The role of the right-handed neutrino in TGD based view about SUSY
The general ansatz for the preferred extremals of Kähler action and application of the conservation of em charge to the modified Dirac equation have led to a rather detailed view about classical and TGD and allowed to build a bridge between general vision about super-conformal symmetries in TGD Universe and field equations.
- Equivalence Principle realized as Einstein's equations in all scales follows directly from the general assatz for preferred extremals implying that space-time surface has either hermitian or Hamilton-Jacobi structure (which of them depends on the signature of the induced metric).
- The general structure of Super Virasoro representations can be understood: super-symplectic algebra is responsible for the non-perturbative aspects of QCD and determines also the ground states of elementary particles determining their quantum numbers.
- Super-Kac-Moody algebras associated with isometries and holonomies dictate standard model quantum numbers and lead to a massivation by p-adic thermodynamics: the crucial condition that the number of tensor factors in Super-Virasoro represention is 5 is satisfied.
- One can understand how the Super-Kac-Moody currents assignable to stringy world sheets emerging naturally from the conservation of em charge defined as their string world sheet Hodge duals gauge potentials for standard model gauge group and also their analogs for gravitons. Also the conjecture Yangian algebra generated by Super-Kac-Moody charges emerges naturally.
- One also finds that right handed neutrino is in a very special role because of its lacking couplings in electroweak sector and its role as a generator of the least broken SUSY. All other modes of induced spinor field are restricted to 2-D string world sheets and partonic 2-surfaces. Right-handed neutrino allows also the mode delocalized to entire space-time surface or perhaps only to the Euclidian regions defined by the 4-D line of the generalized Feynman diagrams.
In fact, in the following the possibility that the resulting sparticles cannot be distinguished from particles since the presence of right handed neutrino is not seen in the interactions and does not manifest itself in different spin structures for the couplings of particle and sparticle. This could explain the failure to detect spartners at LHC. Intermediate gauge boson decay widths however require that sparticles are dark in the sense of having non-standard value of Planck constant. Another variant of the argument assumes that 4-D right handed neutrinos are associated with space-time regions of Minkowskian signature and SUSY is defined for many-particle states rather than single particle states. It should be emphasized that TGD predicts that all fermions act as generators of badly broken supersymmetries at partonic 2-surfaces but these super-symmetries could correspond to much higher mass scale as that associated with the delocalized right-handed neutrino. The following piece of text summarizes the argument.
A highly interesting aspect of Super-Kac-Moody symmetry is the special role of right handed neutrino.
- Only right handed neutrino allows besides the modes restricted to 2-D surfaces also the 4D modes delocalized to the entire space-time surface. The first ones are holomorphic functions of single coordinate and the latter ones holomorphic functions of two complex/Hamilton-Jacobi coordinates. OnlyνR has the full D=4 counterpart of the conformal symmetry and the localization to 2-surfaces has interpretation as super-conformal symmetry breaking halving the number of super-conformal generators.
- This forces to ask for the meaning of super-partners. Are super-partners obtained by adding νR neutrino localized at partonic 2-surface or delocalized to entire space-time surface or its Euclidian or Minkowskian region accompanying particle identified as wormhole throat? Only the Euclidian option allows to assign right handed neutrino to a unique partonic 2-surface. For the Minkowskian regions the assignment is to many particle state defined by the partonic 2-surfaces associated with the 3-surface. Hence for spartners the 4-D right-handed neutrino must be associated with the 4-D Euclidian line of the generalized Feynman diagram.
- The orthogonality of the localized and de-localized right handed neutrino modes requires that 2-D modes correspond to higher color partial waves at the level of imbedding space. If color octet is in question, the 2-D right handed neutrino as the candidate for the generator of standard SUSY would combine with the left handed neutrino to form a massive neutrino. If 2-D massive neutrino acts as a generator of super-symmetries, it is is in the same role as badly broken supers-ymmeries generated by other 2-D modes of the induced spinor field (SUSY with rather large value of N) and one can argue that the counterpart of standard SUSY cannot correspond to this kind of super-symmetries. The right-handed neutrinos delocalized inside the lines of generalized Feynman diagrams, could generate N=2 variant of the standard SUSY.
1. How particle and right handed neutrino are bound together?
Ordinary SUSY means that apart from kinematical spin factors sparticles and particles behave identically with respect to standard model interactions. These spin factors would allow to distinguish between particles and sparticles. But is this the case now?
- One can argue that 2-D particle and 4-D right-handed neutrino behave like independent entities, and because νR has no standard model couplings this entire structure behaves like a particle rather than sparticle with respect to standard model interactions: the kinematical spin dependent factors would be absent.
- The question is also about the internal structure of the sparticle. How the four-momentum is divided between the νR and and 2-D fermion. If νR carries a negligible portion of four-momentum, the four-momentum carried by the particle part of sparticle is same as that carried by particle for given four-momentum so that the distinctions are only kinematical for the ordinary view about sparticle and trivial for the view suggested by the 4-D character of νR.
Could sparticle character become manifest in the ordinary scattering of sparticle?
