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1. Introduction 3

Abstract

The geometric vision of TGD is rather well-understood but there is still a lot of fog in the
number theoretic vision.

1. There are uncertainties related to the interpretation of the 4-surfaces in M8 what the
analogy with space-time surface in H = M4×CP2 time evolution of 3-surface in H could
mean physically?

2. The detailed realization of M8−H duality involves uncertainties: in particular, how the
complexification of M8 to M8

c can be consistent with the reality of M4 ⊂ H.

3. The formulation of the number theoretic holography with dynamics based on associativ-
ity involves open questions. The polynomial P determining the 4-surface in M8 doesn’t
fix the 3-surfaces at mass shells corresponding to its roots. Quantum classical corre-
spondence suggests the coding of fermionic momenta to the geometric properties of 3-D
surfaces: how could this be achieved?

4. How unique is the choice of 3-D surfaces at the mass shells H3
m ⊂M4 ⊂M8 and whether

a strong form of holography as almost 2→ 4 holography could be realized and make this
choice highly unique.

These and many other questions motivated this article and led to the observation that the
model geometries used in the classification of 3-manifolds seem to be rather closely related to
the known space-time surfaces extremizing practically any general coordinate invariant action
constructible in terms of the induced geometry.

The 4-surfaces in M8 would define coupling constant evolutions for quantum states as
analogs of and mappable to time evolutions at the level of H and obeying conservation laws
associated with the dual conformal invariance analogous to that in twistor approach.

The momenta of fundamental fermions in the quantum state would be coded by the cusp
singularities of 3-surfaces at the mass shells of M8 and also its image in H provided by M8−H
duality. One can consider the possibility of 2 → 3 holography in which the boundaries of
fundamental region of H3/Γ is 2-D hyperbolic space H2/Γ so that TGD could to high degree
reduce to algebraic geometry.

1 Introduction

TGD could be seen as a holy trinity of three visions about quantum physics based on physics as
geometry, physics as number theory, and physics as topology.

Quite recently I gave a talk on TGD and TGD inspired theory of consciousness and was asked
about the motivations for the number theoretic vision. My response went roughly as follows.

1. The attempt to find a mathematical description for the physical correlates of cognition could
have led to the vision of quantum TGD as a number theory. What are the possibly geomet-
ric/number theoretic/topological correlates of thought bubbles?

A bold guess could have been p-adic numbers, p = 2, 3, 5, 7, ..... provide natural mathematical
correlates for cognition. Rationals, algebraic extensions of rationals, and the extensions
of p-adic number fields induced by them are natural candidates as also complex numbers,
quaternions, and octonions. Also finite number fields emerged quite recently as natural
ingredients of the number theoretic vision [K11, K12, K10] [L16].

As a matter of fact, I ended up to a proposal that p-adic physics provides the correlates of
cognition via a different route, by p-adic mass calculations based on p-adic thermodynamics,
which turned out to have surprisingly high predictive power due to the number theoretic
existence conditions [K5].

2. Sensory experience corresponds to real number based physics. There is a strong correlation
between cognition and sensory experience, but it is not perfect. Sensations arouse thoughts,
but cognition is also able to dream and imagine.

3. Cognition includes mathematical thought. The concretization of mathematical thinking as
computation requires discretization. This suggests that discretization should correspond to
what one might call a cognitive representation transforming thoughts to sensory percepts
and it should have a number theoretic representation.
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4. Mathematical thinking is able to imagine spaces with an arbitrary dimension, while the
dimension of the perceptual world is fixed and is the dimension of three-space. How does
cognition achieve this?

5. Cognition has evolved. Why and how can this be the case?

6. If the correlates of cognition are part of reality, then cognition must be optimally efficient.
How?

This leads to the following questions and answers.

1. Could p-adic spacetime surfaces represent thought bubbles, equivalent to real 4-surfaces?
They are a number-theoretic concept, they also involve a different topology than the sense-
world, and p-adic space-time surfaces would be examples of algebraic geometry.

2. How is cognition able to imagine? p-Adic differential equations are non-deterministic: inte-
gration constants, which by definition have vanishing derivatives are only piecewise constants.
Could this make imagination possible [K6]??

3. How the strong correlation between cognition and sensory experience could be realized? All
p-adic number fields and their extensions must be allowed. Consider first the simplet book
involving only reals and p-adic number fields. p-Adic number fields Qp, p = 2, 3, 5, ... can be
combined into a book, an adele [L1, L2]. Different number fields as extensions of rationals
represent the pages of this book. Real numbers correspond to sensory experience and various
p-adic number fields to cognition. The back of the book corresponds to rational numbers
that are common to all chapters.

Every algebraic extension of rationals defines extensions of p-adic number fields. The p-adic
pages of the algebraically extended book are algebraic extensions of various p-adic number
fields. One obtains an infinite library with books labeled by algebraic extensions of rationals.

Now the back of the book consists of algebraic numbers for the extension generated by the
roots of a polynomial with integer coefficients. The back of the book gives a cognitive rep-
resentation, a number theoretic discretization of the 4-surface that is unique for a given
extension. The bigger the extension, the more accurate the discretization. Cognitive evolu-
tion would correspond to a refinement of cognitive representation induced by the increase of
the order of the polynomial defining the extension.

4. How is cognition able to imagine higher-dimensional mathematical objects that do not exist
at the level of sensory experience? algebraic extensions for p-adic numbers can have an
arbitrarily high dimension if the corresponding polynomial has high enough degree. One
can have p-adic 4-surfaces for which the associated algebraic dimension is arbitrarily high!
p-Adic cognition is liberated from the chains of matter!

5. Why is evolution related to cognition? One gets an infinite number of books labeled algebraic
extensions, a whole library. Does the evolution of cognition present a hierarchy? The bigger
the algebraic extension, the better the approximation to real numbers and thus to sensory
experience.

6. Can p-adic cognition be maximally effective? Here p-adic thermodynamics suggests the
answer. p-Adic mass calculations assign to each elementary particle a p-adic prime. For
instance, for electrons it is Mersenne prime p = M127 = 2127 − 1 ' 1038. p-Adic mass
squared value is expansion powers of p and its real counterpart is power series in negative
powers of p. This series converges extremely rapidly for large primes such as p ' 1038 and two
lowest orders give a practically exact answer so all errors would be due to the assumptions
of the model rather than due to computations.

How to realize number theoretic physics?

1. Number theoretic discretization does not resonate with the idea of general coordinate invari-
ance. For H = M4 × CP2 allows linear Minkowski coordinates but CP2 coordinates are not
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linear although also now complex coordinates consistent with the isometries of SU(3) are
natural.

What about M8 or possibly its complexification suggested by twistorial considerations and
also by the fact that classical TGD predicts that Euclidian space-time regions give an imagi-
nary contribution to the conserved four momenta. M8 allows highly unique linear Minkowski
coordinates and the idea that M8

c corresponds to complexified octonions is very natural. The
automorphism group G2 of octonions poses additional conditions.

2. This leads to the idea that number theoretic physics is realized at the level of M8
c and that it

is dual to the geometric physics realized at the level of H and that these physics are related
by M8 − H duality mapping 4-D surfaces in M8 to H. TGD can be regarded as a wave
mechanics for point-like particles replaced with 3-D surfaces in H, which, by the failure of
complete determinism for holography, must be replaced by analogs of Bohr orbits. Wave
mechanics is characterized by momentum-position duality, which naturally generalizes to
M8 −H duality [L4, L5, L15, L16].

3. The physics in M8
c should be purely algebraic as is also the ordinary physics at the level of

momentum space for free fields. This physics should make sense also in all p-adic number
fields. This suggests that polynomials with integer coefficients, in particular their roots,
together with number theoretic holography based on associativity, partially characterize the
4-surfaces in M8, which would make sense also as their p-adic variants.

It is not clear whether the p-adicization is needed at the level of H: it might be enough to
have it only at the level of M8 so that only the p-adic variants of M8 would be needed.

The geometric vision of TGD is rather well-understood (see for instance [L8]), but one need
not think long to realize that there is still a lot of fog in the number theoretic vision (see for
instance [K11, K12, K10] and [L4, L5, L6, L15, L16]).

1. There are uncertainties related to the interpretation of the 4-surfaces in M8 what the analogy
with space-time surface in H = M4 × CP2 time evolution of 3-surface in H could mean
physically?

2. The detailed realization of M8−H duality [L4, L5] involves uncertainties: in particular, how
the complexification of M8 to M8

c can be consisted with the reality of M4 ⊂ H.

3. The formulation of the number theoretic holography with dynamics based on associativity
involves open questions. The polynomial P determining the 4-surface in M8 doesn’t fix
the 3-surfaces at mass shells corresponding to its roots. Quantum classical correspondence
suggests the coding of fermionic momenta to the geometric properties of 3-D surfaces: how
could this be achieved?

4. How unique is the choice of 3-D surfaces at the mass shells H3
m ⊂ M4 ⊂ M8 and whether

a strong form of holography as almost 2 → 4 holography could be realized and make this
choice highly unique.

5. The understanding of 3-geometries is essential for the understanding of the holography in
both M8 and H. The mathematical understanding of 3-geometries is at a surprisingly high
level: the prime 3-manifolds can be constructed using 8 building bricks. Do these building
bricks, model geometries, have counterparts as prefered extremals of action in the TGD
framework.

The known extremals X4 ⊂ H satisfying holography should be analogues of Bohr orbits [L9].
They are proposed to satisfy a 4-D generalization of 2-D holomorphy and apart from lower-D
singularities would be the same for any general coordinate invariant action based on induced
geometry and spinor structure. They would be minimal surfaces both in H and M8 except
at singularities at which the details of the action principle would matter [L24]. This suggests
that the preferred extremals could have maximal isometries and provide topological invariants
as also do the model geometries in the classification of 3-geometries.
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2 What does one mean with M 8 physics?

In TGD, the point-like particle is replaced by a 3-surface X3 ⊂ H = M4×CP2, and the holography
required by the general coordinate invariance requires the replacment of the 3-surfaces with the
analogues of Bohr trajectories passing through them. The Bohr trajectories are not completely
deterministic as already the case of hydrogen atoms demonstrates. The ”World of Classical Worlds”
(WCW) is thus the space of generalized Bohr orbits as the counterpart of the superspace of Wheeler
which originally inspired the notion of WCW [L23, L24, L20, L21]).

In wave mechanics, the duality between the descriptions using momentum and position space
applies in wave mechanics but does not generalize to field theory. The M8 − H duality [L4, L5]
can be seen as a generalization of this duality. M8 is the momentum space counterpart and
H = M4 × CP2 is the position space counterpart in this duality.

2.1 Physical interpretation of the 4-surfaces of the space M8 and their
singularities

The physical interpretation of 4-surfaces in the complexifixation of the momentum space M8 is far
from straightforward. There are many reasons for the complexification.

1. Complexified octonionicity requires that M8, or equivalently E8, is complexified: one has
M8
c = E8

c giving as its subspaces various real subspaces with various signatures of the number
theoretical. The metric obtained from the Minkowski norm δklz

kzl, where zk are 8 complex
coordinates. M4 with signature (1,−1,−1,−1) is in a special physical role and one can of
course ask, whether also other signatures might be important.

2. If complex roots are allowed for polynomials P determining together with associativity the
holography, complexification must be allowed. Virtual momenta could therefore be complex,
but Galois confinement says that the total momenta of physical states are real and have
integer components in the momentum scale determined by the size of the causal diamond
(CD). Physical intuition suggests that the imaginary parts of the momenta code for the decay
width of the particle. This is natural if the imaginary part is associated with the energy in
the rest system.

3. The conserved momenta given by Noether’s theorem at the level of H have real parts
assignable to Minkowskian space-time regions. The fact that

√
g4 appears in the integral

defining a conserved quantity differs in Minkowski and Euclidean regions by an imaginary
unit suggests that the contributions to momenta from the Euclidian regions are imaginary.
The momenta from the Minkowskian space-time regions can be transferred to the light-like
boundaries between Minkowskian and Euclidian regions identified as light-like partonic or-
bits. Quantum-classical correspondence requires that the classical total momenta, like all
conserved quantities, correspond to the total momenta of the fermion state.

Euclidian regions most naturally correspond to CP2 type extremals as preferred extremals.
They can be regarded as singularities resulting in the blow up of tip-like cusp singularities
(see https://rb.gy/0p30o and https://rb.gy/fd4dz) in M8 . This would suggest that
the real parts of momenta are associated with the Minkowskian regions of space-time surfaces
and imaginary parts to the Euclidian regions. This applies also to other conserved quantities.

2.2 Number theoretic holography

Number theoretic holography has two forms.

1. The weak 3→ 4 form corresponds to the ordinary holography Y 3 ⊂M8 → Y 4 ⊂M8, which
is by M8 −H duality equivalent of the holography for X3 ⊂ H → X4 ⊂ H for space-time
surfaces. The proposed interpretation of Y 3 is as a fundamental region of H3/Γ.

2. For the strong 2 → 4 form of the holography Y 3 is determined by a 2-D data defined by
the boundary of the fundamental region of H3/Γ. The proposal to be considered is that
the boundary of the fundamental region of H3/Γ can be identified as 2-D hyperbolic space
H2/Γ.

https://rb.gy/0p30o
https://rb.gy/fd4dz
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Consider next the weak form of the holography.

1. The 4-surface Y 4 ⊂M8
c is determined from number-theoretic dynamics and is an associative

surface, i.e. its normal space is associative and therefore quaternionic.

2. There are also commutative 2-D surfaces that most naturally correspond to string world
sheets, and for them commutativity of tangent space (as analog of associativity) as subspace
of normal space of Y 2 defines holography. Holographic data corresponds now to strings
connecting wormhole contacts assignable to Euclidian singularities inside Y 3 ⊂ H3

m. One
can also consider the possibility that partonic 2-surfaces correspond to co-commutative 2-
surfaces. The situation is not completely clear here.

3. One must also identify the 3-surfaces Y 3 ⊂ H3
m defining the holography. Holography is

subject to very strong conditions and I have proposed that these surfaces are hyperbolic
3-manifolds X3 obtained as coset spaces H3/Γ, where G is suitably chosen discrete but
infinite subgroup of SL(2, C) acting as Lorentz transformations in H3. The spaces H3/Γ are
fundamental domains of H3 tessellations.

Y 3 = H3/Γ is counterpart for the unit cells of a lattice in E3, which effectively has this
topology and geometry due to boundary conditions stating that G leaves various ”field con-
figurations” invariant. The situation is the same as in the case of ordinary condensed matter,
where periodic boundary conditions for a cube as a unit cell make it effectively a 3-torus.

Also the crystal-like structures consisting of a finite number of copies of the fundamental
domain of H3/Γ glued together are possible choices for Y 3. They would be analogous to the
unit cells of the lattices of Euclidian space E3 or finite crystals formed from them. Therefore
the analog of solid state physics would be realized at the fundamental level.

One can also consider closed 3-manifolds Y 3 = H3/Γ obtained by gluing two copies of
the fundamental region with different S3 coordinates connected together along their 2-D
boundaries. The gluing could be performed by a cylinder of S3 ⊂ E4 ⊂M4×E4 connecting
the boundaries.

4. The quantum state at H3
m consists of several Galois singlets assignable to 3-surfaces Y 3

i . The
total momenta for X3

i would be real and have integer valued components for the momentum
unit defined by the size scale of CD involved. This condition is analogous to the periodic
boundary conditions.

