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Abstract

TGD involves geometric and number theoretic physics as complementary views of physics.
Almost all basic number fields: rationals and their algebraic extensions, p-adic number fields
and their extensions, reals, complex number fields, quaternions, and octonions play a funda-
mental role in the number theoretical vision of TGD.

Even a hierarchy of infinite primes and corresponding number fields appears. At the first
level of the hierarchy of infinite primes, the integer coefficients of a polynomial Q defining
infinite prime have no common prime factors. P = Q hypothesis states that the polynomial
P defining space-time surface is identical with a polynomial Q defining infinite prime at the
first level of hierarchy.

However, finite fields, which appear naturally as approximations of p-dic number fields,
have not yet gained the expected preferred status as atoms of the number theoretic Universe.
Also additional constraints on polynomials P are suggested by physical intuition.

Here the notions of prime polynomial and concept of infinite prime come to rescue. Prime
polynomial P with prime order n = p and integer coefficients smaller than p can be regarded
as a polynomial in a finite field. The proposal is that all physically allowed polynomials are
constructible as functional composites of prime polynomials satisfying P = Q condition.

One of the long standing mysteries of TGD is why preferred p-adic primes, characterizing
elementary particles and even more general systems, satisfy the p-adic length scale hypothesis.
The proposal is that p-adic primes correspond to ramified primes as factors of discriminant D
of polynomial P (x). D = P condition reducing discriminant to a single prime is an attractive
hypothesis for preferred ramified primes. M8−H duality suggests that the exponent exp(K) of
Kähler function corresponds to a negative power D−k. Spin glass character of WCW suggests
that the preferred ramified primes for, say prime polynomials of a given degree, and satisfying
D = P , have an especially large degeneracy for certain ramified primes P , which are therefore
of a special physical importance.

1 Introduction

This article represents some material related to two articles discussing number theoretical vision
of TGD. The first article [L10] was about the fusion of geometric and number theoretic views of
TGD to single coherent theory.

Second article [L9] was about my attempts to understand Langlands correspondence, which
postulates a deep correspondence between number theory and geometry, and its relation to the
geometric and number theoretic views of TGD. Both articles led to two unexpected new ideas and
because of the potential importance of these ideas, I decided to write a separate article raising
these ideas to table, as one might say.

1.1 Brief summary of the basic mathematical notions behind TGD

The theoretical framework behind TGD involves several different strands and the goal is to unify
them to a single coherent whole. This challenge was discussed in [L10].

TGD involves number theoretic and geometric visions about physics and M8 − H duality,
analogous to Langlands duality, is proposed to unify them. Also quantum classical correspondence
(QCC) is a central aspect of TGD. One should understand both the M8 −H duality and QCC at
the level of detail.

The following mathematical notions are expected to be of relevance for this goal.

1. Von Neumann algebras, call them M , in particular hyperfinite factors of type II1 (HFFs), are
in a central role. Both the geometric and number theoretic side, QCC could mathematically
correspond to the relationship between M and its commutant M ′.

For instance, symplectic transformations leave induced Kähler form invariant and various
fluxes of Kähler form are symplectic invariants and correspond to classical physics commuting
with quantum physics coded by the super symplectic algebra (SSA). On the number theoretic
side, the Galois invariants assignable to the polynomials determining space-time surfaces are
analogous classical invariants.
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2. The generalization of ordinary arithmetics to quantum arithmetics obtained by replacing +
and × with ⊕ and ⊗ allows us to replace the notions of finite and p-adic number fields with
their quantum variants. The same applies to various algebras.

3. Number theoretic vision leads to adelic physics involving a fusion of various p-adic physics
and real physics and to hierarchies of extensions of rationals involving hierarchies of Galois
groups involving inclusions of normal subgroups. The notion of adele can be generalized by
replacing various p-adic number fields with the p-adic representations of various algebras.

4. The physical interpretation of the notion of infinite prime has remained elusive although a
formal interpretation in terms of a repeated quantization of a supersymmetric arithmetic
QFT is highly suggestive. One can also generalize infinite primes to their quantum variants.
The proposal is that the hierarchy of infinite primes generalizes the notion of adele.

Second proposal, discussed already in [L10] and to be discussed separately in this article, was
that the polynomial Q defining infinite prime at the first level of the hierarchy are identical
to the polynomial P defining 4-surface in M8 and by M8 − H correspondence space-time
surface in H = M4×CP2. This would realize quantum classical correspondence at very deep
level.

The formulation of physics as Kähler geometry of the ”world of classical worlds” (WCW)
involves f 3 kinds of algebras A; supersymplectic isometries SSA acting on δM4

+ × CP2, affine
algebras Aff acting on light-like partonic orbits, and isometries I of light-cone boundary δM4

+,
allowing hierarchies An.

The braided Galois group algebras at the number theory side and algebras {An} at the geometric
side define excellent candidates for inclusion hierarchies of HFFs. M8−H duality suggests that n
corresponds to the degree nof the polynomial P defining space-time surface and that the n roots of
P correspond to n braid strands at H side. Braided Galois group would act in An and hierarchies
of Galois groups would induce hierarchies of inclusions of HFFs. The ramified primes of P would
correspond to physically preferred p-adic primes in the adelic structure formed by p-adic variants
of An with + and × replaced with ⊕ and ⊗.

1.2 Langlands correspondence and TGD

In the article [L9], the TGD counterpart of Langlands program was discussed and this led as a
side product to a realization how finite fields could serve as basic building blocks of the number
theoretic vision of TGD.

1. Concerning the concretization of the basic ideas of Langlands program in TGD, the basic
principle would be quantum classical correspondence (QCC), which is formulated as a corre-
spondence between the quantum states in the ”world of classical worlds” (WCW) character-
ized by analogs of partition functions as modular forms and classical representations realized
as space-time surfaces. L-function as a counter part of the partition function would define as
its roots space-time surfaces and these in turn would define via Galois group representation
partition function. QCC would define a kind of closed loop giving rise to a hierarchy.

2. If Riemann hypothesis (RH) is true and the roots of L-functions are algebraic numbers, L-
functions are in many aspects like rational polynomials and motivate the idea that, besides
rationals polynomials, also L-functions could define space-time surfaces as kinds of higher
level classical representations of physics.

3. One concretization of Langlands program would be the extension of the representations of
the Galois group to the polynomials P to the representations of reductive groups appearing
naturally in the TGD framework. Elementary particle vacuum functionals are defined as
modular invariant forms of Teichmüller parameters. Multiple residue integral is proposed as
a manner to obtain L-functions defining space-time surfaces.

4. One challenge is to construct Riemann zeta and the associated ξ function and the Hadamard
product leads to a proposal for the Taylor coefficients ck of ξ(s) as a function of s(s−1). One

would have ck =
∑
i,j ck,ije

i/ke
√
−12πj/n, ck,ij ∈ {0,±1}. e1/k is the hyperbolic analogy for a
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root of unity and defines a finite-D transcendental extension of p-adic numbers and together
with n :th roots of unity powers of e1/k define a discrete tessellation of the hyperbolic space
H2.

This construction led to the question whether also finite fields could play a fundamental
role in the number theoretic vision. Prime polynomial with prime order n = p and integer
coefficients smaller than n = p can be regarded as a polynomial in a finite field. If it satisfies
the condition that the integer coefficients have no common prime factors, it defines an infinite
prime. The proposal is that all physically allowed polynomials are constructible as functional
composites of these.

One can end up to the idea that prime polynomials and finite fields could be fundamental in
TGD also by a different route.

1. A highly interesting feedback to the number theoretic vision emerges. The rational polyno-
mials P defining space-time surfaces are characterized by ramified primes. Without further
conditions, they do not correlate at all with the degree n of P as the physical intuition
suggests.

