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Abstract

New results related to the TGD view about coupling constant evolution are discussed. The
results emerge from the discussion of the recent claim of Atyiah that fine structure constant
could be understood purely mathematically. The new view allows to understand the recently
introduced TGD based construction of scattering amplitudes based on the analog of micro-
canonical ensemble as a cognitive representation for the much more complex construction of
full scattering amplitudes using real numbers rather than p-adic number fields. This construc-
tion utilizes number theoretic discretization of space-time surface inducing that of “world of
classical worlds” (WCW) and makes possible adelization of quantum TGD.

The understanding of coupling constant evolution has been one of most longstanding prob-
lems of TGD and I have made several proposals during years.

Could number theoretical constraints fix the evolution? Adelization suffers from serious
number theoretical problem due to the fact that the action exponentials do not in general
exist p-adically for given adele. The solution of the problem turned out to be trivial. The
exponentials disappear from the scattering amplitudes! Contrary to the first beliefs, adelization
does not therefore seem to determine coupling constant evolution.

TGD view about cosmological constant turned out to be the solution of the problem. The
formulation of the twistor lift of Kähler action led to a rather detailed view about the inter-
pretation of cosmological constant as an approximate parameterization of the dimensionally
reduced 6-D Kähler action (or energy) allowing also to understand how it can decrease so fast
as a function of p-adic length scale. In particular, a dynamical mechanism for the dimen-
sional reduction of 6-D Kähler action giving rise to the induction of the twistor structure and
predicting this evolution emerges.

In standard QFT view about coupling constant evolution ultraviolet cutoff length serves
as the evolution parameter. TGD is however free of infinities and there is no cutoff parameter.
It turned out cosmological constant replaces this parameter and coupling constant evolution
is induced by that for cosmological constant from the condition that the twistor lift of the
action is not affected by small enough modifications of the moduli of the induced twistor
structure. The moduli space for them corresponds to rotation group SO(3). This leads to
explicit evolution equations for αK , which can be studied numerically.

The approach is also related to the view about coupling constant evolution based on the
inclusions of hyper-finite factors of type II1, and it is proposed that Galois group replaces dis-
crete subgroup of SU(2) leaving invariant the algebras of observables of the factors appearing
in the inclusion.

1 Introduction

Atyiah has recently proposed besides a proof of Riemann Hypothesis also an argument claiming to
derive the value of the structure constant (see http://tinyurl.com/y8xw8cey). The mathemati-
cally elegant arguments of Atyiah involve a lot of refined mathematics including notions of Todd
exponential and hyper-finite factors of type II (HFFs) assignable naturally to quaternions. The
idea that 1/α could result by coupling constant evolution from π looks however rather weird for a
physicist.

What makes this interesting from TGD point of view is that in TGD framework coupling
constant evolution can be interpreted in terms of inclusions of HFFs with included factor defin-
ing measurement resolution [K14, K4]. An alternative interpretation is in terms of hierarchy of
extensions of rationals with coupling parameters determined by quantum criticality as algebraic
numbers in the extension [L5, L6].

In the following I will explain what I understood about Atyiah’s approach. My critics includes
the arguments represented also in the blogs of Lubos Motl (see http://tinyurl.com/ycq8fhsy)
and Sean Carroll (see http://tinyurl.com/y87f8psg). I will also relate Atyiah’s approach to
TGD view about coupling evolution. The hasty reader can skip this part although for me it served
as an inspiration forcing to think more precisely TGD vision.

There are two TGD based formulations of scattering amplitudes.

1. The first formulation is at the level of infinite-D “world of classical worlds” (WCW) [K8] uses
tools like functional integral. The huge super-symplectic symmetries generalizing conformal
symmetries raise hopes that this formulation exists mathematically and that it might even
allow practical calculations some day. TGD would be an analog of integrable QFT.

http://tinyurl.com/y8xw8cey
http://tinyurl.com/ycq8fhsy
http://tinyurl.com/y87f8psg
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2. Second - surprisingly simple - formulation [L10] is based on the analog of micro-canonical
ensemble in thermodynamics (quantum TGD can be seen as complex square root of ther-
modynamics). It relates very closely to TGD analogs of twistorialization and twistor ampli-
tudes [K13, K9].

During writing I realized that this formulation can be regarded as a generalization of cognitive
representations of space-time surfaces based on algebraic discretization making sense for all
extensions of rationals to the level of scattering amplitudes. In the adelization the key ques-
tion is whether it is necessary to define the p-adic counterparts of action exponentials. The
number theoretical constraints seem hopelessly strong. One solution would be that the action
exponentials for allow space-time surfaces equal to one. This option fails. The solution of the
problem is however trivial. Kähler function can have only single minimum for given values
of zero modes and the action exponentials cancel from scattering amplitudes completely in
this case. This formulation allows a continuation to p-adic sectors and adelization [L5, L6].
Note that no conditions on αK are obtained contrary to the first beliefs.

One can also understand the relationship of the two formulations in terms of M8 −H duality.
This view allows also to answer to a longstanding question concerning the interpretation of the
surprisingly successful p-adic mass calculations [K6]: as anticipated, p-adic mass calculations are
carried out for a cognitive representation rather than for real world particles and the huge simplifi-
cation explains their success for preferred p-adic prime characterizing particle as so called ramified
prime for the extension of rationals defining the adeles.

The understanding of coupling constant evolution has been one of most longstanding problems
of TGD and I have made several proposals during years. TGD view about cosmological constant
turned out to be the solution of the problem.

1. The formulation of the twistor lift of Kähler action led to a rather detailed view about the
interpretation of cosmological constant as an approximate parameterization of the dimension-
ally reduced 6-D Kähler action (or energy) allowing also to understand how it can decrease
so fast as a function of p-adic length scale. In particular, a dynamical mechanism for the di-
mensional reduction of 6-D Kähler action giving rise to the induction of the twistor structure
and predicting this evolution emerges.

In standard QFT view about coupling constant evolution ultraviolet cutoff length serves as
the evolution parameter. TGD is however free of infinities and there is no cutoff parameter.
It turned out cosmological constant replaces this parameter and coupling constant evolution
is induced by that for cosmological constant from the condition that the twistor lift of the
action is not affected by small enough modifications of the moduli of the induced twistor
structure. The moduli space for them corresponds to rotation group SO(3). This leads to
explicit evolution equations for αK , which can be studied numerically.

2. I consider also the relationship to a second TGD based formulation of coupling constant
evolution in terms of inclusion hierarchies of hyper-finite factors of type II1 (HFFs) [K14, K4].
I suggest that this hierarchy is generalized so that the finite subgroups of SU(2) are replaced
with Galois groups associated with the extensions of rationals. An inclusion of HFFs in which
Galois group would act trivially on the elements of the HFFs appearing in the inclusion: kind
of Galois confinement would be in question.

Ramified primes are conjecture to correspond to the preferred p-adic primes characterizing
particles. Ramified primes are special in the sense that their expression as a product of primes
Pi of extension contains higher than first powers and the number Pi is smaller than the maximal
number n defined by the dimension of the extension. It is not quite clear why ramified primes
appear as preferred p-adic primes and in the following Dedekind zeta functions and what I call
ramified zeta functions inspired by the interpretation of zeta function as analog of partition function
are used in attempt to understand why ramified primes could be physically special.

The intuitive feeling is that quantum criticality is what makes ramified primes so special. In
O(p) = 0 approximation the irreducible polynomial defining the extension of rationals indeed
reduces to a polynomial in finite field Fp and has multiple roots for ramified prime, and one can
deduce a concrete geometric interpretation for ramification as quantum criticality using M8 −H
duality.
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2 Criticism of Atyiah’s approach

The basic idea of Atyiah is that π and the inverse of the fine structure constant 1/α = 137.035999....
are related by coupling constant evolution - that is renormalization - which is a basic operation in
quantum field theory and has physical interpretation. For a physicist it is easy to invent objections.

1. In quantum field theory fine structure constant and all coupling strengths obey a continuous
evolution as function of mass scale or length scale and one should predict the entire evolution
rather than say its value at electron length scale. In TGD framework the coupling constant
evolution becomes discrete and would basically labelled by the hierarchy of extensions of
rationals.

2. π is purely geometric constant - kind of Platonic transcendental having very special role
in the mathematical world order - whereas fine structure constant is a dynamical coupling
parameter. Atyiah does not have any proposal for why these constants would be related in
this manner. Also no explanation for what it would mean that the circumference of unit
circle would grow from 2π to 2/α is given.

Remark: In TGD actually the coverings labelled by the value heff/n0 = n identified as
the order of Galois group of extension of rationals defining given level of the hierarchy of
evolutionary levels (entanglement coefficients would belong to this extension as also S-matrix
elements). The full angle using M4 rotation angle as coordinate increases effectively to n×2π
for the covering spaces of extensions introducing n:th root of unity. In TGD would however
have n instead of 1/(απ).

3. That 1/α ∼ 137 should have interpretation as renormalized value of angle π looks rather
weird to me. The normalization would be very large and it is extremely difficult to see why
1/π have a role of fine structure constant say at high energy limit if one accepts coupling
constant evolution and identifies 1/α as the value of 1/α at zero momentum transfer.

In fact, Atyiah proposes a discrete evolution of π to 1/α defined by approximations of HFF as
a finite-D algebra. Forgetting π as the starting point of the evolution, this idea looks beautiful. At
first the idea that all numbers suffer a renormalization evolution, looks really cute. Coupling con-
stant evolution is however not a sequence of approximations but represents a genuine dependence
of coupling constants on length scale.

Remark: In TGD framework I propose something different.The length scale evolution of
coupling constants would correspond to a hierarchy of inclusions of HFFs rather than a sequence
of finite-D approximations approaching HFF. The included factor would represent measurement
resolution. Roughly, the transformations of states by operations defined in included factor would
leave state invariant in the measurement resolution defined by the included factor. Different values
of coupling constant would correspond to different measurement resolutions.

1. Atyiah mentions as one of his inspirers the definition of 2π via a limiting procedure identifying
it as the length of the boundary of n-polygon inside unit circle. Amusingly, I have proposed
similar definition of 2π in p-adic context, where the introduction of π would give rise to
infinite extension.

Atyiah generalizes this definition to the area of quaternionic sphere so that the limiting
procedure involves two integers. For sphere tessellations as analogs of lattices allow only
Platonic solids. For torus one could have infinite hierarchy of tessellations [L9] allowing to
define the area of torus in this manner. The value of n defined by the extension of rationals
containing root of unity exp(i2π/n) such that n is maximal. The largest n for the roots of
unity appearing in the extension of p-adics would determine the approximation of 2π used.

2. Atyiah suggests a concrete realization for the coupling constant evolution of numbers, not
only coupling constants. The evolution would correspond to a sequence of approximation to
HFF converging to HFF. One can of course define this kind of evolution but to physicist it
looks like a formal game only.

3. HFF is interpreted as an infinite tensor product of 2 × 2 complex Clifford algebras M2(C),
which can be also interpreted as complexified quaternions. One defines the trace by requiring
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that the trace of infinite tensor product of unit matrices equals to 1. The usual definition of
schoolbooks would given infinite power of 2, which diverges. The inner product is the product
of the usual inner products for the factors of the tensor product labelled by n but divided
by power 2−nmax to guarantee that the trace of the identity matrix is unity as product of
traces for factors otherwise equal to 2n. In fact, fermionic Fock algebra familiar to physicist
is HFF although in hidden manner.

Remark: The appearance of quaternions is attractive from TGD point of view since in
M8 − H duality the dynamics at the level of M8 is determined by associativity of either
tangent or normal space of 4-surface inM8 and associativity is equivalent with quaternionicity
[L3]. The hierarchy of HFFs is also basic piece of quantum TGD and realizable in terms of
quaternions.

4. Atyiah tells there is an algebra isomorphism from complex numbers C to the subset of
commuting matrices in HFF. One can define the map to C as either eigenvalue of the matrix
and obtains to isomorphisms: t+ and t−. One can define the renormalization map C → C
in terms of the inverse of t− ◦ t−1

+ or its inverse. This would assign to a complex numbers z
its normalized value.

HFFs allow an excellent approximation by finite number of tensor factors and one can perform
an approximation taking only finite number of tensor factors and at the limit of infinite
number of factors get the desired normalization map. The approximation would be t−(n) ◦
t+(n). I must confess that I did not really understand the details of this argument.

In any case, to me this does not quite correspond to what I understand with renormalization
flow. Rather this is analogous to a sequence of approximations defining scattering amplitude
as approximation containing only contributions up to power gn. I would argue than one must
consider the infinite sequence of inclusions of HFFs instead of a sequence of approximations
defining HFF.

In this manner one would the renormalization map would be t−(n + 1) ◦ t−1
+ (n), where n

now labels the hierarchy of HFFs in the inclusion hierarchy. t±n is now the exact map from
commuting sub-algebra to complex numbers.

There is however a rather close formal resemblance since simple inclusions correspond to
inclusions of the sub-algebra with one M2

C factor replaced with mere identity matrix.

5. The proposal of Atyiah is that this renormalization of numbers is mediated by so called
Todd exponentiation used in the construction of the characteristic classes. This map would
be defined in terms of generating function G(x) = x/(1 − exp−x) applied to x = π. If
I understood anything about the explanation, this map is extended to infinite number of
tensor factors defining the HFF and the outcome would be that x = π for single tensor factor
would be replaced with 1/α. Why Todd exponentiation? Atyiah also argues that one has
T (π)/π = T (γ)/γ, where γ is Euler’s constant. My mathematical education is so limited
that I could not follow these arguments.

6. Atyiah also claims that the approximation 1/α = 137 assumed by Eddington to be exact has
actually deeper meaning. There are several formulas in this approximation such as 1/α =
20+23+27 = 1+8+128. If I understood correctly, Atyiah tells that the numbers 1, 8, and 128
appear in the Bott periodicity theorem as dimensions of subsequent stable homotopy groups.
My own favorite formula is in terms of Mersenne primes: 1/α = M2 +M3 +M7 = 3+7+127.
The next Mersenne prime would be M127 and corresponds to the p-adic length scale of
electron.

Remark: A fascinating numerological fact is that p ' 2k, k ' 137, corresponds to the p-adic
length scale near to Bohr radius: kind of cosmic joke one might say. Fine structure constant
indeed emerged from atomic physics!

It would be of course marvellous if the renormalization would not depend on physics at all but
here physicist protests.

1. The coupling constant evolutions for the coupling strengths of various interactions are dif-
ferent and depend also on masses of the particles involved. One might however hope that
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this kind of evolution might make sense for fundamental coupling constants of the theory. In
TGD Kähler coupling strength 1/αK would be such parameter.

2. The quantum criticality of TGD Universe suggests that Atyiah’s claim is true in a weaker
sense. Quantum criticality is however a dynamical notion. I have actually proposed a model
for the evolution of 1/αK based on the complex zeros of Riemann Zeta [L1] and also a
generalization to other coupling strengths assuming that the argument of zeta is replaced
with its Möbius transform.

Very strong consistency conditions should be met. Preferred primes would be primes near
prime power of 2 and ramified primes of extension, and also the zero of zeta in question
should belong to the extension in question. I am of course the first to admit that this model
is motivated more by mathematical aesthetics than concrete physical calculations.

3. The idea about renormalization evolution in this manner could - actually should - generalize.
One can consider a maximal set of commuting set of observables in terms of tensor product
of HFFs and define for them map to diagonal n×n matrices with complex eigenvalues. One
would have infinite sum over the eigenvalues of diagonal matrices over factors: just as one
has for many particle state in QFT containing contribution from all tensor factors which are
now however ordered by the label n. The length scale evolution of these observables could
be defined by the above formula for inclusion. Fine structure constant basically reduces to
charge as eigenvalue of charge operator so that this could make sense.

The beauty of this view would be that renormalization could be completely universal. In
TGD framework quantum criticality (QC) indeed strongly suggests this universality in some
sense. The hierarchy of extensions of rationals would define the discrete coupling constant
evolution.

3 About coupling constant evolution in TGD framework

It is often forgotten that fine structure constant depends on length scale. When Eddington was
working with the problem, it was not yet known that fine structure constant is running coupling
constant. For continuous coupling constant evolution there is not much point to ponder why its
value is what it is at say electron length scale. In TGD framework - adelic physics - coupling
parameters however obey discrete length scale evolution deriving from the hierarchy of extensions
of rationals. In this framework coupling constants are determined by quantum criticality implying
that they do not run at all in the phase assignable to given extension of rational. They are
analogous to critical temperature and determined in principle by number theory.

3.0.1 Two approaches to quantum TGD

There are two approaches to TGD: geometric and number theoretic. The ”world of classical worlds”
(WCW) is central notion of TGD as a geometrization of quantum physics rather than only classical
physics.

1. WCW consists of 3-surfaces and by holography realized by assigning to these 3-surfaces
unique 4-surfaces as preferred extremals. In zero energy ontology (ZEO) these 3-surfaces are
pairs of 3-surfaces, whose members reside at opposite boundaries of causal diamond (CD)
and are connected by preferred extremal analogous to Bohr orbit. The full quantum TGD
would rely on real numbers and scattering amplitudes would correspond to zero energy states
having as arguments these pairs of 3-surfaces. WCW integration would be involved with the
definition of inner products.

