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Abstract

In TGD, geometric and number theoretic visions of physics are complementary. This
complementarity is analogous to momentum position duality of quantum theory and implied
by the replacement of a point-like particle with 3-surface, whose Bohr orbit defines space-time
surface.

At a very abstract level this view is analogous to Langlands correspondence. The recent
view of TGD involving an exact algebraic solution of field equations based on holography=
holomorphy vision allows to formulate the analog Langlands correspondence in 4-D context
rather precisely. This requires a generalization of the notion of Galois group from 2-D situation
to 4-D situation: there are 2 generalizations and both are required.

1. The first generalization realizes Galois group elements, not as automorphisms of a number
field, but as analytic flows in H = M4 × CP2 permuting different regions of the space-
time surface identified as roots for a pair f = (f1, f2) of pairs f = (f1, f2) : H → C2,
i = 1, 2. The functions fi are analytic functions of one hypercomplex and 3 complex
coordinates of H.

2. Second realization is for the spectrum generating algebra defined by the functional com-
positions g ◦ f , where g : C2 → C2 is analytic function of 2 complex variables. The
interpretation is as a cognitive hierarchy of function of functions of .... and the pairs
(f1, f2) which do not allow a composition of form f = g ◦ h correspond to elementary
function and to the lowest levels of this hierarchy, kind of elementary particles of cog-
nition. Also the pairs g can be expressed as composites of elementary functions and it
makes sense to prime pairs (g1, g2).

If g1 and g2 are polynomials with coefficients in field E identified as an extension of
rationals, one can assign to g ◦ f root a set of pairs (r1, r2) as roots f1, f2) = (r1, r2) and
ri are algebraic numbers defining disjoint space-time surfaces. One can assign to the set
of root pairs the analog of the Galois group as automorphisms of the algebraic extension
of the field E appearing as the coefficient field of (f1, f2) and (g1, g2). This hierarchy
leads to the idea that physics could be seen as analog of formal system appearing in
Gödel’s theorems and that the hierarchy of functional composites could correspond to a
hierarchy of meta levels in mathematical cognition.

3. The iteration of prime pairs g defines functional analogs for the powers of p-adic primes
and one can define a functional generalization of p-adic numbers. The generalization of
Witt polynomials as a representation of p-adic numbers allows us to realize the func-
tional p-adic numbers as space-time surfaces. The space-time surfaces as roots of Witt
polynomials are characterized by ramified primes possibly having an interpretation as
p-adic primes and the iterates of prime polynomials g might allow us to understand the
p-adic length scale hypothesis.

4. The notion of infinite prime can be assigned to rational functions fi and a generalization
of this notion to the maps g.

1 Introduction

The Quanta Magazine article (see this) related to Langlands correspondence and involving con-
cepts like elliptic curves, modular functions, and Galois groups served as an inspiration for these
comments. Andrew Wiles in his proof of Fermat’s Last Theorem used a relationship between el-
liptic curves and modular forms. Wiles proved that certain kinds of elliptic curves are modular in
the sense that they correspond to a unique modular form. Later it was proved that this is true
for all elliptic surfaces. Later the result was generalized to real quadratic extensions of rationals
by 3 mathematicians involving Samir Siksek and now by Caraiani and Newton for the imaginary
quadratic extensions.

Could this correspondence be proved for all algebraic extensions of rationals? And what about
higher order polynomials of two variables? Complex elliptic curves, defined as roots of third order
polynomials of two complex variables, are defined in 2-D space with two complex dimensions have
the special feature that they allow a 2-D discrete translations as symmetries: in other words, they
are periodic for a suitable chosen complex coordinate. I have talked about this from TGD point
of view in [L12]. Is the 1-1 correspondence with modular forms possible only for elliptic curves
having these symmetries?

https://www.quantamagazine.org/elliptic-curves-yield-their-secrets-in-a-new-number-system-20230706/
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How are the Galois groups related to this? Indian mathematical genius Ramanujan realized
that modular forms seem to be associated with so-called Galois representations. The Galois group
would be the so- called absolute Galois group of the number field involved with the representation.
Very roughly, they could be seen as representations of a Lie group which extends the Galois group.
Also elliptic curves are associated with Galois representations. This suggests that the Galois
representations connect elliptic curves, objects of algebraic geometry and modular forms, which
correspond to group representations. These observations led to Langlands program which roughly
states a correspondence between geometry and number theory.

The Galois group is indeed involved with Langlands duality. If the Lie group G is defined over
field k (in the recent case extension of rationals), the Langlands dual LG of G is an extension
of the absolute Galois group of k by a complex Lie group (see this. The representation of the
absolute Galois group is finite-dimensional, which suggests that it reduces to a Galois group for a
finite-dimensional extension of rationals. Therefore the effective Galois group used can be larger
than the Galois group of extension of rationals. LG has the same Lie algebra as G.

In the following, I will consider the situation from a highly speculative view point provided by
TGD. In TGD, geometric and number theoretic visions of physics are complementary: M8 − H
duality in which M8 is analogous to 8-D momentum space associated with 8-D H = M4×CP2 is a
formulation for this duality and makes Galois groups and their generalizations dynamic symmetries
in the TGD framework [L9]. This complementarity is analogous to momentum position duality
of quantum theory and implied by the replacement of a point-like particle with 3-surface, whose
Bohr orbit defines space-time surface.

At a very abstract level this view is analogous to Langlands correspondence [L10]. The re-
cent view of TGD involving an exact algebraic solution of field equations based on holography=
holomorphy vision allows to formulate the analog Langlands correspondence in 4-D context rather
precisely. This requires a generalization of the notion of Galois group from 2-D situation to 4-D
situation: there are 2 generalizations and both are required.

1. The first generalization realizes Galois group elements, not as automorphisms of a number
field, but as analytic flows in H = M4 × CP2 permuting different regions of the space-time
surface identified as roots for a pair f = (f1, f2) of pairs f = (f1, f2) : H → C2, i = 1, 2. The
functions fi are analytic functions of one hypercomplex and 3 complex coordinates of H.

2. Second realization is for the spectrum generating algebra defined by the functional composi-
tions g ◦f , where g : C2 → C2 is analytic function of 2 complex variables. The interpretation
is as a cognitive hierarchy of function of functions of .... and the pairs (f1, f2) which do not
allow a composition of form f = g ◦ h correspond to elementary function and to the lowest
levels of this hierarchy, kind of elementary particles of cognition. Also the pairs g can be
expressed as composites of elementary functions.

If g1 and g2 are polynomials with coefficients in field E identified as an extension of rationals,
one can assign to g ◦ f root a set of pairs (r1, r2) as roots f1, f2) = (r1, r2) and ri are
algebraic numbers defining disjoint space-time surfaces. One can assign to the set of root
pairs the analog of the Galois group as automorphisms of the algebraic extension of the field
E appearing as the coefficient field of (f1, f2) and (g1, g2). This hierarchy leads to the idea
that physics could be seen as analog of formal system appearing in Gödel’s theorems and
that the hierarchy of functional composites could correspond to a hierarchy of meta levels in
mathematical cognition [L11].

The iteration of prime pairs g defines functional analogs for the powers of p-adic primes and one
can define a functional generalization of p-adic numbers. The generalization of Witt polynomials
as a representation of p-adic numbers allows us to realize the functional p-adic numbers as space-
time surfaces. The space-time surfaces as roots of Witt polynomials are characterized by ramified
primes possibly having an interpretation as p-adic primes and the iterates of prime polynomials g
might allow us to understand the p-adic length scale hypothesis.

https://en.wikipedia.org/wiki/Langlands_dual_group
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2 Two Galois groups

In TGD it is possible to define two generalizations of the Galois group: I call them internal and
external Galois groups. Both notions of the Galois group are needed.

2.1 Internal Galois group

The 4-D Galois group, the internal Galois group, is assumed to permute the regions of a single
connected component of the space-time surface realized as roots of the pair (f1, f2) defining the
space-time surface. The internal Galois group would act as analytic flows of H transforming the
regions as roots to ech other so that the action is analogous to that of a braid group.