2. In [L10] it was proposed that P can be identified as the polynomial Q defining an infinite
prime [K6]: this implies that the coefficients of the integer polynomial P (to which any
rational polynomial can be scaled) do not have common prime factors.

3. An additional condition could be that the coefficients of P are smaller than the degree n of
P . For n = p, P could as such be regarded as a polynomial in a finite field. This proposal is
too strong to be true generally but could hold true for so-called prime polynomials of prime
order having no functional decomposition to polynomials of lower degree [A1, A2]. The
proposal is that all physically allowed polynomials are constructible as functional composites
of irreducible prime polynomials. Also finite fields would become fundamental in the TGD
framework.

One of the long standing mysteries of TGD is why preferred p-adic primes, characterizing
elementary particles and even more general systems, satisfy the p-adic length scale hypothesis.
The proposal is that p-adic primes correspond to ramified primes as factors of discriminant D
of polynomial P (x). D = P condition reducing discriminant to a single prime is an attractive
hypothesis for preferred ramified primes.

M8−H duality suggests that the exponent exp(K) of Kähler function corresponds to a negative
power D−k. Spin glass character of WCW suggests that the preferred ramified primes for, say prime
polynomials of a given degree, and satisfying D = P , have an especially large degeneracy for certain
ramified primes P , which are therefore of a special physical importance.

Because of the potential importance of this idea, which emerged while writing article about my
attempts to understand Langlands correpondence and its relation to TGD, I decided to write a
separate article about the role of finite fields in the TGD based world order.

2 Infinite primes as a basic mathematical building block

Infinite primes [K6, K2, K4] are one of the key ideas of TGD. Their precise physical interpretation
and the role in the mathematical structure of TGD has however remained unclear.

3 new ideas are be discussed. Infinite primes could define a generalization of the notion of
adele; quantum arithmetics could replace + and × with ⊕ and ⊗ and ordinary primes with p-adic
representations of say HFFs; the polynomial Q defining an infinite prime could be identified with
the polynomial P defining the space-time surface: P = Q.

2.1 Construction of infinite primes

Consider first the construction of infinite primes [K6].



2.1 Construction of infinite primes 6

1. At the lowest level of hierachy, infinite primes (in real sense, p-adically they have unit norm)
can be defined by polynomials of the product X of all primes as an analog of Dirac vacuum.

The decomposition of the simplest infinite primes at the lowest level are of form aX + b,
where the terms have no common prime divisors. More concretely a = m1/nF b = m0nF ,
where nF is square free integer analogous and the integer m1 and nF have no common prime
divisors divisors. The divisors of m2 are divisors of nF and mi has interpretation as n-boson
state. Power pk corresponds to k-boson state with momenta p. nF =

∏
pi has interpretation

as many-fermion state satisfying Fermi-Dirac statistics.

The decomposition of lowest level infinite primes to infinite and finite part has a physical
analogy as kicking of fermions from Dirac sea to form the finite part of infinite prime. These
states have interpretation as analogs of free states of supersymmetric arithmetic quantum
field theory (QFT). There is a temptation to interpret the sum X/nF + nF as an analog of
quantum superposition. Fermion number is well-defined if one assigns the number of factors
of nF to both nF and X/nF .

These infinite primes define polynomials of ordinary variable x with rational root m0n
2
F /m1.

This gives all rational roots proportional to square free integers nF but also the roots
m0nF /m1 correspond to infinite primes and run over all possible rational roots. This would
require modification of the definition. Fermions corresponding to prime factors of nF are
kicked out of Fermi sea but some of them can be annihilated by dropping some factors of
nF . This definition looks number-theoretically more natural.

2. More general infinite primes correspond to polynomials Q(X) =
∑
n qnX

n required to define
infinite integers, which are not divisible by finite primes or by powers of monomials defined
by the infinite primes linear in X so that one has an irreducible polynomial having no rational
roots.

Each summand qnX
n must be an infinite integer. Note that the signs of qn can be also

negative. This requires that qn for n > 0, is given by qn = mB,n/
∏n
i=1 nF,i|n of square free

integers nF,i having no common divisors. Let q0 be the finite part of infinite prime having
prime divisors pi. For given pi, at least one of the summands qnX

n must be indivisible by
pi to guarantee the indivisibility of infinite prime by any finite prime. Therefore, for some
value n = n0,

∏n
i=1 nF,i|n must have pi as a divisor.

The coefficient mB,n representing bosonic state have no common primes with
∏
nF,i|n and

there exists no prime p dividing all coefficients mB,n, n > 0 and q0: that is there is no boson
with momentum p present in all states in the sum.

These states could have a formal interpretation as bound states of arithmetic supersymmetric
QFT. The degree k of Q determines the number of particles in the bound states.

The products of infinite primes at a given level are infinite primes with respect to the primes
at the lower levels but infinite integers at their own level. Sums of infinite primes are not in
general infinite primes.

Notice that since the roots of a polynomial P are not affected by a scaling of P , irreducibility
as a criterion for infinite prime property allows the scaling of the infinite prime so that one
obtains an irreducible polynomial of X with integer coefficients.

3. At the next step one can form the product of all finite primes and infinite primes constructed
in this manner and repeat the process as an analog to second quantization. This procedure
can be repeated indefinitely. This repeated quantization a hierarchy of infinite primes, which
could correspond to the hierarchy of space-time sheets.

At the n:th hierarchy level the polynomials are polynomials of n variables Xi. A possible
interpretation would be that one has families of infinite primes at the first level labelled
by n1 parameters. If the polynomials P (x) at the first level define space-time surfaces, the
interpretation at the level of WCW could be that one has an n − 1-D surface in WCW
parametrized by n − 1 parameters with rational values and defining a kind of sub-WCW.
The WCW spinor fields would be restricted to this surface of WCW.
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The Dirac vacuum X brings in mind adele, which is roughly a product of p-adic number fields.
The primes of infinite prime could be interpreted as labels for p-adic number fields. Even more
generally, they could serve as labels for p-adic representations of various algebras and one could
even consider replacing the arithmetic operations with ⊕ and ⊗ to get the quantum variants of
various number fields and of adeles.

The quantum counterparts of infinite primes at the lowest and also at the higher levels of
hierarchy could be seen as a generalization of adeles to quantum adeles.

2.2 Questions about infinite primes

One can ask several questions about infinite primes.

1. Could ⊕ and ⊗ replace + and − also for infinite primes. This would allow us to interpret the
primes p as labels for algebras realized p-adically. This would give rise to quantal counterparts
of infinite primes.

2. What could + → ⊕ for infinite primes mean physically? Could it make sense in adelic
context? Infinite part has finite p-adic norms. The interpretation as direct sum conforms
with the fermionic interpretation if the product of all finite primes is interpreted as Dirac
sea. In this case, the finite and infinite parts of infinite prime would have the same fermion
number.

3. Could adelization relate to the notion of infinite primes? Could one generalize quantum
adeles based on ⊕ and ⊗ so that they would have parts with various degrees of infinity?

2.3 P = Q hypothesis

One cannot avoid the idea that that polynomial, call it Q(X), defining an infinite prime at the first
level of the hierarchy, is nothing but the polynomial P defining a 4-surface in M4 and therefore also
a space-time surface. P = Q would be a condition analogous to the variational principle defining
preferred extremals (PEs) at the level of H.

There is however an objection.

1. P = Q gives very powerful constraints on Q since it must define an infinite integer. The
prime polynomials P are expected to be highly non-unique and an entire class of polynomials
of fixed degree characterized by the Galois group as an invariant is in question. The same
applies to polynomials Q as is easy to see: the only condition is that powers of akX

k defining
infinite integers have no common prime factors.

2. It seems that a composite polynomial Pn ◦ ...◦P1 satisfying Pi = Qi cannot define an infinite
prime or even infinite integer. Even infinite integer property requires very special conditions.