2. The theory could be seen formally as a complex square root of thermodynamics with vacuum
functional identified as exponent of Kähler function. Kähler geometry would allow to elim-
inate ill-defined Gaussian determinants and metric determinant of Kähler metric and they
would simply disappear from scattering amplitudes. WCW is infinite-D space and one might
argue that this kind of approach is hopeless. The point is however that the huge symme-
tries of WCW - super-symplectic invariance - give excellent hopes of really construction the
scattering amplitudes: TGD would be integrable theory.
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3. A natural interpretation would be that Kähler action as the analog of Hamiltonian defines
the Kähler function of WCW and functional integral defined by it allows definition of full
scattering amplitudes.

The number theoretic approach could be called adelic physics [L4, L6] providing also the physics
of cognition.

1. At space-time level p-adicization as description of cognition requires discretization. Cognitive
representations at space-time level consist of finite set of space-time points with preferred co-
ordinates M8 in extension of rationals inducing the extensions of p-adic number fields. These
representations would realize the notion of finite measurement resolution. p-Adicization and
adelization for given extension of rationals are possible only in this manner since these points
can be interpreted as both real and p-adic numbers.

2. What about cognitive representations at the level of WCW? The discrete set of space-time
points would replace the space-time surface with a finite discrete set of points serving also
as its WCW coordinates and define the analog of discretization of WCW using polynomials
in M8 fixed by their values at these points [L3]. If the space-time surface is represented
by a polynomial, this representation is all that is needed to code for the space-time surface
since one can deduce the coefficients of a polynomial from its values at finite set of points.
Now the coefficients belong to extension of rationals. If polynomials are replaced by analytic
functions, polynomials provide approximation defining the cognitive representation.

While writing this I realized that what I have micro-canonical ensemble [L10] as kind of complex
square root of its counterpart in thermodynamics can serve as a cognitive representation of scat-
tering amplitudes. Cognitive representations of space-time surfaces would thus give also cognitive
representations of WCW and micro-canonical ensemble would realize cognitive representations for
the scattering amplitudes. Cognitive representations define only a hierarhcy of approximations.
The exact description would involve the full WCW, its Kähler geometry, and vacuum functional
as exponent of Kähler function.

The idea of micro-canonical ensemble as a subset of space-time surfaces with the same vanishing
action would select a sub-set of surfaces with the same values of coupling parameters so that the
fixing the coupling parameters together with preferred extremal property selects the subset with
same value of action. There are two options to consider.

1. The real part of the action vanishes and imaginary part is multiple of 2π so that the action
exponential is equal to unity. For the twistor lift this actually implies the vanishing of
the entire action since volume term and Kähler term have the same phase (that of 1/αK).
The role of coupling parameters would be analogous to the role of temperature and applied
pressure. In principle this condition is mathematically possible. The electric part of Kähler
action in Minkowskian regions has sign opposite to magnetic part and volume term (actually
magnetic S2 part of 6-D Kähler action) so that these two contributions could cancel. The
problem is that Kähler function would be constant and therefore also the Kähler metric.

2. I have also proposed [L10] that the analog of micro-canonical ensemble makes sense meaning
that all space-time surfaces contributing to the scattering amplitude have the same action.
As a consequence, the action exponential and the usual normalization factor would cancel
each other and one would obtain just a sum over space-time surfaces with same action:
otherwise action exponential would not appear in the scattering amplitudes - this is the case
also in perturbative QFTs. This is crucial for the p-adicization and adelization since these
exponential factors belong to the extension of rationals only under very strong additional
conditions.

This option has analog also at the level of WCW since Kähler function should have for give
values of zero modes only single minimum so that localization in zero modes would mean
that the action exponential cancels in the normalization of the amplitudes. It seems that
this option is the only possible one.

Note that the cancellation of the metric determinant and Gaussian determinant possible for
Kähler metric with the exponent of Kähler function serving as vacuum functional reduces
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the perturbative integrations around the minima of Kähler action to a sum over exponents,
and if only single minimum contributes for given values of the zero modes, the sum contains
only single term.

3.1 Number theoretic vision about coupling constant evolution

Let us return to the question about the coupling constant evolution.

1. Each extension of rationals corresponds to particular values of coupling parameters deter-
mined by the extension so that it indeed makes sense to ponder what the spectrum of values
for say fine structure constant is. In standard QFT this does not make sense.

2. Coupling constant evolution as a function of momentum or length scales reduces to p-adic
coupling constant evolution in TGD as function of p-adic prime. Particles are characterized
by preferred p-adic primes - for instance, electron corresponds to M127 = 2127−1 - the largest
Mersenne prime which does not correspond to super-astronomical Compton length - and the
natural identification is as so called ramified primes of extension.

Why the interpretation of p-adic primes as ramified primes?

1. As one increases length scale resolution particle decomposes to more elementary particles.

2. Particles correspond in TGD to preferred p-adic primes. This suggests that when a prime
(ideal) of given extension is looked at improved precision determined by an extension of the
orignal extension it decomposes into a product of primes. This indeed happens.

The number of primes of the larger extension appearing in the decomposition to product
equals to the dimension of extension as extension of the original extension. All these primes
appear and only once in the generic case. Ramified primes of ordinary extension are however
odd-balls. Some primes of extension are missing and some appear as higher powers than 1
in their decomposition.

3. Ramified primes are analogous to critical systems. Polynomial with a multiple root - now
prime of extension appearing as higher power - corresponds to a critical system. TGD
is quantum critical so that one expects that ramified primes are preferred physically and
indeed correspond to quantum critical systems.

4. Only the momenta belonging to the extension of rationals are considered and one can identify
them as real-valued or p-adic valued momenta. Coupling constants do not depend on the
values of the momenta for given extension of rationals and are thus analogous to critical
temperature.

This involves interesting not totally resolved technical question inspired by p-adic mass cal-
culations for which the p-adic mass squared value is mapped to its real value by canonical
identification S

∑
xnp

n →
∑
xnp

−n. The correspondence is continuous and can be applied
to Lorentz invariants appearing in scattering amplitudes [K7].

Could this correspondence be applied also to momenta rather than only mass squared values
and Lorentz invariants? M8−H correspondence [L3] selects fixed Poincare frame as moduli
space for octonionic structures and at M8 level this could make sense.

3.2 Cosmological constant and twistor lift of Kähler action

Cosmological constant Λ is one of the biggest problems of modern physics. Surprisingly, Λ turned
out to provide the first convincing solution to the problem of understanding coupling constant
evolution in TGD framework. In QFTs the independence of scattering amplitudes on UV cutoff
length scale gives rise to renormalization group (RG) equations. In TGD there is however no
natural cutoff length scale since the theory is finite. Cosmological constant should however evolve
as a function of p-adic length scales and cosmological constant itself could give rise to the length
scale serving in the role of cutoff length scale. Combined with the view about cosmological con-
stant provided by twistor lift of TGD this leads to explicit RG equations for αK and scattering
amplitudes.

Cosmological constant has two meanings.
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1. Einstein proposed non-vanishing value of Λ in Einstein action as a volume term at his time
in order to get what could be regarded as a static Universe. It turned out that Universe
expanded and Einstein concluded that this proposal was the greatest blunder of his life.
For two decades ago it was observed that the expansion of the Universe acclerates and the
cosmological constant emerged again. Λ must be extremely small and have correct sign in
order to give accelerating rather decelerating expansion in Robertson-Walker cooordinate.
Here one must however notice that the time slicing used by Einstein was different and fr this
slicing the Universe looked static.

2. Λ can be however understood in an alternative sense as characterizing the dynamics in the
matter sector. Λ could characterize the vacuum energy density of some scalar field, call it
quintessense, proportional to 3- volume in quintessence scenario. This Λ would have sign
opposite to that in the first scenario since it would appear at opposite side of Einstein’s
equations.

3.2.1 Cosmological constant in string models and in TGD

It has turned out that Λ could be the final nail to the coffin of superstring theory.

1. The most natural prediction of M-theory and superstring models is Λ in Einsteinian sense
but with wrong sign and huge value: for instance, in AdS/CFT correspondence this would
be the case. There has been however a complex argument suggesting that one could have a
cosmological constant with a correct sign and even small enough size.

This option however predicts landscape and a loss of predictivity, which has led to a total turn
of the philosophical coat: the original joy about discovering the unique theory of everything
has changed to that for the discovery that there are no laws of physics. Cynic would say that
this is a lottery win for theoreticians since theory building reduces to mere artistic activity.

2. Now however Cumrun Vafa - one of the leading superstring theorists - has proposed that the
landscape actually does not exist at all [B4] (see http://tinyurl.com/ycz7wvng). Λ would
have wrong sign in Einsteinian sense but the hope is that quintessence scenario might save
the day. Λ should also decrease with time, which as such is not a catastrophe in quintessence
scenario.

3. Theorist D. Wrase et al has in turn published an article [B2] (see http://tinyurl.com/

ychrhuxk) claiming that also the Vafa’s quintessential scenario fails. It would not be con-
sistent with Higgs Higgs mechanism. The conclusion suggesting itself is that according to
the no-laws-of-physics vision something catastrophic has happened: string theory has made
a prediction! Even worse, it is wrong.

Remark: In TGD framework Higgs is present as a particle but p-adic thermodynamics
rather than Higgs mechanism describes at least fermion massivation. The couplings of Higgs
to fermions are naturally proportional their masses and fermionic part of Higgs mechanism
is seen only as a way to reproduce the masses at QFT limit.

4. This has led to a new kind of string war: now inside superstring hegemony and dividing it
into two camps. Optimistic outsider dares to hope that this leads to a kind of auto-biopsy
and the gloomy period of superstring hegemony in theoretical physics lasted now for 34 years
would be finally over.

String era need not be over even now! One could propose that both variants of Λ are present,
are large, and compensate each other almost totally! First I took this as a mere nasty joke but
I realized that I cannot exclude something analogous to this in TGD. It turned that this is not
possible. I had made a delicate error. I thought that the energy of the dimensionally reduced 6-D
Kähler action can be deduced from the resulting 4-D action containing volume term giving the
negative contribution rather than dimensionally reducing the 6-D expression in which the volume
term corresponds to 6-D magnetic energy and is positive! A lesson in non-commutativity!

The picture in which Λ in Einsteinian sense parametrizes the total action as dimensionally
reduced 6-D twistor lift of Kähler action could be indeed interpreted formally as sum of genuine

http://tinyurl.com/ycz7wvng
http://tinyurl.com/ychrhuxk
http://tinyurl.com/ychrhuxk
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cosmological term identified as volume action. This picture has additional bonus: it leads to the
understanding of coupling constant evolution giving rise to discrete coupling constant evolution as
sub-evolution in adelic physics. This picture is summarized below.

3.2.2 The picture emerging from the twistor lift of TGD

Consider first the picture emerging from the twistor lift of TGD.

1. Twistor lift of TGD leads via the analog of dimensional reduction necessary for the induction
of 8-D generalization of twistor structure in M4 × CP2 to a 4-D action determining space-
time surfaces as its preferred extremals. Space-time surface as a preferred extremal defines
a unique section of the induced twistor bundle. The dimensionally reduced Kähler action is
sum of two terms. Kähler action proportional to the inverse of Kähler coupling strength and
volume term proportional to the cosmological constant Λ.

Remark: The sign of the volume action is negative as the analog of the magnetic part of
Maxwell action and opposite to the sign of the area action in string models.

Kähler and volume actions should have opposite signs. At M4 limit Kähler action is propor-
tional to E2 −B2 In Minkowskian regions and to −E2 −B2 in Euclidian regions.

2. Twistor lift forces the introduction of also M4 Kähler form so that the twistor lift of Kähler
action contains M4 contribution and gives in dimensional reduction rise to M4 contributions
to 4-D Kähler action and volume term.

It is of crucial importance that the Cartesian decomposition H = M4×CP2 allows the scale
of M4 contribution to 6-D Kähler action to be different from CP2 contribution. The size of
M4 contribution as compared to CP2 contribution must be very small from the smallness of
CP breaking [L8] [K9].

For canonically imbedded M4 the action density vanishes. For string like objects the electric
part of this action dominates and corresponding contribution to 4-D Kähler action of flux
tube extremals is positive unlike the standard contribution so that an almost cancellation of
the action is in principle possible.

3. What about energy? One must consider both Minkowskian and Euclidian space-time regions
and be very careful with the signs. Assume that Minkowskian and Eucidian regions have
same time orientation.

(a) Since a dimensionally reduced 6-D Kähler action is in question, the sign of energy density
is positive Minkowskian space-time regions and of form (E2 + B2)/2. Volume energy
density proportional to Λ is positive.

(b) In Euclidian regions the sign of g00 is negative and energy density is of form (E2 −
B2)/2 and is negative when magnetic field dominates. For string like objects the M4

contribution to Kähler action however gives a contribution in which the electric part
of Kähler action dominates so that M4 and CP2 contributions to energy have opposite
signs.

(c) 4-D volume energy corresponds to the magnetic energy for twistor sphere S2 and is
therefore positive. For some time I thought that the sign must be negative. My blunder
was that I erratically deduced the volume contribution to the energy from 4-D dimen-
sionally reduced action, which is sum of Kähler action and volume term rather than
deducing it for 6-D Kähler action and then dimensionally reducing the outcome. A
good example about consequences of non-commutativity!

The identification of the observed value of cosmological constant is not straightforward and
I have considered several options without making explicit their differences even to myself. For
Einsteinian option cosmological constant could correspond to the coefficient Λ of the volume term
in analogy with Einstein’s action. For what I call quintessence option cosmological constant Λeff
would approximately parameterize the total action density or energy density.
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1. Cosmological constant - irrespective of whether it is identified as Λ or Λeff - is extremely
small in the recent cosmology. The natural looking assumption would be that as a coupling
parameter Λ or Λeff depends on p-adic length scale like 1/L2

p and therefore decreases in
average sense as 1/a2, where a is cosmic time identified as light-cone proper time assignable
to either tip of CD. This suggests the following rough vision.

The increase of the thickness of magnetic flux tubes carrying monopole flux liberates energy
and this energy can make possible increase of the volume so that one obtains cosmic ex-
pansion. The expansion of flux tubes stops as the string tension achieves minimum and the
further increase of the volume would increase string tension. For the cosmological constant
in cosmological scales the maximum radius of flux tube is about 1 mm, which is biological
length scale. Further expansion becomes possible if a phase transition increasing the p-adic
length scale and reducing the value of cosmological constant is reduced. This phase transi-
tion liberates volume energy and leads to an accelerated expansion. The space-time surface
would expand by jerks in stepwise manner. This process would replace continuous cosmic
expansion of GRT. One application is TGD variant of Expanding Earth model explaining
Cambrian Explosion, which is really weird event [K5].

One can however raise a serious objection: since the volume term is part of 6-D Kähler
action, the length scale evolution of Λ should be dictated by that for 1/αK and be very slow:
therefore cosmological constant identified as Einsteinian Λ seems to be excluded.

2. It however turns that it possible to have a large number of embedding of the twistor sphere
into the product of twistor spheres of M4 and CP2 defining dimensional reductions. This
set is parameterized by rotations sphere. The S2 part of 6-D Kähler action determining Λ
can be arbitrarily small. This mechanism is discussed in detail in [L12, L13] and leads also
to the understanding of coupling constant evolution. The cutoff scale in QFT description of
coupling constant evolution is replaced with the length scale defined by cosmological constant.

3.2.3 Second manner to increase 3-volume

Besides the increase of 3-volume of M4 projection, there is also a second manner to increase
volume energy: many-sheetedness. The phase transition reducing the value of Λ could in fact force
many-sheetedness.

1. In TGD the volume energy associated with Λ is analogous to the surface energy in supercon-
ductors of type I. The thin 3-surfaces in superconductors could have similar 3-surface analogs
in TGD since their volume is proportional to surface area - note that TGD Universe can be
said to be quantum critical.

This is not the only possibility. The sheets of many-sheeted space-time having overlapping
M4 projections provide second mechanism. The emergence of many-sheetedness could also
be caused by the increase of n = heff/h0 as a number of sheets of Galois covering.

2. Could the 3-volume increase during deterministic classical time evolution? If the minimal
surface property assumed for the preferred extremals as a realization of quantum criticality
is true everywhere, the conservation of volume energy prevents the increase of the volume.
Minimal surface property is however assumed to fail at discrete set of points due to the
transfer of conserved charged between Kähler and volume degrees of freedom. Could this
make possible the increase of volume during classical time evolution so that volume and
Kähler energy could increase?

Remark: While writing this for the first time, I did not yet realize that if the action contains
also parts associated with string world sheets and their light-like boundaries as M8 − H
duality suggests, then the transfer of conserved quantities between space-time interior and
string world sheets and string world sheets and their boundaries is possible, and implies
the failure of the minimal surface property at these surfaces. One can however formulated
precisely the proposed option and it implies that also string world sheets are quantum critical
and therefore minimal surfaces: the question whether this occurs everywhere or only for the
portions of string world sheets near the boundaries of causal diamonds remains open [L17].
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3. ZEO allows the increase of average 3-volume by quantum jumps. There is no reason why
each “big” state function reduction changing the roles of the light-like boundaries of CD
could not decrease the average volume energy of space-time surface for the time evolutions
in the superposition. This can occur in all scales, and could be achieved also by the increase
of heff/h0 = n.

4. The geometry of CD suggests strongly an analogy with Big Bang followed by Big Crunch.
The increase of the volume as increase of the volume of M4 projection does not however
seem to be consistent with Big Crunch. One must be very cautious here. The point is that
the size of CD itself increases during the sequence of small state function reductions leaving
the members of state pairs at passive boundary of CD unaffected. The size of 3-surface at
the active boundary of CD therefore increases as also its 3-volume.

