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Abstract

One of the mathematical challenges of TGD is the construction of the homology of ”world
of classical worlds” (WCW). The generalization of Floer homology looks rather obvious in the
zero ontology (ZEO) based view about quantum TGD. ZEO, the notion of preferred extremal
(PE), and the intuitive connection between the failure of strict non-determinism and criticality
are essential elements. The homology group is defined in terms of the free group formed by
preferred extremals PE(X3, Y 3) for which X3 is a stable maximum of Kähler function K
associated with the passive boundary of CD and Y 3 associated with the passive boundary is
a more general critical point.

The identification of PEs as minimal surfaces with lower-dimensional singularities as loci
of instabilities implying non-determinism allows to assign to the set PE(X3, Y 3

i ) numbers
n(X3, Y 3

i → Y 3
j ) as the number of instabilities of singularities leading from Y 3

i to Y 3
j and

define the analog of criticality index (number of negative eigenvalues of Hessian of function at
critical point) as number n(X3, Y 3

i ) =
∑

j n(X3, Y 3
i → Y 3

j ). The differential d defining WCW

homology is defined in terms of n(X3, Y 3
i → Y 3

j ) for pairs Y 3
i , Y

3
j such that n(X3, Y 3

j ) −
n(X3, Y 3

i ) = 1 is satisfied.

1 Introduction

One of the mathematical challenges of TGD is the construction of the homology of ”world of
classical worlds” (WCW). With my rather limited mathematical skills, I had regarded this challenge
as a mission impossible. The popular article in Quanta Magazine with title ”Mathematicians
transcend the geometric theory of motion” (see https://cutt.ly/vO4eb5V however stimulated
the attempts to think whether it might be possible to say something interesting about WWC
homology.

The article told about a generalization of Floer homology by Abouzaid and Blumberg [A1]
(https://cutt.ly/ZPe0TSc) published as 400 page article with the title ”Arnold Conjecture and
Morava K-theory”. This theory transcends my mathematical skills but the article stimulated the
idea WCW homology might be obtained by an appropriate generalization of the basic ideas of
Floer homology (https://cutt.ly/VO4dSPD).

The construction of WCW homology as a generalization of Floer homology looks rather straight-
forward in the zero ontology (ZEO) based view about quantum TGD. The notions of ZEO and
causal diamond (CD) [L1] [K4], the notion of preferred extremal (PE) [L5] [K1], and the intuitive
connection between the failure of strict non-determinism and criticality pose strong conditions on
the possible generalization of Floer homology.

WCW homology group could be defined in terms of the free group formed by preferred extremals
PE(X3, Y 3) for which X3 is a stable maximum of Kähler function K associated with the passive
boundary of CD and Y 3 associated with the active boundary of CD is a more general critical point.

The stability of X3 conforms with the TGD view about state function reductions (SFRs) [L1].
The sequence of ”small” SFRs (SSFRs) at the active boundary of CD as a locus of Y 3 increases
the size of CD and gradually leads to a PE connecting X3 with stable 3-surface Y 3. Eventually
”big” SFR (BSFR) occurs and changes the arrow of time and the roles of the boundaries of the
CD changes. The sequence of SSFRs is analogous to a decay of unstable state to a stable final
state.

The identification of PEs as minimal surfaces with lower-dimensional singularities as loci of in-
stabilities implying non-determinism allows to assign to the set PE(X3, Y 3

i ) numbers n(X3, Y 3
i →

Y 3
j ) as the number of instabilities of singularities leading from Y 3

i to Y 3
j and define the analog of

criticality index (number of negative eigenvalues of Hessian of function at critical point) as number
n(X3, Y 3

i ) =
∑

j n(X3, Y 3
i → Y 3

j ). The differential d defining WCW homology is defined in terms

of n(X3, Y 3
i → Y 3

j ) for pairs Y 3
i , Y

3
j such that n(X3, Y 3

j )−n(X3, Y 3
i ) = 1 is satisfied. What is nice

is that WCW homology would have direct relevance for the understanding of quantum criticality.
The proposal for the WCW homology also involves a generalization of the notion of quantum

connectivity crucial for the definition of Gromow-Witten invariants. Two surfaces (say branes) can
be said to intersect if there is a string world sheet connecting them generalizes. In ZEO quantum
connectivity translates to the existence of a preferred extremal (PE), which by the weak form of
holography is almost unique, such that it connects the 3-surfaces at the opposite boundaries of
causal diamond (CD).

https://cutt.ly/vO4eb5V
https://cutt.ly/ZPe0TSc
https://cutt.ly/VO4dSPD
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2 Some background

In this section some background, including Morse theory, Floer homology, its generalization by
Abouzaid and Blumberg, and the basic ideas of TGD proposal, is discussed.

