icosahedron and
tetrahedron. Could the free product of the covering groups of the isometries of icosahedron
and (say) tetrahedron (defining finite subgroups of SU(2)) having an infinite number of
elements emerge in the proposed model as a hidden possibly approximate symmetry group?
Very probably, this is not the case.

Could these two groups correspond to a Galois group associated with a composite polynomial
PI ·PT having the isometry groups of icosahedron and tetrahedron as relative Galois groups?
In the model this is probably not the case.

This kind or organization of finite subgroups to finite groups acting as Galois groups is how-
ever an interesting possibility and might relate to the hierarchies of inclusions of hyperfinite
factors of type II1 [K13, ?] as a counterpart for the hierarchies of inclusions of Galois groups
defined by functional composites of polynomials.

1.2 What perspective should I adopt?

The article Dumitrescu et al [B1] tells only about the results of simulations of quantum computer
programs rather than reporting an outcome of a real-life experiment.

What perspective should I adopt in order to avoid trying to explain standard physics in terms
of new physics? The model of Dumitrescu et al is a simulation based on standard physics inspired
speculative assumptions. It does not involve notions like ZEO and number theoretical physics so
that it does not make sense to apply the TGD view to explain the findings of the model.

Therefore TGD could be only used to justify the assumptions of the model. The best that I
can do is just try to understand what has been done and ask whether the system considered could
have analogies in the TGD framework and help to make the TGD inspired view more precise.

2 TGD view about the needed notions of condensed matter
physics

TGD relies on two dual visions: geometric and number theoretic views of physics [L20].
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1. Geometric approach [K5, K3, K14, K9] is the Einsteinian view about physics as geometry
but modified and generalized so that it applies to entire quantum physics. The notion of the
”world of classical worlds” (WCW) is fundamental. By its infinite-dimensionality its Kähler
geometry is expected to be unique. The existence of the twistor lift of TGD fixes the choice
of H uniquely to H = M4 × CP2 [L22, L23].

2. Number theoretic approach, adelic physics [L2, L3], is something totally new, and relies on
extensions of rationals defining a heff hierarchy as a hierarchy of effectively dark matters; on
p-adic number fields forming an adelic structure [K10]; and on classical number fields [K11]
that is reals, complex numbers, quaternions, and octonions.

One could say that the number theoretic physics provides a discrete cognitive representa-
tion of real number based physics relying on geometric notions, in particular on differential
geometry.

M8 −H duality [L9, L10], which is analogous to momentum-position duality relates the geo-
metric and number theoretic visions. Indeed, M8 is essentially momentum space and the physics
at the level of momentum space is algebraic, consider as example only free massless field equations
and the free Dirac equation.

The dynamics at the level of M8 is determined by polynomials P whose roots give mass shells
H3 of M4 ⊂M8 as solutions which provide holographic data for their continuation to a 4-D surface,
which obeys number theoretic dynamics stating that the normal space is associative (quaternionic).

This 4-D surface of M8 is mapped to a space-time surface in H = M4 × CP2 by M8 − H
duality. One can say that space-time surfaces are determined by rational polynomials, which could
be actually monic polynomials with integer coefficients.

At the level of H = M4 × CP2 physics is differential geometric and twistor lift implies that
the space-time surfaces are determined by field equations and turn out to be minimal surfaces
with lower-dimensional singularities: space-time surface is analogous to a soap film with frames
[L21]. The volume term in the action corresponds to length scale dependent cosmological constant
approaching zero in long scales [L1, L4, L8].

There are many interesting questions to be considered. What are the number theoretic (M8)
and differential geometric (H) descriptions of time (quasi-)crystals? The differential geometric
description in H could be as (quasi)-periodic minimal 4-surfaces with singularities [L21]. These
space-time surfaces would correspond to a hierarchy of extensions of rationals characterizing the
algebraic complexity of these 4-surfaces. Time (quasi-)crystals provide also a test bench for ZEO,
which should make their existence possible.

2.1 About the TGD counterparts of key notions

It is instructive to consider the basic notions from the TGD point of view in more detail.

2.1.1 The importance of the energy feed

A small energy feed in terms of laser pulses is necessary to create (quasi-)time chrystals.

1. The article talks about the new phase as a dynamical phase associated with non-equilibrium
thermodynamics. Quite generally, the generation of thermodynamic non-equilibrium states
requires an energy feed.