3. There is however no need to assume Pi = Qi conditions. It is enough to require that there
exists a composite Pn ◦ ... ◦ P1 of prime polynomials satisfying Pn ◦ ... ◦ P1 = Q defining an
infinite prime.

The physical interpretation would be that the interaction spoils the infinite prime property
of the composites and they become analogs of off-mass-shell particles. Exactly this occurs for
bound many-particle states of particles represented by Pi represented composite polynomials
P1◦...Pn. The roots of the composite polynomials are indeed affected for the composite. Note
that also products of Qi are infinite primes and the interpretation is as a free many-particle
state formed by bound states Qi.

There is also a second objection against P = Q property.

1. The proposed physical interpretation is that the ramified primes associated with P = Q
correspond to the p-adic primes characterizing particles. This would mean that the ramimied
primes appearing in the infinite primes at the first level of the hierarchy should be physically
special.
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2. The first naive guess is that for the simplest infinite primes Q(X) = (m1/nF )X + m2nF
at the first level, the finite part m2nF has an identification as the discriminant D of the
polynomial P (X) defining the space-time surface. This guess has no obvious generalization
to higher degree polynomials Q(X) and the following argument shows that it does not make
sense.

Since Q is a rational polynomial of degree 1 there is only a single rational root and discrim-
inant defined by the differences of distinct roots is ill-defined that Q = P condition would
not allow the simplest infinite primes.

Therefore one must give either of these conjectures and since P = Q conjecture dictates the
algebraic structure of the quantum theory for a given space-time surface, it is much more
attractive.

The following argument gives P = Q. One can assign to polynomial P invariants as symmetric
functions of the roots. They are invariants under permutation group Sn of roots containing Galois
group and therefore also Galois invariants (for polynomials of second order correspond to sum and
product of roots appearing as coefficients of the polynomial in the representation x2+bx+cx). The
polynomial Q having as coefficients these invariants is the original polynomial. This interpretation
gives P = Q.

3 How also finite fields could define fundamental number
fields in Quantum TGD?

One can represent two objections against the number theoretic vision.

1. The first problem is related to the physical interpretation of the number theoretic vision. The
ramified primes pram dividing the discriminant of the rational polynomial P have a physical
interpretation as p-adic primes defining p-adic length- and mass scales.

The problem is that without further assumptions they do not correlate at all with the degree
n of P . However, physical intuition suggests that they should depend on the degree of P
so that a small degree n implying a low algebraic complexity should correspond to small
ramified primes. This is achieved if the coefficients of P are smaller than n and thus involve
only prime factors p < n.

2. All number fields except finite fields, that is rationals and their extension, p-adic numbers
and their extensions, reals, complex numbers, quaternions, and octonsions appear at the
fundamental level in TGD. Could there be a manner to make also finite fields a natural part
of TGD?

These problems raise the question of whether one could pose additional conditions to the
polynomials P of degree n defining 4-surfaces in M8 with roots defining mass shells in M4 ⊂M8

(complexification assumed) mapped by M8 −H duality to space-time surfaces in H.

3.1 P = Q condition

One such condition was proposed in [L10]. The proposal is that infinite primes forming a hierarchy
are central for quantum TGD. It is proposed that the notion of infinite prime generalizes to that
of the notion of adele.

1. Infinite primes at the lowest level of the hierarchy correspond to polynomials of single variable
x replaced with the product X =

∏
p p of all finite primes. The coefficients of the polynomial

do not have common prime divisors. At higher levels, one has polynomials of several variables
satisfying analogous conditions.

2. The notion of infinite prime generalizes and one can replace the argument x with Hilbert
space,group representation, or algebra and sum and product of ordinary arithmetics with
direct sum ⊕ and tensor product ⊗.
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3. The proposal is P = Q: at the lowest level of the hierarchy, the polynomial P (x) defining a
space-time surface corresponds to an infinite prime determined by a polynomial Q(X). This
would be one realization of quantum classical correspondence. This gives strong constraints
to the space-time surface and one might speak of the analog of preferred extremal (PE) at
the level of M8 but does not yet give any special role for the finite fields.

4. The infinite primes at the higher level of the hierarchies correspond to polynomialsQ(x1, x2, ..., xk)
of several variables. How to assign a polynomial of a single argument and thus a 4-surface
to Q? One possibility is that one does as in the case of multiple poly-zeta and performs a
multiple residue integral around the pole at infinity and obtains a finite result. The remaining
polynomial would define the space-time surface.

3.2 Proposal

The speculations related to the p-adicization of the ξ function associated with the Riemann zeta
discussed in [L9] inspired the following proposal.

1. The integer coefficients of P = Q are smaller than n. For the most general option for infinite
primes, one would have irreducible polynomials equivalent by scaling with polynomials with
integer coefficients smaller than n. One could say that the corresponding space-time sheet
effectively lives in the ring Zn instead of integers. For prime value n = p space-time sheet
would effectively ”live” the finite field Fp and finite fields would gain a fundamental status
in the structure of TGD.

One could allow both signs for the coefficients as the interpretation as rationals would suggest?
In this case, finite field interpretation would mean the replacement of -1 with p− 1.

2. The construction of the proposed polynomials is very simple. Only integers an < n, having
as their factors primes p < n, are possible as coefficients pn of P and pn and the condition is
that the polynomials are irreducible and therefore do not have rational roots.

The number of polynomial coefficients is n+ 1 for an n:th order polynomial, and the number
of possible values of ak is n. This would give (n+1)n different polynomials and irreducibility
poses additional restrictions. Note that the number of primes smaller than n behaves as
n/log(n).

The proposal would solve the two problems mentioned in the beginning.

1. For n = p, P would make sense in a finite field Fp if the second condition is true. Finite
fields, which have been missing from the hierarchy of numbers fields, would find a natural
place in TGD if this condition holds true!

2. Also an upper for ramified primes in terms of order of P emerges and for prime polynomials
of order p is given by pp. This will be discussed in more detail in the sequel.

3.2.1 How does the proposal relate to prime polynomials and polynomials having
finite field interpretation?

One can invent an objection against the proposal that the reducible polynomials have coefficients
smaller than the order of the polynomial. One of the basic conjectures of the number theoretic
vision has been that functional composition of polynomials P = P2 ◦ P1 of degrees m and n
giving more complex polynomials is possible. This would give rise to evolutionary hierarchies and
could also correspond to the inclusion hierarchies for hyperfinite factors of type II1 (the additional
assumption has been that the polynomials vanish at x = 0 that P0 = 0 but this condition could
be reconsidered).

Could the proposed conditions hold true for so-called prime polynomials, which are analogous
to infinite primes? Prime polynomials are discussed in [L10].

1. Polynomials can be factorized into composites of prime polynomials [A1, A2] (https://
cutt.ly/HXAKDzT and https://cutt.ly/5XAKCe2). A polynomial, which does not have a

https://cutt.ly/HXAKDzT
https://cutt.ly/HXAKDzT
https://cutt.ly/5XAKCe2
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functional composition to lower degree polynomials, is called a prime polynomial. It is not
possible to assign to prime polynomials prime degrees except in special cases. Simple Galois
groups with no normal subgroups must correspond to prime polynomials.

2. For a non-prime polynomial, the number N of the factors Pi, their degrees ni are fixed and
only their order can vary so that ni and n =

∏
ni is an invariant of a prime polynomial

and of simple Galois group [A1, A2]. Note that this composition need not exist for monic
polynomials even if the Galois group is not simple so that polynomial primes in the monic
sense need not correspond to simple Galois groups.

Prime polynomials indeed satisfy the conditions of the proposal.

1. The degree of a composite of polynomials with orders m and n is mn. Therefore a polynomial
with a prime degree p does not allow an expression as a composite of polynomials of lower
orders so that any polynomial with prime order is a prime polynomial. Any irreducible
polynomial with prime order is also a prime polynomial and corresponds to an infinite prime.