The increase of the volume during the Big Crunch period could be also due to the emergence
of the many-sheetedness, in particular due to the increase of the value of n for space-time
sheets for sub-CDs. In this case, this period could be seen as a transition to quantum
criticality accompanied by an emergence of complexity.

3.2.4 Is the cosmological constant really understood?

The interpretation of the coefficient of the volume term as cosmological constant has been a long-
standing interpretational issue and caused many moments of despair during years. The intuitive
picture has been that cosmological constant obeys p-adic length scale scale evolution meaning that
Λ would behave like 1/L2

p = 1/p ' 1/2k [K2].
This would solve the problems due to the huge value of Λ predicted in GRT approach: the

smoothed out behavior of Λ would be Λ ∝ 1/a2, a light-cone proper time defining cosmic time,
and the recent value of Λ - or rather, its value in length scale corresponding to the size scale of the
observed Universe - would be extremely small. In the very early Universe - in very short length
scales - Λ would be large.

A simple solution of the problem would be the p-adic length scale evolution of Λ as Λ ∝ 1/p,
p ' 2k. The flux tubes would thicken until the string tension as energy density would reach
stable minimum. After this a phase transition reducing the cosmological constant would allow
further thickening of the flux tubes. Cosmological expansion would take place as this kind of phase
transitions (for a mundane application of this picture see [K5]).

This would solve the basic problem of cosmology, which is understanding why cosmological
constant manages to be so small at early times. Time evolution would be replaced with length
scale evolution and cosmological constant would be indeed huge in very short scales but its recent
value would be extremely small.

I have however not really understood how this evolution could be realized! Twistor lift seems
to allow only a very slow (logarithmic) p-adic length scale evolution of Λ [L11]. Is there any cure
to this problem?

1. The magnetic energy decreases with the area S of flux tube as 1/S ∝ 1/p ' 1/2k, where√
p defines the transversal length scale of the flux tube. Volume energy (magnetic energy

associated with the twistor sphere) is positive and increases like S. The sum of these has
minimum for certain radius of flux tube determined by the value of Λ. Flux tubes with
quantized flux would have thickness determined by the length scale defined by the density

of dark energy: L ∼ ρ−1/4
vac , ρdark = Λ/8πG. ρvac ∼ 10−47 GeV4 (see http://tinyurl.com/

k4bwlzu) would give L ∼ 1 mm, which would could be interpreted as a biological length
scale (maybe even neuronal length scale).

2. But can Λ be very small? In the simplest picture based on dimensionally reduced 6-D Kähler
action this term is not small in comparison with the Kähler action! If the twistor spheres of
M4 and CP2 give the same contribution to the induced Kähler form at twistor sphere of X4,
this term has maximal possible value!

The original discussions in [K13, K2] treated the volume term and Kähler term in the dimen-
sionally reduced action as independent terms and Λ was chosen freely. This is however not
the case since the coefficients of both terms are proportional to (1/α2

K)S(S2), where S(S2)

http://tinyurl.com/k4bwlzu
http://tinyurl.com/k4bwlzu
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is the area of the twistor sphere of 6-D induced twistor bundle having space-time surface as
base space. This are is same for the twistor spaces of M4 and CP2 if CP2 size defines the
only fundamental length scale. I did not even recognize this mistake.

The proposed fast p-adic length scale evolution of the cosmological constant would have ex-
tremely beautiful consequences. Could the original intuitive picture be wrong, or could the desired
p-adic length scale evolution for Λ be possible after all? Could non-trivial dynamics for dimensional
reduction somehow give it? To see what can happen one must look in more detail the induction
of twistor structure.

1. The induction of the twistor structure by dimensional reduction involves the identification
of the twistor spheres S2 of the geometric twistor spaces T (M4) = M4 × S2(M4) and of
TCP2

having S2(CP2) as fiber space. What this means that one can take the coordinates
of say S2(M4) as coordinates and embedding map maps S2(M4) to S2(CP2). The twistor
spheres S2(M4) and S2(CP2) have in the minimal scenario same radius R(CP2) (radius of
the geodesic sphere of CP2. The identification map is unique apart from SO(3) rotation R of
either twistor sphere possibly combined with reflection P . Could one consider the possibility
that R is not trivial and that the induced Kähler forms could almost cancel each other?

2. The induced Kähler form is sum of the Kähler forms induced from S2(M4) and S2(CP2) and
since Kähler forms are same apart from a rotation in the common S2 coordinates, one has
Jind = J +RP (J), where R denotes a rotation and P denotes reflection. Without reflection
one cannot get arbitrary small induced Kähler form as sum of the two contributions. For
mere reflection one has Jind = 0.

Remark: It seems that one can do with reflection if the Kähler forms of the twistor spheres
are of opposite sign in standard spherical coordinates. This would mean that they have have
opposite orientation.

One can choose the rotation to act on (y, z)-plane as (y, z) → (cy + sz,−sz + cy), where
s and c denote the cosines of the rotation angle. A small value of cosmological constant is
obtained for small value of s. Reflection P can be chosen to correspond to z → −z. Using
coordinates (u = cos(Θ),Φ) for S2(M4) and (v,Ψ) for S2(CP2) and by writing the reflection
followed by rotation explicitly in coordinates (x, y, z) one finds v = −cu − s

√
1− u2sin(Φ),

Ψ = arctan[(su/
√

1− u2cos(Φ) + ctan(Φ)]. In the lowest order in s one has v = −u −
s
√

1− u2sin(Φ), Ψ = Φ + scos(Φ)(u/
√

1− u2).

3. Kähler form J ind is sum of unrotated part J(M4) = du∧dΦ and J(CP2) = dv∧dΨ. J(CP2)
equals to the determinant ∂(v,Ψ)/∂(u,Φ). A suitable spectrum for s could reproduce the
proposal Λ ∝ 2−k for Λ. The S2 part of 6-D Kähler action equals to (J indθφ )2/

√
g2 and in the

lowest order proportional to s2. For small values of s the integral of Kähler action for S2

over S2 is proportional to s2.

One can write the S2 part of the dimensionally reduced action as S(S2) = s2F 2(s). Very
near to the poles the integrand has 1/[sin(Θ) + O(s)] singularity and this gives rise to a
logarithmic dependence of F on s and one can write: F = F (s, log(s)). In the lowest
order one has s ' 2−k/2, and in improved approximation one obtains a recursion formula
sn(S2, k) = 2−k/2/F (sn−1, log(sn−1) giving renormalization group evolution with k replaced
by anomalous dimension kn,a = k+ 2log[F (sn−1, log(sn−1)] differing logarithmically from k.

4. The sum J ind = J + RP (J) defining the induced Kähler form in S2(X4) is covariantly
constant since both terms are covariantly constant by the rotational covariance of J .

5. The embeddings of S2(X4) as twistor sphere of space-time surface to both spheres are holo-
morphic since rotations are represented as holomorphic transformations. Also reflection as
z → 1/z is holomorphic. This in turn implies that the second fundamental form in complex
coordinates is a tensor having only components of type (1, 1) and (−1,−1) whereas metric
and energy momentum tensor have only components of type (1,−1) and (−1, 1). Therefore
all contractions appearing in field equations vanish identically and S2(X4) is minimal surface
and Kähler current in S2(X4) vanishes since it involves components of the trace of second
fundamental form. Field equations are indeed satisfied.
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6. The solution of field equations becomes a family of space-time surfaces parameterized by
the values of the cosmological constant Λ as function of S2 coordinates satisfying Λ/8πG =
ρvac = J ∧ (∗J)(S2). In long length scales the variation range of Λ would become arbitrary
small.

7. If the minimal surface equations solve separately field equations for the volume term and
Kähler action everywhere apart from a discrete set of singular points, the cosmological con-
stant affects the space-time dynamics only at these points. The physical interpretation of
these points is as seats of fundamental fermions at partonic 2-surface at the ends of light-
like 3-surfaces defining their orbits (induced metric changes signature at these 3-surfaces).
Fermion orbits would be boundaries of fermionic string world sheets.

One would have family of solutions of field equations but particular value of Λ would make
itself visible only at the level of elementary fermions by affecting the values of coupling
constants. p-Adic coupling constant evolution would be induced by the p-adic coupling
constant evolution for the relative rotations R combined with reflection for the two twistor
spheres. Therefore twistor lift would not be mere manner to reproduce cosmological term
but determine the dynamics at the level of coupling constant evolution.

8. What is nice that also Λ = 0 option is possible. This would correspond to the variant of
TGD involving only Kähler action regarded as TGD before the emergence of twistor lift.
Therefore the nice results about cosmology [K10] obtained at this limit would not be lost.

3.3 Does p-adic coupling constant evolution reduce to that for cosmo-
logical constant?

One of the chronic problems if TGD has been the understanding of what coupling constant evolu-
tion could be defined in TGD.

3.3.1 Basic notions and ideas

Consider first the basic notions and ideas.

1. The notion of quantum criticality is certainly central. The continuous coupling constant
evolution having no counterpart in the p-adic sectors of adele would contain as a sub-evolution
discrete p-adic coupling constant evolution such that the discrete values of coupling constants
allowing interpretation also in p-adic number fields are fixed points of coupling constant
evolution.

Quantum criticality is realized also in terms of zero modes, which by definition do not con-
tribute to WCW metric. Zero modes are like control parameters of a potential function in
catastrophe theory. Potential function is extremum with respect to behavior variables re-
placed now by WCW degrees of freedom. The graph for preferred extremals as surface in
the space of zero modes is like the surface describing the catastrophe. For given zero modes
there are several preferred extremals and the catastrophe corresponds to the regions of zero
mode space, where some branches of co-incide. The degeneration of roots of polynomials is
a concrete realization for this.

Quantum criticality would also mean that coupling parameters effectively disappear from
field equations. For minimal surfaces (generalization of massless field equation allowing con-
formal invariance characterizing criticality) this happens since they are separately extremals
of Kähler action and of volume term.

Quantum criticality is accompanied by conformal invariance in the case of 2-D systems and
in TGD this symmetry extends to its 4-D analogas isometries of WCW.

2. In the case of 4-D Kähler action the natural hypothesis was that coupling constant evolution
should reduce to that of Kähler coupling strength 1/αK inducing the evolution of other
coupling parameters. Also in the case of the twistor lift 1/αK could have similar role. One
can however ask whether the value of the 6-D Kähler action for the twistor sphere S2(X4)
defining cosmological constant could define additional parameter replacing cutoff length scale
as the evolution parameter of renormalization group.
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3. The hierarchy of adeles should define a hierarchy of values of coupling strengths so that the
discrete coupling constant evolution could reduce to the hierarchy of extensions of rationals
and be expressible in terms of parameters characterizing them.

4. I have also considered number theoretical existence conditions as a possible manner to fix the
values of coupling parameters. The condition that the exponent of Kähler function should
exist also for the p-adic sectors of the adele is what comes in mind as a constraint but it
seems that this condition is quite too strong.

If the functional integral is given by perturbations around single maximum of Kähler function,
the exponent vanishes from the expression for the scattering amplitudes due to the presence
of normalization factor. There indeed should exist only single maximum by the Euclidian
signature of the WCW Kähler metric for given values of zero modes (several extrema would
mean extrema with non-trivial signature) and the parameters fixing the topology of 3-surfaces
at the ends of preferred extremal inside CD. This formulation as counterpart also in terms of
the analog of micro-canonical ensemble (allowing only states with the same energy) allowing
only discrete sum over extremals with the same Kähler action [L10].

5. I have also considered more or less ad hoc guesses for the evolution of Kähler coupling strength
such as reduction of the discrete values of 1/αK to the spectrum of zeros of Riemann zeta or
actually of its fermionic counterpart [L1]. These proposals are however highly ad hoc.

3.3.2 Could the area of twistor sphere replace cutoff length?

As I started once again to consider coupling constant evolution I realized that the basic problem
has been the lack of explicit formula defining what coupling constant evolution really is.

1. In quantum field theories (QFTs) the presence of infinities forces the introduction of momen-
tum cutoff. The hypothesis that scattering amplitudes do not depend on momentum cutoff
forces the evolution of coupling constants. TGD is not plagued by the divergence problems
of QFTs. This is fine but implies that there has been no obvious manner to define what
coupling constant evolution as a continuous process making sense in the real sector of adelic
physics could mean!

2. Cosmological constant is usually experienced as a terrible head ache but it could provide the
helping hand now. Could the cutoff length scale be replaced with the value of the length
scale defined by the cosmological constant defined by the S2 part of 6-D Kähler action? This
parameter would depend on the details of the induced twistor structure. It was shown above
that if the moduli space for induced twistor structures corresponds to rotations of S2 possibly
combined with the reflection, the parameter for coupling constant restricted to that to SO(2)
subgroup of SO(3) could be taken to be taken s = sin(ε).

3. RG invariance would state that the 6-D Kähler action is stationary with respect to variations
with respect to s. The variation with respect to s would involve several contributions. Besides
the variation of 1/αK(s) and the variation of the S(2) part of 6-D Kähler action defining the
cosmological constant, there would be variation coming from the variations of 4-D Kähler
action plus 4-D volume term . This variation vanishes by field equations. As matter of fact,
the variations of 4-D Kähler action and volume term vanish separately except at discrete
set of singular points at which there is energy transfer between these terms. This condition
is one manner to state quantum criticality stating that field equations involved no coupling
parameters.

One obtains explicit RG equation for αK and Λ having the standard form involving logarith-
mic derivatives. The form of the equation would be

dlog(αK)

ds
= − S(S2)

(SK(X4)/V ol(X4)) + S(S2)

dlog(S(S2))

ds
. (3.1)
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It should be noticed that the choices of the parameter s in the evolution equation is arbitrary
so that the identification s = sin(ε) is not necessary. Note that one must use Kähler action
per volume.

The equation contains the ratio S(S2)/(SK(X4) + S(S2)) of actions as a parameter. This
does not conform with idea of micro-locality. One can however argue that this conforms with
the generalization of point like particle to 3-D surface. For preferred extremal the action is
indeed determined by the 3 surfaces at its ends at the boundaries of CD. This implies that
the construction of quantum theory requires the solution of classical theory.

In particular, the 4-D classical theory is necessary for the construction of scattering am-
plitudes, and one cannot reduce TGD to string theory although strong form of holography
states that the data about quantum states can be assigned with 2-D surfaces. Even more:
M8 −H correspondence implies that the data determining quantum states can be assigned
with discrete set of points defining cognitive representations for given adel This set of points
depends on the preferred extremal!

4. How to identify quantum critical values of αK? At these points one should have dlog(αK)/ds =
0. This implies dlog(S(S2)/ds = 0, which in turn implies dlog(αK)/ds = 0 unless one has
SK(X4) + S(S2) = 0. This condition would make exponent of 6-D Kähler action trivial and
the continuation to the p-adic sectors of adele would be trivial. I have considered also this
possibility [L11].

The critical values of coupling constant evolution would correspond to the critical values of
S and therefore of cosmological constant. The basic nuisance of theoretical physics would
determine the coupling constant evolution completely! Critical values are in principle possi-
ble. Both the numerator J2

uΦ and the numerator 1/
√
det(g) increase with ε. If the rate for

the variation of these quantities with s vary it is possible to have a situation in which the
one has

dlog(J2
uΦ)

ds
= −

dlog(
√
det(g))

ds
. (3.2)

5. One can make highly non-trivial conclusions about the evolution at general level. For the
extremals with vanishing action and for which αK is critical (vanishing derivate), also the
second derivative of d2S(S2)/ds2 = holds true at the critical point. The QFT analogs of
these points are points at which beta function develops higher order zero. The tip of cusp
catastrophe is second analogy.

The points at which that the action has minimum are also interesting. For magnetic flux tubes
for which one has SK(X4) ∝ 1/S and Svol ∝ S in good approximation, one has SK(X4) =
Svol at minimum (say for the flux tubes with radius about 1 mm for the cosmological constant
in cosmological scales). One can write

dlog(αK)

ds
= −1

2

dlog(S(S2))

ds
, (3.3)

and solve the equation explicitly:

αK,0
αK

=
S(S2)

S(S2)0
)x , x = 1/2 . (3.4)

A more general situation would correspond to a model with x 6= 1/2: the deviation from
x = 1/2 could be interpreted as anomalous dimension. This allows to deduce numerically a
formula for the value spectrum of αK,0/αK apart from the initial values.
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6. One can solve the equation also for fixed value of S(X4)/V ol(X4) to get

αK,0
αK

=
S(S2)

S(S2)0
)x , x = 1/2 . (3.5)

αK
αK,0

=
SK(X4)/V ol(X4)) + S(S2)

SK(X4)/V ol(X4))
. (3.6)

At the limit S(S2) =→ 0 one obtains αK → αK,0.

7. One should demonstrate that the critical values of s are such that the continuation to p-adic
sectors of the adele makes sense. For preferred extremals cosmological constant appears as
a parameter in field equations but does not affect the field equations expect at the singular
points. Singular points play the same role as the poles of analytic function or point charges
in electrodynamics inducing long range correlations. Therefore the extremals depend on
parameter s and the dependence should be such that the continuation to the p-adic sectors
is possible.