1. It is easy to see that the space-time surface in general consists of several disjoint regions
if (f1, f2) is expressible as the composite (f1, f2) = (g1(h1, h2), g2(h1, h2)). In this case the
space-time surface is union of disjoint surfaces hi = ri, where ri correspond to the roots of gi.
The permutations of the roots for a connected component of the space-time surface would
realized as analogs of braidings.

2. The space-time regions identified as roots of (f1, f2) for a single connected component would
have string world sheets as interfaces having hypercomplex time coordinates u, v. Suppose
that there are n string world sheets. The number of string world sheets/folds can be larger
than n. If folds are between any pair i, j are present then the number of folds cannot be larger
than (n− 1)n: in this case all pairs i, j would have two folds. Circle is a simple example: it
has 2 sheets and 2-folds: 1,2 and 2,1.

Since the M4 complex coordinates w and roots as its values labelling the string world sheets
are in general complex, one can say that the fold is complexified. For a cusp (see this) the two
folds can be ordered. Fold would now involve a string world sheet and cusp would combine
two folds. At the vertex of the cusp where 3 roots co-incide, two folds would disappear. This
suggests that the string world sheets connect at their ends associated with the disappearing
folds and form a single string world sheet.

3. Catastrophe theory suggests that all catastrophes and hence also the space-time surfaces can
be constructed from complexified cusps. The folds, which appear on a cloth, can be ordered.
If so, folds between roots i, i+ 1 and i− 1, i are possible and would come from a single cusp
but folds with |i − j ≥ 1 would not be possible. This could give rise to the ordering of the
roots Wi. Does this mean that the Galois group is cyclic?

4. This brings in mind twistor amplitudes and planar diagrams, which correspond to Feynman
diagrams with no crossing lines and therefore embeddable in plane. Non-planar Feynman
diagrams are a problem of the twistor Grasmannian approach [B2, B1] since they have no
twistorial representation. The Feynman diagrams with crossing lines can be embedded in
the plane with holes, whose boundaries are connected by cylinders as kinds of wormholes.
In string models, the corresponding diagrams involve this kind of wormholes. This suggests
that if the 2-D projection of the space-time sheets with constant values of hypercomplex
coordinates has a topology with a genus g larger than 0, the space-time surface contains
wormholes connecting roots with |i− j ≥ 1. In this case also the generalized Galois group is
non-Abelian. Wormhole contacts defining Euclidean regions (CP2 type extremals) could be
such connections.

To include wormhole contacts as connectors of the Minkowskian space-time sheets, one should
allow besides the Minkowskian folds also the presence of the Euclidean CP2 type extremals
with a light-like M4 curve, possibly geodesic, as M4 projection. For these Euclidean regions
the string world sheet would reduce to this curve since the second hypercomplex coordinate
would be constant.

The internal Galois group could relate to the TGD view of topological qubits [L13].

1. The quantum-mechanical transfer of fermions between regions corresponding to roots of
(f1, f2) does not require a continuous path. Classical transfer requires a path going through

https://en.wikipedia.org/wiki/Catastrophe_theory
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a fold at which the two roots as space-time regions meet. Fold corresponds to a boundary of
a string world sheet identified as fermion line. Folds are labelled by the values of the complex
coordinate w having interpretation as roots.

2. There is a direct analogy to the case of condensed matter majorana fermions suggested to
define topological qubits. For a Majorana fermion two branches of the Fermi surface touch
each other at point and the energy difference for the branches is zero at this point. Majorana
fermions are assigned with these points and they would be located at the ends of a wire [L13].
In the TGD framework the folds would correspond to the seats of topological qubits.

2.2 Outer Galois group

The element-wise multiplication of the function for pairs (f1, f2) is essential for the identification
of the outer Galois group and gives an algebra, which is enough for identifying the Galois group
as group of automorphisms for the algebraic extension of rationals involved. Outer Galois group
permutes the roots of g, which are algebraic numbers in the extension of E and label the disjoint
components of the spacetime surfaces. These two Galois groups commute and the outer Galois
group relates to the internal Galois group in the same way as the Galois group of an extension of
rationals to the Galois group of complex rations generated by complex conjugation.

The outer Galois group is natural for the TGD realization of the Langlands duality, discussed
from the TGD point of view in [L10].

1. A simpler version of the outer Galois group is associated with dynamical complex analytic
symmetries g : C → C: (f1, f2) → (g1 ◦ f1, f2). Here g1 does not have a parametric
dependence on f2. The outer Galois group relates to each other disjoint space-time surfaces.
When g reduces to map g : C → C, one can assign to it an ordinary Galois group relating to
each other the disjoint roots of g ◦ f realized as disjoint 4-surfaces (f1, f2) = (r1, 0).

2. The notion of outer Galois group generalizes to the general situation g = (g1, g2). Also now
the roots of g ◦ f are disjoint space-time surfaces representing roots as pairs of algebraic
numbers (f1, f2) = (ri,1, ri,2). Is it possible to assign to the roots the analog of the Galois
group?

This group should act as a group of automorphisms of some algebraic structure. This struc-
ture cannot be a field but algebra structure is enough. These arithmetic operations would
be component-wise sum (a, b) + (c + d) = (a + c, b + d) and componentwise multiplication
(a, b) ∗ (c, d) = (ac, bd). The basic algebra would correspond to the points of (x, y) ∈ E2

or rationals and the extension would be generated by the pairs (f1, f2) = (ri,1, ri,2). This
structure has an automorphism group and would serve as a Galois group. The dimension of
the extension of E2 could define the value of the effective Planck constant.

Also the notion of discriminant can be generalized to a pair (D1, D2) of discriminants using
the component-wise product for the differences of root pairs. Could Di be decomposed to a
product of powers of algebraic primes of the extension of E2?

3. In [L10] the idea that the space-time surfaces can be regarded as numbers was discussed.
For a given g, one can indeed construct polynomials having any for algebraic numbers in the
extension F of E defined by g. g itself can be represented in terms of its n roots ri = (ri,1, ri,2),
i = 1, n represented as space-time surfaces as a product

∏
i(f1 − ri,1, f2 − ri,2) of pairs of

monomials. One can generalize this construction by replacing the pairs (ri,1, ri,2) with any
pair of algebraic numbers in F . Therefore all algebraic numbers in F can be represented as
space-time surfaces. Also the sets formed by numbers in F can be represented as unions of
the corresponding space-time surfaces.

3 Symmetries and dynamical symmetries

It is good to look first at the action of g on f in more detail.
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1. In the simplest situation fi and gi are polynomials with coefficients in E. The functional
composition f → g ◦ f increases algebraic complexity if the degree of g is higher than 1. The
interpretation would be as a spectrum generating or dynamical symmetry.

If g = (a, b; c, d), ad − bc = 1 as an element of SL(2, C) acts on (f1, f2) linearly, the degree
g is 1 and the complexity does not increase. The conditions (f1, f2) = (0, 0) imply (af1 +
bf2, cf1 + df2) = (0, 0) so that the original space-time surface f1, f2) = (0, 0) is a solution.
The interpretation would be as a gauge symmetry. However, also the space-time surfaces
(af1 + bf2, cf1 + df2) = (0, 0) with (fi, fj) 6= (0, 0) could be considered and one would obtain
an entire SL(2, C) orbit. The interpretation would be as a dynamical symmetry.

2. fi and gi could also be rational functions but this is not necessary. Since the roots of fi
correspond to the roots of the polynomial P defining the numerator of R = P/Q, Q does not
affect the roots as space-time surfaces.

3.1 Prime polynomials in C2 and complexity hierarchy

The polynomials (P1, P2) and also the rational functions (g1 = P1/Q1, g2 = P2/Q2) form a well-
defined complexity hierarchy.

1. In the general case, the space-time surfaces (f1, f2) = (0, 0): H → C2 have several disjoint
components. This is the case if (f1, f2) is a composite function of form f = g(h). In other
words, one has (f1, f2) = (g1(h1, h2), g2(h1, h2)). The space-time surfaces correspond to roots
hi = ri, which are disjoint.

2. SL(2, C) transformations however act linearly in C2 and the original space-time surface
(f1, f2) = (0, 0) solves the conditions. Note that also the surfaces (af1+bf2, cf1+df2) = (0, 0)
with (f1, f2) 6= (0, 0) define solutions. Their action is therefore equivalent with the action of
a multiplicative unit. Hence SL(2, C) acts either as a gauge symmetry or as a dynamical
symmetry.