2.1 The basic ideas of Morse theory

Torus as a 2-D example helps to understand the idea of homology and Morse theory. Homologically
non-trivial surfaces are surfaces without boundary but are not boundaries themselves. Entire
torus represents the element of H2, the 2 homologically non-trivial circles, and points indeed have
vanishing boundaries without being boundaries. The basic homological operation d represents the
operation of forming a boundary: the boundary of a boundary is empty and this corresponds to
d2 = 0. d reduces degree of homology by one unit: Hn → Hn−1.

How to understand the homology of torus? Morse theory based on the notion of Morse function
provides the tool.

1. Consider the embedding of torus to 3-space. The height-coordinate h defines a Morse function
at torus and one can assign to it h = constant level surfaces. It has 4 critical points:
h0, h1, h2, h3 at which the topology of level suraace changes.

h has maximum h3 at the top of torus and minimum h0 at the bottom of the torus. h3
corresponds to the entire torus, element of homology group H2 and h0 to a point as element
of H0.

h has saddle points h1, h2 at the top and bottom of the ”hole” of the torus. The level surfaces
h = h1 and h = h2 correspond to two touching circles: the topology of the intersection
changes from a contractible circle to a union of oppositely oriented incontractible small circles
representing elements of the homology group H1. That they have opposite orientations states
conservation of homology charge in the topological reaction in which the level circle splits to
two: 0 = 1− 1.

Outside the critical points the topology of the h = constant level surface is a circle or two
disjoint circles. The critical points of h clearly code part of the homology of torus. What
however remains missing is the homology group element, which corresponds to the large
circle around the torus. This element of H1 would be obtained if the height function h were
a horizontal coordinate.

2. One can deform the torus and also add handles to it to get 2-D topologies with a higher
genus. Morse function also helps to understand the homology of higher-dimensional spaces
for which visual intuition fails.

This situation is finite-D and too simple to apply in the case of the space of orbits of a
Hamiltonian system. Now the point of torus is replaced with a loop as a single orbit in phase
space. The loop space is infinite-dimensional and the Morse theory does not generalize as
such. In Floer homology one studies even the homology of infinite-dimensional spaces.

Homology involves also the d operation. d can be indeed visualized in terms of dynamics of
a gradient flow. Assume that torus is in the gravitational potential of Earth proportional to h.
Gravitation defines a downwards directed gradient force. One can speak of critical directions as
directions in which the particle forced to stay at the torus can fall downwards when subjected to
an infinitesimal push.

1. At the top h = h3 of the torus there are 2 critical directions: either along a small or large
incontractible circle of torus. This number corresponds to the dimension d = 2 of torus as
the element of the homology group H2. At the bottom h = h0 there are 0 critical directions
and one has a point as an element of H0. At the saddle points h1, h2 there is 1 critical
direction and it corresponds to a nontrivial circle as an element of H1. The number n of
critical directions corresponds to the dimension for elements of the homology group Hn.

2. The particle at the top h3 has 2 critical directions (criticality 2), and can fall to the saddle
point h2, having criticality 1, by moving along the small homologically non-trivial circle.
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Criticality decreases by 1 unit so that one has a map H2 → H1. The particle can also move
along the large circle to the bottom, in which case criticality decreases by 2 units.

The particle at critical point h2 moves to h1 along a circle homologous to the large circle
without a change in criticality and the particle at h1 moves to h0 also the small circle: the
criticality changes by 1 unit so that one has a map H1 → H0.

Therefore the elements of the homology group correspond to critical points for the gradi-
ent flow defined by the gravitational field and the effect of the map d can be represented
dynamically as a motion in the gravitational field reducing the criticality by one unit.

The representability of homology elements as critical points of Morse function and the rep-
resentation of d-operation in terms of gradient dynamics is extremely useful in higher di-
mensional spaces, where geometric intuition does not help much. In Floer homology this
dynamics is applied as a tool.

