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1. Introduction 3

Abstract

Langlands correspondence is for mathematics what unified theories are for physics. The
number theoretic vision about TGD has intriguing resemblances with number theoretic Lang-
lands program. There is also geometric variant of Langlands program. I am of course amateur
and do not have grasp about the mathematical technicalities and can only try to understand
the general ideas and related them to those behind TGD. Physics as geometry of WCW
(”world of classical worlds”) and physics as generalized number theory are the two visions
about quantum TGD: this division brings in mind geometric and number theoretic Langlands
programs. This motivates re-consideration of Langlands program from TGD point of view. I
have written years ago a chapter about this earlier but TGD has evolved considerably since
then so that it is time for a second attempt to understand what Langlands is about.

By Langlands correspondence the representations of GoGal and G should correspond to
each other. The analogy with the representations of Lorentz group suggests that the repre-
sentations of G should have “spin” for some compact subgroup acting from left or right such
that the dimension of this representation is same as the representation of non-commutative
Galois group.

Automorphic functions are indeed typically functions in G, which reduce to a function
invariant under left and/or right action of a compact or even discrete subgroups H1 and
H2 or more generally, belong to a finite-dimensional unitary representation of H1 × H2 in
H1\G/H2. Therefore they can be said to have H1 ×H2 quantum numbers analogous to spin
if interpreted as “field modes” in the space of double cosets H1gH2. This would conform
with the vision about physics as generalized number theory. If I have understood correctly,
the question is whether a finite-dimensional representation of H1 or H2 could correspond to a
finite-dimensional representation of Galois group at the number theory side.

1 Introduction

Langlands correspondence is for mathematics what unified theories are for physics. The num-
ber theoretic vision about TGD has intriguing resemblances with number theoretic Langlands
program [A8, A3] (see http://tinyurl.com/z6tew2e). There is also geometric variant of Lang-
lands program [A4, A2, A5, A7] (see https://en.wikipedia.org/wiki/Geometric_Langlands_

correspondence). I am of course amateur and do not have grasp about the mathematical techni-
calities and can only try to understand the general ideas and related them to those behind TGD.
Physics as geometry of WCW (”world of classical worlds”) and physics as generalized number
theory are the two visions about quantum TGD: this division brings in mind geometric and num-
ber theoretic Langlands programs. This motivates re-consideration of Langlands program from
TGD point of view. I have written years ago a chapter about this [K13] but TGD has evolved
considerably since then so that it is time for a second attempt to understand what Langlands is
about.

1.1 Langlands program briefly

The basic concept in number theoretical Langlands program is algebraic extension L/Q of rational
numbers Q and more generally, an extension L/K of algebraic extension of Q called global number
field. K can denote also other number fields. If K corresponds to reals or complex numbers or to
p-adic numbers or their extension, it is called local. Also extensions of finite fields and function
fields can be considered. Already gives idea about the generality of Langlands program.

1. Algebraic extension of rational numbers can be constructed by finding the roots of an ir-
reducible n:th order monic polynomial of real argument (coefficients are integers and the
coefficients of the highest power is unity so that modulo p reduction conserves the degree) see
http://tinyurl.com/gwrhgat) and extending Q by them so that one obtains algebraically
n-dimensional number field as an algebraic extension of Q. Denote the extension of rationals
Q defined by irreducible polynomial P by L. Galois group Gal(L/K) consists of the auto-
morphisms of this structure mapping sums into sums, products into products, and rationals
of K into rationals and its order is the dimension of the extension.

One can combine several extensions of this kind by extending with corresponding roots and
can construct algebraic numbers by combining all extensions of this kind. The Galois group

http://tinyurl.com/z6tew2e
https://en.wikipedia.org/wiki/Geometric_Langlands_correspondence
https://en.wikipedia.org/wiki/Geometric_Langlands_correspondence
http://tinyurl.com/gwrhgat


1.1 Langlands program briefly 4

of algebraic numbers is known as absolute Galois group and enormously complex. Absolute
Galois group Galabs (see http://tinyurl.com/gvcywrs) has the Galois groups Gal(L/K)
of irreducible polynomials as subgroups.

2. Algebraic numbers have infinite algebraic dimension and can be regarded as an extension of
any global field K and has factor groups Galabs/Gal(K) as Galois group. One has restriction
homomorphisms from (Galabs/Gal(K))Gal(K) to Gal(K) and imbedding homomorphisms of
Gal(K) to Galabs. One can construct representations of Galois groups in various groups such
as classical Lie groups and algebraic groups and this kind of representations give information
about number theory. The distinctions between Lie groups and algebraic groups are very
delicate and not of practical significance for a physicist.

The term algebraic matrix group G tells that the matrices satisfy some algebraic conditions
specifying a subgroup of general linear group. One can specify the number field for matrix
elements by using the notion G(K). In TGD framework discrete subgroups of matrix groups
with values in algebraic extension of rationals are highly interesting.

3. Langlands program extends also the ring of integers associated with global number field to
the ring of adeles (see http://tinyurl.com/gt6j9me) associated with global number field
K inducing extensions of p-adic number fields. Adeles correspond to the Cartesian product
of non-vanishing positive reals R+ and of the p-adic integers for the algebraic extensions of
p-adic number fields induced by K. Adeles contain as a multiplicative subgroup the group
of ideles, which apart from finite number of exceptional primes have p-adic norm equal to 1.
This is essential for the existence of non-vanishing multiplicative inverse of adele.

The great vision of Langlands resting on the work carried out by number theorists during
centuries is that there is a deep connection between number theory and representation theory
for Lie groups and reductive algebraic groups. Originally groups GL(n) were considered already
by Artin as providing representations of non-Abelian Galois groups but Langlands proposed a
generalization to reductive algebraic groups. To my best - not so impressive - understanding both
classical Lie groups and algebraic groups are reductive.

By Langlands correspondence the representations of GoGal and G should correspond to each
other. The analogy with the representations of Lorentz group suggests that the representations
of G should have “spin” for some compact subgroup of G acting from left or right such that the
dimension of this representation is same as the representation of non-commutative Galois group.

Automorphic functions are indeed typically functions in G, which reduce to a function invariant
under left and/or right action of a compact or even discrete subgroups H1 and H2 or more gener-
ally, belong to a finite-dimensional unitary representation of H1×H2 in H1\G/H2. Therefore they
can be said to have H1 ×H2 quantum numbers analogous to spin if interpreted as “field modes”
in the space of double cosets H1gH2. This would conform with the vision about physics as gener-
alized number theory. If I have understood correctly, the question is whether a finite-dimensional
representation of H1 or H2 could correspond to a finite-dimensional representation of Galois group
at the number theory side.

Langlands formulated a correspondence between so called a) admissible infinite-dimensional
automorphic representations for a reductive group G(K) and b) representations of Galois groups
in its Langlands dual GL(C) (complex non-compact group). Infinite-dimensionality requires non-
compactness for G(R) since compact groups have only finite-dimensional unitary irreducible rep-
resentations. Here K is either local (archimedean (real or complex) or non-archimedean (p-adic
number field or its extension) or global number field (algebraic extensions of rationals) so that the
approach is extremely general.

Archimedean fields represent relatively simple situation. Non-archimedean fields are much more
difficult and global fields extremely difficult and to my understanding very few proofs exist. For
algebraic extension of rationals adele ring is obtained as Cartesian product of p-adic integers with
extension induced by the extension of rationals. If K is itself non-Archimedean field, the notion
of adele ring does not seem to make sense as such: should the extension define an extension of
rationals in turn inducing an extension of other p-dic number fields?

http://tinyurl.com/gvcywrs
http://tinyurl.com/gt6j9me
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1.2 A modest attempt for an overview

I try to give an overall view about Langlands conjecture.

1. G is reductive group (includes semisimple Lie groups) in given algebraic extension K of
rationals, and can be extended to adelic group G(A), where A denotes the adele formed
by non-vanishing reals and integers for extensions of p-adic number fields induced by K.
GL(C) is complex group and provides a representation of Galois group of K: one speaks of
homomorphisms of Galois group to GL(C).

2. Langlands started from the representations of Galois group in group Gl(n,K) and later
generalized to arbitrary reductive Lie group G(K). Here K is arbitrary number field, which
could be global number field (algebraic extension of rationals) or real or complex variant of
G or a variant of G for p-adic number field or its extension induced by algebraic extension
of rationals. The representations in real and p-adic number fields are combined to adelic
representation and could be seen as infinite tensor product. For global number fields G(K)
(extensions of rationals) is discrete and does not allow the analytic machinery requiring Lie
groups: just these are of special interest in TGD framework.

3. Since G(K) is discrete for global fields K, one wants to simplify things by replacing K with
what is called separable closure K of K analogous to complex numbers. This also allows to
have infinite-dimensional representations . G(K) allows Lie-group and Lie-algebra structure
so that the machinery of Lie algebras can be used.

One can assign Galois group Gal(K/K) to the extension of K to K. If K is a finite-
dimensional extension of rationals this Galois group (absolute Galois group) is extremely
complex object and is known to possess topology highly reminiscent of p-adic topologies. K
corresponds to complex algebraic numbers for the algebraic extensions of rationals. For p-adic
number fields the fact that all polynomials effectively reduce to polynomials of degree not
larger than p− 1, K and Gal(K/K) are considerably simpler entities (see http://tinyurl.

com/mkqhp5n). The transition to K does not delete the information about K also the adele
structure keeps information about K.

4. In G(K) one can speak about Lie algebra and its root system. One assigns to this root system
a co-root system and in terms of it defines the connected component G0

L(C) of Langlands
dual as a complex group. To keep information about the algebraic extension, one extends
G0
L(C) to the semi-direct product G0

L(C) oGal(K). The Galois group of finite-dimensional
extension K acting appears and preserves information about the extension. It would seem
that the representations of this group must be constructed from products of representations
of Gal(K) and GL0(C) so that additional discrete degrees of freedom appear. Kind of Galois
covering of G0

L(C) serves as Langlands dual for G(K).

5. This correspondence involves reductive algebraic group G and its Langlands dual GL inter-
preted as complex group (see http://tinyurl.com/zts4rqf). GL has as its roots co-roots
of G:

α→ α′ = 2α/(α, α)

so that the dimension of Cartan algebra and number of roots is same but the angles between
some roots have changed:

(α′, β′) = 4(α, β)/(α, α)(β, β) .

All simply laced Lie groups (ADE groups) with (α, α) = 2 are self-dual as also G2 and F4

and Gl(n).

The root systems Bn and Cn are mapped to each other so that SO(2N +1) is dual to Sp(N)
whereas SO(2n) is self dual as Dn type group. Connected Lie groups are dual to adjoint
type Lie groups: for instance SU(N) is dual to SU(N)/Zn. One could try to understand
the complexification of the dual from the fact that the natural representation of the roots of

http://tinyurl.com/mkqhp5n
http://tinyurl.com/mkqhp5n
http://tinyurl.com/zts4rqf
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polynomial is as points of complex plane and Galois group therefore naturally acts in complex
plane. Why the type of the group is changed looks however mysterious.