3. To avoid disjoint union of space-time surfaces (f1, f2) must be a prime polynomial in the
sense that it does not allow the functional composition f = g ◦h with g having degree higher
than 1. For the polynomials of a single variable, this is the case if the degree of the
polynomial is prime but this is not a necessary condition for primeness. As already found,
this condition generalizes to the polynomials of 3 complex variables considered in the recent
case.

Space-time surfaces of these kinds are excellent candidates for fundamental objects and the
polynomial in question would have prime degree with respect to each of the 3 complex
coordinates of H: this would make 3, presumably small primes. The composites formed of
maps g and of these fundamental function pairs f would define cognitive representations of
the surface defined by f as kind of statements about statements. An interesting question is
whether these surfaces could correspond to elementary particles.

Consider first the primality for pairs (g1, g2).

1. For the polynomials of a single variable, this is the case if the degree of the polynomial is
prime but this is not a necessary condition for primeness. In the recent case this means
that by a suitable choices of gauge using SL(2, C) transformation one could choose that for
prime pairs (g1(f1, f2), g2(f1, f2)) g1 has highest power of f1 equal to prime. Single prime
labels the prime polymial pair (g1, g2).

2. There is also a natural measure of complexity as the number of maps g, which correspond to
prime polynomial pairs (g1 = P1, g2 = P2) appearing in the functional composite with a pair
of prime polynomials (f1, f2). Here the prime polynomials Pi must have degree higher than
1 in order to increase the complexity and affect the space-time surface at all.

What about primality in the case of (f1, f2) : H → C2, which are polynomials of 3 complex
coordinates of H. The situation reduces to that for f1 by the above argument but does this mean
that for prime polynomial pairs (f1, f2), fi are characterized by 3 prime degrees?
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1. In this case one would have reducible polynomials f1 = ξp1

1 ξ
p2

2 w
p3 as prime polynomials. The

conditions (f1, f2) = 0 would define 3 disjoint 4-surfaces which might have common points.
This situation is prevented if the the polynomials are required to be irreducible but one
would have polynomials ξp1

1 , ξp2

2 , and wp3 as polynomial primes for f1 and f2. The problem
is that these polynomials involve only a single power and their roots are zero irrespective of
the value of pi so that all these powers would correspond to the same space-time surface.
One can say that all roots for these powers are degenerate and equal to zero. The physical
interpretation would be in terms of maximal criticality.

2. The coefficients of powers of p for p-adic numbers can be regarded as numbers in a finite
field Fp. Now the numbers of Fp would correspond to polynomials P (z) of degree lower
than p. Could the analogs of the number of Fp correspond to the sums of the products of
powers of w resp. ξ1 resp. ξ2 with maximal exponents smaller p1 resp. p2 resp. p3. If this
picture is correct, the counterparts of prime powers would be ξn1p1

1 ξn2p2

2 wn3p3 . As if one had
3 p-adicities simultaneously. If irreducibility is required only ξn1p1

1 , ξn2p2

2 , wn3p3 are possible.

For the functional analogs of p-adic numbers as sums of polynomials of ξ1, ξ2, and w expanded
with respect to powers of powers of ξn1p1

1 , ξn2p2

2 and wn3p3 with coefficients as polynomials
of single variable of lower degree, this problem is not encountered.

3. Space-time surfaces corresponding to prime pairs (f1, f2) are candidates for fundamental ob-
jects and the polynomial in question would have prime degree with respect to each of the
3 complex coordinates of H: this would make 3, presumably small primes. The composites
formed of maps g and of these fundamental function pairs f would define cognitive represen-
tations of the surface defined by f as kind of statements about statements. An interesting
question is whether these surfaces could correspond to elementary particles.

What could be the physical interpretation of the prime polynomials (f1, f2) and (g1, g2), in
particular (g1, Id) and how could it relate to the p-adic length scale hypothesis [L3]?

1. Probably the primes as orders of prime polynomials do not correspond to very large p-adic
primes (M127 = 2127 − 1 for electron) assigned in p-adic mass calculations to elementary
particles and tentatively identified as ramified primes [L3] appearing as divisors of the dis-
criminant of a polynomials define as the product of root differences, which could correspond
to that for g = (g1, Id).

2. p-Adic length scale hypothesis states that the physically preferred p-adic primes correspond
to powers p ' 2k. Also powers p ' qk of other small primes q can be considered [K5] and
there is empirical evidence of time scales coming as powers of q = 3 [I1, I2]. For Mersenne
primes Mn = 2n − 1, n is prime and this inspires the question whether k could be prime
quite generally. The proposal has been that the p and k would correspond to a very large
and small p-adic length scale. Could the 3 primes characterizing the prime polynomials fi
correspond to the small primes q and could the ramified primes p ' 2k be associated with
the polynomials obtained to theire iterated functional composites?

Could small-p p-adicity make sense and could the p-adic length scale hypothesis relate small-p
p-adicity and large-p p-acidity?

1. Could the p-adic length scale hypothesis in its basic form reflect 2-adicity at the fundamental
level or could it reflect that p = 2 is the degree for the lowest prime polynomials, certainly
the most primitive cognitive level. Or could it reflect both?

2. Could p ' 2k emerge when the action of a polynomial g1 of degree 2 with respect to say
the complex coordinate w of M4 on polynomial Q is iterated functionally: Q → PcircQ →
P ◦ ...P ◦ Q and give n = 2k disjoint space-time surfaces as representations of the roots.
For p = 2 the iteration is the procedure giving rise to Mandelbrot fractals and Julia sets.
Electrons would correspond to objects with 127 iterations and cognitive hierarchy with 127
levels! Could p = M127 be a ramified prime associated with P ◦ ... ◦ P .

If this is the case, p ' 2k and k would tell about cognitive abilities of an electron and not
so much about the system characterized by the function pair (f1, f2) at the bottom. Could
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the 2k disjoint space-time surfaces correspond to a representation of p ' 2k binary numbers
represented as disjoint space-time surfaces realizing binary mathematics at the level of space-
time surfaces? This representation brings in mind the totally discontinuous compact-open
p-adic topology. Cognition indeed decomposes the perceptive field into objects.

3. This generalizes to a prediction of hierarchies p ' qk, where q is a small prime as compared
to p and identifiable as the prime order of a prime polynomial with respect to, say, variable
w.

A highly interesting observation is that the numbers allowing expansions in powers of an integer
n having powers of primes belonging to some set can be regarded as p-adic integers for all these
primes. One might say that these numbers belong to an intersection of these number fields. This
could allow gluing of p-adic factors of adeles to single continuous structure. This suggests the
possibility of multi-p p-adicity. The discriminant D of a polynomial defined as root differences can
be expressed as a product of powers of so called ramified primes and the question is which of them
is physically selected and why. Could multi-p p-adicity prevail that the expansions of physical
quantities are in powers of D. I have also proposed that D, or its suitable power, is the number
theoretical counterpart for the exponent of Kähler function as vacuum functional.

3.2 Witt vectors and Witt polynomials and the representation of gen-
eralized p-adic numbers as space-time surfaces

We have had very inspiring discussions with Robert Paster, who advocates the importance of
universal Witt Vectors (UWVs) and Witt polynomials (see this) in the modelling of the brain,
have been very inspiring. As the special case Witt vectors code for p-adic number fields.
Witt polynomials are characterized by their roots, and the TGD view about space-time
surfaces both as generalized numbers and representations of ordinary numbers, inspires the idea
how the roots of for suitably identified Witt polynomials could be represented as space-time
surfaces in the TGD framework. This would give a representation of generalized p-adic numbers
as space-time surfaces.

Could the prime polynomial pairs (g1, g2) : C2 → C2 and (f1, f2) : H = M4 × CP2 → C2

(perpaps states of pure, non-reflective awareness) characterized by small primes give rise to p-adic
numbers represented in terms of space-time surfaces such that these primes could correspond to
ordinary p-adic primes? Same question applies to the pairs (f1, f2) which are functional primes.