2.2 The basic ideas of Floer homology

Consider first the motivations and ideas of Floer homology (https://cutt.ly/lO6EMp6). The
original goal was to prove Arnold’s conjecture. One considers a symplectic manifold with symplectic
form ω. Arnold conjectured that the number of fixed points of a Hamiltonian symplectomorphism
generated by an exponentiation of a Hamiltonian H, is bounded below by the number of critical
points of a smooth function on M .

The goal is to generalize Morse theory.

1. Morse theory involves the height function h in a finite-D manifold M and the critical points
of h correspond to elements of homology groups Hn. The number n of negative eigenvalues
of Hessian of f at critical points defines the index of criticality f and one can associate with
the critical point an element of the homology group Hn. n = 0 corresponds to maximum
of f . Note that in infinite-D case, Morse theory need not work since n can be arbitrarily
large and if the convention for criticality is changed so that n = 0 corresponds to minimum,
a different theory is obtained.

2. In Morse homology, the n-simplices of the simplicial homology are replaced by critical points
with criticality index n and the homology groups are replaced with the Abelian group defined
by the critical points and graded by the criticality index n. The gradient flow lines connecting
critical points with ∆n = 1 allow to define an analog of the exterior derivative d: it is defined
by the number of flow lines connecting critical points with ∆n = 1.

2.3 Floer homology

The motivation for the symplectic Floer homology is the conjecture by Arnold related to the
Hamiltonian systems. These systems are defined in phase space, whose points are pairs of position
and momentum of the particle. This notion is extremely general in classical physics.

1. One considers compact symplectic manifolds M and symplectic action S =
∮
pidqi and its

critical points, which are loops. Note that symplectic action has interpretation as an area.
The general case S =

∮
(pidqi/dt−H)dt is not considered in the Floer homology.

Remark: A more general question is whether there exist closed orbits, kind of islands of
order, in the middle of oceans of chaos consisting of non-closed chaotic orbits. This is indeed
the case: there is a fractal structure formed by islands of order in oceans of disorder. Hamil-
tonian chaos differs from dissipative chaos in that the fractal has the same dimension as the
symplectic manifold since symplectic transformations preserve area and high 2n-dimensional
volumes.

2. Arnold’s conjecture was that the number of critical points of a given criticality index of
a symplectomorphism has as an upper bound the number of critical points for a generic
function. The inspiration behind the Floer homology is the intuition that a generalization of
Morse theory to the loop space L(M) allows us to understand the homology. The conjecture
is that the closed orbits serve as minimal area representatives for the homology of L(M).
These closed orbits would be critical points of S defining the area closed by the curve.

https://cutt.ly/lO6EMp6


2.4 The generalization of Floer homology by Abouzaid and Blumberg 5

The goal is to understand the homology of a finite-dimensional compact symplectic manifold M
and Floer homology provides the needed tool. Floer homology for the infinite-D loop space L(M)
serves as a tool to achieve this goal and the proof of Arnold’s conjecture follows as an outcome.

In symplectic Floer homology, one is interested in closed loops as orbits of a symplectic flow
in a compact symplectic space M . One wants to identify them as critical points of an analog of
Morse function in the loop space L(M).

1. In the symplectic Floer homology, M is a finite-D symplectic manifold and one deduces
information about it from the homology of loop space L(M) by generalizing Morse homology
to the homology of L(M).

2. The counterpart of the Morse function is unique and defined by the symplectic action func-
tional S =

∮
pidqi in L(M). Note that S depends only on M . S defines the counterpart

of free action with a vanishing Hamiltonian H. For a general Hamiltonian one would have
S =

∮
(pidqi/dt−H)dt. Note that closed orbits are possible if M is compact. For a generic

H the dynamic becomes chaotic.

Closed loops for free flows define the analogs of critical points of Morse function. For instance,
for 2-torus the closed orbits correspond to loops with winding numbers n1, n2.

3. One must identify the counterpart for the gradient flow lines connecting the critical points
with ∆n = 1 in order to define d. Here one considers a deformation of the system by a time
dependent Hamiltonian H and hopes that the predictions do not depend on the choices of
H. This gives to orbits of the closed loops in the loop space giving rise to cylinders in M .

These cylinders define pseudoholomorphic curves and define the counterparts of the gradient
flows connecting critical points as closed loops in X. The differential d for the Floer homology
is defined in terms of the numbers of these curves between critical points with the property
that the criticality index increases by one unit.