2. Polynomials of order m can in principle be functional composites of prime polynomials with
orders, which are prime factors of m. All irreducible prime polynomials would satisfy the
proposal.

3. The natural conjecture is that the functional composites of irreducible prime polynomials
are irreducible. If this is the case, irreducible prime polynomials as counterparts of special
infinite primes could be used to construct more general polynomials in correspondence with
infinite primes.

These observations suggest the tightening of the proposal. There are two alternative additional
conditions.

All physically allowed polynomials P are functional composites of the irreducible prime poly-
nomials P of order n = p or n = p − 1 with coefficients smaller than n. For n = p one would
have prime polynomials. For n = p − 1 the polynomials would have interpretation as polynomials
in finite field.

1. The degree n = p − 1 required by finite field interpretation is not the same as the degree
n = p implied by prime polynomial interpretation. Could both interpretations make sense!
Indeed, if one has Pp = xPp−1 so that P is reducible, one has both interpretations. D(P )
has a general expression as a product of root differences. For Pp = xPp−1, D(P ) reduces to
a product of two terms: the product of roots of Pp−1 and D(Pp−1).

Note that it is not clear whether Pp = xPp−1 can be a prime polynomial.

2. The functional composite P ◦R of a polynomial P = xQ with a polynomial R has the property
that the roots of R are also the roots of P : P ◦ R inherits the roots of R. I have proposed
that this inheritance of information could be more than analogous to genetic inheritance [L8].
One would have composition hierarchies of this kind of polynomials? Could they correspond
to prime polynomials?

Therefore one can consider also a third alternative:
All physically allowed polynomials P are functional composites of the reducible prime polynomi-

als P = xQ of order n = p such that Q is irreducible polynmial of order p− 1. In a rather precise
sense, finite fields would serve as basic building blocks of the Universe.

4 Do elementary particles correspond to polynomials pos-
sessing single ramified prime?

The physical motivation for the calculation comes from p-adic mass calculations [K3] and number
theoretic vision justifying them.
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1. The notion of p-adic prime is central in the p-adic mass calculations. p-Adic primes define
the p-adic length scales assignable to elementary particles, actually to any system. p-Adic
length/mass scale defines the mass scale of the particle [K3]. p-Adic length scale hypothesis
states that these primes are near powers of 2 or possibly also other small primes such as 3
(there is some evidence for this [K5]). One should find a convincing mathematical justification
for the p-adic length scale hypothesis.

2. Number theoretical vision suggests the interpretation of p-adic prime as a ramified prime of
an extension defined by a rational (or equivalently integer) polynomial P = Q defining the
space-time surface by M8−H duality. I have proposed the interpretation of ramified primes
as

3. There is a long standing interpretational problem related to ramified primes. How are ele-
mentary particles distinguished from composite particles and many-particle states?

Could elementary particles be characterized by only a single ramified prime? Or more gener-
ally: could the ramified primes associated with the many-particle state correspond to p-adic
mass scales of the particles possibly present in the many-particle state?

If this were the case, theory would be very predictive: one could identify the polynomials
that could give rise to the space-time surfaces associated with the elementary particles!

This condition becomes even stronger if one assumes prime polynomials of degree n = p or
polynomials with finite field interpretation and with degree n = p− 1.

4.1 Calculation of ramified primes

Consider now the calculational problem.

1. One considers polynomials P (x) = a0+a1x+a2x
2+....xnx

n (they define space-time surfaces in
TGD by M8−H duality). P is characterized by the vector [a0, a1, ..., an]. The coefficients ai
are positive or negative integers and satisfy the condition ai < n. This condition is physically
very relevant since it implies a correlation between the degree of P and the maximal size for
its ramified primes.

2. Especially interesting values of n are primes p = 2, 3, 5, 7.... These correspond to prime
polynomials having no functional decomposition to polynomials of lower degree.

Also the values n = p − 1 are highly interesting since in this case the polynomial defines a
polynomial in finite field Fp.

3. Polynomials are irreducible. This guarantees that P defines what I call infinite prime at the
first level of the hierarchy.

4. Example 1: n = p = 2 . Polynomials of degree 2. [a0, a1, a2]. Coefficients are equal to ±1 or
0.

Example 2: n = p = 3: [a0, a1, a2, a3]. Coefficients are equal ±2 , ±1 or 0.

One must calculate the ramified primes of P . They are the primes dividing the discriminant
D of P . The definition of D in terms of [an, ..., a0] can be found from Wikipedia (https://
en.wikipedia.org/wiki/Discriminant). The definition in terms of root differences requires the
calculation of roots and remains always approximate.

1. One considers both the polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and its derivative

P ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1

https://en.wikipedia.org/wiki/Discriminant
https://en.wikipedia.org/wiki/Discriminant
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2. The resultant of P and P ′ is the determinant of the Sylvester matrix S (https://en.
wikipedia.org/wiki/Sylvester_matrix).

Sylvester matrix is defined as the following (2n− 1)× (2n− 1) matrix.

S =



an an−1 ... a0 0 0 ... 0
0 an an−1 ... a0 0 ... 0
.
.
.0 0 0 .... an an−1 ... a0
nan (n− 1)an−1 ... a1 0 0 ... 0

nan (n− 1)an−1 ... a1 0 ... 0
.
.
.0 0 0 ..... nan (n− 1)an−1 ... a1


3. The resultant of P and P ′ is defined as the determinant of the Sylvester matrix:

Resx(P, P ′) = det(S)

Discriminant Disc ≡ D is defined as

Disc ≡ D == (−1)n(n−1)/2
Resx(P, P ′)

an
= (−1)n(n−1)/2

det(S)

an

One should calculate D and find whether it has prime values. What one should do is the
following.

1. One should calculate the determinant and ramified primes for polynomials or order n. n = p
defines prime polynomials. Order n = p− 1 allows finite field interpretation.

2. One could study the density of polynomials in the space of arrays [a0, ..., ap] having only a
single ramified prime. It might be possible to find rather large primes for reasonably small
cutoff for p, say around p = 13, since the sizes of the individual terms in D have upper bound
of order p2p+1 and their number is (2p+ 1)!.

The calculation is very straightforward and anyone having access to programs like Mathematica
can do it. Unfortunately, as a science dissident living at the income border, I cannot afford this
kind of luxury.

1. Build the matrix S for arbitrary integer n. One could also restrict to the cases n = p and
n = p− 1. Assume ak < n.

2. Calculate the quantity D = (−1)n(n−1)/2det(S)/an.

3. Calculate ramified primes as the prime factors of D.

4. For each n, one could perform a multiloop over the values of ak < n. One should print the
set of ramified primes or prime decomposition of D for each combination and store it in a
list. One can use this program to study how ramified primes depend on n = p.

Also n = p− 1 case, which would correspond to finite fields should be considered.
If one has Pp(x) = xPp−1(x) one can say that one has both the cases Pp−1 and Pp. In this

case, the roots of Pp−1(x) are inherited by Pp. The formula of discriminant as a product of root
differences gives the discriminant as product D(xP (x)) =

∏
k rkD(P ) = a0D(P ). Also the prime

factors of the coefficient a0 appear as ramified primes of x(Px) besides those of P (x). For a0 = 1
the ramified primes are the same. It is enough to consider only polynomials Pp−1(x) in this case.

https://en.wikipedia.org/wiki/Sylvester_matrix
https://en.wikipedia.org/wiki/Sylvester_matrix
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4.2 Could D = P correspond to a maximum of D or of maximal ramified
prime Pmax for D?

