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Abstract

There are two basic approaches to quantum TGD. The first approach, which is discussed
in this chapter, is a generalization of Einstein’s geometrization program of physics to an
infinite-dimensional context. Second approach is based on the identification of physics as a
generalized number theory. The first approach relies on the vision of quantum physics as
infinite-dimensional Kähler geometry for the “world of classical worlds” (WCW) identified as
the space of 3-surfaces in in certain 8-dimensional space.

There are three separate manners to meet the challenge of constructing WCW Kähler
geometry and spinor structure. The first approach relies on direct guess of Kähler function.
Second approach relies on the construction of Kähler form and metric utilizing the huge
symmetries of the geometry needed to guarantee the mathematical existence of Riemann
connection. The third approach relies on the construction of spinor structure based on the
hypothesis that complexified WCW gamma matrices are representable as linear combinations
of fermionic oscillator operator for second quantized free spinor fields at space-time surface
and on the geometrization of super-conformal symmetries in terms of WCW spinor structure.

In this chapter the proposal for Kähler function based on the requirement of 4-dimensional
General Coordinate Invariance implying that its definition must assign to a given 3-surface
a unique space-time surface. Quantum classical correspondence requires that this surface is
a preferred extremal of some some general coordinate invariant action, and so called Kähler
action is a unique candidate in this respect. The preferred extremal has in positive energy
ontology interpretation as an analog of Bohr orbit so that classical physics becomes and exact
part of WCW geometry and therefore also quantum physics. In zero energy ontology (ZEO) it
is not clear whether this interpretation can be preserved except for maxima of Kähler function.

The basic challenge is the explicit identification of WCW Kähler function K. Two assump-
tions lead to the identification of K as a sum of Chern-Simons type terms associated with the
ends of causal diamond and with the light-like wormhole throats at which the signature of the
induced metric changes. The first assumption is the weak form of electric magnetic duality.
Second assumption is that the Kähler current for preferred extremals satisfies the condition
jK ∧ djK = 0 implying that the flow parameter of the flow lines of jK defines a global space-
time coordinate. This would mean that the vision about reduction to almost topological QFT
would be realized.

Second challenge is the understanding of the space-time correlates of quantum criticality.
Electric-magnetic duality helps considerably here. The realization that the hierarchy of Planck
constant realized in terms of coverings of the embedding space follows from basic quantum
TGD leads to a further understanding. The extreme non-linearity of canonical momentum
densities as functions of time derivatives of the embedding space coordinates implies that
the correspondence between these two variables is not 1-1 so that it is natural to introduce
coverings of CD×CP2. This leads also to a precise geometric characterization of the criticality
of the preferred extremals. Sub-algebra of conformal symmetries consisting of generators for
which conformal weight is integer multiple of given integer n is conjectured to act as critical
deformations, that there are n conformal equivalence classes of extremals and that n defines
the effective value of Planck constant heff = n× h.

1 Introduction

The topics of this chapter are the purely geometric aspects of the vision about physics as an
infinite-dimensional Kähler geometry of the “world of classical worlds”, with “ classical world”
identified either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through
it. The non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions
of space-like surfaces with time like separations must be allowed. Zero energy ontology allows to
formulate this picture elegantly in terms of causal diamonds defined as intersections of future and
past directed light-cones. Also a a geometric realization of coupling constant evolution and finite
measurement resolution emerges.

There are two separate but closely related tasks involved.

1. Provide WCW with Kähler geometry which is consistent with 4-dimensional general coordi-
nate invariance so that the metric is Diff4 degenerate. General coordinate invariance implies
that the definition of metric must assign to a given light-like 3-surface X3 a 4-surface as a
kind of Bohr orbit X4(X3).
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2. Provide WCW with a spinor structure. The great idea is to identify WCW gamma matrices
in terms of super algebra generators expressible using second quantized fermionic oscillator
operators for induced free spinor fields at the space-time surface assignable to a given 3-
surface. The isometry generators and contractions of Killing vectors with gamma matrices
would thus form a generalization of Super Kac-Moody algebra.

In this chapter a summary about basic ideas related to the construction of the Kähler geometry
of infinite-dimensional configuration of 3-surfaces (more or less-equivalently, the corresponding 4-
surfaces defining generalized Bohr orbits) or “world of classical worlds” (WCW).

1.1 The Quantum States Of Universe As Modes Of Classical Spinor
Field In The “World Of Classical Worlds”

The vision behind the construction of WCW geometry is that physics reduces to the geometry of
classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ × CP2 or M4 × CP2,
where M4 and M4

+ denote Minkowski space and its light cone respectively. This WCW might be
called the “world of classical worlds”.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that WCW possesses Kähler geometry. One of the basic features of the Kähler geometry is that
it is solely determined by the so called. which defines both the J and the components of the g in
complex coordinates via the general formulas [A3]

J = i∂k∂l̄Kdz
k ∧ dz̄l .

ds2 = 2∂k∂l̄Kdz
kdz̄l . (1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the WCW

JmrJ
rn = −g n

m . (1.2)

As a consequence Kähler form defines also symplectic structure in WCW.

1.2 WCW Kähler Metric From Kähler Function

The task of finding Kähler geometry for the WCW reduces to that of finding Kähler function
and identifying the complexification. The main constraints on the Kähler function result from the
requirement of Diff4 symmetry and degeneracy. requires that the definition of the Kähler function
assigns to a given 3-surface X3, which in Zero Energy Ontology is union of 3-surfaces at the
opposite boundaries of causal diamond CD, a unique space-time surface X4(X3), the generalized
Bohr orbit defining the classical physics associated with X3. The natural guess is that Kähler
function is defined by what might be called Kähler action, which is essentially Maxwell action with
Maxwell field expressible in terms of CP2 coordinates.

Absolute minimization was the first guess for how to fix X4(X3) uniquely. It has however
become clear that this option might well imply that Kähler is negative and infinite for the entire
Universe so that the vacuum functional would be identically vanishing. This condition can make
sense only inside wormhole contacts with Euclidian metric and positive definite Kähler action.

Quantum criticality of TGD Universe suggests the appropriate principle to be the criticality,
that is vanishing of the second variation of Kähler action. This principle now follows from the
conservation of Noether currents the Kähler-Dirac action. This formulation is still rather abstract
and if spinors are localized to string world sheets, it it is not satisfactory. A further step in progress
was the realization that preferred extremals could carry vanishing super-conformal Noether charges
for sub-algebras whose generators have conformal weight vanishing modulo n with n identified in
terms of effective Planck constant heff/h = n.

If Kähler action would define a strictly deterministic variational principle, Diff4 degeneracy
and general coordinate invariance would be achieved by restricting the consideration to 3-surfaces
Y 3 at the boundary of M4

+ and by defining Kähler function for 3-surfaces X3 at X4(Y 3) and
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diffeo-related to Y 3 as K(X3) = K(Y 3). The classical non-determinism of the Kähler action
however introduces complications. As a matter fact, the hierarchy of Planck constants has nice
interpretation in terms of non-determinism: the space-time sheets connecting the 3-surface at the
ends of CD form n conformal equivalence classes. This would correspond to the non-determinism
of quantum criticality accompanied by generalized conformal invariance

1.3 WCW Kähler Metric From Symmetries

A complementary approach to the problem of constructing configuration space geometry is based
on symmetries. The work of Dan [A1] [A1] has demonstrated that the Kähler geometry of loop
spaces is unique from the existence of Riemann connection and fixed completely by the Kac Moody
symmetries of the space. In 3-dimensional context one has even better reasons to expect uniqueness.
The guess is that WCW is a union of symmetric spaces labelled by zero modes not appearing in
the line element as differentials. The generalized conformal invariance of metrically 2-dimensional
light like 3-surfaces acting as causal determinants is the corner stone of the construction. The
construction works only for 4-dimensional space-time and embedding space which is a product of
four-dimensional Minkowski space or its future light cone with CP2.

The detailed formulas for the matrix elements of the Kähler metric however remain educated
guesses so that this approach is not entirely satisfactory.

1.4 WCW Kähler Metric As Anti-commutators Of Super-Symplectic
Super Noether Charges

The third approach identifies the Kähler metric of WCW as anti-commutators of WCW gamma
matrices. This is not yet enough to get concrete expressions but the identification of WCW
gamma matrices as Noether super-charges for super-symplectic algebra assignable to the boundary
of WCW changes the situation. One also obtains a direct connection with elementary particle
physics.

The super charges are linear in the mode of induced spinor field and second quantized spinor
field itself, and involve the infinitesimal action of symplectic generator on the spinor field. One
can fix fermionic anti-commutation relations by second quantization of the induced spinor fields
(as a matter fact, here one can still consider two options). Hence one obtains explicit expressions
for the matrix elements of WCW metric.

If the induced spinor fields are localized at string world sheets - as the well-definedness of em
charge and number theoretic arguments suggest - one obtains an expression for the matrix elements
of the metric in terms of 1-D integrals over strings connecting partonic 2-surfaces. If spinors are
localized to string world sheets also in the interior of CP2, the integral is over a closed circle and
could have a representation analogous to a residue integral so that algebraic continuation to p-adic
number fields might become straightforward.

The matrix elements of WCW metric are labelled by the conformal weights of spinor modes,
those of symplectic vector fields for light-like CD boundaries and by labels for the irreducible
representations of SO(3) acting on light-cone boundary δM4

± = R+ × S2 and of SU(3) acting in
CP2. The dependence on spinor modes and their conformal weights could not be guessed in the
approach based on symmetries only. The presence of two rather than only one conformal weights
distinguishes the metric from that for loop spaces [A1] and reflects the effective 2-dimensionality.
The metric codes a rather scarce information about 3-surfaces. This is in accordance with the
notion of finite measurement resolution. By increasing the number of partonic 2-surfaces and string
world sheets the amount of information coded - measurement resolution - increases. Fermionic
quantum state gives information about 3-geometry. The alternative expression for WCW metric
in terms of Kähler function means analog of AdS/CFT duality: Kähler metric can be expressed
either in terms of Kähler action associated with the Euclidian wormhole contacts defining Kähler
function or in terms of the fermionic oscillator operators at string world sheets connecting partonic
2-surfaces.
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1.5 What Principle Selects The Preferred Extremals?