4. The basic result is a proof for the Arnold conjecture and roughly states that for the ranks
of homology groups of M are smaller than the Floer homology groups defined by arbitrary
Hamilton.

Floer homology has a rich variety of applications discussed in the Wikipedia article (https://
cutt.ly/lO6EMp6). One application relates to the Lagrangian manifolds of a symplectic manifold.
Now the chain complex is generated by the intersection points of Lagrangian manifolds intersecting
transversely.

A further application is associated with Yang- Mills theory. The action is the Chern-Simons
action defining a topological quantum field theory. Its critical points are topologically non-trivial
gauge connections with a trivial curvature form. Topological non-triviality means that the group
defined by the parallel translations along closed curves is non-trivial. The counterpart of the
gradient flow is defined by Yang-Mills action and the flow lines correspond to instantons approach
at the ends of the counterpart of mapping cylinder trivial connections.

2.4 The generalization of Floer homology by Abouzaid and Blumberg

The work of mathematicians Abouzaid and Blumberg [A1] (https://cutt.ly/ZPe0TSc), which
represents the generalization of Floer homology which, using popular terms, allows to ”count holes”
in the infinite-D space of loops.

The abstract of the article of Abouzaid and Blumberg is following.

https://cutt.ly/lO6EMp6
https://cutt.ly/lO6EMp6
https://cutt.ly/ZPe0TSc
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We prove that the rank of the cohomology of a closed symplectic manifold with
coefficients in a field of characteristic p is smaller than the number of periodic
orbits of any non-degenerate Hamiltonian flow.
Following Floer, the proof relies on constructing a homology group associated to
each such flow, and comparing it with the homology of the ambient symplectic
manifold. The proof does not proceed by constructing a version of Floer’s complex
with characteristic p coefficients, but uses instead the canonical (stable) complex
orientations of moduli spaces of Floer trajectories to construct a version of Floer
homology with coefficients in Morava’s K-theories, and can thus be seen as an
implementation of Cohen, Jones, and Segal’s vision for a Floer homotopy theory.
The key feature of Morava K-theory that allows the construction to be carried out
is the fact that the corresponding homology and cohomology groups of classifying
spaces of finite groups satisfy Poincare duality.

I try to express what I understand as a physicist about this highly technical summary.

1. The main emphasis is in the homology of finite-D symplectic manifolds and the homology of
the infinite-D loop space is only a tool to obtain this information.

2. The generalization of Arnold’s conjecture is expressed in the first paragraph. For closed sym-
plectic manifolds the cohomology groups of a closed symplectic manifold have rank smaller
than the number of periodic orbits of any non-degenerate Hamiltonian flow.

Therefore Hamiltonian flows give information about the cohomology and by Poincare duality
also about homology of the symplectic manifold.

3. The coefficients of homology can be chosen in very many ways: rationals, integers, finite
fields, p-adic number fields. Integers are however the natural ones in the situation in which
one counts concrete objects. The homology has coefficients in finite field Fp, integers modulo
prime p: for instance, the numbers of flow lines of gradient flow connecting the critical points
of symplectic action are counted modulo p.

4. Time dependent Hamiltonians enter into the picture as perturbations of the symplectic action.
One replaces the free symplectic action S =

∮
pidqi/dt in loop space with S =

∮
(pidqi/dt−

H)dt playing a role analogous to that of Morse function. This is like adding an interaction
term to free action. It is essential that the symplectic space is compact so that closed orbits
as critical points of S are possible.

2.5 Gromow-Witten invariants

The proposed TGD based generalization of the notion of ”being connected” by a flow line of
gradient flow resonates with the definition of Gromow-Witten (G-W) invariant. G-W invariant
emerges in enumerative geometry, which is essentially counting of particular kinds of points of
enumerative geometry which is a branch of algebraic geometry.

G-W invariants (http://tinyurl.com/y9b5vbcw) are rational number valued topological in-
variants useful in algebraic and symplectic geometry. These quantum invariants give information
about these geometries not provided by classical invariants. Despite being rational numbers in the
general case G-W invariants in some sense give the number of string world sheets connecting given
branes.

The definition of G-W invariant involves a non-locality, which is completely analogous to the
non-locality in the proposed definition of WCW homology. In TGD, the string world sheet as
connector of branes is replaced with PE as a connector of the boundaries of opposite boundaries
of CD taking the role of brane.