On basis of M8 −H duality [L2, L3], one can argue that the vacuum functional in WCW defined
as exponent exp(K) of Kähler function has a number theoretic counterpart. The most natural
number theoretical invariant is the discriminant D for the polynomial P (x) defining the space-
time surface by M8 −H duality. This quantity makes sense also at the continuum limit based on
polynomials with continuous coefficients.

One could have exp(K) = 1/D. An alternative identification would be as exp(K) = 1/Pmax,
where Pmax is the maximal ramified prime dividing the discriminant D for P (x). This makes sense
only for integer coefficients of P (x)..

The most probable 3-surfaces correspond to maxima of exp(K). A natural guess is that D = P
corresponds to a local maximum of D for the polynomials considered. A weaker hypothesis is that
D = Pmax corresponds to a local maximum of the maximal ramified primed Pmax.

1. The exponent of the Kähler function for the most probable space-time surfaces in H =
M4 ×CP2 as analogs of Bohr orbits is a local maximum in the ”world of classical worlds”
(WCW). The space-time surface is that with the highest probability.

2. This conforms with the notion of cognitive representation as a discretization obtained by
replacing space-time surface with sets of points, which have coordinates in the extension of
rationals defined by P (x) . The discretization of WCW would consist of discretizations of
the most probable space-time surfaces.

3. M8 − H duality and number theoretic vision [K1] suggest that the value of vacuum func-
tional as exponent exp(K) of the Kähler function is equal to the p-adic counterpart of the
discriminant D for the ramified prime D = P : exp(K) = 1/D.

D = P could correspond to either a maximum of exp(K) = 1/D for D = P or maximum of
exp(K) = 1/Pmax for the maximum of Pmax. The latter form of the hypothesis is weaker.
D = P could indeed correspond to a maximum of Pmax since all other values are at least by
a factor 1/2 smaller in the vicinity of the maximum of Pmax.

4. If the proposed connection between the Kähler function and D or Pmax is true, one can ask
whether D or Pmax has the largest possible value for polynomials of a given degree. This
is so if there is only a single local maximum. However, spin glass property, suggested to
be the basic characteristic of the dynamics, suggests a counterpart energy landscape with
valleys within valleys [L5] so that a large number of single ramified primes is expected for a
polynomial of a given degree.

This is not surprising. D is proportional to det(S), which is the sum of (2p+ 1)! terms which
are products of 2p+1 matrix elements. The terms in the sum tend to sum up to zero and the
terms in which all matrix elements are near the largest possible value give the dominating
contribution. The order of magnitude for this kind of term is p2p+1. For p = 13 this gives
1.2 × 1030. Since there are a large number of terms, it is possible to have considerably
larger values of D = P than this. Therefore one expects that physically realistic values of
ramified primes,the Mersenne prime M127 = 2127 − 1 characterizing electrons in p-adic mass
calculations, are possible to relatively small primes p.

4.3 Spin glass analogy for WCW geometry as a guide line

The spin glass analogy suggests a physics inspired interpretation of the set of the most probable
4-surfaces defined by a polynomial or even set of polynomials as a discretization of a part of WCW.

1. Spin glass corresponds to a discretized energy landscape that is a fractal and obeys ultrametric
topology just like p-adic number fields. For spin glass the notion of ergodicity fails. Global
thermodynamic equilibria are impossible because the system tends to stick into a potential
well.

This has spontaneous magnetization and the Higgs mechanism as a very simple analogues.
Thermodynamics would suggest no magnetization since there is no preferred direction for it.
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The magnetization however occurs since the thermodynamic ensemble with even distribution
over all magnetization directions is not physically sensible: localization occurs.

In the case of spin glass, the situation is much more complex: instead of magnetization
direction, there are an infinite number of different configurations which correspond to local
minima of free energy. The system is typically caught into some local potential well
containing smaller potential wells and is unable to get out of the well so that the thermal
equilibrium reduces to a smaller scale. In a process known as quenching the system can be
brought by reheating and cooling to an increasingly deep potential well.

2. In TGD the exponent of free energy would correspond to exp(K). Number theoretic con-
straints suggest that it is equal to a negative power of D or Pmax. The probabilities of
individual surfaces characterized by polynomials P (x)↔ [a0, ...ak] would be proportional to
1/Dk or 1/P kmax.

One could assign to them probabilities by normalizing these numbers by analog of partition
function Z =

∑
dDD

−k or Z =
∑
dPmax

Pmax−k. Here dD resp. dPmax
gives the degen-

eracy of D resp. Pmax as number of polynomials with this value of D. Z is analogous
to Riemann zeta at the point s = k of the real axis. k is analogous to inverse tempera-
ture. This thermodynamics is however different from standard thermodynamics in which
Boltzman weights are given by exp(−E/T ). Now Boltzmann weights would be analogous
to powers E−k. One has scaling invariance. Spin glasses indeed correspond to this kind of
thermodynamics [L5] and in TGD framework the p-adic thermodynamics is indeed defined
by a scaling generator rather than energy.

One can assign to polynomials of a given degree k or degree k smaller than maximum value kmax
an analog of Riemann zeta, which might be perhaps called TGD zeta.

1. All these zeta functions have a finite number of terms. Also the ”full” TGD zeta obtained at
the limit kmax →∞ could make sense. The degree k or its maximal value kmax could define
the analog for the inverse temperature. This gives a nice connection with the speculations [L9]
inspired by the geometry-number theory duality coded by M8 − H duality in the TGD
framework and by Langlands correspondence in pure mathematics.

2. One has also other interpretations for k. The degree k of polynomial P (x) is much smaller
than the largest ramified prime Pmax associated with it. On the other hand, the p-adic
length scale hypothesis states that the p-adic primes are near to powers of small primes p, in
particular p = 2. This suggests that for these physically preferred p-adic primes P , having a
very large degeneracy factor d(P ), the relationship P ' 2k holds true.

The interpretation of k as the counterpart of the running Kähler coupling strength αK is
also natural and the quantization of 1/alphaK to integer values is natural by the number
theoretic universality. This conformas with the generic logarithmic depends of the Kähler
coupling strength on the p-adic length scale. Therefore the logarithmic p-adic coupling
constant evolution for αK could be equivalent with the p-adic length scale hypothesis!

3. Spin glass is never in a complete thermal equilibrium since ergodic theorem fails for it. One
can consider various analogs of spin glass ensembles assuming the existence of temperature
as a parameter.

In the case of TGD, the running Kähler coupling strength 1/αK would serve as a tem-
perature like parameter. At the high temperature limit (short scales), analogies of spin
glass ensembles involving several degrees d(P ) for polynomials P (x) can be considered. At
low temperatures (long scales), single degree becomes possible and one can also consider a
localization around a single configuration such as a polynomial with D = P . Elementary
particles could correspond to maximal localization around D = P .

At the number theoretic side, the integer k is analogous to the argument s of the zeta func-
tion, and analogous to inverse temperature. s = 1 for ζ corresponds to a high temperature
limit at which ζ diverges. k = 1 would be analogous to the inverse of maximal temperature
known as Hagedorn temperature in string models. Large values of k correspond to low
temperatures.
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4. How does this picture relate to p-adic thermodynamics? In p-adic thermodynamics, one
considers single P so that localization is maximal apart from the degeneracy factor d. The
p-adic temperature for fermions corresponds to maximal p-adic temperature Tp = 1. On the
other hand, the localization around single P would suggest a minimal temperature. One
should be however cautious in comparisons since the thermodynamics in question are totally
different: one with p-adic variants of Boltzmann weights and the second with their scaling
covariant analogs.

5. A longstanding open problem of TGD is what determines the preferred ramified primes
suggested by p-adic mass calculations to be near powers of small primes, in particular p = 2.
What these ramified primes correspond to preferred valleys of the spin glass energy landscape?
What comes to mind is that some values of D = P (or Pmax) do occur with a large
degeneracy dD (or dPmax

). Preferred ramified primes could correspond to especially large
values of d. The quenching-like processes (cooling and reheating) defined by the cosmic
evolution leading to lower temperatures would tend to localize the elementary particles
to the wells corresponding to ramified primes satisfying p-adic length scale hypothesis.