In positive energy ontology space-time surfaces should be analogous to Bohr orbits in order to make
possible possible realization of general coordinate invariance. The first guess was that absolute
minimization of Kähler action might be the principle selecting preferred extremals. One can
criticize the assumption that extremals correspond to the absolute minima of Kähler action for
entire spacetime surface, as too strong since Kähler action from Minkowskian regions is proportional
to imaginary unit and corresponds to ordinary QFT action defining a phase factor of vacuum
functional. Furthermore, the notion of absolute minimization does not make sense in p-adic context
unless one manages to reduce it to purely algebraic conditions. Absolute minimization could
however make sense for Euclidian space-time regions defining the lines of generalized Feynman
diagras, where Kähler action has definite sign. Kähler function is indeed the Kähler action for
these regions.

What is needed is the association of a unique space-time surface to a given 3-surface defined
as union of 3-surfaces at opposite boundaries of CD. One can imagine many way to achieve this.
“Unique” is too much to demand: for the proposal unique space-time surface is replaced with finite
number of conformal gauge equivalence classes of space-time surfaces. In any case, it is better to
talk just about preferred extremals of Kähler action and accept as the fact that there are several
proposals for what this notion could mean.

1. For instance, one can consider the identification of space-time surface as associative (co-
associative) sub-manifold meaning that tangent space of space-time surface can be regarded
as associative (co-associative) sub-manifold of complexified octonions defining tangent space
of embedding space. One way to define “associative sub-manifold” is by introducing octo-
nionic representation of embedding space gamma matrices identified as tangent space vec-
tors. It must be also assumed that the tangent space contains a preferred commutative
(co-commutative) sub-space at each point and defining an integrable distribution having
identification as string world sheet (also slicing of space-time sheet by string world sheets can
be considered). Associativity and commutativity would define the basic dynamical principle.
A closely related approach is based on so called Hamilton-Jacobi structure [K1] defining also
this kind of slicing and the approaches could be equivalent.

2. In zero energy ontology (ZEO) 3-surfaces become pairs of space-like 3-surfaces at the bound-
aries of causal diamond (CD). Even the light-like partonic orbits could be included to give
the analog of Wilson loop. In absence of non-determinism of Kähler action this forces to
ask whether the attribute “preferred” is un-necessary. There are however excellent rea-
sons to expect that there is an infinite gauge degeneracy assignable to quantum criticality
and represented in terms of Kac-Moody type transformations of partonic orbits respecting
their light-likeness and giving rise to the degeneracy behind hierarchy of Planck constants
heff = n × h. n would give the number of conformal equivalence classes of space-time sur-
faces with same ends. In given measurement resolution one might however hope that the
“preferred” could be dropped away.

The already mentioned vanishing of Noether charges for sub-algebras of conformal algebras
with conformal weights coming as multiples of n at the ends of space-time surface would be
a concrete realization of this picture.

3. The construction of quantum TGD in terms of the Kähler- Dirac action associated with
Kähler action led to a possible answer to the question about the principle selecting preferred
extremals. The Noether currents associated with Kähler-Dirac action are conserved if second
variations of Kähler action vanish. This is nothing but space-time correlate for quantum
criticality and it is amusing that I failed to realize this for so long time. A further very
important result is that in generic case the modes of induced spinor field are localized at 2-D
surfaces from the condition that em charge is well-defined quantum number (W fields must
vanish and also Z0 field above weak scale in order to avoid large parity breaking effects). The
criticality conditions are however rather complicated and it seems that the vanishing of the
symplectic Noether charges is the practical way to formulate what “preferred” does mean.

In this chapter I will first consider the basic properties of the WCW, briefly discuss the various
approaches to the geometrization of the WCW, and introduce the alternative strategies for the



2. WCW 7

construction of Kähler metric based on a direct guess of Kähler function, on the group theoretical
approach assuming that WCW can be regarded as a union of symmetric spaces, and on the identifi-
cation of Kähler metric as anti-commutators of gamma matrices identified as Noether super charges
for the symplectic algebra. After these preliminaries a definition of the Kähler function is proposed
and various physical and mathematical motivations behind the proposed definition are discussed.
The key feature of the Kähler action is classical non-determinism, and various implications of the
classical non-determinism are discussed.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L1].

2 WCW

The view about configuration space (“world of classical worlds”, WCW ) has developed consider-
ably during the last two decades. Here only the recent view is summarized in order to not load
reader with unessential details.

2.1 Basic Notions

The notions of embedding space, 3-surface (and 4-surface), and WCW or “world of classical
worlds” ( WCW ), are central to quantum TGD. The original idea was that 3-surfaces are
space-like 3-surfaces of H = M4 × CP2 or H = M4

+ × CP2 (see Figs. http://tgdtheory.

fi/appfigures/Hoo.jpg, http://tgdtheory.fi/appfigures/cp2.jpg, http://tgdtheory.fi/
appfigures/Hoo.futurepast, http://tgdtheory.fi/appfigures/penrose.jpg, which are also
in the appendix of this book), and WCW consists of all possible 3-surfaces in H. The basic idea
was that the definition of Kähler metric of WCW assigns to each X3 a unique space-time surface
X4(X3) allowing in this manner to realize GCI. During years these notions have however evolved
considerably.

2.1.1 The notion of embedding space

Two generalizations of the notion of embedding space were forced by number theoretical vision
[K11, K12, K10].

1. p-Adicization forced to generalize the notion of embedding space by gluing real and p-adic
variants of embedding space together along rationals and common algebraic numbers. The
generalized embedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book. As matter
fact, this gluing idea generalizes to the level of WCW .

2. With the discovery of zero energy ontology [K14, K2] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+∩M4
− of future and past directed light-cones

of M4×CP2 define correlates for the quantum states. The position of the “lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip
of CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [K13]
follows as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp.
δM4

−×CP2 of CD can be regarded as the carrier of positive resp. negative energy part of the
state. All net quantum numbers of states vanish so that everything is creatable from vacuum.
Space-time surfaces assignable to zero energy states would would reside inside CD × CP2s
and have their 3-D ends at the light-like boundaries of CD×CP2. Fractal structure is present
in the sense that CDs can contains CDs within CDs, and measurement resolution dictates
the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K4] led to a further generalization of
the notion of embedding space. Generalized embedding space is obtained by gluing together
Cartesian products of singular coverings and possibly also factor spaces of CD and CP2 to
form a book like structure. There are good physical and mathematical arguments suggesting
that only the singular coverings should be allowed [K10]. The particles at different pages of

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/appfigures/Hoo.jpg
http://tgdtheory.fi/appfigures/Hoo.jpg
http://tgdtheory.fi/appfigures/cp2.jpg
http://tgdtheory.fi/appfigures/Hoo.futurepast
http://tgdtheory.fi/appfigures/Hoo.futurepast
http://tgdtheory.fi/appfigures/penrose.jpg
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this book behave like dark matter relative to each other. This generalization also brings in
the geometric correlate for the selection of quantization axes in the sense that the geometry
of the sectors of the generalized embedding space with non-standard value of Planck constant
involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly speaking,
each CD and CP2 is replaced with a union of CDs and CP2s corresponding to different choices
of quantization axes so that no breaking of Poincare and color symmetries occurs at the level
of entire WCW .

2.1.2 The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the receont
view is an outcome of a long and tedious process involving many hastily done mis-interpretations.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equiv-
alence implied by GCI. There was a problem related to the realization of GCI since it was
not at all obvious why the preferred extremal X4(Y 3) for Y 3 at X4(X3) and Diff4 related
X3 should satisfy X4(Y 3) = X4(X3).

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identi-
fication resolves the above mentioned problem) and understanding the conformal symmetries
of the theory. Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore
it seems that one must choose between light-like and space-like 3-surfaces or assume general-
ized GCI requiring that equivalently either space-like 3-surfaces or light-like 3-surfaces at the
ends of CDs can be identified as the fundamental geometric objects. General GCI requires
that the basic objects correspond to the partonic 2-surfaces identified as intersections of these
3-surfaces plus common 4-D tangent space distribution.

At the level of WCW metric this suggests that the components of the Kähler form and metric
can be expressed in terms of data assignable to 2-D partonic surfaces. Since the information
about normal space of the 2-surface is needed one has only effective 2-dimensionality. Weak
form of self-duality [K3] however implies that the normal data (flux Hamiltonians associ-
ated with Kähler electric field) reduces to magnetic flux Hamiltonians. This is essential for
conformal symmetries and also simplifies the construction enormously.

It however turned out that this picture is too simplistic. It turned out that the solutions of the
Kähler-Dirac equation are localized at 2-D string world sheets, and this led to a generalization
of the formulation of WCW geometry: given point of partonic 2-surface is effectively replaced
with a string emanating from it and connecting it to another partonic 2-surface. Hence the
formulation becomes 3-dimensional but thanks to super-conformal symmetries acting like
gauge symmetries one obtains effective 2-dimensionality albeit in weaker sense [K9].

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further but inessential complication relates to the hierarchy of Planck constants forcing
to generalize the notion of embedding space and also to the fact that for non-standard
values of Planck constant there is symmetry breaking due to preferred plane M2 preferred
homologically trivial geodesic sphere of CP2 having interpretation as geometric correlate for
the selection of quantization axis. For given sector of CH this means union over choices of
this kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces cor-
respond to preferred extremals X4(X3) of Kähler action and are thus analogous to Bohr orbits.
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Kähler function K(X3) defining the Kähler geometry of the world of classical worlds would corre-
spond to the Kähler action for the preferred extremal. The precise identification of the preferred
extremals actually has however remained open.

The study of the Kähler-Dirac equation led to the realization that classical field equations
for Kähler action can be seen as consistency conditions for the Kähler-Dirac action and led to
the identification of preferred extremals in terms of criticality. This identification which follows
naturally also from quantum criticality.

