Quantum critical cosmology of TGD predicts also very fast expansion
TGD inspired critical cosmology (see this) relies on the identification of 3-space as a= constant section, where a is Lorentz invariant cosmological time defined by the light-cone proper time a=(m0)2-rM2)1/2, and from the assumption that (quantum) criticality corresponds to a vanishing 3-curvature meaning that 3-space is Euclidian. The condition that the induced metric of the a= constant section is Euclidian, fixes the critical cosmology apart from its duration a0 from the existence of its vacuum extremal imbedding to M4× S2, where S2 homologically trivial geodesic sphere: ds2 = gaada2 -a2 (dr2 +r2dΩ2) , gaa= (dt/da)2=1- ε2 /(1-u2) , u=a/a0 , ε=R/a0 . sin(Θ)= +/- u , Φ= f(r) , 1/(1+r2) -ε2(df/dr))2=1 . From the expression for dt/da one learns that for the small values of a it is essentially constant equal to dt/da=(1 ε2)1/2. When a/a0 approaches to (1-ε2)1/2, dt/da approaches to zero so that the rate of expansion becomes infinite. Therefore critical cosmology is analogous to inflationary cosmology with exponential expansion rate. Note that the solution is defined only inside future or past light-cone of M4 in accordance with zero energy ontology. After this a transition to Euclidian signature of metric happens (also a transition to radiation dominated cosmology is possible): this is something completely new as compared to the general relativistic model. The expansion begins to slow down now since dt/da approaches infinity at a/a0=1. In TGD framework the regions with Euclidian signature of the induced metric are good candidates for blackhole like objects. This kind of space-time sheets could however accompany all physical systems in all scales as analogs for the lines of generalized Feynman diagrams. For sin(Θ)=1 at a/a0=1 the imbedding ceases to exist. One could consider gluing together of two copies of this cosmology together with sin(Θ)= sin(π-Θ)= a/a0 to get a closed space-time surface. The first guess is that the energy momentum tensor for the particles defined by wormhole contacts connecting the two space-time sheets satisfies Einstein's equations with cosmological constant. Quantum criticality would be associated with the phase transitions leading to the increase of the length and thickness of magnetic flux tubes carrying Kähler magnetic monopole fluxes and explaining the presence of magnetic fields in all length scales. Kähler magnetic energy density would be reduced in this process, which is analogous to the reduction of vacuum expectation value of the inflation field transforming inflaton vacuum energy to ordinary and dark matter. At the microscopic level one can consider two phase transitions. These phase transitions are related to the hierarchy of Planck constants and to the hierarchy of p-adic length scales corresponding to p-adic primes near powers of 2.
Although this picture is only an artist's vision and although one can imagine many alternatives, I have the feeling that the picture might contain the basic seeds of truth. For details see the chapter TGD and Cosmology or the article BICEP2 might have detected gravitational waves. |