4.4 The ultrametric topology of discretized WCW

Can one give a concrete interpretation for the ultrametricity of the spin glass energy landscape in
the case of WCW?

Ultrametricity can be formulated as a condition for a distance function d(A,B) defined between
two valleys of spin glass energy landscape. The distance along a given path from point A to B is
the height of the highest mountain at the path and is minimized for the shortest path (MiniMax
principle.

It is easy to see that the ultrametricity condition dAB ≤ Max{d(A,C), d(C,B)} is satisfied.
In the recent case, the value of D for a given P (x) in the discretization of WCW by polynomials
should naturally define an integer valued height h of the mountain.

There are several questions to be answered.

1. Ultrametricity means the presence of very many p-adic topologies in WCW discretized in
terms of polynomials. Somehow this number theoretic WCW decomposes into subsets with
different p-adic topologies.

It would be very natural to assign p-adic topology to some, or more naturally, to all ramified
primes dividing the discriminant of a given polynomial P (x). Here the physical picture
generalizing the notion of Feynman diagram comes to rescue. The lines of the Feynman
diagram become 4-surfaces representing particles and vertices become 4-surfaces defining
interaction regions in which external particles arrive.

Free particles would correspond to D = P and vertices as space-time regions where interac-
tions between particles take place would correspond to discriminants D having a decompo-
sition to several primes labelling the external particles of the Feynman diagram. This would
solve the longstanding problem of how particles characterized by different values of p-adic
primes P can interact in the same vertex.

2. The notion of p-adic nearness is very different from its real counterpart. Two points of WCW
as polynomials can be very far from each other in the real sense but be close to each other
p-adically. It is natural to arrange the points of the sub-WCW WCWP defined by a subset
of polynomials to subsets such that points belonging to the same subset have a common
ramified prime P .

The points of WCWP would allow p-adic topology characterized by P and consist of both
particles characterized by D = P and vertices with D divided by P . The subsets WCWP

would intersect along the 4-surfaces with D divided by several primes P .

3. Between the points of this set one can define the p-adic distance function dP (A,B) using the
above general definition using D as a positive integer defining the mountain height. There
are two options for the paths involved.
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The paths could be paths in WCW and go also through points of discretized WCW , which do
not belong to WCWP or could be contained in WCWP . These metrics would be analogous
to the distance between two points of the space-time surface defined by the shortest path in
X4 ⊂M4 × CP2 (metric of H) and by the shortest path along X4 (induced metric).

4. The height function h for a mountain defined by polynomial P (x) with discriminant D could
be obtained from D identified as a P -adic number. If t h is identified as the P -adic norm
of D, the height function is very rough. A more refined distance function is obtained by the
canonical identification I :

∑
xnp

n →
∑
xnp

−n used in the p-adic mass calculations [?]apping
hP = D =

∑
hnP

n to hR = hnP
−n. I maps p-adic numbers to reals in a continuous manner

and takes p-adic numbers Pn to P−n.

In the standard ontology, one can predict scattering rates but particle densities cannot be
predicted without further assumptions. In ZEO both can be predicted since there is a complete
democracy between particles and particle reactions. Physical event as a superposition of determin-
istic time evolutions becomes the basic notion and both particles and particle reactions correspond
to physical events.

The statistical model represents the probabilities of physical events within the quantization
volume defined by CD. Particle characterized by D = P and corresponds to a scattering event
with a single incoming and outgoing particle, and the statistical model predicts the densities
of various particles as probabilities of D = P events. Genuine particle reaction corresponds to
D =

∏
Pi and the model gives the probabilities of observing these events within CD.

4.5 How to study the hypothesis?

There are several ways to study the hypothesis.

1. One could think of finding the polynomial corresponding to the maximum of D = P by
considering the coefficients of P (x) as real variables in some region of the coefficient space
and finding the nearest polynomial with integer coefficients.

2. One could consider the maximization of D by keeping the polynomial coefficients as real
numbers with magnitude below p, say p = 13. At maximum the partial derivative of D
vanishes unless the point is at the boundary of the region of allowed values. This boundary
for allowed values is a p + 1-cube and consists of parts for which some coefficients ak have
the maximal value ±p.

3. One could check what one obtains by putting some values of ak to ak = p. For k = p this
would give for the derivative P ′ = [pap, ...] so ak = p for k near p is favoured.

4. A very simple test for the hypothesis that D = P holds true for a) the maxima of D or
b) for the maximal primes Pmax of D) would be based on small variations of a polynomial
P (x)↔ [a0, a1, ..., an], which corresponds to D = P : these should be relatively easy to find.

One could vary the coefficients ai in the range ai + {−1, 0,+1}. This would give 3p+1 trials
for a prime polynomial Pp(x): this is a rather reasonable number. Finding only a single P
for which this is not the case, would kill the hypothesis. If D < P0 is true for all variations,
the hypothesis could be tested for further cases D = P .

5 Gödel’s Undecidability Theorem and TGD

M8 −H duality [L2, L3] relates number theoretic and geometric views of physics [L9, ?]. Gödel’s
incompleteness theorem relates to number theory. Could one consider a geometric and physical
interpretation of Gödel’s incompleteness theorem in the TGD framework?

The following response to Lawrence Crowell in the discussion group ”The Road to Unifying
Relativistic and Quantum Theories” indeed suggests such an interpretation. The topic of discussion
related to Gödel’s theorem and its possible connection with consciousness proposed by Penrose [J1].

My own view is that quantum jump as state function reduction (SFR) cannot reduce to a
deterministic computation and can be seen as a moment of re-creation or discovery of a new truth
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not following from an existing axiomatic system summarizing the truths already discovered. Zero
energy ontology allows to solve the basic paradox of quantum measurement theory [L1, L4].

My emphasis in the sequel is on how the number theoretic vision of the TGD [L2, L3, L9, L7]
proposed to provide a mathematical description of (also mathematical) cognition could allow us
to interpret the unprovable Gödel sentence and its negation. There is no need to emphasize that
these considerations are highly speculative.

5.1 What Gödel’s theorem could mean in the TGD Universe?

The basic question concerns the physical and consciousness theoretic interpretation of the Göedel’s
undecidability theorem in the TGD Universe.

5.1.1 Some TGD background

In the following some necessary conceptual background will be introduced.

1. The polynomials P define space-time surfaces and one possible interpretation is that the
ramified primes of P define external particles for a space-time region representing particle
scattering. The polynomials P which reduce to single ramified prime would represent forward
scattering of a single ”elementary” particle.

2. In zero energy ontology (ZEO) [L6], ordinary quantum states are replaced by superpositions
of almost deterministic time evolutions so that also ”elementary” particle would correspond
to a scattering event.

What exists would be events, and what we call states would reduce to particular events. One
could call ZEO as an ”eastern” ontology. ZEO would predict not only scattering events but
densities of particles as single particle scattering events inside a given causal diamond causal
diamond (CD) representing quantization volume [L7].

3. Single space-time surface in H = M4×CP2 is obtained by M8−H duality from a 4-surface in
M8 and satisfies in H almost exact holography forced by the general coordinate invariance.
At the level of M8 its preimage obeys number theoretic dynamics forcing the associativity
of its normal space [L2, L3]. This 4-surface connects mass shells H3

a ⊂ M4 ⊂ M8, which
correspond to the roots of a polynomial P with integer coefficients.

Almost holographic space-time surfaces represent a profound deviation from the standard
physics view. They can be regarded as analogs of computations or proofs of theorems,
counterparts of behaviors in neuroscience, and counterparts of biological functions. Quantum
states are their superpositions. Number theoretically realized finite measurement resolution
means that the superposition of space-time surfaces having the same theoretic discretization
effectively represents a single space-time surface.