1. The condition that electromagnetic charge is well-defined for the modes of Kähler-Dirac
operator implies that in the generic case the modes are restricted to 2-D surfaces (string
world sheets or possibly also partonic 2-surfaces) with vanishing W fields [K14]. Above weak
scale at least one can also assume that Z0 field vanishes. Also for space-time surfaces with
2-D CP2 projection (cosmic strongs would be examples) the localization is expected to be
possible. This localization is possible only for Kähler action and the set of these 2-surfaces is
discrete except for the latter case. The stringy form of conformal invariance allows to solve
Kähler-Dirac equation just like in string models and the solutions are labelled by integer
valued conformal weights.

2. The next step of progress was the realization that the requirement that the conservation
of the Noether currents associated with the Kähler-Dirac equation requires that the second
variation of the Kähler action vanishes. In strongest form this condition would be satisfied
for all variations and in weak sense only for those defining dynamical symmetries. The
interpretation is as a space-time correlate for quantum criticality and the vacuum degeneracy
of Kähler action makes the criticality plausible.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal
equivalence classes of the deformations can be finite and n would naturally relate to the
hierarchy of Planck constants heff = n× h (see Fig. ?? in the appendix of this book).

Weak form of electric-magnetic duality gives a precise formulation for how Kähler coupling
strength is visible in the properties of preferred extremals. A generalization of the ideas of
the catastrophe theory to infinite-dimensional context results. These conditions make sense
also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the understanding
of the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace

M2(x) ⊂ M4 having interpretation as the plane of non-physical polarizations. This in the
case that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic
surface is in question, similar assigned should be possible in normal space. This means a close
connection with super string models. Geometrically this would mean that the deformations
of 3-surface in the plane of non-physical polarizations would not contribute to the line element
of WCW . This is as it must be since complexification does not make sense in M2 degrees of
freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⊂ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes

that the boundary value problem is well-defined and could fix X4(X3) at least partially as
a preferred extremal of Kähler action. This picture is rather convincing since the choice
M2(x) ⊂M4 plays also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⊂ M4 and its complement E2(x), and the distributions
of these planes are integrable and define what I have called Hamilton-Jacobi coordinates



2.1 Basic Notions 10

which can be assigned to the known extremals of Kähler with Minkowskian signature. This
decomposition allows to slice space-time surfaces by string world sheets and their 2-D partonic
duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to
X3
l follows under certain conditions on the induced metric of X4(X3

l ). This decomposition
exists for known extremals and has played key role in the recent developments. Physically it
means that 4-surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography
at space-time level. A physically attractive realization of the slicings of space-time surface
by 3-surfaces and string world sheets is discussed in [K6] by starting from the observation
that TGD could define a natural realization of braids, braid cobordisms, and 2-knots.

4. The weakest form of number theoretic compactification [K12] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfacesX3 ⊂ X4(X3) ⊂M4×CP2, whereX4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal
of Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4,
where M4 corresponds to hyper-quaternions. The conjecture would be that the value of the
Kähler action in M8 is same as in M4 × CP2: in fact that 2-surface would have identical
induced metric and Kähler form so that this conjecture would follow trivial. M8−H duality
would in this sense be Kähler isometry.

If one takes M−H duality seriously, one must conclude that one can choose any partonic 2-
surface in the slicing of X4 as a representative. This means gauge invariance reflect in the definition
of Kähler function as U(1) gauge transformation K → K+f +f having no effect on Kähler metric
and Kähler form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces
in M4

± × CP2. The basic outcome is that Kähler metric is expressible using the data at partonic
2-surfaces X2 ⊂ δM4

+ × CP2. The generalization to the actual physical situation requires the
replacement of X2 ⊂ δM4

+×CP2 with unions of partonic 2-surfaces located at light-like boundaries
of CDs and sub-CDs.

The notions of space-time sheet and many-sheeted space-time are basic pieces of TGD inspired
phenomenology (see Fig. ?? in the appendix of this book). Originally the space-time sheet was
understood to have a boundary as “sheet” strongly suggests. It has however become clear that
genuine boundaries are not allowed. Rather, space-time sheet is typically double (at least) covering
of M4. The light-like 3-surfaces separating space-time regions with Euclidian and Minkowskian
signature are however very much like boundaries and define what I call generalized Feynman
diagrams. A fascinating possibility is that every material object is accompanied by an Euclidian
region representing the interior of the object and serving as TGD analog for blackhole like object.
Space-time sheets suffer topological condensation (gluing by wormhole contacts or topological sum
in more mathematical jargon) at larger space-time sheets. Space-time sheets form a length scale
hierarchy. Quantitative formulation is in terms of p-adic length scale hypothesis and hierarchy of
Planck constants proposed to explain dark matter as phases of ordinary matter.

2.1.3 The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (“world of
classical worlds” ( WCW )). Should one regard CH as the space of 3-surfaces of M4 × CP2 or
M4

+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the basis question is “M4
+ or M4?” and that this question

had been settled in favor of M4
+ by the fact that M4

+ has interpretation as empty Roberson-
Walker cosmology. The huge conformal symmetries assignable to δM4

+×CP2 were interpreted
as cosmological rather than laboratory symmetries. The work with the conceptual problems
related to the notions of energy and time, and with the symmetries of quantum TGD, however
led gradually to the realization that there are strong reasons for considering M4 instead of
M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of WCW or “world
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of classical worlds” ( WCW ). The spaces CD × CP2 regarded as subsets of H defined the
sectors of WCW .

3. This framework allows to realize the huge symmetries of δM4
± ×CP2 as isometries of WCW

. The gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries.

Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of
the embedding space representing the upper and lower boundaries of CD. Second conformal
symmetry corresponds to light-like 3-surface X3

l , which can be boundaries of X4 and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW ( WCW ) is a union of WCW s associated with
the spaces CD × CP2. CDs can contain CDs within CDs so that a fractal like hierarchy having
interpretation in terms of measurement resolution results. It must be however emphasized that
Kähler function depends on partonic 2-surfaces at both ends of space-time surface so that WCW
is topologically Cartesian product of corresponding symmetric spaces. WCW metric must there-
fore have parts corresponding to the partonic 2-surfaces (free part) and also an interaction term
depending on the partonic 2-surface at the opposite ends of the light-like 3-surface. The conclusion
is that geometrization reduces to that for single like of generalized Feynman diagram containing
partonic 2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of
Planck constants are not relevant for the basic construction, it reduces to a high degree to a study
of a simple special case corresponding to a line of generalized Feynman diagram. One can also
deduce the free part of the metric by restricting the consideration to partonic 2-surfaces at single
end of generalized Feynman diagram.

A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
εαβJαβ at X2 define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kähler forms of CP2 and δM4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of δM4

± × CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub- WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S2×CP2 is in question: this was one of the first ideas about WCW which I gave
up as too näıve!

2.2 Constraints On WCW Geometry

The constraints on the WCW result both from the infinite dimension of WCW and from physically
motivated symmetry requirements. There are three basic physical requirements on the WCW
geometry: namely four-dimensional GCI in strong form, Kähler property and the decomposition of
WCW into a union ∪iG/Hi of symmetric spacesG/Hi, each coset space allowingG-invariant metric
such that G is subgroup of some “universal group” having natural action on 3-surfaces. Together
with the infinite dimensionality of WCW these requirements pose extremely strong constraints on
WCW geometry. In the following we shall consider these requirements in more detail.
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2.2.1 Diff4 invariance and Diff4 degeneracy

Diff4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimina-
tion of the time like and longitudinal vibrational degrees of freedom of string. Also in the present
case the elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity
and Diff4 invariance provides an obvious manner to do the job.

In the standard path l integral formulation the realization of Diff4 invariance is an easy task
at the formal level. The problem is however that path integral over four-surfaces is plagued by
divergences and doesn’t make sense. In the present case WCW consists of 3-surfaces and only
Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one
should somehow define the action of Diff4 in the space of 3-surfaces. Whatever the action of Diff4

is it must leave the WCW metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of WCW so that 3-surface and its Diff4 image have zero distance. The conclusion is
that WCW metric should be both Diff4 invariant and Diff4 degenerate.

The problem is how to define the action of Diff4 in C(H). Obviously the only manner to achieve
Diff4 invariance is to require that the very definition of the WCW metric somehow associates a
unique space time surface to a given 3-surface for Diff4 to act on. The obvious physical interpre-
tation of this space time surface is as “classical space time” so that “Classical Physics” would be
contained in WCW geometry. In fact, this space-time surface is analogous to Bohr orbit so that
semiclassical quantization rules become an exact part of the quantum theory. It is this requirement,
which has turned out to be decisive concerning the understanding of the WCW geometry.

2.2.2 Decomposition of WCW into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan
suggests that WCW should possess decomposition into a union of coset spaces CH = ∪iG/Hi

such that the metric inside each coset space G/Hi is left invariant under the infinite dimensional
isometry group G. The metric equivalence of surfaces inside each coset space G/Hi does not mean
that 3-surfaces inside G/Hi are physically equivalent. The reason is that the vacuum functional is
exponent of Kähler action which is not isometry invariant so that the 3-surfaces, which correspond
to maxima of Kähler function for a given orbit, are in a preferred position physically. For instance,
one can imagine of calculating functional integral around this maximum perturbatively. Symmet-
ric space property actually allows also much more powerful non-perturbative approach based on
harmonic analysis [K14]. The sum of over i means actually integration over the zero modes of
the metric (zero modes correspond to coordinates not appearing as coordinate differentials in the
metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions.
Denoting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement t by g = h⊕ t, one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

This decomposition turn out to play crucial role in guaranteeing that G indeed acts as isometries
and that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of X4(X3)
with the light cone boundary. This in turn implies that 3-surfaces in the space δH = δM4

+ × CP2

should be all what is needed to construct WCW geometry. The group G can be identified as
some subgroup of diffeomorphisms of δH and Hi contains that subgroup of G, which acts as
diffeomorphisms of the 3-surface X3. Since G preserves topology, WCW must decompose into
union ∪iG/Hi, where i labels 3-topologies and various zero modes of the metric. For instance, the
elements of the Lie-algebra of G invariant under WCW complexification correspond to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kähler action does not allow
the complete reduction to the light cone boundary: physically this is a highly desirable implication
but means a considerable mathematical challenge.
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2.2.3 Kähler property

Kähler property implies that the tangent space of the configuration space allows complexification
and that thereexists a covariantly constant two-form Jkl, which can be regarded as a representation
of the imaginary unit in the tangent space of the WCW :

J r
k Jrl = −Gkl . (2.1)

There are several physical and mathematical reasons suggesting that WCW metric should possess
Kähler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is
basic mathematical operation of quantum theory.