A näıve guess is that the values of s are rational numbers. Above the proposal s = 2−k/2

motivated by p-adic length scale hypothesis was considered but also s = p−k/2 can be con-
sidered. These guesses might be however wrong, the most important point is that there is
that one can indeed calculate αK(s) and identify its critical values.

8. What about scattering amplitudes and evolution of various coupling parameters? If the
exponent of action disappears from scattering amplitudes, the continuation of scattering
amplitudes is simple. This seems to be the only reasonable option. In the adelic approach [L4]
amplitudes are determined by data at a discrete set of points of space-time surface (defining
what I call cognitive representation) for which the points have M8 coordinates belong to the
extension of rationals defining the adele.

Each point of S2(X4) corresponds to a slightly different X4 so that the singular points depend
on the parameter s, which induces dependence of scattering amplitudes on s. Since coupling
constants are identified in terms of scattering amplitudes, this induces coupling constant
evolution having discrete coupling constant evolution as sub-evolution.

3.3.3 Could the critical values of αK correspond to the zeros of Riemann Zeta?

Number theoretical intuitions strongly suggests that the critical values of 1/αK could somehow
correspond to zeros of Riemann Zeta. Riemann zeta is indeed known to be involved with critical
systems.

The näıvest ad hoc hypothesis is that the values of 1/αK are actually proportional to the non-
trivial zeros s = 1/2 + iy of zeta [L1]. A hypothesis more in line with QFT thinking is that they
correspond to the imaginary parts of the roots of zeta. In TGD framework however complex values
of αK are possible and highly suggestive. In any case, one can test the hypothesis that the values
of 1/αK are proportional to the zeros of ζ at critical line. Problems indeed emerge.

1. The complexity of the zeros and the non-constancy of their phase implies that the RG
equation can hold only for the imaginary part of s = 1/2 + it and therefore only for the
imaginary part of the action. This suggests that 1/αK is proportional to y. If 1/αK is
complex, RG equation implies that its phase RG invariant since the real and imaginary parts
would obey the same RG equation.

2. The second - and much deeper - problem is that one has no reason for why dlog(αK)/ds
should vanish at zeros: one should have dy/ds = 0 at zeros but since one can choose instead
of parameter s any coordinate as evolution parameter, one can choose s = y so that one has
dy/ds = 1 and criticality condition cannot hold true. Hence it seems that this proposal is
unrealistic although it worked qualitatively at numerical level.
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It seems that it is better to proceed in a playful spirit by asking whether one could realize
quantum criticality in terms of of the property of being zero of zeta.

1. The very fact that zero of zeta is in question should somehow guarantee quantum criticality.
Zeros of ζ define the critical points of the complex analytic function defined by the integral

X(s0, s) =

∫
Cs0→s

ζ(s)ds , (3.7)

where Cs0→s is any curve connecting zeros of ζ, a is complex valued constant. Here s does
not refer to s = sin(ε) introduced above but to complex coordinate s of Riemann sphere.

By analyticity the integral does not depend on the curve C connecting the initial and final
points and the derivative dSc/ds = ζ(s) vanishes at the endpoints if they correspond to zeros
of ζ so that would have criticality. The value of the integral for a closed contour containing
the pole s = 1 of ζ is non-vanishing so that the integral has two values depending on which
side of the pole C goes.

2. The first guess is that one can define Sc as complex analytic function F (X) having interpre-
tation as analytic continuation of the S2 part of action identified as Re(Sc):

Sc(S
2) = F (X(s, s0)) , X(s, s0) =

∫
Cs0→s

ζ(s)ds ,

S(S2) = Re(Sc) = Re(F (X)) ,

ζ(s) = 0 , Re(s0) = 1/2 .

(3.8)

Sc(S
2) = F (X) would be a complexified version of the Kähler action for S2. s0 must be at

critical line but it is not quite clear whether one should require ζ(s0) = 0.

The real valued function S(S2) would be thus extended to an analytic function Sc = F (X)
such that the S(S2) = Re(Sc) would depend only on the end points of the integration
path Cs0→s. This is geometrically natural. Different integration paths at Riemann sphere
would correspond to paths in the moduli space SO(3), whose action defines paths in S2

and are indeed allowed as most general deformations. Therefore the twistor sphere could be
identified Riemann sphere at which Riemann zeta is defined. The critical line and real axis
would correspond to particular one parameter sub-groups of SO(3) or to more general one
parameter subgroups.

One would have

αK,0

αK
= (Sc

S0
)1/2 . (3.9)

The imaginary part of 1/αK (and in some sense also of the action Sc(S
2)) would determined

by analyticity somewhat like the real parts of the scattering amplitudes are determined by
the discontinuities of their imaginary parts.

3. What constraints can one pose on F? F must be such that the value range for F (X) is in
the value range of S(S2). The lower limit for S(S2) is S(S2) = 0 corresponding to JuΦ → 0.

The upper limit corresponds to the maximum of S(S2). If the one Kähler forms of M4 and
S2 have same sign, the maximum is 2×A, where A = 4π is the area of unit sphere. This is
however not the physical case.

If the Kähler forms of M4 and S2 have opposite signs or if one has RP option, the maximum,
call it Smax, is smaller. Symmetry considerations strongly suggest that the upper limit
corresponds to a rotation of 2π in say (y, z) plane (s = sin(ε) = 1 using the previous
notation).
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For s → s0 the value of Sc approaches zero: this limit must correspond to S(S2) = 0
and JuΦ → 0. For Im(s) → ±∞ along the critical line, the behavior of Re(ζ) (see http:

//tinyurl.com/y7b88gvg) strongly suggests that |X| → ∞ . This requires that F is an
analytic function, which approaches to a finite value at the limit |X| → ∞. Perhaps the
simplest elementary function satisfying the saturation constraints is

F (X) = Smaxtanh(−iX) . (3.10)

One has tanh(x + iy) → ±1 for y → ±∞ implying F (X) → ±Smax at these limits. More
explicitly , one has tanh(−i/2−y) = [−1+exp(−4y)−2exp(−2y)(cos(1)−1)]/[1+exp(−4y)−
2exp(−2y)(cos(1)− 1)]. Since one has tanh(−i/2 + 0) = 1− 1/cos(1) < 0 and tanh(−i/2 +
∞) = 1, one must have some finite value y = y0 > 0 for which one has

tanh(− i
2

+ y0) = 0 . (3.11)

The smallest possible lower bound s0 for the integral defining X would naturally to s0 =
1/2− iy0 and would be below the real axis.

4. The interpretation of S(S2) as a positive definite action requires that the sign of S(S2) =
Re(F ) for a given choice of s0 = 1/2 + iy0 and for a propertly sign of y − y0 at critical line
should remain positive. One should show that the sign of S = a

∫
Re(ζ)(s = 1/2 + it)dt is

same for all zeros of ζ. The graph representing the real and imaginary parts of Riemann
zeta along critical line s = 1/2 + it (see http://tinyurl.com/y7b88gvg) shows that both
the real and imaginary part oscillate and increase in amplitude. For the first zeros real part
stays in good approximation positive but the amplitude for the negative part increase be
gradually. This suggests that S identified as integral of real part oscillates but preserves its
sign and gradually increases as required.

A priori there is no reason to exclude the trivial zeros of ζ at s = −2n, n = 1, 2, ....

1. The natural guess is that the function F (X) is same as for the critical line. The integral
defining X would be along real axis and therefore real as also 1/αK provided the sign of Sc
is positive: for negative sign for Sc not allowed by the geometric interpretation the square
root would give imaginary unit. The graph of the Riemann Zeta at real axis (real) is given
in MathWorld Wolfram (see http://tinyurl.com/55qjmj).

2. The functional equation

ζ(1− s) = ζ(s)
Γ(s/2)

Γ((1− s)/2)
(3.12)

allows to deduce information about the behavior of ζ at negative real axis. Γ((1 − s)/2)
is negative along negative real axis (for Re(s) ≤ 1 actually) and poles at n + 1/2. Its
negative maxima approach to zero for large negative values of Re(s) (see http://tinyurl.

com/clxv4pz) whereas ζ(s) approaches value one for large positive values of s (see http:

//tinyurl.com/y7b88gvg). A cautious guess is that the sign of ζ(s) for s ≤ 1 remains
negative. If the integral defining the area is defined as integral contour directed from s < 0
to a point s0 near origin, Sc has positive sign and has a geometric interpretation.

3. The formula for 1/αK would read as αK,0/αK(s = −2n) = (Sc/S0)1/2 so that αK would
remain real. This integration path could be interpreted as a rotation around z-axis leaving
invariant the Kähler form J of S2(X4) and therefore also S = Re(Sc). Im(Sc) = 0 indeed
holds true. For the non-trivial zeros this is not the case and S = Re(Sc) is not invariant.

http://tinyurl.com/y7b88gvg
http://tinyurl.com/y7b88gvg
http://tinyurl.com/y7b88gvg
http://tinyurl.com/55qjmj
http://tinyurl.com/clxv4pz
http://tinyurl.com/clxv4pz
http://tinyurl.com/y7b88gvg
http://tinyurl.com/y7b88gvg


3.4 An alternative view about the coupling constant evolution in terms of
cosmological constant 21

4. One can wonder whether one could distinguish between Minkowskian and Euclidian and
regions in the sense that in Minkowskian regions 1/αK correspond to the non-trivial zeros
and in Euclidian regions to trivial zeros along negative real axis. The interpretation as
different kind of phases might be appropriate.

What is nice that the hypothesis about equivalence of the geometry based and number theo-
retic approaches can be killed by just calculating the integral S as function of parameter s. The
identification of the parameter s appearing in the RG equations is no unique. The identification
of the Riemann sphere and twistor sphere could even allow identify the parameter t as imaginary
coordinate in complex coordinates in SO(3) rotations around z-axis act as phase multiplication
and in which metric has the standard form.

3.3.4 Some guesses to be shown to be wrong

The following argument suggests a connection between p-adic length scale hypothesis and evolution
of cosmological constant but must be taken as an ad hoc guess: the above formula is enough to
predict the evolution.

1. p-Adicization is possible only under very special conditions [L4], and suggests that anomalous
dimension involving logarithms should vanish for s = 2−k/2 corresponding to preferred p-
adic length scales associated with p ' 2k. Quantum criticality in turn requires that discrete
p-adic coupling constant evolution allows the values of coupling parameters, which are fixed
points of RG group so that radiative corrections should vanish for them. Also anomalous
dimensions ∆k should vanish.

2. Could one have ∆kn,a = 0 for s = 2−k/2, perhaps for even values k = 2k1? If so, the ratio
c/s would satisfy c/s = 2k1 − 1 at these points and Mersenne primes as values of c/s would
be obtained as a special case. Could the preferred p-adic primes correspond to a prime near
to but not larger than c/s = 2k1 − 1 as p-adic length scale hypothesis states? This suggest
that we are on correct track but the hypothesis could be too strong.

3. The condition ∆d = 0 should correspond to the vanishing of dS/ds. Geometrically this
would mean that S(s) curve is above (below) S(s) = xs2 and touches it at points s = x2−k,
which would be minima (maxima). Intermediate extrema above or below S = xs2 would be
maxima (minima).

3.4 An alternative view about the coupling constant evolution in terms
of cosmological constant

The above view about the evolution of cosmological constant relies crucially on the identification
of M4 × S2 as twistor space of M4, and the assumption that the radii of twistor spheres S2(M4

and S2(CP2) assignable to the twistor bundle of CP2 are same.
One can however argue that the standard twistor space CP3 of M4 with Minkowskian signature

(3,-3) is a more feasible candidate for the twistor space of M4. Accepting this, one ends up to
a modification of the above vision about coupling constant evolution [L23, L24]. The progress in
understanding SUSY in TGD framework led also to a dramatic progress in the understanding of
the coupling constant evolution [L21].

3.4.1 Getting critical about geometric twistor space of M4

Let us first discuss the recent picture and how to modify it so that it is consistent with the hierarchy
of CDs. The key idea is that the twistor space and its base space represents CD so that one obtains
scale hierarchy of twistor spaces as a realization of broken scale invariance giving rise to the p-adic
length scale hierarchy.

1. I have identified the twistor space of M4 simply as T (M4) = M4 × S2. The interpretation
would be at the level of octonions as a product of M4 and choices of M2 as preferred complex
sub-space of octonions with S2 parameterizing the directions of spin quantization axes. Real
octonion axis would correspond to time coordinate. One could talk about the space of of
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light-like directions. Light-like vector indeed defines M2. This view could be defended by
the breaking of both translation and Lorentz invariance in the octonionic approach due to
the choice of M2 and by the fact that it seems to work.

Remark: M8 = M4 × E4 is complexified to M8
c by adding a commuting imaginary unit i

appearing in the extensions of rationals and ordinary M8 represents its particular sub-space.
Also in twistor approach one uses often complexified M4.

2. The objection is that it is ordinary twistor space identifiable as CP3 with (3,-3) signature of
metric is what works in the construction of twistorial amplitudes. CP3 has metric as compact
space and coset space. Could this choice of twistor space make sense after all as geometric
twistor space?

Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X4 ⊂ M4 × CP2. Now Poincare symmetry has been transformed to
a symmetry acting at the level of M8 in the moduli space of octonion structures defined
by the choice of the direction of octonionic real axis reducing Poincare group to T × SO(3)
consisting of time translations and rotations. Fixing of M2 reducrs the group to T × SO(2)
and twistor space can be seen as the space for selections of quantization axis of energy and
spin.

3. But what about the space H? The first guess is H = M4
conf × CP2. According to [B1] (see

http://tinyurl.com/y35k5wwo) one has M4
conf = U(2) such that U(1) factor is time- like

and SU(2) factor is space-like. One could understand M4
conf = U(2) as resulting by addition

and identification of metrically 2-D light-cone boundaries at t = ±∞. This is topologically
like compactifying E3 to S3 and gluing the ends of cylinder S3×D1 together to the S3×S1.

The conformally compactified Minkowski space M4
conf should be analogous to base space of

CP3 regarded as bundle with fiber S2. The problem is that one cannot imagine an analog
of fiber bundle structure in CP3 having U(2) as base. The identification H = M4

conf × CP2

does not make sense.

4. In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog of
M4
conf - call it cdconf . The only candidate is cdconf = CP2 with one hypercomplex coordinate.

To understand why one can start from the following picture. The light-like boundaries of
CD are metrically equivalent to spheres. The light-like boundaries at t = ±∞ are identified
as in the case of M4

conf . In the case of CP2 one has 3 homologically trivial spheres defining
coordinate patches. This suggests that cdconf is simply CP2 with second complex coordinate
made hypercomplex. M4 and E4 differ only by the signature and so would do cdconf and
CP2.

The twistor spheres of CP3 associated with points of M4 intersect at point if the points differ
by light-like vector so that one has and singular bundle structure. This structure should have
analog for the compactification of CD. CP3 has also bundle structure CP3 → CP2. The S2

fibers and base are homologically non-trivial and complex analogs of mutually orthogonal line
and plane and intersect at single point. This defines the desired singular bundle structure
via the assignment of S2 to each point of CP2.

The M4 points must belong to the interior of cd and this poses constraints on the distance of
M4 points from the tips of cd. One expects similar hierarchy of cds at the level of momentum
space.

5. In this picture M4
conf = U(2) could be interpreted as a base space for the space of CDs

with fixed direction of time axis identified as direction of octonionic real axis associated with
various points of M4 and therefore of M4

conf . For Euclidian signature one would have base
and fiber of the automorphism sub-group SU(3) regarded as U(2) bundle over CP2: now one
would have CP2 bundle over U(2). This is perhaps not an accident, and one can ask whether
these spaces could be interpreted as representing local trivialization of SU(3) as U(2)×CP2.
This would give to metric cross terms between U(2) and CP2.

6. The proposed identification can be tested by looking whether it generalizes. What the twistor
space for entire M8 would be? cd = CD4 is replaced with CD8 and the discussion of the

http://tinyurl.com/y35k5wwo
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preceding chapter demonstrated that the only possible identification of the twistor space is
now is as the 12-D hyperbolic variant of HP3 whereas CD8,conf would correspond to 8-D
hyperbolic variant of HP2 analogous to hyperbolic variant of CP2.

The outcome of these considerations is surprising.

1. One would have T (H) = CP3×F and H = CP2,H×CP2 where CP2,H has hyperbolic metric
with metric signature (1,−3) having M4 as tangent space so that the earlier picture can be
understood as an approximation. This would reduce the construction of preferred extremals
of 6-D Kähler action in T (H) to a construction of polynomial holomorphic surfaces and
also the minimal surfaces with singularities at string world sheets should result as bundle
projection. Since M8 − H duality must respect algebraic dynamics the maximal degree of
the polynomials involved must be same as the degree of the octonionic polynomial in M8.

2. The hyperbolic variant Kähler form and also spinor connection of hyperbolic CP2 brings in
new physics beyond standard model. This Kähler form would serve as the analog of Kähler
form assigned to M4 earlier, and suggested to explain the observed CP breaking effects and
matter antimatter asymmetry for which there are two explanations [L21].

Some comments about the Minkowskian signature of the hyperbolic counterparts of CP3 and
CP2 are in order.

1. Why the metric of CP3 could not be Euclidian just as the metric of F? The basic objection
is that propagation of fields is not possible in Euclidian signature and one completely loses
the earlier picture provided by M4×CP2. The algebraic dynamics in M8 picture can hardly
replace it.

