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Abstract

There are three separate approaches to the challenge of constructing WCW Kähler geome-
try and spinor structure. The first one relies on a direct guess of the Kähler function. Second
approach relies on the construction of Kähler form and metric utilizing the huge symmetries
of the geometry needed to guarantee the mathematical existence of Riemann connection. The
third approach relies on the construction of spinor structure assuming that complexified WCW
gamma matrices are representable as linear combinations of fermionic oscillator operator for
the second quantized free spinor fields at space-time surface and on the geometrization of
super-conformal symmetries in terms of spinor structure.

In this chapter the construction of Kähler form and metric based on symmetries is dis-
cussed. The basic vision is that WCW can be regarded as the space of generalized Feynman
diagrams with lines thickned to light-like 3-surfaces and vertices identified as partonic 2-
surfaces. In zero energy ontology the strong form of General Coordinate Invariance (GCI)
strongly suggests effective 2-dimensionality and the basic objects are taken to be pairs par-
tonic 2-surfaces X2 at opposite light-like boundaries of causal diamonds (CDs). This has
however turned out to be too strong formulation for effective 2-dimensionality string world
sheets carrying induced spinor fields are also present.

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric
spaces G/H labeled by zero modes having an interpretation as classical, non-quantum fluc-
tuating variables. A crucial role is played by the metric 2-dimensionality of the light-cone
boundary δM4

+ and of light-like 3-surfaces implying a generalization of conformal invariance.
The group G acting as isometries of WCW is tentatively identified as the symplectic group
of δM4

+ ×CP2. H corresponds to sub-group acting as diffeomorphisms at preferred 3-surface,
which can be taken to correspond to maximum of Kähler function.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at
the opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal
of Kähler action. The interpretation would be in terms of holography. One can also consider
the inclusion of the light-like 3-surfaces at which the signature of the induced metric changes
to the 3-surface so that it would become connected.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux
Hamiltonians using Haltonians of light-cone boundary is proposed and also the elements of
Kähler form can be constructed in terms of these. Explicit expressions for WCW flux Hamilto-
nians as functionals of complex coordinates of the Cartesian product of the infinite-dimensional
symmetric spaces having as points the partonic 2-surfaces defining the ends of the the light
3-surface (line of generalized Feynman diagram) are proposed.

This construction suffers from some rather obvious defects. Effective 2-dimensionality is
realized in too strong sense, only covariantly constant right-handed neutrino is involved, and
WCW Hamiltonians do not directly reflect the dynamics of Kähler action. The construction
however generalizes in very straightforward manner to a construction free of these problems.
This however requires the understanding of the dynamics of preferred extremals and Kähler-
Dirac action.

1 Introduction

The most general expectation is that configuration space (“world of classical worlds” (WCW))
can be regarded as a union of coset spaces which are infinite-dimensional symmetric spaces with
Kähler structure: C(H) = ∪iG/H(i). Index i labels 3-topology and zero modes. The group G,
which can depend on 3-surface, can be identified as a subgroup of diffeomorphisms of δM4

+ ×CP2

and H must contain as its subgroup a group, whose action reduces to Diff(X3) so that these
transformations leave 3-surface invariant.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at the
opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal of Kähler
action. The interpretation would be in terms of holography. One can also consider the inclusion
of the light-like 3-surfaces at which the signature of the induced metric changes to the 3-surface so
that it would become connected.

The task is to identify plausible candidate for G and H and to show that the tangent space
of the WCW allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow
complexification. One must also identify the zero modes and construct integration measure for the
functional integral in these degrees of freedom. Besides this one must deduce information about the
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explicit form of WCW metric from symmetry considerations combined with the hypothesis that
Kähler function is Kähler action for a preferred extremal of Kähler action. One must of course
understand what “preferred” means.

1.1 General Coordinate Invariance And Generalized Quantum Gravita-
tional Holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces
to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ ×
CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum theory and its
geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded into
Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler func-
tion reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on δM4

+ × CP2, the moment of big bang. The proposal was that Kähler
function K(Y 3) could be defined as a preferred extremal of so called Kähler action for the unique
space-time surface X4(Y 3) going through given 3-surface Y 3 at δM4

+ ×CP2. For Diff4 transforms
of Y 3 at X4(Y 3) Kähler function would have the same value so that Diff4 invariance and degener-
acy would be the outcome. The proposal was that the preferred extremals are absolute minima of
Kähler action.

This picture turned out to be too simple.

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said. Note that the inclusion of space-like ends at boundaries of CD gives
analog of Wilson loop.

2. It has also become obvious that the gigantic symmetries associated with δM4
± × CP2 ⊂

CD × CP2 manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decomposition
of the WCW to a union of configuration spaces assignable to causal diamonds CDs defined
as intersections of future and past directed light-cones. The minimum assumption is that
CDs label the sectors of CH: the nice feature of this option is that the considerations of
this chapter restricted to δM4

+ × CP2 generalize almost trivially. This option is beautiful
because the center of mass degrees of freedom associated with the different sectors of CH
would correspond to M4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 →
X4(X3) must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface
is unique among all its Diff4 translates. This also allows physically preferred “gauge fixing” allowing
to get rid of the mathematical complications due to Diff4 degeneracy. The internal geometry of
the space-time sheet must define the preferred 3-surface X3

l .
The realization of this vision means a considerable mathematical challenge. The effective metric

2-dimensionality of 3-dimensional light-like surfaces X3
l of M4 implies generalized conformal and

symplectic symmetries allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

1.2 Light Like 3-D Causal Determinants And Effective 2-Dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic ex-

amples are boundaries and elementary particle horizons (parton orbits) at which Minkowskian
signature of the induced metric transforms to Euclidian one. This brings in a second conformal
symmetry related to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry
is analogous to TGD counterpart of the Kac Moody symmetry of string models and seems to
be associated with quantum criticality implying non-uniqueness of the space-time surface with
given space-like ends at boundaries of CD. Critical deformations would be Kac-Moody type trans-
formation preserving the light-likeness of the parton orbits. The challenge is to understand the
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relationship of this symmetry to WCW geometry and the interaction between the two conformal
symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l )∩CD×CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super
Kac-Moody type Super Virasoro generators annihilated physical states. This construction in
turn led to the realization that WCW for fixed values of zero modes - in particular the values
of the induced Kähler form of δM4

± × CP2 - allows identification as a coset space obtained
by dividing the symplectic group of δM4

± × CP2 with Kac-Moody group, whose generators
vanish at X2 = X3

l × δM4
±×CP2. One can say that quantum fluctuating degrees of freedom

in a very concrete sense correspond to the local variant of S2 × CP2.

The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± suggests that the data at either X3 or X3

l should be enough to determine WCW
geometry. This implies that the relevant data is contained to their intersection X2 at least for
finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving
light likeness corresponding to zero modes or gauge degrees of freedom and induce deformations
of X3 also acting as zero modes. The outcome is effective 2-dimensionality. One must be however
cautious in order to not make over-statements. The reduction to 2-D theory in global sense would
trivialize the theory and the reduction to 2-D theory must takes places for finite region of X3 only
so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation
of this vision is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-
CD:s brings in improved measurement resolution and means also that effective 2-dimensionality is
realized in the scale of sub-CD only.

Experience has however taught to be extremely cautious: it could also be that in ZEO the
unions of the space-like 3-surfaces at the ends of CD and of the light-like partonic orbits at which
the signature of the induced metric changes are the basic objects analogous to Wilson loops. In
this case the notion of effective 2-dimensionality is not so clear. Also in this case the Kac-Moody
type symmetry preserving the light-likeness of partonic orbits could reduce the additional degrees
of freedom to a finite number of conformal equivalence classes of partonic orbits for given pair of
3-surfaces.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for WCW metric involving 3-dimensional integrals over X3 ⊂
M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is one-to-one.

1.3 Magic Properties Of Light Cone Boundary And Isometries Of WCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well
as Kähler structure. Kähler structure is not unique: possible Kähler structures of light cone
boundary are parameterized by Lobatchevski space SO(3, 1)/SO(3). The requirement that the
isotropy group SO(3) of S2 corresponds to the isotropy group of the unique classical 3-momentum
assigned to X4(Y 3) defined as a preferred extremum of Kähler action, fixes the choice of the
complex structure uniquely. Therefore group theoretical approach and the approach based on
Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light
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cone boundary. Even more, in case of δM4
+×CP2 the isometry group of δM4

+ becomes local-
ized with respect to CP2! Furthermore, the Kähler structure of δM4

+ defines also symplectic
structure.

Hence any function of δM4
+ × CP2 would serve as a Hamiltonian transformation acting in

both CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary

local gauge transformations. This group leaves the symplectic form of δM4
+ × CP2, defined

as the sum of light cone and CP2 symplectic forms, invariant. The group of symplectic
transformations of δM4

+ × CP2 is a good candidate for the isometry group of the WCW.

2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the
symplectic transformations of CP2, CP2 symplectic transformations wiykd correspond to
zero modes having zero norm in the Kähler metric of WCW. This does not make sense since
symplectic transformations of δM4 × CP2 actually parameterize the quantum fluctuation
degrees of freedom.

3. The groups G and H, and thus WCW itself, should inherit the complex structure of the
light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

1.4 Symplectic Transformations Of ∆M4
+ ×CP2 As Isometries Of WCW

The symplectic transformations of δM4
+ × CP2 are excellent candidates for inducing symplectic

transformations of the WCW acting as isometries. There are however deep differences with respect
to the Kac Moody algebras.

1. The conformal algebra of the WCW is gigantic when compared with the Virasoro + Kac
Moody algebras of string models as is clear from the fact that the Lie-algebra generator of a
symplectic transformation of δM4

+×CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transformation

of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the notion

of local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+×CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2

Hamiltonians involves a term analogous to a central extension term symmetric with respect
to CP2 Hamiltonians, and resulting from the δM4

+ bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish
and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.
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The most natural option is that symplectic and Kac-Moody algebras together generate the
isometry algebra and that the corresponding transformations leaving invariant the partonic 2-
surfaces and their 4-D tangent space data act as gauge transformations and affect only zero modes.

1.5 Does The Symmetric Space Property Reduce To Coset Construction
For Super Virasoro Algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h . [t, t] ⊂ h . [h, t] ⊂ t . (1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

WCW geometry allows two super-conformal symmetries assignable the coset space decomposi-
tion G/H for a sector of WCW with fixed values of zero moes. One can assign to the tangent space
algebras g resp. h of G resp. H analogous to Kac-Moody algebras super Virasoro algebras and
construct super-conformal representation as a coset representation meaning that the differences
of super Virasoro generators annihilate the physical states. This obviously generalizes Goddard-
Olive-Kent construction [A6].

The identification of the two algeras is not a mechanical task and has involved a lot of trial
and erroring. The algebra g should be be spanned by the generators of super-symplectic algebra
of light-cone boundary and by the Kac-Moody algebra acting on light-like orbits of partonic 2-
surfaces. The sub-algebra h should be spanned by generators which vanish for a preferred point of
WCW analogous to origin of CP2 = SU(3)/U(2). Now this point would correspond to maximum
or minimum of Kähler function (no saddle points are allowed if the WCW metric has definite
signature). In hindsight it is obvious that the generators of both symplectic and Kac-Moody
algebras are needed to generate g and h: already the effective 2-dimensionality meaning that 4-D
tangent space data of partonic surface matters requires this.

The maxima of Kähler function could correspond to this kind of points (pairs formed by 3-
surfaces at different ends of CD in ZEO) and could play also an essential role in the integration
over WCW by generalizing the Gaussian integration of free quantum field theories. It took quite
a long time to realize that Kähler function must be identified as Kähler action for the Euclidian
region of preferred extremal. Kähler action for Minkowskian regions gives imaginary contribution
to the action exponential and has interpretation in terms of Morse function. This part of Kähler
action can have and is expected to have saddle points and to define Hessian with signature which
is not positive definite.

1.6 What Effective 2-Dimensionality And Holography Really Mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points,
which directly relate to what one means with holography.

1. Holography suggests that light-like 3-surfaces with fixed ends give rise to same WCW metric
and the deformations of these surfaces by Kac-Moody algebra correspond to zero modes
just like the interior degrees of freedom for space-like 3-surface do. The same would be
true for space-like 3-surfaces at the ends of space-time surface with respect to symplectic
transformations.

2. The non-trivial action of Kac-Moody algebra in the interior of X3
l together with effective

2-dimensionality and holography would encourage the interpretation of Kac-Moody symme-
tries acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic
2-surfaces at their ends would be equivalent physically and effective 2-dimensionality and
holography would be realized modulo gauge transformations. As a matter fact, the action
on WCW metric would be a change of zero modes so that one could identify it as analog
of conformal scaling. The action of symplectic transformations vanishing in the interior of
space-like 3-surface at the end of space-time surface affects only zero modes.
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1.7 For The Reader

Few words about the representation of ideas are in order. For a long time the books about TGD
served as kind of lab note books - a bottom-up representation providing kind of a ladder making
clear the evolution of ideas. This led gradually to a rather chaotic situation in which it was difficult
for me to control the internal consistency and for the possible reader to distinguish between the big
ideas and ad hoc guesses, most of them related to the detailed realization of big visions. Therefore
I have made now and the decision to clean up a lot of the ad hoc stuff. In this process I have also
changed the representation so that it is more top-down and tries to achieve over-all views.

There are several visions about what TGD is and I have worked hardly to achieve a fusion of
these visions. Hence simple linear representation in which reader climbs to a tree of wisdom is
impossible. I must summarize overall view from the beginning and refer to the results deduced
in chapters towards the end of the book and also to ideas discussed in other books. For instance,
the construction of WCW (“world of classical worlds” (WCW)) spinor structure discussed in
chapters [K19] provides the understanding necessary to make the construction of configuration
space geometry more detailed. Also number theoretical vision discussed in another book [K12] is
necessary. Somehow it seems that a graphic representation emphasizing visually the big picture
should be needed to make the representation more comprehensible.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 How To Generalize The Construction Of WCW Geometry
To Take Into Account The Classical Non-Determinism?

If the embedding space were H+ = M4
+ × CP2 and if Kähler action were deterministic, the con-

struction of WCW geometry reduces to δM4
+ × CP2. Thus in this limit quantum holography

principle [B2, B4] would be satisfied also in TGD framework and actually reduce to the general
coordinate invariance. The classical non-determinism of Kähler action however means that this
construction is not quite enough and the challenge is to generalize the construction.

2.1 Quantum Holography In The Sense Of Quantum GravityTheories

In string theory context quantum holography is more or less synonymous with Maldacena con-
jecture Maldacena which (very roughly) states that string theory in Anti-de-Sitter space AdS is
equivalent with a conformal field theory at the boundary of AdS. In purely quantum gravitational
context [B2] , quantum holography principle states that quantum gravitational interactions at
high energy limit in AdS can be described using a topological field theory reducing to a conformal
(and non-gravitational) field theory defined at the time like boundary of the AdS. Thus the time
like boundary plays the role of a dynamical hologram containing all information about correlation
functions of d+ 1 dimensional theory. This reduction also conforms with the fact that black hole
entropy is proportional to the horizon area rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle
assigning space-time surface to a given 3-surface X3 at light cone boundary were completely de-
terministic, four-dimensional general coordinate invariance would reduce the construction of the
configuration geometry for the space of 3-surfaces in M4

+×CP2 to the construction of the geometry
at the boundary of WCW consisting of 3-surfaces in δM4

+ × CP2 (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in
this strong form fails. This is very desirable from the point of view of both physics and consciousness
theory. Classical determinism would also mean that time would be lost in TGD as it is lost in GRT.
Classical non-determinism is also absolutely essential for quantum consciousness and makes possible
conscious experiences with contents localized into finite time interval despite the fact that quantum
jumps occur between WCW spinor fields defining what I have used to call quantum histories.
Classical non-determinism makes it also possible to generalize quantum-classical correspondence
in the sense that classical non-determinism at the space-time level provides correlate for quantum

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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non-determinism. The failure of classical determinism is a difficult challenge for the construction
of WCW geometry. One might however hope that the notion of quantum holography generalizes.