6. Information about K is not lost at the group theory side since adele group contains informa-
tion about K. Also the separable closure K for p-adic number fields and their extensions is
not equal to the algebraic closure since separable closure contains only separable extensions
(minimal polynomial has only roots with multiplicity one).

Langlands conjecture states that the automorphic forms - so called Artin’s L-functions - defined
by the homomorphisms from Galois groupGal(K) toG0

L(C) extended to a semi-direct product with
the Galois or is modification Weil group (see http://tinyurl.com/hk74sw7) to be distinguished
from Weyl group in Lie-algebra theory co-incide with the automorphic forms assignable to “good”
representations of G(K), which correspond to group theory side of the duality - group theoretic
L-functions.

Connections of Langlands program with physics have been found already at the level of gauge
theories and in string models. Electric-magnetic duality discovered by Montonen involves gauge
group and its Langlands dual and there are reasons to expect that electric-magnetic duality - weak
form of electric-magnetic self-duality in TGD framework [K8] - could have important implications
for the understanding Langlands duality.

Witten, Frenkel and many other leading mathematicians and theoretical physicists have been
developing geometric Langlands program [A4, A2, A5, A7]. Geometric Langlands is considerably
simpler (simplicity is relative notion here!) than its number theoretical counterpart since the
monstrous automorphism group of algebraic numbers (by definition mapping products to products
and sums to sums) with the fundamental group of Riemann surface with punctures. Kac-Moody
algebras and the monodromy groups as representations of fundamental group of Riemann surface
are essentially involved.

1.3 Why number theoretic vision about TGD could have something to
do with Langlands program?

Due to the technicalities involved it is impossible for a physicist like me to understand Langlands
program at technical level. TGD is however proposed to be a unified theory of physics and it would
not be surprising if some connections would exist.

1. The number theoretic universality [K21] is one of the basic principles of TGD with mo-
tivations coming from both p-adic mass calculations [K6] and mathematical description of
cognition in TGD inspired theory of consciousness [K5, K1]. This principle states that physics
is adelic and the physics in real and various p-adic sectors is obtained by a kind of analytic
continuation from physics for algebraic extensions of rationals. The analogy with Langlands
program is obvious and suggests strongly a connection with number theoretic Langlands.

2. In TGD framework Kac-Moody algebras generalize to super-symplectic algebra, which is
immensely more complex than Kac-Moody algebras and has strong number theoretic flavor
(for instance, conformal weights could relate closely to the zeros of Riemann zeta). Could
super-symplectic algebra be for number theoretic Langlands what Kac-Moody is for geometric
Langlands (see http://tinyurl.com/j7tdho6 and http://tinyurl.com/zj8lf2w)?

3. Discretizations based on algebraic extension are a corner stone of TGD view about space-time
relying on the notion of finite measurement resolution. Discretization means replacement of
Lie group G by finite discrete subgroup assignable to algebraic extension K of rationals. The
discretization are at the level of imbedding space and their existence as coset spaces relies
heavily on the symmetries of imbedding space.

One can perform completion for the points of discretization to what one might call monads
[L2]. In real context they are analogous to the open sets defining charts of manifold. In
p-adic sectors monads are disjoint and consist of p-adic integers. The field equations for
Kähler action (or its modification suggested by twistorialization containing extremely small
volume term) are satisfied inside monads.

http://tinyurl.com/hk74sw7
http://tinyurl.com/j7tdho6
http://tinyurl.com/zj8lf2w
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Galois group of K act as dynamical symmetry group transforming discretizations to each
other so that one has kind of covering space structure at the level of WCW with sheets
correspond to points of Galois group. This suggests that the counterparts of symmetries
with elements in the extensions of rationals combined to semi-direct product with Galois
group are crucial in TGD and that Galois groups act as symmetry groups having action very
similar to that for fundamental groups.

Note that also the isometry group G of imbedding space restricted to G(K) acts as discrete
symmetries so that space-time surfaces (and 3-surfaces at boundaries of causal diamonds,
string world sheets, and partonic 2-surfaces) provide a representation space for these groups.
G(K) act also on the induced spinor fields which can be assumed to have components in K
(or K).

4. The geometric realization for the hierarchy of Planck constants [K9] is proposed to be in
terms of coverings of space-time surfaces for which ends at the boundaries of CD correspond
to singular covering with all sheets co-inciding. Could Galois group define this covering. This
would require that Galois maps the discretization of 3-surface to itself at boundaries of CD
The stronger condition that it maps the ends points to itself seems too strong.

A further conjecture is that the hierarchy of Planck constants corresponds to the hierarchy
of inclusions of hyperfinite factors (HFFs) having canonical representation in terms of second
quantized induced spinors needed to define WCW gamma matrices and WCW spinors. The
inclusions are known to correspond discrete subgroups of SU(2) and labelled by ADE dia-
grams, which by McKay correspondence correspond to Dynkin diagrams for ADE type Kac-
Moody groups (see http://tinyurl.com/jyjplzc). The conjecture is that the Kac-Moody
groups form a hierarchy of dynamical symmetries as remnants of symplectic symmetries due
the infinite number of conditions stating the vanishing for a subset of symplectic Noether
charges. These would be self-dual under Langlands duality.

Since the representations of G o Gal and G should correspond to each other, the represen-
tations of G should have G-spin such that the dimension of this representation is same as
the representation of non-commutative Galois group. This would conform with the vision
about physics as generalized number theory. Could this be the really deep physical content
of Langlands correspondence?

2 More detailed view about Langlands correpondence

Langlands correspondence [A8, A3] (see http://tinyurl.com/z6tew2e) has group theoretical and
number theoretical sides and in the following I try to summarize what I have vaguely understood
about these aspects.

2.1 Group theory side of Langlands correspondence

Consider first the group theory side. I want to confess that the following explanations are just a
collection of physicist’s impressions and probably too much for the patience of mathematician.

First the view of physicist about what the representations of G(K) might be.

1. These groups have representations defined by functions in some complex analytic manifolds
(say complex groups) and more general representations involving the analog of classical field
representing particle with spin which are defined in Minkowski space and so that the action of
Lorentz group G = SO(1, 3) on field is well-defined and spin characterizes the representation
of field under rotation group SO(3) ⊂ SO(1, 3). The field corresponds to well defined mass
and satisfied d’Alembert equation representing Casimir operator for SO(1, 3). At the level
of momentum space one has representation of SO(1, 3) at mass shell, that is coset space
H3 = SO(1, 3)/SO(3), 3-D hyperbolic space.

More generally, the field can live in group manifold G or its coset space G/H and have spin in
the sense that this field transforms as finite-dimensional representation of a sub-group H ⊂ G.
The so called automorphic representations are in question: the action of group element h ∈ H
to the field f(g) is given by f(hg) = Dh(g)f(g). Here Dh(g) is finite-D representation matrix

http://tinyurl.com/jyjplzc
http://tinyurl.com/z6tew2e
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which is easily found to satisfy so called co-cycle property: Dh1h2
(g) = Dh1

(h2g)Dh2
(g).

For 1- representations this equation holds for functions defining Abelian representation of
H. Also now the analog of d’Alembert equation satisfied by free particle in field theory is
assumed: one has eigenfunctions of the Casimir operator of the group: this requires that one
consider Lie group. The interpretation would be that one has spinning particle in the coset
space G/H.

2. The trace of the representation matrix Dh(g) as function of group element is a fundamental
characterizer of the representation invariant under automorphisms h → ghg−1 of the group
and is known as character of group representation. For instance, for rotation group character
depends on rotation angle only, not on the direction of the rotation axis. Now the matrix
Dh(e) defines a character as a function in sub-group H which can be discrete.

Automorphic forms characterize the group representations in question. The following definition
from Wikipedia (see http://tinyurl.com/gquturl and http://tinyurl.com/hsy8ewf) resem-
bles the description anticipated above except that I am not sure whether G-spin is allowed or
whether only the analogs of scalar fields are considered.

Suppose f is function in complex manifold X in which group Γ acts. f is automorphic form if
one has

f(γ(x)) = jγ(x)f(x) ,

where jγ(x) is everywhere non-vanishing holomorphic function called factor of automorphy. Factor
of automorphy is cocycle for the action of G meaning that one has from the definition

jγ1γ2(x) = jγ1(γ2(x))jγ2(x) .

Product of automorphic forms is automorphic with factor of automorphy given by the product of
the factors. Automorphic forms form a vector space for a given factor of automorphy. If Γ is a
lattice in Lie group then factor of automorphy for Γ corresponds to a line bundle on the quotient
G/Γ. For instance, Γ can be a subgroup of SL(2, R) acting on upper half complex plane. One can
generalize the definition by replacing complex functions f with vector valued functions. In this
case j corresponds to a representation matrix for Γ.

The complex analytic manifold X is often topological group G having Γ as its discrete subgroup.
Hence automorphic form corresponds to a collection of functions jγ(g) of functions in G. As a
special case one obtains modular forms for PSL(2,R) and Γ a modular subgroup PSL(2, Z) or one
of itse congruence subgroups with diagonal elements 1 modulo prime and diagonal elements zero
modulo prime. In adelic approach these congruence subgroup can be treated at once using adeles.

Automorphic form could be at least formally defined also as a vector valued function f in G.
Components of vector can be said to define analogs of component of a field with G-“spin”. In
the case of non-compact groups this representation would be by its finite dimension non-unitary
but in principle this is possible (the unitary representations of Poincare group with spin are good
example).

1. The vector transforms under γ ∈ Γ according to a given factor j of automorphy which is
matrix in general case. I do not know whether it is allowed to be matrix in case of non-Abelian
Galois groups.

2. It is an eigenfunction of Casimir operators of G.

3. Satisfies some conditions on growth at infinity.

Automorphic functions can be defined in terms of Hecke characters (the analogy with Riemann
zeta) and Hecke characters can in turn be defined for the unitary representations of group G, which
is in general non-compact. The basic idea is to start from the representation of finite and compact
groups in terms of group algebra endowed with sum (quantum superpositions of wave functions
in group) and convolution (product induced by group product) and generalize to non-compact
case. One can also require invariance under left and/or right action by some sub-group so that one
obtains functions in coset spaces H1\G/H2. One can consider functions in G, which are invariant

http://tinyurl.com/gquturl
http://tinyurl.com/hsy8ewf
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under the left action of H1 and right action of H2. More generally, the functions could belong to
irreducible unitary representations of H1 and H2 - physicist would perhaps say that the classical
field “field” in double coset space has H1 and H2 “spin”. Obviously the number of possibilities is
endless.

