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Abstract

The recent somewhat updated view about the road from general principles to diagrams is
discussed. A more explicit realization of twistorialization as lifting of the preferred extremal
X4 of Kähler action to corresponding 6-D twistor space X6 identified as surface in the 12-D
product of twistor spaces of M4 and CP2 allowing Kähler structure suggests itself. Contrary to
the original expectations, the twistorial approach is not mere reformulation but leads to a first
principle identification of cosmological constant and perhaps also of gravitational constant and
to a modification of the dynamics of Kähler action however preserving the known extremals
and basic properties of Kähler action and allowing to interpret induced Kähler form in terms
of preferred imaginary unit defining twistor structure.

Second new element is the fusion of twistorial approach with the vision that diagrams are
representations for computations. This as also quantum criticality demands that the diagrams
should allow huge symmetries allowing to transform them to braided generalizations of tree-
diagrams. Several guiding principles are involved and what is new is the observation that they
indeed seem to form a coherent whole.

1 Introduction

The generalization of twistor diagrams to TGD framework has been very inspiring (and also fright-
ening) mission impossible and allowed to gain deep insights about what TGD diagrams could be
mathematically. I of course cannot provide explicit formulas but the general structure for the
construction of twistorial amplitudes in N = 4 SUSY suggests an analogous construction in TGD
thanks to huge symmetries of TGD and unique twistorial properties of M4 × CP2. The twistor
program in TGD framework has been summarized in [K10].

Contrary to the original expectations, the twistorial approach is not a mere reformulation but
leads to a first principle identification of cosmological constant and perhaps also of gravitational
constant and to a modification of the dynamics of Kähler action however preserving the known
extremals and basic properties of Kähler action and allowing to interpret induced Kähler form in
terms of preferred imaginary unit defining twistor structure.

There are some new results forcing a profound modification of the recent view about TGD but
consistent with the general picture. A more explicit realization of twistorialization as lifting of
the preferred extremal X4 of Kähler action to corresponding 6-D twistor space X6 identified as
surface in the 12-D product of twistor spaces of M4 and CP2 allowing Kähler structure suggests
itself. The fiber F of Minkowskian twistor space must be identified with sphere S2 with signature
(−1,−1) and would be a variant of the complex space with complex coordinates associated with S2

and transversal space E2 in the decomposition M4 = M2×E2 and one hyper-complex coordinate
associated with M2.

The action principle in 6-D context is also Kähler action, which dimensionally reduces to
Kähler action plus cosmological term. This brings in the radii of spheres S2(M4) and S2(CP2)
associated with the twistors space of M4 and CP2. For S(CP2) the radius is of order CP2 radius
R. R(S2(M4)) could be of the order of Planck length lP , which would thus become purely classical
parameter contrary the expectations. An alternative option is R(S2(M4)) = R The radius of S2

associated with space-time surface is determined by the induced metric and is emergent length
scale. The normalization of 6-D Kähler action by a scale factor 1/L2 with dimension, which is
inverse length squared brings in a further length scale closely related to cosmological constant
which is also dynamical and has correct sign to explain accelerated expansion of the Universe. The
order of magnitude for L must be radius of the S2(X4) and therefore small. This could mean a
gigantic cosmological constant. Just as in GRT based cosmology!

This issue can be solved by using the observation that thanks to the decomposition H =
M4×CP2 6-D Kähler action is a sum of two independent terms. The first term corresponds to the
6-D lift of the ordinary Kähler action and for it the contribution from S2(CP2) fiber is assumed
to be absent: this could be due to the imbedding of S2(X4) reducing to identification S2(M4) and
is not true generally. Second term in action is assumed to come from the S2(M4) fiber of twistor
space T (M4). The independency implies that couplings strengths are independent for them.

The analog for Kähler coupling strength (analogous to critical temperature) associated with
S2(M4) must be extremely large - so large that one has αK(M4) × R(M4)2 ∼ L2, L size scale
of the recent Universe. This makes possible the small value of cosmological constant assignable
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to the volume term given by this part of the dimensionally reduced action. Both Kähler coupling
strengths are assumed to have a spectrum determined by quantum criticality and the spectrum
of αK(M4) comes essentially as p-adic primes satisfying p-adic length scale hypothesis p ' 2k,
k prime. In fact, it turns that one can assumed that the entire 6-D Kähler action contributes if
one assumes that the winding numbers (w1, w2) for the map S2(X4)→ S2(M4)×S2(CP2) satisfy
(w1, w2) = (n, 0) in cosmological scales. The identification of w1 as heff/h = n is highly suggestive.

The dimensionally reduced dynamics is a highly non-trivial modification of the dynamics of
Kähler action however preserving the known extremals and basic properties of Kähler action and
allowing to interpret induced Kähler form in terms of preferred imaginary unit defining twistor
structure. Strong constraints come also from the condition that induced spinor structure coming
from that for twistor space T (H) is essentially that coming from that of H.

Second new element is the fusion of the twistorial approach with the vision that diagrams
are representations for computations. This as also quantum criticality demands that the dia-
grams should allow huge symmetries allowing to transform them to braided generalizations of
tree-diagrams. Several guiding principles are involved and what is new is the observation that they
indeed seem to form a coherent whole.

In the sequel I will discuss the recent understanding of twistorizalization, which is considerably
improved from that in the earlier formulation. I formulate the dimensional reduction of 6-D Kähler
action and consider the physical interpretation. There are considerable uncertainties at the level
of details I dare believe that basically the situation is understood. After that I proceed to discuss
the basic principles behind the recent view about scattering amplitudes as generalized Feynman
diagrams.

2 Twistor lift of Kähler action

First I will try to clarify the mathematical details related to the twistor spaces and how they emerge
in the recent context. I do not regard myself as a mathematician in technical sense and I can only
hope that the representation based on physical intuition does not contain serious mistakes.

2.1 Embedding space is twistorially unique

It took roughly 36 years to learn that M4 and CP2 are twistorially unique. Space-times are
surfaces in H = M4 × CP2. M4 and CP2 are unique 4-manifolds in the sense that both allow
twistor space with Kähler structure: Kähler structure is the crucial concept. Strictly speaking, it is
E4 and S4 allow twistor space with Kähler structure [A2] : in the case of M4 signature could cause
problems. The standard identification for the twistor space of M4 would be Minkowskian variant
PT = P3 = SU(2, 2)/SU(2, 1)× U(1) of 6-D twistor space PT = CP3 = SU(4)/SU(3)× U(1) of
E4. The twistor space of CP2 is 6-D T (CP2) = SU(3)/U(1) × U(1), the space for the choices of
quantization axes of color hypercharge and isospin.

The case of M4 is however problematic. It is often stated that the twistor space is PT = CP3 =
SU(4)/SU(3)× U(1). The metric of twistor space does not appear in the construction of twistor
amplitudes. Already the basic structure of PT suggests that this identification cannot be correct.

As if the situation were not complicated enough, there are two notions of twistor space: the
twistor space identified as P3 and as a trivial sphere bundle M4 × CP1 having Kähler structure -
what Kähler structure actually means in case of M4 is hower not quite clear.

These considerations lead to a proposal - just a proposal - for the formulation of TGD in which
space-time surfaces X4 in H are lifted to twistor spaces X6, which are sphere bundles over X4 and
such that they are surfaces in 12-D product space T (M4)× T (CP2) such the twistor structure of
X4 are in some sense induced from that of T (M4) × T (CP2). In the following T (M4) therefore
denotes the trivial sphere bundle M4×CP1 over M4 and twistorialization of scattering amplitudes
would involve the projection from T (M4) to P3. What is nice in this formulation is that one
could use all the machinery of algebraic geometry so powerful in superstring theory (Calabi-Yau
manifolds).
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2.2 Some basic definitions

What twistor structure in Minkowskian signature does really mean geometrically has remained
a confusing question for me. The problems associated with the Minkowskian signature of the
metric are encountered also in twistor Grassmann approach to the scattering amplitudes but are
circumvented by performing Wick rotation that is using E4 or S4 instead of M4 and applying
algebraic continuation. Also complexification of Minkowksi space for momenta is used. These
tricks do not apply now.

To make this more concrete, let us sum up the basic definitions.

1. Bi-spinors in representations (1/2,0) and (0,1/2) of Lorentz group are the building bricks of
twistors. Bi-spinors va and their conjugates va

′
have the following inner products:

〈vw〉 = εabv
awb , [vw] = εa′b′v

a′wb
′
,

εab = (0, 1;−1, 0) , εa′b′ = (0, 1;−1, 0) .
(2.1)

Unprimed spinor and its primed variant of the spinor are related by complex conjugation.
Index raising is by the inverse εab of εab.

2. Twistors are identified as pairs of 2-spinor and its conjugate

Zα = (λa, µ
a′) , Zα = (µa, λa′) (2.2)

The norm for Zα is defined as

ZαZ
α

= 〈λµ〉+
[
λµ
]
. (2.3)

One can write the metric explicitly as direct sum of terms of form dudv (metric of M2)
and each of the can be taken to diagonal form (1,-1). Hence the metric can be written as
diag(1, 1, 1, 1,−1,−1,−1,−1).

3. This norm allows to decompose PT to 3 parts PT+,PT− and PN in a projectively invariant
manner depending on whether the sign of the norm is negative, positive, or whether it
vanishes. PT+ and PT− serve as loci for the twistor lifts of positive and negative energy
modes of massless fields. PN corresponds to the 5-D boundary of the lightcone of M(2, 4).
By projective identification along light-like radial coordinate it reduces to what is known
as conformal compactification of M4, whose metric is defined only apart from a conformal
factor. The natural metric of PT = P3 does not seem to play any role in the construction of
the amplitudes relying on projective invariants. The signature of M4 metric however makes
itself visible in the structure of PT : for the Euclidian variant of twistor space one would not
have this decomposition to three parts.

Another definition of twistor space - to be used in the geometrization of twistor approach to be
proposed - is as a trivial S2 bundle M4 ×CP1 over M4. Since the twistor spheres associated with
the points of M4 with light-like separation intersect, these two definitions cannot be equivalent.
In fact, the proper definition of twistor space relies on double fibration involving both views about
twistor space discussed in [?] (see http://tinyurl.com/yb4bt74l).

1. The twistor bundle denoted as PS is the product M4×CP1 with CP1 realized as projective
space and having coordinates (xaa

′
, λa), {xaa′} ↔ xµσµ, where the spinor λa is projective

2-spinor in (1/2, 0) representation.

http://tinyurl.com/yb4bt74l
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2. The twistors defined in this manner have a trivial projection q to M4 and non-trivial projec-
tion p to P3 with local projective coordinates (λa, µ

a′). The projection p is defined by the
projectively invariant incidence relation

µa
′

= ixaa
′
λa

If yaa
′

and aaa
′

differ by light-like vector there exists spinor λ annihilated by the difference
vector and there exists twistor (λa, µ

a′) to which both (x, λ) and (y, λ) are mapped by the
incidence relation. Thus the images of twistor spheres associated for points with light-like
separation intersect so that one does not have a proper CP1 bundle structure.

3. The trivial twistor bundle T (M4) = M4 × CP1 would define the twistor space of M4 in
geometric sense. For this space the metric matters and the radius of CP1 turns out to allow
identification in terms of Planck length. Gravitational interaction would bring in Planck
length as a basic scale in this manner. PT in turn would define the twistor space in which
the twistor lifts of embedding space-spinor fields are defined. For this space the metric,
which is degenerate and seems to be only projectively defined should not be relevant as the
construction of twistorial amplitudes suggests. Note however that the identification as the
Minkowskian variant of P3 allows also the introduction of metric.

This picture has an important immediate implication for the construction of quantum TGD.
Positive and negative energy parts of zero energy states are defined at light-like boundaries of
CD × CP2, where CD is the intersection of future and past directed light-cones. The twistor lifts
of the amplitudes from δCD×CP2 must be single valued. The strongest condition guaranteing this
is that they do not depend on the radial light-like coordinate at δCD. Super-symplectic symmetry
implying the analog of conformal gauge symmetry for the radial light-like coordinate could guar-
antee this. There is however a hierarchy of conformal gauge symmetry breakings corresponding to
the inclusion hierarchy of isomorphic sub-algebras so that this condition is too strong. A weaker
condition is that the amplitude F (m,λ) in T (M4) is constant along the light-like ray for the λ
associated with the m along this ray. An even stronger condition is that F (m,λ) vanishes along
the ray. Particle would not propagate along δCD and would avoid remaining at the boundary of
CD, a condition which is perfectly sensible physically.

2.3 What does twistor structure in Minkowskian signature really mean?

The following considerations relate to T (M4) identified as trivial bundle M4 × CP1 with natural
coordinates (maa′ , λa), where λa is projective spinor. The challenge is to generalize the complex
structure of twistor space of E4 to that for M4. It turns out that the assumption that twistor
space has ordinary complex structure fails. The first guess was that the fiber of twistor space
is hyperbolic sphere with metric signature (1,−1) having infinite area so that the 6-D Kähler
action would be infinite. This makes no sense. The only alternative, which comes in mind is a
hypercomplex generalization of the Kähler structure for M4 lifted to twistor space, which locally
means only adding of S2 fiber with metric signature (−1,−1).

1. To proceed one must make an explicit the definition of twistor space. The 2-D fiber S2 consists
of antisymmetric tensors of X4 which can be taken to be self-dual or anti-self-dual by taking
any antisymmetric form and by adding to its plus/minus its dual. Each tensor of this kind
defines a direction - point of S2. These points can be also regarded as quaternionic imaginary
units. One has a natural metric in S2 defined by the X4 inner product for antisymmetric
tensors: this inner product depends on space-time metric. Kähler action density is example
of a norm defined by this inner product in the special case that the antisymmetric tensor is
induced Kähler form. Induced Kähler form defines a preferred imaginary unit and is needed
to define the imaginary part ω(X,Y ) = ig(X,−JY ) of hermitian form h = h+ iω.

2. To define the analog of Kähler structure for M4, one must start from a decomposition of
M4 = M2×E2 (M2 is generated by light-like vector and its dual) and E2 is orthogonal to it.
M2 allows hypercomplex structure, which light-like coordinates (u = t− z, v = t+ z) and E2

complex structure and the metric has form ds2 = dudv + dzdz. Hypercomplex numbers can
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be represented as h = t+ iez, i2 = −1, e2 = −1 i2 = −1, e2 = −1. Hyper-complex numbers
do not define number field since for light-like hypercomplex numbers t + iez, t = ±z do
not have finite inverse. Hypercomplex numbers allow a generalization of analytic functions
used routinely in physics. Kähler form representing hypercomplex imaginary unit would be
replaced with eJ . One would consider sub-spaces of complexified quaternions spanned by real
unit and units eIk, k = 1, 2, 3 as representation of the tangent space of space-time surfaces
in Minkowskian regions. This is familiar already from M8 duality [K11].

M4 = M2 × E2 decomposition can depend on point of M4 (polarization plane and light-
like momentum direction depend on point of M4. The condition that this structure allows
global coordinates analogous to (u, v, z, z) requires that the distributions for M2 and E2 are
integrable and thus define 2-D surfaces. I have christened this structure Hamilton-Jacobi
structure. It emerges naturally in the construction of extremals of Kähler action that I have
christened massless extremals (MEs, [K1]) and also in the proposal for the generalization of
complex structure to Minkowskian signature.

One can define the analog of Kähler form by taking sum of induced Kähler form J and its
dual ∗J defined in terms of permutation tensor. The normalization condition is that this
form integrates to the negative of metric (J±∗J)2 = −g. This condition is possible to satisfy.

3. How to lift the Hamilton Jacobi structure of M4 to Kähler structure of its twistor space?
The basic definition of twistors assumes that their exists a field of time-like directions, and
that one considers projections of 4-D antisymmetric tensors to the 3-space orthogonal to
the time-like direction at given point. One can say that the projection yields magnetic part
of the antisymmetric tensor (say induced Kähler form J) with positive norm with respect
to natural metric induced to the twistor fiber from the inner product between two-forms.
This unique time direction would be defined the light-like vector defining M2 and its dual.
Therefore the signature of the metric of S2 would be (−1,−1). In quaternionic picture this
direction corresponds to real quaternionic unit.