Therefore the idea that the SFRs localizing the state to this kind of surfaces, could represent
a physical realization of a mathematical theorem, looks natural. Gödel’s theorem could
correspond to a space-time surface to which localization by SFR is not possible.

4. The additional hypothesis [L7] motivated by M8 − H duality is that the values of WCW
Kähler function H for its maxima defined by preferred extremals in H and analogous to
Bohr orbits have values of vacuun functional exp(K), which is equal to 1/Dk, where the
integer k defines analog of temperature and is inversely proportional the discrete running
Kähler coupling strength 1/αk. Zero energy states correspond to scattering amplitudes so
that this would predict the scattering probabilities in WCW geometric degrees of freedom.

For elementary particles sfor which D reduces to a single prime D = P , 1/αk would roughly
behave like logarith of P . This would unify the logarithmic dependence of p-adic coupling
constant evolution with the p-adic length scale hypothesis [L7].
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5.1.2 Gödel numbering in TGD framework and the first for guess for the undecidable
statement

Polynomials with integer coefficients (no common factor coefficients) to which all rational poly-
nomials can be scaled without changing the roots define the space-time surfaces. One can pose
additional physically well-motivated conditions to these polynomials. These conditions will be
discussed later.

What the assignment of a Gödel number to this kind of polynomial could mean? Most of
the classical physical content, if not all of it, can be coded by the coefficients [a0, , ...aN ] of the
polynomial.

The Gödel number G associated with polynomial P would be rather naturally

G(P ) = pa00 p
a1
2 ...p

aN
N ,

where pi is i:th prime and is an injection. Note that one has p0 = 2, p1 = 3, p2 = 5, ....
The discriminant D (https://en.wikipedia.org/wiki/Discriminant) is the determinant of

an (2N − 1) × (2N − 1)-matrix defined by P and its derivative dP/dx ([a1, 2a2, ..., NaN ]) and is
an integer decomposing to a product of ramified primes of P .

The first guess for Gödels’ undecidable statement would that there exist a polynomial P for
which one has G = D. The number D coding a sentence, whatever it is, would be its own Gödel
number. Why this guess? At least this statement is short. Can this statement be undecidable?
What undecidability could mean physically?

1. The equation involves both D as a polynomial of ai and G involving transcendental functions
paii (essentially exponential functions) so that one goes outside the realm of rationals and
algebraic numbers.

2. D = G is an analogue of Diophantine equation for a1, ...., aN and both powers and exponential
paii appear. If the coefficients ai are allowed to be a complex numbers, one can ask whether
the complex solutions of G = D could form an N-1-D manifold. One can however assume this
since paii leads outside the realm of algebraic numbers and one does not have a polynomial
equation.

3. The existence of an integer solution to D = G would mean that the primes pi for which
ai are non-vanishing, correspond to ramified primes of P with multiplicity ai so that the
polynomials would be very special if solutions exist.

4. It might be possible to solve the equation for any finite field Gp, that is in modulo P approx-
imation. Here one can use Fermat’s little theorem ppi = pi mod p. If integer solutions exist,
they exist for every Gp.

5.1.3 About the number theoretical content of G = D sentence

It is interesting to look at the number theoretical content of G = D sentence.

1. Integer D would express the sentence/statement. D codes for the ramified primes. Their
number is finite and we know them once we know P . Does the unprovable Gödel sentence
say that there exists a polynomial P of some degree N , whose ramified primes are the primes
pi associated with ai? Or does it say that there exists a polynomial satisfying G = D in the
set of polynomials of fixed degree N . Note that a priori one does not pose constraints on the
values of coefficients ai.

2. Is it that we cannot prove the existence of integer solution ai to P = G using a finite
computation. Is this due to the appearance of the functions paii or allowance of arbitrarily
large coefficients ai? The p-adic solutions associated with finite field solutions have an infinite
number of coefficients and can be p-adic transcendentals rather than rationals having periodic
pinary extensions.

3. Polynomials of degree N satisfying D = G are very special. The ramified primes are con-
tained in a set of N + 1 first primes pi so that D is rather small unless the coefficients ai are

https://en.wikipedia.org/wiki/Discriminant
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large. D is a determinant of 2N − 1 × 2N − 1 matrix so that its maximum value increases
rapidly with N even when one poses the constraint ai < N . Rough estimates and explicit
numerical calculations demonstrate that determinants involving very large primes are possi-
ble, in particular those involving single ramified prime identified as analogues of elementary
particles, D can reduce to single large prime: D = P .

What about the polynomials P in the vicinity of points of the space of polynomials of degree
N satisfying D = 0: they correspond to N +1 ramified primes, which are minimal (note that
the number of roots is N). D is a product of the root differences and 2 or more roots coincide
for D = 0. D is a smooth function of real arguments restricted to the integer coefficients.
The value of D in the neighborhood of D = 0 can be however rather large. Note that the
proposed Gödel numbering fails for D = 0, and therefore makes sense only for polynomials
without multiple roots.

4. For D(P ) = 0 one has a problem with the equation G = D. G(P ) is well-defined also now.
The condition D(P ) = 0 = G(P ) does not however make sense. The first guess is that for
2 identical roots, P is replaced with dP/dx in the definition of D: D(P ) − − > D(dP/dx).
D is nonvanishing and the ramified primes pi do exist for dP/dx. Therefore the condition
D(dP/dx) = G(P ) makes sense. For N identical roots one must use have D(dn−1P/dxn−1) =
G(P ).

5.1.4 About the physical interpretation of the undecidability

What about the physical interpretation of the undecidabililty in the TGD Universe? What kind
of scattering events would these analogues of Gödel sentences correspond? Representations of new
mathematical axioms as scattering events, not provable from existing axioms, perhaps?

Exactly what we cannot prove to be true or not true for the possibly existing very special
polynomials satisfying G = D? What could the G = D sentece state? What ”proving” could
mean from the point of physics and TGD view of consciousness? Could it mean a conscious
experience of proof as a localization to the corresponding space-time surface in WCW? The almost
deterministic space-time surface would represent the almost deterministic sequence of logical steps
for the proof?

Could G = D sentence be a space-time surface to which a localization in WCW is not possible
for the simple reason that the additional natural physical conditions on the physical states do
not allow its existence in superpositions definition zero energy states?

1. In TGD, the hypothesis [L7] that the coefficients of polynomials of degree N are smaller than
N , is physically very natural and would make the number of polynomials to be considered
finite so that in this case one can check the existence of a G = D sentence in a finite time.
It looks rather plausible that for given N , no G = D sentence, which satisfies the conditions
ai ≤ N , does exist.

2. One can of course criticize the hypothesis ai ≤ N implying a strong correlation between the
degree N of P and the maximal size of ramified primes of P identified as p-adic primes char-
acterizing elementary particles. One can argue that in absence of this correlation predictivity
is lost. This hypothesis also makes also finite fields basic building bricks of number theoretic
vision of TGD [L7].

3. Could this give rise to a realization of undecidability at the level of conscious experience and
cognition relying on number theoretic notions? How?

Quantum states are superpositions of space-time surfaces determined by polynomials P and
if the holography of consciousness is true, conscious experience reflects the number theoretic
properties of these polynomials if associated to a localization to a given polynomial P in a
”small” SFR (SSFR). This would be position measurement in the ”world of classical worlds”
(WCW)? The proof of the statement G = D would mean that a cognizing system becomes
conscious of the G = D space-time surface by a localization to it.

Suppose that for a given finite N and condition ai ≤ N , G = D sentences do not exist. Hence
one can say that G = D sentences go outside the axiomatic system realized in terms of the
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polynomials considered. Even the space of all allowed polynomials identified as a union of
spaces with varying value for degree N would not allow this. G = D sentences would be
undecidable by the condition ai ≤ N .