In the simplest case these functions are constant in doublet cosets H1gH2 and one can construct
them by taking a function f(g) in G and forming a sum of the values f(g1gh2) normalized suitably
to give a kind of averaging. If the group in question is continuous group one can perform integration
using left/right-invariant Haar measure. One can identify the action of Hecke operator as the
formation of this average and identify eigen functions and eigen values of Hecke operator. One can
generalize the Hecke operator to an operator producing function that belongs to a representation
of H1 ×H2 and defining also now eigenfunctions. This leads an elegant mathematics. The upper
complex plane identifiable as SL(2, R)/SO(2) defines a coset space and posing left invariance of a
complex analytic function f(z) under SL(2, Z) or its subgroup acting as Möbius transformations
one obtains Hecke operators and Hecke characters defining examples of automorphic functions.
The coefficients of the Fourier expansion of eigen function are eigen values of Hecke operator.

The group SL(2, C) - double covering of Lorentz group SO(1, 3) is of special interested both
number theoretically and geometrically. In this case the group H is typically discrete subgroup
Γ of SL(2, C) and the coset space Γ\SL(2, C)/SU(2). In this case the “spin” could correspond
to a finite-D representation of Γ, which should be unitary. There are additional more technical
conditions to be satisfied for the representation to be unitary. Often non-compact groups such as
GL(n, F ) for an arbitrary algebraic number field is considered. Algebraic extensions of rationals,
p-adic number fields, reals, complex numbers. The generality of the approach is stunning.

2.2 Number theoretical side of Langlands correspondence

On the number theoretic side the challenge is to find representations of Galois groups and their
extensions to Weil groups. Also these lead to the notion of automorphic function. Here I can only
give some notices about the historical development of the ideas leading to the vision of Langlands.

1. The story begins from the study of the simplest possible algebraic extensions defined by root
of integer and characterized by this integer, call it n. These extensions are known as quadratic
extensions and have Abelian Galois group consisting of 2 elements. One can generalize the
notions of integer and prime to corresponding ideals for any algebraic extensions and the
general phenomenon is that rational prime (ideals) can either stable, split to a product
of different prime ideals of the extension, or ramify in which case higher powers of prime
ideals of extension can appear. For instance, in the extension Q(

√
−1 number to ramifies to

(2) = (1 + i)2 (note that 2 and 2i differing by unit are equivalent as representatives of ideal),
primes p mod 4 = 1 split and primes p mod 4 = 3 are stable.

The physical analogy for splitting is that proton as elementary particle is in improved reso-
lution a bound state of 3 quarks.

2. Quadratic resiprocity (see http://tinyurl.com/njpnx69) can be seen starting point of the
developments leading to Langlands conjecture. For instance, Euler, Legendre, and Gauss
have made contributions here. One considers the question when prime q is square modulo
prime p that is quadratic residue modulo p: q = x2 mod p, prime. Define Legender symbol
(p/q) to be 1 if q is quadratic residue modulo p and -1 if this not the case. Quadratic
resiprocity states

(
p

q
)(
q

p
) = (−1)

(p−1)
2

(q−1)
2 .

This law allows to relate (p/q) and (q/p) in the four cases corresponding to p mod 4 ∈ {1, 3},
q mod 4 ∈ {1, 3}. Legendre symbol is relevant for quadratic extensions of rationals since its
value tells whether a given prime q ramifies in p-adic number field Qp or not.

Quadratic resiprocity generalizes to qubic, quadratic, quartic resiprocities and Eisenstein
resiprocity (see http://tinyurl.com/huxm68w generalizes this law to higher powers. There
is also reciprocity theorem for cyclotomic extensions (see http://tinyurl.com/z43cb5u

http://tinyurl.com/njpnx69
http://tinyurl.com/huxm68w
http://tinyurl.com/z43cb5u
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and http://tinyurl.com/gm3sbzj) which are Abelian as also quadratic extensions. Artin’s
resiprocity (see http://tinyurl.com/j8ngckh) is a further generalization.

The next step was the emergence of class field theory applying to Abelian extensions L/K
of global field K. The goal was to describe L/K in terms of arithmetics of K: this includes
finite Abelian extensions of KK, realization of Gal(L/K) and describe the decomposition of prime
ideal from K to L (see http://tinyurl.com/z3s4kjn). Local number fields integrated into adele
provide the needed tool by reducing the arithmetics to modulo p arithmetics. This can be seen as
an application of Hasse principle (see http://tinyurl.com/jkh3auq).

1. A typical problem is the splitting of primes of K to primes of the extension L/K which
has been already described. One would like to understand what happens for a given prime
in terms of information about K. The splitting problem can be formulated also for the
extensions of the local fields associated with K induced by L/K.

2. Consider what happens to a prime ideal p of K in L/K. In general p decomposes to product
p =

∏g
i=1 P

ei
i of powers of prime ideals Pi of L. For ei > 1 ramification is said to occur. The

finite field K/p is naturally imbeddable to the finite field L/Pj defining its extension. The
degree of the residue field extension (L/Pi)/(K/p) is denoted by fi and called inertia degree
of Pi over p. The degree of L/K equals to [L : K] =

∑
eifi.

If the extension is Galois extension (see http://tinyurl.com/zu5ey96), one has ei = e
and fi = f giving [L : K] = efg. The subgroups of Galois group Gal(L/K) known as
decomposition group Di and inertia group Ii are important. The Galois group of Fi/F
equals to Di/Ii.

For Galois extension the Galois group Gal(L/K) leaving p invariant acts transitively on
the factors Pi permuting them with each other. Decomposition group Di is defined as the
subgroup of Gal(L/K) taking Pi to itself.

The subgroup of Gal(L/K) inducing identity isomorphism of Pi is called inertia group Ii
and is independent of i. Ii induces automorphism of Fi = L/Pi. Gal(Fi/F ) is isomorphic to
Di/Ii. The orders of Ii and Di are e and ef respectively. The theory of Frobenius elements
identifies the element of Gal(Fi/F ) = Di/Ii as generator of cyclic group Gal(Fi/F ) for the
finite field extension Fi/F . Frobenius element can be represented and defines a character.

3. Quadratic extensions Q(
√
n) are simplest Abelian extensions and serve as a good starting

point (see http://tinyurl.com/zofhmb8) the discrimant D = n for p mod 4 = 1 and
D = 4n otherwise characterizes splitting and ramification. Odd prime p of the extension not
dividing D splits if and only if D quadratic residue modulo p. p ramifies if D is divisible by p.
Also the theorem by Kronecker and Weber stating that every Abelian extension is contained
in cyclotomic extension of Q is a helpful result (cyclotonic polynomials has as it roots all n
roots of unity for given n)

Even in quadratic extensions L of K the decomposition of ideal of K to a product of those
of extension need not be unique so that the notion of prime generalized to that of prime ideal
becomes problematic. This requires a further generalization. One ends up with the notion of
ideal class group (see http://tinyurl.com/hasyllh): two fractional ideals I1 and I2 of L are
equivalent if the are elements a and b such that aI1 = bI2. For instance, if given prime of K has
two non-equivalent decompositions p = π1π2 and p = π3π4 of prime ideal p associated with K
to prime ideals associated with L, then π2 and π3 are equivalent in this sense with a = π1 and
b = π4. The classes form a group JK with principal ideals defining the unit element with product
defined in terms of the union of product of ideals in classes (some products can be identical).
Factorization is non-unique if the factor JK/PK - ideal class group - is non-trivial group. Q(

√
−5)

gived a representative example about non-unique factorization: 2× 3 = (1 +
√
−5)(1−

√
−5) (the

norms are 4× 9 and 6× 6 for the two factorizations so that they cannot be equivalent.
This leads to class field theory (see http://tinyurl.com/zdnw7j3 and http://tinyurl.com/

z3s4kjn).

1. In class field theory one considers Abelian extensions with Abelian Galois group. The theory
provides a one-to-one correspondence between finite abelian extensions of a fixed global field

http://tinyurl.com/gm3sbzj
http://tinyurl.com/j8ngckh
http://tinyurl.com/z3s4kjn
http://tinyurl.com/jkh3auq
http://tinyurl.com/zu5ey96
http://tinyurl.com/zofhmb8
http://tinyurl.com/hasyllh
http://tinyurl.com/zdnw7j3
http://tinyurl.com/z3s4kjn
http://tinyurl.com/z3s4kjn
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K and appropriate classes of ideals of K or open sub-groups of the idele class group of K.
For example, the Hilbert class field, which is the maximal unramified abelian extension of
K, corresponds to a very special class of ideals for K.

2. Class field theory introduces the adele formed by reals and p-adic number fields Qp or their
extensions induced by algebraic extension of rationals. The motivation is that the very tough
problem for global field K (algebraic extension of rationals) defines much simpler problems
for the local fields Qp and the information given by them allows to deduce information about
K. This because the polynomials of order n in K reduce effectively to polynomials of order
n mod pk in Qp if the coefficients of the polynomial are smaller than pk. One reduces monic
irreducible polynomial f characterizing extension of Q to a polynomial in finite field Fp. This
allows to find the extension Qp induced by f .

An irreducible polynomial in global field need not be irreducible in finite field and therefore
can have multiple roots: this corresponds to a ramification. One identifies the primes p for
which complete splitting (splitting to first ordinary monomials) occurs as unramified primes.

3. Class field theory also includes a reciprocity homomorphism, which acts from the idele class
group of a global field K, i.e. the quotient of the ideles by the multiplicative group of K,
to the Galois group of the maximal abelian extension of K. Wikipedia article makes the
statement “Each open subgroup of the idele class group of K is the image with respect to
the norm map from the corresponding class field extension down to K”. Unfortunately, the
content of this statement is difficult to comprehend with physicist’s background in number
theory.

Number theoretic Langlands program is the next step in the process and could be seen as
an extension of class field theory to the case of non-Abelian extensions. The following must be
understood as an attempt of a physicist to understand what is involved. In my attempts to
understand the formulas a valuable guideline is that they should involve only information about
the number field K. Hecke character and L-function defined by Dirichlet series are basic notions
besides notions of ideal generalizing of the notion of integer, and the notions of adele and idele
(invertible adele). I must admit that I am still unable to understand how resiprocity theorems
identifying two kinds of characters lead to the concrete form of resiprocity.

1. Hecke character (see http://tinyurl.com/hxg6l9e) is a generalization of Dirichlet character
for Z/kZ (see http://tinyurl.com/jqtp5cv) giving rise to Dirichlet L-functions (see http:
//tinyurl.com/zsssrms) generalizing Riemann Zeta and defined as

L(χ, s) =
∑
n>0

χ(n)n−s .

Hecke character is defined for idele class group rather than Galois group and can be seen as
a character of idele group trivial in principal ideles. The conductor of Hecke character χ is
defined as the largest ideal m such that χ is a Hecke character mod m.