1. Universal Witt vectors and polynomials can be assigned to any commutative ring R, not only
p-adic integers. Witt vectors Xn define sequences of elements of a ring R and Universal
Witt polynomials Wn(X1, X2, ..., Xn) define a sequence of polynomials of order n. In the case
of p-adic number field Xn correspond to the pinary digit of power pn and can be regarded
as elements of finite field Fp which can be also mapped to phase factors exp(ik2π/p). The
motivation for Witt polynomials is that the multiplication and sum of p-adic numbers can
be done in a component-wise manner for Witt polynomials whereas for pinary digits sum
and product affect the higher pinary digits in the sum and product.

In the general case, the Witt polynomial as a polynomial of several variables can be written

as Wn(X0, X1, ...) =
∑

d|n dX
n/d
d , where d is a divisor of n, with 1 and n included.

2. The function pairs (f1, f2) : M4 → C2 define a ring-like structure. Product and sum are
well-defined for these pairs. The function pair related to (f1, f2) by a multiplication by a
function pair (h1, h2), which vanishes nowhere in CD, defines the same space-time surface as
the original one is equivalent with the original one. Note that also the powers (fn1 , f

n
2 ) define

the same 4-surfaces as (f1, f2).

The degrees for the product of polynomial pairs (P1, P2) and (Q1, Q2) are additive. In the
sum, the degree of the sum is not larger than the larger degree and it can happen that the
highest powers sum up to zero so that the degree is smaller. This reminds of the properties
of non-Archimedean norm for the p-adic numbers. The zero element defines the entire H as
a root and the unit element does not define any space-time surface as a root.

For the pairs (g1, g2) also functional composition is possible and the degrees are multiplicative
in this operation.

https://en.wikipedia.org/wiki/Witt_vector
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3. Functional primes (f1, f2) define analogs of ordinary primes and the polynomials with degrees
associated with the 3 complex coordinates of H below the primes associated with these
coordinates are analogous to pinary digits. Also the pairs (g1, g2) define functional primes
both with respect to powers defined by element-wise product and functional composition ◦.

3.2.1 Generalization of Witt polynomials

Could a representation of polynomials, in particular the analogs of Witt polynomials in terms
of their roots in turn represented in terms of space-time surfaces, be a universal feature of
mathematical cognition? If so, cognition would really create worlds! In Finland we have Kalevala
as a national epic and it roughly says that things were discovered by first discovering the word
describing the thing. Something similar appears in the Bible: ”In the beginning was the Word,
and the Word was with God, and the Word was God. Word is world!

Could p-adic numbers or their generalization for functional primes (f1, f2) have a representa-
tion in terms of Witt polynomials coded by their roots defining space-time surfaces.

1. Wn is a polynomial of n arguments Xk whereas the arguments of the polynomials defining
space-time surfaces correspond to 3 complex H coordinates. In the p-adic case the factors
d are powers of p. Xd are analogous to elements of a finite field as coefficients of powers of
p.

2. There are two cases to consider. The Witt polynomials assignable to the space-time surfaces
(f1, f2) = (0, 0): H → C2 using element-wise sum and product. For the pairs g = (g1, g2) =
(0, 0): C2 → C2 one can consider sum and element-wise product giving gn = (gn1 , g

n
2 ) and

the sum or functional composition giving g ◦ g... ◦ g ≡ ◦ng. The latter option looks especially
attractive. One reason is that by the previous considerations the prime surface pairs (f1, f2)
might be two simple. For instance the iterations (g1, g2) with prime degree 2, 3, .. could give
a justification for the p-adic length scale hypothesis and its generalization.

Consider first the pairs (f1, f2): H → C2.

1. If the space-time surface (f1, f2) = (0, 0) is prime with respect to the functional composition
f → g ◦ f , it naturally generalizes the p-adic prime p so that one would have pk → (f1, f2)k

and n1 = n2.

Xk are the analogs of pinary digits as elements of finite fields. Could they correspond to
polynomials with the 3 degrees smaller than the corresponding prime degree assignable to
the prime polynomial (f1, f2)?

2. With these identifications it might be possible to generalize the Witt polynomials to their
functional variants as such and find its roots represented as space-time surfaces. These
surfaces would represent the functional analog of the p-adic number field. One can also
assign to the functional p-adic numbers ramified primes defining ordinary p-adic primes.
Each functional p-adic number would define ramified primes and these would correspond to
the p-adic primes.

3. fi are labelled by 3 ordinary primes pr(fi), r = 1, 2, 3, rather than single prime p and by the
earlier argument one can restrict the condition to f1.

Every functional p-adic number corresponds to its own ramified primes determined by the
roots of its Witt polynomial. There is a huge number of these generalized p-adic numbers.
Could some special functional p-adic primes correspond to elementary particles? The
simplest generalized p-adic number corresponds to a functional prime and in this case the
surface in question would correspond to (f1, f2) = (0, 0) (could this be interpreted as stating
the analog of mod p = 0 condition). These prime surfaces might be too simple and it is not
easy to understand how the large values of p–adic primes could be understood.

One can ask whether the analogs of ramified primes for the Witten polynomials assignable
abstraction hierarchies g◦g◦...◦f and powers gn = (gn1 , g

n
2 ) for which the degree of the polynomials

is n× p, p the primes assignable to g.
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1. The ramified primes for the Witten polynomials for g ◦ g ◦ ...g ◦ f and gn defining
analogs of powers pn of p-adic numbers. Note that the roots of g ◦ g ◦ ...g ◦ f are a property
of g ◦ g ◦ ... ◦ g and do not depend on f in case that they exist as surfaces inside the CD.

2. The interesting question is whether and how the ramified primes could relate to the
ramified primes assignable to a generalized Witt polynomial Wn. The iterated action
of prime g giving g ◦ g...g ◦ f is the best candidate. There is hope that even the
p-adic length scale hypothesis could be understood as a ramified primes assignable to some
functional prime. The large values of p-adic primes require that very large ramified primes
for the functional primes (f1, f2). This would suggest that the iterate g ◦ ..... ◦ g ◦ f acting
on prime f is involved. For p ' qk, kth power of g characterized by prime g is the first
guess.

Generalized p-adic numbers as such are a very large structure and the systems satisfying
the p-adic length scale hypothesis should be physically and mathematically special. Consider the
following assumptions.

1. Consider generalized p-adic primes associated restricted to the case when f2 is not affected
in the iteration so that one has g = (g1, Id) and g1 = g1(f1) is true. This would conform
with the hypothesis that f2 defines the analog of a slowly varying cosmological constant.
If one assumes that the small prime corresponds to q = 2, the iteration reduces to the
iteration appearing in the construction of Mandelbrot fractals and Julia sets. If one assumes
g1 = g1(f1, f2), f2 defines the analog of the complex parameter appearing in the definition
of Mandelbrot fractals. The values of f2 for which the iteration converges to zero would
correspond to the Mandelbrot set having a boundary, which is fractal.

2. For the generalized p-adic numbers one can restrict the consideration to mere powers gn1 as
analogs of powers pn. This would be a sequence of iterates as analogs of abstractions. This
would suggest g1(0) = 0.

3. The physically interesting polynomials g1 should have special properties. One possibility is
that for q = 2 the coefficients of the simplest polynomials make sense in finite field F2 so
that the polynomials are P2(z ≡ f1, ε) = z2 + εz = z(z + ε), ε = ±1 are of special interest.
For q > 2 the coefficients could be analogous to the elements of the finite field Fq represented
as phases exp(i2πk/3).

Consider now what these premises imply.

1. Quite generally, the roots of P ◦n(g1) are given R(n) = P ◦−n(0). P (0) = 0 implies that
the set Rn of roots at the level n are obtained as Rn = Rn(new) ∪ Rn−1, where Rn(new)
consist of q new roots emerging at level n. Each step gives qn−1 roots at the previous level
and qn−1 new roots.

2. It is possible to analytically solve the roots for the iterates of polynomials with degree 2
or 3. Hence for q = 2 and 3 (there is evidence for the 3-adic length scale hypothesis) the
inverse of g1 can be solved analytically. The roots at level n are obtained by solving the
equation P (rn) = rn−1,k for all roots rn−1,k at level n − 1. The roots in Rn−1(new) give
qn−1 new roots in Rn(new).