Here is the definition of G-W invariants with some TGD induced coloring taken from [K2, K3].

1. One considers a collection of n surfaces (“branes”) with even dimensions in some symplectic
manifold X of dimension D = 2k (say Kähler manifold) and pseudo-holomorphic curves
(“string world sheets”) X2, which have the property that they connect these n surfaces in
the sense that they intersect the “branes” in the marked points xi, i = 1, .., n.

http://tinyurl.com/y9b5vbcw
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“Connect” does not reduce to intersection in a topologically stable sense since connecting
is possible also for branes with dimension smaller than D − 2. One allows all surfaces X2

that intersect the n surfaces at marked points if they are pseudo-holomorphic even if the
basic dimension rule is not satisfied. In the 4-dimensional case this does not seem to have
implications since the partonic 2-surfaces automatically satisfy the dimension rule. The n
branes intersect or touch in a quantum sense: there is no concrete intersection but intersection
with the mediation of “string world sheet”.

2. Pseudo-holomorphy means that the Jacobian df of the embedding map f : X2 → X com-
mutes with the symplectic structures j resp. J of X2 resp. X: i.e. one has df(jT ) = Jdf(T )
for any tangent vector T at given point of X2. For X2 = X = C this gives Cauchy-Riemann
conditions.

In the symplectic case X2 is characterized topologically by its genus g and homology class A
as the surface of X. In algebraic geometry context the degree d of the polynomial defining
X2 replaces A. In TGD X2 corresponds to a string world sheet having also a boundary. X2

has also n marked points x1, ..., xn corresponding to intersections with the n surfaces.

3. G-W invariant GWX,A
g,n gives the number of pseudo-holomorphic 2-surfaces X2 connecting n

given surfaces in X - each at single marked point. In TGD these surfaces would be partonic
2-surfaces and marked points would be carriers of sparticles.

3 About the generalization of Floer homology in the TGD
framework

A generalization of homotopy and homology groups could help to understand WCW topology.
One of the intuitive visions behind TGD has indeed been that, despite the explicit appearance of
metric, TGD in a certain sense is a topological quantum theory. A mathematical motivation for
this intuition comes from the fact that minimal surfaces provide representations for homological
equivalence classes. Floer homology suggests concrete ideas, which might help to understand the
homology of WCW.

3.1 Key ideas behind WCW homology

The encounter with Floer homology inspired the question whether one could say something in-
teresting about WCW homology by an appropriate generalization of the concepts involved with
it.

3.1.1 Preferred extremals (PEs) as counterparts of critical points

PEs are an obvious candidate for the counterparts of critical points. ZEO however implies some
important delicacies crucial for WCW homology.

1. In the TGD Universe, space-time is a 4-surface in H = M4×CP2, in a loose sense an orbit of
3-surface. General Coordinate Invariance (GCI) requires that the dynamics associates to a
given 3-surface a highly unique 4-surface at which the 4-D general coordinate transformations
act. This 4-surface is a PE of the action principle determing space-time surfaces in H and
analogous to Bohr orbit. GCI gives Bohr orbitology as an exact part of quantum theory and
also holography.

These PEs as 4-surfaces are analogous to the closed orbits in Hamiltonian systems about
which Arnold speculated. In the TGD Universe, only these PEs would be realized and would
make TGD an integrable theory. The theorem of Abouzaid and Blumberg allows to prove
Arnold’s conjecture in homologies based on cyclic groups Zp. Maybe it could also have use
also in the TGD framework.

2. WCW generalizes the loop space considered in Floer’s approach. Very loosely, loop or string
is replaced by a 3-D surface, which by holography induced is more or less equivalent with
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4-surface. In TGD just these minimal representatives for homology as counterparts of closed
orbits would matter.

3. Symplectic structure and Hamiltonian are central notions also in TGD. Symplectic (or rather,
contact) transformations assignable to the product δM4

+ × CP2 of the light-cone boundary
and CP2 act as the isometries of the infinite-D ”world of classical worlds” (WCW) consisting
of these PEs, or more or less equivalently, corresponding 3-surfaces. Hamiltonian flows as
1-parameter subgroups of isometries of WCW are symplectic flows in WCW with symplectic
structure and also Kaehler structure.