The L-function associated with the Hecke character is an analog of Rieman zeta. There is
sum over ideals not divided by m and weighted by Hecke character analogous to that over
integers in Riemann zeta and its variants. The number n > 0 in Riemann zeta is replaced by
the ideal norm N(I) of ideal I, which is the finite size of the quotient ring R/I, where R is
the ring of integers associated with K. One sums only over ideals not divisible by m. Hence
the formula for the Dirichlet series defining L-function reads as

L(χ, s) =
∑

(I,m)=1

χ(I)N(I)−s . (2.1)

Note that the character could be replaced with a character defined for the adelic extensions
of group and the L-function also now carries information about ideles and therefore about
K.

http://tinyurl.com/hxg6l9e
http://tinyurl.com/jqtp5cv
http://tinyurl.com/zsssrms
http://tinyurl.com/zsssrms
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2. Already Artin’s resiprocity (see http://tinyurl.com/j8ngckh) introduced the representa-
tions of group GL(1, F ), where F is global or local field. Artin proved that the L-functions
associated with the characters of Galois group and with ideal class group were identical. The
homomorphisms of Abelian Galois group to GL(1, C) define so called Artin’s L-functions in
(analogous to Riemann zeta) in terms of characters of Galois group. These make sense also
for non-Abelian extensions. Hecke characters defined as characters for the representations
of the ideal class group give rise to the generalizations of Dirichlet L-functions analogous to
Riemann zeta. Artin’s resiprocity states that these two kind of L-functions are identical. For
non-Abelian extensions higher-dimensional representation of Galois group are possible and
this inspires the idea the introduction of Gl(n,C) and is higher-D representations defining
L-functions as so called automorphic forms.

3. Langlands conjecture (see http://tinyurl.com/mkqhp5n) generalizes Artin’s approach to
non-Abelian case. This requires non-Abelian infinite-dimensional representations possible
for Gl(n, F ) and the theory of infinite-dimensional group representations becomes a tool of
number theorist.

Langlands generalizes Gl(n, F ) to arbitrary reductive algebraic groups G(F ) and extends
these groups to their adelic variants G(A) bringing in ideles appearing also in Artin’s L-
function associated with the homomorphisms of Galois (Weil) group to the non-abelian case.
These give rise to Artin’s to L-functions for the semi-direct product of the dual GL with
Galois (Weil group) and the conjecture is that the automorphic forms for G for admissible
representations co-incide with these.

The characters of the idele group are replaced with those for the “good” automorphic repre-
sentations G(K) defined by the Eq. 2.1. The summation over ideals of K follows automat-
ically from the fact that the representations are for the adelic variant of G. It carries also
information about Weyl group since one considers separable closures.

Langlands postulates also functoriality [A6] (see http://tinyurl.com/zts4rqf) making cat-
egory theory so powerful. This allows to deduce from the existence of homomorphism between
two groups G information about the relationship between representations of the dual group.

To sum up, I cannot claim of understanding much about this at the level of details. I however
realize that the number theoretic vision relates in a highly interesting manner to Langlands theory
and comparison might provide fresh insights to TGD and maybe even to Langlands theory by
suggesting concrete physical identifications of groups associated with the Langlands correspondence
and also suggesting a purely geometric action for the Galois groups via the adelic manifold concept.

3 TGD and Langlands correspondence

In the sequel I compare first Langlands program with TGD, which also involves both number
theoretic and geometric visions and after that consider more detailed ideas.

3.1 Comparing the motivations

There are important similarities and also differences between the mathematical machineries used
in Langlands approach and in TGD. Also motivations are different.

3.1.1 Motivation for number theoretical universality

In Langlands approach reductive algebraic groups are allowed with matri elements in various
number fields (number theoretical universality). Classical Lie groups with matrix elements in some
number field are algebraic groups. The basic motivation is generality. One studies algebraic groups
over field K, which can be archimedean local field (reals or complex numbers), non-archimedean
local field (finite extension of p-adic number field induced by extension of rationals), or global field
(extension of rationals). One introduces also the separable closure K of K making possible to use
the machinery of Lie groups and algebras. Separability means that only the roots of polynomials

http://tinyurl.com/j8ngckh
http://tinyurl.com/mkqhp5n
http://tinyurl.com/zts4rqf
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with different roots appear in extension. For p-adic number fields the separable closure is rather
intricate notion. For algebraic extensions of rationals it correspond to algebraic numbers.

TGD view:

1. In TGD framework number theoretic universality implies that algebraic extensions of ratio-
nals define kind of intersection of reality and p-adicities. Therefore the discrete counterparts
of Lie groups with matrix elements in the extensions of Q are of special importance in TGD.
Langlands program includes these and are the most difficult ones.

2. If the hypothesis about ADE hierarchy assignable inclusions of HFFs [K22] holds true and
has direct connection with heff/h = n phases, all ADE Lie groups are allowed as dynamical
symmetry groups and one achieves almost the same generality as in the case of Langlands
correspondence. The maximal separable extensions for global and local fields make these
fields analogous to complex numbers so that Lie-algebraic machinery can be used.

3. What is new that TGD suggest the allowance of all extensions of rationals inducing finite-
dimensional extensions of p-adic number fields. In TGD context the extension of rationals
can include also powers of a root of e since ep is ordinary p-adic number and root of e induces
finite-D extension of p-adic numbers (finite-dimensionality of extension is natural from the
point of view of cognition). For non-compact groups the discretization of hyperbolic angles in
this manner in p-adic context corresponds to the use of roots of unity for ordinary angles. One
can say that the matrices with adele valued elements act in what might be called extension of
the world of sensory experience to involve also cognition. That ep is ordinary p-adic number
suggests that non-compact groups are effectively compact in p-adic context.

The Galois group of the extension by eq the map σ(e) = 1/e generates automorphism mapping
rationals to rationals. The linear maps induced by f(e) = ek, K integer are homomorphism
since they map sums into sums and products into products but are not bijections except
for k = ±1. One can wonder whether these maps could define analogs of automorphisms
defining analog of inclusion hierarchy for hyper-finite factors (HFFs) [K22].

3.1.2 Motivation for p-adic number fields

In Langlands approach one motivation motivation for including p-adic number fields is Hasse
principle (see http://tinyurl.com/jkh3auq): in the case of p-adic number fields the notion of
algebraic number is not so stunningly complex as for rationals. The reason is that for p-adic units
polynomials reduce effectively to polynomials with degree n mod p<p with integer coefficients in
the range [0, p − 1]. This implies a huge simplification. The main reason for the mathematical
applications of p-adic numbers is just this.

TGD view:From the viewpoint of TGD inspired theory of consciousness the motivation is the
need to describe cognition mathematically. Cognition indeed simplifies: 2-adic cognition represents
the largest possible simplification and cognitive evolution means increase of p as well as the increase
of the dimension of algebraic extension of rationals (perhaps also that induced by root of e). It was
however p-adic mass calculations assuming that mass squared is thermal in p-adic thermodynamics,
which led to the p-adic physics [K6, K4].

3.1.3 Motivation for adelization

In Langlands approach adelicization means treatment of all number fields simultaneously. p-Adic
number fields are combined to form kind of Cartesian product called adeles. Only p-adic integers
are allowed and it is natural to pose the additional condition that apart from a finite number of
exceptions these integers are p-adic units. Automorphic representations can be seen as infinite
tensor products of representations associated with the number fields defining the adele.

TGD view:

1. The adelic view is used in different sense in TGD framework. Infinite tensor product of
representations would create serious problems related to the physical interpretation in TGD
framework since it seems that real and p-adic representations are only different views from

http://tinyurl.com/jkh3auq
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the same number theoretically universal thing in the intersection of real and various p-adic
sectors. One could say that the subgroups of algebraic groups with the matrix elements in
the extension of rationals are in the intersection of real and various p-adic group theories.

2. The notion of p-adic manifold relies on the same idea. The discretization in algebraic exten-
sion of rationals is in the intersection and to each discrete point one can assign a monad which
is real or p-adic and in which field equations such as those satisfied by preferred extremals of
Kähler action are satisfied. One could perhaps say that these discrete algebraic points give
rise to a number theoretically universal “spine” or back-bone of the space-time surface or
any adelic geometry.

Real continua around these points would give rise to the flesh around these bones (sensory
representations). Also mind is needed and p-adic monads realized as p-adic integers would
give it (cognitive representations). The definition of p-adic geometry works nicely for coset
spaces [L2] and induction procedure allows to define adelic geometries for space-time surfacse
using discretization consisting of algebraic imbedding space points. The interpretation is in
terms of finite measurement resolution and the hierarchy of algebraic extensions of rationals
defines an infinite hierarchy of resolutions.

This physical picture would suggest a generalization of the notion of geometry by fusing real
and p-adic variants of the manifold to adelic geometry. In group theory this would mean
a hierarchy of groups assignable to algebraic extensions of rationals with discrete group
elements of discrete subgroups accompanied by monads defining the neighborhood of group
element in archimedean or non-archimedean sense. These monads would make sense also in
real context.

3. One could see the variants of group G in various number fields as completions of the number
theoretically universal core part of G define in an extension of rationals common to all local
number fields. Each point in the discretization would correspond to real or p-adic monad or
for standard notion of manifold to an open neighborhood.

What is new is that the system of open sets would correspond to the discretization having
interpretation in terms of finite measurement resolution and the discrete subgroup could
have direct physical meaning. For instance, Lorentz boosts would be quantized to velocities
β = tanh(n/m), n ∈ Z and this velocity quantization could be seen in cosmology. There is
indeed evidence for the quantization of redshifts [E1, E2]: possible TGD based explanations
are discussed in [K18].

4. For instance, group SO(2) represented by matrices(
cos(θ) sin(θ)
sin(θ) cos(θ)

)
could be replaced with group for which θ = k2π/n so that one has roots of unity and one
would have in p-adic context union of these group elements multiplied by a genuine p-adic
Lie group with trigonometric functions replaced by the p-adic counterparts.

The group SO(1, 1) represented by the matrices(
cosh(η) sinh(η)
sinh(η) cosh(η)

)
could be replaced with the group obtained by quantizing η in the manner already described
and multiplying this group with the p-adic Lie group with hyperbolic functions replaced with
their p-adic counterparts. Since ep is ordinary p-adic number the number of discrete points
of the monad would be finite and one would have analog of compactness for a group which
is non-compact in real context.
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3.1.4 Motivation for global fields

In Langlands approach the motivation for considering groups with matrix elements in global num-
ber fields is purely mathematical and Galois group is studied as number theoretical symmetry.

TGD view: In TGD framework the discretization of the imbedding space in terms of points
belonging to algebraic extension of rationals (or that including also the root of e) and inducing
corresponding discretization of space-time surface means that Galois group of the extension acts
as a physical symmetry group inducing an orbit of discretizations.

1. Does this mean that isometry group and symmetry groups with elements in K must be
combined to semi-direct product with Galois group? One would have analogs of particle
multiplets defined by irreducible representations of Galois group. Would this bring in a kind
of number theoretic spin as additional degree of freedom? These particle like entities would
emerge in number theoretical evolution as increase of the algebraic extension of rationals.