2. Kähler property turns out to be a necessary prerequisite for defining divergence free WCW
integration. We will leave the demonstration of this fact later although the argument as such
is completely general.

3. Kähler property very probably implies an infinite-dimensional isometry loop groupsMap(S1, G)
[A1] shows that loop group allows only

Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The defin-
ing formula for the connection is given by the expression

2(∇XY, Z) = X(Y, Z) + Y (Z,X)− Z(X,Y )

+ ([X,Y ], Z) + ([Z,X], Y )− ([Y,Z], X) (2.2)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines ∇XY uniquely pro-
vided the tangent space of Map is complete with respect to Riemann metric. In the finite-
dimensional case completeness means that the inverse of the covariant metric tensor exists
so that one can solve the components of connection from the conditions stating the covariant
constancy of the metric. In the case of the loop spaces with Kähler metric this is however
not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector
fields defined by the Lie-algebra of local G then the first three terms drop away since the
scalar products of left invariant vector fields are constants. The expression for the covariant
derivative is given by

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 (2.3)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry
group of WCW to be Map(X3,M4 × SU(3))! Any symmetry group, whose Lie algebra is
complete with respect to the WCW metric ( in the sense that any tangent space vector is
expressible as superposition of isometry generators modulo a zero norm tangent vector) is an
acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of
the metric turns out to be even larger than in 1-dimensional case due to the four-dimensional
Diff degeneracy. So we expect that the metric ought to possess some infinite-dimensional
isometry group and that the above formula generalizes also to the 3-dimensional case and to
the case of local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance
would imply the flatness of the metric in M4 degrees of freedom.
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The physical implications of the above purely mathematical conjecture should not be un-
derestimated. For example, one natural looking manner to construct physical theory would
be based on the idea that configuration space geometry is dynamical and this approach is
followed in the attempts to construct string theories [B1]. Various physical considerations (in
particular the need to obtain oscillator operator algebra) seem to imply that WCW geometry
is necessarily Kähler. The above result however states that WCW Kähler geometry cannot
be dynamical quantity and is dictated solely by the requirement of internal consistency. This
result is extremely nice since it has been already found that the definition of the WCW met-
ric must somehow associate a unique classical space time and “classical physics” to a given
3-surface: uniqueness of the geometry implies the uniqueness of the “classical physics”.

4. The choice of the embedding space becomes highly unique. In fact, the requirement that
WCW is not only symmetric space but also (contact) Kähler manifold inheriting its (degen-
erate) Kähler structure from the embedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces CPn, are perhaps the
only possible candidates for H. The reason for the unique position of the four-dimensional
Minkowski space turns out to be that the boundary of the light cone of D-dimensional
Minkowski space is metrically a sphere SD−2 despite its topological dimension D − 1: for
D = 4 one obtains two-sphere allowing Kähler structure and infinite parameter group of
conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model
in terms of the Kähler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not neces-
sarily Map!) correspond to the ordinary representations of the corresponding centrally
extended group [A4]. The representations of Kac Moody group indeed play central
role in string models [B5, B3] and WCW approach would explain their occurrence, not
as a result of some quantization procedure, but as a consequence of symmetry of the
underlying geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the WCW .

(c) The “fermionic” fields ( Ramond fields, Schwartz, Green ) should correspond to gamma
matrices of the WCW . Fermionic oscillator operators would correspond simply to con-
tractions of isometry generators jkA with complexified gamma matrices of WCW

Γ±
A = jkAΓ±

k

Γ±
k = (Γk ± JklΓl)/

√
2 (2.4)

(Jkl is the Kähler form of WCW ) and would create various spin excitations of WCW
spinor field. Γ±

k are the complexified gamma matrices, complexification made possible
by the Kähler structure of the WCW .

This suggests that some generalization of the so called Super Kac Moody algebra of string
models [B5, B3] should be regarded as a spectrum generating algebra for the solutions of field
equations in configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy
counter argument against the whole idea. Kähler structure necessitates complex structure in the
tangent space of WCW . In CP2 degrees of freedom no obvious problems of principle are expected:
WCW should inherit in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only
two Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field
theories: only two of the four possible polarizations of gauge boson correspond to physical degrees
of freedom: mathematically the wrong polarizations correspond to zero norm states and transverse
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states span a complex Hilbert space with Euclidian metric. Also in string model analogous situa-
tion occurs: in case of D-dimensional Minkowski space only D − 2 transversal degrees of freedom
are physical. The solution to the problem seems therefore obvious: WCW metric must be de-
generate so that each vibrational mode spans effectively a 2-dimensional Euclidian plane allowing
complexification.

We shall find that the definition of Kähler function to be proposed indeed provides a solution
to this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each 3-
surface a unique classical space time: classical physics is described by the geometry of WCW
and d the geometry of WCW is determined uniquely by the requirement of mathematical
consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to
four and is due to the effective 3-dimensionality of light-cone boundary.

3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry
group G. G is subgroup of the diffeomorphism group of δM4

+ × CP2. Essential role is
played by the fact that the boundary of the four-dimensional light cone, which, despite being
topologically 3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore
allows infinite-parameter groups of isometries as well as conformal and symplectic symmetries
and also Kähler structure unlike the higher-dimensional light cone boundaries. Therefore
WCW metric is Kähler only in the case of four-dimensional Minkowski space and allows
symplectic U(1) central extension without conflict with the no-go theorems about higher
dimensional central extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the symplectic transformations of δH =
δM4

+ × CP2. The corresponding Lie algebra can be regarded as a loop algebra associated
with the symplectic group of S2 × CP2, where S2 is rM = constant sphere of light cone
boundary. Thus the finite-dimensional group G defining loop group in case of string models
extends to an infinite-dimensional group in TGD context. This group has a monstrous size.
The radial Virasoro localized with respect to S2×CP2 defines naturally complexification for
both G and H. The general form of the Kähler metric deduced on basis of this symmetry
has same qualitative properties as that deduced from Kähler function identified as preferred
extremal of Kähler action. Also the zero modes, among them isometry invariants, can be
identified.

4. The construction of the WCW spinor structure is based on the identification of the WCW
gamma matrices as linear superpositions of the oscillator operators associated with the sec-
ond quantized induced spinor fields. The extension of the symplectic invariance to super
symplectic invariance fixes the anti-commutation relations of the induced spinor fields, and
WCW gamma matrices correspond directly to the super generators. Physics as number the-
ory vision suggests strongly that WCW geometry exists for 8-dimensional embedding space
only and that the choice M4

+ × CP2 for the embedding space is the only possible one.

3 Identification Of The Kähler Function

There are three approaches to the construction of the WCW geometry: a direct physics based
guess of the Kähler function, a group theoretic approach based on the hypothesis that CH can be
regarded as a union of symmetric spaces, and the approach based on the construction of WCW
spinor structure first by second quantization of induced spinor fields. Here the first approach is
discussed.

3.1 Definition Of Kähler Function

Consider first the basic definitions related to Kähler metric and Kähler function.
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3.1.1 Kähler metric in terms of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following
formula

Jkl = igkl = i∂k∂lK . (3.1)

Kähler function is defined only modulo a real part of holomorphic function so that one has the
gauge symmetry

K → K + f + f . (3.2)

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 ⊃ X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary δX3 then the boundary of X3 belongs to the boundary of X4: δX3 ⊂ δX4.

3.1.2 Induced Kähler form and its physical interpretation

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its rela-
tionship to the gauge fields as they are defined in gauge theories. Kähler form J is related to the
corresponding Maxwell field F via the formula

J = xF , x =
gK
~

. (3.3)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to ~ does not matter in the ordinary gauge theory context where one routinely choses units by
putting ~ = 1 but becomes very important when one considers a hierarchy of Planck constants [K4].

Unless one has J = (gK/~0), where ~0 corresponds to the ordinary value of Planck constant,
αK = g2

K/4π~ together the large Planck constant means weaker interactions and convergence
of the functional integral defined by the exponent of Kähler function and one can argue that
the convergence of the functional integral is what forces the hierarchy of Planck constants. This
is in accordance with the vision that Mother Nature likes theoreticians and takes care that the
perturbation theory works by making a phase transition increasing the value of the Planck constant
in the situation when perturbation theory fails. This leads to a replacement of the M4 (or more
precisely, causal diamond CD) and CP2 factors of the embedding space (CD × CP2) with its
r = ~/~0-fold singular covering (one can consider also singular factor spaces). If the components
of the space-time surfaces at the sheets of the covering are identical, one can interpret r-fold value
of Kähler action as a sum of r identical contributions from the sheets of the covering with ordinary
value of Planck constant and forget the presence of the covering. Physical states are however
different even in the case that one assumes that sheets carry identical quantum states and anyonic
phase could correspond to this kind of phase [K8].

3.1.3 Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term propor-
tional to

∫
X4 J ∧ J in well known manner. Chern Simons term is purely topological term and well

defined for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable
space-time surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore
Kähler action SK(X4) can be defined as

SK(X4) = k1

∫
X4;X3⊂X4

J ∧ (∗J) . (3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is
defined in such a way that the action density is negative for the Euclidian signature of the induced
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metric and such that for a Minkowskian signature of the induced metric Kähler electric field gives
a negative contribution to the action density.

The notational convention

k1 ≡ 1

16παK
, (3.5)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [K12] the absolute value of the action in each region where action
density has a definite sign, the value of αK can depend on space-time sheet.