4. To sum up, the metric of the Minkowskian twistor space has signature (−1,−1, 1,−1,−1,−1).
The Minkowskian variant of the twistor space would give 2 complex coordinates and one
hyper-complex coordinate. Cosmological term would be finite and the sign of the cosmo-
logical term in the dimensionally reduced action would be positive as required. Also metric
determinant would be imaginary as required. At this moment I cannot invent any killer
objection against this option.

It must be made clear that the proposed definition of twistor space of M4 does not seem to be
equivalent with the twistor space assignable to conformally compactified M4. One has trivial S2

bundle and Hamilton-Jacobi structure, which is hybrid of complex and hyper-complex structure.

2.4 What does the induction of the twistor structure to space-time sur-
face really mean?

Consider now what the induction of the twistor structure to space-time surface X4 could mean.

1. The induction procedure for Kähler structure of 12-D twistor space T requires that the
induced metric and Kähler form of the base space X4 of X6 obtained from T is the same as
that obtained by inducing from H = M4×CP2. Since the Kähler structure and metric of T
is lift from H this seems obvious. Projection would compensate the lift.

2. This is not yet enough. The Kähler structure and metric of S2 projected from T must
be same as those lifted from X4. The connection between metric and ω implies that this
condition for Kähler form is enough. The antisymmetric Kähler forms in fiber obtained in
these two ways co-incide. Since Kähler form has only one component in 2-D case, one obtains
single constraint condition giving a commutative diagram stating that the direct projection
to S2 equals with the projection to the base followed by a lift to fiber. The resulting induced
Kähler form is not covariantly constant but in fiber S2 one has J2 = −g.

As a matter of fact, this condition might be trivially satisfied as a consequence of the bundle
structure of twistor space. The Kähler form from S2 × S2 can be projected to S2 associated
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with X4 and by bundle projection to a two-form in X4. The intuitive guess - which might
be of course wrong - is that this 2-form must be same as that obtained by projecting the
Kähler form of CP2 to X4. If so then the bundle structure would be essential but what does
it really mean?

3. Intuitively it seems clear that X6 must decompose locally to a product X4 × S2 in some
sense. This is true if the metric and Kähler form reduce to direct sums of contributions from
the tangent spaces of X4 and S2. This guarantees that 6-D Kähler action decomposes to a
sum of 4-D Kähler action and Kähler action for S2.

This could be however too strong a condition. Dimensional reduction occurs in Kaluza-Klein
theories and in this case the metric can have also components between tangent spaces of the
fiber and base being interpreted as gauge potentials. This suggests that one should formulate
the condition in terms of the matrix T ↔ gαµgβν − gανgβµ defining the norm of the induced
Kähler form giving rise to Kähler action. T maps Kähler form J ↔ Jαβ to a contravariant
tensor Jc ↔ Jαβ and should have the property that Jc(X

4) (Jc(S
2)) does not depend on

J(S2) (J(X4)).

One should take into account also the self-duality of the form defining the imaginary unit.
In X4 the form S = J ± ∗J is self-dual/anti-self dual and would define twistorial imaginary
unit since its square equals to −g representing the negative of the real unit. This would
suggest that 4-D Kähler action is effectively replaced with (J±∗J)∧ (J±∗J) = J∗J±J ∧J ,
where ∗J is the Hodge dual defined in terms of 4-D permutation tensor ε. The second term is
topological term (Abelian instanton term) and does not contribute to field equations. This in
turn would mean that it is the tensor T ± ε for which one can demand that Sc(X

4) (Sc(S
2))

does not depend on S(S2) (S(X4)).

4. The preferred quaternionic imaginary unit should be represented as a projection of Kähler
form of 12-D twistor space T (H). The preferred imaginary unit defining twistor structure as
sum of projections of both T (CP2) and T (M4) Kähler forms would guarantee that vacuum
extremals like canonically imbedded M4 for which T (CP2) Kähler form contributes nothing
have well-defined twistor structure. T (M4) or T (CP2) are treated completely symmetrically
but the maps of S2(X4) to S2(M4) and S2(CP2) characterized by winding numbers induce
symmetry breaking.

For Kähler action M4 − CP2 symmetry does not make sense. 4-D Kähler action to which
6-D Kähler action dimensionally reduces can depend on CP2 Kähler form only. I have also
considered the possibility of covariantly constant self-dual M4 term in Kähler action but given
it up because of problems with Lorentz invariance. One should couple the gauge potential of
M4 Kähler form to induced spinors. This would mean the existence of vacuum gauge fields
coupling to sigma matrices of M4 so that the gauge grop would be non-compact SO(3, 1)
leading to a breakdown of unitarity.

There is still one difficulty to be solved.

1. The normalization of 6-D Kähler action by a scale factor 1/L2 with dimension, which is
inverse length squared, brings in a further length scale. The first guess is that 1/L2 is closely
related to cosmological constant, which is also dynamical and 1/L2 has indeed correct sign to
explain accelerated expansion of the Universe. Unfortunately, if 1/L2 is of order cosmological
constant, the value of the ordinary Kähler coupling strength αK would be enormous. As a
matter of fact, the order of magnitude for L2 must be equal to the area of S2(X4) and in
good approximation equal to L2 = 4πR2(S2(M4)) and therefore in the same range as Planck
length lP and CP2 radius R. This would imply a gigantic value of cosmological constant.
Just as in GRT based cosmology!

2. This issue can be solved by using the observation that thanks to the decomposition H =
M4 × CP2, 6-D Kähler action is sum of two independent terms. The first term corresponds
to the 6-D lift of the ordinary Kähler action. For it the contribution from S2(CP2) fiber
is absent if the embedding of S2(X4) to S2(M4) × S2(CP2) reduces to identification with
S2(M4) so that S2(CP2) is effectively absent: this is not true generally. Second term in the
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action is assumed to come from the S2(M4) fiber of twistor space T (M4), which can indeed
contribute without breaking of Lorentz symmetry. In fact, one can assume that also the
Kähler form of M4 contributes as will be found.

3. The independency implies that Kähler couplings strengths are independent for them. If one
wants that cosmological constant has a reasonable order of magnitude, L ∼ R(S2(M4)) must
hold true and the analog αK(S2(M4)) of the ordinary Kähler coupling strength (analogous
to critical temperature) must be extremely large - so large that one has

αK(M4)× 4πR(M4)2 ∼ L2 ,

where L is the size scale of the recent Universe.

This makes possible the small value of cosmological constant assignable to the volume term
given by this part of dimensionally reduced action. Both Kähler coupling strengths are
assumed to have a spectrum determined by quantum criticality and the spectrum of αK(M4)
would be essentially as p-adic primes satisfying p-adic length scale hypothesis p ' 2k, k prime.
One can criticize this identification of 6-D Kähler action as artificial but it seems to be the
only option that works. Interestingly also the contribution from M4 Kähler form can be
allowed since it is also extremely small. For canonically imbedded M4 this contribution
vanishes by self-duality of M4 Kähler form and is extremely small for the vacuum extremals
of Kähler action.

4. For general winding numbers of the map S2(X4)→ S2(M4)×S2(CP2) also S2(CP2) Kähler
form contributes and cosmological constant is gigantic. It would seem that only the winding
numbers (w1, w2) = (n, 0) are consistent with the observed value of cosmological constant.
Hence it seems that there is no need to pose any additional conditions to the Kähler action
if one uses the fact that T (M4) and T (CP2) parts are independent!

It is good to list the possible open issues related to the precise definition of the twistor structure
and of M4 Kähler action.

1. The proposed definition of M4 twistor space a Cartesian product of M4 and S2(M4) parts
involving Hamilton-Jacobi structure does not seem to be equivalent with the twistor identifi-
cation as SU(2, 2)/SU(2, 1)×U(1) having conformally compactified M4 as base space. There
exists an entire moduli space of Hamilton-Jacobi structures. If the M4 part of Kähler form
participates in dynamics, one must include the specification of the Hamilton-Jacobi structure
to the definition of CD and integrate over Hamilton Jacobi-structures as part of integral over
WCW in order to gain Lorentz invariance. Note that Hamilton-Jacobi structure enters to
dynamics also through the construction of massless extremals [K1].

2. The presence of M4 part of Kähler form in action implies breaking of Lorentz invariance for
extremals of lifted Kähler action. The same happens at the level of induced spinors if this
Kähler form couples to embedding space spinors. If T (M4) is trivial bundle, one can include
only the T (S2(M4)) part of Kähler form to Kähler action and couple only this to the spinors
of T (H). The integration over Hamilton-Jacobi structures becomes un-necessary.

3. If one includes M4 part of Kähler form to 6-D Kähler action, one has several options. One
can have sum of the Kähler actions for T (M4) and T (CP2) or Kähler action defined by the
sum J(T (M4)/gK and J(T (CP2)/αK with αK(M4) = g2K(M4)/4π~ and αK = g2K/4π~ with
a proper normalization to guarantee that the squares of induced Kähler forms give sum of
Kähler actions as in the first option. In this case one obtains interference term proportional
to Tr(J(M4)J(CP2). For the proposed value of αK also the interference term is extremely
small as compared to Kähler action in recent cosmology.

2.5 Could M4 Kähler form introduce new gravitational physics?

The introduction of M4 Kähler form could bring in new gravitational physics.
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1. As found, the twistorial formulation of TGD assigns to M4 a self dual Kähler form whose
square gives Minkowski metric. It can (but need not if M4 twistor space is trivial as bundle)
contribute to the 6-D twistor counterpart of Kähler action inducing M4 term to 4-D Kähler
action vanishing for canonically imbedded M4.

2. Self-dual Kähler form in empty Minkowski space satisfies automatically Maxwell equations
and has by Minkowskian signature and self-duality a vanishing action density. Energy mo-
mentum tensor is proportional to the metric so that Einstein Maxwell equations are satisfied
for a non-vanishing cosmological constant! M4 indeed allows a large number of self dual
Kähler fields (I have christened them as Hamilton-Jacobi structures). These are probably
the simplest solutions of Einstein-Maxwell equations that one can imagine!

3. There however exist quite a many Hamilton-Jacobi structures. However, if this structure is
to be assigned with a causal diamond (CD) it must satisfy additional conditions, say SO(3)
symmetry and invariance under time translations assignable to CD. Alternatively, covariant
constancy and SO(2) ⊂ SO(3) symmetry might be required.

This raises several questions. Could M4 Kähler form replace CP2 Kähler form in the picture
for how gravitational interaction is mediated at quantal level? Could one speak of flux tubes of
the magnetic part of this Kähler form? Or should one consider the Kähler field as a sum of the
two Kähler forms weighted by the inverses 1/gK of corresponding Kähler couplings. If so then
M4 contribution would be negligible except for canonically imbedded M4 in the recent cosmology.
Note that αK and αK(M4) have interpretation as analogs of quantum critical temperatures but
can depend on the p-adic lengths scale defining the cosmology.

1. The natural expectation is that Kähler form characterizes CD having preferred time direction
suggested strongly by number theoretical considerations involving quaternionic structure with
preferred direction of time axis assignable to real unit quaternion.

Self-duality gives rise to Kähler magnetic and electric fields in the same spatial direction
identifiable as a local quantization axis for spin assignable to CD assignable to observer. CD
indeed serves as a correlate for conscious entity in TGD inspired theory of consciousness.
Flux tube would connect mass M to mass m assignable to observer and flux tube direction
would define spin quantization axes for the CD of the observer. Spin quantization axis would
be naturally in the direction of magnetic field, which is direction of the flux tube.

2. The self-dual Kähler form could be spherically symmetric for CDs and represent self dual
magnetic monopole field (dyon) with monopole charge at the line connecting the tips of CD
and have non-vanishing components J tr = εtrθφJθφ, Jθφ = sin(θ). One would have genuine
monopole, which is somewhat questionable feature. Only the entire radial flux would be
quantized. CD could be associated with the mass M of the central object. The gauge
potential associated with J could be chosen to be Aµ ↔ (1/r, 0, 0, cos(θ). I have considered
this kind of possibility earlier in context of TGD inspired model of anyons but gave up the
idea.

The moduli space for CDs with second tip fixed would be hyperbolic spaceH3 = SO(3, 1)/SO(3)
or a space obtained by identifying points at the orbits of some discrete subgroup of SO(3, 1)
as suggested by number theoretic considerations. This induced Kähler field could make the
blackholes with center at this line to behave like M4 magnetic monopoles if the M4 part of
Kähler form is induced into the 6-D lift of Kähler action with extremely small coefficients of
order of magnitude of cosmological constant. Cosmological constant and the possibility of
CD monopoles would thus relate to each other.

3. The self-dual M4 Kähler form could be also covariantly constant (Jtz = Jxy = 1) and
represent electric and magnetic fluxes in a fixed direction identifiable as a quantization axes
for spin and characterizing CD. In this case the CD would be associated with the mass m
of observer. The moduli space of CDs would be now SO(3, 1)/SO(1, 1) × SO(2) which is
completely analogous to the twistor space SU(3)/U(1)× U(1).

4. Boundary conditions (allowing no boundaries!) demand that the flux tubes have closed cross
section - say sphere S2 - rather than disk: stability is guaranteed if the S2 cross section is
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mapped to homologically non-trivial surface of CP2 or is projection of it. This would give
monopole flux also for CP2 Kähler form so that the original hypothesis would be correct.

5. Radial flux tubes are possible both spherically symmetric and covariantly constant Kähler
form possibly mediating gravitational interaction but the flux is not quantized unless pre-
ferred extremal property implies this: in any case M4 flux would be very small unless one
has large value of gravitational Planck constant implying n-sheeted covering of M4 and flux
is scale up by n since every sheet gives a contribution. For spherically symmetric M4 Kähler
form the flux tubes would have naturally conical structure spanning a constant solid angle.
For covariantly constant Kähler form the flux tubes would be cylindrical.

There are further interpretational problems.

1. The classical coupling of M4 Kähler gauge potential to induced spinors is not small. Can
one really tolerate this kind of coupling equivalent to a coupling to a self dual monopole field
carrying electric and magnetic charges? One could of course consider the condition that the
string world sheets carrying spinor modes are such that the induced M4 Kähler form vanishes
and gauge potential become pure gauge. M4 projection would be 2-D Lagrange manifold
whereas CP2 projection would carry vanishing induce W and possibly also Z0 field in order
that em charge is well defined for the modes. These conditions would fix the string world
sheets to a very high degree in terms of maps between this kind of 2-D sub-manifolds of M4

and CP2. Spinor dynamics would be determined by the avoidance of interaction!

Recall that one could interpret the localization of spinor modes to 2-surfaces in the sense of
strong form of holography: one can continued induced spinor fields to the space-time interior
as indeed assumed but the continuation is completely determined by the data at 2-D string
world sheets.

It must be emphasized that the embedding space spinor modes characterizing the ground
states of super-symplectic representations would not couple to the monopole field so that at
this level Poincare invariance is not broken. The coupling would be only at the space-time
level and force spinor modes to Lagrangian sub-manifolds.

2. At the static limit of GRT and for gij ' δij implying SO(3) symmetry there is very close
analogy with Maxwell’s equations and one can speak of gravi-electricity and gravi-magnetism
with 4-D vector potential given by the components of gtα. The genuine U(1) gauge potential
does not however relate to the gravimagnetism in GRT sense. Situation would be analogous
to that for CP2, where one must add to the spinor connection U(1) term to obtain respectable
spinor structure. Now the U(1) term would be added to trivial spinor connection of flat M4:
its presence would be justified by twistor space Kähler structure. If the induced M4 Kähler
form is present as a classical physical field it means genuinely new contribution to U(1)
electroweak of standard model. If string world sheets carry vanishing M4 Kähler form, this
contribution vanishes classically.

2.6 A connection with the hierarchy of Planck constants?

A connection with the hierarchy of Planck constants is highly suggestive. Since also a connection
with the p-adic length scale hierarchy suggests itself for the hierarchy of p-adic length scales it
seems that both length scale hierarchies might find first principle explanation in terms of twistor
lift of Kähler action.