2. The map assigning to the point M4 a point of CP3 involves Minkowskian sigma matrices but
it seems that the Minkowskian metric of CP3 is not explicitly involved in the construction
of scattering amplitudes. Note however that the antisymmetric bi-spinor metric for the spin
1/2 representation of Lorentz group and its conjugate bring in the signature. U(2, 2) as
representation of conformal symmetries suggests (2, 2) signature for 8-D complex twistor
space with 2+2 complex coordinates representing twistors.

The signature of CP3 metric is not explicitly visible in the construction of twistor amplitudes
but analytic continuations are carried out routinely. One has also complexified M4 and M8

and one could argue that the problems disappear. In the geometric situation the signatures
of the subspaces differ dramatically. As already found, analytic continuation could allow
to define the variants of twistor spaces elegantly by replacing a complex coordinate with a
hyperbolic one.

Remark: For E4 CP3 is Euclidian and if one has E4
conf = U(2), one could think of replacing

the Cartesian product of twistor spaces with SU(3) group having M4
conf = U(2) as fiber and

CP2 as base. The metric of SU(3) appearing as subgroup of quaternionic automorphisms
leaving M4 ⊂ M8 invariant would decompose to a sum of M4

conf metric and CP2 metric

plus cross terms representing correlations between the metrics of M4
conf and CP2. This is

probably mere accident.

3.4.2 How the vision about coupling constant evolution would be modified?

The above described vision about coupling constant evolution in case of T (M4) = M4×S2 would be
modified since the interference of the Kähler form made possible by the same signature of S2(M4)
and S2(CP2). Now the signatures are opposite and Kähler forms differ by factor i (imaginary unit
commuting with octonion units) so that the induced Kähler forms do not interfere anymore. The
evolution of cosmological constant must come from the evolution of the ratio of the radii of twistor
spaces (twistor spheres).

1. M8 − H duality has two alternative forms with H = CP2,h × CP2 or H = M4 × CP2

depending on whether one projects the twistor spheres of CP3,h to CP2,h or M4. Let us
denote the twistor space SU(3)/U(1)× U(1) of CP2 by F .
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2. The key idea is that the p-adic length scale hierarchy for the size of 8-D CDs and their 4-D
counterparts is mapped to a corresponding hierarchy for the sizes of twistor spaces CP3,h

assignable to M4 by M8−H-duality. By scaling invariance broken only by discrete size scales
of CDs one can take the size scale of CP2 as a unit so that r = R2(S2(CP3,h)/R(S2(F ))
becomes an evolution parameter.

Coupling constant evolution must correspond to a variation for the ratio of r = R2(S2(CP3,h)/R(S2(F ))
and a reduction to p-adic length scale evolution is expected. A simple argument shows
that Λ is inversely proportional to constant magnetic energy assignable to S2(X4) divided
by 1/

√
g2(S2) in dimensional reduction needed to induce twistor structure. Thus one has

Λ ∝ 1/r2 ∝ 1/L2
p. Preferred p-adic primes would be identified as ramified primes of extension

of rationals defining the adele so that coupling constant evolution would reduce to number
theory.

3. The induced metric would vanish for R(S2(CP3,h) = R(S2(F )). Λ would be infinite at this
limit so that one must have R(S2(CP3,h) 6= R(S2(F )). The most natural assumption is that
one R(S2(CP3,h) > R(S2(F )) but one cannot exclude the alternative option. Λ behaves
like 1/L2

p. Inversions of CDs with respect to the values of the cosmological time parameter
a = Lp would produce hierarchies of length scales, in particular p-adic length scales coming
as powers of

√
p. CP2 scale and the scale assignable to cosmological constant could be seen

as inversions of each other with respect to a scale which is of order 10−4 meters defined by
the density of dark energy in the recent Universe and thus biological length scale.

4. The above model for the length scale evolution of coupling parameters would reduce to that
along paths at S2(CP2) and would depend on the ends points of the path only, and also now
the zeros of Riemann zeta could naturally correspond to the quantum critical points.

3.4.3 TGD vision about SUSY and coupling constant evolution

TGD view about SUSY leads to radical modification and re-interpretation of SUSY [L23, L21],
and to a dramatic progress in the understanding of coupling constant evolution.

Quarks would be the only fundamental fermion fields, and leptons would be spartners of quarks
identified as local composites of 3 quarks. Embedding space coordinates would have an expansion
in terms of local super-monomials of quarks and antiquarks with vanishing baryon number and
appearing as sums of monomial and its conjugate to guarantee hermiticity. Super-spinors would
have similar expansion involving only odd quark numbers. This picture is forced by the requirement
that propagators are consistent with the statistics of the spartner. Theta parameters would be
replaced by creation and annihilation operators for quarks so that super-symmetrization would
mean also second quantization. Number theoretic vision requires that only a finite number of
Wick contractions of oscillator operators can vanish. These conditions have interpretation as
conservation for the Noether currents of some symmetries.

This picture leads to a concrete view about S-matrix for the preferred extremals of a SUSY-
variant of the basic action principle relying on the notion of super-variant of embedding space
and super-variant of the modified Dirac action. Coupling constant evolution discretizes and would
reduce to an increase of the finite number of non-vanishing Wick contractions interpreted as ra-
diative corrections as the dimension of the extension of rationals defining the adele increases. This
evolution reflects directly the corresponding evolution at the level of M8 in terms of octonionic
polynomials determining the extension of rationals involved. Whether this view is consistent with
the above general vision remains to be seen.

3.5 Generalized conformal symmetry, quantum criticality, catastrophe
theory, and analogies with thermodynamics and gauge theories

The notion of quantum criticality allows two realizations: as stationarity of S2 part of the twistor
lift of Kähler action and in terms of zeros of zeta are key elements in the explicit proposal for
discrete coupling constant evolution reducing to that for cosmological constant.
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3.5.1 Quantum criticality from different perspectives

Quantum criticality is however much more general notion, and one must ask how this view relates
to the earlier picture.

1. At the real number side continuous coupling constant evolution makes sense. What does
this mean? Can one say that quantum criticality makes possible only adelic physics together
with large heff/h0 = n as dimension for extension of rationals. This hierarchy is essential
for life and cognition.

Can one conclude that living systems correspond to quantum critical values of S(S2) and
therefore αK and in-animate systems correspond to other values of αK? But wouldn’t his
mean that one gives up the original vision that αK is analogous to critical temperature. The
whole point was that this would make physics unique?

From mathematical view point also continuous αK can make sense. αK can be continuous
if it corresponds to a higher-dimensional critical manifold at which two or more preferred
extremals associated with the same parameter values co-incide - roots of polynomial P (x, a, b)
depending on parameters a, b serves as the canonical example. The degree of quantum
criticality would vary and there would be a hierarchy of critical systems characterized by the
dimension of the critical manifold. One would have a full analog of statistical physics. For
mathematician this is the only convincing interpretation.

2-D cusp catastrophe serves as a basic example helping to generalize [A2]. Cusp corresponds
to the roots of dP4/dx = 0 of third order polynomial P4(x, a, b), where (a, b) are control
variables. The projection of region with 3 real roots to (a, b)-plane is bounded by critical
lines forming a roughly V-shaped structure. d2P4/dx

2 vanishes at the edges of V, where two
roots co-incide and d3P4/dx

3 vanishes at the tip of V, where 3 roots co-incide.

2. A hierarchy of quantum criticalities has been actually assumed. The hierarchy of repre-
sentations for super-symplectic algebra realizing 4-D analog of super-conformal symmetries
allows an infinite hierarchy of representations for which infinite-D sub-algebra isomorphic
to a full algebra and its commutator with the full algebra annihilate physical states. Also
classical Noether charges vanish. What is new is that conformal weights are non-negative
integers. The effective dimensions of these systems are finite - at least in the sense that one
one has finite-D Lie algebra (or its quantum counterpart) or corresponding Kac-Moody alge-
bra as symmetries. This realization of quantum criticality generalize the idea that conformal
symmetry accompanies 2-D criticality.

This picture conforms also with the vision about hierarchy of hyper-finite-factors with in-
cluded hyper-finite factor defining measurement resolution [K14]. Hyper-finiteness indeed
means finite-dimensionality in excellent approximation.

3.5.2 TGD as catastrophe theory and quantum criticality as prerequisite for the
Euclidian signature of WCW metric

It is good to look more precisely how the catastrophe theoretic setting generalizes to TGD.

1. The value of the twistor lift of Kähler action defining Kähler function very probably cor-
responds to a maximum of Kähler function since otherwise metric defined by the second
derivatives could have non-Euclidian signature. One cannot however exclude the possibility
that in complex WCW coordinates the (1,1) restriction of the matrix defined by the second
derivatives of Kähler function could be positive definite also for other than minima.

It would seem that one cannot accept several roots for given zero modes since one cannot
have maximum of Kähler function for all of them. This would allow only the boundary of
catastrophe region in which 2 or more roots co-incide. Positive definiteness of WCW metric
would force quantum criticality.

For given values of zero modes there would be single minimum and together with the cancel-
lation of Gaussian and metric determinants this makes perturbation theory extremely simple
since exponents of vacuum functional would cancel.
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2. There is an infinite number of zero modes playing the role of control variables since the
value of the induce Kähler form is symplectic invariant and there are also other symplectic
invariants associated with the M4 degrees of freedom (carrying also the analog of Kähler form
for the twistor lift of TGD and giving rise to CP breaking). One would have catastrophe
theory with infinite number of control variables so that the number of catastrophes would be
infinite so that standard catastrophe theory does not as such apply.

3. Therefore TGD would not be only a personal professional catastrophe but a catastrophe in
much deeper sense. WCW would be a catastrophe surface for the functional gradient of
the action defining Kähler function. WCW would consists of regions in which given zero
modes would correspond to several minima. The region of zero mode space at which some
roots identifiable as space-time surfaces co-incide would be analogous to the V-shaped cusp
catastrophe and its higher-D generalizations. The question is whether one allows the entire
catastrophe surface or whether one demands quantum criticality in the sense that only the
union of singular sets at which roots co-incide is included.

4. For WCW as catastrophe surface the analog of V in the space of zero modes would correspond
to a hierarchy of sub-WCWs consisting of preferred extremals satisfying the gauge conditions
associated with a sub-algebra of supersymplectic algebra isomorphic to the full algebra. The
sub-WCWs in the hierarchy of sub-WCWs within sub-WCWs would satisfy increasingly
stronger gauge conditions and having decreasing dimension just like in the case of ordinary
catastrophe. The lower the effective dimension, the higher the quantum criticality.

5. In ordinary catastrophe theory the effective number of behavior variables for given catastro-
phe can be reduced to some minimum number. In TGD framework this would correspond
to the reduction of super-symplectic algebra to a finite-D Lie algebra or corresponding Kac-
Moody (half-)algebra as modes of supersymplectic algebra with generators labelled by non-
negative integer n modulo given integer m are eliminated as dynamical degrees of freedom by
the gauge conditions: this would effectively leave only the modes smaller than m. The fractal
hierarchy of these supersymplectic algebras would correspond to the decomposition of WCW
as a catastrophe surface to pieces with varying dimension. The reduction of the effective
dimension as two sheets of the catastrophe surface co-incide would mean transformation of
some modes contributing to metric to zero modes.

3.5.3 RG invariance implies physical analogy with thermodynamics and gauge the-
ories

One can consider coupling constant evolution and RG invariance from a new perspective based on
the minimal surface property.

1. The critical values of Kähler coupling strength would correspond to quantum criticality of the
S2 part S(S2) of 6-D dimensionally reduced Kähler action for fixed values of zero modes. The
relative S2 rotation would serve as behavior variable. For its critical values the dimension of
the critical manifold would be reduced, and keeping zero modes fixed a critical value of αK
would be selected from 1-D continuum.

Quantum criticality condition might be fundamental since it implies the constancy of the
value of the twistor lift of Kähler action for the space-time surfaces contributing to the scat-
tering amplitudes. This would be crucial for number theoretical vision since the continuation
of exponential to p-adic sectors is not possible in the generic case. One should however de-
velop stronger arguments to exclude the continuous evolution of Kähler coupling strength in
S2 degrees of freedom for the real sector of the theory.

2. The extremals of twistor lift contain dependence on the rotation parameter for S2 and this
must be taken into account in coupling constant evolution along curve of S2 connecting zeros
of zeta. This gives additional non-local term to the evolution equations coming from the
dependence of the embedding space coordinates of the preferred extremal on the evolution
parameter. The derivative of Kähler action with respect to the evolution parameter is by
chain rule proportional to the functional derivatives of action with respect to embedding
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space coordinates, and vanish if 4-D Kähler action and volume term are separately stationary
with respect to variations. Therefore minimal surface property as implied by holomorphy
guaranteeing quantum criticality as universality of the dynamics would be crucial in simpli-
fying the equations! It does not matter whether there is coupling between Kähler action and
volume term.

Could one find interpretation for the miminal surface property which implies that field equations
are separately satisfied for Kähler action and volume term?

1. Quantum TGD can be seen as a ”complex” square root of thermodynamics. In thermo-
dynamics one can define several thermodynamical functions. In particular, one can add to
energy E as term pV to get enthalpy H = E + pV , which remains constant when entropy
and pressures are kept constant. Could one do the same now?

In TGD V replaced with volume action and p would be a coupling parameter analogous to
pressure. The simplest replacement would give Kähler action as outcome. The replacement
would allow RG invariance of the modified action only at critical points so that replacement
would be possible only there. Furthermore, field equations must hold true separately for
Kähler action and volume term everywhere.

2. It seems however that one must allow singular sets in which there is interaction between these
terms. The coupling between Kähler action and volume term could be non-trivial at singular
sub-manifolds, where a transfer of conserved quantities between the two degrees of freedom
would take place. The transfer would be proportional to the divergence of the canonical
momentum current Dα(gαβ∂βh

k) assignable to the minimal surface and is conserved outside
the singular sub-manifolds.

Minimal surfaces provide a non-linear generalization of massless wave-equation for which
the gradient of the field equals to conserved current. Therefore the interpretation could be
that these singular manifolds are sources of the analogs of fields defined by M4 and CP2

coordinates.

In electrodynamics these singular manifolds would represented by charged particles. The
simplest interpretation would be in terms of point like charges so that one would have line
singularity. The natural identification of world line singularities would be as boundaries of
string world sheets at the 3-D light-like partonic orbits between Minkowskian and Euclidian
regions having induced 4-metric degenerating to 3-D metric would be a natural identification.
These world lines indeed appear in twistor diagrams. Also string world sheets must be
assumed and they are are natural candidates for the singular manifolds serving as sources
of charges in 4-D context. Induced spinor fields would serve as a representation for these
sources. These strings would generalize the notion of point like particle. Particles as 3-
surfaces would be connected by flux tubes to a tensor network and string world sheets would
connected fermion lines at the partonic 2-surfaces to an analogous network. This would be
new from the standard model perspective.

Singularities could also correspond to a discrete set of points having an interpretation as
cognitive representation for the loci of initial and final states fermions at opposite boundaries
of CD and at vertices represented topologically by partonic 2-surfaces at which partonic orbits
meet. This interpretation makes sense if one interprets the embedding space coordinates as
analogs of propagators having delta singularities at these points. It is quite possible that also
these contributions are present: one would have a hierarchy of delta function singularities
associated with string worlds sheets, their boundaries and the ends of the boundaries at
boundaries of CD, where string world sheet has edges.

3. There is also an interpretation of singularities suggested by the generalization of conformal
invariance. String world sheets would be co-dimension 2 singularites analogous to poles of
analytic function of two complex coordinates in 4-D complex space. String world sheets
would be co-dimension 2 singularities analogous to poles at light-like 3-surfaces. The ends of
the world lines could be analogous of poles of analytic function at partonic 2-surfaces.

These singularities could provide to evolution equations what might be called matter contri-
bution. This brings in mind evolution equations for n-point functions in QFT. The resolution
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of the overall singularity would decompose to 2-D, 1-D and 0-D parts just like cusp catastro-
phe. One can ask whether the singularities might allow interpretation as catastrophes.

4. The proposal for analogs of thermodynamical functions suggests the following physical pic-
ture. More general thermodynamical functions are possible only at critical points and only if
the extremals are miminal surfaces. The singularities should correspond to physical particles,
fermions. Suppose that one considers entire scattering amplitude involving action exponen-
tial plus possible analog of pV term plus the terms associated with the fermions assigned
with the singularities. Suppose that the coupling constant evolution from 6-D Kähler action
is calculated without including the contribution of the singularities.

The derivative of n-particle amplitude with respect to the evolution parameter contains a
term coming from the action exponential receiving contributions only from the singularities
and a term coming from the operators at singularities. RG invariance of the scattering
amplitude would require that the two terms sum up to zero. In the thermodynamical picture
the presence of particles in many particle scattering amplitude would force to add the analog
of pressure term to the Kähler function: it would be determined by the zero energy state.

One can of course ask how general terms can be added by requiring minimal surface property.
Minimal surface property reduces to holomorphy, and can be true also for other kinds of
actions such as the TGD analogs of electroweak and color actions that I considered originally
as possible action candidates.

This would have interpretation as an analog for YM equations in gauge theories. Space-time
singularities as local failure of minimal surface property would correspond to sources for H
coordinates as analogs of Maxwell’s fields and sources currents would correspond to fermions
currents.