2.2 How Does The Classical Determinism Fail In TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the
notion of 3-surface by allowing unions of space-like 3-surfaces with time like separations with
very strong but not complete correlations between the space-like 3-surfaces. In this case the non-
determinism would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most
enumerable number of preferred extremals X4(Y 3) of Kähler action so that one would get finite
or at most enumerably infinite number of replicas of a given WCW region and the construction
would still reduce to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of
H for which all extremals of Kähler action are vacua.

2. CP2 type vacuum extremals are different since they possess non-vanishing Kähler form and
Kähler action. They are identifiable as classical counterparts of elementary particles have M4

+

projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons
to suspect that classical non-determinism might destroy the dream about complete reduction
to the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the
understanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely
crucial for the ordinary elementary particle physics. It seems that the conformal symmetries
responsible for the ordinary elementary particle quantum numbers acting in these degrees of
freedom do not contribute to the WCW metric line element.

The treatment of the non-determinism in a framework in which the prediction of time evolution
is seen as initial value problem, seems to be difficult. Also the notion of WCW becomes a messy
concept. ZEO changes the situation completely. Light-like 3-surfaces become representations of
generalized Feynman diagrams and brings in the notion of finite time resolution. One obtains a
direct connection with the concepts of quantum field theory with path integral with cutoff replaced
with a sum over various preferred extremals with cutoff in time resolution.

2.3 The Notions Of Embedding Space, 3-Surface, And Configuration
Space

The notions of embedding space, 3-surface (and 4-surface), and configuration space (“world of
classical worlds”, WCW) are central to quantum TGD. The original idea was that 3-surfaces are
space-like 3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible
3-surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to
each X3 a unique space-time surface X4(X3) allowing in this manner to realize general coordinate
invariance. During years these notions have however evolved considerably. Therefore it seems
better to begin directly from the recent picture.

2.3.1 The notion of embedding space

Two generalizations of the notion of embedding space were forced by number theoretical vision
[K16, K17, K15] .
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1. p-Adicization forced to generalize the notion of embedding space by gluing real and p-adic
variants of embedding space together along rationals and common algebraic numbers. The
generalized embedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of ZEO [K19, K4] it became clear that the so called causal diamonds (CDs)
interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones of M4 × CP2

define correlates for the quantum states. The position of the “lower” tip of CD characterizes
the position of CD in H. If the temporal distance between upper and lower tip of CD is
quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [K11] follows as
a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2 of

CD can be regarded as the carrier of positive resp. negative energy part of the state. All net
quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD×CP2s and have their
3-D ends at the light-like boundaries of CD ×CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length
scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K6] led to a further generalization of
the notion of embedding space - at least as a convenient auxialiary structure. Generalized
embedding space is obtained by gluing together Cartesian products of singular coverings
and factor spaces of CD and CP2 to form a book like structure. The particles at different
pages of this book behave like dark matter relative to each other. This generalization also
brings in the geometric correlate for the selection of quantization axes in the sense that the
geometry of the sectors of the generalized embedding space with non-standard value of Planck
constant involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly
speaking, each CD and CP2 is replaced with a union of CDs and CP2s corresponding to
different choices of quantization axes so that no breaking of Poincare and color symmetries
occurs at the level of entire WCW.

It seems that the covering of embedding space is only a convenient auxiliary structure. The
space-time surfaces in the n-fold covering correspond to the n conformal equivalence classes
of space-time surfaces connecting fixed 3-surfaces at the ends of CD: the space-time surfaces
are branched at their ends. The situation can be interpreted at the level of WCW in several
ways. There is single 3-surface at both ends but by non-determinism there are n space-time
branches of the space-time surface connecting them so that the Kähler action is multiplied
by factor n. If one forgets the presence of the n branches completely, one can say that one
has heff = n × h giving 1/αK = n/αK(n = 1) and scaling ofKähler action. One can also
imagine that the 3-surfaces at the ends of CD are actually surfaces in the n-fold covering
space consisting of n identical copies so that Kähler action is multiplied by n. One could
also include the light-like partonic orbits to the 3-surface so that 3-surfaces would not have
boundaries: in this case the n-fold degeneracy would come out very naturally.

4. The construction of quantum theory at partonic level brings in very important delicacies
related to the Kähler gauge potential of CP2. Kähler gauge potential must have what one
might call pure gauge parts in M4 in order that the theory does not reduce to mere topological
quantum field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down
in a delicate manner. These additional gauge components -present also in CP2- play key role
in the model of anyons, charge fractionization, and quantum Hall effect [K13] .

2.3.2 The notion of 3-surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to
Equivalence implied by General Coordinate Invariance. There was a problem related to the
realization of General Coordinate Invariance since it was not at all obvious why the preferred
extremal X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .
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2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D
sense (obviously the identification resolves the above mentioned problem) and understanding
the conformal symmetries of the theory. On basis of these symmetries light-like 3-surfaces
can be regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional.
It is however important to emphasize that this indeed holds true only locally. At the level
of WCW metric this means that the components of the Kähler form and metric can be
expressed in terms of data assignable to 2-D partonic surfaces and their 4-D tangent spaces.
It is however essential that information about normal space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants. At “microscopic” level
this means that there number of conformal equivalence classes of space-time surfaces con-
necting the 3-surfaces at boundaries of CD matters and this information is coded by the value
of heff = n × h. One can divide WCW to sectors corresponding to different values of heff
and conformal symmetry breakings connect these sectors: the transition n1 → n2 such that
n1 divides n2 occurs spontaneously since it reduces the quantum criticality by transforming
super-generators acting as gauge symmetries to dynamical ones.

2.3.3 The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (“world of
classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 × CP2 or
M4

+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question “M4
+ or M4?” had been settled in favor of M4

+

by the fact that M4
+ has interpretation as empty Roberson-Walker cosmology. The huge

conformal symmetries assignable to δM4
+×CP2 were interpreted as cosmological rather than

laboratory symmetries. The work with the conceptual problems related to the notions of
energy and time, and with the symmetries of quantum TGD, however led gradually to the
realization that there are strong reasons for considering M4 instead of M4

+.

2. With the discovery of ZEO (with motivation coming from the non-determinism of Kähler
action) it became clear that the so called causal diamonds (CDs) define excellent candidates
for the fundamental building blocks of WCW or “world of classical worlds” (WCW). The
spaces CD × CP2 regarded as subsets of H defined the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW.

The gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries.

Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of
the embedding space representing the upper and lower boundaries of CD. Second conformal
symmetry corresponds to light-like 3-surface X3

l , which can be boundaries of X4 and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with
the spaces CD × CP2. CDs can contain CDs within CDs so that a fractal like hierarchy having
interpretation in terms of measurement resolution results. Since the complications due to p-adic
sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces to
a high degree to a study of a simple special case δM4

+ × CP2.
A further piece of understanding emerged from the following observations.
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1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
εαβJαβ at X2 define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kähler forms of CP2 and δM4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of δM4

± × CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S2×CP2 is in question: this was one of the first ideas about WCW which I gave
up as too näıve!

4. Generalized coset construction and coset space structure have very deep physical meaning
since they realize Equivalence Principle at quantum level. Contrary to the original belief,
this construction does not provide a realization of Equivalence Principle at quantum level.
The proper realization of EP at quantum level seems to be based on the identification of clas-
sical Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts
assignable to Kähler-Dirac action. At classical level EP follows at GRT limit obtained by
lumping many-sheeted space-time to M4 with effective metric satisfying Einstein’s equations
as a reflection of the underlying Poincare invariance.

5. Now it has become clear that EP in the sense of quantum classical correspondence allows
a concrete realization for the fermion lines defined by the light-like boundaries of string
world sheets at light-like orbits of partonic 2-surfaces. Fermion lines are always light-like
or space-like locally. Kähler-Dirac equation reducing to its algebraic counterpart with light-
like 8-momentum defined by the tangent of the boundary curve. 8-D light-likeness means
the possibility of massivation in M4 sense and gravitational mass is defined in an obvious
manner. The M4-part of 8-momentum is by quantum classical correspondence equal to the
4-momentum assignable to the incoming fermion. EP generalizes also to CP2 degrees of
freedom and relates SO(4) acting as symmetries of Eucldian part of 8-momentum to color
SU(3). SO(4) can be assigned to hadrons and SU(3) to quarks and gluons.

The 8-momentum is light-like with respect to the effective metric defined by K-D gamma
matrices. Is it also light-like with respect to the induced metric and proportional to the
tangent vector of the fermion line? If this is not the case, the boundary curve is locally
space-like in the induced metric. Could this relate to the still poorly understand question how
the necessariy tachyonic ground state conformal weight of super-conformal representations
needed in padic mass calculations [K8] emerges? Could it be that ”empty” lines carrying no
fermion number are tachyonic with respect to the induced metric?

2.4 The Treatment Of Non-Determinism Of Kähler Action In Zero En-
ergy Ontology

The non-determinism of Kähler action means that the reduction of the construction of WCW
geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of Kähler
action, the non-determinism should manifest itself as a presence of causal determinants also other
than light cone boundary.

One can imagine two kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X3
l ⊂ X4 of 4-surfaces representing

wormhole throats act as causal determinants for the space-time dynamics defined by Kähler
action. The boundary values of this dynamics have been already considered.
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2. At embedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero
energy states having interpretation as pairs of initial and final states in standard quantum
theory.

The manner to treat the classical non-determinism would be roughly following.

1. The replacement of space-like 3-surfaceX3 withX3
l transforms initial value problem forX3 to

a boundary value problem for X3
l . In principle one can also use the surfaces X3 ⊂ δCD×CP2

if X3
l fixes X4(X3

l ) and thus X3 uniquely. For years an important question was whether both
X3 and X3

l contribute separately to WCW geometry or whether they provide descriptions,
which are in some sense dual.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X3
l . In the

2-D intersections of X3
l with the boundary of causal diamond (CD) defined as intersection

of future and past directed light-cones super-symplectic algebra makes sense. This implies
effective two-dimensionality which is broken by the non-determinism represented using the
hierarchy of CDs meaning that the data from these 2-D surfaces and their normal spaces at
boundaries of CDs in various scales determine the WCW metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality
seems to be satisfied in the sense of generalized coset construction meaning that the dif-
ferences of Super Virasoro generators of super-symplectic and super Kac-Moody algebras
annihilate physical states. Among other things this means that four-momenta assignable to
the two Super Virasoro representations are identical. T he interpretation is in terms of a
generalization of Equivalence Principle [K19, K4] . This gives also a justification for p-adic
thermodynamics applying only to Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite
length resolution mean means also a cutoff in the number of generalized Feynman diagrams
and this number remains always finite if the light-like 3-surfaces identifiable as maxima of
Kähler function correspond to the diagrams. The finiteness of this number is also essential for
number theoretic universality since it guarantees that the elements of M -matrix are algebraic
numbers if momenta and other quantum numbers have this property. The introduction of
new sub-CDs means also introduction of zero energy states in corresponding time scale.

5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution
the non-determinism of Kähler action remains invisible below the time scale assigned to the
smallest CDs. One could also say that complete non-determinism characterized in terms path
integral with cutoff is replaced in TGD framework with the partial failure of classical non-
determinism leading to generalized Feynman diagrams. This gives rise to discrete coupling
constant evolution and avoids the mathematical ill-definedness and infinities plaguing path
integral formalism since the functional integral over 3-surfaces is well defined.

2.5 Category Theory And WCW Geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very
far from simple Cartesian clockworks, and the understanding of the general structure of WCW is
a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of WCW geometry and the basic ideas of category theory are
discussed in this spirit and as an innocent layman. It indeed turns out that the approach makes
highly non-trivial predictions.

In ZEO the effects of non-determinism are taken into account in terms of causal diamonds
forming a hierarchical fractal structure. One must allow also the unions of CDs, CDs within
CDs, and probably also overlapping of CDs, and there are good reasons to expert that CDs and
corresponding algebraic structures could define categories. If one does not allow overlapping CDs
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then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections
then CDs would form a structure analogous to the set of open sets used in set theoretic topology.
One could indeed see CDs (or rather their Cartesian products with CP2) as analogs of open sets
in Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and
allow to build bridge to topological and conformal field theories. This discussion based on standard
ontology. In [K2] rather detailed category theoretical constructions are discussed. Important role
is played by the notion of operad operad,operads : this structure can be assigned with both gener-
alized Feynman diagrams and with the hierarchy of symplectic fusion algebras realizing symplectic
analogs of the fusion rules of conformal field theories.

3 Identification Of The Symmetries And Coset Space Struc-
ture Of WCW

In this section the identification of the isometry group of the configuration (“world of classical
worlds” or briefly WCW ) will be discussed at general level.

3.1 Reduction To The Light Cone Boundary

The reduction to the light cone boundary would occur exactly if Kähler action were strictly de-
terministic. This is not the case but it is possible to generalize the construction at light cone
boundary to the general case if causal diamonds define the basic structural units of the WCW .

3.1.1 Old argument

The identification of WCW follows as a consequence of 4-dimensional Diff invariance. The right
question to ask is the following one. How could one coordinatize the physical(!) vibrational degrees
of freedom for 3-surfaces in Diff4 invariant manner: coordinates should have same values for all
Diff4 related 3-surfaces belonging to the orbit of X3? The answer is following:

1. Fix some 3-surface (call it Y 3) on the orbit of X3 in Diff4 invariant manner.

2. Use as WCW coordinates of X3 and all its diffeomorphs the coordinates parameterizing small
deformations of Y 3. This kind of replacement is physically acceptable since metrically the
WCW is equivalent with Map/Diff4.

3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in
question leave light M4

+ invariant and thus act as isometries.

The simplest choice of Y 3 is the intersection of the orbit of 3-surface (X4) with the set δM4
+×CP2,

where δM4
+ denotes the boundary of the light cone (moment of big bang):

Y 3 = X4 ∩ δM4
+ × CP2 (3.1)

Lorentz invariance allows also the choice X × CP2, where X corresponds to the hyperboloid a =√
(m0)2 − r2

M = constant but only the proposed choice (a = 0) leads to a natural complexification
in M4 degrees of freedom. This choice is also cosmologically very natural and completely analogous
to the quantum gravitational holography of string theories.

WCW has a fiber space structure. Base space consists of 3-surfaces Y 3 ⊂ δM4
+×CP2 and fiber

consists of 3-surfaces on the orbit of Y 3, which are Diff4 equivalent with Y 3. The distance between
the surfaces in the fiber is vanishing in WCW metric. An elegant manner to avoid difficulties
caused by Diff4 degeneracy in WCW integration is to define integration measure as integral over
the reduced WCW consisting of 3-surfaces Y 3 at the light cone boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kähler action suggests
strongly classical non-determinism so that there are several, possibly, infinite number of preferred
extremals X4(Y 3) associated with given Y 3 on light cone boundary. This implies additional de-
generacy.
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One might hope that the reduced WCW could be replaced by its covering space so that given
Y 3 corresponds to several points of the covering space and WCW has many-sheeted structure.
Obviously the copies of Y 3 have identical geometric properties. WCW integral would decompose
into a sum of integrals over different sheets of the reduced WCW . Note that WCW spinor fields
are in general different on different sheets of the reduced WCW .