5. Quantum classical correspondence requires that the many-fermion state on H3
m, characterized

partially by momenta, which are in the algebraic extension of rationals associated with the
polynomial P , determines Y 3

i ⊂ H3
m. For a given Y 3

i , the accompanying fermions correspond
to the points of H3

m. The classical momentum of the state given by Noether theorem in H
would the sum of the fermionic momenta.

An attractive idea is that at least a subset of the fermionic momenta corresponds to cusp
singularities (see https://rb.gy/0p30o and https://rb.gy/fd4dz), which can be visual-
ized geometrically as vertices of an algebraic surface at which the direction of normal space
is ill-defined.

The cusps correspond to parabolic subgroups P ⊂ G ⊂ SL(2, C) (https://rb.gy/b5t55),
where the Γ ⊂ SL(2, C) defines the fundamental domain H3/Γ of the tessellation. Parabolic
subgroups P are automorphic to the subgroup of translations of upper half-plane H generated
by SL(2, C) matrix (1a; 0, 1), a a real algebraic number. This particular P acts as Möbius
transformations in H representing hyperbolic space H2. The cusp singularities would encode
at least a subset of fermionic momenta of the state into the hyperbolic geometry of Y 3

i . Each
fermion would correspond to its own parabolic generator in the subgroup G.

In the TGD view of hadron physics [L18], the fermions associated with the cusps could
be identified as analogs of valence quarks. They would be associated with singularities
identifiable as light-like 3-D partonic orbits serving as boundaries of 4-D CP2 type extremals
with Euclidian signature of the induced metric.

Also fermionic momenta, which have algebraic integers as components but do not correspond
to cusps, can be considered. These would be naturally associated with strings predicted to

https://rb.gy/0p30o
https://rb.gy/fd4dz
https://rb.gy/b5t55
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connect cusps at the throats of different wormhole contacts. The blow-up would be now
2-sphere relating to cusp singularity like line charge to point charge. It is not clear whether
the sea partons could correspond to these string-like singularities. In any case, hyperbolic
3-manifolds have string-like singularities connecting cusps.

6. If Y 3
i corresponds to a Galois singlet, then its total 4-momentum is real and integer-valued

and should be mapped to a discrete plane wave in the finite lattice defined by the crystal
like structure formed by the copies X3(Y 3) in H3

a given by inversion. Each Galois singlet Y 3
i

would define such a plane wave and one can imagine a hierarchy of such structures just as
in the case of condensed matter with crystals of different sizes. The analogy with condensed
matter physics suggests that Γ is a lattice. This follows also from the condition that H3/Γ has
a finite volume.

7. This picture would suggest that also X3(Y 3
i ) is hyperbolic manifold of its fundamental re-

gion and perhaps isometric with Y 3. This would mean a geometric realization of Lorentz
invariance analogous to the dual of conformal invariance encountered in the twistorialization.

2.3 Quantum classical correspondence for momenta

Quantum classical correspondence for momenta and also other conserved charges poses very strong
conditions.

1. Noether charges for the classical action define momenta and other conserved charges. The
classical contribution is a c-number. In addition, quantum contributions from fermions are
included. They correspond to the momenta related to the second quantized spinor modes of
H and from the orbital degrees of freedom associated with the ”world of classical worlds”
(WCW). The fermionic contributions are related to the ground states of the super symplectic
representation characterized in terms of spinor modes for H spinor fields [K4, K8] [L16].

2. Are the classical contributions separate and do they add up to the total momentum? The
fact that classical contributions are separately conserved, does not support this view.

3. Quantum classical correspondence would mean that the classical total momentum is the
sum of the fermionic momenta determined by the multi-fermion state. This would hold
quite generally for Cartan algebra of observables. For example, in the case of hadrons, the
dominant classical contribution could correspond to the gluon sea, that is to multi-gluon
state with gluons expressible in terms of quark-antiquark pairs. This picture is consistent
with QCD and is therefore perhaps a more realistic guess.

4. Wormhole contact has Euclidean induce metric and the related classical conserved momen-
tum is naturally imaginary. Could the sum of the imaginary parts of complex fermionic mo-
menta of fermions for a wormhole throat correspond to the classical imaginary momentum
assignable with the wormhole contact? Could the imaginary part of the fermionic momentum
be assigned with the end of the euclidean string inside CP2 type extremals, while the real
momentum would be assigned with an end of a Minkowskian string?

5. Quantum-classical correspondence would be realized if the fermionic conserved four-momenta
on the H side corresponded to M8 points at hyperbolic 3-surfaces H3

m. Their inversions in
the M8 − H duality would be points of M4

c of the spacetime surface H3
m ⊂ M4

c × CP2. It
would seem that one must map only the real parts of the momenta at H3

m to H3
a .

It would also seem that H3
m must be associated with the M4 projection of M4

c . Whether the
variant of H3

m for complex valued m2 makes even sense is not obvious.

2.4 The analog of time evolution in M8 as a coupling constant evolution
conserving dual quantum numbers

The proposal that 4-D surfaces appear at the level of M8 suggests that it makes sense to talk
about dynamics also in M8 and the 4-D analogies of space-time surfaces make sense. This does
not fit the usual classical intuition.
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The twistor picture for conformal invariant field theories predicts that conformal invariance
has a dual counterpart. This would mean that 4-momenta and other Poincare charges in H have
dual counterparts in M8. In TGD, the dual counterparts would be obtained by inversion from the
defining the M8−H duality and mapped to points of the space-time surface at the mass shells H3

a

in H. They would be analogs of the representation of lattice momenta as points of the heavenly
sphere in crystal diffraction.

1. In zero energy ontology (ZEO), the time evolution at the level of H by ”small” state function
reductions (SSFRs), which are analogous to the so called weak measurements introduced by
quantum opticians, would correspond to time evolution in terms of scalings rather than time
translations. They would scale the size of the causal diamond (CD) and leave the passive
boundary of CD invariant. These analogs of time evolutions would be generated by the
scaling generator L0. This would naturally also apply to M8. This time evolution would be
induced by scalings of the mass-scale, which need not be identical.

2. Could the ”energy evolution”, by identifying the square of the mass as the counterpart of
time, correspond to the development related to the renormalization group? M8 −H duality
would map the renormalization group evolution from M8 to time evolution in H. This is
quite a strong prediction.

3. Mass squared values for the fundamental fermions would not define particle masses but mass
scales. 4-momenta for physical particles would correspond to total momenta for many fermion
states, which obey Galois confinement, which requires that the momentum components are
integers, when the mass unit is defined by the size scale of CD.

4. What would be the interpretation of the mass shells M4
c determined by the roots of the

polynomial P in the coupling constant evolution? Could the related hyperbolic 3-manifolds
correspond to fixed points for the coupling constant evolution? With these mass values,
something special would happen. Could H3

a correspond to critical moments of light-cone
proper time a when the SSFRs occur and a new unitary time evolution begins and ends with
the next SSFR, as I have suggested?

5. What about the M8 side? Could one talk about conserved quantities with respect to the
evolution determined by scalings? Could these dual charges, dual momenta, and. also the
charges related to E4 isometries, be invariants of the renormalization group evolution?

I have proposed that the SO(4) symmetry of of hadrons in old-fashioned hadron physics
involving notions like conserved vector current (CVC) and partially conserved axial current
(PCAC) could correspond to the color symmetry of higher energy hadron physics by M8−H
duality in which the natural conserved charges on M8 side are associated with the product of
isometry groups of M4 and E4 and perhaps even with SO(1, 7)×T 8 or G2 as automorphism
group of octonions. At H side one would have a product of Poincare group and color group.
Also holonomy groups are involved. At least SO(4) symmetry could define invariants of the
coupling constant evolution in M8.

Consider now a more detailed interpretation of 4-surfaces Y 4 ⊂ M8 in terms of a generalized
coupling constant evolution.

1. The changes m2
i → m2

i+1 for the roots of P would define a discrete evolution in both M8

and H. Discrete coupling constant evolution affects the mass resolution and brings in or
deletes details and therefore would induce changes for the representations of the states. The
4-surfaces in M8 would represent renormalization group flows. The failure of a complete
determinism is expected and could be interpreted in terms of phase transitions occurring at
critical masses.

2. A given mass shell m2
i determined by a root of P would define a discrete mass scale for the

evolution having perhaps an interpretation as a fixed point or a critical point of the coupling
constant evolution. It would be natural to assume that the evolution induced by the change
of resolution conserves other total quantum numbers than 4-momentum.
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3. What about the conservation of 4-momentum? At m2 = m2
i+1 the value of mass squared

for fundamental fermions defining the mass scale changes. The structure of the state must
change in m2

i → m2
i+1 if 4-momentum conservation is assumed.

The normalization group evolution for the mass m2 of the physical state, is typically loga-
rithmic in QFTs, and must be distinguished from the discrete evolution for the mass scale
m2
i . Hence the change of m2 in m2

i → m2
i+1 is expected to be small. This could be realized

if n corresponds to a (possibly normal) subgroup of the Galois group of P perhaps spanned
by the roots m2

k ≤ m2
i .

Could the phase transition m2
i → m2

i+1 change the rest energy of the state? Does the change
require an energy feed between the CD and its environment as ordinary phase transitions
require? This is not the case if CD is interpreted as a perceptive field rather than a physical
system.

4. Does it make sense to talk about the conservation of dual momentum Xk =
∑
iX

k
i , Xk

i =
Re(~effpk/pk,ipki ) = Re(~effpk/m2

i )? The conservation of momentum pk does not imply the
conservation of dual momentum since it is proportional to 1/m2

i : X
k would scale as 1/m2

i .
The size of the CD is assumed to increase in statistical sense during the sequence of small
state function reductions (SSFRs). The increase of the size of the CD would gradually make
the mass shells inside it visible.

M4 ⊂ H center of mass position Xk therefore changes m2
i → mi+ 12 unless heff is not

scaled to compensate the change m2
i → mi+ 12 in the formula for Xk

i . The integer n in
heff = nh0 is assumed to correspond to the order of the Galois group of P . It could also
correspond to the order of a subgroup of the Galois group of P defined by the roots m2

k,
k ≤ i. If so, heff would increase in evolution and one can even imagine a situation in which
Re(heff/m

2
i ) remains constant.

3 M 8 −H duality

The proposed M8−H duality maps 4-surfaces Y 4 ⊂M4
+ ⊂M8 = M4×E4 to space-time surfaces

X4 ⊂M4
+ ⊂M4 ⊂M4 × CP2.

3.1 M8 −H duality as inversion

M8 −H duality relates also the hyperbolic spaces H3
m ⊂M4

+ ⊂M8 = M4 × E4 and H3
a ⊂M4

+ ⊂
M4 ⊂M4 ×CP2. The hyperbolic space H3

m ⊂M4
+ ⊂M8 corresponds to the mass shell for which

mass squared value m2 is a root of a polynomial P . The hyperbolic space H3
a ⊂ M4 ⊂= M4 ⊂

M4 × CP2 corresponds to light-cone proper time constant surface t2 − r2 = a2.

1. The root of P is in general a complex algebraic number. The first guess is that M8 − H
duality is defined by inversion pk → mk = ~effpk/plpl. Or briefly, p → ~effp/m2. The
light-cone proper time a = heff/m characterized the hyperboloid H3

a ⊂ M4. H3
m → H3

a is
consistent with the Uncertainty Principle. In this case the image would be complex. This
creates interpretational problems. There is no need for the complexification of CP2, which
also suggests that the image un H3

a must be real.

2. One can consider the possibility that only the real projection of the complex variant of H3
m

to H3
Re(m) is involved. The image of the real part Re(pk) in H3

a obtained by inversion would

be real but would not code information about the imaginary part Im(pk).

3. One could however take the real part of a complex inversion to get a point inH3
a . Re(~effpk/p2

would code information about the imaginary value of m2.

Inversion fails at the light-cone boundary with m = 0. In this case, the inversion must be
defined as the inversion of the energy of the massless state: pk → ~effRe(pk/E2).
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3.2 The technical problems posed M8 − H duality the complexification
of M8

Complexification of M8 is highly desirable in the number-theoretic vision. But how to deal with
the fact that fermion momenta, for which with components are algebraic integers in the algebraic
extension determined by a polynomial P , are in general complex?

1. Without additional conditions, the mass shells in M4
c ⊂ M8

c for complex m2 as a root of P
are 6-D. There are 2 conditions coming from the conditions fixing the value of Re(m2) =
Re(p2)−Im(p2) and Im(m2) = 2Re(p) ·Im(p). If one only energy is complex, the dimension
of the mass shell is 3. This looks natural. The preferred time axis would be determined by
the rest system for massive states. A possible interpretation for the imaginary part is as
decay width in the rest system.

2. The complexified mass shells of complexified M4 ⊂ H must be considered. Does this make
sense? Since the CP2 point labelling tangent space of Y 4 does not depend on complexification
there is no need to consider complexification of CP2. Therefore the natural conclusion is that
also the M4 ⊂ H images should be real.

The inversion pk → pk/mrprps is the simplest realization for M8 − H duality and would
naturally fit into a generalization of 2-D conformal invariance to 4-D context. heff = nh0 hierarchy
comes along in a natural way. The polynomial P determines the algebraic extension and the value
of heff . The size of the CD would scale like heff on the H side. There would be no scaling on the
M8 side.

1. The first thing to notice is that one could understand classically complex momenta. On the
H side, Euclidean regions could give an imaginary contribution to the classical momentum.

2. The complex inversion pk → pk/mrprps maps complex H3
m to complex H3

a . What would be
the interpretation of the complex M4

c coordinates? The same problem is also encountered in
twistorization. One can ask whether a complex time coordinate corresponds to, for example,
the inverse temperature?

However, since no complexification is needed for CP2, it seems that the only natural option
is that the M4 ⊂ H image is real.

3. One can consider 3 options guaranteeing the reality.

(a) Only the real parts of the complex M4 ⊂ M8 momenta are mapped to H. The infor-
mation about the imaginary parts would be lost.

(b) The complex algebraic integer valued momenta are allowed and the real part Re(pk →
pk/mrprps) of the complex inversion defines the image points in H. The M4 ⊂ H
complexification would not be needed for this option but the information about the
imaginary part of the momenta would not be lost.

(c) By Galois confinement, the physical multiparticle states consist of momenta with integer
value components using the momentum unit assignable to CD at the M8 level of space
with mass shells. These would define the 3-D data for the holography, which determines
the 4-surface Y 4 ⊂M8 through the associativity of the normals space of Y 4. Only the
real, integer-valued momenta of Galois confined states would be mapped from the mass
shells of M8 to their images in H.

The information about the fermion composition of the many-particle states would be
lost completely. Therefore this option does not look realistic.

The realization of this view might be possible however. 4-momenta determine the 3-
surfaces Y 3 with real mass shells H3 as data for associative holography. Momenta could
correspond to point-like singularities on Y 3 ⊂ H3 and these should be assigned as CP2

type extremals at H side as blow-ups of the singularities.

To conclude, the option pk → Re(pk → pk/mrprps) seems to be the physically realistic option.
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3.3 Singularities and M8 −H duality

Consider next the description of the cusp singularities (see https://rb.gy/0p30o and https:

//rb.gy/fd4dz) in M8 −H duality. The condition that information is not lost, requires that the
map is given by pk → Re(pk/mrsp

rps).

1. The cusps in M8−H duality would be mapped to a 3-D surface of CP2. It would correspond
to the 3-D section CP2 of the extremum, which corresponds to a wormhole contact associated
with fermions at its throats.