1. Cosmological considerations encourage to think that R1 ' lP and R2 ' R hold true. One
would have in early cosmology (w1, w2) = (1, 0) and later (w1, w2) = (0, 1) guaranteeing
RD grows from lP to R during cosmological evolution. These situations would correspond
the solutions (w1 = n, 0) and (0, w2 = n) one has A = n4πR2

1 and A = n × 4πR2
2 and both

Kähler coupling strengths are scaled down to αK/n. For ~eff/h = n exactly the same thing
happens!

There are further intriguing similarities. heff/h = n is assumed to correspond multi-sheeted
(to be distinguished from many-sheeted!) covering space structure for space-time surface.
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Now one has covering space defined by the lift S2(X4) → S2(M4) × S2(CP2). These lifts
define also lifts of space-time surfaces.

Could the hierarchy of Planck constants correspond to the twistorial surfaces for which
S2(M4) is n-fold covering of S2(X4)? The assumption has been that the n-fold multi-
sheeted coverings of space-time surface for heff/h = n are singular at the ends of space-time
surfaces at upper and lower boundaries if causal diamond (CD). Could one consider a more
precise definition of twistor space in such a way that CD replaces M4 and the covering
becomes singular at the light-like boundaries of CD - the branches of space-time surface
would collapse to single one.

Does this collapse have a clear geometric meaning? Are the projections of various branches
of the S2 lift automatically identical so that one would have the original picture in which one
has n identical copies of the same space-time surface? Or can one require identical projections
only at the light-like boundaries of CD?

2. w1 = w2 = w is essentially the first proposal for conditions associated with the lifting of
twistor space structure. w1 = w2 = n gives ds2 = (R2

1 + R2
2)(dθ2 + w2dφ2) and A =

n × 4π(R2
1 + R2

2). Also now Kähler coupling strength is scaled down to α/n. Again a
connection with the hierarchy of Planck constants suggests itself.

3. One can consider also the option R1 = R2 option giving ds2 = R2
1(2dθ2 + (w2

1 + w2
2)dφ2. If

the integers wi define Pythagorean square one has w2
1 +w2

2 = n2 and one has R1 = R2 option
that one has A = n× 4πR2. Also now the connection with the hierarchy of Planck constants
might make sense.

2.7 Twistorial variant for the embedding space spinor structure

The induction of the spinor structure of embedding space is in key role in quantum TGD. The
question arises whether one should lift also spinor structure to the level of twistor space. If so
one must understand how spinors for T (M4) and T (CP2) are defined and how the induced spinor
structure is induced.

1. In the case of CP2 the definition of spinor structure is rather delicate and one must add to
the ordinary spinor connection U(1) part, which corresponds physically to the addition of
classical U(1) gauge potential and indeed produces correct electroweak couplings to quarks
and leptons. It is assumed that the situation does not change in any essential manner: that is
the projections of gauge potentials of spinor connection to the space-time surface give those
induced from M4 × CP2 spinor connection plus possible other parts coming as a projection
from the fiber S2(M2) × S2(CP2). As a matter of fact, these other parts should vanish if
dimensional reduction is what it is meant to be.

2. The key question is whether the complications due to the fact that the geometries of twistor
spaces T (M4) and T (CP2) are not quite Cartesian products (in the sense that metric could
be reduced to a direct sum of metrics for the base and fiber) can be neglected so that one
can treat the sphere bundles approximately as Cartesian products M4 × S2 and CP2 × S2.
This will be assumed in the following but should be carefully proven.

3. Locally the spinors of the twistorspace T (H) are tensor products of embedding spinors and
those for of S2(M4) × S2(CP2) expressible also as tensor products of spinors for S2(M4)
and S2(CP2). Obviously, the number of spinor components increases by factor 2 × 2 = 4
unless one poses some additional conditions taking care that one has dimensional reduction
without the emergence of any new spin like degrees of freedom for which there is no physical
evidence. The only possible manner to achieve this is to pose covariant constancy conditions
already at the level of twistor spaces T (M4) and T (CP2) leaving only single spin state in
these degrees of freedom.

4. In CP2 covariant constancy is possible for right-handed neutrino so that CP2 spinor structure
can be taken as a model. In the case of CP2 spinors covariant constancy is possible for right-
handed neutrino and is essentially due to the presence of U(1) part in spinor connection
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forced by the fact that the spinor structure does not exist otherwise. Ordinary S2 spinor
connection defined by vielbein exists always. One can however add a coupling to a suitable
multiple of Kähler potential satisfying the quantization of magnetic charge (the magnetic
flux defined by U(1) connection is multiple of 2π so that its imaginary exponential is unity).

S2 spinor connections must must have besides ordinary vielbein part determined by S2 metric
also U(1) part defined by Kähler form coupled with correct coupling so that the curvature
form annihilates the second spin state for both S2(M4) and S2(CP2). U(1) part of the spinor
curvature is proportional to Kähler form J ∝ sin(θ)dθdφ so that this is possible. The vielbein
and U(1) parts of the spinor curvature ear proportional Pauli spin matrix σz = (1, 0; 0,−1)/2
and unit matrix (1, 0; 0, 1) respectively so that the covariant constancy is possible to satisfy
and fixes the spin state uniquely.

5. The covariant derivative for the induced spinors is defined by the sum of projections of
spinor gauge potentials for T (M4) and T (CP2). With above assumptions the contributions
gauge potentials from T (M4) and T (CP2) separately annihilate single spinor component. As
a consequence there are no constraints on the winding numbers wi, i = 1, 2 of the maps
S2(X4)→ S2(M4) and S2(X4)→ S2(CP2). Winding number wi corresponds to the embed-
ding map (Θi = θ,Φi = wiφ).

6. If the square of the Kähler form in fiber degrees of freedom gives metric to that its square
is metric, one obtains just the area of S2 from the fiber part of action. This is given by the
area A = 4π

√
2(w2

1R
2
1 + w2

2R
2
2) since the induced metric is given by ds2 = (R2

1 + R2
2)dθ2 +

(w2
1R

2
1 + w2

2R
2
2)dφ2 for (Θ1 = θ,Φ = n1φ,Φ2 = n2φ).

2.8 Twistor googly problem transforms from a curse to blessing in TGD
framework

There was a nice story with title “Michael Atiyah’s Imaginative State of Mind” about mathe-
matician Michael Atyiah in Quanta Magazine (see http://tinyurl.com/jta2va8). The works
of Atyiah have affected profoundly the development of theoretical physics. What was pleasant to
hear that Atyiah belongs to those scientists who do not care what others think. As he tells, he can
afford this since he has got all possible prices. This is consoling and encouraging even for those
who have not cared what others think and for this reason have not earned any prizes. Nor even a
single coin from what they have been busily doing their whole lifetime!

In the beginning of the story “twistor googly problem” was mentioned. I had to refresh my
understanding about googly problem. In twistorial description the modes of massless fields (rather
than entire massless fields) in space-time are lifted to the modes in its 6-D twistor-space and
dynamics reduces to holomorphy. The analog of this takes place also in string models by conformal
invariance and in TGD by its extension.

One however encounters what is known as googly problem: one can have twistorial description
for circular polarizations with well-defined helicity +1/-1 but not for general polarization states
- say linear polarizations, which are superposition of circular polarizations. This reflects itself in
the construction of twistorial amplitudes in twistor Grassmann program for gauge fields but rather
implicitly: the amplitudes are constructed only for fixed helicity states of scattered particles. For
gravitons the situation gets really bad because of non-linearity.

Mathematically the most elegant solution would be to have only +1 or -1 helicity but not their
superpositions implying very strong parity breaking and chirality selection. Parity parity breaking
occurs in physics but is very small and linear polarizations are certainly possible! The discusion
of Penrose with Atyiah has inspired a possible solution to the problem known as “palatial twistor
theory” (see http://tinyurl.com/hr7hmh2). Unfortunately, the article is behind paywall too high
for me so that I cannot say anything about it.

What happens to the googly problem in TGD framework? There is twistorialization at space-
time level and embedding space level.

1. One replaces space-time with 4-surface in H = M4 × CP2 and lifts this 4-surface to its 6-D
twistor space represented as a 6-surface in 12-D twistor space T (H) = T (M4) × T (CP2).
The twistor space has Kähler structure only for M4 and CP2 so that TGD is unique. This

http://tinyurl.com/jta2va8
http://tinyurl.com/hr7hmh2
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Kähler structure is needed to lift the dynamics of Kähler action to twistor context and the lift
leads to the a dramatic increase in the understanding of TGD: in particular, Planck length
and cosmological constant with correct sign emerge automatically as dimensional constants
besides CP2 size.

2. Twistorialization at embedding space level means that spinor modes inH representing ground
states of super-symplectic representations are lifted to spinor modes in T(H). M4 chirality
is in TGD framework replaced with H-chirality, and the two chiralities correspond to quarks
and leptons. But one cannot superpose quarks and leptons! “Googly problem” is just what
the superselection rule preventing superposition of quarks and leptons requires in TGD!

One can look this in more detail.

1. Chiral invariance makes possible for the modes of massless fields to have definite chirality:
these modes correspond to holomorphic or antiholomorphic amplitudes in twistor space and
holomorphy (antiholomorphy is holomorphy with respect to conjugates of complex coordi-
nates) does not allow their superposition so that massless bosons should have well-defined
helicities in conflict with experimental facts. Second basic problem of conformally invariant
field theories and of twistor approach relates to the fact that physical particles are massive
in 4-D sense. Masslessness in 4-D sense also implies infrared divergences for the scattering
amplitudes. Physically natural cutoff is required but would break conformal symmetry.

2. The solution of problems is masslessness in 8-D sense allowing particles to be massive in
4-D sense. Fermions have a well-defined 8-D chirality - they are either quarks or leptons
depending on the sign of chirality. 8-D spinors are constructible as superpositions of tensor
products of M4 spinors and of CP2 spinors with both having well-defined chirality so that
tensor product has chiralities (ε1, ε2), εi = ±1, i = 1, 2. H-chirality equals to ε = ε1ε2. For
quarks one has ε = 1 (a convention) and for leptons ε = −1. For quark states massless
in M4 sense one has either (ε1, ε2) = (1, 1) or (ε1, ε2) = (−1,−1) and for massive states
superposition of these. For leptons one has either (ε1, ε2) = (1,−1) or (ε1, ε2) = (−1, 1) in
massless case and superposition of these in massive case.

3. The twistor lift to T (M4)×T (CP2) of the ground states of super-symplectic representations
represented in terms of tensor products formed from H-spinor modes involves only quark and
lepton type spinor modes with well-defined H-chirality. Superpositions of amplitudes in which
different M4 helicities appear but M4 chirality is always paired with completely correlating
CP2 chirality to give either ε = 1 or ε = −1. One has never a superposition of of different
chiralities in either M4 or CP2 tensor factor. I see no reason forbidding this kind of mixing
of holomorphicities and this is enough to avoid googly problem. Linear polarizations and
massive states represent states with entanglement between M4 and CP2 degrees of freedom.
For massless and circularly polarized states the entanglement is absent.

4. This has interesting implications for the massivation. Higgs field cannot be scalar in 8-D sense
since this would make particles massive in 8-D sense and separate conservation of B and L
would be lost. Theory would also contain a dimensional coupling. TGD counterpart of Higgs
boson is actually CP2 vector, and one can say that gauge bosons and Higgs combine to form
8-D vector. This correctly predicts the quantum numbers of Higgs. Ordinary massivation
by constant vacuum expectation value of vector Higgs is not an attractive idea since no
covariantly constant CP2 vector field exists so that Higgsy massivation is not promising
except at QFT limit of TGD formulated in M4. p-Adic thermodynamics gives rise to 4-D
massivation but keeps particles massless in 8-D sense. It also leads to powerful and correct
predictions in terms of p-adic length scale hypothesis.

Anonymous reader gave me a link to the paper of Penrose and this inspired further more
detailed considerations of googly problem.

1. After the first reading I must say that I could not understand how the proposed elimination
of conjugate twistor by quantization of twistors solves the googly problem, which means that
both helicities are present (twistor Z and its conjugate) in linearly polarized classical modes
so that holomorphy is broken classically.
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2. I am also very skeptic about quantizing of either space-time coordinates or twistor space
coordinates. To me quantization is natural only for linear objects like spinors. For bosonic
objects one must go to higher abstraction level and replace superpositions in space-time with
superpositions in field space. Construction of “World of Classical Worlds” (WCW) in TGD
means just this.

3. One could however think that circular polarizations are fundamental and quantal linear
combination of the states carrying circularly polarized modes give rise to linear and elliptic
polarizations. Linear combination would be possible only at the level of field space (WCW
in TGD), not for classical fields in space-time. If so, then the elimination of conjugate of Z
by quantization suggested by Penrose would work.

4. Unfortunately, Maxwell’s equations allow classically linear polarisations! In order to achieve
classical-quantum consistency, one should modify classical Maxwell’s equations somehow so
that linear polarizations are not possible. Googly problem is still there!

What about TGD?

1. Massless extremals representing massless modes are very “quantal”: they cannot be su-
perposed classically unless both momentum and polarisation directions for them (they can
depend space-time point) are exactly parallel. Optimist would guess that the classical local
classical polarisations are circular. No, they are linear! Superposition of classical linear po-
larizations at the level of WCW can give rise to local linear but not local circular polarization!
Something more is needed.

2. The only sensible conclusion is that only gauge boson quanta (not classical modes) repre-
sented as pairs of fundamental fermion and antifermion in TGD framework can have circular
polarization! And indeed, massless bosons - in fact, all elementary particles- are constructed
from fundamental fermions and they allow only two M4, CP2 and M4 × CP2 helicities/-
chiralities analogous to circular polarisations. B and L conservation would transform googly
problem to a superselection rule as already described.

To sum up, both the extreme non-linearity of Kähler action, the representability of all ele-
mentary particles in terms of fundamental fermions and antifermions, and the generalization of
conserved M4 chirality to conservation of H-chirality would be essential for solving the googly
problem in TGD framework.

3 Surprise: Twistorial Dynamics Does Not Reduce to a
Trivial Reformulation of the Dynamics of Kähler Action

I have thought that twistorialization classically means only an alternative formulation of TGD.
This is definitely not the case as the explicit study demonstrated. Twistor formulation of TGD is
in terms of of 6-D twistor spaces T (X4) of space-time surfaces X4 ⊂M4 ×CP2 in 12-dimensional
product T = T (M4) × T (CP2) of 6-D twistor spaces of T (M4) of M4 and T (CP2) of CP2. The
induced Kähler form in X4 defines the quaternionic imaginary unit defining twistor structure: how
stupid that I realized it only now! I experienced during single night many other “How stupid I
have been” experiences.

Classical dynamics is determined by 6-D variant of Kähler action with coefficient 1/L2 having
dimensions of inverse length squared. Since twistor space is bundle, a dimensional reduction of
6-D Kähler action to 4-D Kähler action plus a term analogous to cosmological term - space-time
volume - takes place so that dynamics reduces to 4-D dynamics also now. Here one must be careful:
this happens provided the radius of S2 associated with X4 does not depend on point of X4. The
emergence of cosmological term was however completely unexpected: again “How stupid I have
been” experience. The scales of the spheres and the condition that the 6-D action is dimensionless
bring in 3 fundamental length scales!
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3.1 New scales emerge

The twistorial dynamics gives to several new scales with rather obvious interpretation. The new
fundamental constants that emerge are the radii of the spheres associated with T (M4) and T (CP2).
The radius of the sphere associated with X4 is not a fundamental constant but determined by
the induced metric. By above argument the fiber is sphere for both Euclidian signature and
Minkowskian signatures.

1. For CP2 twistor space the radius of S2(CP2) must be apart from numerical constant equal
to CP2 radius R. For S2(M4) one an consider two options. The first option is that also now
the radius for S2(M4) equals to R(M4) = R so that Planck length would not emerge from
fundamental theory classically as assumed hitherto. Second imaginable option is that it does
and one has R(M4) = lP .