3.1.4 Kähler function

One can define the Kähler function in the following manner. Consider first the case H = M4
+×CP2

and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the
light-cone boundary δM4

+ × CP2. Define the value K(X3) of Kähler function K as the value
of the Kähler action for some preferred extremal in the set of four-surfaces containing X3 as a
sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⊂ {X4|X3 ⊂ X4} . (3.6)

The most plausible identification of preferred extremals is in terms of quantum criticality in the
sense that the preferred extremals allow an infinite number of deformations for which the second
variation of Kähler action vanishes. Combined with the weak form of electric-magnetic duality
forcing appearance of Kähler coupling strength in the boundary conditions at partonic 2-surfaces
this condition might be enough to fix preferred extremals completely.

The precise formulation of Quantum TGD has developed rather slowly. Only quite recently-
33 years after the birth of TGD - I have been forced to reconsider the question whether the precise
identification of Kähler function. Should Kähler function actually correspond to the Kähler action
for the space-time regions with Euclidian signature having interpretation as generalized Feynman
graphs? If so what would be the interpretation for the Minkowskian contribution?

1. If one accepts just the formal definition for the square root of the metric determinant,
Minkowskian regions would naturally give an imaginary contribution to the exponent defining
the vacuum functional. The presence of the phase factor would give a close connection with
the path integral approach of quantum field theories and the exponent of Kähler function
would make the functional integral well-defined.

2. The weak form of electric magnetic duality would reduce the contributions to Chern-Simons
terms from opposite sides of wormhole throats with degenerate four-metric with a constraint
term guaranteeing the duality.

The motivation for this reconsideration came from the applications of ideas of Floer homology
to TGD framework [K7]: the Minkowskian contribution to Kähler action for preferred extremals
would define Morse function providing information about WCW homology. Both Kähler and Morse
would find place in TGD based world order.

One of the nasty questions about the interpretation of Kähler action relates to the square root
of the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion
is that the square root is imaginary in Minkowskian space-time regions so that Kähler action would
be complex. The Euclidian contribution would have a natural interpretation as positive definite
Kähler function but how should one interpret the imaginary Minkowskian contribution? Certainly
the path integral approach to quantum field theories supports its presence. For some mysterious
reason I was able to forget this nasty question and serious consideration of the obvious answer
to it. Only when I worked between possibile connections between TGD and Floer homology [K7]
I realized that the Minkowskian contribution is an excellent candidate for Morse function whose
critical points give information about WCW homology. This would fit nicely with the vision about
TGD as almost topological QFT.



3.1 Definition Of Kähler Function 18

Euclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. Minkowskian contribution would give the quantal
interference effects and stationary phase approximation. The analog of Floer homology would
represent quantum superpositions of critical points identifiable as ground states defined by the
extrema of Kähler action for Minkowskian regions. Perturbative approach to quantum TGD would
rely on functional integrals around the extrema of Kähler function. One would have maxima also
for the Kähler function but only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should
one assume that the reduction to Chern-Simons terms occurs for the preferred extremals in both
Minkowskian and Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K14] involve local
light-like momentum direction which does not make sense in the Euclidian regions. This does
not however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-
one correspondences with the solutions of the Kähler-Dirac equation. The interpretation for
the counterparts of momentum and polarization would be in terms of classical representation
of color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement
is wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian
and Minkowskian regions.

3. There is also an argument stating that Dirac determinant for Chern-Simons Dirac action
equals to Kähler function, which would be lost if Euclidian regions would not obey holography.
The argument obviously generalizes and applies to both Morse and Kähler function which
are definitely not proportional to each other.

3.1.5 CP breaking and ground state degeneracy

The Minkowskian contribution of Kähler action is imaginary due to the negativity of the met-
ric determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms
at wormhole throats. Ground state degeneracy due to the possibility of having both signs for
Minkowskian contribution to the exponent of vacuum functional provides a general view about the
description of CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV.
The vacuum functional and its conjugate are associated with the states in the inner product
so that the phases of vacuum functionals cancel if only one sign for the phase is allowed.
Minkowskian contribution would have no physical significance. This of course cannot be
the case. The ground state is actually degenerate corresponding to the phase factor and
its complex conjugate since

√
g can have two signs in Minkowskian regions. Therefore the

inner products between states associated with the two ground states define 2× 2 matrix and
non-diagonal elements contain interference terms due to the presence of the phase factor. At
the limit of full CP2 type vacuum extremal the two ground states would reduce to each other
and the determinant of the matrix would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to
this mixing. K0 mesons would be CP even and odd states in the first approximation and
correspond to the sum and difference of the ground states. Small mixing would be present
having exponential sensitivity to the actions of CP2 type extremals representing wormhole
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throats. This might allow to understand qualitatively why the mixing is about 50 times
larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation
at either upper or lower boundary of CD. Do long- and shortlived neutral K mesons corre-
spond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or
almost completely to a fixed arrow of time induced by environment? Is the dominant part of
the arrow same for both or is it opposite for long and short-lived neutral measons? Different
lifetimes would suggest that the arrow must be the same and apart from small leakage that
induced by environment. CP breaking would be induced by the fact that CP is performed
only K0 but not for the environment in the construction of states. One can probably imagine
also alternative interpretations.

3.2 The Values Of The Kähler Coupling Strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the
Kähler function, the dynamics depends on the normalization of the Kähler function. Since the
Theory of Everything should be unique it would be highly desirable to find arguments fixing the
normalization or equivalently the possible values of the Kähler coupling strength αK .

3.2.1 Quantization of αK follow from Dirac quantization in WCW?

The quantization of Kähler form of WCW could result in the following manner. It will be found
that Abelian extension of the isometry group results by coupling spinors of WCW to a multiple of
Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler
form is co-homologically nontrivial the value of αK is quantized.

3.2.2 Quantization from criticality of TGD Universe?

Mathematically αK is analogous to temperature and this suggests that αK is analogous to critical
temperature and therefore quantized. This analogy suggests also a physical motivation for the
unique value or value spectrum of αK . Below the critical temperature critical systems suffer
something analogous to spontaneous magnetization. At the critical point critical systems are
characterized by long range correlations and arbitrarily large volumes of magnetized and non-
magnetized phases are present. Spontaneous magnetization might correspond to the generation of
Kähler magnetic fields: the most probable 3-surfaces are Kähler magnetized for subcritical values
of αK . At the critical values of αK the most probable 3-surfaces contain regions dominated by
either Kähler electric and or Kähler magnetic fields: by the compactness of CP2 these regions have
in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and
with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of αK allows the richest possible topological structure for the most
probable 3-space. In fact, this hierarchical structure is in accordance with the basic ideas about
renormalization group invariance. This hypothesis has highly nontrivial consequences even at the
level of ordinary condensed matter physics.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition
fixing the value of αK . Vacuum functional exp(K) is analogous to the exponent exp(−H/T ) ap-
pearing in the definition of the partition function of a statistical system and S-matrix elements and
other interesting physical quantities are integrals of type 〈O〉 =

∫
exp(K)O

√
GdV and therefore

analogous to the thermal averages of various observables. αK is completely analogous to tempera-
ture. The critical points of a statistical system correspond to critical temperatures Tc for which the
partition function is non-analytic function of T−Tc and according RGE hypothesis critical systems
correspond to fixed points of renormalization group evolution. Therefore, a mathematically more
precise manner to fix the value of αK is to require that some integrals of type 〈O〉 (not necessary
S-matrix elements) become non-analytic at 1/αK − 1/αcK .
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Renormalization group invariance is closely related with criticality. The self duality of the
Kähler form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 1
super-symmetric field theories duality transformation relates the strong coupling limit for ordinary
particles with the weak coupling limit for magnetic monopoles and vice versa. If the theory is
self dual these limits must be identical so that action and coupling strength must be RG invariant
quantities. The geometric realization of the duality transformation is easy to guess in the standard
complex coordinates ξ1, ξ2 of CP2 (see Appendix of the book). In these coordinates the metric and
Kähler form are invariant under the permutation ξ1 ↔ ξ2 having Jacobian −1.

Consistency requires that the fundamental particles of the theory are equivalent with magnetic
monopoles. The deformations of so called CP2 type vacuum extremals indeed serve as building
bricks of a elementary particles. The vacuum extremals are are isometric embeddings of CP2 and
can be regarded as monopoles. Elementary particle corresponds to a pair of wormhole contacts
and monopole flux runs between the throats of of the two contacts at the two space-time sheets
and through the contacts between space-time sheets. The magnetic flux however flows in internal
degrees of freedom (possible by nontrivial homology of CP2) so that no long range 1/r2 magnetic
field is created. The magnetic contribution to Kähler action is positive and this suggests that
ordinary magnetic monopoles are not stable, since they do not minimize Kähler action: a cautious
conclusion in accordance with the experimental evidence is that TGD does not predict magnetic
monopoles. It must be emphasized that the prediction of monopoles of practically all gauge theories
and string theories and follows from the existence of a conserved electromagnetic charge.

3.2.3 Does αK have spectrum?

The assumption about single critical value of αK is probably too strong.

1. The hierarchy of Planck constants which would result from non-determinism of Kähler action
implying n conformal equivalences of space-time surface connecting 3-surfaces at the bound-
aries of causal diamond CD would predict effective spectrum of αK as αK = g2

K/4π~eff ,
~eff/h = n. The analogs of critical temperatures would have accumulation point at zero
temperature.

2. p-Adic length scale hierarchy together with the immense vacuum degeneracy of the Kähler
action leads to ask whether different p-adic length scales correspond to different critical values
of αK , and that ordinary coupling constant evolution is replaced by a piecewise constant
evolution induced by that for αK .