REFERENCES

Mathematics

[A1] Beardon AF. Composition factors of polynomials. Complex Variables, Theory and Applica-
tion: An International Journal, 43(3-4):225–239, 2001. Available at: https://doi.org/10.

1080/17476930108815314.

[A2] Ritt JF. Prime and Composite Polynomials. Transactions of the American Mathematical
Society, 23(1):51–66, 1922. Available at: https://doi.org/10.2307/1988911.

Neuroscience and Consciousness

[J1] Penrose R. Shadows of the Mind. Vintage, 1994.

Books related to TGD

[K1] Pitkänen M. About TGD counterparts of twistor amplitudes. In Quantum TGD:
Part III. https: // tgdtheory. fi/ tgdhtml/ Btgdquantum3. html . Available at: https:

//tgdtheory.fi/pdfpool/twisttgd.pdf, 2023.

[K2] Pitkänen M. Infinite Primes and Consciousness. In Mathematical Aspect of Consciousness.
https: // tgdtheory. fi/ tgdhtml/ mathconsc. html . Available at: https://tgdtheory.

fi/pdfpool/infpc.pdf, 2023.

[K3] Pitkänen M. Massless states and particle massivation. In p-Adic Physics. https: //

tgdtheory. fi/ tgdhtml/ Bpadphys. html . Available at: https://tgdtheory.fi/pdfpool/

mless.pdf, 2023.

[K4] Pitkänen M. Motives and Infinite Primes. In TGD as a Generalized Number Theory: Part III.
https: // tgdtheory. fi/ tgdhtml/ Btgdnumber3. html . Available at: https://tgdtheory.
fi/pdfpool/infmotives.pdf, 2023.

[K5] Pitkänen M. p-Adic Physics as Physics of Cognition and Intention. In TGD Inspired Theory
of Consciousness: Part II. https: // tgdtheory. fi/ tgdhtml/ Btgdconsc2. html . Available
at: https://tgdtheory.fi/pdfpool/cognic.pdf, 2023.

[K6] Pitkänen M. TGD as a Generalized Number Theory: Infinite Primes. In TGD as a General-
ized Number Theory: Part I. https: // tgdtheory. fi/ tgdhtml/ Btgdnumber1. html . Avail-
able at: https://tgdtheory.fi/pdfpool/visionc.pdf, 2023.

Articles about TGD

[L1] Pitkänen M. Some comments related to Zero Energy Ontology (ZEO). Available at: https:
//tgdtheory.fi/public_html/articles/zeoquestions.pdf., 2019.

[L2] Pitkänen M. A critical re-examination of M8 −H duality hypothesis: part I. Available at:
https://tgdtheory.fi/public_html/articles/M8H1.pdf., 2020.

[L3] Pitkänen M. A critical re-examination of M8 −H duality hypothesis: part II. Available at:
https://tgdtheory.fi/public_html/articles/M8H2.pdf., 2020.

https://doi.org/10.1080/17476930108815314
https://doi.org/10.1080/17476930108815314
https://doi.org/10.2307/1988911
https://tgdtheory.fi/tgdhtml/Btgdquantum3.html
https://tgdtheory.fi/pdfpool/twisttgd.pdf
https://tgdtheory.fi/pdfpool/twisttgd.pdf
https://tgdtheory.fi/tgdhtml/mathconsc.html
https://tgdtheory.fi/pdfpool/infpc.pdf
https://tgdtheory.fi/pdfpool/infpc.pdf
https://tgdtheory.fi/tgdhtml/Bpadphys.html
https://tgdtheory.fi/tgdhtml/Bpadphys.html
https://tgdtheory.fi/pdfpool/mless.pdf
https://tgdtheory.fi/pdfpool/mless.pdf
https://tgdtheory.fi/tgdhtml/Btgdnumber3.html
https://tgdtheory.fi/pdfpool/infmotives.pdf
https://tgdtheory.fi/pdfpool/infmotives.pdf
https://tgdtheory.fi/tgdhtml/Btgdconsc2.html
https://tgdtheory.fi/pdfpool/cognic.pdf
https://tgdtheory.fi/tgdhtml/Btgdnumber1.html
https://tgdtheory.fi/pdfpool/visionc.pdf
https://tgdtheory.fi/public_html/articles/zeoquestions.pdf
https://tgdtheory.fi/public_html/articles/zeoquestions.pdf
https://tgdtheory.fi/public_html/articles/M8H1.pdf
https://tgdtheory.fi/public_html/articles/M8H2. pdf


ARTICLES ABOUT TGD 21

[L4] Pitkänen M. Some questions concerning zero energy ontology. https://tgdtheory.fi/

public_html/articles/zeonew.pdf., 2021.

[L5] Pitkänen M. Spin Glasses, Complexity, and TGD. https://tgdtheory.fi/public_html/

articles/sg.pdf., 2021.

[L6] Pitkänen M. About the number theoretic aspects of zero energy ontology. https://

tgdtheory.fi/public_html/articles/ZEOnumber.pdf., 2022.

[L7] Pitkänen M. Finite Fields and TGD. https://tgdtheory.fi/public_html/articles/

finitefieldsTGD.pdf., 2022.

[L8] Pitkänen M. Quantum Gravitation and Topological Quantum Computation. https:

//tgdtheory.fi/public_html/articles/TQCTGD.pdf., 2022.

[L9] Pitkänen M. Some New Ideas Related to Langlands Program viz. TGD. https://tgdtheory.
fi/public_html/articles/Langlands2022.pdf., 2022.

[L10] Pitkänen M. Trying to fuse the basic mathematical ideas of quantum TGD to a single
coherent whole. https://tgdtheory.fi/public_html/articles/fusionTGD.pdf., 2022.

https://tgdtheory.fi/public_html/articles/zeonew.pdf
https://tgdtheory.fi/public_html/articles/zeonew.pdf
https://tgdtheory.fi/public_html/articles/sg.pdf
https://tgdtheory.fi/public_html/articles/sg.pdf
https://tgdtheory.fi/public_html/articles/ZEOnumber.pdf
https://tgdtheory.fi/public_html/articles/ZEOnumber.pdf
https://tgdtheory.fi/public_html/articles/finitefieldsTGD.pdf
https://tgdtheory.fi/public_html/articles/finitefieldsTGD.pdf
https://tgdtheory.fi/public_html/articles/TQCTGD.pdf
https://tgdtheory.fi/public_html/articles/TQCTGD.pdf
https://tgdtheory.fi/public_html/articles/Langlands2022.pdf
https://tgdtheory.fi/public_html/articles/Langlands2022.pdf
https://tgdtheory.fi/public_html/articles/fusionTGD.pdf

	Introduction
	Brief summary of the basic mathematical notions behind TGD
	Langlands correspondence and TGD

	Infinite primes as a basic mathematical building block
	Construction of infinite primes
	Questions about infinite primes
	P=Q hypothesis

	How also finite fields could define fundamental number fields in Quantum TGD?
	P=Q condition
	Proposal
	How does the proposal relate to prime polynomials and polynomials having finite field interpretation?


	Do elementary particles correspond to polynomials possessing single ramified prime?
	Calculation of ramified primes
	Could D=P correspond to a maximum of D or of maximal ramified prime Pmax for D?
	Spin glass analogy for WCW geometry as a guide line
	The ultrametric topology of discretized WCW
	How to study the hypothesis?

	Gödel's Undecidability Theorem and TGD
	What Gödel's theorem could mean in the TGD Universe?
	Some TGD background
	Gödel numbering in TGD framework and the first for guess for the undecidable statement
	About the number theoretical content of G=D sentence
	About the physical interpretation of the undecidability