At H3
m there is a temptation to assign to the cusp singularity, identified as a blow-up, the 3-D

sphere S3 ⊂ E4 of the normal space E4 defined by the mass shell condition. The simplest
option is that this sphere is mapped to U(2) invariant sphere S3 ⊂ CP2 for which the radius
would be fixed by the mass squared value.

The metric of H3/Γ is singular at the cusp. The elimination of the singularity requires that
one must allow a hole Z3 around the cusp. The boundary of X3 can have any genus. The
size scale of the hole should be determined by the mass squared value.

This view conforms with the physical picture of the CP2 type extremal as an orbit of an
Euclidian wormhole contact connecting two Minkowskian space-time sheets. S3 would be
replaced with S3 \ Z3 mapped to CP2, where it corresponds to a wormhole throat having
arbitrary genus.

This picture would suggest that a given cusp singularity can correspond only to a single
wormhole throat. This is not in conflict with the recent view of what elementary parti-
cles having wormhole contacts as composites should be. Composite, involving 2 wormhole
contacts (required by the conservation of the monopole flux forming a loop involving two
space-time sheets) and therefore 2 wormhole throats, can have spin varying from 0 to 2
which conforms with the popular wisdom that elementary particle spins vary in this range.

2. In the case of string-like objects Y 2 × R ⊂ H3
m, that is S2 × R and their higher genus

counterparts H2/Γ×R, the counterpart of the blow-up would be Y 2 ⊂ S3 ⊂ E4. Y 2 would
be mapped to X2 ⊂ CP2 such that the radius assignable to S2 or the size scale assigned to
H2/Γ would correspond to the mass squared.

3. Fermion trajectories at the partonic orbits would be light-like curves defining boundaries of
string world sheets. CP2 extremal would be associated with a fermionic cusp by holography
and M8 −H duality.

Fundamental fermion as an analog of valence quark [L18] could correspond to a cusp at the
boundary of the string world sheet. Cusps would be related to the boundary of X3

a composed
of partonic 2-surfaces.

4. In principle, fermion momenta in the interior of Y 3 ⊂ H3
m are also possible. The picture

given by hadron physics would indicate that the interior contribution corresponds to the sea
partons. They can also be associated with string world sheets and correspond to virtual
bosons appearing as fermion-antifermion pairs. These singularities would be string-like ob-
jects of the form X2 × R and X2 ⊂ CP2 would replace the sphere of CP2. One could say
that fermions are delocalized at string.

3.4 Realization of the Uncertainty Principle

Inversion alone is not enough to realize Uncertainty Principle (UP), which requires that M8 −H
duality is analogous to the Fourier transform. However, with the help of H3 tessellations, it is
possible to understand how the UP is realized in a finite measurement resolution.

The invariance of points of H3/Γ under the subgroup G ⊂ SL(2, C) is analogous to the
periodic boundary conditions that replace the cubic unit cell of a crystal lattice with a torus.
Now the tessellation of H3, which quantizes the momenta, would be replaced by H3/Γ. The
momentum lattice having the fundamental region for H3

m/G as unit cell would be mapped by
inversion to a position lattice having the fundamental region H3

a/G as a unit cell. A point
in H3

m would correspond to an analog of plane wave as a superposition of all positions of

https://rb.gy/0p30o
https://rb.gy/fd4dz
https://rb.gy/fd4dz
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X3(Y 3) in a part of the tessellation in H3
a : a wave function in finite crystal. One would have

a superposition of 3 surfaces X3
a corresponding to different lattice points multiplied by the

phase factor. For a multi-fermion state the cusp singularities (see https://rb.gy/0p30o

and https://rb.gy/fd4dz) assigned to the momenta of fermions would characterize H3/G
so that the information about (”valence”) fermion state would be code geometrically. Similar
coding would be realized also for the string-like entities H2/Γ × R at H3/Γ. What is new
and surprising, and also challenges the interpretation, is that the genus of H2/Γ would code
for the momenta of many-fermion states. Does the number of fermion-antifermion pairs
correlate with the genus which in turn is proposed to label fermion families? There would
be one fermion-antifermion pair per single handle. This would conform with the quantum
classical correspondence. The proposed explanation [K3] for the number of observed fermion
families would be in terms of hyper-ellipticity meaning that Z2 acts as a conformal symmetry
for all genera smaller than 3. Genus two would correspond to a formation of a bound state
of two handles. Could this mean a formation of a graviton-like bound state of 2 fermion
pairs and that higher spin states are not possible as bound states of handle. If fermions
correspond to cusp singularities surrounded by holes, this picture might make sense: fermion
antifermion pair would correspond to two holes connected by a handle.

The M8−H duality maps the surface Y 4 ⊂M8 to the space-time surface X4 ⊂ H. The point
of M4 ⊂ H is obtained as the real part of the inversion of the point of the M4 projection of the
surface Y 4.

There would be a direct analogy to the physics of condensed matter.

A hyperbolic 3-manifold would correspond to a fundamental domain of a tessellation. It
would be the equivalent of a unit cell both in position space and momentum space. These
unit cells would correspond to each other at the H3 level by M8 − H duality. Both
would involve discretization. By finite momentum and position resolution UP would be
reduced to the interior of the finite tessellation analogous to finite crystal. Quantum-
classical correspondence and inversion are consistent with the realization of the UP related
to Bohr’s orbitology. Momenta in H3

m would be mapped to equivalents of plane waves,
i.e. superpositions of positions of the fundamental region in the tessellation. This picture
generalizes to the multi-fermion states. Each fermion momentum defines a cusp and fermionic
statistics makes it possible to avoid several cusps at the same points. Fermions for
which other quantum numbers, such as spin differ, can however have the same momentum.
They should correspond to the same cusp. How can this make sense? Could S3 be involved
somehow. Could they correspond to different holes in S3 whose sizes and locations correlate
with the other quantum numbers somehow? I have considered this problem earlier in the
twistor picture where spin corresponds to a geometric degree of freedom in twistor space,
which has identification at the level of M8. The space of causal diamonds (CDs) as a
kind of spine of WCW is discussed in [L23]. Lorentz transformations also occur at the
level of CDs. The moduli of CD correspond to cm degrees of freedom in H. The finite
volume of CD allows states for which Poincare quantum numbers are not exactly opposite
for the boundaries of CD. Therefore the values of the total Poincare quantum numbers can be
assigned to the CD. Only at the limit of infinitely large CDs does the zero energy property
become exact. Therefore the CD wave function carries genuine information. At the p-adic
level, translations and Lorentz transformations have the same effect as transformations of a
compact group. Translations or Lorentz transformations of order O(pn) do not increase the
p-adic norm of a point.

4 Holography

4-D general coordinate invariance forces holography at the level of H = M4 × CP2 and one can
regard space-time surfaces as analogues of Bohr orbits determined almost uniquely by 3-D surfaces.
Quantum TGD is therefore very much like wave mechanics with point-like particles replaced with
3-surfaces in turn replaced with 4-D Bohr orbits. In fact, a wave-mechanical toy model for TGD
would replace electron wave functions in atoms with wave functions in the space of its Bohr orbits.

https://rb.gy/0p30o
https://rb.gy/fd4dz
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M8 is analogous to the momentum space in wave mechanics and the 4-surfaces in M8 obey
number theoretical holography based on associativity.

4.1 What does one mean with holography?

Consider now a more precise definition of holography.

1.2.3.1.2.3.4.1. The standard form of holography as 3→ 4 assigning to a 3-surface at the boundary of causal
diamond (CD) an almost unique 4-D surface is the weakest form of holography. The non-
uniqueness of the holography forces zero energy ontology (ZEO) in which analogues of Bohr
orbits are basic geometrical objects.

2. 2 → 4 holography is the strongest form of holography. I have called it strong holography
(SH). The 2-D partonic surfaces and possibly also the string world sheets would encode the
data about the 4-surface and also the data about quantum holography. The strong form
of holography could be realized as super symplectic and super-Kac Moody invariance and
super-conformal invariance being minimally broken. Only the scaling generator L0 would
not annihilate the states. This condition is however too strong.

3. For the weaker form of SH super-symplectic and conformal symmetries are broken such that
the algebras An (there are several of them), whose conformal weights are n-multiples of the
conformal weights of the entire algebra A, and [An, A] annihilate the physical states [L16, L3].
This requires half-algebra with non-negative conformal weights.

The breaking hierarchy labelled by the values of n makes sense also for the ordinary conformal
invariance but to my best albeit non-professional knowledge is not considered as a physical
option. Hierarchies corresponding to the inclusion hierarchies of rational extensions and
HFFs are obtained.

Both holographies set very strong conditions for the 3-surfaces appearing as holographic data.

4.1.1 Role of polynomials

At the level of M8 physics is algebraic as it is also for the momentum space in the case of free
field theory and reduces to algebraic conditions like mass shell condition and orthogonality of
polarization vector and momentum. Polynomials P having integer coefficients determined the
physics.

1. P as such does not fix the 4-surface nor even the 3-surface defining the data for number
theoretic holography.

2. The polynomial P must have integer coefficients to guarantee number theoretical universality
in the sense that they make sense also in p-adic number fields. If the coefficients are smaller
than the degree of P , also finite fields become natural mathematical structures in TGD so
that all number fields are involved. The roots of P give rise to the mass shells in M8

c with
mass squared values defined by the roots of P . The roots define an extension of rationals.

3. Polynomials are also characterized by ramified primes as the divisors of the discriminant of
the polynomial determined by the product of the differences of its roots [L24]. They are not
a property of the algebraic extensions. They depend on P and the exponent of the classical
action is proposed to correspond to the discriminant D. Ramified primes are identified as
p-adic primes playing a central role in p-adic mass calculations [K5].

4.1.2 The role of fermions

Quantum classical correspondence requires that the 3-surfaces Y 3 at the mass shells are determined
by the quantum numbers of fermions associated with the quantum states. What assumptions could
provide this additional data and how could this data be coded to the geometry of Y 3?

The data in question correspond to fermion momenta, spins and electroweak quantum numbers.
Color does not appear as spin-like quantum numbers but corresponds to color partial waves in CP2.
Consider next how momenta are coded to the properties of 3-surfaces.
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1. I have proposed that the 3-surfaces Y 3 in H3
m could correspond to the fundamental domains

of tessellations of H3. The unit cell of ordinary crystal in E3 serves as an analog for the
fundamental domain of a tessellation in H3. The disjoint components of Y 3 would naturally
correspond to surfaces Y 3

i at H3
m and would correspond to fundamental domains of analogs

of finite crystals formed by gluing them together.

The points of E4 ⊂M4×E4 correspond to 3-sphere with radius determined by mass m and
for given Y 3

i the values of E4 coordinates would be constant. A stronger condition would be
that the values are the same for all Y 3

i . At the cusp points the point would be replaced by
S3, which could touch two disjoint sheets with different values of S3 coordinates. Since the
metric becomes singular at cusp, a natural proposal is that a small hole is drilled around the
point and to S3 and they are glued along their boundaries. The scale of the hole would be
determined by the mass.

2. TGD predicts as basic objects also string-like objects X2 × R ⊂ H and their deformations
to magnetic flux tubes. By M8 −H duality they are expected to be present also in M8 in
particular at the hyperboloids H3

m.

There are two kinds of string-like objects depending on whether their CP2 projection is
homologically trivial or not. In the latter case the string carries monopole flux.

Quantum classical correspondence suggests that the momenta of fermions as points of H3
m ⊂

M8 are coded into the geometry of Y 3 as singularities. M8−H duality based on inversion in turn
maps the momenta to singular points of H3

a .

1. Singularities would be naturally cusps as analogs of tips of algebraic surfaces allowing all
normal spaces of Y 4 at the singularity: M8 duality would assign a 3-D subset of CP2 to
the tip.

2. Is it possible to have singularities, where the throats of the opposite wormhole throats
touch? Or could the wormhole throats of the incoming partons fuse to single throat? This
could occur in the topological counterpart of 3-vertex describing pair annihilation to a
single particle. The singularities emerging in this way could relate to the description of
the creation of fermion-antifermion pairs and would also define defects essential for exotic
differential structures occurring only in dimension D = 4 [L14].

Can one code also spin to geometry or should it be regarded as a fermionic quantum number?

1. At the level of H one would have a product of twistor spaces T (M4) and T (CP2): these
twistor spaces are unique in the sense that they have Kähler structure. This makes H a
unique choice for the embedding space.

Twistorialization replaces space-time surface with 6-D surfaceX6 ⊂ T (M4)×T (CP2) having
S2-bundle structure as possessed also by T (M4) and T (CP2). Spinor description of spin
and electroweak isospin is replaced by a wave function in twistor spheres S2.

The embedding corresponds to dimensional reduction producing X6 as S2 bundle. The
twistor spheres associated with M4 and CP2 must be identified by the embedding of
X6 ⊂ T (M4)× T (CP2).

The identification of the twistor spheres forces spin doublets to correlate almost completely
with electroweak spin doublets apart from the directions of the two spins. This picture allows
only spin- and electroweak spin doublest. Does this force a complete correlation between
the values of spin and electroweak to be identical or do the details of the identification for
the the embedding of X6 ⊂ T (M4)× T (CP2) allow to regard spin and electroweak spin as
independent?

The identification of the two twistor spheres is not unique. The spin rotations and possibly
also electroweak spin rotations (, which are not isometries) changes the identification of
the two twistor spheres. This would make spin and electroweak spin independent quantum
numbers.

One can argue that only the relative rotation of the two spheres matters. Could this
mean that electroweak spin axes can be thought of being completely fixed. Electroweak
quantization axes are indeed completely fixed physically.
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2. Something similar could happen at the level of M8. Now one must consider twistor spaces
of M4 and E4 and similar embedding of a 6-D surface X6 ⊂ M8 as twistor space with S2

bundle structure.

In M8 one would have an algebraic description of spin and electroweak spin instead of a wave
function at S2. A direction of S2 would define a quantization axis and the diametrically
opposite points of S2 associated with it would provide a geometric correlate for the spin
and electroweak spin values of fermion. The relative rotations of the twistor spheres of M4

and E4 associated with their identification are also now possible so that the two quantum
numbers can be regarded as independent but with the electroweak quantization axes fixed.

In the twistorial picture one would have 5→ 6 weak holography or even 4→ 6 strong almost
unique holography.

4.2 What kind of 3-geometries are expected in the TGD framework?

To get a wider perspective, it is good to have an overall view of the Geometrization conjecture
of Thurston https://rb.gy/9x3pm proven by Perelman by studying Ricci flows. Geometrization
theorem implies Poincare conjecture and so called spherical space conjecture.

The inspiration comes from the classification of 2-D manifolds expressed by uniformization
theorem (https://rb.gy/ts8va). There are only 3 closed simply connected Riemann manifolds:
sphere, disk, and hyperbolic plane. These are constant curvature spaces with corresponding Lie
groups of isometries. One can obtain connected closed 2-manifolds with a nontrivial fundamental
group by identifying the points related by a discrete subgroup of isometries.

In the case of the hyperbolic plane the isometry group is infinite and gives rise to a non-trivial
fundamental group. For the hyperbolic plane, one obtains 2-manifolds with nonvanishing genus
allowing a negative constant curvature. Constant curvature can be normalized to be -1, 1 or 0 in
various cases. For non-vanishing curvature, the area serves as a topological invariant. For torus
this is not the case.

The following provides the summary of my non-professional understanding of the 3-D case. The
TGD inspired comments rely on what I know from the universal preferred extremals of practically
any variational principle which is general coordinate invariant and can be constructed from the
induced geometric quantities. They are always minimal surfaces outside 3- or lower-dimensional
singularities at which the field equations depend on the action. The known extremals are discussed
in [K1, K2, L9].