Even this is probably not enough: it is quite possible that all light like surfaces of M4 possessing
Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with the construction
of the WCW geometry. Because of their metric two-dimensionality the proposed construction
should generalize. This would mean that WCW geometry has also local laboratory scale aspects
and that the general ideas might allow testing.

3.1.2 New version of the argument

The above summary was the basic argument for two decades ago. A more elegant formulation
would in terms of light-like 3-surfaces connecting the boundaries of causal diamond taken as basic
geometric objects and identified as generalized Feynman diagrams so that they are singular as
manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that effective 2-dimensionality
must hold true in the scale of given CD. In other words, the intersection X2 = X3

l ∩ X3 at the
boundary of CD is effectively the basic dynamical unit. The failure of strict non-determinism how-
ever forces to introduce entire hierarchy of CDs responsible also for coupling constant evolution
defined in terms of the measurement resolution identified as the size of the smallest CD present.

3.2 WCW As A Union Of Symmetric Spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. The hope is that same
holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition
C(H) = ∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G
and H depend on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all
orbits. What is essential is that these groups are infinite-dimensional. The basic properties of the
coset space decomposition give very strong constraints on the group H, which certainly contains
the subgroup of G, whose action reduces to diffeomorphisms of X3.

3.2.1 Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability
of the theory are enormous since it suffices to find metric and curvature tensor for single repre-
sentative 3-surface on a given orbit (contravariant form of metric gives propagator in perturbative
calculation of matrix elements as functional integrals over the WCW ). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero
mode structure of the WCW . Almost twenty (seven according to long held belief!) years after the
discovery of the candidate for the Kähler function defining the metric, it became finally clear that
these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transforma-
tions of δM4

± × CP2 leaving the induced Kähler form invariant. If G acts as isometries the values
of Kähler form at partonic 2-surfaces (remember effective 2-dimensionality realized in simplistic
manner) are zero modes and WCW allows slicing to symplectic orbits of the partonic 2-surface
with fixed induced Kähler form. Quantum fluctuating degrees of freedom would correspond to
symplectic group and to the fluctuations of the induced metric. The group H dividing G would
act as diffeomorphisms at the preferred 3-surface X3 and leaving X3 itself invariant. Therefore
the identification of g and h would be in terms of tangent space algebra of WCW sector realized
as coset space G/H.
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3.2.2 Coset space structure of WCW and Equivalence Principle

The realization of WCW sectors with fixed values of zero modes as symmetric spaces G/H (anal-
ogous to CP2 = SU(3)/U(2)) suggests that one can assign super-Virasoro algebras with G. What
the two algebras g and h are is however difficult question. The following vision is only one of the
many (the latest one).

1. Symplectic algebra g generates isometries and h is identified as algebra, whose generators
generate diffeormorphisms at preferred X3.

2. The original long-held belief was that the Super Kac-Moody symmetry corresponds to local
embedding space isometries for light-like 3-surfaces X3

l , which might be boundaries of X4

(probably not: it seems that boundary conditions cannot be satisfied so that space-time
surfaces must consists of regions defining at least double coverings of M4) and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry would be identifiable as the counterpart of the Kac Moody symmetry of string
models.

It has turned out that one can assume Kac-Moody algebra to be sub-algebra of symplectic
algebra consisting of the symplectic isometries of embedding space. This Super Kac-Moody
algebra is generated by super-currents assignable to the modes of induced spinor fields other
than right-handed neutrino and localized at string world sheets. The entire symplectic algebra
would correspond to the modes of right-handed neutrino and the entire algebra one would
be direct sum of these two algebras so that the number of tensor factors would be indeed 5.
The beauty of this option is that localization would be for both algebras inherent and with
respect to the light-like coordinate of light-cone boundary rather than forced by hand.

3. p-Adic mass calculations require that symplectic and Kac-Moody algebras together generate
the entire algebra. In this situation strong form of holography implies that transformations
located to the interior of space-like 3-surface and light-like partonic orbit define zero modes
and act like gauge symmetries. The physically non-trivial transformations correspond to
transformations acting non-trivially at partonic 2-surfaces. g corresponds to the algebra
generated by these transformations and for preferred 3-surface - identified as (say) maximum
of Kähler function - h corresponds to the elements of this algebra generating diffeomorphisms
of X3. Super-conformal representation has five tensor factors corresponding to color algebra,
two factors from electroweak U(2), one factor from transversal M4 translations and one factor
from symplectic algebra (note that also Hamiltonians which are products of δM4

+ and CP2

Hamiltonians are possible.

Equivalence Principle (EP) has been a longstanding problem for TGD although the recent
stringy view about graviton mediated scattering makes it can be argued to reduce to a tautology.
I have considered several explanations for EP and coset representation has been one of them.

1. Coset representation associated with the super Virasoro algebra is defined by the condition
that the differences of super Virasoro generators for g and h annihilate the physical. The
original proposal for the realization of EP was that this condition implies that the four-
momenta associated with g and h are identical and identifiable as inertial and gravitational
four-momenta. Translations however lead out from CD boundary and cannot leave 3-surface
invariant. Hence the Virasoro generators for h should not carry four-momentum. Therefore
EP cannot be understood in terms of coset representations.

2. The equivalence of classical Noether momentum associated with Kähler action with eigen-
values of the corresponding quantal momentum for Kähler-Dirac action certainly realizes
quantum classical correspondence (QCC) EP could correspond to QCC.

3. A further option is that EP reduces to the identification of the four momenta for Super Vi-
rasoro representations assignable to space-like and light-like 3-surfaces and therefore become
part of strong form of holography in turn implied by strong form of GCI! It seems that this
option is the most plausible one found hitherto.
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3.2.3 WCW isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some
subgroup of for the group G for the diffeomorphisms of δM4

+×CP2. These diffeomorphisms indeed
act in a natural manner in δCH, the space of 3-surfaces in δM4

+ × CP2. WCW is expected to
decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the
vector fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend
on the topology of X3 and since G does not change the topology of 3-surface each 3-topology
defines separate orbit of G. Therefore, the union involves sum over all topologies of X3 plus
possibly other “zero modes”. Different topologies are naturally glued together since singular 3-
surfaces intermediate between two 3-topologies correspond to points common to the two sectors
with different topologies.

3.2.4 Isometries of WCW geometry as symplectic transformations of δM4
+ × CP2

During last decade I have considered several candidates for the group G of isometries of WCW as
the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write the general
decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (3.2)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light
cone diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with
respect to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the
theory should be more or less equivalent with topological field theory in this case. Consider now
the various candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical

symmetries of the vacuum extremals suggests the possibility that the diffeomorphisms of the
light cone boundary and symplectic transformations of CP2 could leave Kähler function in-
variant and thus correspond to zero modes. The symplectic transformations of CP2 localized
with respect to light cone boundary acting as symplectic transformations of CP2 have inter-
pretation as local color transformations and are a good candidate for the isometries. The
fact that local color transformations are not even approximate symmetries of Kähler action
is not a problem: if they were exact symmetries, Kähler function would be invariant and zero
modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+.

Besides this there is a huge group of the symplectic symmetries of δM4
+ × CP2 if light

cone boundary is provided with the symplectic structure. Both groups must be considered as
candidates for groups of isometries. δM4

+×CP2 option exploits fully the special properties of
δM4

+×CP2, and one can develop simple argument demonstrating that δM4
+×CP2 symplectic

invariance is the correct option. Also the construction of WCW gamma matrices as super-
symplectic charges supports δM4

+ × CP2 option.

3.2.5 WCW as a union of symmetric spaces

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (3.3)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough. [t, t] ⊂ h condition is highly nontrivial and equivalent with the
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existence of involution. Inversion in the light-like radial coordinate of δM4 is a natural guess for
this involution and induces complex conjugation in super-conformal algebras mapping positive and
negative conformal weights to each other.

WCW geometry allows two super-conformal symmetries. The first one corresponds to super-
symplectic transformations acting at the level of embedding space. The second one corresponds
to super Kac-Moody symmetry. The original identification of Kac-Moody was in terms of defor-
mations of light-like 3-surfaces respecting their light-likeness. This not wrong as such: also entire
symplectic algebra can be assigned with light-like surfaces and the theory can be constructed using
also these conformal algebras. This identification however makes it very difficult to see how Kac-
Moody could act as isometry: in particular, the localization with respect to internal coordinates
of 3-surface produces technical problems since symplectic algebra is localized with respect to the
light-like radial coordinate of light-cone boundary.

The more plausible identification is as the sub-algebra of symplectic algebra realized as isome-
tries of δCD so that localization is inherent and in terms of the radial light-like coordinate of
light-like boundary [K14]. This identification is made possible by the wisdom gained from the so-
lutions of the Kähler-Dirac equations predicting the localization of its modes (except right-handed
neutrino) to string world sheets.

1. g would thus correspond to a direct sum of super-symplectic algebra and super Kac-Moody
algebra defined by its isometry sub-algebra but represented in different manner (this is ab-
solutely essential!). More concretely, neutrino modes defined super Hamiltonians associated
with the super symplectic algebra and other modes of induced spinor field the super Hamil-
tonians associated with the super Kac-Moody algebra. The maxima of Kähler function could
be chosen as natural candidates for the preferred points and could play also an essential role
in WCW integration by generalizing the Gaussian integration of free quantum field theories.

2. These super-conformal algebra representations form a direct sum. p-Adic mass calculations
require five super-conformal tensor factors and the number of tensor factors would be indeed
this.

3. This algebra has as sub-algebra the algebra for which generators leave 3-surface invariant -
in other words, induce its diffeomorphism. Quantum states correspond to the coset repre-
sentations for entire algebra and this algebra so that differences of the corresponding super-
Virasoro generators annihilate physical states. This obviously generalizes Goddard-Olive-
Kent construction [A6]. It seems now clear that coset representation does not imply EP:
the four-momentum simply does not appear in the representation of the isotropy sub-algebra
since translations lead out of CD boundary.

To minimize confusions it must be emphasized that only the contribution of the symplectic
algebra realized in terms of single right-handed neutrino mode is discussed in this chapter and
the WCW Hamiltonians have 2-dimensional representation. Also the direct connection with the
dynamics of Kähler action is lacking. A more realistic construction [K14] uses 3-dimensional
representations of Hamiltonians and requires all modes of right-handed neutrino for symplectic
algebra and the modes of induced spinor field carrying electroweak quantum numbers in the case
of Kac-Moody algebra.

4 Complexification

A necessary prerequisite for the Kähler geometry is the complexification of the tangent space in
vibrational degrees of freedom. What this means in recent context is non-trivial.

4.1 Why Complexification Is Needed?

The Minkowskian signature of M4 metric seems however to represent an insurmountable obstacle
for the complexification of M4 type vibrational degrees of freedom. On the other hand, complexi-
fication seems to have deep roots in the actual physical reality.
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1. In the perturbative quantization of gauge fields one associates to each gauge field excitation
polarization vector e and massless four-momentum vector p (p2 = 0, p ·e = 0). These vectors
define the decomposition of the tangent space of M4: M4 = M2 × E2, where M2 type
polarizations correspond to zero norm states and E2 type polarizations correspond to physical
states with non-vanishing norm. Same type of decomposition occurs also in the linearized
theory of gravitation. The crucial feature is that E2 allows complexification! The general
conclusion is that the modes of massless, linear, boson fields define always complexification
of M4 (or its tangent space) by effectively reducing it to E2. Also in string models similar
situation is encountered. For a string in D-dimensional space only D-2 transversal Euclidian
degrees of freedom are physical.

2. Since symplectically extended isometry generators are expected to create physical states in
TGD approach same kind of physical complexification should take place for them, too: this
indeed takes place in string models in critical dimension. Somehow one should be able to
associate polarization vector and massless four momentum vector to the deformations of a
given 3-surface so that these vectors define the decomposition M4 = M2×E2 for each mode.
Configuration space metric should be degenerate: the norm of M2 deformations should vanish
as opposed to the norm of E2 deformations.

Consider now the implications of this requirement.

1. In order to associate four-momentum and polarization (or at least the decomposition M4 =
M2 ×E2) to the deformations of the 3-surface one should have field equations, which deter-
mine the time development of the 3-surface uniquely. Furthermore, the time development
for small deformations should be such that it makes sense to associate four momentum and
polarization or at least the decomposition M4 = M2 × E2 to the deformations in suitable
basis.

The solution to this problem is afforded by the proposed definition of the Kähler function.
The definition of the Kähler function indeed associates to a given 3-surface a unique four-
surface as the preferred extremal of the Kähler action. Therefore one can associate a unique
time development to the deformations of the surface X3 and if TGD describes the observed
world this time development should describe the evolution of photon, gluon, graviton, etc.
states and so we can hope that tangent space complexification could be defined.

2. We have found that M2 part of the deformation should have zero norm. In particular, the
time like vibrational modes have zero norm in WCW metric. This is true if Kähler function is
not only Diff3 invariant but also Diff4 invariant in the sense that Kähler function has same
value for all 3-surfaces belonging to the orbit of X3 and related to X3 by diffeomorphism of
X4. This is indeed the case.

3. Even this is not enough. One expects the presence of massive modes having also longitudinal
polarization and for these states the number of physical vibrational degrees of freedom is 3
so that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by Diff4 invariance makes possible to
identify the complexification. Crucial role is played by the special properties of the boundary of
4-dimensional light cone, which is metrically two-sphere and thus allows generalized complex and
Kähler structure.

4.2 The Metric, Conformal And Symplectic Structures Of The Light
Cone Boundary

The special metric properties of the light cone boundary play a crucial role in the complexification.
The point is that the boundary of the light cone has degenerate metric: although light cone bound-
ary is topologically 3-dimensional it is metrically 2-dimensional: effectively sphere. In standard
spherical Minkowski coordinates light cone boundary is defined by the equation rM = m0 and
induced metric reads
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ds2 = −r2
MdΩ2 = −r2

Mdzdz̄/(1 + zz̄)2 , (4.1)

and has Euclidian signature. Since S2 allows complexification and thus also Kähler structure (and
as a by-product also symplectic structure) there are good hopes of obtaining just the required type
of complexification in non-degenerate M4 degrees of freedom: WCW would effectively inherit its
Kähler structure from S2 × CP2.

Figure 1: Conformal symmetry preserves angles in complex plane

By its effective two-dimensionality the boundary of the four-dimensional light cone has infinite-
dimensional group of (local) conformal transformations. Using complex coordinate z for S2 the
general local conformal transformation reads (see Fig. 1 )

r → f(rM , z, z̄) ,

z → g(z) , (4.2)

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of
poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro
algebra. This algebra is semidirect sum of two algebras L and R given by

C = L⊕R ,

[L,R] ⊂ R , (4.3)

where L denotes standard Virasoro algebra of the two- sphere generated by the generators

Ln = zn+1d/dz (4.4)

and R denotes the algebra generated by the vector fields

Rn = fn(z, z̄, rM )∂rM , (4.5)

where f(z, z̄, rM ) forms complete real scalar function basis for light cone boundary. The vector
fields of R have the special property that they have vanishing norm in M4 metric.

This modification of conformal group implies that the Virasoro generator L0 becomes L0 =
zd/dz − rMd/drM so that the scaling momentum becomes the difference n −m or S2 and radial
scaling momenta. One could achieve conformal invariance by requiring that S2 and radial scaling
quantum numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isome-
tries! An arbitrary conformal transformation z → f(z) induces to the metric a conformal factor
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given by |df/dz|2. The compensating radial scaling rM → rM/|df/dz| compensates this factor so
that the line element remains invariant.