2. Or is an interpretation as a discrete orbital degree of freedom more appropriate? The singular
n-fold coverings assignable to space-time surface associated with heff/h = n phases identified
in terms of dark matter could have natural interpretation as Galois coverings. Singularity
means that the sheets of the covering co-incide at the ends of space-time surface at light-like
boundaries of the causal diamond (CD). The action of Galois group becomes trivial if the
points at the ends of space-time are rational. One can consider also Galois groups which
are are associated with a given extension of an extensions and same picture would hold true.
This identification of heff/h = n would imply very strong correlation between number theory
and dark matter phases.

3.2 TGD inspired ideas related to number theoretic Langlands corre-
spondence

The question is whether TGD might allow to get new perspective to the Langlands duality. TGD
certainly suggests number theoretical view about quantum physics as also view about quantum
physics as infinite-dimensional geometry of WCW.

There are many notions which could relate to Langlands correspondence.

1. The notion of p-adic or monadic geometry [L2] emerges as a realization for finite measure-
ment resolution at space-time level based on discretization in terms of algebraic extension of
rationals and having Galois group as symmetry group. This geometry is also adelic geometry.
Also the semi-direct products of various symmetry groups restricted to an extension of ra-
tionals and their semi-direct products with Galois group emerge naturally in this framework.
Could this be the physical counterpart for the semi-direct product of GL with Galois group?

Complexification and replacement of K with separable closure are carried out for technical
reasons in Landlands approach. Could automorphic functions have physical meaning in TGD
framework? In principle K makes sense also in TGD framework. Could one think that one
just restricts the automorphic functions from G(K) to G(K) and from GL(C) to GL(k)
by imbedding K to C as number theoretic universality suggests? Could one continue the
universal automorphic functions from the discrete spine of the adelic geometry to the interior
of the monads by using their form in K defining formulas?

2. Dark matter phases labelled by hierarchy of Planck constants and proposed to correspond
singular coverings of space-time surface. Could the hierarchy of extensions of rationals cor-
respond to this hierarchy. Could these coverings be Galois coverings becoming singular at
the 3-D ends of space-time surface about boundaries of CD so that Galois leaves the corre-
sponding 3-surface invariant by mapping it to itself or even leaving it invariant in point-wise
manner?

3. Inclusions of hyperfinite factors (HFFs) [K22] are proposed to realize for finite measurement
resolution quantum level in TGD framework. McKay correspondence (see http://tinyurl.

com/z48d92t) suggesting that ADE Lie groups of Kac-Moody groups act as dynamical Lie
groups identifiable as remnants of symplectic symmetries acting as isometries of WCW [K3,
K7]. Could the hierarchy of extensions of rationals correspond to this hierarchy?

http://tinyurl.com/z48d92t
http://tinyurl.com/z48d92t
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4. Weak form of electric-magnetic duality [K8] as self-duality reflecting self-duality of CP2 and
leading to ask whether Langlands duality reduces to self-duality for various symmetry groups
of TGD.

5. Symplectic group defines the isometries of “world of classical worlds” (WCW) [K3, K8] and
it is difficult to avoid the idea that the generalization of Kac-Moody algebra defined by
symplectic group is crucial for the physical realization of Langlands correspondence in TGD
framework.

3.2.1 Galois groups as symmetry groups in number theoretic vision

I have already earlier proposed that Galois groups could act as physical symmetries in TGD
framework.

1. Number theoretic vision about TGD leads to the notion of adelic geometry involving both
real, algebraic and various p-adic geometries giving meaning a generalization of manifold
based on finite measurement resolution. Extensions of rationals inducing finite-dimensional
extensions of p-adic numbers are central. The outcome is what might be called monadology.

p-Adic space-time geometries make sense as induced geometries with discretizations defining
points labelling the monads induced from the discretization of the imbedding space. Strong
form of holography allows reduction to the level string world sheets and partonic 2-surfaces
serving as space-time genes (also gauge equivalence classes light-like orbits of partonic 2-
surface labelled by Galois group might be involved).

What is remarkable is that the Galois group of extension defines a symmetry group for
discretizations in physical sense giving from given set of monads a new one. The roots of a
polynomial behind the extension label a set of n surfaces defining a kind of covering for one
of the sheets and Galois group acts in this set defining a covering space.

2. Do the sheets of the covering define disjoint space-time surfaces or do they form single
connected space-time surface as in the case of Riemann surface for z1/n? Could both options
be involved? In the latter case there should be 3-regions at which the space-time sheets are
glued together to give a singular covering. Either these 3-surfaces or even the points at these
3-surfacse could be fixed points of Galois group.

3. Also the hierarchy of Planck constants is associated with the emergence of coverings of space-
time surface. These coverings are singular in the sense that the sheets co-incide at the eds
of space-time surface at the boundaries of causal diamond (CD: there is scale hierarchy of
CDs).

Could these coverings be Galois coverings defined by the orbit of discretized space-time
surface under Galois group of extension of rationals? Could n = heff/h - tentatively identified
as the number of sheets of covering - correspond to the dimension of the Galois group of the
algebraic extension? More generally, if the Galois group is Galois group for an extension L
of Kwhich itself can be extension, singularity requires that the reduction must take place to
K at the ends [K12]. One can imagine two options.

• Option a): The discrete points of the 4-surface reduce to rational points (or points of K)
at its 3-D ends at boundaries of CD and perhaps also at light-like orbits of partonic 2-
surfaces? One variant of this option is that reduction occurs only at partonic 2-surfaces
and string world sheets or strings at the ends.

• Option b): Galois group leave only the discretized 3-surface invariant and maps its
points along it?

One can invent an objection against Option a). It is essential that the points of discretization
have the same interpretation in real and p-adic senses. Hence the points should be expressible
solely in terms of the algebraic numbers defining the extension: say roots of unity and powers
for the roots of unity but not involving integers larger than 1 with varying p-adic norm. If
integers appear then the p-adic norm of point can differ from unity. Points of unit circle or
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points of sphere with trigonometric functions of angles expressible solely in terms of roots
of unity (Platonic solids) are representative examples. This does not allow the reduction of
points of 3-surfaces at the ends of CD to rational points of H.

Option b) looks more attractive. Galois groups would act as dynamical symmetries of dark
matter. Although the action on 3-surfaces at the ends of CD would be trivial, the action on
the modes of induced spinor fields could be trivial also at the ends of CD.

Note that Galois covering is not the only interpretation for the covering that I have proposed:
I have considered also an identification based on twistor lift of the space-time surface to its
6-D twistor space in the product of twistor spaces of M4 and CP2 which are twistorially
unique in that they allow Kähler structure [K12].

4. The action of Galois group as a symmetry group acting geometrically on adelic geome-
tries brings in mind the Belyi’s theorem stating that Riemann surfaces describable as dessin
d’enfants - “child’s drawings” providing a combinatorial representation of Riemann surface
as graph - can be defined as algebraic curves over the field of algebraic numbers.

The mysterious absolute group has therefore has a geometric interaction on these Rie-
mann surfaces allowing representation in terms of dessin d’enfant (see http://tinyurl.

com/zy393e3). Now the Galois group of algebraic extension would have analogous represen-
tation on the discretization using points with coordinates in extension of rationals induced
by the corresponding discretization for imbedding space (actually causal diamond (CD))
defining the analog of dessin d’enfant.

This raises several questions.

1. This picture brings in mind the notion of virtual particle. At boundaries of CD the 3-surface
would be on mass shell in the sense of being fixed point of Galois group and inside the CD it
could be off-mass shel number theoretically although field equations for preferred extremal
would be satisfied. Could this correspond to the non-determinism of Kähler action? Should
one sum in the construction of scattering amplitudes over the surfaces at Galois orbit as in
path integral?

2. Or should one regard the entire many-sheeted covering as the basic entity? I have indeed
proposed that one can perform second quantization for the n-sheeted cover associated with
heff/h = n by adding fermions to different sheets of this cover and obtain this manner states
with fractional quantum numbers with fractionization by factor 1/n.

3. The interpretation as discrete gauge invariance with gauge fixing as a choice of single rep-
resentative from Galois orbit does not look attractive. Note however that I have discussed
the possibility of a huge generalization of M-theory dualities relating Calabi-Yau’s and their
mirrors as a generalization of old-fashioned string model duality [K12]: space-time surface
could be seen as space-time correlates for computations connecting initial and final collec-
tions of algebraic objects with algebraic operations taking place at the vertices at which the
Euclidian space-time regions representing lines of scattering diagram meet along their 3-D
ends. This symmetry can be also seen as discrete analog of gauge symmetry involving the
analog of gauge choice.

3.2.2 heff/h = n hierarchy, hierarchy of inclusions of HFFs and McKay correspon-
dence, and hierarchy of extensions of rationals

The relationship between dark matter hierarchy as a hierarchy heff/h = n phases, hierarchy of in-
clusions of HFFs, McKay correpondence, and hierarchy of extensions of rationals and corresponding
hierarchy of Galois groups is highly interesting and has been already touched.

1. I have proposed that dark matter hierarchy corresponds to a hierarchy of inclusions of
HFFs [K22] giving rise to a hierarchy of ADE Lie groups or Kac-Moody as effective sym-
metry groups. By McKay correspondence (see http://tinyurl.com/z48d92t) ADE groups
correspond to finite discrete sub-groups of SU(2) in one-one correspondence with Dynkin

http://tinyurl.com/zy393e3
http://tinyurl.com/zy393e3
http://tinyurl.com/z48d92t
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diagrams assignable to ADE type Kac-Moody algebras. This leads to ask whether the in-
clusion hierarchy is accompanied by a hierarchy of ADE type Kac-Moody algebras or Lie
algebras.

2. ADE type Lie or Kac-Moody groups self-dual under Langlands correspondence could emerge
as remnant of the symplectic symmetries (a sub-algebra of full symplectic algebra Sympl
isomorphic to it and its commutator with Sympl have vanishing Noether charges). It could
be assignable to string world sheets carrying the modes of induced spinor fields as dynamical
symmetries. The duals of these ADE type groups are essentially identical with them and
could combine with Galois groups to form semi-direct products.

3. One has a fractal hierarchy of sub-algebras of isomorphic sub-algebras of the symplectic
algebra with conformal weights coming as n1-multiples of the full algebra. Could n1 satisfy
n1 = heff/h = n with n identifiable as the dimension of algebraic extension of rationals? Or
could one have n1 = ord(G), where ord(G) is the order of the Galois group having n as a
factor?

3.2.3 Weak form of electric-magnetic duality and Langlands correspondence

The first question about Langlands correpondence is why GL o Gal corresponds to G and what
this precisely means.

1. One can extend Galois group and symmetry group (say Poincare or Lorentz group acting on
discretized space-time surface or on 2-surface or on induced spinor field) to their semi-direct
product: group multiplication law would be (t1, g1)(t2, g2) = (t1t2, g1t1(g2)): this group
would be the analog of GL×Gal(K). The finite-dimensional representations of Galois group
clearly give rise to what might be called number theoretic spin.