1. Thurston’s conjecture https://rb.gy/9x3pm states that every oriented and closed irre-
ducible (prime) 3-manifold can be cut along tori, so that the interior of each of the resulting
manifolds has a geometric structure with a finite volume which becomes a topological invari-
ant in geometric topology. For instance, knots give rise to a 3-manifold in this way.

An important difference is that the closed 3-manifold decomposes to a union of different
types of 3-manifolds rather than only of single type as in the 2-D case.

2. The notion of model geometry is essential. There exists a diffeomorphism to X/Γ for some
model geometry such that Γ is a discrete subgroup of a Lie group of isometries acting in G.
There are 8 types of model geometries.

3. Irreducible 3-manifolds appear as building bricks of 3-manifolds using connected sum. There
are 8 types of model geometries for closed prime 3-manifolds, which by definition do not
allow a connected sum decomposition. These geometries are E3, S3, H3, S2 × R, H2 × R,
SL(2, ”R”), Nil, and Solve.

4. The model geometries allow a constant curvature metric. The finite volume of the manifold
becomes a topological characteristic if one has constant curvature equal to ±1.

5. All types except one, S2×R, which corresponds to a string-like objects in TGD, allow a 3-D
Lie group as subgroup of isometries (Bianchi group).

https://rb.gy/9x3pm
https://rb.gy/ts8va
https://rb.gy/9x3pm
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6. All model geometries except hyperbolic manifold (https://rb.gy/snpft) and Solv manifold
are Seifert fiber spaces (https://rb.gy/uxszk), which are fibered by S1 fiber. Hyperbolic
manifolds are atoroidal but have an infinite fundamental group since Γ must be infinite from
the finite volume property. Atoroidality means that there is no embedding of torus which
would not be parallel to the boundary of the hyperbolic manifold.

The finite volume property of H3/Γ also requires that Γ is a lattice: this implies a deep
analogy with condensed matter physics. The group elements in the TGD frame-work be
SL(2, C) matrices with elements which are algebraic integers in an extension of rationals
defined by the polynomial P defining 4-surface in M8. Note that also momentum components
are predicted to be algebraic integers using a unit defined by the scale of the causal diamond
(CD).

TGD leads to the proposal [K9] that the H3 lattices could appear in cosmological
scales and explain ”God’s fingers” [E1] discovered by Halton Arp. They are
astrophysical objects appearong along a line and having quantized redshifts.

7. One can form the spaces of the orbits for a discrete subgroup Γ ⊂ G to obtain 3-manifolds with
non-trivial fundamental group or orbifolds as in the case of S3 and S2×R. For hyperbolic 3-
manifolds, the fundamental group is infinite and generated by elements of parabolic subgroups
of G (https://rb.gy/b5t55). Cusp point and cusp neighborhood (https://rb.gy/fd4dz)
are related to the infinite part of the fundamental group. Since parabolic subgroups P ⊂ Γ
are infinite groups, the fundamental group of the hyperbolic manifold is infinite.

8. One can decompose an irreducible 3-manifold to pieces, which are either Seifert manifolds or
atoroidal. All 8 model geometries except hyperbolic geometries and so called Solv manifolds
are Seifert manifolds.

Solv manifolds are fiber spaces over a circle with 2-D plane with Minkowski signature as a
fiber. In TGD solv manifolds could correspond to the so-called massless extremals [K1, K2,
K7] serving representing classical radiation fields having only Fourier components with wave
vectors in a single direction: laser beam is a good analog for them. They are not embeddable
to H3.

In Ricci flows the hyperbolic pieces expand whereas other pieces contract so that asymp-
totically the manifold becomes hyperbolic. In fact, the collapse occurs in some caes in a
finite time as found already by Richard S. Hamilton. The flow ”kills” the positive curvature
geometries S3 and S2 ×R in the connected sum. What is left at large times is ”thick-thin”
decomposition. The ”thick” piece is a hyperbolic geometry whereas the ”thin” piece is a
so-called graph manifold.

4.2.1 Hyperbolic manifolds and Seifert fiber spaces

Hyperbolic space and Seifert fiber space (https://rb.gy/uxszk) are in a central role in the TGD
framework and therefore deserve short discussion. The following just gives the basic definitions
and brief TGD inspired comments.

1. Hyperbolic manifolds

A hyperbolic n-manifold (https://rb.gy/2esup) is a complete Riemannian n-manifold of
constant sectional curvature. Every complete, connected, simply-connected manifold of constant
negative curvature −1 is isometric to the real hyperbolic space Hn. As a result, the universal
cover of any closed manifold M of constant negative curvature -1.

Every hyperbolic manifold (https://rb.gy/snpft) can be written as Hn/Γ, where Γ is a
torsion-free discrete group of isometries on Hn. That is, Γ is a discrete subgroup of SO+

1,n. The
manifold has a finite volume if and only if Γ is a lattice.

Its ”thick–thin” decomposition has a ”thin” part consisting of tubular neighborhoods of closed
geodesics and ends which are the product of a Euclidean (n− 1)-manifold and the closed half-ray.
The manifold is of finite volume if and only if its ”thick” part is compact.

https://rb.gy/snpft
https://rb.gy/uxszk
https://rb.gy/b5t55
https://rb.gy/fd4dz
https://rb.gy/uxszk
https://rb.gy/2esup
https://rb.gy/snpft
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In the TGD framework, the lattice structure is natural and would mean that the
elements of the matrices of Γ are algebraic extensions in the extension of rational
defined by the polynomial P determining Y 4. The tubular neighborhoods of the
”thin” part would correspond to string-like objects (tubular neighborhoods) as
geodesics whereas the ends would correspond to cusp singularities inducing blow-
up as 3-surface S3 ⊂ E3.
At the level of H the tubular neighborhoods correspond to a string-like object
and their ends to CP2 type extremals serving as building bricks of elementary
particles. Hadronic strings would represent examples of string-like objects and
all elementary particles would involve them as monopole flux tubes connecting
wormhole contacts.
For n > 2 the hyperbolic structure on a finite volume hyperbolic n-manifold is unique by

Mostow rigidity theorem and so geometric invariants are in fact topological invariants. One of
these geometric invariants used as a topological invariant is the hyperbolic volume of a knot or
link complement, which can allow us to distinguish two knots from each other by studying the
geometry of their respective manifolds.

The identification of geometric invariants as topological invariants conforms with
the TGD vision about ”holy trinity” geometry-number theory-topology. Number
theory would leak in through the identification of Γ as a lattice determined by the
polynomial P .

2. Seifert fiber spaces

A Seifert manifold https://rb.gy/uxszk is a closed 3-manifold together with a decomposition
into a disjoint union of circles (called fibers) such that each fiber has a tubular neighborhood that
forms a standard fibered torus.

A standard fibered torus corresponding to a pair of coprime integers (a, b) with a > 0 is the
surface bundle of the automorphism of a disk given by rotation by an angle of 2πb/a (with the
natural fibering by circles). If a = 1 the middle fiber is called ordinary, while if a > 1 the middle
fiber is called exceptional. A compact Seifert fiber space has only a finite number of exceptional
fibers.

The set of fibers forms a 2-dimensional orbifold, denoted by B and called the base — also called
the orbit surface — of the fibration. It has an underlying 2-dimensional surface B0, but may have
some special orbifold points corresponding to the exceptional fibers.

The definition of Seifert fibration can be generalized in several ways. The Seifert manifold is
often allowed to have a boundary (also fibered by circles, so it is a union of tori). When studying
non-orientable manifolds, it is sometimes useful to allow fibers to have neighborhoods that look
like the surface bundle of a reflection (rather than a rotation) of a disk, so that some fibers have
neighborhoods looking like fibered Klein bottles, in which case there may be one-parameter families
of exceptional curves. In both of these cases, the base B of the fibration usually has a non-empty
boundary. 6 of the 8 basic geometries of Thurston are Seifert fiber spaces.

In the TGD framework, the Seifert fiber spaces would correspond to string-like
objects, which appear as several variants.

4.2.2 The eight simply connected 3-geometries appearing in the Thurston’s conjec-
ture from the TGD point of view

This section contains as almost verbatim the description of the 8 Thurston geometries provided
by the Wikipedia article https://rb.gy/9x3pm. There is a good reason for this: I am not a
professional and do not understand the technical details. There is a good reason for not giving a
mere Wikipedia link: I have added comments relating to the TGD based identification of these
model geometries as 3-surfaces.

It turns out that the geometries could correspond to fundamental regions of H3, to energy
E = constant (M4 time t = constant in H) surfaces D3 ⊂M4

+ ⊂M8, to string-like objects X2×R
allowing Seifert fiber space structure, or to masless extremals with structure M2 × E2 with M2

and E2 corresponding to the orthogonal planes defined by light-like momentum and polarization
vector.

First some definitions:

https://rb.gy/uxszk
https://rb.gy/9x3pm
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1. A model geometry is a simply connected smooth manifold X together with a transitive action
of a Lie group G on X having compact stabilizers (the isotropy group of a point is compact).

2. A model geometry is called maximal if G is maximal among groups acting smoothly and
transitively onX with compact stabilizers.This condition can be aso included in the definition
of a model geometry.

3. A geometric structure on a manifold M is a diffeomorphism from M to X/Γ for some
model geometry X, where Γ is a discrete subgroup of G acting freely on X; this is a special
case of a complete (G,X)-structure. If a given manifold admits a geometric structure, then
it admits a structure, whose model is maximal.

One can say that the spaces X provide the raw material from which one obtains various
3-geometries by identifications using a discrete subgroup of G.

A 3-dimensional model geometry X is relevant for the geometrization conjecture if it is max-
imal and if there is at least one compact manifold with a geometric structure modelled on X.
Thurston classified the 8 model geometries satisfying these conditions; they are listed below and
are sometimes called Thurston geometries. (There are also uncountably many model geometries
without compact quotients.)

There is a connection with the Bianchi groups, which are the 3-dimensional Lie groups. Most
Thurston geometries can be realized as a left invariant metric on a Bianchi group. However, S2× R
does not allow Bianchi geometry; Euclidean space corresponds to two different Bianchi groups; and
there are an uncountable number of solvable non-unimodular Bianchi groups, most of which give
model geometries having no compact representatives.

1. Spherical geometry S3

The point stabilizer is O(3, R), and the group G is the 6-dimensional Lie group O(4, R),
with 2 components. The corresponding manifolds are exactly the closed 3-manifolds with a finite
fundamental group. Examples include the 3-sphere, the Poincaré homology sphere, and lens spaces.
This geometry can be modeled as a left invariant metric on the Bianchi group of type IX. Manifolds
with this geometry are all compact, orientable, and have the structure of a Seifert fiber space (often
in several ways). The complete list of such manifolds is given in the article on spherical 3-manifolds.
Under Ricci flow, manifolds with this geometry collapse to a point in finite time.

In the TGD framework S3 geometry could be associated with cusp singulari-
ties (see https: // rb. gy/ 0p30o and https: // rb. gy/ fd4dz ) of hyperbolic
3-manifold and represent the blow-up of a the cusp to S3 which can be regarded
as sphere in E4 ⊂ M8 = M4 × E4. This is mapped to a 3-sphere of CP2 in
M8 −H-duality.

2. Euclidean geometry E3

The point stabilizer is O(3, R), and the group G is the 6-dimensional Lie group R3 ×O(3, R),
with 2 components. Examples are the 3-torus, and more generally the mapping torus of a finite-
order automorphism of the 2-torus; see torus bundle. There are exactly 10 finite closed 3-manifolds
with this geometry, 6 orientable and 4 non-orientable. This geometry can be modeled as a left
invariant metric on the Bianchi groups of type I or VII0.

Finite volume manifolds with this geometry are all compact, and have the structure of a Seifert
fiber space (sometimes in two ways). The complete list of such manifolds is given in the article on
Seifert fiber spaces. Under Ricci flow, manifolds with Euclidean geometry remain invariant.

In M8 one has two kinds of roots of polynomials. For the first option they cor-
respond mass square values defining mass shells H3 . For the second option
applying to the light-cone boundary as mass shell, energy E replaces mass and
roots correspond to discrete energies. E = constant surface corresponds to E3

as 3-balls inside the light-cone.

3. Hyperbolic geometry H3

The point stabilizer is O(3, R), and the group G is the 6-dimensional Lie group O+(1, 3, R),
with 2 components. There are enormous numbers of examples of these, and their classification is

https://rb.gy/0p30o
https://rb.gy/fd4dz
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not completely understood. The example with the smallest volume is the Weeks manifold. Other
examples are given by the Seifert–Weber space, or ”sufficiently complicated” Dehn surgeries on
links, or most Haken manifolds.

The geometrization conjecture implies that a closed 3-manifold is hyperbolic if and only if it
is irreducible, atoroidal, and has an infinite fundamental group. This geometry can be modeled as
a left invariant metric on the Bianchi group of type V or VIIh6=0. Under Ricci flow, manifolds with
hyperbolic geometry expand.

In TGD H3 has an interpretation as a mass shell in M4 ⊂ M8 determined by
the roots of the polynomial P or as a light-cone proper time constant hyperboloid
in M4.
This geometry does not allow Seifert fiber space structure unlike most other geometries.

4. The geometry of S2 × R

The point stabilizer is O(2, R) × Z/2Z, and the group G is O(3, R) × R × Z/2Z, with 4
components. The four finite volume manifolds with this geometry are: S2×S1, the mapping torus
of the antipode map of S2, the connected sum of two copies of 3-dimensional projective space, and
the product of S1 with two-dimensional projective space.

The first two are mapping tori of the identity map and antipode map of the 2-sphere, and are
the only examples of 3-manifolds that are prime but not irreducible. The third is the only example
of a non-trivial connected sum with a geometric structure. This is the only model geometry that
cannot be realized as a left invariant metric on a 3-dimensional Lie group.

Finite volume manifolds with this geometry are all compact and have the structure of a Seifert
fiber space (often in several ways). Under normalized Ricci flow manifolds with this geometry
converge to a 1-dimensional manifold.

In the TGD framework, these surfaces could correspond to the simplest string-
like objects for which S2 corresponds to a geodesic sphere (homologically trivial or
non-trivial) with a finite length connecting fundamental regions of H3 or finite
tessellations formed by them. S2, which would correspond to a 2-D surface in
CP2 would be the base and string the fiber. One might argue that S2 is more
natural as fiber.

5. The geometry of H2 × R

The point stabilizer is O(2, R)× Z/2Z, and the group G is O+(1, 2, R)× R ×Z/2Z, with 4
components. Examples include the product of a hyperbolic surface with a circle, or more generally
the mapping torus of an isometry of a hyperbolic surface.

Finite volume manifolds with this geometry have the structure of a Seifert fiber space if they
are orientable. (If they are not orientable the natural fibration by circles is not necessarily a
Seifert fibration: the problem is that some fibers may ”reverse orientation”; in other words their
neighborhoods look like fibered solid Klein bottles rather than solid tori.) The classification of such
(oriented) manifolds is given in the article on Seifert fiber spaces. This geometry can be modeled
as a left invariant metric on the Bianchi group of type III. Under normalized Ricci flow manifolds
with this geometry converge to a 2-dimensional manifold.

In the TGD context, these geometries would correspond to closed string-like
objects for which the CP2 projection is a 2-surface with genus g > 0. Seifert fiber
space property corresponds to closed strings.