3. For q = 2, the iteration would proceed as follows:

0→ {0, r1} → {0, r1} ∪ {r21, r22} → {0, r1} ∪ {r21, r22} ∪ {r121, r221, r122, r222} → ... .

4. The expression for the discriminant D of g◦n1 can be deduced from the structure of the root
set. D satisfies the recursion formula D(n) = D(n, new)× D(n−1)×D(n, new;n−1). Here
D(n, new) is the product ∏

ri,rj∈∈D(n,new)

(ri − rj)2
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and

D(n, new;n− 1) is the product ∏
ri∈D(n,new),rj ∈D(n−1)

(ri − rj)2 .

5. At the limit n→∞, the set Rn(new) approaches the boundary of the Fatou set defining
the Julia set.

As an example one can look at the iteration of g1(z) = z(z − ε).

1. The roots of z(z − ε) = 0 are {0, r1} = {0, ε}. At second level, the new roots satisfy
z(z − ε) = r1 = ε given by {(ε/2)(1 ±

√
1 + 4r1}. At the third level the new roots satisfy

z(z − ε) = r2 and given by {(ε/2)(1±
√

1 + 4r2}.

2. The points z = 0 and z = ε are fixed points. Assume ε = 1 for definiteness. The image points
w(z) = z(z− ε) satisfy the condition |w(z)/z| = |z− 1|. For the disk D(1, 1) : |z− 1| ≤ 1 the
image points therefore satisfy |w| ≤ |z| ≤ 2 and belong to the disk D(0, 2) : |z| ≤ 2.

For the points in D(0, 2)\D(1, 1) the image point satisfies |w| = |z − 1||z| giving |z| − 1| ≤
|w| ≤ |z|+1. Inside D(0, 2)\D(1, 1) this gives 0 ≤ |w| ≤ 3. Therefore w can be inside D(2, 0)
including D(1, 1) also inside disk D(0, 3).

For the points z outside D(2, 0) |w| = |z − 1||z| ≥ 2. So that the iteration leads to infinity
here.

3. For the inverse of the iteration relevant for finding the roots of f◦(−n) leads from the exterior
of D(2, 0) to its interior but cannot lead from interior to the exterior since in this case f
would lead to exterior to interior. Hence the values of the roots wn in ∪nf◦(−n)(0) belong to
the disc D(2, 0).

4. One can look at the asymptotic situation for very large values of n. At nth step 2n−1 new
roots emerge by doubling and one has rn+1,± = (1/2)(1±

√
1 + 4rn,±). For rn,± < −1/4 the

root pair becomes complex and could stay complex at the next steps. This happens already

at the step from r2 = 1/2(1±
√√

5)→ r3. If the iteration gives at some step a double real
root, its further iterations could approach a fixed point at this limit. This root rn → r would
satisfy r = (1/2)(1 ±

√
1 + 4r) giving r2 − 2r = 0 with root r1 = 2 and r1 = 0 these are

the intersections of the disk D(0, 2) with real axis. Note that r1 = 2 is not a fixed point of
z(z − 1).

There should exist a root rn, which at the real axes in the range (0, 2). This would require
that 1 + 4rn = 0 giving a double root rn = −1/4. The next steps would give rn+1 =

+1/2±
√

3→ rn+2 = 1/2(1±
√

2±
√

3). Second root would be complex. The positive real
roots are rn+1,+ ' 1.366 and rn+2,+ = 1.7708. This suggests that the convergence to r = 2
takes place for the positive roots. If this is the case the D discriminant contains the product
of the differences for these positive roots approaching zero. There is however no guarantee
that the double root rn = 1/2 emerges in the iteration.

The prime decompositions of D for k = 1, 2, ..., 7 are {1 : 1}, {5 : 1}, {5 : 3, 11 : 1}, {5 : 7, 11 :
3, 311 : 1}, {2 : 48, 3 : 3, 43 : 1, 73 : 1, 6577 : 1, 5521801 : 1,−1 : 1}, {2 : 209, 59 : 2, 3117269 :
1, 356831 : 1}, {2 : 596, 2358900226164371 : 1,−1 : 1}, where p : m denotes the prime and its
multiplicity. −1 : 1 tells that the discriminant is negative.

The conjecture deserving to be killed is that the discriminant D for the iterate has Mersenne
primes as factors for primes n defining Mersenne primes Mn = 2n−1 and that also for other values
of n D contains as a factor ramified primes near to 2n.
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3.3 About the identification of the Lie groups appearing in Langlands
duality?

Transformations (g1, g2) acting as symmetries should not increase the complexity and therefore
should preserve the degree of the numerator or perhaps decrease it. Several alternatives can be
considered.

1. If it is required that the polynomials fi remain polynomials, then SL(2, C) that acts on
(f1, f2) like in spinors is a natural alternative. A possible interpretation is as a Lorentz group
or alternatively as a group SL(2, C) assignable to the Virasoro algebra. The interpretation
as a gauge action is natural if one assumes that f2 = 0 has interpretation as a condition
defining the analog of a slowly varying cosmological constant.

2. The allowance of rational transformations g and also rational functions f would conform with
the notion of modular group representations. If they are are allowed and if one requires that
there is no mixing of f1 and f2 as mildly suggested by the element-wise product for (f1, f2),
the group reduces to SL(2, C) × SL(2, C). SL(2, C) consists of Möbius transformations
z → (az + b)/(cz + d) (see this). For polynomials f1, this gives new solutions except in the
case of inversion f1 → 1/f1. In this case one does not obtain a new solution unless one
assumes that f1 is a rational function f1 = P/Q such that Q has zeros.

SL(2, C) has a rich spectrum of subgroups and the modular representations are invariant
under some discrete subgroup of SL(2, C). The modular group corresponds to SL(2, Z)
which has various discrete subgroups leaving modular forms invariant. There is an entire
hierarchy of subgroups associated with the algebraic extensions of Z and in this case the
matrix elements would be algebraic integers. Now the integers for subgroup SL(2, Z) would
be replaced with the algebraic integers for E appearing as the coefficients of fi and gi.

3. If one allows the mixing of fi, Möbius group is replaced with group SL(3, C). What is
interesting is that SL(3, C) contains SU(3) as a subgroup acting as isometries of CP2. A
second interesting observation is that also SL(3, C) allows McKay correspondence in which
the finite subgroups of SU(2) are replaced by finite subgroups of SU(3) [L2]. This is highly
desirable in the TGD framework since SU(3) acts as isometries of CP2. An interesting
question is whether the McKay correspondence holds true for SL(n,C), n > 3.

Where should the Lie group for the analogs of Möbius transformations act? It is not natural to
require that a discrete subgroup would leave the space-time surface invariant. The most natural
option is that the action takes place in the ”world of classical worlds” (WCW) formed by the
generalized Bohr orbits satisfying holography= holomorphy principle. The counterparts of modular
forms could correspond to WCW spinor fields invariant under the appropriate discrete subgroup
of the generalized Möbius group.

3.4 Physical interpretation of the generalized modular group and spec-
trum generating group

One can consider several physical interpretations for the generalized modular group and dynamical
spectrum generating algebra formed by the maps g : C2 → C2.

1. Is the interpretation of SL(2, C) as a Lorentz group reasonable? The McKay correspondence
would refer to finite subgroups of SU(2). This interpretation is not necessary since the
Lorentz group and Poincare group act in the moduli space of causal diamonds (CDs). The
discrete subgroups of SU(2) appearing in Mac-Kay correspondence act in C as modular
transformations.

2. Could SL(3, C) refer to SU(3). It is known that SL(3, C) allows the generalization of Mac-
Kay correspondence to the finite subgroups of SU(3). SU(2) can be identified as a rotation
group and a subgroup of the color group.

Does this pose an interpretational problem? I have encountered a similar problem earlier
in the twistorialization [L9]: the twistor spheres of M4 twistor space and CP2 twistor space

https://en.wikipedia.org/wiki/M\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 127 o\egroup \spacefactor \accent@spacefactor bius_transformation
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are identified and this strongly suggests a close correspondence with the representations of
rotation group and weak gauge group, the holonomy group U(2) of CP2, which is identifiable
as a subgroup of SU(3). The quark and lepton doublets are indeed spin and isospin doublets
and this would allow us to realize this kind of correlation. In the recent formulation of
the twistorialization without explicit introduction of the twistor spaces of M4 and CP2, the
twistor spheres appear also as spheres embedded to the spacetime surfaces in H. Could the
identification of these two SU(2) subgroups be a part of the same story?