The generation of heff = nh0 phases of ordinary matter requires energy feed since the energies
for states quite generally increase as a function of heff . The larger the value of heff , the
higher the dimension of extension or rationals, and the larger the algebraic complexity.

In biology, metabolic energy feed is needed to preserve the distribution of the values of heff
since heff tends to decrease spontaneously [L26, L27, L25]. If short range order is in question,
the values of heff in TGD picture would be not too large unlike for topological order.

2. The energy feed would be extremely small in the case of time (quasi-)crystals [L18]. This
is not easy to understand in the standard physics framework. In TGD, ZEO would change
the situation. During the time reversed periods, the system would extract energy from the
environment, which would lead to self-organization by time reversed dissipation. This would
also provide an automatic error correction procedure requiring no program.
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2.1.2 About time (quasi-)crystals

Consider first time (quasi)-crystals.

1. Time (quasi)-crystals are extremely interesting systems. Time (quasi-)crystal manages to
behave almost like a perpetuum mobile. The only energy feed consists of periodic or (quasi-
)periodic laser pulses.

The mystery is how the dissipation can be so small. In the zero energy ontology (ZEO)
[L7, L24] [K15], which is behind TGD based quantum theory, time (quasi-)crystals could be
systems for which (quasi-)periodically occurring ”big” state functions reductions (BFSRs)
induced by laser pulses would reverse the arrow of time and are followed by second BSFR
re-establishing the arrow of time. In living matter various biorhythms, such as sleep-awake
rhythm and breathing rhythm, would rely on this kind of sequence.

2. Geometrically, quasicrystal can be understood as a projection of higher-D crystal on lower-D
sub-space, say 2-D plane. The higher dimensions are regarded as an auxiliary tool rather
than being real. Therefore the claim of the popular article that there are two time dimensions
involved is grossly misleading.

3. One way to construct quasicrystals is based on algebraic extensions of rationals, which in
TGD framework define a hierarchy of effective Planck constants heff = nh0, n the dimension
of algebraic extension. heff characterizes phases of ordinary matter which behave in many
respects like dark matter.

4. The m roots of an irreducible polynomial define an extension with dimension which is at
most n = m!. Large values of heff make possible quantum coherence in long scales and in
the TGD framework this would have quite dramatic consequences concerning for instance
quantum computations [L29, L31]. Also in biology the implications would be profound.

As a pedagogical example, which is not directly related to the proposal of the article [?], one
can consider a discretization of time by starting from a periodic situation t = nt0. One can
replace discrete time values in the extension of rationals: say tm,n = (m+ n

√
5)t0. One has

2-D lattice in the algebraic sense but 1-D lattice in topological sense. One can also think that
one has two 1-D lattices with lattice cell sizes which are in ratio

√
5. Note that this lattice

does not directly relate to the lattice considered in the article. A sub-lattice defined by the
powers of Golden Mean for which Fibonacci numbers F (n) serve as an approximation, would
be in question.

The roots of the second order polynomial defining Golden mean allow to define this kind of
lattice. Technically, this point set could be seen as a projection of 2-D ordinary lattice to a
suitably chosen 1-D line (in real sense) so that one obtains algebraic points mentioned. In
topological sense, one has a discrete set of points along the real time axis.

5. Quite generally, the algebraic numbers, in particular algebraic integers, of an algebraic ex-
tension assignable to the roots of a polynomial with rational coefficients define points of a
space, whose dimension is the order of the Galois group in an algebraic sense, not in the
sense of real topology.

2.1.3 Fermi ball and Fermi surface

Cognitive representations correspond to points of 4-surface X4 ⊂ M8 consisting of momenta for
which the components of M4 ⊂ M8 momenta are algebraic integers in an extension of rationals
defined by a polynomial P defining as its roots mass shells H3, which in turn define by holography
a 4-surface X4 of M8 going through them and mapped to H by M8 −H duality.