6. The geometry of the universal cover of SL(2, ”R”)

The universal cover of SL(2, R) is denoted S̃L(2,R). It fibers over H2, and the space is
sometimes called ”Twisted H2×R”. The group G has 2 components. Its identity component has
the structure (R× S̃L2(R))/Z. The point stabilizer is O(2, R).

Examples of these manifolds include: the manifold of unit vectors of the tangent bundle of a
hyperbolic surface, and more generally the Brieskorn homology spheres (excepting the 3-sphere
and the Poincare dodecahedral space). This geometry can be modeled as a left invariant metric on
the Bianchi group of type VIII or III. Finite volume manifolds with this geometry are orientable
and have the structure of a Seifert fiber space. The classification of such manifolds is given in the
article on Seifert fiber spaces. Under normalized Ricci flow manifolds with this geometry converge
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to a 2-dimensional manifold.

Also now the interpretation as a closed string-like entity is possible in TGD.

7. Nil geometry

This fibers over E2, and so is sometimes known as ”Twisted E2 × R”. It is the geometry of
the Heisenberg group. The point stabilizer is O(2, R). The group G has 2 components, and is a
semidirect product of the 3-dimensional Heisenberg group by the group O(2, R) of isometries
of a circle. Compact manifolds with this geometry include the mapping torus of a Dehn twist
of a 2-torus, or the quotient of the Heisenberg group by the ”integral Heisenberg group”. This
geometry can be modeled as a left invariant metric on the Bianchi group of type II.

Finite volume manifolds with this geometry are compact and orientable and have the structure
of a Seifert fiber space. The classification of such manifolds is given in the article on Seifert fiber
spaces. Under normalized Ricci flow, compact manifolds with this geometry converge to R2 with

the flat metric.
In TGD also this geometry might be assigned with a closed string-like object as
all Seifert fiber spaces.

8. Sol geometry

This geometry (also called Solv geometry) fibers over the line with fiber the plane, and is the
geometry of the identity component of the group G. The point stabilizer is the dihedral group of
order 8. The group G has 8 components, and is the group of maps from 2-dimensional Minkowski
space to itself that are either isometries or multiply the metric by - 1. The identity component has
a normal subgroup R2 with quotient R, where R acts on R2 with 2 (real) eigenspaces, with
distinct real eigenvalues of product 1.

This is the Bianchi group of type VI0 and the geometry can be modeled as a left invariant
metric on this group. All finite volume manifolds with solv geometry are compact. The compact
manifolds with solv geometry are either the mapping torus of an Anosov map of the 2-torus (such
a map is an automorphism of the 2-torus given by an invertible 2 by 2 matrix whose eigenvalues
are real and distinct, such as (

2 1
1 1

)
) ,

or quotients of these by groups of order at most 8. The eigenvalues of the automorphism of the
torus generate an order of a real quadratic field, and the solv manifolds can be classified in terms
of the units and ideal classes of this order. Under normalized Ricci flow compact manifolds with
this geometry converge (rather slowly) to R1.

Unlike in the case of Seifert fiber spaces, a plane or disk appears as a fiber. Could
one consider the possibility whether boundary conditions guaranteeing conserva-
tion laws could allow string-like objects for which the cross section is disk rather
than a closed 2-surface? The appearance of isometries of 2-D Minkowski space
suggests that the disk X2 must have Minkowski signature so that the embedding
to H3 would not be possible.
Could one assign this structure to massless extremals [K1, K7], which in the TGD
framework define the representations for classical radiation fields, which involve
the decomposition M4 = M2 × D2. The circle S1 ⊂ D2 defining its boundary
would define the base space. Boundaries would be light-like and might allow to
solve the boundary conditions. It is not clear how to obtain the counterparts of
massless extremals at the M8 level.

4.3 3→ 4 form of holography

One can consider two forms of holography. The first, weak, form corresponds to the ordinary 3→
holography in which 3-D boundaries provide the data defining the 4-surface. The second, strong
form, corresponds to 2 → 4 holography in which conformal boundaries provide the data defining
the 4-surface. In this section the 3→ 4 form of the holography is considered.
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4.3.1 Fundamental domains of hyperbolic tessellations as data for 3→ 4 holography

Good candidates for the surfaces Y 3
i are fundamental domains assignable to hyperbolic 3-manifolds

H3/Γi represented as surfaces in H3 ⊂ M4 ⊂ M8 (or its complexification). In the case of string-
like objects, the fundamental domains would correspond to the analogs of fundamental domains
for S2/Γ× R and H2/Γ× R. The treatment of this case is a rather straightforward modification
of the first case so that the discussion is restricted to H3/Γi.

The surfaces Y 3
i would correspond topologically to many-particle states of free particles. Holog-

raphy would induce topological interactions in the interior of Y 4 and X4(Y 4). The momenta
(positions) of the fermions analogous to valence quarks correspond to the cusp singularities.

For fundamental fermions momenta would have components, which are algebraic integers. Ga-
lois confinement states that the momenta for many-fermion states are ordinary integers. This poses
a condition for H3/Γ and it would be interesting to understand what the condition means.

The degrees of freedom orthogonal to H3 correspond to a complexified sphere S3 of E4, whose
radius squared corresponds to the square of the complex mass squared.

1. Hyperbolicity is a generic property of 3-manifolds and probably preserved in small enough
deformations. In other words, deformations of hyperbolic 3-manifold X3

i probably allow a
hyperbolic metric although the induced metric for the deformation is not in general hyper-
bolic.

Deformation of the hyperbolic manifold (https://rb.gy/snpft) could take place in its evo-
lution defining Y 4

i and X4(Y 4
i ) and could lead to, for example, to singularities such as the

touching of different surfaces and interaction vertices at which partonic 2-surfaces meet.

2. There is an interesting connection to the geometrization conjecture of Thurston (https:
//rb.gy/9x3pm), especially with the work of the Russian mathematician Grigori Perelman,
who studied 3-D Ricci flows (https://rb.gy/n6qlv) for metrics and proved that, apart from
scaling, they lead to hyperbolic geometries.

Interestingly, hyperbolic manifolds decompose into ”thin” and ”thick” pieces and the ”thin”
piece corresponds to cusp neighborhoods (https://rb.gy/fd4dz). This decomposition brings
in mind the notions of valence partons and sea partons with sea partons, in particular gluons
assignable to the interior of Y 3

i and giving the dominant contribution to the hadron mass.

Consider now what one can assume about Y 3
i .

1. The simplest assumption is that the S3 coordinates are constant for Y 3
i identified as the

fundamental domain of a tessellation defined by H3/Γ. It would represent a piece of H3.

Could one consider the allowance of S3 deformations H3
d of H3 in the direction of S3, which

are invariant under G so that the space H3
d/G would exist. They would define what mathe-

maticians would call a model of hyperbolic geometry.

2. Can one allow for a given Y 3
i a multiple covering of H3 by copies of Y 3

i with different
constant values of S3 coordinates? Could this state correspond topologically to a many-
sheeted covering naturally associated with the polynomial P?

An interesting possibility is that Galois symmetry implies the existence of several copies of
Y 3
i with different S3 coordinates as the orbit of the Galois group or its sub-group. Z2 would

be the simplest Galois group and give two sheets.

4.3.2 3-D data for 3→ 4 holography with 3-surfaces as hyperbolic 3-manifolds

It is good to start with questions.

1. Could the 3-surfaces X3 associated with the mass shells H3
m ⊂M8 appearing as holographic

data be fundamental domains (analogs of unit cell for crystals) of the tessellation H3/Γ?
Could a fermionic many-particle state for an algebraic extension determined by a given
polynomial P assign a singularity to the fundamental domain and fix it?

The TGD view of hadron physics provides some clues. Gluon sea consists of gluons identi-
fiable as fermion-antifermion pairs and fermions and antifermions. Here is the data for the

https://rb.gy/snpft
https://rb.gy/9x3pm
https://rb.gy/9x3pm
https://rb.gy/n6qlv
https://rb.gy/fd4dz
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given hyperbolic 3-manifold of singularities. The valence fermions could reside at throats
and virtual sea gluons could be associated with strings Y 2 × R inside flux tubes and would
give to the classical string tension?

Hyperbolic 3-manifolds also have string-like singularities connecting the cusp singularities. In
the physical picture of TGD, these would correspond to strings connecting wormhole throats
of different wormhole contacts which in turn would correspond to blow-ups of cusps.

2. Is the situation the same in M8 and H? Could 4-surfaces assignable to the X3
i be minimal

surfaces in both H and M8 having a generalization of holomorphic structure to dimension 4?
It would be possible to map X3

i to each other by inversion. Note that M8−H correspondence
would map the M4 ⊂M8 projections of the points of Y 4 by inversion to H also in the interior
of 4-surface.

Could this realize the dual conformal invariance proposed by the twistors, which would
therefore be behind the analogy of Langlands duality and M8 −H duality?

4.4 Strong form of the hyperbolic holography

Holography roughly means an assignment of, not necessarily a unique 4-surface, to a set of 3-
surfaces at the mass shells defined by roots of the polynomial P . The 4-surface is analogous to
Bohr orbit.

A stronger form of the holography would be approximate 2 → 4 holography suggesting that
the 3-surfaces allow 2→ 3 holography, which need not be completely deterministic. To understand
what is involved one must have an idea about what kind of 3-surfaces could be involved.

1. Irreducible closed 3-surfaces Y 3
i at H3

m consist of regions of 8 different types. Could these
regions correspond to model geometries or at least have the symmetries of model geometries?

This conjecture is natural if the 3-surfaces Y 3
i ⊂ H3

m ⊂ M4 ⊂ M8 belong to (possibly
complex) mass shells of M4. In this case, the composites of fundamental regions of hyperbolic
manifolds (https://rb.gy/snpft) as analogs of finite crystals would be natural.

The interiors of these regions would correspond to the ”thick” part of the 3-manifold whereas
the cusp singularities and string singularities as boundaries of string world sheets would
correspond to the ”thin” part. The blow-ups of cusp singularities would give rise to 3-D
regions of CP2.

2. Also monopole flux tubes connecting hyperbolic regions to form a network should be involved.
Here the natural model geometries would be of type S2×R or H2×R with the ends of R at
the two hyperbolic regions. By replacing H2 with H2/Γ, one would obtain higher flux tubes
with a cross section having a higher genus.

The natural idea is that hyperbolic holography gives rise to 2 → 3 holography. In the case of
H3/Γ, the holography would assign H3/Γ its fundamental region Y 3 to H2/Γ.

In the case of H2/Γ, applying for string-like objects, holography would assign Y 2×R to a union
of circles H1/Γ defining its boundary. The rule would be simple: Y n/Γ is a union of fundamental
regions Y ni having Hn−1/Γ as boundary.

4.4.1 Hyperbolic holography from H2/G to the fundamental domain of H3/Γ

The representation of M4 momenta in terms of bispinors is possible only for massless particles. This
raises the question whether one must assume a strong form of holography in which 2-D surfaces
at the boundaries of H3

m dictate the 4-D surface almost completely. The hyperbolic 2-manifold
H2/G should define the boundary for Y 3

i identifiable as a fundamental domain Y 3 of a hyperbolic
3-manifold H3/Γ.

1. This would conform with the proposed realization of super-symplectic invariance and Kac-
Moody type symmetries for light-like partonic orbits meaning that the interior degrees of
freedom associated with the 3-surfaces X3

i and light-like orbits of partonic 2-surfaces are
eliminated with a suitable gauge choice formulated in terms of a generalization the Virasoro
and Kac-Moody conditions [L15, L16].

https://rb.gy/snpft
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2. Physically this would mean that the fermion momenta at cusp point are light-like. This
would conform with the view that fermions move along light-like curves inside the light-like
partonic orbit.

3. If hyperbolic holography makes sense, the above formulation for H2 would generalize to the
case of H3. Cusp neighborhood U/P as a projection U → H2/G has a counterpart for
H3/Γ and the fundamental domain for H2/G extends to a fundamental domain for H3/Γ.
For H2/G as boundary it would correspond to the condition p3 > 0 for the momentum
component in the chosen direction.

4. The cusp singularity is analogous to a cusp of an algebraic surface. This suggests that
near the cusp point of H3/Γ the metric behaves like the induced metric of 3-D cusp in 4-D
space. Near the cusp one has t = k

√
ρ where t and ρ are vertical coordinate and transversal

coordinates of the cusp in 4-D space. The radial component of the induced metric orthogonal
to tip direction should behave like gρρ = 1 + k2/4ρ and the radial distance from the tip
would diverge logarithmically. One cold say that this point is missing so that the hyperbolic
manifold is compact but not closed since it has boundaries. The singularity of the metric
is a good motivation for cutting off a small ball around the singularity in M4 and a small
ball from S3 and for gluing the two together along boundaries. At the level of H this would
correspond to wormhole throat.

4.5 An explicit formula for M8 −H duality

M8 −H duality is a generalization of momentum-position duality relating the number theoretic
and geometric views of physics in TGD and, despite that it still involves poorly understood aspects,
it has become a fundamental building block of TGD. One has 4-D surfaces Y 4 ⊂ M8

c , where
M8
c is complexified M8 having interpretation as an analog of complex momentum space and 4-D

spacetime surfaces X4 ⊂ H = M4 ×CP2. M8
c , equivalently E8

c , can be regarded as complexified
octonions. M8

c has a subspace M4
c containing M4.

Comment: One should be very cautious with the meaning of ”complex”. Complexified
octonions involve a complex imaginary unit i commuting with the octonionic imaginary units
Ik. i is assumed to also appear as an imaginary unit also in complex algebraic numbers defined
by the roots of polynomials P defining holographic data in M8

c .
In the following M8 −H duality and its twistor lift are discussed and an explicit formula for

the dualities are deduced. Also possible variants of the duality are discussed.

4.5.1 Holography in H

X4 ⊂ H satisfies holography and is analogous to the Bohr orbit of a particle identified as a 3-
surface. The proposal is that holography reduces to a 4-D generalization of holomorphy so that
X4 is a simultaneous zero of two functions of complex CP2 coordinates and of what I have called
Hamilton-Jacobi coordinates of M4 with a generalized Kähler structure.

The simplest choice of the Hamilton-Jacobi coordinates is defined by the decomposition M4 =
M2 × E2, where M2 is endowed with hypercomplex structure defined by light-like coordinates
(u, v), which are analogous to z and z. Any analytic map u→ f(u) defines a new set of light-like
coordinates and corresponds to a solution of the massless d’Alembert equation in M2. E2 has
some complex coordinates with imaginary unit defined by i.

The conjecture is that also more general Hamilton-Jacobi structures for which the tangent
space decomposition is local are possible. Therefore one would have M4 = M2(x)×E2(x). These
would correspond to non-equivalent complex and Kähler structures of M4 analogous to those
possessed by 2-D Riemann surfaces and parametrized by moduli space.

4.5.2 Number theoretic holography in M8
c

Y 4 ⊂ M8
c satisfies number theoretic holography defining dynamics, which should reduce to asso-

ciativity in some sense. The Euclidian complexified normal space N4(y) at a given point y of Y 4

is required to be associative, i.e. quaternionic. Besides this, N4(i) contains a preferred complex
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Euclidian 2-D subspace Y 2(y). Also the spaces Y 2(x) define an integrable distribution. I have
assumed that Y 2(x) can depend on the point y of Y 4.

These assumptions imply that the normal space N(y) of Y 4 can be parameterized by a point
of CP2 = SU(3)/U(2). This distribution is always integrable unlike quaternionic tangent space
distributions. M8 −H duality assigns to the normal space N(y) a point of CP2. M4

c point
y is mapped to a point x ∈M4 ⊂M4 ×CP2 defined by the real part of its inversion (conformal
transformation): this formula involves effective Planck constant for dimensional reasons.