- If νR behaves as an independent unit not bound to the particle it would continue un-scattered as particle scatters: sparticle would decay to particle and right-handed neutrino. If νR carries a non-negligible energy the scattering could be detected via a missing energy. If not, then the decay could be detected by the interactions revealing the presence of νR. νR can have only gravitational interactions. What these gravitational interactions are is not however quite clear since the proposed identification of gravitational gauge potentials is as duals of Kac-Moody currents analogous to gauge potentials located at the boundaries of string world sheets. Does this mean that 4-D right-handed neutrino has no quantal gravitational interactions? Does internal consistency require νR to have a vanishing gravitational and inertial masses and does this mean that this particle carries only spin?
- The cautious conclusion would be following: if delocalized νR and parton are un-correlated particle and sparticle cannot be distinguished experimentally and one might perhaps understand the failure to detect standard SUSY at LHC. Note however that the 2-D fermionic oscillator algebra defines badly broken large N SUSY containing also massive (longitudinal momentum square is non-vanishing) neutrino modes as generators.
2. Taking a closer look on sparticles
It is good to take a closer look at the delocalized right handed neutrino modes.
- At imbedding space level that is in cm mass degrees of freedom they correspond to covariantly constant CP2 spinors carrying light-like momentum which for causal diamond could be discretized. For non-vanishing momentum one can speak about helicity having opposite sign for νR and νRbar. For vanishing four-momentum the situation is delicate since only spin remains and Majorana like behavior is suggestive. Unless one has momentum continuum, this mode might be important and generate additional SUSY resembling standard N=1 SUSY.
- At space-time level the solutions of modified Dirac equation are holomorphic or anti-holomorphic.
- For non-constant holomorphic modes these characteristics correlate naturally with fermion number and helicity of νR . One can assign creation/annihilation operator to these two kinds of modes and the sign of fermion number correlates with the sign of helicity.
- The covariantly constant mode is naturally assignable to the covariantly constant neutrino spinor of imbedding space. To the two helicities one can assign also oscillator operators {a+/-,a†+/-}. The effective Majorana property is expressed in terms of non-orthogonality of νR and and νRbar translated to the the non-vanishing of the anti-commutator {a†+,a-}= {a†-,a+}=1. The reduction of the rank of the 4× 4 matrix defined by anti-commutators to two expresses the fact that the number of degrees of freedom has halved. a†+=a- realizes the conditions and implies that one has only N=1 SUSY multiplet since the state containing both νR and νRbar is same as that containing no right handed neutrinos.
- One can wonder whether this SUSY is masked totally by the fact that sparticles with all possible conformal weights n for induced spinor field are possible and the branching ratio to n=0 channel is small. If momentum continuum is present, the zero momentum mode might be equivalent to nothing.
What can happen in spin degrees of freedom in super-symmetric interaction vertices if one accepts this interpretation? As already noticed, this depends solely on what one assumes about the correlation of the four-momenta of particle and νR.
- For SUSY generated by covariantly constant νR and νRbar there is no neutrino four-momentum involved so that only spin matters. One cannot speak about the change of direction for νR. In the scattering of sparticle the direction of particle changes and introduces different spin quantization axes. νR retains its spin and in new system it is superposition of two spin projections. The presence of both helicities requires that the transformation νR→ νRbar happens with an amplitude determined purely kinematically by spin rotation matrices. This is consistent with fermion number conservation modulo 2. N=1 SUSY based on Majorana spinors is highly suggestive.
- For SUSY generated by non-constant holomorphic and anti-holomorphic modes carrying fermion number the behavior in the scattering is different. Suppose that the sparticle does not split to particle moving in the new direction and νR moving in the original direction so that also νR or νRbar carrying some massless fraction of four-momentum changes its direction of motion. One can form the spin projections with respect to the new spin axis but must drop the projection which does not conserve fermion number. Therefore the kinematics at the vertices is different. Hence N=2 SUSY with fermion number conservation is suggestive when the momentum directions of particle and νR are completely correlated.
- Since right-handed neutrino has no standard model couplings, p-adic thermodynamics for 4-D right-handed neutrino must correspond to a very low p-adic temperature T=1/n. This implies that the excitations with higher conformal weight are effectively absent and one would have N =1 SUSY effectively.
The simplest assumption is that particle and sparticle correspond to the same p-adic mass scale and have degenerate masses: it is difficult to imagine any good reason for why the p-adic mass scales should differ. This should have been observed -say in decay widths of weak bosons - unless the spartners correspond to large hbar phase and therefore to dark matter . Note that for the badly broken 2-D N=2 SUSY in fermionic sector this kind of almost degeneracy cannot be excluded and I have considered an explanation for the mysterious X and Y mesons in terms of this degeneracy (see this).
- LHC suggests that one does not have N=1 SUSY in standard sense. Could spartners correspond to dark matter with a large value of Planck constant and same mass? Or could 4-D right-handed neutrino exists only in the Minkowskian regions where they define superpartners of many particle states rather than single particle states? Could the reason be that for CP2 type vacuum extremals modified gamma matrices vanish identically? Could this be used to argue that 4-D right-handed neutrinos cannot appear in the lines of generalize Feynman graphs which involve deformations of CP2 vacuum extremals?
For more details see the new chapter The recent vision about preferred extremals and solutions of the modified Dirac equation of "Quantum TGD as Infinite-Dimensional Geometry" or the article with the same title.
|