At the mass shells H3 cognitive explosion takes place in the sense that virtual momenta with
components, which are algebraic integers, are possible In the interior of X4, the number of points
of cognitive representation is discrete and typically finite. If there is a fundamental fermion at
a given point satisfying this condition, one can say that the point of cognitive representation is
active.
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The momenta inside the Fermi ball-like object [L18] would be active, that is populated by
fundamental fermions (quarks in the simplest scenario for which leptons would be 3-quark states).
The boundary states would reside at the 2-D boundary of this object and separated by a mass
gap in the general case, say in the case of superconductivity. They would be mapped by M8 −H
duality to a membrane-like object in H. Also 1-D edges as string connecting membranes populated
by fermions would be present.

2.1.4 Edge- and boundary states

The existence of edge and boundary states, the TGD view about boundary layers in hydrodynam-
ical system, and the role of cell membrane in biology motivate the idea that membranes with 2-D
E3 projection and 1-D CP2 projection are fundamental quantum objects appearing in all scales.

It must be emphasized that the actual presence of membranes as quantum coherent systems is
still a speculative idea and basically motivated by hydrodynamical considerations and cell mem-
branes.

What is certain is that the original proposal about the existence of 3-surfaces with boundaries is
not favored mathematically. The 3-surfaces are expected to be closed and by their finiteness must
define multiple coverings of E3. This means that the 2-surfaces at which the sheets of the covering
meet each other appear effectively as boundaries of 3-surface in E3. This might be enough.

Note that for magnetic flux tubes the cross section of the flux tube is a closed 2-surface unlike
in Maxwellian picture and also now one can ask whether 2-D cylindrical membrane accompanies
the flux tube.

M8 −H duality [L9, L10] suggests that these 2-D surfaces of E3 ⊂M4 ⊂ H are accompanied
by genuine membrane-like entities.

1. The membranes in H could be seen as H counterparts for the 2-surfaces assignable in M8

to states separated by a gap from the Fermi surface and therefore analogous to conduction
bands. Edge states could be also seen as points at which this 2-surface touches the counterpart
of the Fermi surface: at this limit the connecting string would contract to a point.

2. M8 − H duality [L9, L10] requires that the membranes in H are images of corresponding
objects in M8 under M8 −H duality. The pre-images of 3-D singularities of 4-D soap films
(such as light-like orbits of partonic 2-surfaces) would correspond to 3-D surfaces in X4 ⊂M8

with 1-D commutative normal subspace inside tangent space of X4 and have well-ordering.

3. The preimages of 2-D singularities (string world sheets and partonic 2-surfaces) would have
2-D commutative normal space inside X4. 1-D strings would have 3-D normal space in X4

but this has no special number theoretic property. As curves in H3 identifiable as string
world sheets boundaries they can have commutative normal subspace in H3.

1. The states assignable to the boundaries of the generalization of Fermi sphere as set of H3

would define by number theoretic holography a space-time surface, whose M4 ⊂ H projec-
tions is 3-D and CP2 projection is 1-D. The E3 projection would be 2-D membranes.

The CP2 projection must be dynamical: otherwise the membrane as a M4 projection cannot
be closed [L21]. The projections to H3 would be 2-D and 1-D strings in the case of edge
states.

2. Universe could be filled with membrane-like structures defining the nodes of a network and
flux tubes defining connections between the nodes. The boundary between two phases like
water and air provides one example.

I have proposed a quantum model for hydrodynamical turbulence as a generation of vortices
in the boundary layer of fluid flow [L19, L34]. The assumption that the phase boundary
involves a membrane-like surface with a large value of heff assigned also to the accompanying
monopole magnetic flux tubes [L27, L25] conforms with this view. One can ask whether
the boundary states relate to the boundary layer in hydrodynamics as a quantum coherent
structure, which is analogous to skin [L19] and predecessor of the nervous system.

One could assign membranes even with the boundaries of molecules. Edge states might
be associated with string- like entities connecting these membranes. All these objects as
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preferred extremals of the action principle for twistor lift of TGD [L1, L4] would correspond
to lower-D singularities of minimal surfaces at which the action principle would be defined
by a volume term plus Kähler action.

3. Surface states could be associated with the membrane like structures in turn connected by
strings having ends carrying edge states. Number theoretic description predicts that these
phases have heff = nh0 > h, where n is the dimension of the algebraic extension and order
of the Galois group of the extension defined by a polynomial P . In many respects, these
phases behavelike dark matter. Large value of heff could theoretically explain the reported
long life time [B1] for the TGD analog of the claimed new phase.