2. If the signature of S2(M4) is (−1,−1) both Minkowskian and Euclidian regions have S2(X4)
with the same signature (−1,−1). The radius RD of S2(X4) is dynamically determined.

Recall first how the cosmological constant emerges from TGD framework. The key point is
that the 6-D Kähler action contains two terms.

1. The first term is essentially the ordinary Kähler action multiplied by the area of S2(X4)
which is compensated by the length scale, which can be taken to be the area 4πR2(M4) of
S2(M4). This makes sense for winding numbers (w1, w2) = (1, 0) meaning that S2(CP2) is
effectively absent but S2(M4) is present.

2. Second term is the analog of Kähler action assignable assignable to the projection of S2(M4)
Kähler form. The corresponding Kähler coupling strength αK(M4) is huge - so huge that one
has αK(M4)4πR2(M4) ≡ L2, where 1/L2 is of the order of cosmological constant and thus of
the order of the size of the recent Universe. αK(M4) is also analogous to critical temperature
and the earlier hypothesis that the values of L correspond to p-adic length scales implies that
the values of come as αK(M4) ∝ p ' 2k, p prime, k prime.

The assignment of different value of αK to M4 and CP2 degrees of freedom can be criticized
as ad hoc assumption. In [K8] a scenario in which the value of αK is universal. This option
has very nice properties and one can overcome the problem associated with cosmological
constant by assuming that it the entire 4-D action corresponds to the effective cosmological
constant. The cancellation between Kähler action and volume term would give rise to very
small cosmological constant and also its p-adic evolution could be understood.

3. One can get an estimate for the relative magnitude of the Kähler action S(CP2) = π/8αK
assignable to CP2 type vacuum extremal and the corresponding cosmological term. The
magnitude of the volume term is of order 1/4παK(M4) with αK(M4) given by αK(M4) =
L2/4πR2(M4). The sequel the magnitude of L is estimated to be L = (23/2πlP /RD)× RU ,
where RU is the recent size of the Universe. This estimate follows from the identification of
the volume term as cosmological constant term.

For RD = RM = lP this gives αK(M4) = 2π(RU/lP )2 ∼ 2 × 1018. For αK ' 1/137 the
ratio of the two terms is of order 10−20. The cosmological terms is completely negligible in
elementary particle scales. For vacuum extremals the situation changes and the overall effect
is presumably the transformation of 4-D spin glass degeneracy so that the potentials wells
in the analog spin glass energy landscape do not correspond to vacuum extremal anymore
and perturbation theory around them is in principle possible. The huge value of αK(M4)
implies that the system corresponds mathematically to an extremely strongly interacting
system so that perturbation theory fails to converge. The geometry of “world of classical
worlds” (WCW) provides the needed non-perturbative approach and leads to strong form of
holography.

4. One could argue that the Kähler form assignable to M4 cannot contribute to the action since
it does not contribute to spinor connection of M4 - an assumption that can be challenged.
For canonically imbedded M4 self-duality implies that this contribution to action vanishes.
For vacuum extremals of ordinary Kähler action the contribution to the action density is
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proportional to the CP2 part of induced metric and to 1/αK(M4), and therefore extremely
small.

The breaking of Lorentz invariance can be seen as a possible problem for the induced spinor
fields coupling to the self-dual Kähler potential. This corresponds to coupling to constant
magnetic field and constant electric field, which are duals of each other. This would give rise
to the analogs of cyclotron energy states in transversal directions and to the analogs of states
in constant electric field in longitudinal directions. Could this extremely small effect serve as
a seed for the generation of Kähler magnetic flux tubes carrying longitudinal electric fields in
various scales? Note also that the value of αK(M4) is predicted to decrease as p-adic length
scale so that the effect would be larger in early cosmology and in short length scales.

Hence one can consider the possibility that the action is just the sum of full 6-D Kähler actions
assignable to T (M4) and T (CP2) but with different values of αK if one has (w1, w2) = (n, 0). Also
other w2 6= 0 is possible but corresponds to gigantic cosmological constant.

Given the parameter L2 as it is defined above, one can deduce an expression for cosmological
constant Λ and show that it is positive.

1. 6-D Kähler action has dimensions of length squared and one must scale it by a dimensional
constant: call it 1/L2. L is a fundamental scale and in dimensional reduction it gives rise
to cosmological constant. Cosmological constant Λ is defined in terms of vacuum energy
density as Λ = 8πGρvac can have two interpretations. Λ can correspond to a modification of
Einstein-Hilbert action or - as now - to an additional term in the action for matter. In the
latter case positive Λ means negative pressure explaining the observed accelerating expansion.
It is actually easy to deduce the sign of Λ.

1/L2 multiplies both Kähler action - F ijFij (∝ E2 − B2 in Minkowskian signature). The
energy density is positive. For Kähler action the sign of the multiplier must be positive so
that 1/L2 is positive. The volume term is fiber space part of action having same form as
Kähler action. It gives a positive contribution to the energy density and negative contribution
to the pressure.

In Λ = 8πGρvac one would have ρvac = π/L2R2
D as integral of the −F ijFij over S2 given the

π/R2
D (no guarantee about correctness of numerical constants). This gives Λ = 8π2G/L2R2

D.
Λ is positive and the sign is same as as required by accelerated cosmic expansion. Note that
super string models predict wrong sign for Λ. Λ is also dynamical since it depends on RD,
which is dynamical. One has 1/L2 = kΛ, k = 8π2G/R2

D apart from numerical factors.

The value of L of deduced from Euclidian and Minkowskian regions in this formal manner
need not be same. Since the GRT limit of TGD describes space-time sheets with Minkowskian
signature, the formula seems to be applicable only in Minkowskian regions. Again one can
argue that one cannot exclude Euclidian space-time sheets of even macroscopic size and
blackholes and even ordinary concept matter would represent this kind of structures.

2. L is not size scale of any fundamental geometric object. This suggests that L is analogous
to αK and has value spectrum dictated by p-adic length scale hypothesis. In fact, one can
introduce the ratio of ε = R2/L2 as a dimensionless parameter analogous to coupling strength
what it indeed is in field equations. If so, L could have different values in Minkowskian and
Euclidian regions.

3. I have earlier proposed that RU ≡ 1/
√

1/Λ is essentially the p-adic length scale Lp ∝
√
p =

2k/2, p ' 2k, k prime, characterizing the cosmology at given time and satisfies RU ∝ a
meaning that vacuum energy density is piecewise constant but on the average decreases as
1/a2, a cosmic time defined by light-cone proper time. A more natural hypothesis is that
L satisfies this condition and in turn implies similar behavior or RU . p-Adic length scales
would be the critical values of L so that also p-adic length scale hypothesis would emerge from
quantum critical dynamics! This conforms with the hypothesis about the value spectrum of
αK labelled in the same manner [L1].

4. At GRT limit the magnetic energy of the flux tubes gives rise to an average contribution to
energy momentum tensor, which effectively corresponds to negative pressure for which the
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expansion of the Universe accelerates. It would seem that both contributions could explain
accelerating expansion. If the dynamics for Kähler action and volume term are coupled, one
would expect same orders of magnitude for negative pressure and energy density - kind of
equipartition of energy.

Consider first the basic scales emerging also from GRT picture. RU ∼
√

1/Λ ∼ 1026 m = 10
Gly is not far from the recent size of the Universe defined as c × t ∼ 13.8 Gly. The derived size
scale L1 ≡ (RU × lP )1/2 is of the order of L1 = .5 × 10−4 meters, the size of neuron. Perhaps
this is not an accident. To make life of the reader easier I have collected the basic numbers to the
following table.

m(CP2) ' 5.7× 1014 GeV , mP = 2.435× 1018 GeV , R(CP2)
lP

' 4.1× 103 ,

RU = 10 Gy , t = 13.8 Gy , L1 =
√
lPRU = .5× 10−4 m .

(3.1)

Let us consider now some quantitative estimates. R(X4) depends on homotopy equivalence
classes of the maps from S2(X4) → S2(M4) and S2(X4) → S2(CP2) - that is winding numbers
wi, i = 1, 2 for these maps. The simplest situations correspond to the winding numbers (w1, w2) =
(1, 0) and (w1, w2) = (0, 1). For (w1, w2) = (1, 0) M4 contribution to the metric of S2(X4)
dominates and one has R(X4) ' R(M4). For R(M4) = lP so Planck length would define a
fundamental length and Planck mass and Newton’s constant would be quantal parameters. For
(w1, w2) = (0, 1) the radius of sphere would satisfy RD ' R (CP2 size): now also Planck length
would be quantal parameter.

Consider next additional scales emerging from TGD picture.

1. One has L = (23/2πlP /RD) × RU . In Minkowskian regions with RD = lP this would give
L = 8.9 × RU : there is no obvious interpretation for this number in recent cosmology. For
(RD = R) one obtains the estimate L = 29 Mly. The size scale of large voids varies from
about 36 Mly to 450 Mly (see http://tinyurl.com/jyqcjhl).

2. Consider next the derived size scale L2 = (L× lP )1/2 =
√
L/RU ×L1 =

√
23/2πlP /RD×L1.

For RD = lP one has L2 ' 3L1. For RD = R making sense in Euclidian regions, this is of
the order of size of neutrino Compton length: 3 µm, the size of cellular nucleus and rather
near to the p-adic length scale L(167) = 2.6 m, corresponds to the largest miracle Gaussian
Mersennes associated with k = 151, 157, 163, 167 defining length scales in the range between
cell membrane thickness and the size of cellular nucleus. Perhaps these are co-incidences are
not accidental. Biology is something so fundamental that fundamental length scale of biology
should appear in the fundamental physics.

The formulas and predictions for different options are summarized by the following table.

Option L = 23/2πlP
RD

×RU L2 =
√
LlP =

√
23/2πlP
RD

× L1

RD = R , 29 Mly , ' 3 µm ,

RD = lP , 8.9RU , ' 3L1 = 1.5× 10−4 m ,

(3.2)

In the case of M4 the radius of S2 cannot be fixed it remains unclear whether Planck length
scale is fundamental constant or whether it emerges.

3.2 Estimate for the cosmic evolution of RD

One can actually get estimate for the evolution of RD as function of cosmic time if one accepts
Friedman cosmology as an approximation of TGD cosmology.

http://tinyurl.com/jyqcjhl
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1. Assume critical mass density so that one has

ρcr =
3H2

8πG
.

2. Assume that the contribution of cosmological constant term to the mass mass density dom-
inates. This gives ρ ' ρvac = Λ/8πG. From ρcr = ρvac one obtains

Λ = 3H2 .

3. From Friedman equations one has H2 = ((da/dt)/a)2, where a corresponds to light-cone
proper time and t to cosmic time defined as proper time along geodesic lines of space-time
surface approximated as Friedmann cosmology. One has

Λ =
3

gaaa2

in Robertson-Walker cosmology with ds2 = gaada
2 − a2dσ2

3 .

4. Combining this equations with the TGD based equation

Λ =
8π2G

L2R2
D

one obtains

8π2G

L2R2
D

=
3

gaaa2
. (3.3)

5. Assume that quantum criticality applies so that L has spectrum given by p-adic length scale
hypothesis so that one discrete p-adic length scale evolution for the values of L. There are two
options to consider depending on whether p-adic length scales are assigned with light-cone
proper time a or with cosmic time t

T = a (Option I) , T = t (Option II) (3.4)

Both options give the same general formula for the p-adic evolution of L(k) but with different
interpretation of T (k).

L(k)
Lnow

= T (k)
Tnow

, T (k) = L(k) = 2(k−151)/2 × L(151) , L(151) ' 10 nm . (3.5)

Here T (k) is assumed to correspond to primary p-adic length scale. An alternative - less
plausible - option is that T (k) corresponds to secondary p-adic length scale L2(k) = 2k/2L(k)
so that T (k) would correspond to the size scale of causal diamond. In any case one has
L ∝ L(k). One has a discretized version of smooth evolution

L(a) = Lnow ×
T

Tnow
. (3.6)

6. Feeding into this to Eq. 3.3 one obtains an expression for RD(a)

RD
lP

= (
8

3
)1/2π × a

L(a)
× g1/2aa . (3.7)
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Unless the dependences on cosmic time compensate each other, RD is dynamical and becomes
very small at very early times since gaa becomes very small. R(M4) = lP however poses a
lower boundary since either of the maps S2(X4) → S2(M4) and S2(X4) → S2(CP2) must
be homotopically non-trivial. For R(M4) = lP one would obtain RD/lP = 1 at this limit
giving also lower bound for gaa. For T = t option a/L(a) becomes large and gaa small.

As a matter of fact, in very early cosmic string dominated cosmology gaa would be extremely
small constant [K9]. In late cosmology gaa → 1 holds true and one obtains at this limit

RD(now)

lP
= (

8

3
)1/2π × anow

Lnow
× lP ' 4.4

anow
Lnow

. (3.8)

7. For T = t option RD/lP remains constant during both matter dominated cosmology, ra-
diation dominated cosmology, and string dominated cosmology since one has a ∝ tn with
n = 1/2 during radiation dominated era, n = 2/3 during matter dominated era, and n = 1
during string dominated era [K9]. This gives

RD
lP

= (
8

3
)1/2π × a

t

√
gaa

t(end)

L(end)
= (

8

3
)1/2

π

n

t(end)

L(end)
.

Here “end” refers the end of the string or radiation dominated period or to the recent time
in the case of matter dominated era. The value of n would have evolved as RD/lP ∝
(1/n)(tend/Lend), n ∈ {1, 3/2, 2}. During radiation dominated cosmology RD ∝ a1/2 holds
true. The value of RD would be very nearly equal to R(M4) and R(M4) would be of the
same order of magnitude as Planck length. In matter dominated cosmology would would
have RD ' 2.2(t(now)/L(now))× lP .

8. For RD(now) = lP one would have

Lnow
anow

= (
8

3
)1/2π ' 4.4 .

In matter dominated cosmology gaa = 1 gives tnow = (2/3)× anow so that predictions differ
only by this factor for options I and II. The winding number for the map S2(X4)→ S2(CP2)
must clearly vanish since otherwise the radius would be of order R.

9. For RD(now) = R one would obtain

anow
Lnow

= (
8

3
)1/2 × R

lP
' 2.1× 104 .

One has Lnow = 106 ly: this is roughly the average distance scale between galaxies. The size
of Milky Way is in the range 1− 1.8× 105 ly and of an order of magnitude smaller.

10. An interesting possibility is that RD(a) evolves from RD ∼ R(M4) ∼ lP to RD ∼ R. This
could happen if the winding number pair (w1, w2) = (1, 0) transforms to (w1, w2) = (0, 1)
during transition to from radiation (string) dominance to matter (radiation) dominance.
RD/lP radiation dominated cosmology would be related by a factor

RD(rad)

RD(mat)
= (3/4)

t(rad, end)

L(rad, end)
× L(now)

t(now)

to that in matter dominated cosmology. Similar factor would relate the values of RD/lP in
string dominated and radiation dominated cosmologies. The condition RD(rad)/RD(mat) =
lP /R expressing the transformation of winding numbers would give

L(now)

L(rad, end)
=

4

3

lP
R

t(now)

t(rad, end)
.

One has t(now)/t(rad, end) ' .5× 106 and lP /R = 2.5× 10−4 giving L(now)/L(rad, end) '
125, which happens to be near fine structure constant.
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11. For the twistor lifts of space-time surfaces for which cosmological constant has a reasonable
value , the winding numbers are equal to (w1, w2) = (n, 0) so that RD =

√
nR(S2(M4))

holds true in good approximation. This conforms with the observed constancy of RD during

various cosmological eras, and would suggest that the ratio t(end)
L(end) characterizing these periods

is same for all periods. This determines the evolution for the values of αK(M4).

R(M4) ∼ lP seems rather plausible option so that Planck length would be fundamental classical
length scale emerging naturally in twistor approach. Cosmological constant would be coupling
constant like parameter with a spectrum of critical values given by p-adic length scales.

