Misbehaving b-quarks and the magnetic body of proton

Science News tells about misbehaving bottom quarks (see also the ICHEP talk). Or perhaps one should talk about misbehaving b-hadrons - hadrons containing b- quarks. The mis-behavior appears in proton-proton collisions at LHC. This is not the only anomaly associated with proton. The spin of proton is still poorly understood and proton charge radius if quite not what it should be. Now we learn that there are more b-containing hadrons (b-hadrons) in the directions deviating considerably from the direction of proton beam: discrepancy factor is of order two.

How this could reflect the structure of proton? Color magnetic flux tubes are the new TGD based element in the model or proton: could they help? I assign to proton color magnetic flux tubes with size scale much larger than proton size - something like electron Compton length: most of the mass of proton is color magnetic energy associated with these tubes and they define the non-perturbative aspect of hadron physics in TGD framework. For instance, constituent quarks would be valence quarks plus their color flux tubes. Current quarks just the quarks whose masses give rather small contribution to proton mass.

What happens when two protons collide? In cm system the dipolar flux tubes get contracted in the direction of motion by Lorentz contraction. Suppose b-hadrons tend to leave proton along the color magnetic flux tubes (also ordinary em flux tubes could be in question). Lorentz contraction of flux tubes means that they tend to leave in directions orthogonal to the collision axis. Could this explain the misbehavior of b-hadrons?

But why only b-hadrons or some fraction of them should behave in this manner? Why not also lighter hadrons containing c and s? Could this relate to the much smaller size of b-quark defined by its Compton length λ= hbar/m(b) , m(b) = 4.2 GeV, which is much shorter than the Compton length of u-quark (the mass of constituent u quark is something like 300 MeV and the mass of current u quark is few MeVs. Could it be that lighter hadrons do not leave proton along flux tubes? Why? Are these hadrons or corresponding quarks too large to fit (topologically condense) inside protonic flux tube? b-quark is much more massive and has considerably smaller size than say c-quark with mass m(c) = 1.5 GeV and could be able to topologically condense inside the protonic flux tube. c quark should be too large, which suggests that the radius of flux tubes is larger than proton Compton length. This picture conforms with the view of perturbative QCD in which the primary processes take place at parton level. The hadronization would occur in longer time scale and generate the magnetic bodies of outgoing hadrons. The alternative idea that also the color magnetic body of hadron should fit inside the protonic color flux tube is not consistent with this view.

For details see the the chapter New Physics predicted by TGD: part II .