2.2 Orders and symmetries

TGD suggests a general view about the realizations of the notions of order and symmetry.

2.2.1 Dynamical emergence of symmetries and their breaking

In [?] the emergence of dynamical symmetries and their breaking is mentioned.

1. The dynamical symmetry breaking cannot correspond to the breaking of Galois symmetry
Gal to the isotropy subgroup GalI of Galois group leaving invariant a given root of P rep-
resenting mass squared value. Rather, The breaking of Gal to GalI is necessary in order to
obtain commutativity with Lorentz and Poincare transformations and this is essential for un-
derstanding this symmetry breaking as number theoretical counterpart of Higgs mechanism
involving no assumptions about dynamics [L33].

An interesting question is whether the Galois confined states decouple from thermodynamics
of the ordinary matter and have correlation functions stable against thermodynamic per-
turbations. If Galois confined states indeed correspond to bound states, this is the case at
temperature in which bound states are stable.

2. In the M8 framework hierarchies of dynamically emergent symmetries giving rise to long
range entanglement might also correspond to hierarchies of subalgebras SSAn of super sym-
plectic symmetry algebras (SSA) [L6] associated with the isometries of WCW. The action of
the symplectic transformations would be 3-surfaces and therefore ”holistic”. Therefore also
these symmetries should correspond to long range order and SSAn and Galois groups could
relate closely.

Dynamical symmetry breaking would have an analog at the level of super symplectic isometry
algebra (SSA) of WCW [L20] [K5, K3, K9]. TGD predicts the breaking of the full SSA
as effective gauge symmetries to SSAn with conformal weights as n-multiples of those for
SSA. Also [SSAn, SSA] would act as gauge symmetries. The generators with conformal
weight smaller than n would act non-trivially as isometries of WCW. The breaking of gauge
symmetry generates symmetries acting as isometries. Note that similar breaking is possible
also for the Virasoro algebra and Kac-Moody algebras. For SSA the conformal weights are
associated with the radial light-like coordinate of the light-cone boundary rather than the
complex coordinate.It is not quite clear whether the irreps of these Kac-Moody algebras for
reduce to the representations of SSA restricted to the isometry sub-algebra SSA.

3. Besides SSA acting at the level of H at the boundaries of causal diamond (CD), also Kac-
Moody algebras associated with the isometries of H and acting at the light-like 3-surfaces
assignable to the orbits of partonic 2-surface are involved.

2.2.2 Topological order

At the level of H, the braidings of magnetic flux tubes carrying monopole fluxes (they have no
Maxwellian analogs) give rise to topological physics giving rise to long range entanglement: large
values of heff would be essential. As a matter fact, U-shaped flux tubes are the basic entities and
could reconnect to form pairs of flux tubes connecting two systems.
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These flux tube pairs connecting membrane-like objects as nodes would give rise to dynamical
networks and long range entanglement. The braiding of the flux tubes would make TQC possible
[L29, L31]. The matter at the flux tubes would be dark in the TGD sense and a large value of
heff would increase the lifetime of flux tube pairs against reconnection.

TGD also predicts non-monopole flux tubes, which are not stable against splitting. An open
question is whether they might relate to symmetry protected phases with short range entanglement.

2.2.3 Do Galois groups define a symmetry protected long range order dual to topo-
logical order?

In the adelic physics of TGD, Galois symmetries [L14, L13, L11, L24, L28] are central. They
could be associated with a symmetry protected order, which would however give rise to long range
entanglement and boundary states stable under perturbations respecting Galis symmetries and
therefore leaving the Galois group unaffected?

1. The components of M4 ⊂ M8 momenta are algebraic integers in an extension of rationals
defined by a polynomial P defining as its roots mass shells H3, which in turne define by
number theoretic holography a 4-surface of M8 going through them. This surface is mapped
to space-time surface in H by M8 −H duality. At the mass shells H3, a cognitive explosion
takes place in the sense that virtual momenta with components, which are algebraic integers,
are possible. If there is a fundamental fermion at given points satisfying this condition, one
can say that the point of cognitive representation is active.

The momenta inside the Fermi ball-like object would be active, that is populated by funda-
mental fermions (quarks in the simplest scenario for which leptons would be 3-quark states).
The boundary states would reside at the 2-D boundary of this object and would be mapped
to a membrane-like object in H by M8 − H duality. In super-conductivity also some mo-
menta near the surface would be populated. Also 1-D edges as string connecting membranes
populated by fermions would be present.