3.3 What about the extremals of the dimensionally reduced 6-D Kähler
action?

It seems that the basic wisdom about extremals of Kähler action remains unaffected and the
motivations for WCW are not lost in the case that M4 Kähler form does not contribute to 6-D
Kähler action (the case to be considered below): otherwise the predicted effects are extremely
small in the recent Universe. What is new is that the removal of vacuum degeneracy is forced by
twistorial action.

1. All extremals, which are minimal surfaces remain extremals. In fact, all the known extremals
except vacuum extremals. For minimal surfaces the dynamics of the volume term and 4-D
Kähler action separate and field equations for them are separately satisfied. The vacuum
degeneracy motivating the introduction of WCW is preserved. The induced Kähler form
vanishes for vacuum extremals and the imaginary unit of twistor space is ill-defined. Hence
vacuum extremals cannot belong to WCW. This correspond to the vanishing of WCW metric
for vacuum extremals.

2. For non-minimal surfaces Kähler coupling strength does not disappear from the field equa-
tions and appears as a genuine coupling very much like in classical field theories. Mini-
mal surface equations are a generalization of wave equation and Kähler action would define
analogs of source terms. Field equations would state that the total isometry currents are
conserved. It is not clear whether other than minimal surfaces are possible, I have even
conjectured that all preferred extremals are always minimal surfaces having the property
that being holomorphic they are almost universal extremals for general coordinate invariant
actions.

3. Thermodynamical analogy might help in the attempts to interpret. Quantum TGD in zero
energy ontology (ZEO) corresponds formally to a complex square root of thermodynamics.
Kähler action can be identified as a complexified analog of free energy. Complexification
follows both from the fact that

√
g is real/imaginary in Euclidian/Minkowskian space-time

regions. Complex values are also implied by the proposed identification of the values of
Kähler coupling strength in terms of zeros and pole of Riemann zeta in turn identifiable
as poles of the so called fermionic zeta defining number theoretic partition function for
fermions [K11] [L1, L3]. The thermodynamical for Kähler action with volume term is Gibbs
free energy G = F − TS = E − TS + PV playing key role in chemistry.

4. The boundary conditions at the ends of space-time surfaces at boundaries of CD generalize
appropriately and symmetries of WCW remain as such. At light-like boundaries between
Minkowskian and Euclidian regions boundary conditions must be generalized. In Minkowkian
regions volume can be very large but only the Euclidian regions contribute to Kähler function
so that vacuum functional can be non-vanishing for arbitrarily large space-time surfaces since
exponent of Minkowskian Kähler action is a phase factor.

5. One can worry about almost topological QFT property. Although Kähler action from
Minkowskian regions at least would reduce to Chern-Simons terms with rather general as-
sumptions about preferred extremals, the extremely small cosmological term does not. Could
one say that cosmological constant term is responsible for “almost”?
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It is interesting that the volume of manifold serves in algebraic geometry as topological invari-
ant for hyperbolic manifolds, which look locally like hyperbolic spaces Hn = SO(n, 1)/SO(n)
[A1] [K5]. See also the article “Volumes of hyperbolic manifolds and mixed Tate motives”
(see http://tinyurl.com/yargy3uw). Now one would have n = 4. It is probably too much
to hope that space-time surfaces would be hyperbolic manifolds. In any case, by the extreme
uniqueness of the preferred extremal property expressed by strong form of holography the
volume of space-time surface could also now serve as topological invariant in some sense as
I have earlier proposed. What is intriguing is that AdSn appearing in AdS/CFT correspon-
dence is Lorentzian analogue Hn.

6. α(M4) is extremely large so that there is no hope of quantum perturbation theory around
canonically imbedded M4 although the propagator for CP2 coordinate exists. In the new
framework WCW can be seen as a solution to how to construct non-perturbative quantum
TGD.

To sum up, I have the feeling that the final formulation of TGD has now emerged and it
is clear that TGD is indeed a quantum theory of gravitation allowing to understand standard
model symmetries. The existence of twistorial formulation is all that is needed to fix the theory
completely. It makes possible gravitation and predicts standard model symmetries. This cannot
be said about any competitor of TGD.

4 Basic Principles Behind Construction of Amplitudes

Basic principles of the construction summarized in this section could be seen as axioms trying to
abstract the essentials. The explicit construction of amplitudes is too heavy challenge at this stage
and at least for me.

4.1 Embedding space is twistorially unique

It took roughly 36 years to learn that M4 and CP2 are twistorially unique.

1. As already explained, M4 and CP2 are unique 4-manifolds in the sense that both allow twistor
space with Kähler structure: Kähler structure is the crucial concept as one might guess from
the fact that the projection of Kähler form naturally defines the preferred quaternionic imag-
inary unit defining the twistor structure for space-time surface. Both M4 and its Euclidian
variant E4 allow twistor space. The first guess is that the twistor space of M4 is Minkowskian
variant T (M4) = SU(2, 2)/SU(2, 1)×U(1) of 6-D twistor space CP3 = SU(4)/SU(3)×U(1)
of E4. This is sensible assumption at the level of momentum space but the second candi-
date, which is simply T (M4) = M4 × CP1, is the only sensible option at space-time level.
The twistor space of CP2 is 6-D T (CP2) = SU(3)/U(1)× U(1), the space for the choices of
quantization axes of color hypercharge and isospin.

2. This leads to a proposal for the formulation of TGD in which space-time surfaces X4 in H
are lifted to twistor spaces X6, which are sphere bundles over X4 and such that they are
surfaces in 12-D product space T (M4)×T (CP2) such the twistor structure of X4 are in some
sense induced from that of T (M4)× T (CP2).

What is nice in this formulation is that one might be able to use all the machinery of
algebraic geometry so powerful in superstring theory (Calabi-Yau manifolds) provided one
can generalize the notion of Kähler structure from Euclidian to Minkowskian signature. It
has been already described how this approach leads to a profound understanding of the
relationship between TGD and GRT. Planck length emerges whereas fundamental constant
as also cosmological constant emerges dynamically from the length scale parameter appearing
in 6-D Kähler action. One can say, that twistor extension is absolutely essential for really
understanding the gravitational interactions although the modification of Kähler action is
extremely small due to the huge value of length scale defined by cosmological constant.

3. Masslessness (masslessness in complex sense for virtual particles in twistorialization) is es-
sential condition for twistorialization. In TGD massless is masslessness in 8-D sense for

http://tinyurl.com/yargy3uw
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the representations of superconformal algebras. This suggests that 8-D variant of twistors
makes sense. 8-dimensionality indeed allows octonionic structure in the tangent space of
embedding space. One can also define octonionic gamma matrices and this allows a possible
generalization of 4-D twistors to 8-D ones using generalization of sigma matrices representing
quaternionic units to octonionic sigma “matrices” essential for the notion of twistors. These
octonion units do not of course allow matrix representation unless one restricts to units in
some quaternionic subspace of octonions. Space-time surfaces would be associative and thus
have quaternionic tangent space at each point satisfying some additional conditions.

4.2 Strong form of holography

Strong form of holography (SH) following from general coordinate invariance (GCI) for space-
times as surfaces states that the data assignable to string world sheets and partonic 2-surfaces
allows to code for scattering amplitudes. The boundaries of string world sheets at the space-like
3-surfaces defining the ends of space-time surfaces at boundaries of causal diamonds (CDs) and
the fermionic lines along light-like orbits of partonic 2-surfaces representing lines of generalized
Feynman diagrams become the basic elements in the generalization of twistor diagrams (I will
not use the attribute “Feynman” in precise sense, one could replace it with “twistor” or even
drop away). One can assign fermionic lines massless in 8-D sense to flux tubes, which can also
be braided. One obtains a fractal hierarchy of braids with strands, which are braids themselves.
At the lowest level one has braids for which fermionic lines are braided. This fractal hierarchy is
unavoidable and means generalization of the ordinary Feynman diagram. I have considered some
implications of this hierarchy in [L2].

The precise formulation of strong form of holography (SH) is one of the technical problems in
TGD. A comment in FB page of Gareth Lee Meredith led to the observation that besides the purely
number theoretical formulation based on commutativity also a symplectic formulation in the spirit
of non-commutativity of embedding space coordinates can be considered. One can however use
only the notion of Lagrangian manifold and avoids making coordinates operators leading to a loss
of General Coordinate Invariance (GCI).

4.3 The existence of WCW demands maximal symmetries

Quantum TGD reduces to the construction of Kähler geometry of infinite-D “world of classical
worlds” (WCW), of associated spinor structure, and of modes of WCW spinor fields which are
purely classical entities and quantum jump remains the only genuinely quantal element of quantum
TGD. Quantization without quantization, would Wheeler say.

By its infinite-dimensionality, the mere mathematical existence of the Kähler geometry of WCW
requires maximal isometries. Physics is completely fixed by the mere condition that its mathe-
matical description exists. Super-symplectic and other symmetries of “world of classical worlds”
(WCW) are in decisive role. These symmetry algebras have conformal structure and generalize
and extend the conformal symmetries of string models (Kac-Moody algebras in particular). These
symmetries give also rise to the hierarchy of Planck constants. The super-symplectic symmetries
extend to a Yangian algebra, whose generators are polylocal in the sense that they involve prod-
ucts of generators associated with different partonic surfaces. These symmetries leave scattering
amplitudes invariant. This is an immensely powerful constraint, which remains to be understood.

4.4 Quantum criticality

Quantum criticality (QC) of TGD Universe is a further principle. QC implies that Kähler coupling
strength is mathematically analogous to critical temperature and has a discrete spectrum. Coupling
constant evolution is replaced with a discrete evolution as function of p-adic length scale: sequence
of jumps from criticality to a more refined criticality or vice versa (in spin glass energy landscape
you at bottom of well containing smaller wells and you go to the bottom of smaller well). This
implies that either all radiative corrections (loops) sum up to zero (QFT limit) or that diagrams
containing loops correspond to the same scattering amplitude as tree diagrams so that loops can
eliminated by transforming them to arbitrary small ones and snipping away moving the end points
of internal lines along the lines of diagram (fundamental description).
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Quantum criticality at the level of super-conformal symmetries leads to the hierarchy of Planck
constants heff = n×h labelling a hierarchy of sub-algebras of super-symplectic and other conformal
algebras isomorphic to the full algebra. Physical interpretation is in terms of dark matter hierarchy.
One has conformal symmetry breaking without conformal symmetry breaking as Wheeler would
put it.

4.5 Physics as generalized number theory, number theoretical univer-
sality

Physics as generalized number theory vision has important implications. Adelic physics is one of
them. Adelic physics implied by number theoretic universality (NTU) requires that physics in real
and various p-adic numbers fields and their extensions can be obtained from the physics in their
intersection corresponding to an extension of rationals. This is also enormously powerful condition
and the success of p-adic length scale hypothesis and p-adic mass calculations can be understood
in the adelic context.

In TGD inspired theory of consciousness various p-adic physics serve as correlates of cognition
and p-adic space-time sheets can be seen as cognitive representations, “thought bubbles”. NTU is
closely related to SH. String world sheets and partonic 2-surfaces with parameters (WCW coordi-
nates) characterizing them in the intersection of rationals can be continued to space-time surfaces
by preferred extremal property but not always. In p-adic context the fact that p-adic integration
constants depend on finite number of pinary digits makes the continuation easy but in real con-
text this need not be possible always. It is always possible to imagine something but not always
actualize it!

4.6 Scattering diagrams as computations

Quantum criticality as possibility to eliminate loops has a number theoretic interpretation. Gener-
alized Feynman diagram can be interpreted as a representation of a computation connecting given
set X of algebraic objects to second set Y of them (initial and final states in scattering) (trivial
example: X = {3, 4} → 3 × 4 = 12 → 2 × 6 → {2, 6} = Y . The 3-vertices (a × b = c) and their
time-reversals represent algebraic product and co-product.

There is a huge symmetry: all diagrams representing computation connecting given X and Y
must produce the same amplitude and there must exist minimal computation. This generalization
of string model duality implies an infinite number of dualities unless the finite size of CD allows
only a finite number of equivalent computations. These dualities are analogous to the dualities of
super-string model, in particular mirror symmetry stating that same quantum physical situation
does not correspond to a unique space-time geometry and topology (Calabi-Yau and its mirror
represent the same situation). The task of finding this computation is like finding the simplest
representation for the formula X=Y and the noble purpose of math teachers is that we should learn
to find it during our school days. This generalizes the duality symmetry of old fashioned string
models: one can transform any diagram to a tree diagram without loops. This corresponds to
quantum criticality in TGD: coupling constants do not evolve. The evolution is actually there but
discrete and corresponds to infinite number critical values for Kahler coupling strength analogous
to temperature.

4.7 Reduction of diagrams with loops to braided tree-diagrams

1. In TGD pointlike particles are replaced with 3-surfaces and by SH by partonic 2-surfaces.
The important implication of 3-dimensionality is braiding. The fermionic lines inside light-
like orbits of partonic 2-surfaces can be knotted and linked - that is braided (this is dynamical
braiding analogous to dance). Also the fermionic strings connecting partonic 2-surfaces at
space-like 3-surfaces at boundaries of causal diamonds (CDs) are braided (space-like braid-
ing).

Therefore ordinary Feynman diagrams are not enough and one must allow braiding for tree
diagrams. One can also imagine of starting from braids and allowing 3-vertices for their
strands (product and co-product above). It is difficult to imagine what this braiding could
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mean. It is better to imagine braid and allow the strands to fuse and split (annihilation and
pair creation vertices).

2. This braiding gives rise in the planar projection representation of braids to a generalization
of non-planar Feynman diagrams. Non-planar diagrams are the basic unsolved problem of
twistor approach and have prevented its development to a full theory allowing to construct
exact expressions for the full scattering amplitudes (I remember however that Nima Arkani-
Hamed et al have conjectured that non-planar amplitudes could be constructed by some
procedure: they notice the role of permutation group and talk also about braidings (de-
scribable using covering groups of permutation groups)). In TGD framework the non-planar
Feynman diagrams correspond to non-trivial braids for which the projection of braid to plane
has crossing lines, say a and b, and one must decide whether the line a goes over b or vice
versa.

3. An interesting open question is whether one must sum over all braidings or whether one
can choose only single braiding. Choice of single braiding might be possible and reflect the
failure of string determinism for Kähler action and it would be favored by TGD as almost
topological quantum field theory (TQFT) vision in which Kähler action for preferred extremal
is topological invariant.

4.8 Scattering amplitudes as generalized braid invariants

The last big idea is the reduction of quantum TGD to generalized knot/braid theory (I have talked
also about TGD as almost TQFT). The scattering amplitude can be identified as a generalized braid
invariant and could be constructed by the generalization of the recursive procedure transforming
in a step-by-step manner given braided tree diagram to a non-braided tree diagram: essentially
what Alexander the Great did for Gordian knot but tying the pieces together after cutting. At
each step one must express amplitude as superposition of amplitudes associated with the different
outcomes of splitting followed by reconnection. This procedure transforms braided tree diagram
to a non-braided tree diagrams and the outcome is the scattering amplitude!

5 Tensor Networks and S-matrices

The concrete construction of scattering amplitudes has been the toughest challenge of TGD and
the slow progress has occurred by identification of general principles with many side tracks. One of
the key problems has been unitarity. The intuitive expectation is that unitarity should reduce to a
local notion somewhat like classical field equations reduce the time evolution to a local variational
principle. The presence of propagators have been however the obstacle for locally realized unitarity
in which each vertex would correspond to unitary map in some sense.

TGD suggests two approaches to the construction of S-matrix.

1. The first approach is generalization of twistor program [K10]. What is new is that one
does not sum over diagrams but there is a large number of equivalent diagrams giving the
same outcome. The complexity of the scattering amplitude is characterized by the minimal
diagram. Diagrams correspond to space-time surfaces so that several space-time surfaces give
rise to the same scattering amplitude. This would correspond to the fact that the dynamics
breaks classical determinism. Also quantum criticality is expected to be accompanied by
quantum critical fluctuations breaking classical determinism. The strong form of holography
would not be unique: there would be several space-time surfaces assignable as preferred
extremals to given string world sheets and partonic 2-surfaces defining “space-time genes”.