4. The space-time surfaces are 4-D minimal surfaces in H with singularities analogous to frames
of soap films. Minimal surfaces are known to define representatives for homological equiv-
alence classes of surfaces. This has inspired the conjecture that TGD could be seen as
a topological/homological quantum theory in the sense that space-time surfaces served as
unique representatives or their homological classes.

5. There is also a completely new element involved. TGD can be seen also as number theoretic
quantum theory. M8 − H duality can be seen as a duality of a geometric vision in which
space-times are 4-surfaces in H an of a number theoretic vision in which one consideres 4-
surfaces in octonionic complexified M8 determined by polynomials with dynamics reducing
to the condition that the normal space of 4-surface is associative (quaternionic). M8 is
analogous to momentum space so that a generalization of momentum-position duality of
wave mechanics is in question.

3.1.2 The first sketch for WCW homology

A suitable generalization of Floer’s theory might allow us to define WCW homology.

1. The PEs would correspond to the critical points of an analog of Morse function in the infinite-
D context. In TGD the Kähler function K defining the Kahler geometry of WCW is the
unique candidate for the analog of Morse function.

The space-time surfaces for which the exponent exp(−K) of the Kähler function is stationary
(so that the vacuum functional is maximum) would define PEs. Also other space-time surfaces
could be allowed and it seems that the continuity of WCW requires this. However the maxima
or perhaps extrema would provide an excellent approximation and number theoretic vision
would give an explicit realization for this approximation.

It is however important to notice that the K for, in general non-unique, preferred external
PE(X3, Y 3) can be maximum for X3 and a more general critical point for Y 3. This option
conforms with the ZEO view about SFRs in which the passive boundary of CD is stable and
a sequence of SSFRs takes place at the active boundary and increases its size. The homology
would be assigned to the criticality of the active boundary of CD.

This would require a varying CD size, which should therefore be determined by PE and
appear as a parameter in PE. By M8 −H duality the boundary of CD corresponds to the
image of a mass shell H3 in M3. Perhaps this property at the active end of PE codes for the
size scale of the CD. The size scale of CD, not necessarily the size, should correspond to the
p-adic length scale Lp determined by the largest ramified prime of the polynomial coding for
PE. Does this mean that Lp remains the same during the entire sequence of SSFRs or can
it increase? The size could increase by factor

√
p with change ibn Lp and for large p-adic

primes such as M127 = 2127 − 1 this would mean very large scaling.

Remark: Since WCW Kähler geometry has an infinite number of zero modes, which do not
appear in the line element as coordinate differentials but only as parameters of the metric
tensor, one expects an infinite number of maxima.

2. The PEs would correspond by M8−H duality to roots of polynomials P in the complexified
octonionic M8 so that a connection with number theory emerges. M8 −H duality strongly
strongly suggests that exp(−K) is equal to the image of the discriminant D of P under
canonical identification I :

∑
xnp

n →
∑
xnp

−n mapping p-adic numbers to reals. The
prime p would correspond to the largest ramified prime dividing D [L7, L8].
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3. The number theoretic vision could apply only to the critical points of exp(−K) with respect
to both ends of PE and give rise to what I call a hierarchy of p-adic physics as correlates
of cognition. Everything would be discrete and one could speak of a generalization of com-
putationalism allowing also the hierarchy of extensions of rationals instead of only rationals
as in Turing’s approach. The real-number based physics would also include the non-maxima
via a perturbation theory involving a functional integral around the maxima. Here Kähler
geometry allows to get rid of ill-defined metric and Gaussian determinants.

3.1.3 G-W invariants and ZEO

Enumerative geometry is also a central element of adelic physics.

1. M8 −H duality involves the notion of cognitive representations consisting of special points
of 4-surface, in particular, points of 3-D mass shell H3 ⊂ M4

c ⊂ M8
c . The ”active” points

containing quark are identified as quark momenta. A generalization of momentum-position
duality is in question.

2. The points of the cognitive representation, having interpretation as four-momenta [L2, L3,
L7, L8], are identified are algebraic integers in the extensions defined by the real polynomial
P with rational coefficients continued to a polynomial of a complexified octonion. P defines
mass shells as its roots with m2 = rn defining the spectrum of virtual mass squared values
for quarks. The finite number of mass shells guarantees the absence of divergences due to
momentum space integrations.

