Pear-shaped Barium nucleus as evidence for large parity breaking effects in nuclear scalesPieces of evidence for nuclear physics anomalies continue to accumulate. Now there was a popular article telling about the discovery of large parity breaking in nuclear physics scale. What have been observed is pear-shaped 144Ba nucleus not invariant under spatial reflection. The arXiv article speaks only about octupole moment of Barium nucleus difficult to explain using existing models. Therefore one must take the popular article managing to associate the impossibility of time travel to the unexpectedly large octupole moment with some caution. As a matter fact, pear-shapedness has been reported earlier for Radon-220 and Radium-224 nuclei by ISOLDE collaboration working at CERN (see this and this). The popular article could have been formulated without any reference to time travel: the finding could be spectacular even without mentioning the time travel. There are three basic discrete symmetries: C,P, T and their combinations. CPT is belived to be unbroken but C,P, CP and T are known to be broken in particle physics. In hadron and nuclear physics scales the breaking of parity symmetry P should be very small since weak bosons break it and define so short scaled interaction: this breaking has been observed. The possible big news is following: pear-shaped state of heavy nucleus suggests that the breaking of P in nuclear physics is (much?) stronger than expected. With parity breaking one would expect ellipsoid with vanishing octupole moment but with non-vanishing quadrupole moment. This suggests parity breaking in unexpectedly long length scale. This is not possible in standard model where parity breaking is larger only in weak scale which is roughly 1/1000 of nuclear scale and fourth power of this factor reduces the weak parity breaking effects in nuclear scale. Does this finding force to forget the plans for the next summer's time travel? If parity breaking is large, one expects from the conservation of CPT also large compensating breaking of CT breaking. This might relate to the matter-antimatter asymmetry of the observed Universe and I cannot relate it to time travel since the very idea of time travel in its standard form does not make much much sense to me. In TGD framework one can imagine two explanations involving large parity breaking in unexpectedly long scales. In fact, in living matter chiral selection represents mysteriously large parity breaking effect and the proposed mechanisms could be behind it.
See the chapter Nuclear string hypothesis. |