The Kähler structure of light cone boundary defines automatically symplectic structure. The
symplectic form is degenerate and just the area form of S2 given by

J = r2
Msin(θ)dθ ∧ dφ,

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations
leaving the symplectic form of the light cone boundary (that is S2) invariant. These transformations
are local with respect to the radial coordinate rM . The symplectic and Kähler structures of light
cone boundary are not unique: different structures are labeled by the coset space SO(3, 1)/SO(3).
One can however associate with a given 3-surface Y 3 a unique structure by requiring that the
corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved classical
four-momentum assigned to Y 3 by the preferred extremal property.

In the case of δM4
+ × CP2 both the conformal transformations, isometries and symplectic

transformations of the light cone boundary can be made local also with respect to CP2. The idea
that the infinite-dimensional algebra of symplectic transformations of δM4

+×CP2 act as isometries
of WCW and that radial vector fields having zero norm in the metric of light cone boundary possess
zero norm also in WCW metric, looks extremely attractive.

In the case of δM4
+×CP2 one could combine the symplectic and Kähler structures of δM4

+ and
CP2 to single symplectic/Kähler structure. The symplectic transformations leaving this symplectic
structure invariant would be generated by the function algebra of δM4

+×CP2 such that a arbitrary
function serves as a Hamiltonian of a symplectic transformation. This group serves as a candidate
for the isometry group of WCW . An alternative identification for the isometry algebra is as
symplectic symmetries of CP2 localized with respect to the light cone boundary. Hamiltonians
would be also now elements of the function algebra of δM4

+ × CP2 but their Poisson brackets
would be defined using only CP2 symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the
latter option. The symplecticly imbedded CP2 would be left invariant under δM4

+ local symplec-
tic transformations of CP2. This seems strange. Under symplectic algebra of δM4

+ × CP2 also
symplecticly imbedded CP2 is deformed and this sounds more realistic. The isometry algebra
is therefore assumed to be the group can(δM4

+ × CP2) generated by the scalar function basis
S(δM4

+ × CP2) = S(δM4
+)× S(CP2) of the light cone boundary using the Poisson brackets to be

discussed in more detail later.
There are some no-go theorems associated with higher-dimensional Abelian extensions [A7],

and although the contexts are quite different, it is interesting to consider the recent situation in
light of these theorems.

1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however
metrically and conformally 2-sphere, and therefore the conformal algebra is effectively that
associated with the 2-sphere. In the same manner, the quaternion conformal algebra asso-
ciated with the metrically 2-dimensional elementary particle horizons surrounding wormhole
contacts allows the usual Kac Moody algebra and actually also contributes to the WCW
metric.

2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinite-
dimensional Abelian group rather than central extensions by the group U(1). This result
has an analog at the level of WCW geometry. The extension associated with the symplectic
algebra of CP2 localized with respect to the light cone boundary is analogous a symplectic
extension defined by Poisson bracket {p, q} = 1. The central extension is the function space
associated with δM4

+ and indeed infinite-dimensional if only only CP2 symplectic structure
induces the Poisson bracket but one-dimensional if δM4

+ × CP2 Poisson bracket induces
the extension. In the latter case the symmetries fix the metric completely at the point
corresponding to the origin of symmetric space (presumably the maximum of Kähler function
for given values of zero modes).

3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated
physical constraints) [A7]. It might be that the degeneracy of the WCW metric is the analog
for the loss of faithful representations.
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4.3 Complexification And The Special Properties Of The Light Cone
Boundary

In case of Kähler metric G and H Lie-algebras must allow complexification so that the isometries
can act as holomorphic transformations. Since G and H can be regarded as subalgebras of the
vector fields of δM4

+ × CP2, they inherit in a natural manner the complex structure of the light
cone boundary.

There are two candidates for WCW complexification. The simplest, and also the correct,
alternative is that complexification is induced by natural complexification of vector field basis on
δM4

+ × CP2. In CP2 degrees of freedom there is natural complexification

ξ → ξ̄ .

In δM4
+ degrees of freedom this could involve the transformation

z → z̄

and certainly involves complex conjugation for complex scalar function basis in the radial direction:

f(rM )→ f(rM ) ,

which turns out to play same role as the function basis of circle in the Kähler geometry of loop
groups [A2].

The requirement that the functions are eigen functions of radial scalings favors functions
(rM/r0)k, where k is in general a complex number. The function can be expressed as a prod-
uct of real power of rM and logarithmic plane wave. It turns out that the radial complexification
alternative is the correct manner to obtain Kähler structure. The reason is that symplectic trans-
formations leave the value of rM invariant. Radial Virasoro invariance plays crucial role in making
the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the WCW
geometry. The close analogy with string models and conformal field theories suggests that for
Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal
field theories: Ln → L−n = L†n. Clearly this complexification is induced from the transformation
z → 1

z and differs from the complexification induced by complex conjugation z → z̄. The basis
would be polynomial in z and z̄. Since radial algebra could be also seen as Virasoro algebra
localized with respect to S2 × CP2 one could consider the possibility that also in radial direction
the inversion rM → 1

rM
is involved.

In fact, the complexification changing the signs of radial conformal weights is induced from
inversion rM/r0 → r0/rM . This transformation is also an excellent candidate for the involution
necessary for obtaining the structure of symmetric space implying among other things the covariant
constancy of the curvature tensor, which is of special importance in infinite-D context.

The essential prerequisite for the Kähler structure is that both G and H allow same complex-
ification so that the isometries in question can be regarded as holomorphic transformations. In
finite-dimensional case this essentially what is needed since metric can be constructed by parallel
translation along the orbit of G from H-invariant Kähler metric at a representative point. The
requirement of H-invariance forces the radial complexification based on complex powers rkM : radial
complexification works since symplectic transformations leave rM invariant.

Some comments on the properties of the proposed complexification are in order.

1. The proposed complexification, which is analogous to the choice of gauge in gauge theories
is not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart
from SO(3) rotation not affecting the value of the radial coordinate rM (if the imaginary
part of k in rkM is always non-vanishing). This is possible as will be explained later.

2. It turns out that the function basis of light-cone boundary multiplying CP2 Hamiltonians
corresponds to unitary representations of the Lorentz group at light cone boundary so that
the Lorentz invariance is rather manifest.
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3. There is a nice connection with the proposed physical interpretation of the complexification.
At the moment of the big bang all particles move with the velocity of light and therefore
behave as massless particles. To a given point of the light cone boundary one can associate
a unique direction of massless four-momentum by semiclassical considerations: at the point
mk = (m0,mi) momentum is proportional to the vector (m0,−mi). Since the particles
are massless only two polarization vectors are possible and these correspond to the tangent
vectors to the sphere m0 = rM . Of course, one must always fix polarizations at some point
of tangent space but since massless polarization vectors are not physical this doesn’t imply
difficulties: different choices correspond to different gauges.

4. Complexification in the proposed manner is not possible except in the case of four-dimensional
Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone
boundary acting on the sphere SD−2 and the decomposition to (1, 0) and (0, 1) parts is
possible only when the sphere in question is two-dimensional since other spheres do allow
neither complexification nor Kähler structure.

4.4 How To Fix The Complex And Symplectic Structures In A Lorentz
Invariant Manner?

One can assign to light-cone boundary a symplectic structure since it reduces effectively to S2.
The possible symplectic structures of δM4

+ are parameterized by the coset space SO(3, 1)/SO(3)),
where H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of
the spherical coordinates apart from rotations around the quantization axis of angular momentum.

The selection of some preferred symplectic structure in an ad hoc manner breaks manifest
Lorentz invariance but is possible if physical theory remains Lorentz invariant. The more natural
possibility is that 3-surface Y 3 itself fixes in some natural manner the choice of the symplectic
structure so that there is unique subgroup SO(3) of SO(3, 1) associated with Y 3. If WCW Kähler
function corresponds to a preferred extremal of Kähler action, this is indeed the case. One can
associate unique conserved four-momentum P k(Y 3) to the preferred extremal X4(Y 3) of the Kähler
action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant
leaves also P k(Y 3) invariant, fixes the symplectic structure associated with Y 3 uniquely.

Therefore WCW decomposes into a union of symplectic spaces labeled by SO(3, 1)/SO(3)
isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular
momentum vector wk = εklmnPlJmn determined by the classical angular momentum tensor of
associated with Y 3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3)
acting as rotation around this coordinate axis acts as phase transformation of the complex coordi-
nate z of S2. Other rotations act as nonlinear holomorphic transformations respecting the complex
structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multiplication
in this case. If P k(Y 3) is light like, one can only require that the rotation group SO(2) serving as the
isotropy group of 3-momentum belongs to the group SO(3) characterizing the symplectic structure
and it seems that symplectic structure cannot be uniquely fixed without additional constraints in
this case. Probably this has no practical consequences since the 3-surfaces considered have actually
infinite size and 4-momentum is most probably time like for them. Note however that the direction
of 3-momentum defines unique axis such that SO(2) rotations around this axis are represented as
phase multiplication.

Similar almost unique frame exists also in CP2 degrees of freedom and corresponds to the
complex coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra
element defined by classical color charges Qa of Y 3. One can fix unique Cartan subgroup of U(2)
by noticing that SU(3) allows completely symmetric structure constants dabc such that Ra =
d bc
a QbQc defines Lie-algebra element commuting with Qa. This means that Ra and Qa span in

generic case U(1) × U(1) Cartan subalgebra and there are unique complex coordinates for which
this subgroup acts as phase multiplications. The space of nonequivalent frames is isomorphic
with CP (2) so that one can say that cm degrees of freedom correspond to Cartesian product
of SO(3, 1)/SO(3) hyperboloid and CP2 whereas coordinate choices correspond to the Cartesian
product of SO(3, 1)/SO(2) and SU(3)/U(1)× U(1).
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Symplectic transformations leave the value of δM4
+ radial coordinate rM invariant and this

implies large number of additional zero modes characterizing the size and shape of the 3-surface.
Besides this Kähler magnetic fluxes through the rM = constant sections of X3 as a function of rM
provide additional invariants, which are functions rather than numbers. The Fourier components
for the magnetic fluxes provide infinite number of symplectic invariants. The presence of these
zero modes imply that 3-surfaces behave much like classical objects in the sense that neither their
shape nor form nor classical Kähler magnetic fields, are subject to Gaussian fluctuations. Of
course, quantum superpositions of 3-surfaces with different values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations corre-
spond to zero modes of the Kähler metric (symplectic transformations act as dynamical symmetries
of the vacuum extremals of the Kähler action). If this is indeed the case, one can ask whether it
is possible to identify an integration measure for them.

If one can associate symplectic structure with zero modes, the symplectic structure defines
integration measure in a standard manner (for 2n-dimensional symplectic manifold the integration
measure is just the n-fold wedge power J ∧ J... ∧ J of the symplectic form J). Unfortunately, in
infinite-dimensional context this is not enough since divergence free functional integral analogous to
a Gaussian integral is needed and it seems that it is not possible to integrate in zero modes and that
this relates in a deep manner to state function reduction. If all symplectic transformations of δM4

+×
CP2 are represented as symplectic transformations of the configuration space, then the existence of
symplectic structure decomposing into Kähler (and symplectic) structure in complexified degrees
of freedom and symplectic (but not Kähler) structure in zero modes, is an automatic consequence.

4.5 The General Structure Of The Isometry Algebra

There are three options for the isometry algebra of WCW .

1. Isometry algebra as the algebra of CP2 symplectic transformations leaving invariant the
symplectic form of CP2 localized with respect to δM4

+.

2. Certainly the WCW metric in δM4
+ must be non-trivial and actually given by the magnetic

flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic genera-
tors constructed from quarks automatically give as anti-commutators this part of the WCW
metric. One could interpret these symplectic invariants as WCW Hamiltonians for δM4

+

symplectic transformations obtained when CP2 Hamiltonian is constant.

3. Isometry algebra consists of δM4
+×CP2 symplectic transformations. In this case a local color

transformation involves necessarily a local S2 transformation. Unfortunately, it is difficult
to decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a
unitary representation of the Lorentz group at light cone boundary define the most natural function
basis for the light cone boundary. The elements of this bases have also well defined scaling quantum
numbers and define also a unitary representation of the conformal algebra. The product of the
basic functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S2 provide an alternative function basis for the light cone boundary:

Hm
jk ≡ Yjm(θ, φ)rkM .

(4.6)

One can criticize this basis for not having nice properties under Lorentz group.
The product of basis functions is given by Glebch-Gordan coefficients for symmetrized tensor

product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-
Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The
basis is eigen-function basis for the imaginary part of the Virasoro generator L0 generating rotations
around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro
generator L0 = zd/dz = ρ∂ρ− 2

2∂φ has global single valued Hamiltonian, whereas the corresponding
representation for the transformation induced by the real part of L0, with a compensating radial
scaling added, cannot be realized as a global symplectic transformation.
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The Poisson bracket of two functions Hm
j1k1

and Hm
j2k2

can be calculated and is of the general
form

{Hm1

j1k
, Hm2

j2k2
} ≡ C(j1m1j2m2|j,m1 +m2)AH

m1+m2

j,k1+k2

. (4.7)

The coefficients are Glebch-Gordan coefficients for the anti-symmetrized tensor product for the
representations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accom-
panied by a local radial scaling compensating the conformal factor coming from the conformal
transformations having parametric dependence of radial variable and CP2 coordinates. It seems
however that isometries cannot in general be realized as symplectic transformations. The first
difficulty is that symplectic transformations cannot affect the value of the radial coordinate. For
rotation algebra the representation as symplectic transformations is however possible.

In CP2 degrees of freedom scalar function basis having definite color transformation properties
is desirable. Scalar function basis can be obtained as the algebra generated by the Hamiltonians
of color transformations by multiplication. The elements of basis can be typically expressed as
monomials of color Hamiltonians HA

c

HA
D =

∑
{Bj}

CADB1B2....BN

∏
Bi

HBi
c , (4.8)

where summation over all index combinations {Bi} is understood. The coefficients CADB1B2....BN

are Glebch-Gordan coefficients for completely symmetric N : th power 8 ⊗ 8... ⊗ 8 of octet repre-
sentations. The representation is not unique since

∑
AH

A
c H

A
c = 1 holds true. One can however

find for each representation D some minimum value of N .
The product of Hamiltonians HD1

A and HB
D2

can be decomposed by Glebch-Gordan coefficients
of the symmetrized representation (D1 ⊗D2)S as

HA
D1
HB
D2

= CABDD1D2DC(S)HC
D , (4.9)

where ′S′ indicates that the symmetrized representation is in question. In the similar manner one
can decompose the Poisson bracket of two Hamiltonians

{HA
D1
, HB

D2
} = CABDD1D2DC(A)HC

D . (4.10)

Here ′A′ indicates that Glebch-Gordan coefficients for the anti-symmetrized tensor product of the
representations D1 and D2 are in question.

One can express the infinitesimal generators of CP2 symplectic transformations in terms of the
color isometry generators JBc using the expansion of the Hamiltonian in terms of the monomials
of color Hamiltonians:

jADN = FADBJ
B
c ,

FADB = N
∑
{Bj}

CADB1B2...BN−1B

∏
j

HBj
c , (4.11)

where summation over all possible {Bj}: s appears. Therefore, the interpretation as a color group
localized with respect to CP2 coordinates is valid in the same sense as the interpretation of space-
time diffeomorphism group as local Poincare group. Thus one can say that TGD color is localized
with respect to the entire δM4

+ × CP2.
A convenient basis for the Hamiltonians of δM4

+ × CP2 is given by the functions

HmA
jkD = Hm

jkH
A
D .



