About the twistorial description of light-likeness in 8-D sense using octonionic spinorsThe twistor approach to TGD require that the expression of light-likeness of M4 momenta in terms of twistors generalizes to 8-D case. The light-likeness condition for twistors states that the 2× 2 matrix representing M4 momentum annihilates a 2-spinor defining the second half of the twistor. The determinant of the matrix reduces to momentum squared and its vanishing implies the light-likeness. This should be generalized to a situation in one has M4 and CP2 twistor, which are not light-like separately but light-likeness in 8-D sense holds true (allowing massive particles in M4 sense and thus generalization of twistor approach for massive particles). The case of M8=M4× E4 M8-H duality suggests that it might be useful to consider first the twistorialiation of 8-D light-likeness first the simpler case of M8 for which CP2 corresponds to E4. It turns out that octonionic representation of gamma matrices provide the most promising formulation. In order to obtain quadratic dispersion relation, one must have 2× 2 matrix unless the determinant for the 4× 4 matrix reduces to the square of the generalized light-likeness condition.
The case of M8=M4× CP2 What about twistorialization in the case of M4× CP2? The introduction of wave functions in the twistor space of CP2 seems to be enough to generalize Witten's construction to TGD framework and that algebraic variant of twistors might be needed only to realize quantum classical correspondence. It should correspond to tangent space counterpart of the induced twistor structure of space-time surface, which should reduce effectively to 4-D one by quaternionicity of the space-time surface.
To sum up, the generalization of the notion of twistor to 8-D context allows description of massive particles using twistors but requires that octonionic Dirac equation is introduced. If one requires that octonionic and ordinary description of Dirac equation are equivalent, the description is possible only at surfaces having at most 1-D CP2 projection - geodesic circle for the most stringent option. The boundaries of string world sheets are such surfaces and also string world sheets themselves if they have 1-D CP2 projection, which must be geodesic circle if also induce gauge potentials are required to vanish. In spirit with M8-H duality, string boundaries give rise to classical M8 twistorizalization analogous to the standard M4 twistorialization and generalize 4-momentum to massless 8-momentum whereas imbedding space spinor harmonics give description in terms of four-momentum and color quantum numbers. One has SO(4)-SU(3) duality: a wave function in the space of 8-momenta corresponds to SO(4) description of hadrons at low energies as opposed to that for quarks at high energies in terms of color. The M4 projection of the 8-D M8 momentum must by quantum classical correspondence be equal to the four-momentum assignable to imbedding space-spinor harmonics serving as building bricks for various super-conformal representations. This is nothing but Equivalence Principle (EP) in the most concrete form: gravitational four-momentum equals to inertial four-momentum. EP for internal quantum numbers is clearly more delicate. In twistorialization also helicity is brought and for CP2 degrees of freedom M8 helicity means that electroweak spin is described in terms of helicity. Biologists have a principle known as "ontogeny recapitulates phylogeny" (ORP) stating that the morphogenesis of the individual reflects evolution of the species. The principle seems to be realized also in theoretical physics - at least in TGD Universe. ORP would now say that the evolution of theoretical physics via the emergence of increasingly complex notion of particle reflects the structure physics itself. Point like particles are really there as points at partonic 2-surfaces carrying fermion number: their 1-D orbits correspond to the boundaries of string world sheets; 2-D hyper-complex string world sheets in flat space (M4× S1) are there and carry induced spinors; also complex (or co-complex) partonic 2-surfaces (Euclidian string world sheets) and carry particle numbers; 3-D space-like surfaces at the ends of causal diamonds (CDs) and the 3-D light-like orbits of partonic 2-surfaces are there; 4-D space-time surfaces are there as quaternionic or co-quaternionic sub-manifolds of 8-D octonionic imbedding space: there the hierarchy ends since there are no higher-dimensional classical number fields. ORP would thus also realize evolution of mathematics at the level of physics. The M4 projection of the 8-D M8 momentum must by quantum classical correspondence be equal to the four-momentum assignable to imbedding space-spinor harmonics serving as building bricks for various super-conformal representations. This is nothing but Equivalence Principle in the most concrete form: gravitational four-momentum equals to inertial four-momentum. See the chapter Classical part of the twistor story or the article Classical part of the twistor story. |