2. Galois confinement states that physical states are Galois singlets and have total momenta for
which components are ordinary integers. Galois confinement would provide a second reason
for the stability. One can consider two versions of Galois confinement: with respect to the
full Galois group transforming mass shells to each other and with respect to the isotropy
group of given root of P leaving the corresponding mass shell invariant.

3. What could the robustness against perturbations correspond in the number theoretic context?
The replacement of states with irreps implies robustness in TQC [L29]. Furthermore, the
Galois group of the polynomial is not affected by n small enough variations of the coefficients
of the polynomial P . In fact, there are good reasons to expect that only monic polynomials
(with integer coefficients) are allowed. The change of the order of the polynomial in general
affects the Galois group so that might speak of symmetry protected entanglement stable only
under perturbations preserving the Galois group.

However, Galois symmetry is a global property of space-time sheet: should one speak of
long scale, global symmetry and assign a phase transition to the change of the symmetry as
in the case of long range entanglement. Galois confinement as analog of color confinement,
which involves quark entanglement with a long (hadronic) length scale. One speaks also of
color-deconfinement phase transition: this would conform with the interpretation in terms of
long range entanglement.

4. Cognitive quantum measurements [L11, L24] are identified as SSFR (”small” state function
reduction) cascades reducing the irrep of Galois group assignable to the functional composite
P = Pn ◦ Pn−1 ◦ ... ◦ P1 to an unentangled product of irreps of relative Galois groups. This
involves a sequence of symmetry breakings involved with phase transitions.

5. Could the entanglement protected by Galois symmetry be equivalent to topologically pro-
tected entanglement as the above observations and M8 − H duality mildly suggest? The
following argument suggests that this might be the case.
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The dark matter has non-trivial Galois symmetries and resides at the monopole flux tubes.
The pairs of U-shaped flux tubes as correlates of long range entanglement are unstable against
reconnection.

The value of heff is expected to correlate with the length of the flux tube and reconnection
is proposed to be the basic mechanism, which allows the reactants connected by flux tube
pairs to find each other in biocatalysis [L30]. After the reconnection, the reduction of heff
for the U-shaped flux tubes would indeed reduce heff and induce a reduction of the Galois
symmetry.

TGD based view of topological quantum computation (TQC) (see [K2, K1, K12] for the earlier
view and [L29, L31] for the recent view) relies on dark matter in number theoretic sense. The best
way to generate dark matter would be at quantum criticality: the long range fluctuations would
correspond to the presence of phases with large values of heff . This view differs quite radically
from the standard view.

Living matter would be essentially matter at quantum criticality [L25]. Anyons as irreps of the
Galois group or its isotropy subgroup would replace particles in TQC. The irreps would define the
logical qubits stable against perturbations.

2.2.4 Discrete subgroups of quaternionic automorphisms and short range order

What one can say in the TGD framework about the symmetry protected entanglement unstable
against symmetry violating perturbations?

1. The automorphism group SO(3) of quaternions is the analog of the Galois group and is
expected to be important in the TGD framework since the normal space of 4-surface in M8

is associative and therefore quaternionic. Quaternionic automorphisms induce rotations of
the tangent space of the space-time surface which suggests that the ordinary rotation group
of E3 could be cognitively represented in terms of quaternion automorphisms. In the TGD
framework, the covering group SU(2) of the quaternionic automorphism group SO(3) acts
in spin degrees of freedom of fermions.

2. At the level of discrete cognitive representations, the discrete subgroups G of SU(2) acting
on spinors at mass shells H3 and at their M8 − H images define a natural candidate for
the emerging symmetries making possible short range entanglement. The effect of these
transformations would be on spinors and therefore local.

2.2.5 A possible connection with McKay correspondence

The hierarchy of finite subgroups G of quaternionic SU(2) could have a direct connection with
McKay correspondence, which involves finite subgroups of SU(2) and states that the McKay graphs
for their irreps correspond to extended Dynkin diagrams of affine ADE type Lie algebras. The
possibility that McKay correspondence indeed assigns to McKay graph representations of affine
Lie algebras, is discussed in detail in [L28].