4.6 Representation Of Lorentz Group And Conformal Symmetries At Light Cone
Boundary 27

The symplectic transformation generated by HmA
jkD acts both in M4 and CP2 degrees of freedom

and the corresponding vector field is given by

Jr = HA
DJ

rl(δM4
+)∂lH

m
jk +Hm

jkJ
rl(CP2)∂lH

A
D . (4.12)

The general form for their Poisson bracket is:

{Hm1A1

j1k1D1
, Hm2A2

j2k2D2
} = HA1

D1
HA2

D2
{Hm1

j1k1
, Hm2

j2k2
}+Hm1

j1k1
Hm2

j2k2
{HA1

D1
, HA2

D2
}

=
[
CA1A2A
D1D2D

(S)C(j1m1j2m2|jm)A + CA1A2A
D1D2D

(A)C(j1m1j2m2|jm)S

]
HmA
j,k1+k2,D .

(4.13)

What is essential that radial “momenta” and angular momentum are additive in δM4
+ degrees of

freedom and color quantum numbers are additive in CP2 degrees of freedom.

4.6 Representation Of Lorentz Group And Conformal Symmetries At
Light Cone Boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary
might provide natural building blocks for the construction of the WCW Hamiltonians. In the
following the explicit representation of the Lorentz algebra at light cone boundary is deduced,
and a function basis giving rise to the representations of Lorentz group and having very simple
properties under modified Poisson bracket of δM4

+ is constructed.

4.6.1 Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for
S2. The expression for the SU(2) generators of the Lorentz group are

Jx = (z2 − 1)d/dz + c.c. = L1 − L−1 + c.c. ,

Jy = (iz2 + 1)d/dz + c.c. = iL1 + iL−1 + c.c. ,

Jz = iz
d

dz
+ c.c. = iLz + c.c. . (4.14)

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m3

direction corresponds to an infinitesimal transformation

δm3 = −εrM ,

δrM = −εm3 = −ε
√
r2
M − (m1)2 − (m2)2 . (4.15)

The relationship between complex coordinates of S2 and M4 coordinates mk is given by stereo-
graphic projection

z =
(m1 + im2)

(rM −
√
r2
M − (m1)2 − (m2)2)

=
sin(θ)(cosφ+ isinφ)

(1− cosθ)
,

cot(θ/2) = ρ =
√
zz̄ ,

tan(φ) =
m2

m1
. (4.16)

This implies that the change in z coordinate doesn’t depend at all on rM and is of the following
form
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δz = −ε
2

(1 +
z(z + z̄)

2
)(1 + zz̄) . (4.17)

The infinitesimal generator for the boosts in z-direction is therefore of the following form

Lz = [
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
− iJz . (4.18)

Generators of Lx and Ly are most conveniently obtained as commutators of [Lz, Jy] and [Lz, Jx].
For Ly one obtains the following expression:

Ly = 2
(zz̄(z + z̄) + i(z − z̄))

(1 + zz̄)2
rM

∂

∂rM
− iJy , (4.19)

For Lx one obtains analogous expressions. All Lorentz boosts are of the form Li = −iJi +
local radial scaling and of zeroth degree in radial variable so that their action on the general gen-
erator Xklm ∝ zkz̄lrmM doesn’t change the value of the label m being a mere local scaling transfor-
mation in radial direction. If radial scalings correspond to zero norm isometries this representation
is metrically equivalent with the representations of Lorentz boosts as Möbius transformations.

4.6.2 Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S2 define in a natural manner infinite series of representation functions
transformed to each other in Lorentz transformations. The inner product defined by the integration
measure r2

MdΩdrM/rM remains invariant under Lorentz boosts since the scaling of rM induced by
the Lorentz boost compensates for the conformal scaling of dΩ induced by a Lorentz transformation
represented as a Möbius transformation. Thus unitary representations of Lorentz group are in
question.

The unitary main series representations of the Lorentz group are characterized by half-integer
m and imaginary number k2 = iρ, where ρ is any real number [A5]. A natural guess is that m = 0
holds true for all representations realizable at the light cone boundary and that radial waves are
of form rkM , k = k1 + ik2 = −1 + iρ and thus eigen states of the radial scaling so that the action
of Lorentz boosts is simple in the angular momentum basis. The inner product in radial degrees
of freedom reduces to that for ordinary plane waves when log(rM ) is taken as a new integration
variable. The complexification is well-defined for non-vanishing values of ρ.

It is also possible to have non-unitary representations of the Lorentz group and the realization
of the symmetric space structure suggests that one must have k = k1 + ik2, k1 half-integer. For
these representations unitarity fails because the inner product in the radial degrees of freedom is
non-unitary. A possible physical interpretation consistent with the general ideas about conformal
invariance is that the representations k = −1+ iρ correspond to the unitary ground state represen-
tations and k = −1 + n/2 + iρ, n = ±1,±2, ..., to non-unitary representations. The general view
about conformal invariance suggests that physical states constructed as tensor products satisfy the
condition

∑
i ni = 0 completely analogous to Virasoro conditions.

4.6.3 Representations of the Lorentz group with E2 × SO(2) as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone
boundary. Since SL(2, C) is the group generated by the generators L0 and L± of the conformal
algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded
as representations of the conformal algebra. One can require that the basis corresponds to eigen
functions of the rotation generator Jz and corresponding boost generator Lz. For functions which
do not depend on rM these generators are completely analogous to the generators L0 generating
scalings and iL0 generating rotations. Also the generator of radial scalings appears in the formulas
and one must consider the possibility that it corresponds to the generator L0.

In order to construct scalar function eigen basis of Lz and Jz, one can start from the expressions
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L3 ≡ i(Lz + Lz̄) = 2i[
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
+ iρ∂ρ ,

J3 ≡ iLz − iLz̄ = i∂φ . (4.20)

If the eigen functions do not depend on rM , one obtains the usual basis zn of Virasoro algebra, which
however is not normalizable basis. The eigenfunctions of the generators L3, J3 and L0 = irMd/drM
satisfying

J3fm,n,k = mfm,n,k ,

L3fm,n,k = nfm,n,k ,

L0fm,n,k = kfm,n,k . (4.21)

are given by

fm,n,k = eimφ
ρn−k

(1 + ρ2)k
× (

rM
r0

)k . (4.22)

n = n1 + in2 and k = k1 + ik2 are in general complex numbers. The condition

n1 − k1 ≥ 0

is required by regularity at the origin of S2 The requirement that the integral over S2 defining
norm exists (the expression for the differential solid angle is dΩ = ρ

(1+ρ2)2 dρdφ) implies

n1 < 3k1 + 2 .

From the relationship (cos(θ), sin(θ)) = (ρ2 − 1)/(ρ2 + 1), 2ρ/(ρ2 + 1)) one can conclude that
for n2 = k2 = 0 the representation functions are proportional to f sin(θ)n−k(cos(θ) − 1)n−k.
Therefore they have in their decomposition to spherical harmonics only spherical harmonics with
angular momentum l < 2(n− k). This suggests that the condition

|m| ≤ 2(n− k) (4.23)

is satisfied quite generally.
The emergence of the three quantum numbers (m,n, k) can be understood. Light cone boundary

can be regarded as a coset space SO(3, 1)/E2×SO(2), where E2×SO(2) is the group leaving the
light like vector defined by a particular point of the light cone invariant. The natural choice of the
Cartan group is therefore E2 × SO(2). The three quantum numbers (m,n, k) have interpretation
as quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and one
complex parameter. Thus k2 and n2, which are Lorentz invariants, might not be independent
parameters, and the simplest option is k2 = n2.

The nice feature of the function basis is that various quantum numbers are additive under
multiplication:

f(ma, na, ka)× f(mb, nb, kb) = f(ma +mb, na + nb, ka + kb) .

These properties allow to cast the Poisson brackets of the symplectic algebra of WCW into an
elegant form.

The Poisson brackets for the δM4
+ Hamiltonians defined by fmnk can be written using the

expression Jρφ = (1 + ρ2)/ρ as

{fma,na,ka , fmb,nb,kb} = i [(na − ka)mb − (nb − kb)ma]× fma+mb,na+nb−2,ka+kb

+ 2i [(2− ka)mb − (2− kb)ma]× fma+mb,na+nb−1,ka+kb−1 .

(4.24)
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4.6.4 Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations Gelfand.

1. The unitary representations discussed in [A5] are characterized by are constructed by deduc-
ing the explicit representations for matrix elements of the rotation generators Jx, Jy, Jz and
boost generators Lx, Ly, Lz by decomposing the representation into series of representations
of SU(2) defining the isotropy subgroup of a time like momentum. Therefore the states are
labeled by eigenvalues of Jz. In the recent case the isotropy group is E2 × SO(2) leaving
light like point invariant. States are therefore labeled by three different quantum numbers.

2. The representations of [A5] are realized the space of complex valued functions of complex
coordinates ξ and ξ labeling points of complex plane. These functions have complex degrees
n+ = m/2 − 1 + l1 with respect to ξ and n− = −m/2 − 1 + l1 with respect to ξ. l0
is complex number in the general case but for unitary representations of main series it is
given by l1 = iρ and for the representations of supplementary series l1 is real and satisfies
0 < |l1| < 1. The main series representation is derived from a representation space consisting
of homogenous functions of variables z0, z1 of degree n+ and of z0 and z1 of degrees n±.

One can separate express these functions as product of (z1)n
+

(z1)n− and a polynomial of
ξ = z1/z2 and ξ with degrees n+ and n−. Unitarity reduces to the requirement that the
integration measure of complex plane is invariant under the Lorentz transformations acting
as Moebius transformations of the complex plane. Unitarity implies l1 = −1 + iρ.

3. For the representations at δM4
+ formal unitarity reduces to the requirement that the inte-

gration measure of r2
MdΩdrM/rM of δM4

+ remains invariant under Lorentz transformations.
The action of Lorentz transformation on the complex coordinates of S2 induces a confor-
mal scaling which can be compensated by an S2 local radial scaling. At least formally the
function space of δM4

+ thus defines a unitary representation. For the function basis fmnk
k = −1 + iρ defines a candidate for a unitary representation since the logarithmic waves in
the radial coordinate are completely analogous to plane waves for k1 = −1. This condition
would be completely analogous to the vanishing of conformal weight for the physical states
of super conformal representations. The problem is that for k1 = −1 guaranteeing square
integrability in S2 implies −2 < n1 < −2 so that unitarity is possible only for the function
basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k1 is half-integer valued. First of all, WCW spinor fields are analogous to
ordinary spinor fields in M4, which also define non-unitary representations of Lorentz group.
Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals defined by
fmnk over 3-surfaces Y 3 are always well-defined. Thirdly, the continuous spectrum of k2

could be transformed to a discrete spectrum when k1 becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S2 degrees of
freedom and the non-unitarity of the inner product reflects itself as non-orthogonality of the eigen
function basis. Introducing the variable u = ρ2 + 1 as a new integration variable, one can express
the inner product in the form

〈ma, na, ka|mb, nb, kb〉 = πδ(k2a − k2b)× δm1,m2
× I ,

I =

∫ ∞
1

f(u)du ,

f(u) =
(u− 1)

(N−K)+i∆
2

uK+2
. (4.25)

The integrand has cut from u = 1 to infinity along real axis. The first thing to observe is that
for N = K the exponent of the integral reduces to very simple form and integral exists only for
K = k1a + k1b > −1. For k1i = −1/2 the integral diverges.
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The discontinuity of the integrand due to the cut at the real axis is proportional to the integrand
and given by

f(u)− f(ei2πu) =
[
1− e−π∆

]
f(u) ,

∆ = n1a − k1a − n1b + k1b . (4.26)

This means that one can transform the integral to an integral around the cut. This integral can
in turn completed to an integral over closed loop by adding the circle at infinity to the integration
path. The integrand has K + 1-fold pole at u = 0.

Under these conditions one obtains

I =
2πi

1− e−π∆
×R× (R− 1)....× (R−K − 1)× (−1)

N−K
2 −K−1 ,

R ≡ N −K
2

+ i∆ . (4.27)

This expression is non-vanishing for ∆ 6= 0. Thus it is not possible to satisfy orthogonality
conditions without the un-physical n = k, k1 = 1/2 constraint. The result is finite for K > −1 so
that k1 > −1/2 must be satisfied and if one allows only half-integers in the spectrum, one must
have k1 ≥ 0, which is very natural if real conformal weights which are half integers are allowed.

4.7 How The Complex Eigenvalues Of The Radial Scaling OperatorRe-
late To Symplectic Conformal Weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator rMd/drM ,
and the first guess was that the correct interpretation is as conformal weights. The problem is
however that the eigenvalues are complex. Second problem is that general arguments are not
enough to fix the spectrum of eigenvalues. There should be a direct connection to the dynamics
defined by Kähler action and the Kähler-Dirac action defined by it.

The construction of WCW spinor structure in terms of second quantized induced spinor fields
[K19] leads to the conclusion that the modes of induced spinor fields must be restricted at surfaces
with 2-D CP2 projection to guarantee vanishing W fields and well-defined em charge for them. In
the generic case these surfaces are 2-D string world sheets (or possibly also partonic 2-surfaces) and
in the non-generic case can be chosen to be such. The modes are labeled by generalized conformal
weights assignable to complex or hypercomplex string coordinate. Conformal weights are expected
to be integers from the experience with string models.

It is an open question whether these conformal weights are independent of the symplectic formal
weights or not but on can consider also the possibility that they are dependent. Note hovewer that
string coordinate is not reducible to the light-like radial coordinate in the generic case and one
can imagine situations in which rM is constant although string coordinate varies. Dependency
would be achieved if the Hamiltonians are generalized eigen modes of D = γxd/dx, x = log(r/r0),
satisfying DH = λγxH and thus of form exp(λx) = (r/r0)λ with the same spectrum of eigenvalues
λ as associated with the Kähler-Dirac operator. That log(r/r0) naturally corresponds to the
coordinate u assignable to the generalized eigen modes of Kähler-Dirac operator supports this
interpretation.

The recent view is that the two conformal weights are independent. The conformal weights
associated with the modes of Kähler-Dirac operator localized at string world sheets by the condition
that the electromagnetic charge is well-defined for the modes (classical induced W field must vanish
at string world sheets). The conformal weights of spinor modes would be integer valued as in string
models. About super-symplectic conformal weights associated one cannot say this.

This revives the forgotten TGD inspired conjecture that the conformal weights associated with
the generators (in the technical sense of the word) of the super-symplectic algebra are given by the
negatives of the zeros of Riemann Zeta h = −1/2 + iyi. Note that these conformal weights have
negative real part having interpretation in terms of tachyonic ground state needed in p-adic mass
calculations [K8]. The spectrum of conformal weights would be of form h = n/2 +

∑
i niyi. This

would conform with the association of Riemann Zeta to critical systems. From the identification of
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mass squared as conformal weight, the total conformal weights for the physical states should have
vanishing imaginary part be therefore non-negative integers. This would give rise to what might
be called conformal confinement.

5 Magnetic And Electric Representations Of WCW Hamil-
tonians

Symmetry considerations lead to the hypothesis that WCW Hamiltonians are apart from a factor
depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kähler function corresponds to a preferred extremal of Kähler action leads
to the hypothesis that WCW Hamiltonians corresponds to classical charges associated with the
Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of
CP2 corresponding duality corresponds to the self-duality of Kähler form stating that the magnetic
and electric parts of Kähler form are identical.

5.1 Radial Symplectic Invariants

All δM4
+ × CP2 symplectic transformations leave invariant the value of the radial coordinate rM .