2. The innocent question of a physicists familiar with the unitary representations of Poincare
group defined by fields with spin is whether the dimension of Galois representation for GL
could correspond to dimension for the representation for the spin associated with the rep-
resentation of the dual G in analogy with Langlands correspondence. If the idea about
hierarchy of Planck constants makes sense, strings and partonic 2-surfaces at the ends of
space-time surface at boundaries of CD would correspond to G since the action of Galois
would be trivial on them and GL effectively reduces to G. String world sheets and light-like
orbits of partonic 2-surfaces would correspond to GL and Galois group would bring in ad-
ditional degrees of freedom. The action of GL on the induced spinors with components in
field K would be however non-trivial. This could serve as a motivation for the introduction
of n-D representations of G formed by many-fermion states.

Second basic mystery relates to the duality G−GL with G and GL. Why the groups G ad GL
different? Or are they same in TGD framework?

1. G and GL are essentially the same for Lorentz group, Poincare group, color group, for
the holonomy group of spinor connection and for ADE groups possibly accompanying the
hierarchy of inclusions of HFFs. One might also expect that the situation remains the same for
Kac-Moody groups. “Essentially” means for color group G = SU(3) one has GL = SU(3)/Z3.

Whether the situation is same for the infinite-dimensional symplectic group assignable to
the boundary of CD, is not clear since finite-dimensional symplectic groups are dual to
odd-dimensional rotational groups. In fact, the infinite number of vanishing conditions for
symplectic charges is expected to reduce it effectively to finite-dimensional Lie group or
Kac-Moody group.

2. In TGD framework wormhole throats with identical electric and magnetic fluxes serves as the
building bricks of elementary particles. Weak form of electric-magnetic duality is self-duality
restricted to the light-like orbits of partonic 2-surfaces defining boundary conditions and
inspired by the fact that electric and magnetic Kähler charge for CP2 are identical. One can
assign magnetic fluxes to partonic 2-surfaces and electric fluxes to the boundaries defined
by the orbits of partonic 2-surfaces. One can define weighted fluxes for Hamiltonians of
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δM4
±×CP2 as this kind of fluxes and obtain analogs of magnetic and electric representations

classically. Trivial form of duality would mean that these representations are identical. Weak
form of electric magnetic duality in this form suggests Langlands self-duality.

One can assign magnetic and electric fluxes also to string world sheets. If one assumes weak
form of self-duality also for them, electric and magnetic fluxes are identical also form them.

One must be here cautious since algebraic discretization is involved and fluxes are defined
only by assuming a continuation to continuous surface. This is indeed provide by the interiors
of the monads assignable to the discrete points. In p-adic context the definition of flux as
integral can be problematic.

G = GL does not trivialize Langlands correspondence.

1. If one considers semi-direct product of GL o Gal(K) and representation of G without the
addition of Galois group as a semi-direct factor then the situation is non-trivial even for
GL = G. In Langlands program one must indeed use semi-direct product since the action
of Galois group in GL(C) is usually trivial. For G(K) the action of Gal(K) is non-trivial in
both global and local fields so that the inclusion of Gal(K) as semi-direct factor would not
be needed. Adeles contain however also positive reals and the action of Gal(K) is trivial.
This suggests that one must in the double coset representations in H1\G/H2 an irreducible
unitary representation to either H1 or H2 and that this representation corresponds to the
higher-dimensional representation of non-Abelian Galois group. If so, the representation of
GL o Gal(K) could factor to a product of a representation of GL invariant under Gal(K)
with a finite-dimensional representation of non-Abelian Gal(K) and would correspond to a
representation of G in H1\G/H2 with Hi-“spin” in analogy with representations of Lorentz
group.

The reduction of the quantum numbers assignable to Lie groups to number theory would
be of course in accordance with the vision about physics as generalized number theory and
could be perhaps seen as the deep physical content of Langlands correspondence.

2. The relationship to the fractionization of quantum numbers occurring for anyons is interest-
ing. The covering analogous to that for z1/n gives an idea about the situation. Using single
sheet with coordinate z one would obtain 1/n fractionization of spin at this sheet since 2π
rotation leads to different sheet and only n× 2π rotation must leave the state unaffected. If
one uses w as coordinate the range of angle coordinate is 2π - no fractionization [K16]. In
TGD framework fractionization would mean that spin fractionizes for the rotation generator
assignable to M4 but does not so for the rotation generator assignable to the space-time
surface X4. Spin fractionization is associated with magnetic monopoles (maybe 2-sheeted
coverings forced by the fact that monopole flux must flow to another space-time sheet through
wormhole contact) so that there might be a connection.

3.2.4 M8 −M4 × CP2 duality, classical number fields, and Langlands correspondence

Quaternions and octonions seem to relate closely to the basic structure TGD [K20]: M4×CP2 al-
lows octonionic structure in tangent space and space-time surfaces as preferred extremals could cor-
respond to quaternionic/co-quaternionic surfaces with tangent space/normal space being quater-
nionic/associative. Also the notion of quaternion analyticity makes sense [K12]. The interesting
question concerns the properties of various automorphism groups under Langlands duality. G2

acting as automorphisms of octonions, its subgroup SU(3) preserving preferred imaginary unit of
octonions, and the covering group SU(2) of the group SO(3) of quaternionic automorphisms are
self dual. SO(3) has SL(1, R) (I use SL(n,R) to mean the same as SL(2n,R) by some authors)
as Langlands dual but the complexified groups are same so that one has self-duality also now.

For years ago I proposed what I called M8 − M4 × CP2 duality [K20, K21] and have not
been able to kill this proposal. M8 can be seen as tangent space of M4 × CP2 and can be
interpreted as subspace of complexified octonions. The idea is that 4-surfaces of M8 with the
property that tangent space at each point is associative (co-associative) or equivalently quaternionic
(co-quaternionic) and containing in their tangent space M2 ⊂ M8 = M2 ⊂ E6 are mappable to
surfaces in M4 × CP2. The point of CP2 would parameterize the tangent space as subspace of
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E6 and transform as 3 + 3 under SU(3) automorphisms. That the coordinates for time= constant
section of M8 transform either as 7-D G2 representation whereas the points of 7-D hyperboloid
transform as 7−D representation of SO(7) suggest some kind of duality.

The isometry group of M8 is SO(1, 7) and decomposes for a fixed M8 = M4×E4 decomposition
to SO(1, 3) × SO(4). The automorphism group of M8 identified in terms of octonions is G2 and
SU(3) is the automorphism group associated with M6 = M2 × E6 decomposition and acts as
isometries of CP2. There is infinite number of different octonion structures corresponding to the
choices of subspaces M2 × E6 parameterized by SO(1, 7)/SO(1, 1) × SO(6) having dimension
D = 28− 1− 15 = 12. Note that all groups involved are self-dual in Langlands correspondence.

The notions of p-adic octonions and quaternions do not make sense: the reason is that the norm
of non-vanishing quaternion/octonion can be vanishing. This can be case also for p-adic analog of
complex numbers if −1 is square of p-adic number as it is for p mod 4 = 1. This does not allow
definition of p-adic Hilbert space. This difficulty is not present if one restricts the consideration
to points of algebraic extension interpreted as p-adic numbers. In this case one can construct
versions of G2 and SU(3) by replacing real numbers with global field. Also the action of Galois
group is well-defined on space-time surface so that one can form semi-direct sum of these groups
with Galois group. G2 and SU(3) are self-dual.

3.2.5 Could supersymplectic algebra be for number theoretic Langlands what Kac-
Moody algebra is for geometric Langlands

Super-symmetric symplectic algebra [K3, K8] and conformal algebra of light-cone boundary is
much more complex structure than Kac-Moody algebras and central in TGD. The reason is that
effective 2-dimensionality of the light-cone boundary of four-dimensional Minkowski space leads to
huge extension of the ordinary conformal symmetries.

1. Supersymplectic algebra has the structure of conformal algebra. The analog of complex
coordinate for the is the light-like radial coordinate r of light-cone boundary. Radial onformal
weights can be complex numbers and numbers s = 1/2 + iy are favored since they give rise
to the analogs of plane waves. Light-cone boundary having the structure S2×R+ metrically
with R+ corresponding to null direction. Therefore there is also an extension of conformal
algebra of sphere S2. For this extension one has ordinary conformal weight assignable to
S2 and radial conformal weight assignable to R+. The physical role of this algebra which is
actually also isometry algebra has remained unclear. What is however clear that dimension
for M4 makes it mathematically completely unique.

2. I have proposed that the conformal weights for the generators of the symplectic algebra
could correspond to poles of fermionic zeta function ζF (s) = ζ(s)/ζ(2s) [K10]. The number of
generators of the algebra could be infinite so that it would be extremely complex as compared
to the Kac-Moody algebras. Unitarity demands that for physical states the imaginary part
of the total conformal weight which is essentially the sum of zeros of zeta is real. This
implies conformal confinement and that physical states have integer or half-integer valued
total conformal weights as for the ordinary super-conformal algebras.

3. A further conjecture is that for the zeros s = 1/2 + iy of Riemann zeta piy is root of
unity [K10]. This conjecture is motivated by the findings suggesting that the zeros form
a quasicrystal meaning that the Fourier transforms for the function located at zeros is of
similar form.

Kac-Moody algebras are important for geometric Langlands based on fundamental group.

1. So called critical representations for Kac-Moody algebra are involved. For them the cen-
tral extension parameter equals to k = −cgψ/2, where cgψ is Casimir operator for the adjoint
representation. Negativity of k implies non-unitarity. The Virasoro generators in the associ-
ated Sugawara representation for Virasoro algebra would have infinite normalization constant
N = 1/2β, β = k+cgψ/2 = 0 and it would not be well-defined. Physically critical Kac-Moody
representation does not seem interesting.



3.3 Could geometric and number theoretic Langlands relate to each other? 21

2. A formal generalization of Sugawara construction of representation of Virasoro algebra from
that of symplectic algebra mimicking Kac-Moody case does not seem to work. The nor-
malization factor k + cgψ/2 dividing the quadratic expression of Ln in terms of Kac-Moody
generators diverges if Casimir diverges and the outcome is ill-defined. Quadratic Casimir in
adjoint representation is expressible in terms of structure constants as fABCfABC . Struc-
ture constants now Glebsch-Gordans for the representations of SO(3) × SU(3). Obviously
the symplectic counterpart for the sum fABCfABC for the Casimir operator of Lie group
diverges so that Sugawara construction fails. This is of course not a real problem since Sug-
awara construction fails in any case for the critical weight needed in Kac-Moody algebra
approach to geometric Langlands.

Could super-symplectic algebra help to understand number theoretic Langlands?

1. The conditions defining preferred extremal state vanishing of almost all symplectic Noether
charges and suggest that symplectic group reduces effectively to a finite-D Lie group or Kac-
Moody group. These groups form a hierarchy and could be assigned to inclusions of HFFs
identifiable as ADE groups dictated by the inclusion (essentially self-dual under Langlands
correspondence). These Kac-Moody groups could also have natural action at strings identified
as boundaries of string world sheets. Also for these Kac-Moody groups critical representations
lack physical interpretation.