The 3-D holographic data, which partially fixes 4-surfaces Y 4 is partially determined by a
polynomial P with real integer coefficients smaller than the degree of P . The roots define mass
squared values which are in general complex algebraic numbers and define complex analogs of mass
shells in M4

c ⊂ M8
c , which are analogs of hyperbolic spaces H3. The 3-surfaces at these mass

shells define 3-D holographic data continued to a surface Y 4 by requiring that the normal space
of Y 4 is associative, i.e. quaternionic. These 3-surfaces are not completely fixed but an interesting
conjecture is that they correspond to fundamental domains of tessellations of H3.

What does the complexity of the mass shells mean? The simplest interpretation is that the
space-like M4 coordinates (3-momentum components) are real whereas the time-like coordinate
(energy) is complex and determined by the mass shell condition. Is this deformation of H3 in
imaginary time direction equivalent with a region of H3?

One can look at the formula in more detail. Mass shell condition gives Re2(E) − Im(E)2 −
p2 = Re(m2) and 2Re(E)Im(E) = Im(m2). The condition for the real parts gives H3, when√
Re2(E)− Im(E)2 is taken as an effective energy. The second condition allows to solve Im(E)

in terms of Re(E) so that the first condition reduces to a dispersion relation for Re(E)2.

Re(E)2 =
1

2
(Re(m2)− Im(m2) + p2)(1±

√
1 +

2Im(m2)2

(Re(m2)− Im(m2) + p2)2
. (4.1)

Only the positive root gives a non-tachyonic result for Re(m2)− Im(m2) > 0. For real roots with
Im(m2) = 0 and at the high momentum limit the formula coincides with the standard formula.
For Re(m2) = Im(m2) one obtains Re(E)2 → Im(m2)/

√
2 at the low momentum limit p2 → 0.

Energy does not depend on momentum at all: the situation resembles that for plasma waves.

4.5.3 Can one find an explicit formula for M8 −H duality?

The dream is an explicit formula for the M8 −H duality mapping Y 4 ⊂M8
c to X4 ⊂ H. This

formula should be consistent with the assumption that the generalized holomorphy holds true for
X4.

The following proposal is a more detailed variant of the earlier proposal for which Y 4 is
determined by a map g of M4

c → SU(3)c ⊂ G2,c, where G2,c is the complexified automorphism
group of octonions and SU(3)c is interpreted as a complexified color group.

1. This map defines a trivial SU(3)c gauge field. The real part of g however defines a
non-trivial real color gauge field by the non-linearity of the non-abelian gauge field with
respect to the gauge potential. The quadratic terms involving the imaginary part of the
gauge potential give an additional condition to the real part in the complex situation and
cancel it. If only the real part of g contributes, this contribution would be absent and the
gauge field is non-vanishing.

2. A physically motivated proposal is that the real parts of SU(3)c gauge potential and color
gauge field can be lifted to H and the lifts are equal to the classical gauge potentials and
color gauge field proposed in H. Color gauge potentials in H are proportional to the isometry
generators of the color gauge field and the components of the color gauge field are proportional
to the products of color Hamiltonians with the induced Kähler form.

3. The color gauge fieldRe(G) obeys the formulaRe(G) = dRe(A)+[Re(A), Re(A)] = [Re(A), Re(A)]
and does not vanish since the contribution of [Im(A), Im(A)] cancelling the real part is ab-
sent. The lift of AR = g−1dg to H is determined by g using M4 coordinates for Y 4 . The
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M4 coordinates pk(M8) having interpretation as momenta are mapped to the coordinates
mk of H by the inversion

I : mk = ~effRe(
pk

p2
) , p2 ≡ pkpk ,

where pk is complex momentum. Re(A)H is obtained by the action of the Jacobian

dIkl =
∂pk

∂ml
,

as

AH = dI ·Re(AM8) .

dIkl can be calculated as the inverse of the Jacobian ∂mk/∂Re(p)l. Note that Im(pk) is
expressible in terms of Re(pk).

For Im(pk) = 0 the Jacobian for I reduces to that for mk = ~eff p
k

p2 and one has

∂mk

∂pl
=

~eff
p2

(δkl −
pkpl
p2

) .

This becomes singular for m2 = 0. The nonvanishing of Im(pk) however saves from the
singularity.

4. The M8 −H duality obeys a different formula at the light-cone boundaries associated with
the causal diamond: now one has p0 = ~eff/m0. This formula should be applied for m2 = 0
if this case is encountered. Note that number theoretic evolution for masses and classical
color gauge fields is directly coded by the mass squared values and holography.

How could the automorphism g(x) ⊂ SU(3) ⊂ G2 give rise to M8 −H duality?

1. The interpretation is that g(y) at given point y of Y 4 relates the normal space at y to a
fixed quaternionic/associative normal space at point y0, which corresponds is fixed by some
subgroup U(2)0 ⊂ SU(3). The automorphism property of g guarantees that the normal
space is quaternionic/associative at y. This simplifies the construction dramatically.

2. The quaternionic normal sub-space (which has Euclidian signature) contains a complex sub-
space which corresponds to a point of sphere S2 = SO(3)/O(2), where SO(3) is the quater-
nionic automorphism group. The interpretation could be in terms of a selection of spin
quantization axes. The local choice of the preferred complex plane would not be unique
and is analogous to the possibility of having non-trivial Hamilton Jacobi structures in M4

characterized by the choice of M2(x) and equivalently its normal subspace E2(x).

These two structures are independent apart from dependencies forced by the number theoretic
dynamics. Hamilton-Jacobi structure means a selection of the quantization axis of spin and
energy by fixing a distribution of light-like tangent vectors of M4 and the choice of the
quaternionic normal sub-space fixes a choice of preferred quaternionic imaginary unit defining
a quantization axis of the weak isospin.

3. The real part Re(g(y)) defines a point of SU(3) and the bundle projection SU(3)→ CP2

in turn defines a point of CP2 = SU(3)/U(2). Hence one can assign to g a point of CP2

as M8 − H duality requires and deduce an explicit formula for the point. This means a
realization of the dream.

4. The construction requires a fixing of a quaternionic normal space N0 at y0 containing a
preferred complex subspace at a single point of Y 4 plus a selection of the function g. If M4

coordinates are possible for Y 4, the first guess is that g as a function of complexified M4

coordinates obeys generalized holomorphy with respect to complexified M4 coordinates in
the same sense and in the case of X4. This might guarantee that the M8 −H image of Y 4

satisfies the generalized holomorphy.
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5. Also space-time surfaces X4 with M4 projection having a dimension smaller than 4 are
allowed. I have proposed that they might correspond to singular cases for the above formula:
a kind of blow-up would be involved. One can also consider a more general definition of
Y 4 allowing it to have a M4 projection with dimension smaller than 4 (say cosmic strings).
Could one have implicit equations for the surface Y 4 in terms of the complex coordinates of
SU(3)c and M4? Could this give for instance cosmic strings with a 2-D M4 projection and
CP2 type extremals with 4-D CP2 projection and 1-D light-like M4 projection?

4.5.4 What could the number theoretic holography mean physically?

What could be physical meaning of the number theoretic holography? The condition that has been
assumed is that the CP2 coordinates at the mass shells of M4

c ⊂ M8
c mapped to mass shells H3

of M4 ⊂ M4 × CP2 are constant at the H3. This is true if the g(y) defines the same CP2 point
for a given component X3

i of the 3-surface at a given mass shell. g is therefore fixed apart from
a local U(2) transformation leaving the CP2 point invariant. A stronger condition would be that
the CP2 point is the same for each component of X3

i and even at each mass shell but this
condition seems to be unnecessarily strong.

Comment: One can o criticize this condition as too strong and one can consider giving up
this condition. The motivation for this condition is that the number of algebraic points at the
3-surfaces associated with H3 explodes since the coordinates associated with normal directions
vanish. Kind of cognitive explosion would be in question.

SU(3) corresponds to a subgroup of G2 and one can wonder what the fixing of this subgroup
could mean physically. G2 is 14-D and the coset space G2/SU(3) is 6-D and a good guess is that
it is just the 6-D twistor space SU(3)/U(1)× U(1) of CP2: at least the isometries are the same.
The fixing of the SU(3) subgroup means fixing of a CP2 twistor. Physically this means the
fixing of the quantization axis of color isospin and hypercharge.

4.5.5 Twistor lift of the holography

What is interesting is that by replacing SU(3) with G2, one obtains an explicit formula form the
generalization of M8 −H duality to that for the twistorial lift of TGD!

One can also consider a twistorial generalization of the above proposal for the number
theoretic holography by allowing local G2 automorphisms interpreted as local choices of the
color quantization axis. G2 elements would be fixed apart from a local SU(3) transformation
at the components of 3-surfaces at mass shells. The choice of the color quantization axes for a
connected 3-surface at a given mass shell would be the same everywhere. This choice is indeed
very natural physically since 3-surface corresponds to a particle.

Is this proposal consistent with the boundary condition of the number theoretical holography
mean in the case of 4-surfaces in M8

c and M4 × CP2?

1. The selection of SU(3) ⊂ G2 for ordinary M8 −H duality means that the G2,c gauge field
vanishes everywhere and the choice of color quantization axis is the same at all points of the
4-surface. The fixing of the CP2 point to be constant at H3 implies that the color gauge
field at H3 ⊂M8

c and its image H3 ⊂ H vanish. One would have color confinement at the
mass shells H3

i , where the observations are made. Is this condition too strong?

2. The constancy of the G2 element at mass shells makes sense physically and means a fixed
color quantization axis. The selection of a fixed SU(3) ⊂ G2 for entire space-time surface
is in conflict with the non-constancy of G2 element unless G2 element differs at different
points of 4-surface only by a multiplication of a local SU(3)0 element, that is local SU(3)
transformation. This kind of variation of the G2 element would mean a fixed color group
but varying choice of color quantization axis.

3. Could one consider the possibility that the local G2,c element is free and defines the twistor
lift of M8 −H duality as something more fundamental than the ordinary M8 −H duality
based on SU(3)c. This duality would make sense only at the mass shells so that only the
spaces H3×CP2 assignable to mass shells would make sense physically. In the interior CP2

would be replaced with the twistor space SU(3)/U(1) × U(1). Color gauge fields would be
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non-vanishing at the mass shells but outside the mass shells one would have nonvanishing
G2 gauge fields.

There is also a physical objection against the G2 option. The 14-D Lie algebra representation
of G2 acts on the imaginary octonions which decompose with respect to the color group to
1 ⊕ 3 ⊕ 3. The automorphism property requires that 1 can be transformed to 3 or 3: this
requires that the decomposition contains 3⊕3. Furthermore, it must be possible to transform
3 and 3 to themselves, which requires the presence of 8. This leaves only the decomposition
8 ⊕ 3 ⊕ 3. G2 gluons would both color octet and triplets. In the TDG framework the only
conceivable interpretation would be in terms of ordinary gluons and leptoquark-like gluons.
This does not fit with the basic vision of TGD.

The choice of twistor as a selection of quantization axes should make sense also in the M4

degrees of freedom. M4 twistor corresponds to a choice of light-like direction at a given point
of M4. The spatial component of the light-like vector fixes the spin quantization axis. Its
choice together with the light-likeness fixes the time direction and therefore the rest system and
energy quantization axis. Light-like vector fixes also the choice of M2 and of E2 as its orthogonal
complement. Therefore the fixing of M4 twistor as a point of SU(4)/SU(3)×U(1) corresponds
to a choice of the spin quantization axis and the time-like axis defining the rest system in which
the energy is measured. This choice would naturally correspond to the Hamilton-Jacobi structure
fixing the decompositions M2(x)× E2(x). At a given mass shell the choice of the quantization
axis would be constant for a given X3

i .

5 Singularities, quantum classical correspondence, and hy-
perbolic holography

The point-like fermions and their 1-D trajectories appear as singularities of the minimal surfaces
[L9]. Strings that connect fermions located at their ends, and string world sheets in the interior
of X4 appear also as singularities. Also partonic 2-surfaces separating Minkowskian and Euclidian
regions should correspond to singularities of X3

i and their light-like radii.
There would therefore be singularities in dimensions D = 0, 1, 2, 3. These singularities should

relate to the fundamental domains Y 3
i ⊂ H3

m ⊂ M8 and holography would suggest that they
correspond to the singularities of 3-D hyperbolic manifolds (https://rb.gy/snpft).

5.1 Cusp singularities and fermionic point singularities

The singularities should be associated with hyperbolic manifolds Y 3
i identified as fundamental

domains of coset spaces H3/Γ , that is, as effective geometries H3/Γ defined by the boundary
conditions for various ”fields”. In the same way as, for example, a torus geometry appears in
condensed matter physics for a unit cell of lattice.

Cusp singularity (https://rb.gy/fd4dz) is a natural candidate for a point-like singularity and
geometrically corresponds to a cusp. For abstract Riemann geometry, the cusp property would
correspond to a singularity of the metric for a cusp (tip) and mean that the radial component of
the metric diverges at the tip.

Consider first the basic concepts and ideas in the case of 2-D hyperbolic space H2 and corre-
sponding hyperbolic manifold H2/G case.

1. Riemann surface can be regarded as a coset space H2/G, which is represented as a funda-
mental region for a tessellation of H2.

2. Cusp singularities of H2/G correspond to parabolic subgroups P (https://rb.gy/b5t55)
generated by a parabolic element for G ⊂ SL(2, C). Parabolic subgroup P is isomorphic to a
discrete group of translations along, say, the real axis as a boundary of the upper half-plane
and is noncompact. It is represented as Möbius transformations induced by the matrices
(1, n : 0, n). P can be regarded as a subgroup generated by a Lorentz boost in a fixed
direction.

https://rb.gy/snpft
https://rb.gy/fd4dz
https://rb.gy/b5t55
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The cusp singularity results from the identification of points related by the elements of P ,
which form a non-compact group. Let U denote the set with Im(z) > 1 which corresponds
to the set p3 > 0 in momentum space. U and P (U) are disjoint. The cusp neighborhood
(https://rb.gy/fd4dz) can be identified as the set U/P which is the projection of U to
H/G.

3. In the simplest situation, one has G ⊂ SL(2, Z) ⊂ SL(2, R) ⊂ SL(2, C)), where S(2, R)
leaves the real axis invariant. Z could be replaced by an algebraic extension for rationals of
algebraic integers in this extension.

SL(2, C) and therefore also SL(2, R) acts in M4 as Lorentz transformations.

1. A given M4 momentum has the representation pk = ΨσkΨ, Ψ = (z1, z2). The representation
is unique apart from a complex scaling of zi so that z = z1/z2 can be taken as a complex
coordinate for the plane and SL(2, C) acts as Möbius transformation. SL(2, R) leaves the
real axis invariant.

The automorphism of sigma matrices induced by SL(2, C) transformation in turn induces
Lorentz transformation in momentum space.

2. Under what conditions can bi-spinors correspond to M4 coordinates? Bi-spinor can be as-
sumed to be of the form (z1, z2) = (z, 1). From the formula pk = ΨσkΨ, Ψ = (z1, z2) = (z, 1)
one can deduce an expression of the condition Im(z1/z2) = Im(z1) > 1 in terms of pk. The
condition implies that the z-component of momentum satisfies pz = zz − 1 > 0.

The description of M4 momenta in terms of bi-spinors and H2 identified as upper half-plane,
denoted by H, is possible only for massless particles.

5.1.1 What happens at cusp singularity

What happens at the cusp singularity?

