Tachyonic models for neutrino superluminality killed

New Scientist reported about the sad fate of the tachyonic explanation of neutrino superluminality. The argument is extremely simple.

  1. You start by assuming that a tachyon having negative mass squared: m(ν)2<0 and assume that super-luminal velocity is in question. The point is that you know the value of the superluminal velocity v(1+ε)c, ε≈ 10-5. You can calculate the energy of the neutrino as

    E= |m(ν)|[-1+ v2/(v2-1)]1/2,

    |m(ν)|=(-m(ν)2)1/2 is the absolute value of formally imaginary neutrino mass.

  2. In good approximation you can write

    E= |m(ν)|[-1+ (2ε-1/2]1/2 ≈|m(ν)| (2ε)-1/2.

    The order of magnitude of |m(ν)| is not far from one eV - this irrespective of whether neutrino is tachyonic or not. Therefore the energy of neutrino is very small: not larger than keV. This is in a grave contradiction whith what is known: the energy is measured using GeV as a natural unit so that there is discrepancy of 6 orders of magnitude at least. One can also apply energy conservation to the decay of pion to muon and neutrino and this implies that muon has gigantic energy: another contradiction.

What is amusing that this simple kinematic fact was not noticed from beginning. In any case, this finding kills all tachyonic models of neutrino super-luminality assuming energy conservation, and gives additional support for the TGD based explanation in terms of maximal signal velocity, which depends on pair of points of space-time sheet connected by signal and space-time sheet itself characterizing also particular kind of particle.

Even better, one can understand also the jitter in the spectrum of the arrival times which has width of about 50 ns in terms of an effect caused fluctuations in gravitational fields to the maximal signal velocity expressible in terms of the induced metric. The jitter could have interpretation in terms of gravitational waves inducing fluctuation of the maximal signal velocity c#, which in static approximation equals to c#=c(1+Φgr)1/2, where Φgr is gravitational potential.

Suprisingly, effectively super-luminal neutrinos would make possible gravitational wave detector! The gravitational waves would be however gravitational waves in TGD sense having fractal structure since they would correspond to bursts of gravitons resulting from the decays of large hbar gravitons emitted primarily rather than to a continuous flow (see this). The ordinary detection criteria very probably exclude this kind of bursts as noise. The measurements of Witte attempting to detect absolute motion indeed observed this kind of motion identifiable as a motion of Earth with respect to the rest frame of galaxy but superposed with fractal fluctuations proposed to have interpretation in terms of gravitational turbulence - gravitational waves.

For details see the earlier posting, the little article Could the measurements trying to detect absolute motion of Earth allow to test sub-manifold gravity? or the chapter TGD and GRT .