2. Number theoretic discretization requires the consideration of discrete subgroup of ADE Lie
group obtained by restriction to global field rather than Lie algebra. One could restrict
the L-functions of automorphic representations to the subgroup of complex Lie group G(C)
having the group G(K) associated with the global number field K.

3. This picture suggests tha the extension of Galois group in extension E/K has counterpart
for the Lie groups appearing in ADE hierarchy realized at the level of Lie algebras: perhaps
by adding n generators to the Cartan algebra.

3.3 Could geometric and number theoretic Langlands relate to each
other?

One can see the analogy between Galois group and fundamental group also in the following manner
(see the blog posting of Peter Woit at http://tinyurl.com/hlgrrjk). Primes are analogous to
prime polynomials from which one can construct more complex polynomials as products. Rational
numbers are analogous to rational functions defined as ratios of polynomials. This suggests an
analogy between number theoretic Langlands and geometric Langlands for which rationals and
their extensions are replaced by rational functions. One manner to interpret this analogy is to see
ordinary rationals as kind of functions. Second manner is to see rational functions as generalizations
of rationals. The latter interpretation looks more attractive to me.

There are indeed strong analogies between Galois groups and fundamental groups. Covering
spaces can be assigned with fundamental groups and algebraic extensions of rationals are analogous
to coverings: the orbit of a given point under Galois group is analogs to set of copies of the point
at the sheets of the covering.

The problem is that fundamental group typically contains Z as a summand, which does not
occur for Galois groups. For a punctured plane having Z as fundamental group one can construct
infinite covering with trivial homotopy group. If one identifies k:th k+n:th sheet the fundamental
group is Zn = Z/nZ. For Qp one expects reduction of fundamental group to Zm, m = n mod p.
This encourage speculative ideas related to the connection of number-theoretic and geometric
Langlands.

3.3.1 Adelic geometries and the realization of fundamental group in terms of Galois
group

Could geometric Langlands reduce to number theoretic Langlands in some cases? This would mean
representation of fundamental group as Galois group of algebraic extension.

http://tinyurl.com/hlgrrjk
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1. The notion of the adelic geometry involving algebraic discretization in both real and p-adic
sectors with discretized points accompanied by locally smooth neighborhoods in which field
equations for Kähler action are satisfied would suggests this. For a given discretization in
terms of points of extension one obtains set of discretizations by applying Galois group and
Galois group acts as symmetry group permuting the sheeets of the coverig covering space:
the number of sheets as dimension of extension divides the order of Galois group.

2. If the n-fold singular coverings assigned with heff/h = n corresponds to a Galois coverings,
the sheets of covering reduce to single one at the singular ends of space-time surface at the
lightlike boundaries of CD and one obtains a space analogous to the base space of covering
and having homotopy group given by Galois group. Therefore the representations of Galois
group would become representations of fundamental group for the adelic geometry. The
action of this group would be non-trivial on spinors also at the ends of CD.

The analogy with fundamental group suggests that there are two manners to consider the
situation. The images of the discrete adelic geometry under Galois group define the covering for
which fundamental group is trivial. The restriction to single space-time sheet at the orbit under
Galois group would mean the restriction to base space with non-trivial fundamental group given
by Galois group. For the first option Galois group would permute the sheets of covering and define
dynamical symmetry. For the second option non-trivial homotopy would correspond to these
degrees of freedom. These two descriptions might define the core of number theoretic Langlands
duality having interpretation also as geometric duality.

3.3.2 Does the hierarchy of infinite primes generalize number theoretic Langlands?

In TGD framework one can see the analogy from other direction. The construction of infinite
primes leads to a repeated second quantization of arithmetic quantum field theory with bosonic
and fermionic single particl estates labelled by primes [K19]. At the lowest level ordinary primes
label the single particle states and at the first level one obtains infinite primes as Fock states.

Infinite primes can be mapped to monomials of single variable with zeros which are rational
numbers. One obtains also infinite primes analogous of bound states as analogs of irreducible
polynomials of single variables: now the zeros correspond to algebraic numbers.

One can continue the second quantization by taking these infinite primes as labels of single
particle states and repeating the procedure. Now one can map the infinite primes to polynomials
of two variables. This process can be continued ad infinitum.

The variables appearing in irreducible polynomials assignable to the hierarchy of infinite primes
are formal variables and it is no clear it makes to sense to interpret them as coordinates for some
space. If this were the case, one might consider connecting with Geometric Langlands associated
with these space with generalization of number theoretic Langlands.

4 What generalization of Fermat’s last theorem could have
to do with TGD

I received a link to a popular article published in Quanta Magazine (http://tinyurl.com/
t44qv8o) with title Amazing Math Bridge Extended Beyond Fermats Last Theorem suggesting
that Fermat’s last theorem could generalize and provide a bridge between two very different pieces
of mathematics suggested also by Langlands correspondence [K13, A4, A3, A8].

I would be happy to have the technical skills of real number theorist but I must proceed using
physical analogies. What the theorem states is that one has two quite different mathematical
systems, which have a deep relationship between each other.

1. Diophantine equations give solutions as roots of a polynomial Py(x) containing second vari-
able y as parameter. The coefficients of Py(x) and y are integers but one can consider a
generalization allowing them to be in extension of rationals.

The general solution of Py(x) = 0 for given value of n is in extension of rationals, whose
dimension is determined by the degree n of Py(x). One is however interested only on the
roots (x, y) of Py(x) = 0 coming pairs of integers.

http://tinyurl.com/t44qv8o
http://tinyurl.com/t44qv8o
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Diophantine equations can be solved also in p-adic number fields labelled by primes p and in
the adelic physics of TGD they are present. Also are present the extensions of p-adic number
fields induced by the extensions of rational numbers. There is infinite hierarchy of them.
The dimension n of extension serves as a measure for algebraic complexity and kind of “IQ”
and n = heff/h0 gives to effective Planck constant: the larger the value of n, the longer the
scale of quantum coherence. This gives a direct connection to quantum biology.

In p-adic number fields the p-adic integer solutions of the Diophantine equation can be infinite
as real numbers. The solutions which are finite as real integeres for all primes p define real
solutions as finite integers. The sequence of these solutions modulo prime p - that is in finite
field - characterizes Diophantine equations. For large p these solutions would stabilize and
start to repeat themselves for finite integer solutions. This picture can be generalized from
simple low degree polynomials to higher degree polynomials with rational coefficients and
even with coefficients in extension of rationals.

2. Second system consists of automorphic functions in lattice like systems, tesselations. They
are encountered in Langlands conjecture [K13, A4, A3, A8], whose possible physical meaning
I still fail to really understand physically so well that I could immediately explain what it is.

The hyperboloid L (L for Lobatchevski space) defined as t2−x2−y2−z2 = constant surface
of Minkowski space (particle physicist talks about mass shell) is good example about this
kind of system in TGD framework. One can define in this kind of tesselation automorphic
functions, which are quasi-periodic in sense that the values of function are fixed once one
knows them for single cell of the lattice. Bloch waves serve as condensed matter analog.

One can assign to automorphic function what the article calls its “energy spectrum”. In the
case of hyperboloid it could correspond to the spectrum of d’Alembertian - this is physicist’s
natural guess. Automorphic function could be analogous to a partition function build from
basic building bricks invariant under the sub-group of Lorentz group leaving the fundamental
cell invariant. Zeta function assignable to extension of rationals as generalization of Riemann
zeta is one example [L8].

What the discovery could be? I can make only humble guesses. The popular article tells that
the “clock solutions” of given Diophantine equation in various finite fields Fp are in correspondence
with the “energy” spectra of some automorphic form defined in some space.

The problem of finding the automorphic forms is difficult and the message is that here a great
progress has occurred. So called torsion coefficients for the modular form would correspond the
integer value roots of Diophantine equations for various finite fields Fp. What could this statement
mean?

1. What does automorphic form mean? One has a non-compact group G and functions from
G to some vector space V . For instance, spinor modes could be considered. Automorphic
forms are eigenfunctions of Casimir operators of G, d’Alembert type operator is one such
operator and in TGD framework G = SO(1, 3) is the interesting group to consider. There is
also discrete infinite subgroup Γ ⊂ G under which the eigenfunctions are not left invariant
but transform by factor j(γ) of automorphy acting as matrix in V - one speaks of twisted
representation.

Basic space of this kind of is upper half plane of complex plane in which G = SL(2, C) acts as
also does γ = SL(2, Z) and various other discrete subgroups of SL(2, C) and defines analog
of lattice consisting of fundamental domains γ\G as analogs of lattice cells. 3-D hyperboloid
of M4 allows similar structures and is especially relevant from TGD point of view. When
j(γ) is non-trivial one has analogy of Bloch waves.

Modular invariant functions is second example. They are defined in the finite-D moduli space
for the conformal structures of 2-D surfaces with given genus. Automorphic forms transform
by a factor j(γ) under modular transformations which do not affect the conformal equivalence
class. Modular invariants formed from the modular forms can be constructed from these and
the TGD based proposal for family replication phenomenon involves this kind invariants as
elementary particle vacuum functions in the space of conformal equivalence classes of partonic
2-surfaces [K2].
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One can also pose invariance under a compact group K acting on G from right so that one
has automorphic forms in G/K. In the case of SO(3, 1) this would give automorphic forms on
hyperboloid H3 (“mass shell”) and this is of special interest in TGD. One could also require
invariance under discrete finite subgroup acting from the left so that j(γ) = 1 would be true
for these transformations. Here especially interesting is the possibility that Galois group
of extension of rationals is represented as this group. The correct prediction of Newton’s
constant from TGD indeed assumes this [L10].

2. What does the spectrum (http://tinyurl.com/vakzxye) mean? Spectrum would be defined
by the eigenvalues of Casimir operators of G: simplest of them is analog of d’Alembertian for
say SO(3, 1). The number of these operators equals to the dimension of Cartan sub-algebra
of G. Additional condition is posed by the transformation properties under Γ characterized
by j(γ).

One can assign to automorphic forms so called torsion coefficients in various finite fields Fp and
to the eigen functions of d’Alembertian and other Casimir operators in coset space G/K. Consider
discrete but infinite subgroup Γ such that solutions are apart from the factor j(γ) of automorphy
left invariant under Γ. For trivial j(γ) they would be defined in double coset space Γ\G/K. Besides
this Galois group represented as finite discrete subgroup of SU(2) would leave the eigenfunctions
invariant.

1. Torsion group T is for the first homotopy group Π1 (fundamental group) a finite Abelian
subgroup decomposing Zn to direct summands Zp, p prime. The fundamental group in the
recent case would be naturally that of double coset space Γ\G/K.

2. What could torsion coefficients be (http://tinyurl.com/u3jv86t)? Π1 is Abelian an rep-
resentable as a product T × Zs. Zs is the dimension of Π1 - rank - as a linear space over Z
and T = Zm1 × Zm2 × ....Zmn is the torsion subgroup. The torsion coefficients mi satisfy
the conditions m1 ⊥ m2 ⊥ ... ⊥ mn. The torsion coefficients in Fp would be naturally
mi mod p.