3. SL(2, C) could also correspond to the sub-algebra of the Virasoro algebra of the string mod-
els. SL(3, C) would naturally generalize this algebra to a 4-D situation. A generalization of
Super Virasoro algebra involving two variables occurs naturally in TGD. The gauge condi-
tions satisfied for the Super Virasoro algebra and associated Kac Moody type algebras are
essential in string models. A possible interpretation of the Super Virasoro algebra in terms of
infinitesimal analytic transformations which have interpretation as general coordinate trans-
formations so that although they do not respect the degree of the polynomial they do not
change the physics.

In the TGD framework, a breaking of superconformal invariance is assumed to occur. The
half-algebras associated with these algebras allow an infinite fractal hierarchy of sub-algebras
isomorphic to the entire algebra and super-conformal symmetry can break down to this kind
of sub-algebra [L7]. Therefore algebra generators with finite conformal weight below some
maximum value would not act anymore as gauge symmetries but tranform to dynamical sym-
metries. In the recent case, these generators could correspond to maps g, which correspond
to polynomial or rational functions with degree below some maximum value.

4. SL(3, C) would naturally generalize this algebra to a 4-D situation and define the extension
of Virasoro algebra two the case of two complex variables. This would be natural because
the string world sheets are replaced by spacetime surfaces.

Also the representations of the analogs of Super Virasoro and Super Kac-Moody algebras (in
particular super-symplectic algebra) are essential in TGD [?]. A natural expectation is that they are
also generalized modular representations and therefore involve the outer Galois group associated
with the space-time surfaces at the various levels of the hierarchy defined by the maps g. This
would conform with the view that the outer Galois group acts as physical symmetry group in the
TGD Universe. I have earlier developed this view in detail in the construction of quantum states.
The original identification of the Galois group was not however quite correct.

3.5 Langlands duality for the representations of the Lorentz group

In TGD, the modular forms defined in the hyperbolic space H3 are especially interesting. Lorentz
group acts on both. The earlier proposal is that modular forms can be generalized to H3 as
an analog of mass shell or Lorentz invariant cosmic time=constant hyperboloid. The discrete
subgroup of SL(2, C) as a symmetry group would define tessellations of H3: this is a rather strong
assumption.

Lorentz group and its discrete subgroups act on H3 or possibly on the light-cone boundary at
which the holographic data resides. Generalized modular forms could be also assigned with WCW
spinor fields. The counterpart of the Galois group would be the same as in the above proposal.
This picture applies also to color symmetries. This would give rise to the analogs of lattice waves
in E3. The holographic data invariant under a discrete subgroup would define tessellations as
analogs of the lattices in E3 [L4]. One application is a proposal of a universal realization of genetic
code based on completely exceptional tessellation of H3 involves instead of single Platonic solid
the three Platonic solids with triangular faces. Also applications in cosmological scales are possible
and there is some empirical evidence that stars could be assigned to a tessellation of H3 [L8].
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4 Infinite primes, the notion of rational prime, and holog-
raphy= holomorphy principle

The notion of infinite prime [K8, K2, K3] emerged a repeated quantization of a supersymmetric
arithmetic quantum field theory in which the many-fermion states and many-boson formed from
the single particle states at a given level give rise to free many-particle states at the next level.
Also bound states of these states are included at the new level. There is a correspondence with
rational functions as ratios R = P/Q of polynomials and infinite prime can be interpreted as prime
rational function in the sense that P and Q have no common factors. The construction is possible
for any coefficient field of polynomials identified as rationals or extension of rationals, call it E.

At a given level implest polynomials P and Q are products of monomials with roots in E, say
rationals. Irreducible polynomials correspond to products of monomials with algebraic roots in
the corresponding extension of rationals and define the counterparts of bound states so that the
notion of bound state would be purely number theoretic. The level of the hierarchy would be
characterized by the number of variables of the rational functions.

Holography= holomorphy principle suggests that the hierarchy of infinite primes could be
used to construct the functions f1 : H → C and f2 : H → C defining space-time surfaces as
roots f = (f1, f2). There is one hypercomplex coordinate and 3 complex coordinates so that the
hierarchy for fi would have 4 levels. The functions g : C2 → C2 define a hierarchy of maps with
respect to the functional composition ◦. One can identify the counterparts of primes with respect
to ◦ and it turns out that the notion of infinite prime generalizes.

4.1 The construction of infinite primes

Consider first the construction of infinite primes.

1. Two integers with no common prime factors define a rational r = m/n uniquely. Introduce
the analog of Fermi sea as the product X =

∏
p p of all rational primes. Infinite primes is

obtain as P = nX/r+mr such that m =
∏
pk is a product for finite number of primes pk, n

is not divisible by any pk, and m has as factors powers of some of primes pk. The finite and
infinite parts of infinite prime correspond to the numerator and denominator of a rational
n/m so that rationals and infinite primes can be identified. One can say that the rational
for which n and m have no common factors is prime in this sense.

One can interpret the primes pk dividing r as labels of fermions and r as fermions kicked out
from the Fermi sea defined by X. The integers n and m as analogs of many-boson states.
This construction generalizes also to athe algebraic extensions E of rationals.

2. One can generalize the construction to the second level of the hierarchy. At the second
level one introduces fermionic vacuum Y as a product of all finite and infinite primes at the
first level. One can repeat the construction and now integers r,m and n are products of
the monomials P (m/n,X) = nX/r + mr represented as infinite integers and . The analog
of r from the new fermionic vacuum away some fermions represented by infinite primes
P (m/n,X) = nX/r + mr by kicking them out of the vacuum. The infinite integers at the
second level are analogous to rational functions P/Q with the polynomials P and Q defined
as the products of ratio of the monomials p(m/n,X) = X/r + mr taking the role of n and
m. These polynomials are not irreducible.

One can however generalize and assume that they factor to monomials associated with the
roots of some irreducible polynomial P (no rational roots) in some extension E of rationals.
Hence also rational functions R(X) = P (X)/Q(X) with no common monomial factors as
analogs of primes defining the analogs of primes for rational functions emerge. The lowest
level with rational roots would correspond to free many-fermion states and the irreducible
polynomials to a hierarchy of fermionic bound states.

3. The construction can be continued and one obtains an infinite hierarchy of infinite primes
represented as rational functions R(X1, X2, ..Xn) = P (X1, X2, ..Xn)/Q(X1, X2, ..Xn) which
have no common prime factors of level n − 1. At the second level the polynomials are
P (X,Y ) =

∑
k Pnk

(X)Y k. The roots Yk of P (X,Y ) are obtained as ordinary roots of a
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polynomials with coefficients Pnk
(X) depending on X and they define the factorization of P

to monomials. At the third level the coefficients are irreducible polynomials depending on X
and Y and the roots of Z are algebraic functions of X and Y .

Physically this construction is analogous to a repeated second quantization of a number
theoretic quantum field theory with bosons and fermions labelled/represented by primes.
The simplest states at a given level of free many-particle states and bound states correspond
to irreducible polynomials. The notion of free state depends on the extension E of rationals
used.

4.2 Infinite primes and holography= holomorphy principle

How does this relate to holography= holomorphy principle? One can consider two options for what
the hierarchy of infinite prime could correspond to.

1. One considers functions f = (f1, f2) : H → C2, with fi expressed in terms of rational
functions of 3 complex coordinates and one hyperbolic coordinate. The general hypothesis is
that the function pairs (f1, f2) defining the space-time surfaces as their roots (f1, f2) = (0, 0)
are analytic functions of generalized complex coordinates of H with coefficients in some
extension E of rationals.

2. Now one has a pair of functions: (f1, f2) or (g1, g2) but infinite primes involve only a single
function. One can solve the problem by using element-wise sum and product so that both
factors would correspond to a hierarchy of infinite primes.