1. The normal space of the singularity is completely ill-defined as the direction of the electric
field of a point-like charge. If so, CP2 would always be a companion to the cusp. CP2 would
be a blow-up of the cusp points of X3

i as a hyperbolic manifold (https://rb.gy/snpft).
One would have X3

i ⊂ H3 and the cusp points would correspond to a 3-D sub-manifold of
CP2 defined by the normal spaces at the cusp singularity.

2. In the interior of the space-time surface the 3-D submanifold of CP2 would extend to CP2 type
extremal with a light-like M4 projection or its deformation. Several cusp singularities (see
https://rb.gy/0p30o and https://rb.gy/fd4dz) could be associated with a single CP2

type extremal representing wormhole contact. This corresponds to the view that wormhole
throats can carry more than one fermion although the recent model assumes only a single
fermion.

3. CP2 type extremal defines a wormhole contact connecting two Minkowskian space-time sheets
in H = M4 × CP2. This would mean that the 3-D submanifold of CP2 as a blow up is
deformed to CP2 type extremal with 2 throats at opposite sheets: at them the Euclidian
induced metric transforms to Minkowskian signature.

The conservation of monopole flux indeed forces the presence of two Minkowskian space-time
sheets in the picture based on H. If the throat as a boundary of the 3-D region of X4 ⊂ H
involves an incoming radial monopole flux, there must be another throat CP2, where this
flux runs to the other space-time sheet.

4. How could the throats connecting the two Minkowskian space-time sheets emerge in the M8

picture? Should one allow several copies of Y 3
i with the same H3 projection but different

constant S3 coordinates and with a common cusp point. The blow-up would give several
copies of 3-D regions of CP2, and in holography they would define wormhole contact with 2
or even more throats.

The simplest view is that quarks are the only fundamental fermions and leptons correspond
to wormhole contacts carrying three antiquarks. They could have three throats associated
with the same CP2 type extremal but this is not the only possibility.

https://rb.gy/fd4dz
https://rb.gy/snpft
https://rb.gy/0p30o
https://rb.gy/fd4dz
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5.1.2 The singularities associated with string-like objects

For string-like objects, the fundamental domains would correspond to the analogs of fundamental
domains for S2/Γ×R and H2/Γ×R. For S2×R the spaces S2/Γ, Γ a finite non-trivial subgroup
of SO(3) are orbifolds: the faces of Platonic solids are basic examples. For P 2/Γ one obtains g > 0
2-manifolds with constant curvature metric with negative curvature.

The physical interpretation would be that S2×R and H2/Γ×R are glued along their ends S2

or P 2/Γ to partonic 2-surfaces associated with wormhole contacts.
For string-like objects, the fundamental domains would correspond to the analogs of funda-

mental domains for S2/Γ × R and H2/Γ × R. For S2 × R the spaces S2/Γ are orbifolds if Γ is
finite non-trivial subgroup of SO(3): the triangular, quadrilateral, and pentagonal faces of Platonic
solids are key examples. From these one can build finite lattices at S2. For P 2/Γ one obtains g > 0
2-manifolds with constant curvature metric with a negative curvature.

The physical interpretation would be that S2×R and H2/Γ×R are glued along their ends S2

or P 2/Γ to partonic 2-surfaces associated with wormhole contacts.
What could be the quantal counterpart for the geometric holography? This has been a long

standing open question. Suppose that the strong form of holography is realized.

1. In [L18], I considered quantal holography as a counterpart of geometric holography discussed
in this article. This led to a suggestion that valence quarks at the wormhole throats could pair
with pairs of dark quark and antiquark at strings associated with magnetic flux tubes in the
interior of the hadronic 3-surfaces. Could these strings correspond to string-like singularities
assignable to geodesic lines inside fundamental regions of H3/Gamma?

2. The flux tubes were proposed to have an effective Planck constant heff > h. The corre-
spondence between valence quarks and dark quarks was proposed to be holographic. The
spin and electroweak quantum numbers of dark antiquark would be opposite to those of
valence quark and dark quark would have quantum numbers valence quark. There would be
entanglement in color degrees of freedom for valence quark and dark antiquark to form color
single: this would screen the color of valence quark and transfer it to the magnetic body.
The holography in this way would allow a convergent perturbation theory. Nature would be
theoretician friendly: a phase transition increasing heff , transferring color to dark quarks,
and reducing color coupling strength to αs = 22/4π~eff would occur.

Whether the dark quark-antiquark pairs as analog for gluon pairs as explanation for hadron
mass could explain most of hadron mass remained open: if the classical conserved quantities
are identical with the quantum contribution from fermions for Cartan algebra, this could be
the case. Whether they could correspond to sea gluons remains also an open question.

3. Quantal holography allowing to obtain a convergent perturbation theory might be realized
quite generally, also for leptons which correspond to color partial waves in CP2 neutralized
by super symplectic generator [K5, K13] [L3].

It should be noticed that leptonic dark holography would be very natural if leptons consist
of 3 antiquarks [L7]. This option would explain matter-antimatter asymmetry in a new way.
Antimatter would be identifiable leptons. For the simplest option, the 3 antiquarks would be
associated with a single single wormhole throat. The generalized Kähler structure assignable to
M4 in twistor lift [L10, L11] allows a CP violation, which could favor the condensation of quarks
to baryons and antiquarks to leptons.

There are however objections against this idea. The considerations of this article inspire the
question whether a single wormhole throat can carry only a single quark assignable to the cusp
singularity, as suggested already earlier. Two wormhole contacts would be required. This is
required also by the fact that stable wormhole contact must carry a monopole flux and monopole
flux flux loops must be closed. Uncertainty Principle would suggest that the flux tube must
have length of order lepton Compton length. Can this be consistent with the point-like nature of
leptons? These arguments favor the option in which leptons and quarks as opposite H chiralities
of H-spinors are the fundamental fermions.
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5.1.3 Other kinds of point-like singularities and analogy with Fermi surface

Point-like singularities as cusps would naturally correspond to fundamental fermions at the light-
like orbits of partonic 2-surfaces.

1. The 2-D boundaries of the fundamental region Y 3
i associated with H3/Γ would be analogues

for 2-D pieces of the Fermi surface corresponding to atomic energy levels as energy bands.

In condensed matter physics, the energy shells can deform and the components of the Fermi
surface can touch. These singularities are central to topological physics.

2. At M8 level the 2-D boundaries of Y 3
i are analogues of energy bands. The evolution defined

by the number theoretic holography, identifiable as a coupling constant evolution at the level
of M8, induces deformations of Y 3

i . One expects that this kind of touching singularities take
place.

At the level of H this would correspond to simple touching of the outer boundaries of the
physical objects. In particular, these touchings could take place at the partonic 2-surfaces
identified as vertices at which severa partonic orbits meet as the partonic surfaces as their
ends are glued to single surface just like the ends of lines of a vertex of Feynman diagram
are glued together along their ends.

Could the meeting of fermion and antifermion cusp singularity in this way relate to an
annihilation to a boson regarded as a fermion antifermion pair?

3. One can of course challenge the assumption that all fermions correspond to cusps, which
correspond to parabolic subgroups of G ⊂ SL(2, C) (https://rb.gy/b5t55). The proposal
that all momenta, whose components are algebraic integers for the extension defined by P ,
are possible. What could be the interpretation of fermions which do not correspond to cusp.

What the addition of a fermion to a particular allowed momentum could mean? Could it
mean that its momentum defines a parabolic subgroup of G? Or is it true only for the ”thin”
part of Y 3

i perhaps representing analogs of valence quarks.

Or could the non-singular momenta correspond to the momenta for the analogues of sea
partons, in particular analogs of sea gluons as fermion-antifermion pairs so that their total
momentum would dominate in the total momentum of hadron. These would correspond to
the ”thick” part of Y 3

i . Could these interior momenta correspond to states delocalized at the
string world sheets in the interior of monopole flux tubes and also states delocalized in the
interiors of the flux tubes. Are these fermions present too?

The presence of these states should be coded by the geometry of the hyperbolic manifold
H3/Γ (https://rb.gy/snpft) and Y 3

i as its fundamental domain. Somehow the group
G ⊂ SL(2, C) should be responsible for this coding.

5.2 About the superconformal symmetries for the light-like orbits of
partonic 2-surfaces

Are the cusp singularities (see https://rb.gy/0p30o and https://rb.gy/fd4dz) giving rise to
CP2 type extremals and the fermion momenta inside string world sheets and flux tubes associated
with Y 3

i sufficient to fix the 3-surfaces Y 3
i in turn fixing number-theoretic holography?

1. The total energy for the classical action associated with these two kinds of fermions should
correspond to the ”sea” (thick part) and ”valence fermions” assigned to the cusps (thin part).

2. Supersymplectic invariance and generalized conformal and Kac-Moody invariance assignable
to light-like partonic orbits allows a large number of alternatives for the light-like surfaces
[L8, L16, L15]. If supersymplectic and Kac-Moody symmetries act as gauge symmetries, the
surfaces related by these symmetries are physically equivalent.

The proposal is that these symmetries are partially broken and there is a hierarchy of break-
ings labelled by subalgebras An ⊂ A of these algebras. The vanishing conditions for classical
and quantal charges for An and [An, A] serve as gauge conditions and also select the partonic
3-surfaces.

https://rb.gy/b5t55
https://rb.gy/snpft
https://rb.gy/0p30o
https://rb.gy/fd4dz
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Interpretation of the partially broken gauge symmetries giving rise to dynamical symmetries
is in terms of number theoretical measurement resolution and inclusion of hyperfinite factors
of type II1. These hierarchies relate to the hierarchies of extensions of rationals defined by
the polynomials P defining the space-time surfaces apart from the effect of fermions.

If the preferred extremal property means generalization of holomorphy from 2-D case to 4-D
case, one can conclude that the preferred extremals differ only at the singularities of space-
time surfaces such as partonic orbits where the entire action comes into play. The regions
outside the singularities would be universal: the minimal surface property would realize the
4-D generalization of the holomorphy.

3. Could different choices of the classical action, which determine the expressions of the classical
and fermionic (quantal) Noether charges in terms of the modified Dirac action, correspond
to different gauge choices selecting singular surfaces, in particular the CP2 type extremals
differently?

The standard view would suggest that the change of the parameters of the action at the level
of H corresponds to coupling constant evolution, which in the TGD framework is discrete
and in terms of p-adic length scales. On the other hand, the existence of dual M4 conformal
invariance suggests that the coupling constant evolution at the level of M8 is realized as
”energy” evolution by using associativity as a dynamical principle. Can these two views be
consistent?

Note that the discriminant of the polynomial P is proposed to correspond to the exponent
of action [L10, L12, L16, L15, L13]. The discriminant should change if the action changes.
Does this mean that the change of the (effective) action in the discrete coupling constant
evolution changes the polynomial?

6 Birational maps as morphisms of cognitive structures

https://en.wikipedia.org/wiki/Birationalgeometry and their inverses are defined in terms of ra-
tional functions. They are very special in the sense that they map algebraic numbers in a given
extension E of rationals to E itself.

1. In the TGD framework, the algebraic extensions E are defined by rational polynomials P at
the level ofM8

c identifiable as complexified octonions. E defines a unique discretization for the
number theoretically preferred coordinates of M8

c by the condition that the M8 coordinates
have values in E: I call these discretizations cognitive representations. They make sense
also in the extensions of p-adic number fields induced by E serving as correlates of cognition
in TGD inspired theory of conscious experience. Birational maps respect the extension E
associated with the cognitive representations and map cognitive representations to cognitive
representation of same kind. They are clearly analogous to morphisms in category theory.

2. M8 −H duality [L4, L5, L22, L26] is a number theoretic analogue of momentum-position
duality. M8

c serves as the analog of momentum space and H = M4 × CP2 as the analog
of position space. M8 −H duality maps the 4-surface defined in M8

c by number theoretic
holography based on 3-D data to a 4-D space-time surface in H.

3. Should M8 − H duality respect the algebraic extension? If so, it would map the cognitive
representation defined by points belonging to 4-D surface Y 4 ⊂ M8 with the values of
preferred coordinates in E to points of M4 ⊂ H with coordinate values in E. One could say
that M8 −H duality respects the number theoretical character of cognitive representations.
The precise meaning of this intuition is however far from clear.

There are also questions related to the choice of preferred coordinates in which the cognitive
representation is defined.

1. Number theoretic constraints fix the preferred coordinates at M8 side rather uniquely and
this induces a preferred choice also on M4 ⊂ H. For hyperbolic spaces (mass shells) a
cognitive explosion happens and a natural question whether cognitive explosion happens also
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for the light-like curves assignable to the partonic orbits. If the light-like curve is geodesic, the
explosion indeed occurs. For more general light-like curves this is not the case always: could
these more general light-like curves be related by a birational map to light-like geodesics?

2. At the H side one can also imagine besides standard Minkowski coordinates also other phys-
ically preferred choices of coordinates: are they also theoretically preferred? The notion of
Hamilton-Jacobi structure [L19] suggests that in the case of M4 Hamilton-Jacobi coordinates
are very natural for the holomorphic realization of holography. If these are allowed, a nat-
ural condition would be that the Hamilton-Jacobi coordinates are related to each other by
birational maps mapping the point of E to points of E so that cognitive representations are
mapped to cognitive representations.

6.1 M8 −H duality, holography as holomorphy, Hamilton-Jacobi struc-
tures, and birational maps as cognitive morphisms

In the sequel the questions raised in the introduction are considered. The basic notions are M8−H
duality [L4, L5, L22, L26], holography as a generalized holomorphy [L17, L25], Hamilton-Jacobi
structures [L19], and birational maps as cognitive morphisms.

6.1.1 About more precise definitions of the basic concepts

Consider first more precise definitions of various notions involved.

1. What are the preferred coordinates of M8
c in which the cognitive representation is con-

structed? M8
c has a number theoretic interpretation in terms of complexified octo-

nions and physical interpretation as 8-D momentum space. Linear Minkowski coordinates
are number-theoretically preferred since octonionic multiplication and other arithmetic op-
erations have a very simple form in these coordinates. Also the number theoretic auto-
morphisms respect the arithmetic operations. The allowed automorphisms correspond to
the group G2 which is a subgroup of SO(1, 7). Physically Minkowski space coordinates are
preferred coordinates in the momentum space and also in M4 ⊂ H.

2. How the algebraic extension of rationals, call it E, is determined? The proposal is that
rational polynomials characterize partially the 3-D data for number theoretic holography
[L22]. The roots of a rational polynomial P define an algebraic extension of rationals, call
it E. A stronger, physically motivated, condition on P is that its coefficients are integers
smaller than the degree of P .

The roots of P define mass shells H3
c ⊂M4

c ⊂M8
c , which in turn assign to the mass shells a

4-D surface Y 4 of M8
c going through the mass shells by associative holography requiring that

the normal space of Y 4 is associative, that is quaternionic. It has been be assumed that the
roots are complex although also the condition that the roots are real can be considered. The
imaginary unit i associated with the roots commutes with the octonionic imaginary units.

3. How the cognitive representation is defined? The points of Y 4 ⊂ M8
c with M4 coordinates

in E define a unique discretization of Y 4, called a cognitive representation, making sense
also in the extensions of p-adic number fields induced by E. In general, the number of
algebraic points in the interior of Y 4 is discrete and even finite but at the mass shells H3

a cognitive explosion takes place. All points of H3 with coordinates in E are algebraic.