3.6 TGD view about inclusions of HFFs as a way to understand coupling
constant evolution

The hierarchy of inclusions of HFFs is an alternative TGD inspired proposal for understanding
coupling constant evolution and the intuitive expectation is that the inclusion hierarchies of ex-
tensions and their Galois groups contain the inclusion hierarchies of HFFs as special case. The
included factor would define measurement resolution in well-defined sense. This notion can be
formulated more precisely using Connes tensor product [A1, A3].

3.6.1 How Galois groups and finite subgroups of could SU(2) relate

The hierarchy of finite groups associated with the inclusions of HFF corresponds to the finite
subgroups of SU(2). The set of these groups is very small as compared to the set of Galois groups
- if I have understood correctly, any finite group can appear as Galois group. Should the hierarchy
of inclusions of HFFs be replaced by much more general inclusion hierarchy? Is there a map
projecting Galois groups to discrete subgroup of SU(2)?

By M8 − H duality quaternions appear at M8 level and since SO(3) is the automorphism
group of quaternions, the discrete subgroups of SU(2) could appear naturally in TGD. In fact, the
appearance of quaternions as a basic building brick of HFFs in the simplest construction would fit
with this picture.

It would seem that the elements of the discrete subgroups of SU(2) must be in the extension
of rationals considered. The elements of finite discrete subgroups G of SU(2) are expressible in
terms of rather small subset of extensions of rationals. Could the proper interpretation be that the
hierarchy of extensions defines a hierarchy of discrete groups with elements in extension and the
finite discrete subgroups in question are finite discrete subgroups of these groups. There would be
correlation with the inclusion and extension. For instance, the fractal dimension of extension is an
algebraic number defined in terms of root of unity so that the extension must contain this root of
unity.

For icosahedron and dodecahedron the group action can be expressed using extension of ratio-
nals by cos(π/n) and sin(π/n) for n = 3, 5. For tetrahedron and cube one would have n = 2, 3. For
tetrahedon, cube/octahedron and icosahedron basic geometric parameters are also expressible in
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terms of algebraic numbers in extension but in case of dodecahedron it is not clear for me whether

the surface area proportional to
√

25 + 20
√

5 allows this (see http://tinyurl.com/p4rwc7).
It is very feasible that the finite sub-groups of also other Lie groups than SU(2) are associ-

ated with the inclusions of HFFs or possibly more general algebras. In particular, finite discrete
subgroups of color group SU(3) should be important and extension of rationals should allow to
represent these subgroups.

3.6.2 Once again about ADE correspondence

For a non-mathematician like me Mc-Kay correspondence is an inspiring and frustrating mystery
(see http://tinyurl.com/y8jzvogn). What could be its physical interpretation?

Mac-Kay correspondence assigns to the extended Dynkin diagrams of ADE type characterizing
Kac-Moody algebras finite subgroups of SU(2), more precisely the McKay diagrams describing the
tensor product decomposition rules for the fundamental representation of the finite subgroup of
SU(2). In the diagram irreps χi and χj are connected by nij arrows if χj appears nij times in the
tensor product V ⊗ χi, where V is but need not be fundamental representation.

One can assign also to inclusions of HFFs of index d ≥ 4 with ADE type Dynkin diagrams. To
inclusions with index d < 4 one can assign subset of ADE type diagrams for Lie groups (rather than
Kac-Moody groups) and they correspond to sub-groups of SU(2). The correspondence generalizes
to subgroups of other Lie groups.

1. As explained in [B3] , for M : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in
terms of its dimension and dimension r of Cartan algebra r as h = (dim(g) − r)/r. For
M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed. The Dynkin graphs of
Lie algebras of SU(n), E7 and D2n+1 are however not allowed. E6, E7, and E8 correspond
to symmetry groups of tetrahedron, octahedron/cube, and icosahedron/dodecahedron. The
group for octahedron/cube is missing: what could this mean?

For M : N = 4 one can assign to the inclusion an extended Dynkin graph of type ADE
characterizing Kac Moody algebra. Extended ADE diagrams characterize also the subgroups
of SU(2) and the interpretation proposed in [A3] is following.

The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There are
diagrams corresponding to infinite subgroups: A∞ corresponding to SU(2) itself, A−∞,∞
corresponding to circle group U(1), and infinite dihedral groups (generated by a rotation by
a non-rational angle and reflection.

One can construct also inclusions for which the diagrams corresponding to finite subgroups
G ⊂ SU(2) are extension of An for cyclic groups, of Dn dihedral groups, and of En with
n = 6, 7, 8 for tetrahedron, cube, dodecahedron. These extensions correspond to ADE type
Kac-Moody algebras.

The extension is constructed by constructing first factor R as infinite tensor power of M2(C)
(complexified quaternions). Sub-factor R0 consists elements of of R of form Id ⊗ x. SU(2)
preserves R0 and for any subgroup G of SU(2) one can identify the inclusion N ⊂ M in
terms of N = RG0 and M = RG, where N = RG0 and M = RG consists of fixed points of R0

and R under the action of G. The principal graph for N ⊂M is the extended Coxeter-Dynk
graph for the subgroup G.

Physicist might try to interpret this by saying that one considers only sub-algebras RG0 and
RG of observables invariant under G and obtains extended Dynkin diagram of G defining an
ADE type Kac-Moody algebra. Could the condition that Kac-Moody algebra elements with
non-vanishing conformal weight annihilate the physical states state that the state is invariant
under R0 defining measurement resolution. Besides this the states are also invariant under
finite group G? Could RG0 and RG correspond just to states which are also invariant under
finite group G.

Could this kind of inclusions generalize so that Galois groups would replace G. If this is
possible it would assign to each Galois group an inclusion of HFFs and give a precise number
theoretic formulation for the notion of measurement accuracy.

http://tinyurl.com/p4rwc7
http://tinyurl.com/y8jzvogn
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2. At M8-side of M8 − H duality the construction of space-time surfaces reduces to data at
finite set of points of space-time surface since they are defined by an octonionic extension of
a polynomial of real variable with coefficients in extension of rationals. Space-time surfaces
would have quaternionic tangent space or normal space. The coordinates of quaternions are
restricted to extension of rationals and the subgroup of automorphisms reduce to a subgroup
for which matrix elements belong to an extension of rationals.

If the subgroup is finite, only the subgroups appearing in ADE correspondence are possible
and the extension must be such that it allows the representation of this group. Does this
mean that the extension can is obtained from an extension allowing this representation? For
M : N = 4 case this sub-group would leave the states invariant.

3.7 Entanglement and adelic physics

In the discussion about fine structure constant I asked about the role entanglement in coupling
constant evolution. Although entanglement does not have direct relationship to coupling constant
evolution, I will discuss entanglement from number theoretic point of view since it enlightens the
motivations of adelic physics.

1. For given extension of rationals determining the values of coupling parameters by quantum
criticality, the entanglement coefficients between positive and negative energy parts of zero
energy states are in the extension of rationals. All entanglement coefficients satisfy this
condition.

2. Self the counterpart of observer in the generalization of quantum measurement theory - as
conscious entity [L7] corresponds to sequence of unitary evolutions followed by weak measure-
ments. The rule for weak measurements is that only state function for which the eigenvalues
of the density matrix is in the extension of rationals can occur. In general they are in a
higher-D extension as roots of N :th order polynomials, N the dimension of density matrix.
Therefore state function reduction cannot occur in the generic case. State cannot decohere
and entanglement is stable under weak measurements except in special situations when the
eigenvalues of density matrix are in original extension.

3. The extension can change only in big state function reductions in which the arrow of clock
time changes: this can be seen as an evolutionary step. From the point of view of conscious-
ness theory big state function reduction means what might be called death and reincarnation
of system in opposite time direction.

4. The number theoretical stabilization of entanglement at the passive boundary of CD makes
possibility quantum computation in longer time scales than possible in standard quantum
theory. heff/h0 = n equals to the dimension of extension of rationals and is therefore directly
related to this.

This could have profound technological implications.

1. Ordinary quantum computation as single unitary step is replaced by a sequence of them
followed by the analog of weak measurement.

2. ZEO allows also quantum computations in opposite time direction. This might allow shorten
dramatically the duration of quantum computations from the perspective of the observed
since most of the computation could be done with opposite arrow of clock time.

The philosophy of adelic physics is discussed in article in book published by Springer [L6, L5]
(see http://tinyurl.com/ybzkfevz and http://tinyurl.com/ybqpkwg9).

4 Trying to understand why ramified primes are so special
physically

Ramified primes (see http://tinyurl.com/m32nvcz and http://tinyurl.com/y6yskkas) are
special in the sense that their expression as a product of primes of extension contains higher

http://tinyurl.com/ybzkfevz
http://tinyurl.com/ybqpkwg9
http://tinyurl.com/m32nvcz
http://tinyurl.com/y6yskkas
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than first powers and the number of primes of extension is smaller than the maximal number n
defined by the dimension of the extension. The proposed interpretation of ramified primes is as
p-adic primes characterizing space-time sheets assignable to elementary particles and even more
general systems.

In the following Dedekind zeta functions (see http://tinyurl.com/y5grktvp) as generaliza-
tion of Riemann zeta [L11, L14] are studied to understand what makes them so special. Dedekind
zeta function characterizes given extension of rationals and is defined by reducing the contribu-
tion from ramified reduced so that effectively powers of primes of extension are replaced with first
powers.

If one uses the näıve definition of zeta as analog of partition function and includes full powers
P eii , the zeta function becomes a product of Dedekind zeta and a term consisting of a finite
number of factors having poles at imaginary axis. This happens for zeta function and its fermionic
analog having zeros along imaginary axis. The poles would naturally relate to Ramond and N-S
boundary conditions of radial partial waves at light-like boundary of causal diamond CD. The
additional factor could code for the physics associated with the ramified primes.

The intuitive feeling is that quantum criticality is what makes ramified primes so special. In
O(p) = 0 approximation the irreducible polynomial defining the extension of rationals indeed
reduces to a polynomial in finite field Fp and has multiple roots for ramified prime, and one can
deduce a concrete geometric interpretation for ramification as quantum criticality using M8 −H
duality.

M8−H duality central concept in following and discussed in [L3, L18, L15, L16] [L23]. Also the
notion of cognitive representation as a set of points of space-time surface with preferred embedding
space coordinates belonging to the extension of rationals defining the adele [L5] is important and
discussed in [L20, L19, L22].

4.1 Dedekind zeta function and ramified primes

One can take mathematics and physical intuition guided by each other as a guideline in the attempts
to understand ramified primes.

1. Riemann zeta can be generalized to Dedekind zeta function ζK for any extension K of
rationals (see http://tinyurl.com/y5grktvp). ζK characterizes the extension - maybe also
physically in TGD framework since zeta functions have formal interpretation as partition
function. In the recent case the complexity is not a problem since complex square roots
of partition functions would define the vacuum part of quantum state: one can say that
quantum TGD is complex square root of thermodynamics.

ζK satisfies the same formula as ordinary zeta expect that one considers algebraic integers
in the extensions K and sums over non-zero ideals a - identifiable as integers in the case of
rationals - with n−s replaced with N(a)−s, where N(a) denotes the norm of the non-zero
ideal. The construction of ζK in the extension of rationals obtained by adding i serves as an
illustrative example (see http://tinyurl.com/y563wcwv). I am not a number theorists but
the construction suggests a poor man’s generalization strongly based on physical intuition.

2. The rules would be analogous to those used in the construction of partition function. log(N(a))
is analogous to energy and s is analogous to inverse temperature so that one has Boltzmann
weight exp(−log(N(a)s) for each ideal. Since the formation of ideals defined by integers of
extension is analogous to that for forming many particle states labelled by ordinary primes
and decomposing to primes of extension, the partition function decomposes to a product over
partition functions assignable to ordinary primes just like in the case of Riemann zeta. Let
K be an extension of rationals Q.

3. Each rational prime p decomposes in the extension as p =
∏
i=1,...g P

ei
i , where n is the

dimension of extension and ei is the ramification degree. Let fi be so called residue degree
of Pi defined as the dimension of K mod Pi interpreted as extension of rational integers
Z mod p. Then one has

∑g
1 eifi = n.

Remark: For Galois extensions for which the order of Galois group equals to the dimension
n of the extension so that for given prime p one has ei = e and fi = f and efg = n.

http://tinyurl.com/y5grktvp
http://tinyurl.com/y5grktvp
http://tinyurl.com/y563wcwv
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4. Rational (and also more general) primes can be divided into 3 classes with respect to this
decomposition.

For ramified primes dividing the discriminant D associated with the polynomial (D = b2−4c
for P (x) = x2 + bx + c) one has ei > 1 at least for one i so that fi = 0 is true at least
for one index. A simple example is provided by rational primes (determined by roots of
P (x) = x2 + 1 with discriminant −4): in this case p = 2 corresponds to ramified prime since
on has (1 + i)(1− i) = 2 and 1 + i and 1− i differ only by multiplication by unit −i.

5. Split primes have n factors Pi and thus have (ei = 1, fi = 1, g = n) . They give a factor
(1 − p−s)−n. The physical analogy is n-fold degenerate state with original energy energy
nlog(p) split to states with energy log(p).

Inert primes are also primes of extension and there is no splitting and one has (e1 = e =
1, g = 1, f1 = f = n). In this case one obtains factor 1/(1 − p−ns). The physical analogy is
n-particle bound state with energy nlog(p).

6. For ramified primes the situation is more delicate. Generalizing from the case of Gaussian
primes Q[i] (see http://tinyurl.com/y563wcwv) ramified primes pR would give rise to a
factor

g∏
i=1

1

1− p−fisR

.

g is the number of distinct ideals Pi in the decomposition of p to the primes of extension.

For Gaussian primes p = 2 has g = 1 since one can write (2) = (1 + i)(1− i) ≡ (1 + i)2. This
because 1 + i and 1− i differ only by multiplication with unit −i and thus define same ideal
in Q[i]. Only the number g of distinct factors Pi in the decomposition of p matters.

One could understand this as follows. For the roots of polynomials ramification means that
several roots co-incide so that the number of distinct roots is reduced. ei > 1 is analogous to
the number co-inciding roots so that number if distinct roots would be 1 instead of ei. This
would suggests ki = 1 always. For ramified primes the number of factors Zp the number∑g
i=1 fiki = n for un-ramified case would reduce from to

∑g
i=1 fiki = nd, which is the

number of distinct roots.

7. Could the physical interpretation be that there are g types of bound states with energies
filog(p) appearing with degeneracy ei = 1 both in ramified and split case. This should relate
to the fact that for ramified primes p L/p contains non-vanishing nilpotent element and is not
counted. One can also say that the decomposition to primes of extension conserves energy:∑
i=1,...,g eifilog(p) = ndlog(p).

For instance, for Galois extensions (ei = e, fi = f, g = nd/ef) for given p the factor is
1/(1 − p−es)fg: efg = nd. If there is a ramification then all Pi are ramified. Note that e, f
an g are factors of nd.

8. One can can extract the factor 1/(1 − p−s) from each of the 3 contributions and organize
these factors to give the ordinary Riemann zeta. The number of ramified primes is finite
whereas the numbers of split primes and inert primes are infinite. One can therefore extract
from ramified primes the finite product

ζ1
R,K =

∏
pR

(1− p−sR )× ζ2
R,K , ζ2

R,K =
∏
pR

[
∏g
i=1

1
1−p−fis

] .

One can organize the remaining part involving infinite number of factors to a product of ζ
and factors (1 − p−s)/(1 −

∏
p−s))n and (1 − p−s)/(1 − p−ns) giving rise to zeta function

-call it ζsi,K - characterizing the extension. Note that ζ2
R,K has interpretation as partition

function and has pole of order nd at origin.

One therefore can write the ζL as

ζK = ζ1
R,K × ζsi,K × ζ .

http://tinyurl.com/y563wcwv
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where ζsi,K is the contribution of split and inert primes multiplied by (1− p−s)

ζL has pole only at s = 1 and it carries in no obvious manner information about ramified
primes. The näıve guess for ζL would be that also ramified primes pR would give rise to a factor

g∏
i=1

1

(1− p−fisR )ei
.

One could indeed argue that at the limit when ei prime ideals Pi of extension co-incide, one should
obtain this expression. The resulting ζ function would be product

ζnaive,K = ζR,KζK , ζR,K =
∏
pR
X(pR)

X(pR) =
∏g
i=1

1

(1−p−fis

R )ei−1
.

Note that the parameters ei, fi, g depend on pR and that for Galois extensions one has ei = d, fi = f
for given pR. ζR,L would have poles at along imaginary axis at points s = −n2π/log(p). Ramified
primes would give rise to poles along imaginary axis. As far as the proposed physical interpretation
of ramified primes is considered, this form looks more natural.

4.1.1 Fermionic counterparts of Dedekind zeta and ramified ζ

One can look the situation also for the generalization of fermionic zeta as analog of fermionic
partition function, which for rationals has the expression

ζF (s) =
∏
p

(1 + p−s) =
ζ(s)

ζ(2s)
.

Supersymmetry of supersymmetric arithmetic QFT suggest the product of fermionic and bosonic
zetas. Also the supersymmetry of infinite primes for which first level of hierarchy corresponds
to irreducible polynomials suggests this. On the other hand, the appearance of only fermions as
fundamental particles in TGD forces to ask whether the ramified part of fermionic zeta might be
fundamental.

1. By an argument similar to used for ordinary zeta based on interpretation as partition function,
one obtains the decomposition of the fermionic counterpart of ζFK Dirichlet zeta to a product
ζFK = ζFR,Kζ

F
si,Kζ

F of ramified fermionic zeta ζFR,K , ζFsi,K , and ordinary fermionic zeta ζF .