1. For very special choices of generators of the subgroup G of SU(2) finite. By McKay corre-
spondence, these subgroups correspond to ADE type affine algebras. It would be therefore
highly interesting to study unitary evolutions based on spin rotations, which generate discrete
subgroups of SU(2).

2. At the level of M8, it would be tempting to identify the edge states as irreps of a subgroup
GalI of Galois group Gal [L29, L24].

Could GalI provide a cognitive representation for a discrete subgroup G ⊂ SU(2) of SU(2)
as covering quaternionic acting on electron spin? I have proposed this kind of cognitive
representation as a possible deeper level explanation of Galois correspondence [L28]. Gal
would act as the Weyl group of the extended ADE Dynkin diagram defined by the McKay
graph.

This proposal involves also a quantum analog of number theory in which ordinary sum
and multiplication are replaced by tensor product ⊗ and direct sum ⊕ for the irreps of G
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appearing in the McKay graph. This quantum number theory could define a kind of cognitive
representation of number theory.

3. If McKay correspondence is realized in the TGD sense [L28], edge and boundary states could
correspond at the level of H to the representations of Kac-Moody algebra satisfying the Kac-
Moody and Virasoro gauge conditions for the conformal weights smaller than the integer
n characterizing SSAn. Kac-Moody representations for the isometries and holonomies of
H are indeed assigned with the 3-D light-like orbits of partonic 2-surfaces in p-adic mass
calculations.

The TGD inspired explanation of McKay correspondence proposed in [L28] suggests that
the finite subgroups of the rotation group and affine Lie-algebras assignable to the hierarchy
at the level of H relate to each other. The Galois group would coincide with the Weyl
group of an affine ADE Lie algebra acting as a dynamical symmetry. McKay correspondence
would reflect M8 −H duality and would be the physics counterpart [K6, K7] of Langlands
correspondence [A3, A2].

4. If Galois groups give rise to stable long range entanglement, one can ask whether the cog-
nitive representations of G ⊂ SU(2) could absolutely stabilize the corresponding symmetry
protected entanglement and whether this could take place for boundary and edge states
for which the energy degeneracy could correspond to representation of GalI identifiable as
representation of G.

These considerations raised a question that I have not considered earlier.

1. The proposal is that the order n of the Galois group defines an effective Planck constant
heff/h0 = n. Can one assign to the order of the discrete subgroup of quaternionic SU(2) an
effective Planck constant in a similar way? This could make sense for finite discrete subgroups
but not for infinite ones.

2. This question is highly interesting in the case of the Fibonacci process since the 2-gates
induced rotations on incoming qubits which are near to a rotation of 4π, which means near-
criticality. The 2-gates act as identical rotations of neighboring spins around x- or z-axis.
These rotations must generate an infinite discrete subgroup of SU(2). One cannot assign a
finite value of heff to the order of this group.

Can one conclude that it does not make sense to assign heff to discrete subgroups of SU(2)?
Or could the effective Planck constant for the free product of the finite subgroups corresponds
to the product of effective Planck constants as the orders of these groups? Or could the
subgroups form hierarchies of relative Galois groups assignable to extensions generated by
functional composites of polynomials?

2.3 Quantum coherent multispin states

The article [?] also mentions multispin interactions. These can be realized at the level of models
but it is far from clear whether standard physics allows to realize them. In the TGD framework,
Galois confinement gives rise to N -particles as bound states of N virtual particles behaving like
coherent quantum units [L15, L32].

For instance, dark N -photon states behaving like a single quantum coherent unit, which can be
emitted and absorbed, are predicted. The emission process makes it possible to change qubits for
an entire block of qubits simultaneously rather than doing this qubit by qubit. The analogy with
color confinement is obvious. This would make possible methods to create and control many-body
quantum entanglement.

Rather remarkably, there is empirical evidence for N -photon states with this property [D2, D3]
discussed from the TGD viewpoint in [L18].

2.4 Fibonacci process and M8 −H duality

To sum up, TGD suggests the following overall view about analogs of the systems studied in [?].
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1. At the level of M8, number theoretical physics suggests Galois symmetries and/or discrete
subgroups G of SU(2) as candidates for emerging symmetries making possible symmetry
protection. Galois confinement would be an essential element. The difference between Galois
and subgroups G is that Galois symmetries act trivially on Galois singlets unlike G.