3.3 What Conditions Characterize The Preferred Extremals?

The basic vision forced by the generalization of General Coordinate Invariance has been that space-
time surfaces correspond to preferred extremals X4(X3) of Kähler action and are thus analogous to
Bohr orbits. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

In positive energy ontology space-time surfaces should be analogous to Bohr orbits in order
to make possible possible realization of general coordinate invariance. The first guess was that
absolute minimization of Kähler action might be the principle selecting preferred extremals. One
can criticize the assumption that extremals correspond to the absolute minima of Kähler action
for entire space-time surface as too strong since the Kähler action from Minkowskian regions is
proportional to imaginary unit and corresponds to ordinary QFT action defining a phase factor
of vacuum functional. Absolute minimization could however make sense for Euclidian space-time
regions defining the lines of generalized Feynman diagras, where Kähler action has definite sign.
Kähler function is indeed the Kähler action for these regions. Furthermore, the notion of absolute
minimization does not make sense in p-adic context unless one manages to reduce it to purely
algebraic conditions.

3.3.1 Is preferred extremal property needed at all in ZEO?

It is good to start with a critical question. Could it be that the notion of preferred extremal
might be un-necessary in ZEO (ZEO)? The reason is that 3-surfaces are now pairs of 3-surfaces at
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boundaries of causal diamonds and for deterministic dynamics the space-time surface connecting
them is unique.

Now the action principle is non-deterministic but the non-determinism would give rise to ad-
ditional discrete dynamical degrees of freedom naturally assignable to the hierarchy of Planck
constants heff = n× h, n the number of space-time surface with same fixed ends at boundaries of
CD and same Kähler action and same conserved quantities. One must be however cautious: this
leaves the possibility that there is a gauge symmetry present so that the n sheets correspond to
gauge equivalence classes of sheets. Conformal gauge invariance is associated with 2-D criticality
and is expected to be present also now. and this is the recent view.

One can of course ask whether one can assume that the pairs of 3-surfaces at the ends of CD are
totally un-correlated - this the starting point in ZEO. If this assumption is not made then preferred
extremal property would make sense also in ZEO and imply additional correlation between the
members of these pairs. This kind of correlations might be present and correspond to the Bohr
orbit property, space-time correlate for quantum states. This kind of correlates are also expected
as space-time counterpart for the correlations between initial and final state in quantum dynamics.
This indeed seems to be the correct conclusion.

3.3.2 How to identify preferred extremals?

What is needed is the association of a unique space-time surface to a given 3-surface defined as
union of 3-surfaces at opposite boundaries of CD. One can imagine many ways to achieve this.
“Unique” is too much to demand: for the proposal unique space-time surface is replaced with finite
number of conformal gauge equivalence classes of space-time surfaces. In any case, it is better to
talk just about preferred extremals of Kähler action and accept as the fact that there are several
proposals for what this notion could mean.

1. For instance, one can consider the identification of space-time surface as associative (co-
associative) sub-manifold meaning that tangent space of space-time surface can be regarded
as associative (co-associative) sub-manifold of complexified octonions defining tangent space
of embedding space. One manner to define “associative sub-manifold” is by introducing
octonionic representation of embedding space gamma matrices identified as tangent space
vectors. It must be also assumed that the tangent space contains a preferred commutative
(co-commutative) sub-space at each point and defining an integrable distribution having
identification as string world sheet (also slicing of space-time sheet by string world sheets can
be considered). Associativity and commutativity would define the basic dynamical principle.
A closely related approach is based on so called Hamilton-Jacobi structure [K1] defining also
this kind of slicing and the approaches could be equivalent.

2. In ZEO 3-surfaces become pairs of space-like 3-surfaces at the boundaries of causal diamond
(CD). Even the light-like partonic orbits could be included to give the analog of Wilson loop.
In absence of non-determinism of Kähler action this forces to ask whether the attribute
“preferred” is un-necessary. There are however excellent reasons to expect that there is
an infinite gauge degeneracy assignable to quantum criticality and represented in terms of
Kac-Moody type transformations of partonic orbits respecting their light-likeness and giving
rise to the degeneracy behind hierarchy of Planck constants heff = n × h. n would give
the number of conformal equivalence classes of space-time surfaces with same ends. In given
measurement resolution one might however hope that the “preferred” could be dropped away.

The vanishing of Noether charges for sub-algebras of conformal algebras with conformal
weights coming as multiples of n at the ends of space-time surface would be a concrete
realization of this picture and looks the most feasible option at this moment since it is direct
classical correlated for broken super-conformal gauge invariance at quantum level.

3. The construction of quantum TGD in terms of the Kähler-Dirac action associated with Kähler
action suggested a possible answer to the question about the principle selecting preferred
extremals. The Noether currents associated with Kähler-Dirac action are conserved if second
variations of Kähler action vanish. This is nothing but space-time correlate for quantum
criticality and it is amusing that I failed to realize this for so long time. A further very
important result is that in generic case the modes of induced spinor field are localized at 2-D
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surfaces from the condition that em charge is well-defined quantum number (W fields must
vanish and also Z0 field above weak scale in order to avoid large parity breaking effects).

The localization at string world sheets means that quantum criticality as definition of “pre-
ferred” works only if there selection of string world sheets, partonic 2-surfaces, and their
light-like orbits fixes the space-time surface completely. The generalization of AdS/CFT
correspondence (or strong form of holography) suggests that this is indeed the case. The
criticality conditions are however rather complicated and it seems that the vanishing of the
symplectic Noether charges is the practical manner to formulate what “preferred” does mean.

3.4 Why Non-Local Kähler Function?

Kähler function is non-local functional of 3-surface. Non-locality of the Kähler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: WCW
integration appears in the definition of the inner product for WCW spinor fields and this inner
product must be free from perturbative divergences. Consider now the argument more closely.

In the case of finite-dimensional symmetric space with Kähler structure the representations
of the isometry group necessitate the modification of the integration measure defining the inner
product so that the integration measure becomes proportional to the exponent exp(K) of the Kähler
function [B2]. The generalization to infinite-dimensional case is obvious. Also the requirement of
Kac-Moody symmetry leads to the presence of this kind of vacuum functional as will be found
later. The exponent is in fact uniquely fixed by finiteness requirement. WCW integral is of the
following form

∫
S̄1exp(K)S1

√
gdX . (3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in
the following manner. The (1, 1)-part of the second variation of the Kähler function defines the
metric and therefore propagator as contravariant metric and the remaining (2, 0)− and (0, 2)-parts
of the second variation are treated perturbatively. The most natural choice for the 3-surface are
obviously the 3-surfaces, which correspond to extrema of the Kähler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined deter-
minants.

1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kähler
function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the
matrix appearing in Gaussian determinant by the defining property of the Kähler metric: in
local complex coordinates the matrix defined by second derivatives is of type (1, 1). Therefore
these two ill defined determinants (recall the presence of Diff degeneracy) cancel each other
exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one
encounters the standard perturbative divergences. Since most local actions (Chern-Simons term is
perhaps an exception [B7] ) for induced geometric quantities are extremely nonlinear there is no
hope of obtaining a finite theory. For non-local action the situation is however completely different.
There are no local interaction vertices and therefore no products of delta functions in perturbation
theory.

A further nice feature of the perturbation theory is that the propagator for small deformations
is nothing but the contravariant metric of WCW . Also the various vertices of the theory are
closely related to the metric of WCW since they are determined by the Kähler function so that
perturbation theory would have a beautiful geometric interpretation. Furthermore, since four-
dimensional Diff degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(ik2

∫
X4 J∧J). The term
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is not well defined for non-orientable space-time surfaces and one must assume that k2 vanishes for
these surfaces. The presence of this term might provide first principle explanation for CP breaking.
If k2 is integer multiple of 1/(8π) Chern Simons term gives trivial contribution for closed space-
time surfaces since instanton number is in question. By adding a suitable boundary term of form
exp(ik3

∫
δX3 J ∧ A) it is possible to guarantee that the exponent is integer valued for 4-surfaces

with boundary, too.
There are two arguments suggesting that local Chern Simons term would not introduce di-

vergences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to
define a divergence free field theory [B7]. The term doesn’t depend at all on the induced metric
and therefore contains no dimensional parameters (CP2 radius) and its expansion in terms of CP2

coordinate variables is of the form allowed by renormalizable field theory in the sense that only
quartic terms appear. This is seen by noticing that there always exist symplectic coordinates,
where the expression of the Kähler potential is of the form

A =
∑
k

PkdQ
k . (3.8)

The expression for Chern-Simons term in these coordinates is given by

k2

∫
X3

∑
k,l

PldPk ∧ dQk ∧ dQl , (3.9)

and clearly quartic CP2 coordinates. A further nice property of the Chern Simons term is that
this term is invariant under symplectic transformations of CP2, which are realized as U(1) gauge
transformation for the Kähler potential.

The expressibility of WCW Kähler metric as anti-commutators of super-symplectic Noether
super-charges localized at 2-D string world sheets inspires an even stronger conjecture about Kähler
action. The super-symmetry between Kähler-Dirac action and Kähler action suggests that Kähler
action is expressible as sum of string world sheet areas in the effective metric defined by the anti-
commutators of K-D gamma matrices. This would conform with the strong form of holography
in turn implies by strong form of General Coordinate Invariance, and could be seen as analog
of AdS/CFT correspondence, which as such is not enough in TGD possessing super-conformal
symmetries, which are gigantic as compared to those of super string models.

4 Some Properties Of Kähler Action

In this section some properties of Kähler action and Kähler function are discussed in light of
experienced gained during about 15 years after the introduction of the notion.

4.1 Vacuum Degeneracy And Some Of Its Implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kähler action. Although
it is not associated with the preferred extremals of Kähler action, there are good reasons to expect
that it has deep consequences concerning the structure of the theory.