2. Second approach relies on the number theoretic vision and interprets scattering amplitudes as
representations for computations with each 3-vertex identifiable as a basic algebraic operation
[K10]. There is an infinite number of equivalent computations connecting the set of initial
algebraic objects to the set of final algebraic objects. There is a huge symmetry involved:
one can eliminate all loops moving the end of line so that it transforms to a vacuum tadpole
and can be snipped away. A braided tree diagram is left with braiding meaning that the
fermion lines inside the line defined by light-like orbit are braided. This kind of braiding can
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occur also for space-like fermion lines inside magnetic flux tubes and defining correlate for
entanglement. Braiding is the TGD counterpart for the problematic non-planarity in twistor
approach.

Third approach involving local unitary as an additional key element is suggested by tensor
networks relying on the notion of perfect entanglement discussed by Preskill et al [?].

1. Tensor networks provide an elegant representation of holography mapping interior states
isometrically (in Hilbert space sense) to boundary states or vice versa for selected subsets
of states defining the code subspace for holographic quantum error correcting code. Again
the tensor net is highly non-unique but there is some minimal tensor net characterizing the
complexity of the entangled boundary state.

2. Tensor networks have two key properties, which might be abstracted and applied to the
construction of S-matrix in zero energy ontology (ZEO): perfect tensors define isometry for
any subspace defined by the index subset of perfect tensor to its complement and the non-
unique graph representing the network. As far as the construction of Hilbert space isometry
between local interior states and highly non-local entangled boundary states is considered,
these properties are enough.

One cannot avoid the question whether these three constructions could be different aspects
of one and same construction and that tensor net construction with perfect tensors representing
vertices could provide and additional strong constraint to the long sought for explicit recipe for
the construction of scattering amplitudes.

5.1 Objections

It is certainly clear from the beginning that the possibly existing description of S-matrix in terms
of tensor networks cannot correspond to the perturbative QFT description in terms of Feynman
diagrams.

1. Tensor network description relates interior and boundary degrees in holography by a isometry.
Now however unitary matrix has quite different role. It could correspond to U-matrix relating
zero energy states to each other or to the S-matrix relating to each other the states at
boundary of CD and at the shifted boundary obtained by scaling. These scalings shifting
the second boundary of CD and increasing the distance between the tips of CD define the
analog of unitary time evolution in ZEO. The U-matrix for transitions associated with the
state function reductions at fixed boundary of CD effectively reduces to S-matrix since the
other boundary of CD is not affected.

The only manner one could see this as holography type description would be in terms of
ZEO in which zero energy states are at boundaries of CD and U-matrix is a representation
for them in terms of holography involving the interior states representing scattering diagram
in generalized sense.

2. The appearance of small gauge coupling constant tells that the entanglement between “states”
in state spaces whose coordinates formally correspond to quantum fields is weak and just
opposite to that defined by a perfect tensor. Quite generally, coupling constant might be the
fatal aspect of the vertices preventing the formulation in terms of perfect entanglement.

One should understand how coupling constant emerges from this kind of description - or
disappears from standard QFT description. One can think of including the coupling constant
to the definition of gauge potentails: in TGD framework this is indeed true for induced gauge
fields. There is no sensical manner to bring in the classical coupling constants in the classical
framework and the inverse of Kähler coupling strength appears only as multiplier of the
Kähler action analogous to critical temperature.

More concretely, there are WCW spin degrees of freedom (fermionic degrees of freedom)
and WCW orbital degrees of freedom involving functional integral over WCW. Fermionic
contribution would not involve coupling constants whereas the functional integral over WCW
involving exponential of vacuum functional could give rise to the coupling constants assignable
to the vertices in the minimal tree diagram.
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3. The decomposition S = 1 + iT of unitary S-matrix giving unitarity as the condition −i(T −
T †) +T †T = 0 reflects the perturbative thinking. If one has only isometry instead of unitary
transformation, this decomposition becomes problematic since T and T † whose some appears
in the formula act in different spaces. One should have the generalization of Id as a “trivial”
isometry. Alternatively, one should be able to extend the state space Hin by adding a tensor
factor mapped trivially in isometry.

4. There are 3- and 4-vertices rather than only -say, 3-vertices as in tensor networks. For non-
Abelian Chern-Simons term for simple Lie group one would have besides kinetic term only
3-vertex Tr(A∧A∧A) defining the analog of perfect tensor entanglement when interpreted as
co-product involving 3-D permutation symbol and structure constants of Lie algebra. Note
also that for twistor Grassmannian approach the fundamental vertices are 3-vertices. It must
be however emphasized that QFT description emerges from TGD only at the limit when one
identifies gauge potentials as sums of induced gauge potentials assignable to the space-time
sheets, which are replaced with single piece of Minkowski space.

5. Tensor network description does not contain propagators since the contractions are between
perfect tensors. It is to make sense propagators must be eliminated. The twistorial factor-
ization of massless fermion propagator suggest that this might be possible by absorbing the
twistors to the vertices.

These reasons make it clear that the proposed idea is just a speculative question. Perhaps
the best strategy is to look this crazy idea from different view points: the overly optimistic view
developing big picture and the approach trying to debunk the idea.

5.2 The overly optimistic vision

With these prerequisites on one can follow the optimistic strategy and ask how tensor networks
could the allow to generalize the notion of unitary S-matrix in TGD framework.

1. Tensor networks suggests the replacement of unitary correspondence with the more general
notion of Hilbert space isometry. This generalization is very natural in TGD since one
must allow phase transitions increasing the state space and it is quite possible that S-matrix
represents only isometry: this would mean that S†S = Idin holds true but SS† = Idout does
not even make sense. This conforms with the idea that state function reduction sequences
at fixed boundary of causal diamonds defining conscious entities give rise evolution implying
that the size of the state space increases gradually as the system becomes more complex.
Note that this gives rise to irreversibility understandandable in terms of NMP [K6]. It might
be even impossible to formally restore unitary by introducing formal additional tensor factor
to the space of incoming states if the isometric map of the incoming state space to outgoing
state space is inclusion of hyperfinite factors.

2. If the huge generalization of the duality of old fashioned string models makes sense, the
minimal diagram representing scattering is expected to be a tree diagram with braiding
and should allow a representation as a tensor network. The generalization of the tensor
network concept to include braiding is trivial in principle: assign to the legs connecting the
nodes defined by perfect tensors unitary matrices representing the braiding - here topological
QFT allows realization of the unitary matrix. Besides fermionic degrees of freedom having
interpretation as spin degrees of freedom at the level of “World of Classical Worlds” (WCW)
there are also WCW orbital degrees of freedom. These two degrees of freedom factorize in
the generalized unitarity conditions and the description seems much simpler in WCW orbital
degrees of freedom than in WCW spin degrees of freedom.

3. Concerning the concrete construction there are two levels involved, which are analogous to
descriptions in terms of boundary and interior degrees of freedom in holography. The level of
fundamental fermions assignable to string world sheets and their boundaries and the level of
physical particles with particles assigned to sets of partonic 2-surface connected by magnetic
flux tubes and associated fermionic strings. One could also see the ends of causal diamonds
as analogous to boundary degrees of freedom and the space-time surface as interior degrees
of freedom.
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The description at the level of fundamental fermions corresponds to conformal field theory at
string world sheets.

1. The construction of the analogs of boundary states reduces to the construction of N-point
functions for fundamental fermions assignable to the boundaries of string world sheets. These
boundaries reside at 3-surfaces at the space-like space-time ends at CDs and at light-like 3-
surfaces at which the signature of the induced space-time metric changes.

2. In accordance with holography, the fermionic N-point functions with points at partonic 2-
surfaces at the ends of CD are those assignable to a conformal field theory associated with
the union of string world sheets involved. The perfect tensor is assignable to the fundamental
4-fermion scattering which defines the microscopy for the geometric 3-particle vertices having
twistorial interpretation and also interpretation as algebraic operation.

What is important is that fundamental fermion modes at string world sheets are labelled
by conformal weights and standard model quantum numbers. No four-momenta nor color
quantum numbers are involved at this level. Instead of propagator one has just unitary
matrix describing the braiding.

3. Note that four-momenta emerging in somewhat mysterious manner to stringy scattering
amplitudes and mean the possibility to interpret the amplitudes at the particle level.

Twistorial and number theoretic constructions should correspond to particle level construction
and also now tensor network description might work.

1. The 3-surfaces are labelled by four-momenta besides other standard model quantum numbers
but the possibility of reducing diagram to that involving only 3-vertices means that momen-
tum degrees of freedom effectively disappear. In ordinary twistor approach this would mean
allowance of only forward scattering unless one allows massless but complex virtual momenta
in twistor diagrams. Also vertices with larger number of legs are possible by organizing large
blocks of vertices to single effective vertex and would allow descriptions analogous to effective
QFTs.

2. It is highly non-trivial that the crucial factorization to perfect tensors at 3-vertices with
unitary braiding matrices associated with legs connecting them occurs also now. It allows to
split the inverses of fermion propagators into sum of products of two parts and absorb the
halves to the perfect tensors at the ends of the line. The reason is that the inverse of massless
fermion propagator (also when masslessness is understood in 8-D sense allowing M4 mass to
be non-vanishing) to be express as bilinear of the bi-spinors defining the twistor representing
the four-momentum. It seems that this is absolutely crucial property and fails for massive
(in 8-D sense) fermions.

5.3 Twistorial and number theoretic visions

Both twistorial and number theoretical ideas have given a strong boost to the development of ideas.

1. With experience coming from twistor Grassmannian approach, twistor approach is conjec-
tured to allow an extension of super-symplectic and other superconformal symmetry algebras
to Yangian algebras by adding a hierarchy of multilocal generators [K10]. The twistorial di-
agrams for N = 4 SUSY can be reduced to a finite number and there is large number of
equivalent diagrams. One expects that this is true also in TGD framework.

Twistorial approach is extremely general and quite too demanding to my technical skills but
its is a useful guideline. An important outcome of twistor approach is that the intermediate
states are massless on-mass-shell states but with complex momenta. Does this generalize
and could each vertex define unitary scattering event with complex four-momenta in possibly
complexified Minkowski space? Or could even real momenta be possible for massive particles,
which would be massless in 8-D sense thanks to the existence of octonionic tangent space
structure of 8-D embedding space? And what is the role of the unique twistorial properties
of M4 and CP2?
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2. Number theoretical vision suggests that the scattering amplitudes correspond to sequences
of algebraic operations taking inputs and producing outputs, which in turn serve as inputs
for a neighboring node [K10]. The vertices form a diagram defining a network like structure
defining kind of distributed computations leading from given inputs to given outputs. A
computation leading from given inputs to given outputs is suggestive. There exists an infinite
number of this kind of computations and there must be the minimal one which defines the
complexity of the scattering. The maximally simplifying guess is that this diagram would
correspond to a braided tree diagram. At space-time level these diagrams would correspond
to different space-time surfaces defining same physics: this is because of holography meaning
that only the ends of space-time surfaces at boundaries of CD matter.

This vision generalizes of the old-fashioned stringy duality. It states that all diagrams can
be reduced to minimal diagrams. This is achieved by by moving the ends of internal lines
so that loops becomes vacuum tadpoles and can be snipped off. Tree diagrams must be
however allowed to braid and outside the vertices the diagrams look like braids. Braids for
which threads can split and glue together is the proper description for what the diagrams
could be. Braiding would provide the counterpart for the non-planar twistor diagrams.

The fermion lines inside the light-like 3-surfaces can get braided. Smaller partonic 2-surfaces
can topologically condense at given bigger partonic 2-surface (electronic parton surface can
topologically condense to nano-scopic parton surface) and the orbits of the condensed partonic
2-surfaces at the light-like orbit of the parton surface can get braided. This gives rise to a
hierarchy of braids with braids.

5.4 Generalization of the notion of unitarity

The understanding of unitarity has been the most difficult issue in my attempts to understand S-
matrix in TGD framework. When something turns out to be very difficult to understand, it might
make sense to ask whether the definition of this something involves un-necessary assumptions.
Could unitarity be this kind of notion?

The notion of tensor network suggests that unitarity can generalized and that this generalization
allows the realization of unitarity in extremely simple manner using perfect tensors as building
bricks of diagrams.

1. Both twistorial and number theoretical approaches define M-matrix and associated S-matrix
as a map between the state spaces Hin and Hout assignable to the opposite boundaries of CD
- say positive and negative energy parts of zero energy state. In QFT one has Hin = Hout

and the map would be Hilbert space unitary transformation satisfying SS† = S†S = Id.

2. The basic structure of TGD (NMP favoring generation of negentropic entanglement, the hi-
erarchy of Planck constants, length scale hierarchies, and hierarchy of space-time sheets)
suggests that the time evolution leads to an increasingly complex systems with higher-
dimensional Hilbert space so that Hin = Hout need not hold true but is replaced with
Hin ⊂ Hout . This view is very natural since one must allow quantum phase transitions
increasing the value of heff and the value of p-adic prime defining p-adic length scale.

S-matrix would thus define isometric map Hin ⊂ Hout. Isometry property requires U†U =
Idin. If the inclusion of Hin to Hout is a genuine subspace of Hout, the condition UU† = Idout
does not make sense anymore. This means breaking of reversibility and is indeed implied by
the quantum measurement theory based on ZEO.

3. It would be at least formally possible to fuse all state spaces to single very large state space
by replacing isometry Hin ⊂ Hout with unitary map Hout → Hout by adding a tensor factor
in which the map acts as identity transformation. This is not practical since huge amounts
of redundant information would be introduced. Also the information about hierarchical
structure essential for the idea of evolution would be lost. This hierarchical of inclusions
should also be crucial for understanding the construction of S-matrix or rather, the hierarchy
of S-matrices of isometric inclusions including as a special case unitary S-matrices.

4. There is also a further intricacy, which might prevent the formal unitarization by the addition
of an inert tensor factor. I have talked a lot about HFFs referring to hyper-finite factors of
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type II1 (possibly also of type III1) and their inclusions [K12]. The reason is that WCW
spinors form a canonical representation for these von Neumann algebras.

Could the isometries replacing unitary S-matrix correspond to inclusions of HFFs? In the
recent interpretation the included factor (now Hin) corresponds to the degrees of freedom
below measurement resolution. Certainly this does not make sense now. The interpretation
in terms of finite measurement resolution need not however be the only possible interpreta-
tion and the interpretation in terms of measurement resolution might of course be wrong.
Therefore one can ask whether the relation between Hin and Hout could be more complex
than just Hout = Hin ⊗H1 so that formal unitarization would fail.

5.5 Scattering diagrams as tensor networks constructed from perfect
tensors

Preskill’s tensor network construction [?] realizes isometric maps as representations of holography
and as models for quantum error correcting codes. These tensor networks have remarkable sim-
ilarities with twistorial and number theoretical visions, which suggests that it could be used to
construct scattering amplitudes. A further idea inspired by holography is that the description of
scattering amplitudes in terms of fundamental fermions and physical particles are dual to each
other.

1. In the construction of quantum error codes tensor network defines an isometric embedding of
local states in the interior to strongly entangled non-local states at boundary. Their vertices
correspond to tensors, which in the proposal of Preskill et al [?] are perfect tensors such that
one can take any m legs of the vertex and the tensor defines isometry from the state space
of m legs to that of n−m legs. When the number of indices is 2n, the entanglement defined
by perfect tensor between any n-dimensional subspace and its complement is maximal

TGD framework maximal entanglement corresponds to negentropic entanglement with den-
sity matrix proportional to identity matrix. What is important that the isometry is con-
structed by composing local isometries associated with a network. Given isometry can be
constructed in very many ways but there is some minimal realization.

2. The tensor networks considered in [?] are very special since they are determined by tessella-
tions of hyperbolic space H2. This kind of tessellations of H3 could be crucial for understand-
ing the analog of condensed matter physics for dark matter and could appear in biology [K4].
What is crucial is that only the graph property and perfect tensor property matter as far as
isometricity is considered so that it is possible to construct very general isometries by using
tensor networks.