Therefore the radial coordinate rM of X3 regarded as a function of S2 × CP2 coordinates serves
as height function. The number, type, ordering and values for the extrema for this height function
in the interior and boundary components are isometry invariants. These invariants characterize
not only the topology but also the size and shape of the 3-surface. The result implies that WCW
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) rM = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of
the situation. A good example about non-topological extrema is provided by a sphere with two
horns.

There are additional symplectic invariants. The “magnetic fluxes” associated with the δM4
+

symplectic form
JS2 = r2

Msin(θ)dθ ∧ dφ

over any X2 ⊂ X3 are symplectic invariants. In particular, the integrals over rM = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the
solid angle Ω(rM ) spanned by rM = constant section and thus r2

MΩ(rM ) characterizes transversal
geometric size of the 3-surface. A convenient manner to discretize these invariants is to consider
the Fourier components of these invariants in radial logarithmic plane wave basis discussed earlier:

Ω(k) =

∫ rmax

rmin

(rM/rmax)kΩ(rM )
drM
rM

, k = k1 + ik2 , perk1 ≥ 0 . (5.1)

One must take into account that for each section in which the topology of rM = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rM , rM constant section contains several components (to visualize
the situation consider torus as an example).

Also the quantities

Ω+(X2) =

∫
X2

|J | ≡
∫
|εαβJαβ |

√
g2d

2x

are symplectic invariants and provide additional geometric information about 3-surface. These
fluxes are non-vanishing also for closed surfaces and give information about the geometry of the
boundary components of 3-surface (signed fluxes vanish for boundary components unless they
enclose the tip of the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kähler metric vanishes. It is not at all obvious whether WCW integration measure in these degrees
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of freedom exists at all. A localization in zero modes occurring in each quantum jump seems a
more plausible and under suitable additional assumption it would have interpretation as a state
function reduction. In string model similar situation is encountered; besides the functional integral
determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance
discussed in the introduction is accepted, there is no need to integrate over the variable rM and
just the fluxes over the 2-surfaces X2

i identified as intersections of light like 3-D causal determinants
with X3 contain the data relevant for the construction of the WCW geometry. Also the symplectic
invariants associated with these surfaces are enough.

5.2 Kähler Magnetic Invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and
by its absolute value

Qm(X2) =

∫
X2

JCP2
= Jαβε

αβ√g2d
2x ,

Q+
m(X2) =

∫
X2

|JCP2 | ≡
∫
X2

|Jαβεαβ |
√
g2d

2x , (5.2)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic
transformations of CP2 and can be calculated once X3 is given.

For a closed surface Qm(X2) vanishes unless the homology equivalence class of the surface is
nontrivial in CP2 degrees of freedom. In this case the flux is quantized. Q+

M (X2) is non-vanishing
for closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary
of X2 only: ∫

X2 J =
∫
δX2 A .

J = dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of
X2 in which the sign of J remains fixed.

Qm(X2) =

∫
X2

JCP2
= Jαβε

αβ√g2d
2x ,

Q+
m(X2) =

∫
X2

|JCP2 | ≡
∫
X2

|Jαβεαβ |
√
g2d

2x , (5.3)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm(K,X2) =

∫
X2

fKJCP2 ,

Q+
m(K,X2) =

∫
X2

fK |JCP2
| ,

fK≡(s,n,k) = eisφ × ρn−k

(1 + ρ2)k
× (

rM
r0

)k (5.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3, and
the magnetic fluxes over the representatives these surfaces give thus good candidates for zero
modes.

1. If effective 2-dimensionality is accepted, the surfaces X2
i defined by the intersections of light

like 3-D causal determinants X3
l and X3 provide a natural identification for these 2-surfaces.
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2. Without effective 2-dimensionality the situation is more complex. Since symplectic trans-
formations leave rM invariant, a natural set of 2-surfaces X2 appearing in the definition of
fluxes are separate pieces for rM = constant sections of 3-surface. For a generic 3-surface,
these surfaces are 2-dimensional and there is continuum of them so that discrete Fourier
transforms of these invariants are needed. One must however notice that rM = constant
surfaces could be be 3-dimensional in which case the notion of flux is not well-defined.

5.3 Isometry Invariants And Spin Glass Analogy

The presence of isometry invariants implies coset space decomposition ∪iG/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in
vacuum modes. Therefore the functional integral over the WCW decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for
the various vacuum mode contributions are given by the probability density associated with the
zero modes. The integration over the zero modes is a highly problematic notion and it could be
eliminated if a localization in the zero modes occurs in quantum jumps. The localization would
correspond to a state function reduction and zero modes would be effectively classical variables
correlated in one-one manner with the quantum numbers associated with the quantum fluctuating
degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(−H/T ). In fact, since TGD Universe is also critical, exact similarity requires that
also the temperature is critical for various contributions to the average partition function of spin
glass phase. The characterization of isometry invariants and zero modes of the Kähler metric
provides a precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field
theory limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase
motivates the hypothesis that effective quantum average space-time possesses ultra-metric topology.
This approach leads to excellent predictions for elementary particle masses and predicts even new
branches of physics [K9, K18]. As a matter fact, an entire fractal hierarchy of copies of standard
physics is predicted.

5.4 Magnetic Flux Representation Of The Symplectic Algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X2

i defined by
the intersections of light-like light-like 3-surfaces X3

l,i with X3 at the boundaries of CD considered.
Bearing in mind that zero energy ontology is the correct approach, one can restrict the consideration
on fluxes at δM4

+ × CP2 One must also remember that if the proposed symmetries hold true, it
is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-
time sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically
attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is
discussed in [K7] by starting from the observation that TGD could define a natural realization of
braids, braid cobordisms, and 2-knots.

5.4.1 Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for WCW
. Symplectic transformations of CP2 act as U(1) gauge transformations on the Kähler potential of
CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fm,n,k (see Eq. 4.22 ) defining the Lorentz covariant function basis HA, A ≡ (a,m, n, k)
at the light cone boundary: HA = Ha × f(m,n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind both signed and unsigned magnetic flux
via the following formulas:
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Qm(HA|X2) =

∫
X2

HAJ ,

Q+
m(HA|X2) =

∫
X2

HA|J | .

(5.5)

Here X2 corresponds to any surface X2
i resulting as intersection of X3 with X3

l,i. Both signed and
unsigned magnetic fluxes and their superpositions

Qα,βm (HA|X2) = αQm(HA|X2) + βQ+
m(HA|X2) , A ≡ (a, s, n, k) (5.6)

provide representations of Hamiltonians. Note that symplectic invariants Qα,βm correspond to HA =
1 and HA = fs,n,k. HA = 1 can be regarded as a natural central term for the Poisson bracket
algebra. Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows
as a natural consequence.

The obvious question concerns about the correct values of the parameters α and β. One
possibility is that the flux is an unsigned flux so that one has α = 0. This option is favored by
the construction of the WCW spinor structure involving the construction of the fermionic super
charges anti-commuting to WCW Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so
that β vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the
defining formulas with its dual ∗J

∗Jαβ = ε γδ
αβ Jγδ.

For HA = 1 these fluxes reduce to ordinary Kähler electric fluxes. These fluxes are however not
symplectic covariants since the definition of the dual involves the induced metric, which is not
symplectic invariant. The electric gauge fluxes for Hamiltonians in various representations of the
color group ought to be important in the description of hadrons, not only as string like objects,
but quite generally. These degrees of freedom would be identifiable as non-perturbative degrees of
freedom involving genuinely classical Kähler field whereas quarks and gluons would correspond to
the perturbative degrees of freedom, that is the interactions between CP2 type extremals.

5.4.2 Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that
the Lie-derivative of the flux Qα,βm (HA) with respect to the vector field X(HB) is given by

X(HB) ·Qα,βm (HA) = Qα,βm ({HB , HA}) . (5.7)

The transformation properties of Qα,βm (HA) are very nice if the basis for HB transforms according
to appropriate irreducible representation of color group and rotation group. This in turn implies
that the fluxes Qα,βm (HA) as functionals of 3-surface on given orbit provide a representation for the
Hamiltonian as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two
fluxes Qα,βm (HA) and Qα,βm (HB) can be defined as

{Qα,βm (HA), Qα,βm (HB)} ≡ X(HB) ·Qα,βm (HA)

= Qα,βm ({HA, HB}) = Qα,βm ({HA, HB}) . (5.8)

The study of WCW gamma matrices identifiable as symplectic super charges demonstrates that the
supercharges associated with the radial deformations vanish identically so that radial deformations
correspond to zero norm degrees of freedom as one might indeed expect on physical grounds. The
reason is that super generators involve the invariants jakγk which vanish by γrM = 0.
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The natural central extension associated with the symplectic group of CP2 ({p, q} = 1!) induces
a central extension of this algebra. The central extension term resulting from {HA, HB} when CP2

Hamiltonians have {p, q} = 1 equals to the symplectic invariant Qα,βm (f(ma+mb, na+nb, ka+kb))
on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac
Moody type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the deformations
of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at δCD intact
and are highly relevant to the elementary particle physics. This algebra allows a representation in
terms of X3

l local Hamiltonians generating isometries of δM4
± ×CP2. Hamiltonian representation

is essential for super-symmetrization since fermionic super charges anti-commute to Hamiltonians
rather than vector fields: this is one of the deep differences between TGD and string models.
Kac-Moody algebra does not contribute to WCW metric since by definition the generators vanish
at partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP2 symplectic algebra localized with respect to the light
cone boundary and relevant to the configuration space geometry. This extends to S2 × CP2 -or
rather δM4

± × CP2 symplectic algebra and this gives the strongest predictions concerning WCW
metric. The local radial Virasoro localized with respect to S2 × CP2 acts in zero modes and has
automatically vanishing norm with respect to WCW metric defined by super charges.

5.5 Symplectic Transformations Of ∆M4
±×CP2 As Isometries And Electric-

Magnetic Duality

According to the construction of Kähler metric, symplectic transformations of δM4
± × CP2 act

as isometries whereas radial Virasoro algebra localized with respect to CP2 has zero norm in the
WCW metric.

Hamiltonians can be organized into light like unitary representations of so(3, 1) × su(3) and
the symmetry condition Zg(X,Y ) = 0 requires that the component of the metric is so(3, 1) ×
su(3) invariant and this condition is satisfied if the component of metric between two different
representationsD1 andD2 of so(3, 1)×su(3) is proportional to Glebch-Gordan coefficient CD1D2,DS

between D1⊗D2 and singlet representation DS . In particular, metric has components only between
states having identical so(3, 1)× su(3) quantum numbers.

Magnetic representation of WCW Hamiltonians means the action of the symplectic transfor-
mations of the light cone boundary as WCW isometries is an intrinsic property of the light cone
boundary. If electric-magnetic duality holds true, the preferred extremal property only determines
the conformal factor of the metric depending on zero modes. This is precisely as it should be
if the group theoretical construction works. Hence it should be possible by a direct calculation
check whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in
complex coordinates is invariant under isometries. Symplectic invariance of the metric means that
matrix elements of the metric are left translates of the metric along geodesic lines starting from the
origin of coordinates, which now naturally corresponds to the preferred extremal of Kähler action.
Since metric derives from symplectic form this means that the matrix elements of symplectic form
given by Poisson brackets of Hamiltonians must be left translates of their values at origin along
geodesic line. The matrix elements in question are given by flux Hamiltonians and since symplectic
transforms of flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian,
it seems that the conditions are satisfied.

5.6 Quantum Counterparts Of The Symplectic Hamiltonians

The matrix elements of WCW Kähler metric can be expressed in terms of anti-commutators of
WCW gamma matrices identified as super-symplectic super-charges, which might be called super-
Hamiltonians. It is these operators which are the most relevant from the point of view of quantum
TGD.

The generalization for the definition WCW super-Hamiltonians defining WCW gamma matrices
is discussed in detail in [K14] feeds in the wisdom gained about preferred extremals of Kähler action
and solutions of the Kähler-Dirac action: in particular, about their localization at string worlds
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sheets (right handed neutrino could be an exception). Second quantized Noether charges in turn
define representation of WCW Hamiltonians as operators.

The basic formulas generalize as such: the only modification is that the super-Hamiltonian of
δM4
±×CP2 at given point of partonic 2-surface is replaced with the Noether super charge associated

with the Hamiltonian obtained by integrating the 1-D super current over string emanating from
partonic 2-surface. Right handed neutrino spinor is replaced with any mode of the Kähler-Dirac
operator localized at string world sheet in the case of Kac-Moody sub-algebra of super-symplectic
algebra corresponding to symplectic isometries at light-cone boundary and CP2. The original
proposal involved only the contractions with covariantly constant right- handed neutrino spinor
mode but now one can allow contractions with all spinor modes - both quark like and leptonic
ones. One obtains entire super-symplectic algebra and the direct sum of these algebras is used
to construct physical states. This step is analogous to the replacement of point like particle with
string.

The resulting super Hamiltonians define WCW gamma matrices. They are labelled by two
conformal weights. The first one is the conformal weight associated with the light-like coordinate of
δM4
±×CP2. Second conformal weight is associated with the spinor mode and the coordinate along

stringy curve and corresponds to the usual stringy conformal weight. The symplectic conformal
weight can be more general - I have proposed its spectrum to be generated by the zeros of Riemann
zeta. The total conformal weight of a physical state would be non-negative real integer meaning
conformal confinement. Symplectic conformal symmetry can be assumed to be broken: an entire
hierarchy of breakings is obtained corresponding to hierarchies of sub-algebra of the symplectic
algebra isomorphic with it quantum criticalities, Planck constants, and dark matter. Breaking
means that only the sub-algebra of super-symplectic algebra isomorphic to it corresponds vanishing
elements of the WCW metric: in Hilbert space picture these gauge degrees of freedom correspond
to zero norm states.

The presence of two conformal weights is in accordance with the idea that a generalization of
conformal invariance to 4-D situation is in question. If Yangian extension of conformal symmetries
is possible and would bring an additional integer n telling the degree of multi-locality of Yangian
generators defined as the number of strings at which the generator acts (the original not proposal
was as the number of partonic 2-surfaces). For super-symplectic algebra the degree of multi-locality
equals to n = 1. Measurement resolution increases with n. This is also visible in the properties
of space-time surfaces since string world sheets and possibly also partonic 2-surfaces and their
light-like orbits provide the holographic data - kind of skeleton - determining space-time surface
associated with them.

6 General Expressions For The Symplectic And Kähler Forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of
WCW . The fact that these expressions involve only first variation of the Kähler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.

6.1 Closedness Requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of δM4
+ × CP2 suggest

a general representation for the components of the symplectic form of the WCW . The basic
requirement is that Kähler form satisfies the defining condition

X · J(Y, Z) + J([X,Y ], Z) + J(X, [Y,Z]) = 0 , (6.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

6.2 Matrix Elements Of The Symplectic Form As Poisson Brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and
X(HB)) defined by the Hamiltonians HA and HB of δM4

+ × CP2 isometries is expressible as
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Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (6.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Qα,βm (HA,k) of Eq. 5.5 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(HA), X(HB)) = Qα,βm ({HA, HB}) .

(6.3)

Recall that the superscript α, β refers the coefficients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Qα,βm contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y 3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

Qα,βm (HA)em = Qα,βe (HA) +Qα,βm (HA) = (1 +K)Qα,βm (HA) . (6.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are
dimensionless so that commutators do not involve ~. The commutators would come as

Qα,βem ({HA, HB})→ (1 +K)Qα,βm ({HA, HB}) . (6.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives

of the Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JIδ
I,J .