2. At the level of H, the braidings of magnetic flux tubes, which carry monopole fluxes (they
have no Maxwellian analogs) would give rise to topological order making possible long range
entanglement. Topological order could correspond to large values of heff and symmetry
protected order to rather small values of heff . Large value of heff makes possible long range
entanglement. Topological order is not necessary unless it is implied by the M8−H duality.
This might be the case: dark matter is assumed to reside in monopole flux tubes.

3. Galois group characterizes an entire space-time region number theoretically and is stable
against small deformations of the polynomial defining the space-time surface. Both Galois
symmetry and topology are therefore holistic notions. This suggests that topological order
and Galois symmetries provide dual prerequisites for the long range entanglement although
they need not be dual descriptions.

Indeed, M8 −H duality is a continuous map so that both topological and number theoretic
aspects should be present in both number theoretic and differential geometric descriptions.
Strings, string world sheets, and membrane like objects appearing as singularities of minimal
surface in H would have number theoretical counterparts in M8 as real, complex, quater-
nionic, etc.. surfaces.

The finite subgroups G of SU(2) could be responsible for the symmetry protected order.

1. If one cannot assign heff to G, one cannot assign a long range order to it. G does not make
itself visible in heff although it can be represented by the Galois group and makes itself
visible in the structure of Galois singlets.

2. The article also talks of a hierarchy of emerging dynamical symmetries. Emergence has
natural interpretation in terms of extensions of rationals and hierarchies could correspond to
sequences of composites Pn ◦ Pn−1 ◦ ... ◦ P1 of polynomials but how the emergence could be
assigned with the discrete subgroups of SU(2)?

The TGD view McKay correspondence [L28] is that Galois groups can provide cognitive rep-
resentations for the dynamical symmetries defined by finite discrete subgroups of SU(2) and also
of SU(n).

1. The Galois group of extension would coincide with the Weyl group for an extended ADE
Lie algebra and acting on the irreps of isotropy subgroup of Galois group forming which
correspond to the roots of a polynomial whose roots carry irreps of the isotropy group and
whose tensor products with the canonical representation define the McKay diagram.

2. The vertices of the McKay diagram are invariant under the isotropy group, which leaves the
McKay diagram invariant. These Galois=Weyl extensions would be very special. The finite
subgroups of quaternionic SU(2) would be in a physically special role.

They would also give rise to inclusion hierarchies of hyperfinite factors of type II1 such that
each step would involve the Weyl group of some extended diagram as the Galois group. These
hierarchies could correspond to hierarchies of composites of polynomials with Galois=Weyl
property.

3 Appendix: Isometries and holonomies of WCW as coun-
terparts of exact and broken gauge symmetries

The detailed interpretation of various candidates for the symmetries of WCW [L6] has remained
somewhat obscure. At the level of H, isometries are exact symmetries and analogous to unbroken
gauge symmetries assignable to color interactions. Holonomies do not give rise to Noether charges
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and are analogous to broken gauge symmetries assignable to electroweak interactions. This obser-
vation can serve as a principle in attempts to understand WCW symmetries.

The division to isometries and holonomies is expected to take place at the level of WCW and
this decomposition would naturally correspond to exact and broken gauge symmetries.

3.1 Isometries of WCW

The identification of the isometries of WCW is still on shaky ground.

1. In the H picture, the conjecture has been that symplectic transformations of δM4
+ act as

isometries. The hierarchies of dynamically emerging symmetries could relate to the hierar-
chies of sub-algebras (SSAn) of super symplectic algebra SSA [L6] acting as isometries of the
”world of classical worlds” (WCW) [K9] [L20].

Each level in the hierarchy of subalgebras SSAn of SSA corresponds to a transformation in
which SSAn acts as a gauge symmetry and its complement acts as genuine isometries of
WCW: gauge symmetry breaking in the complement generates a genuine symmetry, which
could correspond to Kac-Moody symmetry. By Noether’s theorem, the isometries of WCW
would give rise to local integrals of motion: also super-charges are involved. These charges
are well-defined but they need not be conserved so that the interpretation as dynamically
emerging symmetries must be considered.

The symmetries would naturally correspond to a long range order. The hierarchies of SSAn:s,
of relative Galois groups and of inclusions of hyperfinite factors [K13, K4] could relate to each
other as M8 −H duality suggests [L28].

