The considerations of this article were inspired by an interview of Edward Frenkel relating to
the Langlands correspondence and led to a considerably more detailed understanding of how
number theoretic and geometric Langlands correspondences emerge in the TGD framework
from number theoretic universality, holography = holomorphy vision leading to a general
solution of field equations based on the generalization of holomorphy, and M?® — H duality
relating geometric and number theoretic visions of TGD.

The space-time surfaces are realized as roots for a pair (P;, P») of holomorphic polynomials
of four generalized complex coordinates of H = M* x CP,. In this view space-time surfaces
are representations of the function field of generalized polynomial pairs in H and can be
regarded as numbers with arithmetic operations  induced from those for the polynomial
pairs. Product is always well defined by inverse is ill-define if either function vanishes.

A proposal for how to count the number of roots of the (P, P;) = (0,0), when the arguments
are restricted to a finite field in terms of modular forms defined at the hyperboloid H? x
CP, C M* x CP,. The geometric variant of the Galois group as a group mapping different
roots for a polynomial pair (Py, P») identifiable as regions of the space-time surface (minimal
surface) would be in terms of holomorphisms of H.

The interpretation of space-time surfaces as numbers leads to a general construction recipe
for quantum states in terms of a geometric analog of a tensor product with the property
that the product involves automatically interaction terms resulting in the multiplication of
space-time surfaces as numbers. One can say that TGD is exactly solvable at both classical
space-time level and quantum level. The geometric Langlands correspondence extends to a
trinity between number theory, geometry and physics.
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