3. One can also assign space-time surfaces to polynomial pairs (P1, P2) and also to pairs rational
functions (R1, R2). One can therefore restrict the consideration to f1 ≡ f . f2 can be treated
in the same way but there are some physical motivations to ask whether f2 could define the
counterpart of cosmological constant and therefore could be more or less fixed in a given
scale.

The allowance of rational functions forces raises the question whether zeros are enough or
whether also poles needed?

1. Hitherto it has been assumed that only the roots f = 0 matter. If one allows rational functions
P/Q then also the poles, identifiable as roots of Q are important. The Compactification of
the complex plane to Riemann-sphere CP1 is carried out in complex analysis so that the
poles have a geometric interpretation: zeros correspond to say North Pole and poles to the
South pole for the map of C → C interpreted as map CP1 → CP1. Compactication would
mean now to the compactification C2 → CP 2

1 .

For instance, the Riemann-Roch theorem (see ) is a statement about the properties of zeros
and poles of meromorphic functions defined at Riemann surfaces. The so called divisor
is a representation for the poles and zeros as a formal sum over them. For instance, for
meromorphic functions at a sphere the numbers of zeros and poles, with multiplicity taken
into account, are the same.

The notion of the divisor would generalize to the level of space-time surfaces so that a divisor
would be a union of space-time surfaces representing zero and poles of P and Q? Note that
the iversion fi → 1/fi maps zeros and poles to each other. It can be performed for f1 and
f2 separately and the obvious question concerns the physical interpretation.

2. Infinite primes would thus correspond to rational functions R = P/Q of several variables. In
the recent case, one has one hypercomplex coordinate u, one complex coordinate w of M4,
and 2 complex coordinates ξ1, ξ2 of CP2. They would correspond to the coordinates Xi and
the hierarchy of infinite primes would have 4 levels. The order of the coordinates does not
affect the rational function R(u,w, ξ1, ξ2) but the hypercomplex coordinate is naturally the
first one. It seems that the order of complex coordinates depends on the space-time region
since not all complex coordinates can be solved in terms of the remaining coordinates. It can
even happen that the coordinate does not appear in P or Q.

The hypercomplex coordinate u is in a special position and one can ask whether rational
functions for it are sensical. Trigonometric functions and Fourier analysis look more natural.

https://en.wikipedia.org/wiki/Riemann\OT1\textendash Roch_theorem
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What could be the physical relationship between the space-time surfaces representing poles and
zeros?

1. P and Q would have no common polynomial (prime) factors. The zeros resp. poles of
R = P/Q as zeros of P resp. Q are represented as space-time surfaces. Could the zeros and
poles correspond to matter and antimatter. Could one assign baryon and lepton numbers to
f1 and f2 and so that the total baryon and lepton numbers for Pi and Qi would sum up to
zero for meromorphic functions fi.

Note that besides the fermionic vacuum annihilated by annihilation operations there is also
fermionic vacuum annihilated by the creation operators and these vacua correspond to op-
posite boundaries of CD in ZEO.

2. Could infinite primes have two representations. A four-levelled hierarchy represented as
space-time surfaces in terms of holography= holomorphy principle and as fermion states rep-
resented as hierarchy of second quantizations for both quarks and leptons and corresponding
bosonic states. What could these 4 quantizations mean physically?

3. Can the space-time surfaces defined by zeros and poles intersect each other? If BSFR per-
mutes the two kinds of space-time surfaces, they should intersect at 3-surfaces defining holo-
graphic data. The failure of the exact classical determinism implies that the 4-surfaces are
not identical.

Does the time reversal in BSFR have a geometric counterpart? Inversion and complex conju-
gation at the level of C2 are the obvious candidates.

1. Could the time reversal occurring in ”big” state function reduction (BSFR) change zero to
poles and vice versa and correspond to the inversion fi → 1/fi inducing P/Q→ Q/P? The
inversion fi → 1/fi mapping zeros to poles and vice versa can be carried independently for fi.
This does not support the assignment of inversion with the time reversal. This interpretation
would also require that the 3-D regions at the boundary of CD defining holographic data
are invariant under the inversion. This also forces us to ask whether both zeros and poles
present for a given arrow of time or only for one arrow of time? Therefore the interpretation
as analog of charge conjugation mapping fermions to antifermions looks more natural.

2. Complex conjugation replaces the Hamilton-Jacobi structure of H with its conjugate. Com-
plex conjugation makes sense also for C2. Complex conjugation performed for both H and
C2 does not affect the space-time surfaces. Holomorphic space-time surfaces and their anti-
holomorphic complex conjugates need not be disjoint. For instance, in CP2 a homologically
non-trivial geodesic sphere can be self-conjugate.

If matter and antimatter were related by complex conjugation, holomorphy would require
that matter resp. antimatter resides at holomorphic resp. space-time surfaces: could this
relate to matter-antimatter asymmetry?

Instead of inversion, complex conjugation in C2 could be involved with the time reversal
occurring in BSFR (it would not be the same as time reflection T ). This would require
that the 3-D regions defining holographic data (at the boundary of CD) are invariant under
complex conjugation. The classical worlds with opposite arrows of geometric time would be
related by complex conjugation.

4.3 Hierarchies of functional composites of g : C2 → C2

One can consider also rational functions g = (g1, g2) with gi = R = Pi/Qi : C2 → C2 defining
abstraction hierarchies. Also in this case elementwise product is possible but functional composition
◦ and the interpretation in terms of formation of abstractions looks more natural. Fractals are
obtained as a special case. ◦ is not commutative and it is not clear whether the analogs of primes,
prime decomposition, and the definition of rational functions exist.

1. Prime decompositions for g with respect to ◦ make sense and can identify polynomials f =
(f1, f2) which are primes in the sense that they do not allow composition with g. These
primal spacetime surfaces define the analogs of ground states.
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2. The notion of generalized rational makes sense. For ordinary infinite primes represented as
P/Q, the polynomials P and Q do not have common prime polynomial factors. Now / is
replaced with a functional division (f, g)→ f ◦g−1 instead of (f, g)→ f/g. In general, g−1 is
a many-valued algebraic function and the manivaluedness distinguishes between the analogs
of polynomials and their inverses. The only exceptions are Möbius transformations forming
a group. In the one-variable case for polynomials the inverse involves algebraic functions
appearing in the expressions of the roots of the polynomial. This means a considerable
generalization of the notion of infinite prime.

What matters physically are the roots of g ◦ h−1. The condition g ◦ h−1f = 0 has as roots
h(rn), where rn is the roots of g◦f = 0. Therefore the situation is simple at the level of space-
time surfaces. Could one think of generalizing the notion of group so that the counterparts
of group operations would be many-valued?

3. One obtains the counterpart for the hierarchy of infinite primes. The analog for the product
of infinite primes at a given level is the composite of prime g:s. The irreducible polynomials
as realization of bound states for ordinary infinite primes replaces the coefficient field E with
its extension. The replacement of the rationals as a coefficient field with its extensions E
does the same for the composes of g:s. This gives a hierarchy similar to that of irreducible
polynomials: now the hierarchy formed by rational functions with increasing number of
variables corresponds to the hierarchy of extensions of rationals.

4. The conditions for zeros and poles are not affected since they reduce to corresponding con-
ditions for g ◦ f .

5 Some questions related to the maps g

The maps g and possibly also their inverses which would be central in the realization of cognition
and reflective hierarchies. These ideas are however far from their final form and in the following I
try to imagine and exclude various alternatives.

5.1 What could happen in the transition f → g ◦ f?

The proposal is that in SSFR the transition f → g◦f takes place. The number of roots becomes
n-fold if g is a rational function of form P/Q. What could this transition mean physically? One
can consider two options.

5.1.1 The option allowing quantum realization of concept

The nm roots (poles and zeros) for g ◦ f , where f as m roots would be alternative outcomes of
SSFR of which only a single outcome, or possible quantum superposition of the outcomes would
be selected. What is so nice is that the classical non-determinism crucial for the TGD view of
consciousness would follow automatically from the holography= holomorphy hypothesis without
any additional assumptions.

Conservation laws conform with this view. All the alternative Bohr orbits would have the same
classical conserved charges. The quantum superposition of the roots would represent a particular
quantum realization of a concept and f → g ◦ f would mean a refinement of the quantum concept
defined by f .