JI = 1 . (6.6)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has JI 6= 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
∏
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in Dar-

boux coordinates as

A =
∑
I

JIPIdQ
I . (6.7)
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6.3 General Expressions For Kähler Form, Kähler Metric And Kähler
Function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZ
iZ̄j

= iGZ
iZ̄j

= ∂HAZi∂HB Z̄jJAB , (6.8)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZ
iZ̄j

= iGZ
iZ̄j

=
∑
I

J(I)(∂P iZi∂QI Z̄j − ∂QIZi∂P I Z̄j) . (6.9)

Kähler function can be formally integrated from the relationship

AZi = i∂ZiK ,

AZ̄i = −i∂ZiK . (6.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

∫ Z

0

(AZidZi −AZ̄idZ̄i) . (6.11)

6.4 Diff(X3) Invariance And Degeneracy And Conformal Invariances
Of The Symplectic Form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degener-
ate. This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA

or HB is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality
holds true, J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional diffeomorphism
d(HA) at the surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates diffeomorphism, the action of X(HA) reduces to the action of the vector field XA

of some X2
i -diffeomorphism. Since Q(HB |rM ) is manifestly invariant under the diffemorphisms of

X2, the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrand X under the infinitesimal transformation rM → rM+εrnM
is given by rnMdX/drM . Replacing rM with r−n+1

M /(−n+ 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.
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6.5 Complexification And Explicit Form Of The Metric And Kähler
Form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to “positive” frequencies and which to “negative frequencies” and which to zero frequencies that
is to decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0.
One must distinguish between Can0 and zero modes, which are not considered here at all. For
instance, CP2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector
Can0 could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (6.12)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (6.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 6.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (6.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.
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6.6 Comparison Of CP2 Kähler Geometry With Configuration Space
Geometry

The explicit discussion of the role of g = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = t + h decomposition
corresponds to? Can one derive the components of the metric and Kähler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

6.6.1 Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of CP2 u(2) sub-algebra transforms as g ◦ u(2) ◦ g−1 when the point s is replaced by gsg−1.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to
identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components Ja+ = jak∂k and ja− = jak̄∂k̄. One can introduce what might be
called half Poisson bracket and half inner product defined as

{Ha, Hb}−+ ≡ ∂k̄H
aJ k̄l∂lH

b

= jakJkl̄j
bl̄ = −i(ja+, jb−) . (6.15)

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
(
i{Ha, Hb}−+

)
,

(ja, jb) = 2Re
(
i(ja+, j

b
−)
)

= 2Re
(
i{Ha, Hb}−+

)
. (6.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of CP2.

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}−+ = 0 ,

Re (i{h, t}−+) = 0 , Im (i{h, t}−+) = 0 ,

Re (i{t, t}−+) 6= 0 , Im (i{t, t}−+) 6= 0 .

(6.17)
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2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h, h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between
the elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the
only possibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, t} brackets at origin as being due to a symplectic central extension. For instance,
for S2 the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(θ) representing a rotation around z-axis with H3 = cos(θ)− 1 so that
the Poisson bracket of the generators H1 and H2 can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kähler function.

6.6.2 Cartan algebra decomposition at the level of WCW

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW . The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kähler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification.

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effec-
tively reduce Kac-Moody generators associated with X3

l to X2 = X3
l ∩ δM4

±×CP2. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K1]. The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K19] relies to this picture as also the recent view about M -matrix [K3].

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.

6.7 Comparison With Loop Groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie group G [A2], which served as the inspirer of the WCW geometry approach
but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ikφ)TA, where TA generates the finite-dimensional Lie-algebra g and φ denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition
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T = {X(k > 0, A)} ⊕ {X(k < 0, A)} ⊕ {X(k = 0, A)} = T+ ⊕ T− ⊕ T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2δ(k1 + k2)δ(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of δM4

+×CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length ∆rM with periodic
boundary conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of CP2 might correspond to
non-zero modes also because they are not exact symmetries of Kähler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cutoffs although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP2 symplectic transformations
local with respect to δM4

+ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

6.8 Symmetric Space Property Implies Ricci Flatness And Isometric
Action Of Symplectic Transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

(6.18)

In present case the equations imply that all commutators of the Lie-algebra generators of Can(6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition
is extremely strong and guarantees isometric action of Can(δM4

+ × CP2) as well as Ricci flatness
of the WCW metric.

The requirement [t, t] ⊂ h and [h, t] ⊂ t are satisfied if the generators of the isometry algebra
possess generalized parity P such that the generators in t have parity P = −1 and the generators
belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The
first possibility to come into mind is that odd values of n correspond to P = −1 and even values to
P = 1. Since n is additive in commutation, this would automatically imply h⊕t decomposition with
the required properties. This assumption looks however somewhat artificial. TGD however forces a
generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger
algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This
suggests strongly that isometry generators are labeled by half integer conformal weight and that
half-odd integer conformal weight corresponds to parity P = −1 whereas integer conformal weight
corresponds to parity P = 1. Coset space would structure would state conformal invariance of the
theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y, Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (6.19)
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If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (6.19 ) vanish separately. This is true if the conditions

Qα,βm ({HA, {HB , HC}}) = 0 , (6.20)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from
the [t, t] ⊂ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (6.20 ) as consistency conditions on the initial values of the time derivatives of
embedding space coordinates whereas in general case this is possible. If the consistency conditions
are satisfied for a single surface on the orbit of symplectic group then they are satisfied on the
entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement of time reversal
invariance might well force Kähler electric alternative.

7 Ricci Flatness And Divergence Cancelation

Divergence cancelation in WCW integration requires Ricci flatness and in this section the argu-
ments in favor of Ricci flatness are discussed in detail.

7.1 Inner Product From Divergence Cancelation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product
is given by integrating the usual Fock space inner product defined at each point of WCW over
the reduced WCW containing only the 3-surfaces Y 3 belonging to δH = δM4

+ × CP2 (“light-cone
boundary”) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (7.1)

The degeneracy for the preferred extremals of Kähler action implies additional summation over the
degenerate extremals associated with Y 3. The restriction of the integration on light cone boundary
is Diff4 invariant procedure and resolves in elegant manner the problems related to the integration
over Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic
vacuum functional exp(K) from the definition of the inner product and by assuming that it is
included into the spinor fields themselves. Probably it is just a matter of taste how the necessary
bosonic vacuum functional is included into the inner product: what is essential that the vacuum
functional exp(K) is somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product
and from the unitarity of the standard L2 inner product defined by WCW integration in the set of
the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the reduction
of WCW integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function
appears in the inner product also in the context of the finite dimensional group representations. For
the representations of the non-compact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1)
endowed with Kähler metric) the exponent of Kähler function is necessary in order to get square
integrable representations [B3]. The scalar product for two complex valued representation functions
is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (7.2)

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite
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dimensional case this corresponds to the restriction to single unitary representation of the group
in question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system
is bound from above: the generation of electric Kähler fields gives negative contributions to the
action. This implies that at the limit of the infinite system the average action per volume is non-
positive. For systems having negative average density of action vacuum functional exp(K) vanishes
so that only configurations with vanishing average action per volume have significant probability.
On the other hand, the choice exp(−K) would make theory unstable: probability amplitude would
be infinite for all configurations having negative average action per volume. In the fourth part of
the book it will be shown that the requirement that average Kähler action per volume cancels has
important cosmological consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the Kähler
function as a Taylor series around maximum of Kähler function and use the contravariant Kähler
metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum
functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so
that one avoids divergences coming from it. The non-locality of the Kähler function as a functional
of the 3-surface serves as an additional regulating mechanism: if K(X3) were a local functional of
X3 one would encounter divergences in the perturbative expansion.

The requirement that quantum jump corresponds to a quantum measurement in the sense of
quantum field theories implies that quantum jump involves localization in zero modes. Localization
in the zero modes implies automatically p-adic evolution since the decomposition of the WCW
into sectors DP labeled by the infinite primes P is determined by the corresponding decomposition
in zero modes. Localization in zero modes would suggest that the calculation of the physical
predictions does not involve integration over zero modes: this would dramatically simplify the
calculational apparatus of the theory. Probably this simplification occurs at the level of practical
calculations if U -matrix separates into a product of matrices associated with zero modes and fiber
degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to
different values of zero modes and here one cannot actually avoid integrals over zero modes. To
achieve this one is forced to define the transition probabilities for quantum jumps involving a
localization in zero modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m→ s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level
of S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function
basis can be freely constructed so that divergence difficulties could be avoided. An open question
is whether this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since WCW metric is degenerate and the bosonic propagator is essentially the contravariant
metric, bosonic integration is expected to reduce to an integration over the zero modes. For
instance, isometry invariants are variables of this kind. These modes are analogous to the
parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in WCW integration. It should be noticed that
αK , when defined by the criticality condition, could also depend on the coordinates param-
eterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the
bosonic integral. Symmetric space property suggests that for the given values of the zero
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modes there is only single extremum and corresponds to the maximum of the Kähler function.
There are theorems ( Duistermaat-Hecke theorem) stating that semiclassical approximation
is exact for certain systems (for example for integrable systems [A3] ). Symmetric space
property suggests that Kähler function might possess the properties guaranteeing the exact-
ness of the semiclassical approximation. This would mean that the calculation of the integral∫
exp(K)

√
GdY 3 and even more complex integrals involving WCW spinor fields would be

completely analogous to a Gaussian integration of free quantum field theory. This kind of
reduction actually occurs in string models and is consistent with the criticality of the Kähler
coupling constant suggesting that all loop integrals contributing to the renormalization of
the Kähler action should vanish. Also the condition that WCW integrals are continuable to
p-adic number fields requires this kind of reduction.

7.2 Why Ricci Flatness

It has been already found that the requirement of divergence cancelation poses extremely strong
constraints on the metric of the WCW. The results obtained hitherto are the following.

1. If the vacuum functional is the exponent of Kähler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.

2. The non-locality of the Kähler action gives good hopes of obtaining divergence free pertur-
bation theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.

1. Dirac operator should be a well defined operator. In particular its square should be well
defined. The problem is that the square of Dirac operator contains curvature scalar, which
need not be finite since it is obtained via two infinite-dimensional trace operations from the
curvature tensor. In case of loop spaces [A2] the Kähler property implies that even Ricci
tensor is only conditionally convergent. In fact, loop spaces with Kähler metric are Einstein
spaces (Ricci tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [A4]

Rkl̄ = ∂k∂l̄ln(det(g)) (7.3)

in Kähler metric. This obviously simplifies considerably functional integration over WCW:
one obtains just the standard perturbative field theory in the sense that metric determinant
gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it
also eliminates divergences. This is seen by expanding the determinant as a functional Taylor
series with respect to the coordinates of WCW. In local complex coordinates the first term
in the expansion of the metric determinant is determined by Ricci tensor

δ
√
g ∝ Rkl̄zkz̄l . (7.4)

In WCW integration using standard rules of Gaussian integration this term gives a contri-
bution proportional to the contraction of the propagator with Ricci tensor. But since the
propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order
to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor
vanishes.
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4. The following group theoretic argument suggests that Ricci tensor either vanishes or is di-
vergent. The holonomy group of the WCW is a subgroup of U(n = ∞) (D = 2n is the
dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if the
U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the
trace of the U(1) generator and since this generator corresponds to an infinite dimensional
unit matrix the trace diverges: therefore given element of the Ricci tensor is either infinite or
vanishes. Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity.
This näıve argument doesn’t hold true in the case of loop spaces, for which Kähler metric
with finite non-vanishing Ricci tensor exists [A2] . Note however that also in this case the
sum defining Ricci tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the vanishing
of the Ricci tensor is equivalent with the absence of divergences in WCW integration. That
divergences are absent is suggested by the non-locality of the Kähler function as a functional of
3-surface: the divergences of local field theories result from the locality of interaction vertices.
Ricci flatness in vibrational degrees of freedom is not only necessary mathematically. It is also
appealing physically: one can regard Ricci flat WCW as a vacuum solution of Einstein’s equations
Gαβ = 0.

7.3 Ricci Flatness And Hyper Kähler Property

Ricci flatness property is guaranteed if WCW geometry is Hyper Kähler [A8, A1] (there exists
3 covariantly constant antisymmetric tensor fields, which can be regarded as representations of
quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the con-
tractions of the curvature tensor appearing in the components of the Ricci tensor transform to
traces over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that
the traces vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the
vibrational degrees is a multiple of the metric tensor so that Ricci scalar has an infinite value. This
is basically due to the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the WCW.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of
U(1) algebra. Since volume preserving transformations are in question, the traces of the
symplectic generators vanish identically and in finite-dimensional this should be enough for
Ricci flatness even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The ele-
ments of the Ricci tensor are expressible in terms of traces of the generators of the holonomy
group U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci
tensor is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of
Kähler function and holonomy group corresponds to super-symplectic generators labelled by
integer valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n
vanish at the maximum of the Kähler function, the curvature scalar should vanish at the
maximum and by the symmetric space property everywhere. These conditions correspond to
Virasoro conditions in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing
even when the holonomy algebra does not contain U(1) factor. It will be found that symmetric
space property guarantees Ricci flatness even in this case and the reason is essentially the
vanishing of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.
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1. The dimensions of the embedding space and space-time are 8 and 4 respectively so that the
dimension of WCW in vibrational modes is indeed multiple of four as required by Hyper
Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of WCW. Since any direction on the sphere S2 defined by the linear combinations of
quaternionic imaginary units with unit norm defines a particular complexification physically,
Hyper Kähler property means the possibility to perform complexification in S2-fold ways.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of WCW.
First of all, the direction of the quantization axis for the spherical harmonics or for the eigen
states of Lorentz Cartan algebra at δM4

+ can be chosen in S2-fold ways. Quaternion conformal
invariance means Hyper Kähler property almost by definition and the S2-fold degeneracy for
the complexification is obvious in this case.

If these näıve arguments survive a more critical inspection, the conclusion would be that the
effective 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic
symmetries would also imply Hyper Kähler property of WCW and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension
of Minkowski space factor of the embedding space.

In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group
of WCW is isomorphic to some subgroup of SU(n = ∞) instead of U(n = ∞) (n is the complex
dimension of WCW) implied by the Kähler property of the metric. We also derive an expression for
the Ricci tensor in terms of the structure constants of the isometry algebra and WCW metric. The
expression for the Ricci tensor is formally identical with that obtained by Freed for loop spaces:
the only difference is that the structure constants of the finite-dimensional group are replaced with
the group Can(δH). Also the arguments in favor of Hyper Kähler property are discussed in more
detail.

7.4 The Conditions Guaranteeing Ricci Flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci
tensor is given by the following expression in complex vielbein basis

RAB̄ = RAC̄BC̄ , (7.5)

where the latter summation is only over the antiholomorphic indices C̄. Using the cyclic identities

∑
cycl C̄BD̄

RAC̄BD̄ = 0 , (7.6)

the expression for Ricci tensor reduces to the form

RAB̄ = RAB̄CC , (7.7)

where the summation is only over the holomorphic indices C. This expression can be regarded as a
trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is taken
over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is
subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if WCW metric is Kähler and possesses infinite-dimensional isometry
algebra with the property that its generators form a complete basis for the tangent space (every
tangent vector is expressible as a superposition of the isometry generators plus zero norm vector)
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it is possible to derive a representation for the Ricci tensor in terms of the structure constants of
the isometry algebra and of the components of the metric and its inverse in the basis formed by the
isometry generators and that Ricci tensor vanishes identically for the proposed complexification
of the WCW provided the generators {HA,m 6=0, HB,n6=0} correspond to zero norm vector fields of
WCW.