The algebraic points with coordinates, which are algebraic integers are physically and cog-
nitively in very special role in number theoretic physics and make sense also as points of
various p-adic number fields making possible number theoretical universality. The points of
H3 have interpretation as momenta and for physical states the total momentum as sum of
momenta at mass shells defined by the roots of P has components which are integers, called
Galois confinement [L10, L11], would define fundamental mechanism for the formation of
bound states.

4. M8−H duality maps the points of H3
c ⊂M4

c ⊂M8
c to points of H3 ⊂M4 ⊂M4×CP2 = H

by a map, which is essentially an inversion: this form is motivated by Uncertainty Principle:
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for the most recent formulation of the duality see [L26]. This map is a birational map and
takes points of E points of E. Also the points of cognitive representation belonging to
the interior of Y 4 ⊂ M8

c are mapped to the interior of X4 ⊂ M8
c . One can ask whether

the discrete set of points of cognitive representations in the interiors are of special physical
interest, say having interpretation as interaction vertices.

6.1.2 Questions to be pondered

There are many questions to be considered.

1. Also partonic orbits in X4 ⊂ H define 3-D holographic data in H. What are these partonic
orbits? The simplest partonic orbits have light-like M4 projection but also more general
light-like H projection can be considered (note the analogy with a 2-D rigid body rotating
along a light-like geodesic of H). A general light-like geodesic of H is a combination of
time-like geodesic of M4 and space-like geodesic of CP2.

A point of the light-like partonic orbit correspond at the level of M8 to the 3-D blowup
of a point of M8 at which the quaternionic normal space parametrized by CP2 point is
not unique so that the normal spaces for a 3-D section of CP2, whose union along (probably
light-like) geodesic is CP2 with two holes corresponding to the ends of the partonic orbit.
This singularity is highly analogous to the singularity of the electric field of a point charge.
Partonic orbits define part of the 3-D holographic data.

2. Could one associate cognitive representations also to the partonic orbits? Could also
partonic orbits allow a cognitive explosion? The simplest way to guarantee light-likeness
for the H projection is as a light-like geodesic and this indeed allows an infinite number of
algebraic points in Minkowski coordinates. Same applies to more general light-like orbits.
One would have at least 1-D explosion of the cognitive representation.

3. What can one say about the CP2 and M4 projections of the partonic 2-surface? Could also
these projections to X2 and Y 2 allow an infinite number of points with coordinates in E
or do these kinds of points have some special physical meaning, say as vertices for particle
reactions? Concerning cognitive representation, the blow-up would mean that the point
has an infinite but discrete set of quaternionic normal spaces at the level of M8. Since
the partonic surface can have an arbitrary complex sub-manifold as CP2, there is indeed
information to be cognitively represented.

6.1.3 The most general cognitively preferred coordinate choices for space-time sur-
faces and H?

In the case of M8
c , number theoretical considerations fix the preferred coordinates highly uniquely.

In the case of H the situation is not so obvious and one cannot exclude alternative coordinate
choices related by a birational map.

A possible motivation comes from the following argument.

1. String world sheets are candidates for singularities analogous to partonic orbits. At a given
point of the string world sheet a blow up to a 2-D complex sub-manifold of CP2 would
occur. This would mean that the normal spaces of the point in M8

c form this sub-manifold.
Cosmic strings are the simplest objcts of this kind. Monopole flux tubes are deformations of
the cosmic strings and allow also an interpretation in terms of maps from M4 to CP2.

If string world sheets define part of the data needed to define holography, one could argue
that it makes sense to assign cognitive explosion to the string world sheet.

2. Cognitive explosion takes place if the string world sheets are 2-D geodesic submanifolds of
H. Planes M2 ⊂M4 represent the simplest example. A more complex example is obtained
by taking a space-like geodesic in H and rotating it along a time-like geodesic of H. One can
also take a light-like geodesic in H and rotate it along a light-like geodesic in dual light-like
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direction (ruler surface would be in question). In which case the gluing of the string world
sheet along the boundary to the partonic orbit could be possible.

One might perhaps think of building string world sheets by gluing these kinds of ultrasim-
ple regions along their boundaries so that one would have edges. An interpretation as a
discretization would be appropriate. One might even go further and argue that the cogni-
tive explosion explains why we are able to think of these kinds of regions in terms of simple
formulas. One might argue that number theoretic physics realizes exactly what is usually
regarded as approximation. One can however wonder whether life is so simple.

This argument encourages to consider a more complex option allowing more general string
world sheets.

1. In the case of M4 projection, the notion of the Hamilton-Jacobi structure [L19], generalizing
the notion of ordinary complex structure, is highly interesting in this respect. It involves
a generalization of complex coordinates involving local decompositions M4(x) = M2(x) ×
E2(x) of the 4-D tangent space of M4. The integrable distribution of E2(x) corresponds
to complex coordinates (w,w integrating to a partonic 2-surface whereas the integrable
distribution of M2(x) to light-like coordinate pairs (u, v) integrating to a string world sheet
in M4.

Cognitive representation mean that the discretized values of the Hamilton-Jacobi coordinates
(u, v, w,w) are in E. Hamilton-Jacobi structure generalizes also to the level of X4 ⊂ H and
now Y 2 can also correspond to CP2 projection as in the case of cosmic strings and magnetic
flux tubes. Note that in TGD one can use a subset of H coordinates as coordinates of X4.

2. The simplest assumption is that the 1-D parton orbit corresponds to a light-like geodesic but
could one map light-like geodesics to more general light-like curves by a birational map?
Hamilton-Jacobi structure gives rise to a pair of curved (u, v) of light-like coordinates: could
it relate to the standard flat light-like coordinates of M2 by a birational map? Could a
birational map relate standard complex coordinates of E2 to the pair (w,w)? Could one also
consider more general birational maps of M4 → M4? If so, the Hamilton-Jacobi structures
would be related by maps respecting algebraic extensions and cognitive representations. This
would give a very powerful constraint on the Hamilton-Jacobi structures.

In the case of CP2, projective coordinates are group-theoretically highly unique and determined
apart from color rotations. Could one require that the CP2 projection Y 2 associated with the
partonic 2-surface and cosmic string or magnetic flux tube involves cognitive explosion. Are the
allowed M4 and CP2 projections related by birational maps? Note that color rotations are
birational maps.

These considerations suggest the following speculative view.

1. M8 −H duality, when restricted to 3-D holographic data at both sides, is analogous to a
birational map expressible in terms of rational functions and respects the number theoretical
character of cognitive representations.

2. Cognitive explosion occurs for the holographic data (this is very natural from the information
theoretic perspective): this includes also string world sheets. Hamilton-Jacobi structures in
the same cognitive class, partially characterized by the extension E of rationals, are related
by a birational map.

3. M8−H duality maps the quaternionic normal spaces to points of CP2 and is an example of
a birational map in M4 degrees of freedom. It is not however easy to guess how the number
theoretic holography is realized explicitly and how the 4-surfaces in M8 are mapped to
holomorphic 4-surfaces in H.

4. An interesting additional aspect relates to the non-determinism of partonic orbits due to
the non-determinism of the light-likeness condition deriving from the fact that the action is
Chern-Simons-Kähler action. The deformation of the partonic orbit induces the deformation
of time derivatives of H coordinates at the boundary of δM4

+ × CP2 to guarantee that
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boundary conditions at the orbit are realized. This suggests a strong form of holography
[L25]. Already the 3-surfaces at δM4

+×CP2 or partonic orbits would be enough as holographic
data. This in turn suggests that the analog of birational cognitive correspondence between
the holographic data at δM4

+ × CP2 and at partonic orbits.

6.2 Appendix: Some facts about birational geometry

Birational geometry has as its morphisms birational maps: both the map and its inverse are
expressible in terms of rational functions. The coefficients of polynomials appearing in rational
functions are in the TGD framework rational. They map rationals to rationals and also numbers of
given extension E of rationals to themselves (one can assign to each space-time region an extension
defined by a polynomial).

Therefore birational maps map cognitive representations, defined as discretizations of the space-
time surface such that the points have physically/number theoretically preferred coordinates in E,
to cognitive representations. They therefore respect cognitive representations and are morphisms
of cognition. They are also number-theoretically universal, making sense for all p-adic number
fields and their extensions induced by E. This makes birational maps extremely interesting from
the TGD point of view.

The following lists basic facts about birational geometry as I have understood them on the
basis of Wikipedia articles about birational geometry and Enriques-Kodaira classification. I have
added physics inspired associations with TGD.

Birational geometries are one central approach to algebraic geometry.

1. They provide classification of complex varieties to equivalence classes related by birational
maps. The classification complex curves (real dimension 2) reduces to the classification of
projective curves of projective space CPn determined as zeros of a homogeneous polynomial.
Complex surfaces (real dimension 4) are of obvious interest in TGD: now however the notion
of complex structure is generalized and one has Hamilton-Jacobi structure.

2. In TGD, a generalization of complex surfaces of complex dimension 2 in the embedding space
H = M4 × CP2 of complex dimension 4 is considered. What is new is the presence of the
Minkowski signature requiring a combination of hypercomplex and complex structures to the
Hamilton-Jacobi structure. Note however the space-time surfaces also have counterparts
in the Euclidean signature E4 × CP2: whether this has a physical interpretation, remains
an open question. Second representation is provided as 4-surfaces in the space M8

c of
complexified octonions and an attractive idea is that M8 − H duality corresponds to a
birational mapping of cognitive representations to cognitive representations.

3. Every algebraic variety is birationally equivalent with a sub-variety of CPn so that their
classification reduces to the classification of projective varieties of CPn defined in terms of
homogeneous polynomials. n = 2 (4 real dimensions) is of special relevance from the TGD
point of view. A variety is said to be rational if it is birationally equivalent to some
projective variety: for instance CP2 is rational.

4. A concrete example of birational equivalence is provided by stereographic projections of
quadric hypersurfaces in n+1-D linear space. Let p be a point of quadric. The stereographic
projection sends a point q of the quadric to the line going through p and q, that is a
point of CPn in the complex case. One can select one point on the line as its representative.
Another exammple is provided by Möbius transformations representing Lorentz group as
transformations of complex plane.

The notion of a minimal model is important.

1. The basic observation is that it is possible to eliminate or add singularities by using
birational maps of the space in which the surface is defined to some other spaces, which can
have a higher dimension. The zeros of a birational map can be used to eliminate singularities
of the algebraic surface of dimension n by blowups replacing the singularity with CPn. Poles
in turn create singularities. Peaks and self-intersections are examples of singularities.

https://en.wikipedia.org/wiki/Birational_geometry
https://en.wikipedia.org/wiki/Enriques\OT1\textendash Kodaira_classification
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The idea is to apply birational maps to find a birationally equivalent surface representation,
which has no singularities. There is a very counter-intuitive formal description for this. For
instance, complex curves of CP2 have intersections since their sum of their real dimensions is
4. The same applies to 4-surfaces in H. My understanding is as follows: the blowup for CP2

makes it possible to get rid of an intersection with intersection number 1. One can formally
say that the blow up by gluing a CP1 defines a curve which has negative intersection number
-1.

2. In the TGD framework, wormhole contacts have the same metric and Kähler structure as
CP2 and light-like M4 projection (or even H projection). They appear as blowups of singu-
larities of 4-surfaces along a light-like curve of M8. The union of the quaternionic/associative
normal spaces along the curve is not a line of CP2 but CP2 itself with two holes correspond-
ing to the ends of the light-like curve. The 3-D normal spaces at the points of the light-like
curve are not unique and form a local slicing of CP2 by 3-D surfaces. This is a Minkowskian
analog of a blow-up for a point and also an analog of cut of analytic function.

The Italian school of algebraic geometry has developed a rather detailed classification of
these surfaces. The main result is that every surface X is birational either to a product P1 ×
CforsomecurveCortoaminimalsurfaceY.P referredextremalsareindeedminimalsurfacessothatspace−
timesurfacesmightdefine minimalmodels.Theabsenceofsingularities(typicallypeaksorself−intersections)characterizingminimalmodelsisindeedverynaturalsincephysicallythepeaksdonotlookacceptable.

There are several birational invariants listed in the Wikipedia article. Many of them are rather
technical in nature. The canonical bundle KX for a variety of complex dimension n corresponds
to n:th exterior power of complex cotangent bundle that is holomorphic n-forms. For space-time
surfaces one would have n = 2 and holomorphic 2-forms.

1. Plurigenera corresponds to the dimensions for the vector space of global sections H0(X,Kd
X)

for smooth projective varieties and are birational invariants. The global sections define global
coordinates, which define birational maps to a projective space of this dimension.

2. Kodaira dimension measures the complexity of the variety and characterizes how fast the
plurigenera increase. It has values −∞, 0, 1, ..n and has 4 values for space-time surfaces. The
value −∞ corresponds to the simplest situation and for n = 2 characterizes CP2 which is
rational and has vanishing plurigenera.

3. The dimensions for the spaces of global sections of the tensor powers of complex cotangent
bundle (holomorphic 1-forms) define birational invariants. In particular, holomorphic forms
of type (p, 0) are birational invariants unlike the more general forms having type (p, q).
Betti numbers are not in general birational invariants.

4. Fundamental group is birational invariant as is obvious from the blowup construction. Other
homotopy groups are not birational invariants.

5. Gromow-Witten invariants are birational invariants. They are defined for pseudo-holomorphic
curves (real dimension 2) in a symplectic manifold X. These invariants give the number of
curves with a fixed genus and 2-homology class going through n marked points. Gromow-
Witten invariants have also an interpretation as symplectic invariants characterizing the
symplectic manifold X.

In TGD, the application would be to partonic 2-surfaces of given genus g and homology charge
(Kähler magnetic charge) representatable as holomorphic surfaces in X = CP2 containing
n marked points of CP2 identifiable as the loci of fermions at the partonic 2-surface. This
number would be of genuine interest in the calculation of scattering amplitudes.

What birational classification could mean in the TGD framework?

1. Holomorphic ansatz gives the space-time surfaces as Bohr orbits. Birational maps give new
solutions from a given solution. It would be natural to organize the Bohr orbits to birational
equivalence classes, which might be called cognitive equivalence classes. This should induce
similar organization at the level of M8

c .

 https://en.wikipedia.org/wiki/Canonical_bundle
https://en.wikipedia.org/wiki/Gromov\OT1\textendash Witten_invariant
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2. An interesting possibility is that for certain space-time surfaces CP2 coordinates can be
expressed in terms of preferred M4 coordinates using birational functions and vice versa.
Cognitive representation in M4 coordinates would be mapped to a cognitive representation
in CP2 coordinates.

3. The interpretation of M8 − H duality as a generalization of momentum position duality
suggests information theoretic interpretation and the possibility that it could be seen as a
cognitive/birational correspondence. This is indeed the case M4 when one considers linear
M4 coordinates at both sides.

4. An intriguing question is whether the pair of hypercomplex and complex coordinates as-
sociated with the Hamilton-Jacobi structure could be regarded as cognitively acceptable
coordinates. If Hamilton-Jacobi coordinates are cognitively acceptable, they should relate to
linear M4 coordinates by a birational correspondence so that M8−H duality in its basic form
could be replaced with its composition with a coordinate transformation from the linear M4

coordinates to particular Hamilton-Jacobi coordinates. The color rotations in CP2 in turn
define birational correspondences between different choices of Eguchi-Hanson coordinates.

If this picture makes sense, one could say that the entire holomorphic space-time surfaces,
rather than only their intersections with mass shells H3 and partonic orbits, correspond to
cognitive explosions. This interpretation might make sense since holomorphy has a huge
potential for generating information: it would make TGD exactly solvable.
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