The basic rule is simple: replace factors 1/(1− p−ks appearing in ζK with (1 + p−ks) in ζFK
and extract ζF from the resulting expression. This gives

ζF,1R,K =
∏
pR

(1− p−sR )ζFR,K , ζFR,K =
∏
pR

[
∏g
i=1(1 + p−fisR )] .

where pR is ramified prime dividing the discriminant. ζFR,K is analogous to a fermionic
partition function for a finite number of modes defined by ramified primes pR of extension.

2. Also now one can wonder whether one should define ζFK as a product in which ramified primes
give factor

∏
pR

[

g∏
i=1

(1 + p−fisR )ei ]

so that one would have

ζFnaive,K = ζFR,Kζ
F
K , ζFR =

∏
pR
Y (pR) ,

Y (pR) =
∏g
i=1(1 + p−fisR )ei−1

ζF (näıve,K) would have zeros along imaginary axis serving as signature of the ramified
primes.
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4.1.2 About physical interpretation of ζR,K and ζFR,K

ζR,K and ζFR,K are attractive from the view point of number theoretic vision and the idea that
ramified primes are physically special. TGD Universe is quantum critical and in catastrophe theory
the ramification for roots of polynomials is analogous to criticality. Maybe the ramification for
p-adic primes makes them critical. K/(pR) has nilpotent elements, which brings in mind on mass
shell massless particles.

1. ζR,K has poles at

s = i
2nπ

log(p)fi

and psR = exp(in2π/fi) is a root of unity, which conforms with the number theoretical vision.
Only Pi with ei > 1 contribute.

2. ZFR,K has zeros

s = i
(2n+ 1)π

log(p)fi

and psR = exp(i(2n+ 1)π/fi) is a root of unity. Zeros are distinct from the poles of ZR,K .

3. The product ζR,tot,K = ζR,Kζ
F
R,K has the poles and zeros of ζR,K and ζFR,K . In particular,

there is n:th order pole of ZR,K at s = 0. The zeros of zF,K along imaginary axis at piy = −1
also survive in ζR,tot,K .

ζFR,K has only zeros and since fundamental fermions are primary fields in TGD framework,
one could argue that only it carries physical information. On the other hand, supersymmetric
arithmetic QFT [K11] and the fact that TGD allows SUSY [L21] suggests that the product
ζR,K × ZFR,K is more interesting.

From TGD point of view the ramified zeta functions ζR,K , ζFR,K and their product ζR,K × ζFR,K
look interesting.

1. ζR,K behaves like s−nd , nd =
∑g

1(ei − 1) near the origin. Could nd-fold pole at s = 0 be in-
terpreted in terms of a massless state propagating along light-cone boundary of CD in radial
direction? This would conform with the proposal that zeros of zeta correspond to complex
radial conformal weights for super-symplecti algebra. That ramified primes correspond to
massless particles would conform with the identification of ramified prime as p-adic primes
labelling elementary particles since in ZEO their mass would result from p-adic thermody-
namics from a mixing with very massive states [L16].

Besides this there would be stringy spectrum of real conformal weights along negative real
axis and those coming as non-trivial zeros and these could correspond to ordinary conformal
weights.

2. The zeros of ζFR,K along imaginary axis might have interpretation as eigenvalues of Hamil-
tonian in analogy with Hilbert-Polya hypothesis. Maybe also the poles of ζR,K could have
similar interpretation. The real part of zero/pole would not produce troubles (on the other
hand, for waves along light-cone boundary it can be however absorbed to the integration
measure.

3. A possible physical interpretation of the imaginary conformal weights could be as conformal
weights associated with radial waves assignable to the radial light-like coordinate r of the
light-cone boundary: r indeed plays the role of complex coordinate in conformal symmetry
in the case of super-symplectic algebra suggested to define the isometries of WCW. Poles and
zero could correspond to radial modes satisfying periodic/anti-periodic boundary conditions.

The radial conformal weights s defined by the zeros of ζFR,K would be number theoretically

natural since one could pose boundary condition pis(r/r0) = −1 at r = r0 requiring pis = −1
at the corner of cd (maximum value of r in CD = cd× CP2.
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For the poles of ζR,K the periodic boundary condition pis(r/r0) = 1 is natural. The two bound-
ary conditions could relate to Ramond an N-S representations of super-conformal algebras
(see http://tinyurl.com/y49y2ouj). With this interpretation s = 0 would correspond to
a radial plane-wave constant along light-like radial direction and therefore light-like momen-
tum propagating along the boundary of CD. Other modes would correspond to other massless
modes propagating to the interior of CD.

4. I have earlier considered an analogous interpretation for a subset zeros of zeta satisfying
similar condition. The idea was that for given prime p as subset of s = 1/2 + iyi of non-
trivial zeros ζ ps = p1/2+iyi is an algebraic number so that piyi would be a root of unity.
Zeros would decompose to subsets labelled by primes p. Also for trivial zeros of ζ (and also
poles) the same holds true as for the zeros and poles ζR. This encourages the conjecture that
the property is true also for L-functions.

The proposed picture suggests an assignment of ”energy” E = nlog(p) to each prime and
separation of ”ramified” energy Ed = ndlog(p), nd =

∑g
1 fi(ei − 1), to each ramified prime. The

interpretation as partition function suggests that that one has g types of states of fi identical
particles and energy Ei = filog(p) and that this state is ei-fold degenerate with energies Ei =
filog(p). For inert primes one would have fi = f = n. For split primes one would have ei = 1, fi =
1. In case of ramified primes one can separate one of these states and include it to the Dedekind
zeta.

4.1.3 Can one find a geometric correlate for the picture based on prime ideals?

If one could find a geometric space-time correlate for the decomposition of rational prime ideals to
prime ideals of extensions, it might be also possible to understand why quantum criticality makes
ramified primes so special physically and wha this means.

What could be correlate for fi fundamental fermions behaving like single unit and what de-
generacy for ei > 1 does mean? One can look the situation first at the level of number fields Q
and K and corresponding Galois group Gal(K/Q), finite fields F = Q/p and Fi = K/Pi, and
corresponding Galois group Gal(Fi/F ). Appendix summarizes the basic terminology.

1. Inertia degree fi is the number of elements of Fi/Fp (Fi = K/Pi is extension of finite field
Fp = Q/p). The Galois group Gal(Fi/Fp) is identifiable as factor group Di/Ii, where the
decomposition group Di is the subgroup of Galois group taking Pi to itself and the inertia
group Ii leaving Pi point-wise invariant. The orbit under Gal(Fi/Fp) in Fi/Fp would behave
like single particle with energy Ei = filog(p).

For inert primes with fi = n inertia group would be maximal. For split primes the orbits of
ideals would consist of fi = 1 points only and isotropy group would be trivial.

2. Ramification for primes corresponds intuitively to that for polynomials meaning multiple
roots as is clear also from the expression p =

∏
P eii . In accordance with the intuition

about quantum criticality, ramification means that the irreducible polynomial reduced to a
reducible polynomial in finite field Q/p has therefore a multiple roots with multiplicities ei
(see Appendix). For Galois extensions one has (ei = e, fi = f) Criticality would be seen at
the level of finite field Fp = Q/p associated with ramified prime p.

The interpretation of roots of corresponding octonionic polynomials as n-sheeted covering space
like structures encourages to ask whether the independent tensor factors labelled by i suggested
by the interpretation as a partition function could be assigned with the sheets of covering so that
ramification with ei > 1 would correspond to singular points of cognitive representation for which
ei sheets co-incide in some sense, maybe in finite field approximation (O(p) = 0). Galois groups
indeed act on the coordinates of point of cognitive representation belonging to the extension K.
In general the action does not take the point to a point belonging to a cognitive representation
but one can consider quantum superpositions of cognitive representations.

This suggests an interpretation in terms of space-time surfaces accompanied by cognitive rep-
resentation under Galois group. Quantum states would be superpositions of preferred extremals
at orbits of Galois group and for cognitive representations the situation would be discrete.

http://tinyurl.com/y49y2ouj
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1. To build a concrete connection between geometric space-time picture and number theo-
retic picture, one should find geometric counterparts of integers, ideals, and prime ideals.
The analogs of prime ideals should be associated with the discretizations of space-time sur-
faces/cognitive representations in O(p) = 0 or O(Pi) = 0 approximation. Could one include
only points of cognitive representations differing from zero in O(p) = 0 approximation and
form quantum states as quantum superpositions of these points of cognitive representation?

in O(p) = 0 approximation and for ramified primes irreducible polynomials would have
multiple roots so that ei sheets would co-incide at these points in O(p) = 0 approximation.
Th conjecture that elementary particles correspond to this kind of singularities has been
speculated already earlier with inspiration coming from quantum criticality.

2. In M8 picture the octonionic polynomials obtained as continuation of polynomials with
rational coefficients would be reduced to polynomials in finite field Fp. One can study corre-
sponding discrete algebraic surfaces as discrete approximations of space-time surfaces.

3. One would like to have only single embedding space coordinate since the probability that all
embedding space coordinates correspond to the same Pi is small. M8 − H duality reduces
the number of embedding space coordinates characterizing partonic 2-surfaces containing
vertices for fundamental fermions to single one identifiable as time coordinate.

At the light-like boundary of 8-D CD in M8 the vanishing condition for the real or imaginary
part (quaternion) of octonionic polynomial P (o) reduces to that for ordinary polynomial, and
one obtains n roots rn, which correspond to the values of M4 time t = rn defining 6-spheres
as analogs of branes. Partonic 2-surfaces corresponde to intersections of 4-D roots of P (o)
at partonic 2-surfaces. Galois group of the polynomial naturally acts on rn labelling these
partonic 2-surfaces by permuting them. One could form representations of Galois group
using states identified as quantum superpositions of these partonic 2-surfaces corresponding
to different values of t = rn. Galois group leaves invariant the degenerate roots t = rn.

4. The roots can be reduced to finite field Fp or K/Pi. Ramification would take place in this
approximation and mean that ei roots t = rn are identical in O(p) = 0 approximation. ei
time values t = rn would nearly co-incide. This gives more concrete contents to the statement
of TGD inspired theory of consciousness that these time values correspond to very special
moments in the life of self. Since this is the situation only approximately, one can argue that
one must indeed count each root separately so that partition function must be defined as
product of the contribution form ramified primes an Dedekind zeta.

The assignment of fundamental fermions to the points of cognitive representations at partonic
2-surfaces assignable to the intersections of 4-D roots and universal 6-D roots of octonionic
polynomials (brane like entities) conforms with this picture.

5. The analogs of 6-branes would give rise to additional degrees of freedom meaning effectively
discrete non-determinism. I have speculated with this determinism with inspiration coming
from the original identification of bosonic action as Kähler action having huge 4-D spin glass
degeneracy. Also the number theoretic vision suggest the possibility of interpreting preferred
extremals as analogs of algebraic computations such that one can have several computations
connecting given states [L2]. The degree n of polynomial would determine the number of
steps and the degeneracy would correspond to n-fold degeneracy due to the discrete analogs
of plane waves in this set.

4.1.4 What extensions of rationals could be winners in the fight for survival?

It would seem that the fight for survival is between extensions of rationals rather than individual
primes p. Intuition suggests that survivors tend to have maximal number of ramified primes. These
number theoretical speciei can live in the same extension - to ”co-operate”.

Before starting one must clarify some basic facts about extensions of rationals.

1. Extension of rationals are defined by an irreducible polynomial with rational coefficients.
The roots give n algebraic numbers which can be used as a basis to generate the numbers of
extension ast their rational linear combinations. Any number of extension can be expressed
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as a root of an irreducible polynomial. Physically it is is of interest, that in octonionic picture
infinite number of octonionic polynomials gives rise to space-time surface corresponding to
the same extension of rationals.

2. One can define the notion of integer for extension. A precise definition identifies the integers
as ideals. Any integer of extension are defined as a root of a monic polynomials P (x) =
xn + pn−1x

n−1xn−1 + ...+ p0 with integer coefficients. In octonionic monic polynomials are
subset of octonionic polynomials and it is not clear whether these polynomials could be all
that is needed.

3. By definition ramified primes divide the discriminant D of the extension defined as the
product D =

∏
i 6=j(ri − rj) of differences of the roots of (irreducible) monic polynomial

with integer coefficients defining the basis for the integers of extension. Discriminant has
a geometric interpretation as volume squared for the fundamental domain of the lattice of
integers of the extension so that at criticality this volume interpreted as p-adic number would
become small for ramified primes an vanish in O(p) approximation. The extension is defined
by a polynomial with rational coefficients and integers of extension are defined by monic
polynomials with roots in the extension: this is not of course true for all monic polynomials
polynomial (see http://tinyurl.com/k3ujjz7).

4. The scaling of the n−1-tuple of coefficients (pn−1, ....., p1) to (apn−1, a
2pn−1....., a

np0) scales
the roots by a: xn → axn. If a is rational, the extension of rationals is not affected. In the
case of monic polynomials this is true for integers k. This gives rational multiples of given
root.

One can decompose the parameter space for monic polynomials to subsets invariant under
scalings by rational k 6= 0. Given subset can be labelled by a subset with vanishing coefficients
{pik}. One can get rid of this degeneracy by fixing the first non-vanishing pn−k to a non-
vanishing value, say 1. When the first non-vanishing pk differs from p0, integers label the
polynomials giving rise to roots in the same extension. If only p0 is non-vanishing, only the
scaling by powers kn give rise to new polynomials and the number of polynomials giving rise
to same extension is smaller than in other cases.

Remark: For octonionic polynomials the scaling symmetry changes the space-time surface so
that for generic polynomials the number of space-time surfaces giving rise to fixed extension
is larger than for the special kind polynomials.

Could one gain some understanding about ramified primes by starting from quantum criticality?
The following argument is poor man’s argument and I can only hope that my modest technical
understanding of number theory does not spoil it.

1. The basic idea is that for ramified primes the minimal monic polynomial with integer co-
efficients defining the basis for the integers of extension has multiple roots in O(p) = 0
approximation, when p is ramified prime dividing the discriminant of the monic polynomial.
Multiple roots in O(p) = 0 approximation occur also for the irreducible polynomial defining
the extension of rationals. This would correspond approximate quantum criticality in some
p-adic sectors of adelic physics.

2. When 2 roots for an irreducible rational polynomial co-incide, the criticality is exact: this
is true for polynomials of rationals, reals, and all p-adic number fields. One could use this
property to construct polynomials with given primes as ramified primes. Assume that the
extension allows an irreducible olynomial having decomposition into a product of monomials
= x − ri associated with roots and two roots r1 and r2 are identical: r1 = r2 so that
irreducibility is lost.

The deformation of the degenerate roots of an irreducible polynomial giving rise to the exten-
sion of rationals in an analogous manner gives rise to a degeneracy in O(p) = 0 approximation.
The degenerate root r1 = r2 can be scaled in such a way that the deformation r2 = r1(1+q)),
q = m/n = O(p) is small also in real sense by selecting n >> m.

If the polynomial with rational coefficients gives rise to degenerate roots, same must happen
also for monic polynomials. Deform the monic polynomial by changing (r1, r2 = r1) to

http://tinyurl.com/k3ujjz7


4.2 Appendix: About the decomposition of primes of number field K to primes of
its extension L/K 38

(r1, r1(1+r)), where integer r has decomposition r =
∏
i p
ki
i to powers of prime. In O(p) = 0

approximation the roots r1 and r2 of the monic polynomial are still degenerate so that pi
represent ramified primes.

If the number of pi is large, one has high degree of ramification perhaps favored by p-adic
evolution as increase of number theoretic co-operation. On the other hand, large p-adic
primes are expected to correspond to high evolutionary level. Is there a competition between
large ramified primes and number of ramified primes? Large heff/h0 = n in turn favors large
dimension n for extension.

3. The condition that two roots of a polynomial co-incide means that both polynomial P (x) and
its derivative dP/dx vanish at the roots. Polynomial P (x) = xn+pn−1x

n−1 + ..p0 is parame-
terized by the coefficients which are rationals (integers) for irreducible (monic) polynomials.
n − 1-tuple of coefficients (pn−1, ....., p0) defines parameter space for the polynomials. The
criticality condition holds true at integer points n − 1 − D surface of this parameter space
analogous to cognitive representation.

The condition that critical points correspond to rational (integer) values of parameters gives
an additional condition selecting from the boundary a discrete set of points allowing ram-
ification. Therefore there are strong conditions on the occurrence of ramification and only
very special monic polynomials are selected.

This suggests octonionic polynomials with rational or even integer coefficients, define strongly
critical surfaces, whose p-adic deformations define p-adically critical surfaces defining an
extension with ramified primes p. The condition that the number of rational critical points
is non-vanishing or even large could be one prerequisite for number theoretical fitness.

4. There is a connection to catastrophe theory, where criticality defines the boundary of the
region of the parameter space in which discontinuous catastrophic change can take place as
replacement of roots of P (x) with different root. Catastrophe theory involves polynomials
P (x) and their roots as well as criticality. Cusp catastrophe is the simplest non-trivial
example of catastrophe surface with P (x) = x4/4− ax− bx2/2: in the interior of V-shaped
curve in (a, b)-plane there are 3 roots to dP (x) = 0, at the curve 2 solutions, and outside it
1 solution. Note that now the parameterization is different from that proposed above. The
reason is that in catastrophe theory diffeo-invariance is the basic motivation whereas in M8

there are highly unique octonionic preferred coordinates.