The torsion coefficients characterize also the automorphic functions since they characterize
the first homotopy group of Γ\G/K . If I have understood correctly, torsion coefficients mi

for various finite fields Fp for given automorphic form correspond to a sequence of solutions
of Diophantine equation in Fp. This is the bridge.

3. How are the Galois groups related to this (http://tinyurl.com/tje4hvc)? Representations
of Galois group Gal(F ) for finite-D extension F of rationals could act as a discrete finite
subgroup of SO(3) ⊂ SO(1, 3) and would leave eigenfunctions invariant: these ADE groups
form appear in McKay correspondence and in inclusion hierarchy of hyper-finite factors of
type II1 [K22, K11].

The invariance under Gal(F ) would correspond to a special case of what I call Galois confine-
ment, a notion that I have considered in [L11, L1] with physical motivations coming partially
from the TGD based model of genetic code based on dark photon triplets.

The problem is to understand how dark photon triplets occur as asymptotic states - one
would expect many-photon states with single photon as a basic unit. The explanation would
be completely analogous to that for the appearance of 3-quark states as asymptotic states
in hadron physics - the analog of color confinement. Dark photons would form Z3 triplets
under Z3 subgroup of Galois group associated with corresponding space-time surface, and
only Z3 singlets realized as 3-photon states would be possible.

Mathematicians talk also about the Galois group Gal(Q) of algebraic numbers regarded as
an extension of finite extension F of rationals such that the Galois group Gal(F ) would leave
eigenfunctions invariant - this would correspond to what I have called Galois confinement.

4. There is also the idea that the torsion group could have representation as sub-group of Galois
group. In TGD the correspondence between physics as geometry and cognitive physics as
number theory supports this idea: in adelic physics [L6] cognition would represent number
theoretically.

http://tinyurl.com/vakzxye
http://tinyurl.com/u3jv86t
http://tinyurl.com/tje4hvc
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What could be the general vision concerning the connection between Diophantine equations
and automorphic forms in TGD framework?

1. In TGD framework an obvious candidate for a space at automorphic side would be the
product of H3×CP2 carrying the representations of SO(1, 3)×SU(3). H3 is 3-D hyperboloid
H3 of M4 having SO(1, 3) as group of isometries. The infinite discrete subgroups of SO(1, 3)
define tesselations of H3 analogous lattices in E3, and one can assign to these automorphic
functions as analogs of Bloch waves. They would be associated with separable solutions of
spinor d’Alembertian in future light-cone, which corresponds to empty Robertson-Walker
cosmology. This is however not the only option: automorphic functions appear also in the
description of family replication phenomenon and give rise to modular invariant elementary
particle functions in the spaces of conformal moduli for partonic 2-surfaces [K2].

M8 −H duality states that space-time can be regarded as a 4-surface in either complexified
8-D Minkowski space having interpretation as complexified octonions or H = M4×CP2. At
the level M8 space-time surfaces are algebraic surfaces assignable to an algebraic continuation
of a polynomial with rational (or even algebraic) coefficients to M8. In H one has minimal
surfaces with 2-D algebraic singularities - string world sheets and partonic 2-surfaces. Each
polynomial defines extension of rationals and the Galois group of extension acts as a symmetry
group for the cognitive representations identified as the set of points of space-time surface
with coordinate values in the extension of rationals considered. This is central for adelic
physics fusing real physics and physics for extensions of p-adic numbers induced by that for
rationals. Cognitive representations would define the number theoretic side and Langlands
correspondence and generalization of Fermat’s theorem would mean that there is many-to-one
correspondence from the automorphic side (imbedding space level) to the number theoretic
side (cognitive representations). In particular, Galois group of extension would have action
as a discrete finite subgroup of SO(3) ⊂ SO(1, 3).

2. In TGD framework Galois group Gal(F ) has natural action on the cognitive representation
identified as a set of points of space-time surface for which preferred imbedding space coor-
dinates belong to given extension of rationals [L3, L4, L5, L9]. In general case the action of
Galois group gives a cognitive representation related to a new space-time surface, and one
can construct representations of Galois group as superpositions of space-time surfaces and
they are effectively wave functions in the group algebra of Gal(F ). Also the action of discrete
subgroup of SO(3) ⊂ SO(1, 3) gives a new space-time surface.

There would be two actions of Gal(F ): one at the level of imbedding spaces at H3 and second
at the level of cognitive representations. Possible applications of Langlands correspondence
and generalization of Fermat’s last theorem in TGD framework should relate to these two
representations. Could the action of Galois group on cognitive representation be equivalent
with its action as a discrete subgroup of SO(3) ⊂ SO(1, 3)? This would mean concrete
geometric constraint on the preferred extremals.

In the sequel I try to make this picture more concrete.

4.1 The analog for Diophantine equations in TGD

What could this discovery have to do with TGD?

1. In adelic physics [L6, L7] M8−H duality is in key role. Space-time surfaces can be regarded
either as algebraic 4-surfaces in complexified M8 determined as roots of polynomial equations.
Second representation is as minimal surfaces with 2-D singularities identified as preferred
extremals of action principle: analogs of Bohr orbits are in question.

2. The Diophantine equations generalize in TGD framework. One considers the roots of poly-
nomials with rational coefficients and extends them to 4-D space-time surfaces defined as
roots of their continuations to octonion polynomials in the space of complexified octo-
nions [L9, L3, L4, L5]. Associativity is the basic dynamical principle: the tangent space
of these surfaces is quaternionic, and therefore associative. Each irreducible polynomial
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defines extension of rationals via its roots and one obtains a hierarchy of them having phys-
ical interpretation as evolutionary hierarchy. These surface can be mapped to surface in
H = M4 × CP2 by M8 −H duality.

3. So called cognitive representations for given space-time surface are identified as set of points
for which points have coordinate in extension of rationals. They realize the notion of finite
measurement resolution and scattering ampludes can be expressed using the data provided
by cognitive representations: this is extremely strong form of holography.

4. Cognitive representation generalizes the solutions of Diophantine equation: instead of integers
one allows points in given extension of rationals. These cognitive representations determine
the information that conscious entity can have about space-time surface. As the extensions
approaches algebraic numbers, the information is maximal since cognitive representation
defines a dense set of space-time surface.

4.2 The analog for automorphic forms in TGD

1. The above mentioned hyperboloids H3 of M4 are central in zero energy ontology (ZEO)
of TGD: in TGD based cosmology they correspond to cosmological time constant surfaces.
Also the tesselations of hyperboloids are expected to have a deep physical meaning - quantum
coherence even in cosmological scales is possible [K17, K15] and there are pieces of evidence
about the lattice like structures in cosmological scales.

2. Also the finite lattices defined by finite discrete subgroups of SU(3) in CP2 analogous to
Platonic solids and and regular polygons for rotation group are expected to be important. For
what this could mean in number theoretic vision about TGD see for the correct prediction of
the Newton’s constant in terms of CP2 radius [L10] (http://tgdtheory.fi/public_html/
articles/Gagain.pdf).

3. One can imagine analogs of automorphic forms for these tesselations. The spectrum would
correspond to that for massless spinor d’Alembertian of L × CP2, where L denotes the
hyperboloid, satisfying the boundary conditions given by tesselation. The mass eigenvalues
would be determined by the CP2 spinor Laplacian. In condensed matter physics solutions
of Schrödinger equation consistent with lattice symmetries would be in question as quasi-
periodic Bloch waves. The spectrum would correspond to mass squared eigenvalues and to
the spectra for observables assignable to the discrete subgroup of Lorentz group defining the
tesselation.

4. The theorem described in the article suggests a generalization in TGD framework based on
physical motivations. The “energy” spectrum of these automorphic forms identified as mass
squared eigenvalues and other quantum numbers characterized by the subgroup of Lorentz
group are at the other side of the bridge.

At the other side of bridge could be the spectrum of the roots of polynomials defining space-
time surfaces: the roots indeed fix the polynomial of one argument and therefore entire space-
time surface as a “root” of the octonionic counterpart of the polynomial. A more general
conjecture would be that the discrete cognitive representations for space-time surfaces as
“roots” of octonionic polynomial are at the other side of bridge. These two would correspond
to each other.

Cognitive representations at space-time level would code for the spectrum of d’Alembertian
like operator at the level of imbedding space. This could be seen as example of quantum
classical correspondence (QCC) , which is basic principle of TGD.

4.3 What is the relation to Langlands conjecture (LC)?

I understand very little about LC [A1, A4, A3, A8] at technical level but I can try to relate it to
TGD via physical analogies. I have done this actually two times already earlier [A1, K14].

1. LC relates two kinds of groups.

http://tgdtheory.fi/public_html/articles/Gagain.pdf
http://tgdtheory.fi/public_html/articles/Gagain.pdf
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(a) Algebraic groups satisfying certain very general additional conditions (complex nxn
matrices satisfying algebraic conditions is one example). Matrix groups such as Lorentz
group are a good example.

The Cartesian product of future light-cone and CP2 would be the basic space. d’Alembertian
inside future light-cone in the variables defined by Robertson- Walker coordinates. The
separation of variables a as light-cone proper time and coordinates of H3 for given value
of a assuming eigenfunction of H3 d’Alembertian satisfying additional symmetry con-
ditions would be in question. The dependence on a is fixed by the separability and by
the eigenvalue value of CP2 spinor Laplacian.

(b) So called L-groups assigned with extensions of rationals and function fields defined by
algebraic surfaces as as those defined by roots of polynomials. This brings in adelic
physics in TGD.

2. The physical meaning in TGD could be that the discrete the representations provided by the
extensions of rationals and function fields on algebraic surfaces (space-time surfaces in TGD)
determined by them. Function fields might be assigned to the modes of induce spinor fields.

The physics at the level of imbedding space (M8 or H = M4×CP2) described in terms of real
and complex numbers - the physics as we usually understand it - would by LC corresponds
to the physics provided by discretizations of space-time surfaces as algebraic surfaces. This
correspondence would not be 1-1 but many-to-one. The discretizations provided by cognitive
representations would provide hierarchy of unique approximations. Langlands conjecture (or
rather, its proof!) would justify this vision.

3. Galois groups of extensions are excellent examples of L-groups an indeed play central role
in TGD. The proposal is that Galois groups provide a representation for the isometries of
the imbedding space and also for the hierarchy of dynamically generated symmetries. This
is just what the Langlands conjecture motivates to say.

Amusingly, just last week I wrote an article deducing the value of Newton’s constant using
the conjecture that discrete subgroup of isometries common to M8 and M4×CP2 consisting
of a product of icosahedral group with 3 copies of its covering corresponds to Galois group
for extension of rationals. The prediction is correct. The possible connection with Langlands
conjecture came into my mind while writing these comments.

To sum up, Langlands correspondence would relate two descriptions. Discrete description for
cognitive representations at space-time level and continuum description at imbedding space level
in terms of eigenfunctions of spinor d’Alembertian.
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