What can one say about the algebras SSAn and the corresponding affine analogs KMn

(for affine algebras the generalized Cartan matrix is a product of a diagonal matrix with
integer entries with a symmetric matrix). If n is prime, one can regard these algebras as
local algebras in a finite field G(p). Also extensions G(p, n) of G(p) induced by extensions of
rationals can be considered. KM algebras in finite fields define what are called the incomplete
Kac-Moody groups. Some of their aspects are discussed in the article ”Abstract simplicity of
complete Kac-Moody groups over finite fields” [A1]. It is shown that for p > 3, affine groups
are abstractly simple, that is, have no proper non-trivial closed subgroups. Complete KM
groups are obtained as completions of incomplete KM groups and are totally disconnected:
this suggests that they define p-adic analogs of Kac-Moody groups. Complete KM groups
are known to be simple.

2. There are also different kinds of isometries. Consider first the light-cone boundary δM4
+×CP2

as an example of a light-like 3-surface. The isometries of CP2 are symmetries. ∆M4
+ is

metrically equivalent with sphere S2. Conformal transformations of S2, which are made
local with light-like coordinate r of δM4

+, induce a conformal scaling of the metric of S2

depending on r. It is possible to compensate for this scaling by a local radial scaling of r
depending on S2 coordinates such that the transformation acts as an isometry of δM4

+.

These isometries of ∆M4
+ form an infinite-D group. The transformations of this group differ

from those of the symplectic group in that the symplectic group of δM4
+ is replaced with the

isometries of δM4
+ consisting of r-local conformal transformations of S2 involving S2-local

radial scaling. There are no localizat of CP2 isometries. This yields an analog of KM algebra.

This group induces local spinor rotations defining a realization of KM algebra. Also super-
KM algebra defined in terms of conserved super-charges associated with the modified Dirac
action is possible. These isometries would be Noether symmetries just like those defined by
SSA.

3. What about light-like partonic orbits analogous to δM4
+ × CP2. Can one assign with them

Kac-Moody type algebras acting as isometries?

The infinite-D group of isometries of the light-cone boundary could generalize. If they leave
the partonic 2-surfaces at the ends of the orbit X3

L, they could be seen as 3-D general
coordinate transformations acting as internal isometries of the partonic 3-surface, which
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cannot be regarded as isometries of a fixed subspace of H. These isometries do not affect
the partonic 3-surface as a whole and cannot induce isometries of WCW.

However, if X3
L is connected by string world sheets to other partonic orbits, these transfor-

mations affect the string world sheets and there is a real physical effect, and one has genuine
isometries. Same is true if these transformations do not leave the partonic 2-surfaces at the
ends of X3

L invariant.

3.2 Holonomies of WCW

What about holonomies at the level of WCW? The holonomies of H acting on spinors induces
a holonomy at the level of WCW: WCW spinors identified as Fock states created by oscillator
operators of the second quantized H spinors. This would give a generalized KM-type algebra de-
composing to sub-algebras corresponding to spin and electroweak quantum numbers. This algebra
would have 3 tensor-factors. p-Adic mass calculations imply that the optimal number of tensor
factors in conformal algebra is 5 [K8]. 2 tensor factors are needed.

1. SSA would give 2 tensor factors corresponding to δM4
+ (effectively S2) and CP2. This gives 5

tensor factors which is the optimal number of tensor factors in p-adic mass calculations [K8].
SSA Noether charges are well-defined but not conserved. Could SSA only define a hierarchy
of dynamical symmetries. Note however that for isometries of H conservation holds true.

2. Also the isometries of δM4 and of light-like orbits of partonic 2-surfaces give the needed
2 tensor factors. Also this alternative would give inclusion hierarchies of KM sub-algebras
with conformal weights coming as multiples of the full algebra. The corresponding Noether
charges are well-defined but can one speak of conservation only in the partonic case? One can
even argue that the isometries of δM4

+ ×CP2 define a more plausible candidate for inducing
WCW isometries than the symplectic transformations. p-Adic mass calculations conform
with this option.

To sum up, WCW symmetries would have a nice geometric interpretation as isometries and
holonomies. The details of the interpretation are however still unclear and one must leave the
status of SSA open.
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