If p-adic length scale hypothesis holds true, primes near powers of 2, prime powers, in particular
Mersenne primes should be ramified primes. Unfortunately, this picture does not allow to say
anything about why ramified primes near power of 2 could be interesting. Could the appearance of
ramified primes somehow relate to a mechanism in which p = 2 as a ramified prime would precede
other primes in the evolution. p = 2 is indeed exceptional prime and also defines the smallest
p-adic length scale.

For instance, could one have two roots a and a + 2k near to each other 2-adically and could
the deformation be small in the sense that it replaces 2k with a product of primes near powers
of 2: 2k =

∏
i 2ki →

∏
i pi, pi near 2ki? For the irreducible polynomial defining the extension of

rationals, the deforming could be defined by a→ a+ 2k could be replaced by a→ a+ 2k/N such
that 2k/N is small also in real sense.

4.2 Appendix: About the decomposition of primes of number field K
to primes of its extension L/K

The followings brief summary lists some of the basic terminology related to the decomposition of
primes of number field K in its extension.

1. A typical problem is the splitting of primes of K to primes of the extension L/K which
has been already described. One would like to understand what happens for a given prime
in terms of information about K. The splitting problem can be formulated also for the
extensions of the local fields associated with K induced by L/K.
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2. Consider what happens to a prime ideal p of K in L/K. In general p decomposes to product
p =

∏g
i=1 P

ei
i of powers of prime ideals Pi of L. For ei > 1 ramification is said to occur. The

finite field K/p is naturally imbeddable to the finite field L/Pj defining its extension. The
degree of the residue field extension (L/Pi)/(K/p) is denoted by fi and called inertia degree
of Pi over p. The degree of L/K equals to [L : K] =

∑
eifi.

If the extension is Galois extension (see http://tinyurl.com/zu5ey96), one has ei = e
and fi = f giving [L : K] = efg. The subgroups of Galois group Gal(L/K) known as
decomposition group Di and inertia group Ii are important. The Galois group of Fi/F
equals to Di/Ii.

For Galois extension the Galois group Gal(L/K) leaving p invariant acts transitively on
the factors Pi permuting them with each other. Decomposition group Di is defined as the
subgroup of Gal(L/K) taking Pi to itself.

The subgroup of Gal(L/K) inducing identity isomorphism of Pi is called inertia group Ii
and is independent of i. Ii induces automorphism of Fi = L/Pi. Gal(Fi/F ) is isomorphic to
Di/Ii. The orders of Ii and Di are e and ef respectively. The theory of Frobenius elements
identifies the element of Gal(Fi/F ) = Di/Ii as generator of cyclic group Gal(Fi/F ) for the
finite field extension Fi/F . Frobenius element can be represented and defines a character.

3. Quadratic extensions Q(
√
n) are simplest Abelian extensions and serve as a good starting

point (see http://tinyurl.com/zofhmb8) the discrimant D = n for p mod 4 = 1 and
D = 4n otherwise characterizes splitting and ramification. Odd prime p of the extension not
dividing D splits if and only if D quadratic residue modulo p. p ramifies if D is divisible by p.
Also the theorem by Kronecker and Weber stating that every Abelian extension is contained
in cyclotomic extension of Q is a helpful result (cyclotonic polynomials has as it roots all n
roots of unity for given n)

Even in quadratic extensions L of K the decomposition of ideal of K to a product of those
of extension need not be unique so that the notion of prime generalized to that of prime ideal
becomes problematic. This requires a further generalization. One ends up with the notion of
ideal class group (see http://tinyurl.com/hasyllh): two fractional ideals I1 and I2 of L are
equivalent if the are elements a and b such that aI1 = bI2. For instance, if given prime of K has
two non-equivalent decompositions p = π1π2 and p = π3π4 of prime ideal p associated with K
to prime ideals associated with L, then π2 and π3 are equivalent in this sense with a = π1 and
b = π4. The classes form a group JK with principal ideals defining the unit element with product
defined in terms of the union of product of ideals in classes (some products can be identical).
Factorization is non-unique if the factor JK/PK - ideal class group - is non-trivial group. Q(

√
−5)

gived a representative example about non-unique factorization: 2× 3 = (1 +
√
−5)(1−

√
−5) (the

norms are 4× 9 and 6× 6 for the two factorizations so that they cannot be equivalent.
This leads to class field theory (see http://tinyurl.com/zdnw7j3 and http://tinyurl.com/

z3s4kjn).

1. In class field theory one considers Abelian extensions with Abelian Galois group. The theory
provides a one-to-one correspondence between finite abelian extensions of a fixed global field
K and appropriate classes of ideals of K or open sub-groups of the idele class group of K.
For example, the Hilbert class field, which is the maximal unramified abelian extension of
K, corresponds to a very special class of ideals for K.

2. Class field theory introduces the adele formed by reals and p-adic number fields Qp or their
extensions induced by algebraic extension of rationals. The motivation is that the very tough
problem for global field K (algebraic extension of rationals) defines much simpler problems
for the local fields Qp and the information given by them allows to deduce information about
K. This because the polynomials of order n in K reduce effectively to polynomials of order
n mod pk in Qp if the coefficients of the polynomial are smaller than pk. One reduces monic
irreducible polynomial f characterizing extension of Q to a polynomial in finite field Fp. This
allows to find the extension Qp induced by f .

An irreducible polynomial in global field need not be irreducible in finite field and therefore
can have multiple roots: this corresponds to a ramification. One identifies the primes p for
which complete splitting (splitting to first ordinary monomials) occurs as unramified primes.

http://tinyurl.com/zu5ey96
http://tinyurl.com/zofhmb8
http://tinyurl.com/hasyllh
http://tinyurl.com/zdnw7j3
http://tinyurl.com/z3s4kjn
http://tinyurl.com/z3s4kjn
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3. Class field theory also includes a reciprocity homomorphism, which acts from the idele class
group of a global field K, i.e. the quotient of the ideles by the multiplicative group of K,
to the Galois group of the maximal abelian extension of K. Wikipedia article makes the
statement “Each open subgroup of the idele class group of K is the image with respect to
the norm map from the corresponding class field extension down to K”. Unfortunately, the
content of this statement is difficult to comprehend with physicist’s background in number
theory.

5 Appendix: Explicit formulas for the evolution of cosmo-
logical constant

What is needed is induced Kähler form J(S2(X4)) ≡ J at the twistor sphere S2(X4) ≡ S2

associated with space-time surface. J(S2(X4)) is sum of Kähler forms induced from the twistor
spheres S2(M4) and S2(CP2).

J(S2(X4) ≡ J = P [J(S2(M4)) + J(S2(CP2))] , (5.1)

where P is projection taking tensor quantity Tkl in S2(M4)×S2(CP2) to its projection in S2(X4).
Using coordinates yk for S2(M4) or S(CP2) and xµ forS2, P is defined as

P : Tkl → Tµν = Tkl
∂yk

∂xµ
∂yl

∂xν
. (5.2)

For the induced metric g(S2(X4)) ≡ g one has completely analogous formula

g = P [g(J(S2(M4)) + g(S2(CP2))] . (5.3)

The expression for the coefficient K of the volume part of the dimensionally reduced 6-D Kähler
action density is proportional to

L(S2) = JµνJµν
√
det(g) . (5.4)

(Note that Jµν refers to S2 part 6-D Kähler action). This quantity reduces to

L(S2) = (εµνJµν)2 1√
det(g)

. (5.5)

where εµν is antisymmetric tensor density with numerical values +,-1. The volume part of the
action is obtained as an integral of K over S2:

S(S2) =

∫
S2

L(S2) =

∫ 1

−1

du

∫ 2π

0

dΦ
J2
uΦ√
det(g)

. (5.6)

(u,Φ) ≡ (cos(Θ,Φ) are standard spherical coordinates of S2) varying in the ranges [−1, 1] and
[0, 2π].

This the quantity that one must estimate.

5.1 General form for the embedding of twistor sphere

The embedding of S2(X4) ≡ S2 to S2(M4) × S2(CP2) must be known. Dimensional reduction
requires that the embeddings to S2(M4) and S2(CP2) are isometries. They can differ by a rotation
possibly accompanied by reflection

One has



5.2 Induced Kähler form 41

(u(S2(M4)),Φ(S2(M4)) = (u(S2(X4),Φ(S2(X4)) ≡ (u,Φ) ,[
u(S2(CP2)),Φ(S2(CP2))

]
≡ (v,Ψ) = RP (u,Φ)

where RP denotes reflection P following by rotation R acting linearly on linear coordinates (x,y,z)
of unit sphere S2). Note that one uses same coordinates for S2(M4) and S2(X4). From this action
one can calculate the action on coordinates u and Φ by using the definite of spherical coordinates.

The Kähler forms of S2(M4) resp. S2(CP2) in the coordinates (u = cos(Θ),Φ) resp.(v,Ψ) are
given by JuΦ = ε = ±1 resp. JvΨ = ε = ±1. The signs for S2(M4) and S2(CP2) are same or
opposite. In order to obtain small cosmological constant one must assume either

1. ε = −1 in which case the reflection P is absent from the above formula (RP → R).

2. ε = 1 in which case P is present. P can be represented as reflection (x, y, z)→ (x, y,−z) or
equivalently (u,Φ)→ (−u,Φ).

Rotation R can represented as a rotation in (y,z)-plane by angle φ which must be small to get
small value of cosmological constant. When the rotation R is trivial, the sum of induced Kähler
forms vanishes and cosmological constant is vanishing.

5.2 Induced Kähler form

One must calculate the component JuΦ(S2(X4)) ≡ JuΦ of the induced Kähler form and the
metric determinant det(g)) using the induction formula expressing them as sums of projections of
M4 and CP2 contributions and the expressions of the components of S2(CP2) contributions in the
coordinates for S2(M4). This amounts to the calculation of partial derivatives of the transformation
R (or RP) relating the coordinates (u,Φ) of S2(M4) and to the coordinates (v,Ψ) of S2(CP2).

In coordinates (u,Φ) one has JuΦ(M4) = ±1 and similar expression holds for J(vΨ)S2(CP2).
One has

JuΦ = 1 +
∂(v,Ψ)

∂(u,Φ)
. (5.7)

where right-hand side contains the Jacobian determinant defined by the partial derivatives given
by

∂(v,Ψ)
∂(u,Φ) = ∂v

∂u
∂Ψ
∂Φ −

∂v
∂Φ

∂Ψ
∂u . (5.8)

5.3 Induced metric

The components of the induced metric can be deduced from the line element

ds2(S2(X4) ≡ ds2 = P [ds2(S2(M4)) + ds2(S2(CP2))] .

where P denotes projection. One has

P (ds2(S2(M4))) = ds2(S2(M4)) =
du2

1− u2
+ (1− u2)dΦ2 .

and

P [ds2(S2(CP2))] = P [
(dv)2

1− v2
+ (1− v2)dΨ2] ,

One can express the differentials (dv, dΨ) in terms of (du, dΦ) once the relative rotation is
known and one obtains

P [ds2(S2(CP2))] =
1

1− v2
[
∂v

∂u
du+

∂v

∂Φ
dΦ]2 + (1− v2)[

∂Ψ

∂u
du+

∂Ψ

∂Φ
dΦ]2 .
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This gives

P [ds2(S2(CP2))]

= [( ∂v∂u )2 1
1−v2 + (1− v2)(∂Ψ

∂u )2]du2

+[( ∂v∂Φ )2 1
1−v2 + (∂Ψ

∂Φ )21− v2]dΦ2

+2[ ∂v∂u
∂v
∂Φ

1
(1−v2) + ∂Ψ

∂u
∂Ψ
∂Φ (1− v2)]dudΦ .

From these formulas one can pick up the components of the induced metric g(S2(X4)) ≡ g as

guu = 1
1−u2 + ( ∂v∂u )2 1

1−v2 + (1− v2)(∂Ψ
∂u )2] ,

gΦΦ = 1− u2 + ( ∂v∂Φ )2 1
1−v2 + (∂Ψ

∂Φ )2(1− v2)

guΦ = gΦu = ∂v
∂u

∂v
∂Φ

1
(1−v2) + ∂Ψ

∂u
∂Ψ
∂Φ (1− v2) .

(5.9)

The metric determinant det(g) appearing in the integral defining cosmological constant is given
by

det(g) = guugΦΦ − g2
uΦ . (5.10)

5.4 Coordinates (v,Ψ) in terms of (u,Φ)

To obtain the expression determining the value of cosmological constant one must calculate explicit
formulas for (v,Ψ) as functions of (u,Φ) and for partial derivations of (v,Ψ) with respect to (u,Φ).

Let us restrict the consideration to the RP option.

1. P corresponds to z → −z and to

u→ −u . (5.11)

2. The rotation R (x, y, z)→ (x′, y′, z′) corresponds to

x′ = x, y′ = sz + cy = su+ c
√

1− u2sin(Φ) , z′ = v = cu− s
√

1− u2sin(Φ) . (5.12)

Here one has (s, c) ≡ (sin(ε), cos(ε), where ε is rotation angle, which is extremely small for
the value of cosmological constant in cosmological scales.

From these formulas one can pick v and Ψ = arctan(y′/x) as

v = cu− s
√

1− u2sin(Φ) Ψ = arctan[ su√
1−u2

cos(Φ) + tan(Φ)] . (5.13)

3. RP corresponds to

v = −cu− s
√

1− u2sin(Φ) Ψ = arctan[− su√
1−u2

cos(Φ) + tan(Φ)] . (5.14)
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5.5 Various partial derivatives

Various partial derivates are given by

∂v
∂u = −1 + s u√

1−u2
sin(Φ) ,

∂v
∂Φ = −s u√

1−u2
cos(Φ) ,

∂Ψ
∂Φ = (−s u√

1−u2
sin(Φ) + c) 1

X ,

∂Ψ
∂u = scos(Φ)(1+u−u2)

(1−u2)3/2
1
X ,

X = cos2(Φ) + [−s u√
1−u2

+ csin(Φ)]2 .

(5.15)

Using these expressions one can calculate the Kähler and metric and the expression for the integral
giving average value of cosmological constant. Note that the field equations contain S2 coordinates
as external parameters so that each point of S2 corresponds to a slightly different space-time
surface.

5.6 Calculation of the evolution of cosmological constant

One must calculate numerically the dependence of the action integral S over S2 as function of the
parameter s = sin(ε)). One should also find the extrema of S as function of s.

Especially interesting values are very small values of s since for the cosmological constant
becomes small. For small values of s the integrand (see Eq. 5.6) becomes very large near poles
having the behaviour 1/

√
g = 1/(sin(Θ)+O(s)) coming from

√
g approaching that for the standard

metric of S2. The integrand remains finite for s 6= 0 but this behavior spoils the analytic dependence
of integral on s so that one cannot do perturbation theory around s = 0. The expected outcome
is a logarithmic dependence on s.

In the numerical calculation one must decompose the integral over S2 to three parts.

1. There are parts coming from the small disks D2 surrounding the poles: these give identical
contributions by symmetry. One must have criterion for the radius of the disk and the natural
assumption is that the disk radius is of order s.

2. Besides this one has a contribution from S2 with disks removed and this is the regular part
to which standard numerical procedures apply.

One must be careful with the expressions involving trigonometric functions which give rise to
infinite if one applies the formulas in straightforward manner. These infinities are not real and
cancel, when one casts the formulas in appropriate form inside the disks.

1. The limit u→ ±1 at poles involves this kind of dangerous quantities. The expression for the
determinant appearing in JuΦ remains however finite and J2

uφ vanishes like s2 at this limit.
Also the metric determinant 1/

√
g remains finite expect at s = 0.

2. Also the expression for the quantity X in Ψ = arctan(X) contains a term proportional to
1/cos(Φ) approaching infinity for Φ → π/2, 3π/2. The value of Ψ = arc(tan(X) remains
however finite and equal to ±Φ at this limit depending on on the sign of us.

Concerning practical calculation, the relevant formulas are given in Eqs. 5.5, 5.6, 5.7, 5.8, 5.9,
5.10, and 5.15.

The calculation would allow to test/kill the key conjectures already discussed.

1. There indeed exist extrema satisfying dS(S2)/ds = 0.

2. These extrema are in one-one correspondence with the zeros of zeta.

There are also much more specific conjctures to be killed.



MATHEMATICS 44

1. These extrema correspond to s = sin(ε) = 2−k or more generally s = p−k. This conjecture
is inspired by p-adic length scale hypothesis but since the choice of evolution parameter is to
high extent free, the conjecture is perhaps too spesific.

2. For certain integer values of integer k the integral S(S2) of Eq. 5.6 is of form S(S2) = xs2

for s = 2−k, where x is a universal numerical constant.

This would realize the idea that p-adic length scales realized as scales associated with cosmo-
logical constant correspond to fixed points of renormalization group evolution implying that
radiative corrections otherwise present cancel. In particular, the deviation from s = 2−d/2

would mean anomalous dimension replacing s = 2−d/2 with s−(d+∆d)/2 for d = k the anoma-
lies dimension ∆d would vanish.

The condition ∆d = 0 should be equivalent with the vanishing of the dS/ds. Geometrically
this means that S(s) curve is above (below) S(s) = xs2 and touches it at points s = x2−k,
which would be minima (maxima). Intermediate extrema above or below S = xs2 would be
maxima (minima).
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