4.1.1 Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of
massless particles [B6] ). The Kähler form of CP2 defines symplectic structure and any 4-surface
for which CP2 projection is so called Lagrangian manifold (at most two dimensional manifold with
vanishing induced Kähler form), is vacuum extremal due to the vanishing of the induced Kähler
form. More explicitly, in the local coordinates, where the vector potential A associated with the
Kähler form reads as A =

∑
k PkdQ

k. Lagrangian manifolds are expressible locally in the following
form
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Pk = ∂kf(Qi) . (4.1)

where the function f is arbitrary. Notice that for the general YM action surfaces with one-
dimensional CP2 projection are vacuum extremals but for Kähler action one obtains additional
degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called CP2 type vacuum extremals are warped embeddings X4 of CP2 to H such
that Minkowski coordinates are functions of a single CP2 coordinate, and the one-dimensional
projection of X4 is random light like curve. These extremals have a non-vanishing action but
vanishing Poincare charges. Their small deformations are identified as space-time counterparts of
fermions and their super partners. Wormhole throats identified as pieces of these extremals are
identified as bosons and their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models
and this actually led to the eventualo realization that conformal invariance is a basic symmetry of
TGD and that WCW can be regarded as a union of symmetric spaces with isometry groups having
identification as symplectic and Kac-Moody type groups assignable to the partonic 2-surfaces.

4.1.2 Approximate symplectic invariance

Vacuum extremals have diffeomorphisms of M4
+ and M4

+ local symplectic transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kähler form invariant and only
induced metric breaks these symmetries. Symplectic transformations of CP2 act on the Maxwell
field defined by the induced Kähler form in the same manner as ordinary U(1) gauge symme-
tries. They are however not gauge symmetries since gauge invariance is still present. In fact,
the construction of WCW geometry relies on the assumption that symplectic transformations of
δM4

+ × CP2 which infinitesimally correspond to combinations of M4
+ local CP2 symplectic and

CP2-local M4
+ symplectic transformations act as isometries of WCW . In zero energy ontology

these transformations act simultaneously on all partonic 2-surfaces characterizing the space-time
sheet representing a generalized Feynman diagram inside CD.

The fact that CP2 symplectic transformations do not act as genuine gauge transformations
means that U(1) gauge invariance is effectively broken. This has non-trivial implications. The
field equations allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics
[K1]. For the known extremals (massless extremals) they are light-like and a possible interpretation
is in terms of Bose-Einstein condensates of collinear massless bosons.

4.1.3 Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to M4
+×Y 2, Y 2 any Lagrangian sub-manifold

of CP2 are vacua irrespective of the topology and that symplectic transformations of CP2 generate
new surfaces Y 2. If preferred extremals are obtained as small deformations of vacuum extremals
(for which the criticality is maximal), one expects therefore enormous ground state degeneracy,
which could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy
corresponds to the hypothesis that WCW is a union of symmetric spaces labeled by zero modes
which do not appear at the line-element of the WCW metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and
the maxima Kähler function as a function of zero modes define a discrete set which might be
called reduced configuration space. Spin glass degeneracy turns out to be crucial element for
understanding how macro-temporal quantum coherence emerges in TGD framework. One of the
basic ideas about p-adicization is that the maxima of Kähler function define the TGD counterpart
of spin glass energy landscape [K11, K5]. The hierarchy of discretizations of the symmetric spaces
corresponding to a hierarchy of measurement resolutions [K14] could allow an identification in
terms of a hierarchy spin glass energy landscapes so that the algebraic points of the WCW would
correspond to the maxima of Kähler function. The hierarchical structure would be due to the
failure of strict non-determinism of Kähler action allowing in zero energy ontology to add endlessly
details to the space-time sheets representing zero energy states in shorter scale.
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4.1.4 Generalized quantum gravitational holography

The original näıve belief was that the construction of the configuration space geometry reduces to
δH = δM4

+×CP2. An analogous idea in string model context became later known as quantum grav-
itational holography. The basic implication of the vacuum degeneracy is classical non-determinism,
which is expected to reflect itself as the properties of the Kähler function and WCW geometry.
Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the
degeneracy and save quantum gravitational holography in its simplest form. This would mean
that one just replaces space-like 3-surfaces with “association sequences” consisting of sequences of
space-like 3-surfaces with time like separations as causal determinants. This would mean that the
absolute minima of Kähler function would become degenerate: same space-like 3-surface at δH
would correspond to several association sequences with the same value of Kähler function.

The life turned out to be more complex than this. CP2 type extremals have Euclidian signature
of the induced metric and therefore CP2 type extremals glued to space-time sheet with Minkowskian
signature of the induced metric are surrounded by light like surfaces X3

l , which might be called
elementary particle horizons. The non-determinism of the CP2 type extremals suggests strongly
that also elementary particle horizons behave non-deterministically and must be regarded as causal
determinants having time like projection in M4

+. Pieces of CP2 type extremals are good candidates
for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That this
non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most plausible
treatment of the non-determinism and has indeed led to a breakthrough in the construction and
understanding of quantum TGD. At the level of generalized Feynman diagrams sub-CDs containing
zero energy states represent a hierarchy of radiative corrections so that the classical determinism
is direct correlate for the quantum non-determinism. Determinism makes sense only when one
has specified the length scale of measurement resolution. One can always add a CD containing a
vacuum extremal to get a new zero energy state and a preferred extremal containing more details.

4.1.5 Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must
for several reasons. Quantum classical correspondence, which has become a basic guide line in
the development of TGD, states that all quantum phenomena have classical space-time correlates.
This is not new as far as properties of quantum states are considered. What is new that also
quantum jumps and quantum jump sequences which define conscious existence in TGD Universe,
should have classical space-time correlates: somewhat like written language is correlate for the
contents of consciousness of the writer. Classical non-determinism indeed makes this possible.
Classical non-determinism makes also possible the realization of statistical ensembles as ensembles
formed by strictly deterministic pieces of the space-time sheet so that even thermodynamics has
space-time representations. Space-time surface can thus be seen as symbolic representations for
the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum
gravitational holography would work in the most strict sense, time would be lost also in TGD since
all relevant information about quantum states would be determined by the moment of big bang.
More precisely, geometro-temporal localization for the contents of conscious experience would not
be possible. Classical non-determinism together with quantum-classical correspondence however
suggests that it is possible to have quantum jumps in which non-determinism is concentrated in
space-time region so that also conscious experience contains information about this region only.

4.2 Four-Dimensional General Coordinate Invariance

The proposed definition of the Kähler function is consistent with GCI and implies also 4-dimensional
Diff degeneracy of the Kähler metric. Zero energy ontology inspires strengthening of the GCI in
the sense that space-like 3-surfaces at the boundaries of CD are physically equivalent with the
light-like 3-surfaces connecting the ends. This implies that basic geometric objects are partonic
2-surfaces at the boundaries of CDs identified as the intersections of these two kinds of surfaces.
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Besides this the distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so
that one would have only effective 2-dimensionality. The failure of the non-determinism of Kähler
action in the standard sense of the word affects the situation also and one must allow a fractal
hierarchy of CDs inside CDs having interpretation in terms of radiative corrections.

4.2.1 Resolution of tachyon difficulty and absence of Diff anomalies

In TGD as in string models the tachyon difficulty is potentially present: unless the time like
vibrational excitations possess zero norm they contribute tachyonic term to the mass squared
operator of Super Kac Moody algebra. This difficulty is familiar already from string models
[B5, B3].

The degeneracy of the metric with respect to the time like vibrational excitations guarantees
that time like excitations do not contribute to the mass squared operator so that mass spectrum
is tachyon free. It also implies the decoupling of the tachyons from physical states: the propagator
of the theory corresponds essentially to the inverse of the Kähler metric and therefore decouples
from time like vibrational excitations. The experience with string model suggests that if metric is
degenerate with respect to diffeomorphisms of X4(X3) there are indeed good hopes that time like
excitations possess vanishing norm with respect to WCW metric.

The four-dimensional Diff invariance of the Kähler function implies that Diff invariance is
guaranteed in the strong sense since the scalar product of two Diff vector fields given by the matrix
associated with (1, 1) part of the second variation of the Kähler action vanishes identically. This
property gives hopes of obtaining theory, which is free from Diff anomalies: in fact loop space
metric is not Diff degenerate and this might be the underlying reason to the problems encountered
in string models [B5, B3].

4.2.2 Complexification of WCW

Strong form of GCI plays a fundamental role in the complexification of WCW . GCI in strong
form reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their 4-D
tangent space data associated with ends of light-like 3-surface at light-like boundaries of CD. At
boths end the embedding space is effectively reduces to δM4

+ ×CP2 (forgetting the complications
due to non-determinism of Kähler action). Light cone boundary in turn is metrically 2-dimensional
Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kähler structure.
Therefore one can say that in certain sense configuration space metric inherits the Kähler structure
of S2 × CP2. This mechanism works in case of four-dimensional Minkowski space only: higher-
dimensional spheres do not possess even Kähler structure. In fact, it turns out that the quantum
fluctuating degrees of freedom can be regarded in well-defined sense as a local variant of S2 ×
CP2 and thus as an infinite-dimensional analog of symmetric space as the considerations of [K3]
demonstrate.

The details of the complexification were understood only after the construction of WCW ge-
ometry and spinor structure in terms of second quantized induced spinor fields [K14]. This also
allows to make detailed statements about complexification [K3].

4.2.3 Contravariant metric and Diff4 degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered
in both GRT and gauge theories [B8, B4]. In TGD a solution of the problem is provided by the
existence of infinite-dimensional isometry group. If the generators of this group form a complete
set in the sense that any vector of the tangent space is expressible as as sum of these generators
plus some zero norm vector fields then one can restrict the consideration to this subspace and in
this subspace the matrix g(X,Y ) defined by the components of the metric tensor indeed indeed
possesses well defined inverse g−1(X,Y ). This procedure is analogous to gauge fixing conditions
in gauge theories and coordinate fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible
an approach to WCW integration based on harmonic analysis replacing the perturbative approach
based on perturbative functional integral. This approach allows also a p-adic variant and leads
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an effective discretization in terms of discrete variants of WCW for which the points of symmetric
space consist of algebraic points. There is an infinite number of these discretizations [K11] and the
interpretation is in terms of finite measurement resolution. This gives a connection with the p-
adicization program, infinite primes, inclusions of hyper-finite factors as representation of the finite
measurement resolution, and the hierarchy of Planck constants [K10] so that various approaches
to quantum TGD converge nicely.