The hypothesis that the classical non-determinism correspond to the p-adic non-determinism
would transform to a statement that different Bohr orbits associated g◦k define analogs for the
sequences of k pinary digits if there are p outcomes for g ◦ f . A possible interpretation would be
in terms of a k-digit pinary digit sequence in powers of p. The largest integer would correspond
to n = 2k for g◦k. The generalization of the notion of the notion of p-adic numbers for which
p is replaced by a functional prime g and based on the generalization of Witt polynomials is
suggestive. It remains unclear whether this could allow us to understand the generalization of the
p-adic length scale hypothesis stating that a large prime p ' pk can be assigned to this set of Bohr
orbits.
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5.1.2 The option allowing a classical realization of concept

The union of nm space-time surfaces, where n is the degree of g and m is the number of roots
of f , is generated in the step f → g ◦ f . The set of the nm space-time surfaces would give a
classical realization of a concept as a set. Does this make sense? The first grave objection
is that there is no continuous time evolution between f and g ◦ f multiplying the number of
space-time surfaces by n. Second objection relates to the conservation laws which seem to be
violated. The third objection is that classical non-determinism is lost. It seems that this objection
cannot be circumvented. One can however consider the analogs of many-particle states in which
some surfaces of this set carry fermionic zero energy states.

One can try to imagine ways to overcome the first two objections.
Option I: ZEO interpreted in the ”eastern” sense in principle allows the creation of n space-

time surfaces from each of the m space-time surfaces associated with f . This is because the
total classical charges of the zero energy states as sums of those for states at the boundaries of
CD vanish. Zero energy state would be analogous to a quantum fluctuation.

Option II: In standard ontology, the classical realization of the concept as union of space-
time surfaces defining its instances is possible only in a situation in which space-time surfaces are
vacua or nearly vacua. Could this kind of surface serve as a template for the non-vacuum physical
systems?

Cell replication, which would correspond to n = 2 for g, was motivated by the consideration
of both options, at least half-seriously. The instantaneous replication of the space-time surface
representing the cell does not look sensible since the generation of biomatter requires a feed of
metabolics and metabolic energy. Could a replicated field body serve as a kind of template for
the formation of a final state involving two cells generated in f → g ◦ f? Could the replication
occur at the level of the field body, proposed to control the biological body?

For Option II, conservation laws pose a problem for replication. In ZEO the classical charges
of the space-time nm surfaces should be those associated with the passive boundary of CD and
therefore same as those for f .

1. Could the space-time surfaces be special in the sense that the classical charges vanish? The
vanishing of classical conserved charges is not possible unless the classical action reduces to
Kähler action allowing vacuum extremals. The finite size of CD indeed allows by Uncertainty
Principle a slight violation of the classical conservation laws assignable to the Poincare
invariance [L6]. This cannot be excluded and the original proposal [K1, K6] indeed was that
Kähler action defines the classical action by its unique property of having huge classical
non-determinism defining the 4-D analog of spin-glass degeneracy [K7] which could play a
key role in biology.

If one assigns to M4 the analog of the Kähler structure [L5], this argument weakens since
the induced M4 and CP2 Kähler forms must vanish for the vacuum extremals. However,
for a given Hamilton-Jacobi structure defining the M4 Kähler form, there exist space-time
surfaces of this kind. They are Cartesian products of Lagrangian 2-manifolds of M4 and CP2

defining vacuum string world sheets.

Holography= holomorphy principle, implying that Bohr orbits are minimal surfaces, seems
to hold true for any classical action, which is general coordinate invariant and is determined
by the induced geometry. For the Kähler action, the coefficient Λ of the volume term, defining
the analog of cosmological constant, would vanish. Holography= holomorphy principle does
not allow Cartesian products of Lagrangian 2-manifolds of M4 and CP2. One could hope
that their vacuum property could change the situation but this does not look an elegant
option.

2. For the standard ontology, one can also consider another option. The classical action, and
therefore the classical conserved charges, are for the twistor lift proportional to 1/αK ,
where αK is Kähler coupling strength. The conservation of charges would suggest αK → nαK

requiring heff → heff/n in the n-fold multiplication. For heff = h this would require
h→ h/n. This looks strange.

h need not however be the minimal value of heff and I have considered the possibility that
one has h = n0h0 [L1], where n0 corresponds to the ratio R2(CP2)/l2P . CP2 size scale would
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be given by Planck length lP size scale but for h = n0h0 the size scale would be scaled up
to R2 ∼ n0l

2
P , n0 ∈ [107, 108]. The estimate for n0 is given by n0 = (7!)2 having numbers

2, 3, 5, 6, 7 (primes 2, 3, 5, 7) as factors [L1]. R(CP2) would naturally correspond to the M4

size of a wormhole throat. h could be reduced by a factor appearing in n0 and there is some
evidence for the reduction of heff by a small power of 2 [D1]. This mechanism could work
for a functional prime g characterized by prime p ∈ {2, 3, 5, 7}.

To classical realization of concept does not look realistic except possibly for Option I.

5.2 About the interpretation of the inverses of the maps g

What could be the interpretation of the inverse maps g−1 for g = P/Q, assuming that they can
occur? g−1 is a multivalued algebraic function analogous to z1/n. In f → g−1 ◦ f the roots rn of f
are mapped to g(rn) so that their number does not increase. For the iterate of g, g−1 means the
reduction of the number of roots by 1/n. The complexity does not increase and can even decrease.

This is just the opposite for what occurs in f → g ◦ f . The increase of complexity is assigned
with number theoretic evolution and NMP. Suppose for a moment that the inverses g−1 are allowed.
What could be their interpretation?

1. The sequence of the inverses g−1 does not correspond to non-determinism and does not give
rise to a refinement of either classical or quantum concept. There is no increase of complexity
and it can be reduced for iterates.

2. Could the reduction of the cell to stem cell level as a reverse of cell differentiation, which
occurs by cell replications, correspond at the level of the field body to a sequence of g−1:s
reducing the complexity. Could cancer correspond to this kind of process? This would
conform with the interpretation in terms of the reduction of negentropy.

3. The first option is that the maps of type g−1 are possible for both arrows of the geometric
time. For the iterates of g, g−1 destroys complexity and information and reduces the level of
cognition in this case. g−1 would obey anti-NMP in this case. Both maps g and g−1 make
possible a trial and error process. If an iterate of g is not involved, the roots rn of h ◦ f are
mapped by g to roots g(rn) and the number of roots is preserved. It is not clear whether the
algebraic complexity is increased or reduced.

This suggests that NMP [K4] is not lost if both maps of type g and g−1 are allowed? Fur-
thermore, there is a lower bound for algebraic complexity but no upper bound so that it
seems that NMP remains true even if maps of type g−1 are allowed.

Any quantum theory of consciousness should be able to say something about the quantum
correlates of ethics [K9]. In TGD, one can assign the notion of good to state function
reductions (SFRs) inducing the increase of quantum coherence occurring in a statistical
sense in SFRs. It would correspond to the increase of algebraic complexity and would be
accompanied by the increase of heff and the amount of potentially conscious information.
Is evil something something analogous to a thermodynamic fluctuation reducing entropy or
can one speak of an active evil? Could the notion of evil as something active be assigned
with the occurrence of maps of type g−1?

4. The maps of type g and g−1 are reversals of each other and differ unless they act as symmetries
analogous to Möbius transformations. Could they be assigned with SSFRs with opposite
arrows of geometric time? If so, negentropy would not increase for both arrows of the
geometric time and there would be a universal arrow of time analogous to that assumed in
standard thermodynamics and defined by negentropy increase. If a universal arrow of time
exists, it should somehow relate to the violation of time reflection symmetry T . To me this
option does not look plausible.

If this is the case, the trial and error process allowed by ZEO and based on pairs of BSFRs
would involve a map of type g−1 induced by SSFRs whereas the second BSFR would corre-
spond to a map of type g. The sequence of SSFRs after the first BSFR would preserve or
even reduce complexity and would mean starting from a new state at the passive boundary
(PB) of CD. If the first BSFR is followed by a sequence of SSFRs of type g, it in general
leads to a more negentropic new initial state at PB.
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