5.6 Eigenstates of Yangian co-algebra generators as a way to generate
maximal entanglement?

Negentropically entangled objects are key entities in TGD inspired theory of consciousness and
also of tensor networks, and the challenge is to understand how these could be constructed and
what their properties could be. These states are diametrically opposite to unentangled eigenstates
of single particle operators, usually elements of Cartan algebra of symmetry group. The entangled
states should result as eigenstates of poly-local operators. Yangian algebras involve a hierarchy of
poly-local operators, and twistorial considerations inspire the conjecture that Yangian counterparts
of super-symplectic and other algebras made poly-local with respect to partonic 2-surfaces or end-
points of boundaries of string world sheet at them are symmetries of quantum TGD [K3]. Could
Yangians allow to understand maximal entanglement in terms of symmetries?

1. In this respect the construction of maximally entangled states using bi-local operator Qz =
Jx ⊗ Jy − Jx ⊗ Jy is highly interesting since entangled states would result by state function.
Single particle operator like Jz would generate un-entangled states. The states obtained as
eigenstates of this operator have permutation symmetries. The operator can be expressed as
Qz = fzijJ

i⊗Jj , where fABC are structure constants of SU(2) and could be interpreted as co-
product associated with the Lie algebra generator Jz. Thus it would seem that unentangled



5.7 Two different tensor network descriptions 31

states correspond to eigenstates of Jz and the maximally entangled state to eigenstates of
co-generator Qz. Kind of duality would be in question.

2. Could one generalize this construction to n-fold tensor products? What about other repre-
sentations of SU(2)? Could one generalize from SU(2) to arbitrary Lie algebra by replac-
ing Cartan generators with suitably defined co-generators and spin 1/2 representation with
fundamental representation? The optimistic guess would be that the resulting states are
maximally entangled and excellent candidates for states for which negentropic entanglement
is maximized by NMP [K6].

3. Co-product is needed and there exists a rich spectrum of algebras with co-product (quan-
tum groups, bialgebras, Hopf algebras, Yangian algebras). In particular, Yangians of Lie
algebras are generated by ordinary Lie algebra generators and their co-generators subject to
constraints. The outcome is an infinite-dimensional algebra analogous to one half of Kac-
Moody algebra with the analog of conformal weight N counting the number of tensor factors.
Witten gives a nice concrete explanation of Yangian [?] for which co-generators of TA are
given as QA =

∑
i<j f

A
BCT

B
i ⊗ TCj , where the summation is over discrete ordered points,

which could now label partonic 2-surfaces or points of them or points of string like object
(see http://tinyurl.com/y727n8ua). For a practically totally incomprehensible description
of Yangian one can look at the Wikipedia article (see http://tinyurl.com/y7heufjh).

4. This would suggest that the eigenstates of Cartan algebra co-generators of Yangian could
define an eigen basis of Yangian algebra dual to the basis defined by the totally unentan-
gled eigenstates of generators and that the quantum measurement of poly-local observables
defined by co-generators creates entangled and perhaps even maximally entangled states. A
duality between totally unentangled and completely entangled situations is suggestive and
analogous to that encountered in twistor Grassmann approach where conformal symmetry
and its dual are involved. A beautiful connection between generalization of Lie algebras,
quantum measurement theory and quantum information theory would emerge.

5.7 Two different tensor network descriptions

The obvious question is whether also unitary S-matrix of TGD could be constructed using tensor
network built from perfect tensors. In ZEO the role of boundary would be taken by the ends of
the space-time at upper and lower light-like boundaries of CD carrying the particles characterized
by standard model quantum numbers. Strong form of holography would suggest that partonic
surfaces and strings at the ends of CD provide information for the description of zero energy states
and therefore of scattering amplitudes. The role of interior would be taken by the space-time
surface - in particular the light-like orbits of partonic surfaces carrying the fermion lines identified
as boundaries of string world sheets. Conformal field theory description would apply to fermions
residing at string world sheets with boundaries at light-like orbits of partonic 2-surfaces.

In QFT Feynman diagrammatics one obtains a sum over diagrams with arbitrary numbers of
loops. In both twistorial and number theoretic approach however only a finite number of diagrams
with possibly complex on mass shell massless momenta are needed. If the vertices are however
such that particles remain on-mass-shell but are allowed to have complex four-momenta then the
integration over internal momenta (loops) is not present and tensor network description could
make sense. This encourages the conjecture that tensor networks could be used to construct the
scattering amplitudes in TGD framework.

What could perfect tensor property mean for the vertices identified as nodes of a tensor network?
There are two levels to be considered: the geometric level identifying particles as 3-surfaces with
net quantum numbers and the fermion level identifying particles as fundamental fermions at the
boundaries of string world sheets.

1. At the geometric level vertices corresponds to light-like orbits of partonic 2-surfaces meeting
at common end which is partonic 2-surface. This is 3-D generalization of Feynman diagram
as a geometric entity. At the level of fermion lines associated with the light-like 3-surfaces
one the basic interaction corresponds to the scattering of 2-fermions leading to re-sharing
of fermion lines between outgoing light-like 3-surfaces, which include also representations

http://tinyurl.com/y727n8ua
http://tinyurl.com/y7heufjh
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for virtual particles. One has 4-fermion vertex but not in the sense that it appears in the
interaction of weak interactions at low energies.

Geometrically the basic vertex could be 3-vertex: n > 3-vertices are unstable against defor-
mation to lower vertices. For 3-vertex perfect tensor property means that the tensor defining
the vertex maps any 1-particle subspaces to 2-particle subspace isometrically. The geomet-
ric vertices define a network consisting of 3-D “lines” and 2-D vertices but one cannot tell
what is within the 3-D lines and what happens in the 2-D nodes. The lines would consist of
braided fundamental fermion lines and in nodes the basic process would be 2+2 scattering
for fermions. In the case of 3-vertex momentum conservation would effectively eliminate the
four-momentum and the state spaces associated with vertex would be effectively discrete.
This is p-adically of utmost importance.

2. At the level of fundamental fermion lines in the interior of particle lines one would have
4-vertices and if a perfect tensor describes it, it gives rise to a unitary map of any 2-fermion
subspace to its complement plus isometric maps of 1-fermion subspaces to 3-fermion sub-
spaces. In this case momenta cannot act as labels of fermion lines for rather obvious reasons:
the solution of the problem is that conformal weights label fundamental fermion lines

The conservation of discrete quark and lepton numbers allows only vertices of type qL→ qL
and its variants obtained by crossing. In this case the isometries might allow realization.
The isometries must be defined to take into account quark and lepton number conservation
by crossing replacing fermion with antifermion. By allowing the states of Hilbert space in
node to be both quarks and leptons, difficulties can be avoided.

5.7.1 Tensor network description in terms of fundamental fermions and CFT

Consider first fundamental fermions. What are the labels characterizing the states of fundamen-
tal fermions fermions propagating along the lines? There are two options: the labels are either
conformal weights or four-momenta.

1. Since fermions corresponds to strings defining the boundaries of string world sheets and
since strong form of holography implies effective 2-dimensionality also in fermion sector, the
natural guess is that the conformal weights plus some discrete quantum numbers - standard
model quantum numbers at least - are in question. The situation would be well-defined also
p-adically for this option. In this case one can hope that conformal field theory at partonic
2-surface could define the fermionic 4-vertex more or less completely. There would be no need
to assign propagators between different four-fermion vertices. The scattering diagram would
define a composite formed from light-like 3-surfaces and one would have single isometry build
from 4-fermion perfect tensors. There would be no integrations over internal momenta.

2. Second option is that fundamental fermions are labelled by four-momenta. The outgoing
four-momenta in 4-vertices would not be completely fixed by the values of the incoming
momenta and this extends the state space. Concerning p-adicization this integral is not
desirable and this forces to consider seriously discrete labelling. The unitarity condition for
2+2 scattering would involve integral over 2-sphere. Four-fermion scattering must be unitary
process in QFT so that this condition might be possible to satisfy. The problem would be
how to fix this fundamental scattering matrix uniquely. This option does not look attractive
number theoretically.

The most plausible option is that holography means that conformal field theory describes the
scattering of fundamental fermions and QFT type description analogous to twistorial approach
describes the scattering of physical fermions. If only 3-vertices are allowed, and if masslessness
corresponds to masslessness in 8-D sense, one obtains non-trivial scattering vertices (for ordinary
twistor approach all massless momenta would be collinear if real).

5.7.2 Tensor network description for physical particles

Could the twistorial description expected to correspond to the description in terms of particles
allow tensor network description?



5.7 Two different tensor network descriptions 33

1. Certainly one must assign four-momenta to incoming physical particles - also fermions -
but they correspond to pairs of wormhole contacts rather than fundamental fermions at the
boundaries of string world sheets. It would be natural to assign four-momenta also to the
virtual physical fermions appearing in the diagram and the geometric view about scattering
would allow only 3-vertices so that momentum conservation would eliminate momentum
degrees of freedom effectively. This would be a p-adically good news.

2. At the level of fundamental fermions entanglement is described as a tensor contraction of the
CFT vertices. This locality is natural since the vertices are at null distance from each other.
At QFT limit the entanglement between the ends of the line is characterized the propagator.

One must get rid of propagators in order to have tensor network description. The inclusion
of propagators to the fundamental tensor diagrams would break the symmetry between the
legs of vertex since the propagator cannot be included to its both ends. Situation changes
if one can represent the propagator as a bilinear of something more primitive and include
the halves to the opposite ends of the line. Twistor representation of four-momentum indeed

defines this kind of representation as a bilinear pab̃ = λµ̃b̃ of twistors λ and µ̃. There is
problem due to the diverging 1/p2 factor but residue integral eliminates this factor and one

can write directly the fermionic propagator factors as pab̃.

3. In QFT description the perturbative expansion is in powers of coupling constant. If the
reduction to braided tree diagrams analogous to twistor diagrams occurs, power gN−2 of
coupling constant is expected to factorize as a multiplier of a tree diagram with N external
legs. One should understand this aspect in the tensor net-work picture.

For N = 4 SUSY there is coupling constant renormalization. Similar prediction is expected
from TGD. Coupling constant evolution is expected to be discrete and induced by the discrete
evolution of Kähler coupling strength defined by the spectrum of its critical values. The
conjecture is that critical values are naturally labelled by p-adic primes p ' 2k, k prime,
labelling p-adic length scales. Therefore one might hope that problems could be avoided.

These observations encourage the expectation that twistorial approach involving only 3-vertices
allows to realize tensor network idea also at the level of physical particles. It might be essential
that twistors can be generalized to 8-D twistors. Octonionic representation of gamma matrices
might make this possible. Also the fact twistorial uniqueness of M4 and CP2 might be crucial.

Gauge theory follows as QFT limit of TGD so that one cannot in principle require that gauge
theory vertices satisfy the isometricity conditions. Nothing however prevents from checking whether
gauge theory limit might inherit this property.

1. For instance, could 3-vertices of Yang-Mills theory define isometric embedding of 1-particle
states to 2 particle states? For a given gauge boson there should exist always a pair of gauge
bosons, which can fuse to it. Consider a basis for Lie-algebra generators of the gauge group.
If the generator T is such that there exists no pair [A,B] with the property [A,B] = T ,
Jacobi identity implies that T must commute with all generators and one has direct sum of
Lie algebras generated by T and remaining generators.

2. In the case of weak algebra SU(2) × U(1) the weak mixing of Y and I3 might allow the
isometric embeddings of type 1 → 2. Does this mean that Weinberg angle must be non-
vanishing in order to have consistent theory? A realistic manner to get rid of the problem
is to allow at QFT limit the lines to be also fermions so that also U(1) gauge boson can be
constructed as fermion pair.

5.7.3 How the two tensor network descriptions would be related?

There are two descriptions for the zero energy states providing representation of scattering ampli-
tudes: the CFT description in terms of fundamental fermions at the boundaries of string world
sheets, and the description in terms of physical particles to which one can assign light-like 3-surfaces
as virtual lines and total quantum numbers.
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1. CFT description in terms of fundamental fermions in some aspects very simple because of its
2-dimensionality and conformal invariance. The description is in terms of physical particles
having light-like 3-surfaces carrying some total quantum numbers as correlates and is simpler
in different sense. These descriptions should be related by an Hilbert space isometry.

2. The perfect tensor property for 4-fermion vertices makes fundamental fermion states anal-
ogous to physical states realizing logical qubits as highly entangled structures. Geometric
description in terms of 3-surfaces is in turn analogous to the description in terms of logical
qubits.

3. Holography-like correspondence between these descriptions of zero energy states (scattering
diagrams) should exist. Physical particles should correspond to the level, at which resolution
is smaller and which should be isometrically mapped to the strongly entangled level defined by
fundamental fermions and analogous to boundary degrees of freedom (fundamental fermions
are at the boundaries of string world sheets!).

The map relating the two descriptions seems to exist. One can assign four-momenta to the
legs of conformal four-point function as parameters so that one obtains a mapping from the
states labelled by conformal weights to the states labelled by four-momenta! The appearance
of 4-momenta from conformal theory is somewhat mysterious looking phenomenon but this
duality makes it rather natural.

5.8 Taking into account braiding and WCW degrees of freedom

One must also take intro account braiding and orbital degrees of freedom of WCW. The general-
ization of tensor network to braided tensor network is trivial. Thanks to the properties of tensor
network orbital and spinor degrees of freedom factorize so that also the treatment of WCW degrees
of freedom seems to be possible.

5.8.1 What about braiding?

The scattering diagrams would be tree diagrams with braiding of fermionic lines along light-like
3-surfaces - dance of fundamental quarks and leptons at parquette defined by the partonic 2-surface
one might say. Also space-like braiding at magnetic flux tubes at the ends of CD is possible and its
time evolution between the ends of space-time surfaces defines 2-braiding which is generalization
of the ordinary braiding but will not be discussed here. This gives rise to a hierarchy of braidings.
One can talk about flux tubes within flux tubes and about light-like 3-surface within light-like
3-surfaces. The smaller light-like 3-surface would be glued by a wormhole contact to the larger one
and contact could have Euclidian signature of induced metric.

How can one treat the braiding in the tensor network picture? The answer is simple. Braiding
corresponds to an element of braid group and one can represent it by a unitary matrix as one
does in topological QFT as one constructs knot invariants. In particular, the trace of this unitary
matrix defines a knot invariant. The generalization of the tensor network is simple. One attaches
to the links connecting two nodes unitary transformation defining a representation of the braid
involved. Local variant of unitarity would mean isometricity at nodes and unitarity at links.

5.8.2 What about WCW degrees of freedom?

The above considerations are about fermions that its WCW spinor degrees of freedom and the
space-time surface itself has been regarded as a fixed background. How can one take into account
WCW degrees of freedom?

The scattering amplitude involves a functional integral over the 3-surfaces at the ends of CD.
The functional integration over WCW degrees of freedom gives an expression depending on Kähler
coupling strength αK and determines the dependence on various gauge coupling strengths express-
ible in terms of αK . This makes it possible to have the tensor network description in fermionic
degrees of freedom without losing completely the dependence of the scattering amplitudes on gauge
couplings. By strong form of holography the functional integral should reduce to that over partonic
2-surfaces and strings connecting them. Number theoretic discretization with a cutoff determined
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by measurement resolution forces the parameters characterizing the 2-surfaces to belong to an alge-
braic extension of rationals and is expected to reduce functional integral to a sum over discretized
WCW so that it makes sense also in p-adic sectors [K7, K11].

A brief summary of quantum measurement theory in ZEO is necessary. The repeated state
function reduction shifts active boundary A of CD and affects the states at it. The passive boundary
of CD- call it P - and the states at it - remain unaffected. The repeated state function reductions
leaving P unaffected and giving usually rise to Zeno effect, correspond now to the TGD counterpart
of unitary time evolution by shifts between subsequent state function reductions. Call A and its
shifted version Ain and Aout and the corresponding state spaces Hin and Hout. The unitary (or
more generally isometric) S matrix represents this shift. This is the TGD counterpart of a unitary
evolution of QFTs. S forms a building brick of a more general unitary matrix U acting in the
space of zero energy states but U is not considered now.