3. By the symmetries of H3, the number of points in cognitive representations is especially high
at the mass shells. Physical states correspond to Galois singlets (Galois confinement implying
conformal confinement) for which the sum of quark momenta is an ordinary integer as one
uses as unit the p-adic mass scale defined by the largest ramified prime associated with P .

4. The mass shells associated with a given polynomial P are connected by a 4-surface X4 as
a deformation of M4

c , which defines M8 − H duality by assigning to X4 ⊂ M8 space-time
surface in H = M4 × CP2. This surface is a minimal surface with singularities analogous
to frames of a soap film. M8 − H duality maps the points of cognitive representation to
X4 ⊂ H [L6].

The TGD view about WCW homology could perhaps be regarded as a generalization of the
quantum connectedness behind G-W invariants. The role of the string world-sheet as a quantum
connector is taken by PE so that there is no need to introduce gradient dynamics separately. The
quantum connection between X3

1 and X3
2 at the boundary A of CD exists if X3

1 = CPT (Y 3
1 ) is true

for a PE having X3
1 and Y 3

1 as ends. ∆n = ±1 translates to an appearance or dis-appearance of
minimal number of critical directions. The attribute ”quantum” is well-deserved since the classical
non-determinism serves as a space-time correlate for quantum jumps at WCW level [L6, L4, L7, L8].

3.2 A more concrete proposal for WCW homology as a generalization
of the Floer homology

Consider first the notion of ”world of classical worlds” (WCW).

1. In TGD, point-like particles are replaced by 3-surfaces. Zero energy ontology (ZEO) is
assumed, which means that space-time surfaces X4 as ”orbits” of 3-surfaces are inside causal
diamonds. These 4-surfaces are PEs of the action principle. For the exact holography, 3-
surface at either boundary of CD would determine X4 uniquely but determinism is expected
to be slightly violated so that there are several PEs associated with a given X3 at either
boundary of CD. The failure of strict determinism is analogous to the failure of determinism
for soap films with frames.

Let PE have X3 resp. Y 3 as its ends at the opposite boundaries A resp. B of CD.
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2. WCW is identified as the space of PEs. One could regard WCW also as covering a space such
that for a given X3 at (say) A, the fiber contains the PEs having X3 as the first end. WCW
has symplectic and even a Kähler structure and symplectic transformations at the light-like
boundaries of CD are conjectured to define isometries of WCW but not symmetries of SK .

3. Kähler function K, serving as the analog of symplectic action, defines Kähler form and
symplectic structure. K corresponds to 4-D Kähler action SK plus volume term for a PE.
This action is obtained as a dimensional reduction of 6-D Kähler action for the 6-D surface
X6 in the 6+6-D twistor space of T (M4) × T (CP2). X6 carries induced twistor structure
and has X4 as base space and S2 as fiber.

3.2.1 WCW homology based on minimal surfaces with singularities

The challenge is to identify the counterpart of gradient flow as a counterpart of quantum con-
nectivity. This should not bring anything new to the existing picture. The following proposal is
perhaps the simplest one and conforms with the physical intuition.

1. Morse theory and Floer homology would suggest that one should consider the Hessian of
Kähler function K(PE(X3) of WCW as functional of preferred extremal PE(X3, Y 3). One
could calculate the numbers n+ resp. n− of positive and negative eigenvalues of Hessian and
identify n− as the criticality index and number of unstable directions.

2. There are several problems. The identification of the analog of gradient flow seems very
difficult. However, by the weak holography due the failure of strict determinism, for a given
X3, there are several 3-surfaces Y 3

i at the opposite boundary of CD defining PEs. The
meaning of criticality is far from obvious since instability for a given time direction looks like
stability in the opposite time direction. This is a potential problem since in ZEO [L1] [K4]
both arrows of time are possible. There should be a clear distinction between the ends of a
CD.

3. By the failure of the strict determinism, the basic objects in ZEO are pairs (X3
i , Y

3
j ) con-

nected by PE(X3
i , Y

3
j ) identifiable as critical points of K with respect to variations of at least

one end. The physical picture suggests that criticality is possible for both ends and that a
maximum for the passive boundary of CD and criticality for the opposite active boundary
of CD (where quantum fluctuations due to ”small” state function reductions (SSFRs) are
located) is possible. The instabilities associated with criticality at active end would corre-
spond to a definite time direction. It is however difficult to proceed without a more concrete
picture.