4.2.4 General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Diff4 invariant. This in
fact fixes not only classical but also quantum dynamics completely. The point is that the values
of the WCW spinor fields must be essentially same for all Diff4 related 3-surfaces at the orbit X4

associated with a given 3-surface. This would mean that the time development of Diff4 invariant
configuration spinor field is completely determined by its initial value at the moment of the big
bang!

This is of course a näıve over statement. The non-determinism of Kähler action and zero
energy ontology force to take the causal diamond (CD) defined by the intersection of future and
past directed light-cones as the basic structural unit of WCW , and there is fractal hierarchy of CDs
within CDs so that the above statement makes sense only for giving CD in measurement resolution
neglecting the presence of smaller CDs. Strong form of GCI also implies factorization of WCW
spinor fields into a sum of products associated with various partonic 2-surfaces. In particular, one
obtains time-like entanglement between positive and negative energy parts of zero energy states
and entanglement coefficients define what can be identified as M -matrix expressible as a “complex
square root” of density matrix and reducing to a product of positive definite diagonal square root
of density matrix and unitary S-matrix. The collection of orthonormal M -matrices in turn define
unitary U -matrix between zero energy states. M -matrix is the basic object measured in particle
physics laboratory.

4.3 WCW Geometry, Generalized Catastrophe Theory, And Phase Tran-
sitions

The definition of WCW geometry has nice catastrophe theoretic interpretation. To understand
the connection consider first the definition of the ordinary catastrophe theory [A2].

1. In catastrophe theory one considers extrema of the potential function depending on dynamical
variables x as function of external parameters c. The basic space decomposes locally into
cartesian product E = C × X of control variables c, appearing as parameters in potential
function V (c, x) and of state variables x appearing as dynamical variables. Equilibrium states
of the system correspond to the extrema of the potential V (x, c) with respect to the variables
x and in the absence of symmetries they form a sub-manifold of M with dimension equal to
that of the parameter space C. In some regions of C there are several extrema of potential
function and the extremum value of x as a function of c is multi-valued. These regions of
C ×X are referred to as catastrophes. The simplest example is cusp catastrophe (see Fig.
?? ) with two control parameters and one state variable.

2. In catastrophe regions the actual equilibrium state must be selected by some additional phys-
ical requirement. If system obeys flow dynamics defined by first order differential equations
the catastrophic jumps take place along the folds of the cusp catastrophe (delay rule). On
the other hand, the Maxwell rule obeyed by thermodynamic phase transitions states that
the equilibrium state corresponds to the absolute minimum of the potential function and
the state of system changes in discontinuous manner along the Maxwell line in the middle
between the folds of the cusp (see Fig. 1 ).

3. As far as discontinuous behavior is considered, fold catastrophe is the basic catastrophe: all
catastrophes contain folds as there “satellites” and one aim of the catastrophe theory is to
derive all possible ways for the stable organization of folds into higher catastrophes. The
fundamental result of the catastrophe theory is that for dimensions d of C smaller than 5
there are only 7 basic catastrophes and polynomial potential functions provide a canonical
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representation for the catastrophes: fold catastrophe corresponds to third order polynomial
(in fold the two real roots become a pair of complex conjugate roots), cusp to fourth order
polynomial, etc.

Consider now the TGD counterpart of this. TGD allows allows two kinds of catastrophe
theories.

1. The first one is related to Kähler action as a local functional of 4-surface. The nature of this
catastrophe theory depends on what one means with the preferred extremals.

2. Second catastrophe theory corresponds to Kähler function a non-local functional of 3-surface.
The maxima of the vacuum functional defined as the exponent of Kähler function define
what might called effective space-times, and discontinuous jumps changing the values of the
parameters characterizing the maxima are possible.

Consider first the option based on Kähler action.

1. Potential function corresponds to Kähler action restricted to the solutions of Euler Lagrange
equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kähler
action with respect to the variables of X (time derivatives of coordinates of C specifying
X3 in Ha) keeping the variables of C specifying 3-surface X3 fixed. Preferred extremal
property is analogous to the Bohr quantization since canonical momenta cannot be chosen
freely as in the ordinary initial value problems of the classical physics. Preferred extremals
are by definition at criticality. Behavior variables correspond to the deformations of the 4-
surface keeping partonic 2-surfaces and 3-D tangent space data fixed and preserving extremal
property. Control variables would correspond to these data.

2. At criticality the rank of the infinite-dimensional matrix defined by the second functional
derivatives of the Kähler action is reduced. Catastrophes form a hierarchy characterized by
the reduction of the rank of this matrix and Thom’s catastrophe theory generalizes to infinite-
dimensional context. Criticality in this sense would be one aspect of quantum criticality
having also other aspects. No discrete jumps would occur and system would only move along
the critical surface becoming more or less critical.

3. There can exist however several critical extremals assignable to a given partonic 2-surface
but have nothing to do with the catastrophes as defined in Thom’s approach. In presence of
degeneracy one should be able to choose one of the critical extremals or replace this kind of
regions of WCW by their multiple coverings so that single partonic 2-surface is replaced with
its multiple copy. The degeneracy of the preferred extremals could be actually a deeper reason
for the hierarchy of Planck constants involving in its most plausible version n-fold singular
coverings of CD and CP2. This interpretation is very satisfactory since the generalization of
the embedding space and hierarchy of Planck constants would follow naturally from quantum
criticality rather than as separate hypothesis.

4. The existence of the catastrophes is implied by the vacuum degeneracy of the Kähler action.
For example, for pieces of Minkowski space in M4

+ ×CP2 the second variation of the Kähler
action vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces
are analogous to the tip of the cusp catastrophe. There are also space-time surfaces for
which the second variation is non-vanishing but degenerate and a hierarchy of subsets in
the space of extremal 4-surfaces with decreasing degeneracy of the second variation defines
the boundaries of the projection of the catastrophe surface to the space of 3-surfaces. The
space-times for which second variation is degenerate contain as subset the critical and initial
value sensitive preferred extremal space-times.

Consider next the catastrophe theory defined by Kähler function.

1. In this case the most obvious identification for the behavior variables would be in terms of
the space of all 3-surfaces in CD × CP2 - and if one believes in holography and zero energy
ontology - the 2-surfaces assignable the boundaries of causal diamonds (CDs).
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2. The natural control variables are zero modes whereas behavior variables would correspond
to quantum fluctuating degrees of freedom contributing to the WCW metric. The induced
Kähler form at partonic 2-surface would define infinitude of purely classical control variables.
There is also a correlation between zero modes identified as degrees of freedom assignable to
the interior of 3-surface and quantum fluctuating degrees of freedom assigned to the partonic
2-surfaces. This is nothing but holography and effective 2-dimensionality justifying the basic
assumption of quantum measurement theory about the correspondence between classical
and quantum variables. The absence of several maxima implies also the presence of saddle
surfaces at which the rank of the matrix defined by the second derivatives is reduced. This
could lead to a non-positive definite metric. It seems that it is possible to have maxima of
Kähler function without losing positive definiteness of the metric since metric is defined as
(1, 1)-type derivatives with respect to complex coordinates. In case of CP2 however Kähler
function has single degenerate maximum corresponding to the homologically trivial geodesic
sphere at r =∞. It might happen that also in the case of infinite-D symmetric space finite
maxima are impossible.

3. The criticality of Kähler function would be analogous to thermodynamical criticality and to
the criticality in the sense of catastrophe theory. In this case Maxwell’s rule is possible and
even plausible since quantum jump replaces the dynamics defined by a continuous flow.

Cusp catastrophe provides a simple concretization of the situation for the criticality of Kähler
action (as distinguished from that for Kähler function).

1. The set M of the critical 4-surfaces corresponds to the V -shaped boundary of the 2-D cusp
catastrophe in 3-D space to plane. In general case it forms codimension one set in WCW
. In TGD Universe physical system would reside at this line or its generalization to higher
dimensional catastrophes. For the criticality associated with Kähler action the transitions
would be smooth transitions between different criticalities characterized by the rank defined
above: in the case of cusp (see Fig. 1 ) from the tip of cusp to the vertex of cusp or
vice versa. Evolution could mean a gradual increase of criticality in this sense. If preferred
extremals are not unique, cusp catastrophe does not provide any analogy. The strong form
of criticality would mean that the system would be always “at the tip of cusp” in metaphoric
sense. Vacuum extremals are maximally critical in trivial sense, and the deformations of
vacuum extremals could define the hierarchy of criticalities.

2. For the criticality of Kähler action Maxwell’s rule stating that discontinuous jumps occur
along the middle line of the cusp is in conflict with catastrophe theory predicting that jumps
occurs along at criticality. For the criticality of Kähler function - if allowed at all by symmetric
space property - Maxwell’s rule can hold true but cannot be regarded as a fundamental law.
It is of course known that phase transitions can occur in different ways (super heating and
super cooling).

Figure 1: Cusp catastrophe

The natural expectation is that the number of critical deformations is infinite and corresponds to
conformal symmetries naturally assignable to criticality. Conformal symmetry would be naturally
associated with the super-symplectic algebra of δM4

± for which the light-like radial coordinate
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plays the role of complex coordinate z for ordinary 2-D conformal symmetry. At criticality the
symplectic subalgebra represented as gauge symmetries would change to its isomorphic subalgebra
or which versa and having conformal weights are multiples of integer n. One would have fractal
hierarchies of sub-algebras characterized by integers ni+1 =

∏
k<i+1mk.

In each transition to lower criticality the gauge sub-algebra of the symplectic algebra would
become a sub-algebra of the original one. These transitions would occur spontaneously. The
transitions in the reverse direction would not take place spontaneously. The proposal is that these
phase transitions take place in both directions in living matter and that the phase transitions
reducing criticality require metabolic energy.

The number n of conformal equivalence classes of the deformations can be finite and n would
naturally relate to the hierarchy of Planck constants heff = n× h (see Fig. http://tgdtheory.

fi/appfigures/planckhierarchy.jpg or Fig. ?? in the appendix of this book). The hierarchy
of Planck constants in turn is identified as dark phases of matter [K4].
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