The general definition of the curvature tensor as an operator acting on vector fields reads

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (7.8)

If the vector fields considered are isometry generators the covariant derivative operator is given by
the expression

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 ,

(Ad∗XY,Z) = (Y,AdXZ) , (7.9)

where AdXY = [X,Y ] and Ad∗X denotes the adjoint of AdX with respect to WCW metric.
In the sequel we shall assume that the vector fields in question belong to the basis formed by

the isometry generators. The matrix representation of AdX in terms of the structure constants
CX,Y :Z of the isometry algebra is given by the expression

AdmXn = CX,Y :Z ŶnZ
m ,

[X,Y ] = CX,Y :ZZ ,

Ŷ = g−1(Y, V )V ,

(7.10)

where the summation takes place over the repeated indices and Ŷ denotes the dual vector field of Y
with respect to the WCW metric. From its definition one obtains for Ad∗X the matrix representation

Ad∗mXn = CX,Y :Z Ŷ
mZn ,

Ad∗XY = CX,U :V g(Y, U)g−1(V,W )W = g(Y,U)g−1([X,U ],W )W , (7.11)

where the summation takes place over the repeated indices.
Using the representations of ∇X in terms of AdX and its adjoint and the representations of AdX

and Ad∗X in terms of the structure constants and some obvious identities (such as C[X,Y ],Z:V =
CX,Y :UCU,Z:V ) one can by a straightforward but tedious calculation derive a more detailed ex-
pression for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor
has however turned to be very tedious even in the case of the diagonal metric and in the following
we shall use a more convenient representation [A2] of the curvature tensor applying in case of the
Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators TX
defined as linear operators in the “positive energy part” G+ of the isometry algebra spanned by
the (1, 0) parts of the isometry generators. In present case the positive and negative energy parts
and cm part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k > 0} ,

G− = {HAk|k < 0} ,

G0 = {HAk|k = 0} . (7.12)

Here HAk denote the Hamiltonians generating the symplectic transformations of δH. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k ≥ 0, which
corresponds to the imaginary part of the scaling momentum K = k1+iρ associated with the factors
(rM/r0)K . A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ
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is discrete and ρ = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with ρ = 0 elements vanish for the maximum of Kähler function which can be taken to
be the point where the calculations are done.

TX differs from AdX in that the negative energy part of AdXY = [X,Y ] is dropped away:

TX : G+ → G+ ,

Y → [X,Y ]+ . (7.13)

Here ”+” denotes the projection to “positive energy” part of the algebra. Using Toeplitz operators
one can associate to various isometry generators linear operators Φ(X0), Φ(X−) and Φ(X+) acting
on G+:

Φ(X0) = TX0
, X0εG0 ,

Φ(X−) = TX− , X−εG− ,

Φ(X+) = −T ∗X− , X+εG+ . (7.14)

Here “*” denotes hermitian conjugate in the diagonalized metric: the explicit representation Φ(X+)
is given by the expression [A2]

Φ(X+) = D−1TX−D ,

DX+ = d(X)X− ,

d(X) = g(X−, X+) . (7.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,Φ(X0), Φ(X−) and Φ(X+) in terms of metric and structure
constants of the isometry algebra are in the case of the diagonal metric given by the expressions

Φ(X0)Y+ = CX0,Y+:U+
U+ ,

Φ(X−)Y+ = CX−,Y+:U+
U+ ,

Φ(X+)Y+ =
d(Y )

d(U)
CX−,Y−:U−U+ . (7.16)

The expression for the action of the curvature tensor in positive energy part G+ of the isometry
algebra in terms of the these operators is given as [A2] :

R(X,Y )Z+ = {[Φ(X),Φ(Y )]− Φ([X,Y ])}Z+ . (7.17)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci
tensor is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of
the curvature tensor with respect to indices associated with G+.

Ricci(X+, Y−) = (Ẑ+, R(X+, Y−)Z+) ≡ Trace(R(X+, Y−)) ,

(7.18)

where the summation over Z+ generators is performed.
Using the explicit representations of the operators Φ one obtains the following explicit expres-

sion for the Ricci tensor

Ricci(X+, Y−) = Trace{[D−1TX+
D,TY− ]− T[X+,Y−]|G0+G−

− D−1T[X+,Y−]|G+
D} . (7.19)
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This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case.
This term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic
transformations are volume-preserving the traces of Lie-algebra generators vanish so that this term
is absent. The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces.
It can be written explicitly using the explicit representations of the various operators appearing in
the formula:

Trace{[D−1TX−D,TY− ]} =
∑
Z+,U+

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)

− CX−,Z−:U−CY−,U+:Z+

d(Z)

d(U)
] . (7.20)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect
to radial quantum number, one has m(X−) = m(Y−) for the non-vanishing elements of the Ricci
tensor. Furthermore, one has m(U) = m(Z) −m(Y ), which eliminates summation over m(U) in
the first term and summation over m(Z) in the second term. Note however, that summation over
other labels related to symplectic algebra are present.

By performing the change U → Z in the second term one can combine the sums together and
as a result one has finite sum

∑
0<m(Z)<m(X)

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)
= C

∑
0<m(Z)<m(X)

m(X)

m(Z)−m(X)
,

C =
∑
Z,U

CX,U :ZCY,Z:U
d0(U)

d0(Z)
. (7.21)

Here the dependence of d(X) = |m(X)|d0(X) on m(X) is factored out; d0(X) does not depend on
kX . The dependence on m(X) in the resulting expression factorizes out, and one obtains just the
purely group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive
to write the sum in terms of the metric in the symplectic degrees of freedom to see the geometry
behind the Ricci flatness:

C =
∑
Z,U

g([Y,Z], U)g−1([X,U ], Z) . (7.22)

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commuta-
tors in complexified basis are always between generators in Can6=0; that is they do not not belong
to rigid su(2)× su(3).

The condition guaranteeing Ricci flatness at the maximum of Kähler function and thus every-
where is simple. All elements of type [X6=0, Y6=0] vanish or have vanishing norm. In case of CP2

Kähler geometry this would correspond to the vanishing of the U(2) generators at the origin of CP2

(note that the holonomy group is U(2) in case of CP2). At least formally stronger condition is that
the algebra generated by elements of this type, the commutator algebra associated with Can6=0,
consist of elements of zero norm. Already the (possibly) weaker condition implies that adjoint map
AdX 6=0 and its hermitian adjoint Ad∗X6=0

create zero norm states. Since isometry conditions involve
also adjoint action the condition also implies that Can6=0 acts as isometries. More concrete form
for the condition is that all flux factors involving double Poisson bracket and three generators in
Can6=0 vanish:
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Qe({HA, {HB , HC}}) = 0 , for HA, HB , HC in Can6=0 . (7.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [K5] , is implied by the [t, t] ⊂ h property of the
Lie-algebra of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the
symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equations.
The existence of the infinite parameter isometry group in turn follows basically from the condition
guaranteeing the existence of the Riemann connection. Therefore vacuum Einstein equations seem
to arise, not only as a consequence of a physically motivated variational principle but as a math-
ematical consistency condition in infinite dimensional Kähler geometry. The flux representation
seems to provide elegant manner to formulate and solve these conditions and isometry invariance
implies Ricci flatness.

7.5 Is WCW Metric Hyper Kähler?

The requirement that WCW integral integration is divergence free implies that WCW metric is
Ricci flat. The so called Hyper-Kähler metrics [A8, A1] , [B5] are particularly nice representatives
of Ricci flat metrics. In the following the basic properties of Hyper-Kähler metrics are briefly
described and the problem whether Hyper Kähler property could realized in case of M4

+ × CP2 is
considered.

7.5.1 Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and
Kähler form correspond to the complex numbers 1 and i and therefore define complex structure
in the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed
Kähler forms I, J,K, which with respect to the multiplication obey the algebra of quaternionic
imaginary units and have square equal to - 1, which corresponds to the metric of Hyper Kähler
space.

I2 = J2 = K2 = −1 IJ = −JI = K, etc. . (7.24)

To define Kähler structure one must choose one of the Kähler forms or any linear combination
of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each
other playing thus the role of quaternion automorphisms. This group acts also as coordinate
transformations in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coordinates,
I and J being tensors of type (2, 0)+(0, 2). The forms I+ iJ and I− iJ are holomorphic and anti-
holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step operators I+ and
I− of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k), k ≤ dimM/4,
the group of k × k unitary matrices with quaternionic entries. This group is indeed subgroup of
SU(2k), so that its generators are traceless and Hyper Kähler metric is therefore Ricci flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmetric
sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that
target space allows Hyper Kähler metric [B5, B1] . In particular, it has been found that Hyper
Kähler property is decisive for the divergence cancelation.

Hyper-Kähler metrics arise also in monopole and instanton physics [A1] . The moduli spaces for
monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is characteristic
for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems. Since YM
action appears in the definition of WCW metric there are hopes that also in present case the
metric possesses Hyper-Kähler property.

CP2 allows what might be called almost Hyper-Kähler structure known as quaternionion struc-
ture. This means that the Weil tensor of CP2 consists of three components in one-one correspon-
dence with components of iso-spin and only one of them- the one corresponding to Kähler form-
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is covariantly constant. The physical interpretation is in terms of electroweak symmetry breaking
selecting one isospin direction as a favored direction.

7.5.2 Does the “almost” Hyper-Kähler structure of CP2 lift to a genuine Hyper-
Kähler structure in WCW?

The Hyper-Kähler property of WCW metric does not seem to be in conflict with the general
structure of TGD.

1. In string models the dimension of the “space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time
is four and one therefore might hope that quaternions play a similar role. Indeed, Weyl
invariance implies YM action in dimension 4 and as already mentioned moduli spaces of
instantons and monopoles enjoy the Hyper Kähler property.

2. Also the dimension of the embedding space is important. The dimension of Hyper Kähler
manifold must be multiple of 4. The dimension of WCW is indeed infinite multiple of 8: each
vibrational mode giving one “8”.

3. The complexification of the WCW in symplectic degrees of freedom is inherited from S2×CP2

and CP2 Kähler form defines the symplectic form of WCW. The point is that CP2 Weyl tensor
has 3 covariantly constant components, having as their square metric apart from sign. One
of them is Kähler form, which is closed whereas the other two are non-closed forms and
therefore fail to define Kähler structure. The group SU(2) of electro-weak isospin rotations
rotate these forms to each other. It would not be too surprising if one could identify WCW
counterparts of these forms as representations of quaternionic units at the level of WCW. The
failure of the Hyper Kähler property at the level of CP2 geometry is due to the electro-weak
symmetry breaking and physical intuition (in particular, p-adic mass calculations [K10] )
suggests that electro-weak symmetry might not be broken at the level of WCW geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomology
of WCW: the three Kähler forms must be co-homologically trivial as is clear from the following
argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3) symmetry
rotating Kähler forms to each other all must be co-homologically nontrivial. On the other hand,
electro-weak isospin rotation leads to a linear combination of 3 Kähler forms and the flux associated
with this form is in general not integer valued. The point is however that Kähler form forms only
the (1, 1) part of the symplectic form and must be co-homologically trivial whereas the zero mode
part is same for all complexifications and can be co-homologically nontrivial. The co-homological
non-triviality of the zero mode part of the symplectic form is indeed a nice feature since it fixes the
normalization of the Kähler function apart from a multiplicative integer. On the other hand the
hypothesis that Kähler coupling strength is analogous to critical temperature provides a dynamical
(and perhaps equivalent) manner to fix the normalization of the Kähler function.

Since the properties of the WCW metric are inherited from M4
+ × CP2 then also the Hyper

Kähler property should be understandable in terms of the embedding space geometry. In partic-
ular, the complex structure in CP2 vibrational degrees of freedom is inherited from CP2. Hyper
Kähler property implies the existence of a continuum (sphere S2) of complex structures: any linear
superposition of 3 independent Kähler forms defines a respectable complex structure. Therefore
also CP2 should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of CP2 Hyper Kähler manifold with 3 covariantly constant 2-forms
then it would be easy to understand the Hyper Kähler structure of WCW. Given the Kähler
structure of WCW would be obtained by replacing induced Kähler electric and magnetic fields in
the definition of flux factors Q(HA,m) with the appropriate component of the induced Weyl tensor.
CP2 indeed manages to be very nearly Hyper Kähler manifold!

How CP2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl
tensor of CP2 allows three independent components, which are self dual as 2-forms and rotated to
each other by vielbein rotations.
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W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,

W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,

W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 . (7.25)

The component I3 is just the Kähler form of CP2. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted
as Maxwell fields. Their squares equal however apart from sign with the metric of CP2, when
appropriate normalization factor is used. If these forms were covariantly constant Kähler action
defined by any linear superposition of these forms would indeed define Kähler structure in WCW
and the group SO(3) would rotate these forms to each other. The projections of the components
of the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector
fields (Kähler magnetic field) is divergenceless. One might regard these 3 vector fields as counter
parts of quaternion units associated with the broken Hyper Kähler structure, that is quaternion
structure. The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kähler electric
field implies that the electric parts of the other two components of induced Weyl tensor are sym-
plectic invariants. This is the minimum requirement. What is however obvious is that the magnetic
parts cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example
is enough and CP2 type extremals seem to provide this counter example: the components of the
induced Weyl tensor are just the same as they are for CP2 and clearly not symplectically invariant.

Thus it seems that WCW could allow Hyper Kähler structure broken by electro-weak in-
teractions but it cannot be inherited from CP2. An open question is whether it allows gen-
uine quaternionic structure. Good prospects for obtaining quaternionic structure are provided by
the quaternionic counterpart QP2 of CP2, which is 8-dimensional and has coset space structure
QP2 = Sp(3)/Sp(2) × Sp(1). This choice does not seem to be consistent with the symmetries
of the standard model. Note however that the over all symmetry group is obtained by replacing
complex numbers with quaternions on the matrix representation of the standard model group.

7.5.3 Could different complexifications for M4
+ and light like surfaces induce Hyper

Kähler structure for WCW?

Quaternionic structure means also the existence of a family of complex structures parameterized
by a sphere S2. The complex structure of the WCW is inherited from the complex structure of
some light like surface.

In the case of the light cone boundary δM4
+ the complex structure corresponds to the choice

of quantization axis of angular momentum for the sphere rM = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S2 parameterizes these
choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of
4-dimensional space-times.

This might relate to the fact that WCW geometry is not determined by the symplectic algebra
of CP2 localized with respect to the light cone boundary as one might first expect but consists of
M4

+ × CP2 Hamiltonians so that infinitesimal symplectic transformation of CP2 involves always
also M4

+-symplectic transformation. M4
+ Hamiltonians are defined by a function basis generated

as products of the Hamiltonians H3 and H1 ± iH2 generating rotations with respect to three
orthogonal axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfacesX3
l associated with quaternion conformal invariance are determined

by some 2-surface X2 and the choice of complex coordinates and if X2 is sphere the choices are
labelled by S2. In this case, the presence of quaternion conformal structure would be almost
obvious since it is possible to choose some complex coordinate in several ways and the choices are
labelled by S2. The choice of the complex coordinate in turn fixes 2-surface X2 as a surface for
which the remaining coordinates are constant. X2 need not however be located at the elementary
particle horizon unless one poses additional constraint. One might hope that different choices of X2

resulting in this manner correspond to all possible different selections of the complex structure and
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that this choice could fix uniquely the conformal equivalence class of X2 appearing as argument in
elementary particle vacuum functionals. If X2 has a more complex topology the identification is
not so clear but since conformal algebra SL(2,C) containing algebra of rotation group is involved,
one might argue that the choice of quantization axis also now involves S2 degeneracy. If these
arguments are correct one could conclude that Hyper Kähler structure is implicitly involved and
guarantees Ricci flatness of the WCW metric.
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