Consider now the isometricity conditions.

1. Unitarity conditions generalized to isometricity conditions apply to S. Isometricity conditions
S†S = Idin can be applied at Ain. The states appearing in the isometry conditions as initial
and final states correspond to Ain and Aout. There is a trace over WCW spin indices (labels
for many-fermion states) of Hout in the conditions S†S = Idin. Isometricity conditions
involve also an integral over WCW orbital degrees of freedom at both ends: these degrees of
freedom are strongly correlated and for a strict classical determinism the correlation between
the ends is complete. If the tensor network idea works, the summation over spinor degrees
of freedom at Aout gives just a unit matrix in the spinor indices at Ain and leaves only the
WCW orbital degrees of freedom in consideration. This factorization of spinor and orbital
WCW degrees of freedom simplifies the situation dramatically.

2. One can express isometricity conditions for modes with Ψin,M and Ψout,N at Ain and Aout:
this requires functional integration over 3-surfaces WCW at Ain and Aout. The conditions are
formulated in terms of the labels - call themMin, Nin - of WCW spinor modes atAin including
standard model quantum numbers and labels characterizing the states of supersymplectic and
super-conformal representations. The trace is over the corresponding indices Rout at Aout.
The WCW functional integrals in the generalized unitarity conditions are therefore over Ain
and Aout and should give Kronecker delta

∑
Rout

S†MinRout
SRoutNin

= δMin,Nin
.

3. The simplest view would be that Kähler action with boundary conditions implies completely
deterministic dynamics. The conditions expressing strong form of holography state that sub-
algebras of super-symplectic algebra and related conformal algebras isomorphic to the entire
algebra give rise to vanishing Noether charges. Suppose that these conditions posed at the
ends of CD are so strong that they fix the time evolution of the space-time surface as preferred
extremal completely when posed at either boundary. In this case the isometricity conditions
would be so strong that the double functional integration appearing in the matrix product
reduces to that at Ain and the isometricity conditions would state just the orthonormality
of the basis of WCW spinor modes at Ain.

4. Quantum criticality and in particular, the hierarchy of Planck constants providing a geometric
description for non-deterministic long range fluctuations, does not support this view. Also
the fact that string world sheets connect the boundaries of CD suggests that determinism
must be broken. The inner product defining the completeness of the WCW state basis in
orbital degrees of freedom can be however generalized to a bi-local inner product involving
functional integration over 3-surfaces at both Ain and Aout. There is however a very strong
correlation so that integration volume at Aout is expected to be small. This also suggests
that one can have only isometricity conditions.

5.9 How do the gauge couplings appear in the vertices?

Reader is probably still confused and wondering how the gauge couplings appear in the vertices
from the functional integral over WCW degrees of freedom. In twistorial approach, the vanishing
of loops in N = 4 SYM theory gives just gN , N the number of 3-vertices. Each vertex should give
gauge coupling. Or equivalently, each propagator line connecting vertices should give αK . The
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functional integral should give this factor for each propagator line. Generalization of conformal
invariance is expected to give this picture.

To proceed some basic facts about N-point functions of CFTs are needed.

1. In conformal field theory the functional form of two-point function is completely fixed by
conformal symmetry:

G(2)(zi, zi) =
C12

z2h12 z
2h
12

,

zij = zi − zj , zij = zi − zj ,

h1 = h2 = h = ha + ihb , h = ha + ihb . (5.1)

h1 = h2 ≡ h and its conjugate h are conformal weights of conformal field and its conjugate.
Note that the conformal weights of conformal fields Φ1 and Φ2 must be same. In TGD
context C12 is expected to be proportional to αK and this would give to each vertex gK
when couplings are absorbed into vertices.

2. The 3-point function for 3 conformal fields Φi, i = 1, 2, 3 is dictated by conformal symmetries
apart from constant C123:

G(3)(zi, zi) = C123 ×
1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
31

× 1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
31

.

(5.2)

Here C123 should bef fixed by super-symplectic and related symmetries and determined the
numerical coefficients various couplings when expressed in terms of gK .

3. 4-point functions have analogous form

G(4)(zi, zi) = f1234(x, x)
∏
i<j

z
−(hi+hj)+h/3
ij

∏
i<j

z
−(hi+hj)+h/3
ij ,

h =
∑
i

hi ,

(5.3)

but are proportional to an arbitrary function f1234 of conformal invariant x = z12z34/z13z24
and its conjugate.

If only 3-vertices appear/are needed for physical particles - as both twistorial and number
theoretic approaches strongly suggest - the conformal propagators and vertices are fixed apart from
constants Cijk, which in turn should be fixed by the huge generalization of conformal symmetries.
αK emerges in the expected manner.

This picture seems to follow from first principles.

1. One can fix the partonic 2-surfaces at the boundaries of CD but there is a functional integral
over partonic 2-surfaces defining the vertices: their deformations induce deformations of the
legs. One can expand the exponent of Kähler action and in the lowest order the perturbation
term is trilinear and non-local in the perturbations. This gives rise to 3-point function of
CFT nonlocal in zi. The functional integral over perturbations gives the propagators in legs
proportional to αK in terms of two point function of CFT. Note that the external propagator
legs can be eliminated in S-matrix.
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2. The cancellation of higher order perturbative corrections in WCW functional integral is
required by the quantum criticality and means trivial coupling constant evolution for αK
and other coupling constants. Coupling constant evolution is discretized with values of
αK analogous to critical temperatures and should correspond to p-adic coupling constant
evolution [L1].

3. This picture leaves a lot of details open. An integration over the values of zi is needed and
means a kind of Fourier analysis leading from complex domain. The analog of Fourier analysis
would be for deformations of partonic 2-surface labelled by some natural labels. Conformal
weights could be natural labels of this kind.

It is easy to get confused since there are several diagrammatics involved: the topological dia-
grammatics of 3-surfacse assignable to the physical particles with partonic 2-surfaces as vertices,
the diagrammatics associated with the perturbative functional integral for the Kähler action, and
the fermionic diagrammatics suggested to reduce to tensor network. The conjectures are as follows.

1. The “primary” vertices G(n), n > 3 assignable to single partonic 2-surface and coming from
a functional integral for Kähler action vanishes. This corresponds to quantum criticality and
trivial RG evolution.

2. G(n), n > 3 in the sense of topological diagrammatics without loops and involving n partonic
2-surfaces do not vanish. One can construct the analog of G(4) from two G(3):s at different
partonic 2-surfaces and propagator defined by 2-point function connecting them as string
diagram.

Also topological variant of G(4) assignable to single partonic 2-surface can be constructed
by allowing the 3-D propagator “line” to return back to the partonic 2-surface. This would
correspond to an analog of loop. Similar construction applies to “primary” G(n),n > 4. In
number theoretic vision these loops are eliminated as redundant representations so that one
has only braided tree diagrams. Also twistor Grassmann approach supports this view.

To sum up, the tensor network description would apply to fermionic degrees of freedom. In
bosonic degrees of freedom functional integral would give CFT picture with 3-vertex as the only
“primary” vertex and from this twistorial and number theoretic visions follow via the super-
symplectic symmetries of the vertex coefficients Cijk extended to Yangian symmetries.

REFERENCES

Mathematics

[A1] Goncharov A. Volumes of hyperbolic manifolds and mixed Tate motives, 1996. Available at:
https://arxiv.org/abs/alg-geom/9601021.

[A2] N. Hitchin. Kählerian twistor spaces. Proc London Math Soc, 8(43):133–151, 1981.. Available
at: https://tinyurl.com/pb8zpqo.

Books related to TGD

[K1] Pitkänen M. Basic Extremals of Kähler Action. In Physics in Many-Sheeted Space-
Time: Part I. https: // tgdtheory. fi/ tgdhtml/ Btgdclass1. html . Available at: https:

//tgdtheory.fi/pdfpool/class.pdf, 2023.

[K2] Pitkänen M. Does Riemann Zeta Code for Generic Coupling Constant Evolution? In TGD as
a Generalized Number Theory: Part III. https: // tgdtheory. fi/ tgdhtml/ Btgdnumber3.
html . Available at: https://tgdtheory.fi/pdfpool/fermizeta.pdf, 2023.

https://arxiv.org/abs/alg-geom/9601021
https://tinyurl.com/pb8zpqo
https://tgdtheory.fi/tgdhtml/Btgdclass1.html
https://tgdtheory.fi/pdfpool/class.pdf
https://tgdtheory.fi/pdfpool/class.pdf
https://tgdtheory.fi/tgdhtml/Btgdnumber3.html
https://tgdtheory.fi/tgdhtml/Btgdnumber3.html
https://tgdtheory.fi/pdfpool/fermizeta.pdf


ARTICLES ABOUT TGD 38

[K3] Pitkänen M. From Principles to Diagrams. In Quantum TGD: Part III. https:

// tgdtheory. fi/ tgdhtml/ Btgdquantum3. html . Available at: https://tgdtheory.fi/

pdfpool/diagrams.pdf, 2023.

[K4] Pitkänen M. Holography and Quantum Error Correcting Codes: TGD View. In Dark
Matter and TGD: https: // tgdtheory. fi/ tgdhtml/ Bdark. html . Available at: https:

//tgdtheory.fi/pdfpool/tensornet.pdf, 2023.

[K5] Pitkänen M. Motives and Infinite Primes. In TGD as a Generalized Number Theory: Part III.
https: // tgdtheory. fi/ tgdhtml/ Btgdnumber3. html . Available at: https://tgdtheory.
fi/pdfpool/infmotives.pdf, 2023.

[K6] Pitkänen M. Negentropy Maximization Principle. In TGD Inspired Theory of Conscious-
ness: Part I. https: // tgdtheory. fi/ tgdhtml/ Btgdconsc1. html . Available at: https:

//tgdtheory.fi/pdfpool/nmpc.pdf, 2023.

[K7] Pitkänen M. Recent View about Kähler Geometry and Spin Structure of WCW . In Quantum
Physics as Infinite-Dimensional Geometry. https: // tgdtheory. fi/ tgdhtml/ Btgdgeom.

html . Available at: https://tgdtheory.fi/pdfpool/wcwnew.pdf, 2023.

[K8] Pitkänen M. Some questions related to the twistor lift of TGD. In Quantum TGD:
Part III. https: // tgdtheory. fi/ tgdhtml/ Btgdquantum3. html . Available at: https:

//tgdtheory.fi/pdfpool/twistquestions.pdf, 2023.

[K9] Pitkänen M. TGD and Cosmology. In Physics in Many-Sheeted Space-Time: Part II.
https: // tgdtheory. fi/ tgdhtml/ Btgdclass2. html . Available at: https://tgdtheory.

fi/pdfpool/cosmo.pdf, 2023.

[K10] Pitkänen M. The classical part of the twistor story. In Quantum TGD: Part III. https:
// tgdtheory. fi/ tgdhtml/ Btgdquantum3. html . Available at: https://tgdtheory.fi/

pdfpool/twistorstory.pdf, 2023.

[K11] Pitkänen M. Unified Number Theoretical Vision. In TGD as a Generalized Num-
ber Theory: Part I. https: // tgdtheory. fi/ tgdhtml/ Btgdnumber1. html . Available at:
https://tgdtheory.fi/pdfpool/numbervision.pdf, 2023.

[K12] Pitkänen M. Was von Neumann Right After All? In TGD and Hyper-finite Fac-
tors. https: // tgdtheory. fi/ tgdhtml/ BHFF. html . Available at: https://tgdtheory.

fi/pdfpool/vNeumann.pdf, 2023.

Articles about TGD

[L1] Pitkänen M. Does Riemann Zeta Code for Generic Coupling Constant Evolution? . Available
at: https://tgdtheory.fi/public_html/articles/fermizeta.pdf., 2015.

[L2] Pitkänen M. Is Non-Associative Physics and Language Possible Only in Many-Sheeted Space-
time? . Available at: https://tgdtheory.fi/public_html/articles/braidparse.pdf.,
2015.

[L3] Pitkänen M. Why the non-trivial zeros of Riemann zeta should reside at critical line? .
Available at: https://tgdtheory.fi/public_html/articles/rhagain.pdf., 2015.

https://tgdtheory.fi/tgdhtml/Btgdquantum3.html
https://tgdtheory.fi/tgdhtml/Btgdquantum3.html
https://tgdtheory.fi/pdfpool/diagrams.pdf
https://tgdtheory.fi/pdfpool/diagrams.pdf
https://tgdtheory.fi/tgdhtml/Bdark.html
https://tgdtheory.fi/pdfpool/tensornet.pdf
https://tgdtheory.fi/pdfpool/tensornet.pdf
https://tgdtheory.fi/tgdhtml/Btgdnumber3.html
https://tgdtheory.fi/pdfpool/infmotives.pdf
https://tgdtheory.fi/pdfpool/infmotives.pdf
https://tgdtheory.fi/tgdhtml/Btgdconsc1.html
https://tgdtheory.fi/pdfpool/nmpc.pdf
https://tgdtheory.fi/pdfpool/nmpc.pdf
https://tgdtheory.fi/tgdhtml/Btgdgeom.html
https://tgdtheory.fi/tgdhtml/Btgdgeom.html
https://tgdtheory.fi/pdfpool/wcwnew.pdf
https://tgdtheory.fi/tgdhtml/Btgdquantum3.html
https://tgdtheory.fi/pdfpool/twistquestions.pdf
https://tgdtheory.fi/pdfpool/twistquestions.pdf
https://tgdtheory.fi/tgdhtml/Btgdclass2.html
https://tgdtheory.fi/pdfpool/cosmo.pdf
https://tgdtheory.fi/pdfpool/cosmo.pdf
https://tgdtheory.fi/tgdhtml/Btgdquantum3.html
https://tgdtheory.fi/tgdhtml/Btgdquantum3.html
https://tgdtheory.fi/pdfpool/twistorstory.pdf
https://tgdtheory.fi/pdfpool/twistorstory.pdf
https://tgdtheory.fi/tgdhtml/Btgdnumber1.html
https://tgdtheory.fi/pdfpool/numbervision.pdf
https://tgdtheory.fi/tgdhtml/BHFF.html
https://tgdtheory.fi/pdfpool/vNeumann.pdf
https://tgdtheory.fi/pdfpool/vNeumann.pdf
https://tgdtheory.fi/public_html/articles/fermizeta.pdf
https://tgdtheory.fi/public_html/articles/braidparse.pdf
https://tgdtheory.fi/public_html/articles/rhagain.pdf

	Introduction
	Twistor lift of Kähler action
	Embedding space is twistorially unique
	Some basic definitions
	What does twistor structure in Minkowskian signature really mean?
	What does the induction of the twistor structure to space-time surface really mean?
	Could M4 Kähler form introduce new gravitational physics?
	A connection with the hierarchy of Planck constants?
	Twistorial variant for the embedding space spinor structure
	Twistor googly problem transforms from a curse to blessing in TGD framework

	Surprise: Twistorial Dynamics Does Not Reduce to a Trivial Reformulation of the Dynamics of Kähler Action
	New scales emerge
	Estimate for the cosmic evolution of RD
	What about the extremals of the dimensionally reduced 6-D Kähler action?

	Basic Principles Behind Construction of Amplitudes
	Embedding space is twistorially unique
	Strong form of holography
	The existence of WCW demands maximal symmetries
	Quantum criticality
	Physics as generalized number theory, number theoretical universality
	Scattering diagrams as computations
	Reduction of diagrams with loops to braided tree-diagrams
	Scattering amplitudes as generalized braid invariants

	Tensor Networks and S-matrices
	Objections
	The overly optimistic vision
	Twistorial and number theoretic visions
	Generalization of the notion of unitarity
	Scattering diagrams as tensor networks constructed from perfect tensors
	Eigenstates of Yangian co-algebra generators as a way to generate maximal entanglement?
	Two different tensor network descriptions
	Tensor network description in terms of fundamental fermions and CFT
	Tensor network description for physical particles
	How the two tensor network descriptions would be related?

	Taking into account braiding and WCW degrees of freedom
	What about braiding?
	What about WCW degrees of freedom?

	How do the gauge couplings appear in the vertices?


