Realization of large N SUSY in TGD
The generators large N SUSY algebras are obtained by taking fermionic currents for second quantized fermions and replacing either fermion field or its conjugate with its particular mode. The resulting super currents are conserved and define super charges. By replacing both fermion and its conjugate with modes one obtains c number valued currents. Therefore N=∞ SUSY - presumably equivalent with super-conformal invariance - or its finite N cutoff is realized in TGD framework and the challenge is to understand the realization in more detail. Super-space viz. Grassmann algebra valued fields Standard SUSY induces super-space extending space-time by adding anti-commuting coordinates as a formal tool. Many mathematicians are not enthusiastic about this approach because of the purely formal nature of anti-commuting coordinates. Also I regard them as a non-sense geometrically and there is actually no need to introduce them as the following little argument shows. Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann algebra and the natural object replacing super-space is this Grassmann algebra with coefficients of Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just an ordinary space with additional algebraic structure: the mysterious anti-commuting coordinates are not needed. To me this notion is one of the conceptual monsters created by the over-pragmatic thinking of theoreticians. This allows allows to replace field space with super field space, which is completely well-defined object mathematically, and leave space-time untouched. Linear field space is simply replaced with its Grassmann algebra. For non-linear field space this replacement does not work. This allows to formulate the notion of linear super-field just in the same manner as it is done usually. The generators of super-symmetries in super-space formulation reduce to super translations , which anti-commute to translations. The super generators Qα and Qbardotβ of super Poincare algebra are Weyl spinors commuting with momenta and anti-commuting to momenta: {Qα,Qbardotβ}=2σμαdotβPμ . One particular representation of super generators acting on super fields is given by Dα=i∂/∂θα , Ddotα=i∂/∂θbardotα+ θβσμβdotα ∂μ Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor εαβ. Super-space interpretation is not necessary since one can interpret this action as an action on Grassmann algebra valued field mixing components with different fermion numbers. Chiral superfields are defined as fields annihilated by Ddotα. Chiral fields are of form Ψ(xμ+iθbarσμθ, θ). The dependence on θbardotα comes only from its presence in the translated Minkowski coordinate annihilated by Ddotα. Super-space enthusiast would say that by a translation of M4 coordinates chiral fields reduce to fields, which depend on θ only. The space of fermionic Fock states at partonic 2-surface as TGD counterpart of chiral super field As already noticed, another manner to realize SUSY in terms of representations the super algebra of conserved super-charges. In TGD framework these super charges are naturally associated with the modified Dirac equation, and anti-commuting coordinates and super-fields do not appear anywhere. One can however ask whether one could identify a mathematical structure replacing the notion of chiral super field. I have proposed that generalized chiral super-fields could effectively replace induced spinor fields and that second quantized fermionic oscillator operators define the analog of SUSY algebra. One would have N=∞ if all the conformal excitations of the induced spinor field restricted on 2-surface are present. For right-handed neutrino the modes are labeled by two integers and delocalized to the interior of Euclidian or Minkowskian regions of space-time sheet. The obvious guess is that chiral super-field generalizes to the field having as its components many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in one-one correspondence with fermionic creation operators and their hermitian conjugates.
How the fermionic anti-commutation relations are determined? Understanding the fermionic anti-commutation relations is not trivial since all fermion fields except right-handed neutrino are assumed to be localized at 2-surfaces. Since fermionic conserved currents must give rise to well-defined charges as 3-D integrals the spinor modes must be proportional to a square root of delta function in normal directions. Furthermore, the modified Dirac operator must act only in the directions tangential to the 2-surface in order that the modified Dirac equation can be satisfied. The square root of delta function can be formally defined by starting from the expansion of delta function in discrete basis for a particle in 1-D box. The product of two functions in x-space is convolution of Fourier transforms and the coefficients of Fourier transform of delta function are apart from a constant multiplier equal to 1: δ (x)= K∑n exp(inx/2π L). Therefore the Fourier transform of square root of delta function is obtained by normalizing the Fourier transform of delta function by N1/2, where N→ ∞ is the number of plane waves. In other words: (δ (x))1/2= (K/N)1/2∑ nexp(inx/2π L). Canonical quantization defines the standard approach to the second quantization of the Dirac equation.
Can these conditions be applied both at string world sheets and partonic 2-surfaces.
One can of course worry what happens at the limit of vacuum extremals. The problem is that Γt vanishes for space-time surfaces reducing to vacuum extremals at the 2-surfaces carrying fermions so that the anti-commutations are inconsistent. Should one require - as done earlier- that the anti-commutation relations make sense at this limit and cannot therefore have the standard form but involve the scalar magnetic flux formed from the induced Kähler form by permuting it with the 2-D permutations symbl? The restriction to preferred extremals, which are always non-vacuum extremals, might allow to avoid this kind of problems automatically. In the case of right-handed neutrino the situation is genuinely 3-dimensional and in this case non-vacuum extremal property must hold true in the regions where the modes of νR are non-vanishing. The same mechanism would save from problems also at the partonic 2-surfaces. The dynamics of induced spinor fields must avoid classical vacuum. Could this relate to color confinement? Could hadrons be surrounded by an insulating layer of Kähler vacuum? For details and background see the new chapter The recent vision about preferred extremals and solutions of the modified Dirac equation, or the article with the same title. |