4. WCW homology could also involve a generalization of the notion of quantum connectiv-
ity crucial for the definition of Gromow-Witten invariants. The idea is that two surfaces
(say branes) can be said to intersect when there is a string world sheet connecting them,
generalizes.

In ZEO this translates to the existence of a preferred extremal (PE), which by the weak
form of holography is almost unique, such that it connects the boundaries of causal diamond
(CD), which plays the role of brane.

The identification of PEs as minimal surfaces [L6] allows us to make this picture more concrete
and gives a direct connection to quantum criticality as it would be realized in terms of classical
non-determinism. One would not count critical directions but critical transitions assignable to
singularities of minimal surfaces.

1. PEs are identified as minimal surfaces with singularities analogous to the frames of soap film.
At the singularities the minimal surface property fails and the Kähler action and volume term
couple together in field equations so that conservation laws are satisfied.

2. The singular surfaces have dimension d < 4 and and can be regarded as loci of instability
leading to non-determinism. By suitably perturbing the singularities, one can generate new
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preferred extremals PE(X3, Y 3
j ) from PE(X3, Y 3

i ). The maximum property of K with re-

spect to the variations of X3 would suggest that one cannot replace X3 with a new maximum
in this way.

3. For each Y 3
i , one can count the number of deformations of the singularities leading to

PE(X3, Y 3
j ) and call this number n(X3, Y 3

i → Y 3
j ) as an the analog for the number of

gradient lines between given critical points in Floer homology.

One can define the analog of criticality index n(X3, Y 3
i ) as n(X3, Y 3

i ) =
∑

j n(X3, Y 3
i → Y 3

j )
as the analog of n− of the negative eigenvalues of Hessian. One defines an Abelian group as
the complex formed by PE(X3

i , Y
3
j ). n(X3, Y 3

i ) defines the grading for PE(X3, Y 3
j ) as an

element of this complex.

The differential d for WCW homology can be defined in the same way as in Floer homol-
ogy. Assume n(X3, Y 3

j ) − n(X3, Y 3
i ) = 1. Define the action of d as d(PE(X3, Y i)) =∑

j n(X3, Y 3
i → Y 3

j )PE(X3, Y j).

The non-determinism of 6-D Kähler and 4-D action would be essential as also the asymmetry
between the active and passive boundaries of CD crucial for TGD based quantum measurement
theory. Nondeterminism is also essential for the non-triviality of scattering amplitudes since quan-
tum non-determinism in WCW degrees of freedom has classical non-determinism as a space-time
correlate [L6]. If the determinism were exact the homology groups Hn would correspond directly
to the groups Cn and one would have a Cartesian product of spaces with the homology group
Hn = Cn. Interesting questions relate to the interpretation of PE pairs with ∆n 6= 1.

3.2.2 Could CPT allow the concretization of quantum connectedness

The quantum connectedness in some sense identifies the 3-surfaces connected by PE(X3
1 , Y

3
1 ) such

that X3
1 and Y 3

1 are at opposite boundaries of CD = cd× CP2. If one could assign to Y 3
1 at B a

3-surface X3
2 at A, quantum connectedness would become more concrete. There is no compelling

reason to effectively for this but can ask whether PE could allow to achieve this formally.

1. This formal connection is achieved if there is a discrete symmetry mapping the boundaries
A and B of CD to each other. This symmetry must involve time reflection T with respect to
the center point of cd. If one requires that the symmetry is an exact symmetry of quantum
theory, CPT remains the only candidate. C would act as charge conjugation, realized as a
complex conjugation in CP2.

CPT maps the boundaries of CDs to each other and therefore also the positive and negative
energy parts of zero energy states. The 3-surfaces (X3

1 X
3
2 ) at a given boundary of CD are

quantum connected if one has X3
2 = CPT (Y 3

1 ) for a PE connecting X3
1 and Y 3

1 .

2. Critical points of K must be mapped to critical points so that CPT should act as a symmetry
of the variational principle. If M4 has Kähler structure the self-dual covariantly constant
Kähler form of M4, strongly suggested by the twistor lift of TGD, must be invariant under
CPT and this is indeed the case. The Kähler gauge potential would be also fixed apart from
the decomposition M4 = M2 × E2 defined by electric and magnetic parts of J(M4).
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