What's new in


Note: Newest contributions are at the top!

Year 2018

Is time reversal involved with Pollack effect?

In Pollack effect negatively charges Exclusion Zeones (EZs) are formed. EZs have the very strange property that the impurities are spontaneously removed from them. This seems to be in conflict with the second law of thermodynamics according to which both temperature and concentration gradients should tend to disappear. Could one understand this as being due to a reversal of the arrow of time?

Indeed, TGD inspired theory of consciousness relying on zero energy ontology (ZEO) predicts the possibility of time reversed selves (see this). When conscious entity - self - dies, it reincarnates as a self with opposite arrow of geometric time.

  1. In ZEO zero energy states replace ordinary quantum states assigned with time=constant snapshots of time evolution in space-time. Zero energy states are pairs of ordinary quantum states at opposite light-like boundaries of causal diamond (CD) identifiable as counterparts of initial and finals states of a physical event. Conservation quantum numbers translates to a mathematical statement that the quantum numbers associated with the members of pairs are opposite. One can also say that zero energy state is analogous to a deterministic computer program or a behavioral mode. The act of free will replaces this program/behavior with a new one so that one avoids the paradox between the non-determinism of free will and determinism of physics.
  2. Causal diamond (CD) defines the imbedding space correlate of self. One can assign to the opposite light-like boundaries the attributes active and passive. During the sequence of analogs of "small" state function reductions analogous to weak quantum measurements (resembling classical measurements) the passive boundary remains unaffected as also the members of state pairs defining zero energy states associated with it. Active boundary recedes farther away from the passive boundary and the members of state pairs at it change. The size of CD thus increases and gives rise flow of geometric time as an increase of the temporal distance between the tips of CD.
  3. Eventually the first state function reduction to the opposite boundary of CD must occur, and active and passive boundary change their roles. Self dies and re-incarnates as a self with opposite arrow of geometric time: the formerly passive boundary of CD becomes now active and moves in opposite time direction reduction by reduction. In the next re-incarnation self continues almost from the moment of geometric time at which it died. It might be that we die repeatedly without noticing it at all!
  4. The many-sheeted space-time approximated with slightly curved regions of Minkowski space would certainly tend to mask the time reversals in given length scale. In elementary particle length scales the state function reductions would indeed change the arrow of time but this would occur so often that there would be no arrow of time in statistical sense: one would speak of microscopic reversibility. In time scales considerably longer than those of human consciousness the observed arrow of time would correspond to that associated with selves with very large CDs and with lifetime much longer than ours. The change of the arrow of time could be detectable in time scales relevant to living matter and human consciousness and just these scales are the scales where the anomalies occur!
Could the ghostly space-time regions - time reversed selves - have some physical signatures making possible to prove their existence empirically?
  1. Second law would still hold true but in opposite direction of geometric time for the space-time sheets with non-standard arrow of time. The effects implied by second law would be present as their reversals. The observer with standard direction of geometric time would see temperature and density gradients to develop spontaneously. Also parameters describing dissipation rates such as Ohmic resistance and viscosity could have in some situations negative values.

    This indeed seems to take place in living matter. For instance, the building bricks of molecules spontaneously arrange to molecules: DNA replication, transcription and translation of RNA to proteins are basic examples about this. The development of concentration gradients is also clear in the strange ability of EZs to get rid of impurities. Also the charge separation creating EZs could be seen as disappearence of charged separatio in reversed direction of time. Healing of living organism could be a basic example of the process in which the arrow of time changes temporarily at some level of hierarchy of space-time sheets.

  2. The generation of temperature gradients would be a clear signature for the reversal of the arrow of time. Water is the basic stuff of life, and the thermodynamics of water involves numerous anomalies summarized at Martin Chaplin's homepage "Water structure and science". TGD based explanation could be naturally in terms of dark variants of protons at magnetic flux tubes and possible change of the arrow of geometric time.
  3. There is a lot of anecdotal evidence for the effects challenging our beliefs about standard arrow of time. A spontaneous generation of temperature differences is basic example. There is a nice popular document about this boundary region of science by Phie Ambo, which even skeptic might enjoy as art experience.

    It was a great surprise for me that one of the key personalities in the document is Holger B Nielsen, one of the pioneers of string models. I have had the honor to have intense discussions with him in past: he is one of the very few colleagues who has shown keen interest on the basic ideas of TGD. The document discusses strange phenomena associated with the physics of water possibly having interpretation in terms of time reversal and formation of EZs. From the document one also learns that in Denmark physics professionals are beginning to take these anomalies seriously.

    Unfortunately, the people who claim having discovered this kind of effects - often not science professionals - are labelled as crackpots. The laws of science also tell what we are allowed to observe (and think), at least if we want to be called scientists!

  4. The ghost stories might also reflect something real - this real need of course not be ghost but something deep about consciousness. Could it be that it is sometimes possible to consciously experience the presence of a space-time region - self - with an opposite arrow of geometric time? Ghost stories typically involve a claim about the reduction of temperature of environment in presence of ghost: could this be something real and a signature for the reversal of time at some level of dark matter hierarchy affecting also dark matter? As a matter of fact, in TGD Universe our conscious experience could involve routinely sub-selves (mental images) with non-standard arrow of time (see this): motor actions could be identified as sensory mental images with opposite arrow of time.
For background see the chapter How to test TGD Based Vision about Living Matter and Remote Mental Interactions or the article Pollack's Findings about Fourth phase of Water: TGD View.

Dance of the honeybee and New Physics

For more than two decades ago mathematician Barbara Shipman made rather surprising finding while working with her thesis. The 2-D projections of certain curves in flag manifold F=SU(3)/U(1)× U(1) defined by the so called momentum map look like the waggle part of the dance of the honey bee. Shipman found that one could reproduce in this framework both waggle dance and circle dance (special case of waggle dance) and the transition between these occurring as the distance of the food source from the nest reduces below some critical distance. Shipman introduced a parameter, which she called α, and found that the variation of α allows to integrate various forms of the honeybee dance to a bigger picture. Since SU(3) is the gauge group of color interactions, this unexpected finding led Shipman to as whether there might be a profound connection between quantum physics at quark level and macroscopic physics at the level of honeybee dance.

The average colleague of course regards this kind of proposal as crackpottery: the argument is that there simply cannot be any interaction between degrees of freedom in so vastly different length scales. Personally I however found this finding fascinating and wrote about the interpretation of this finding in the framework of TGD and TGD inspired consciousness. During more than two decades a lot of progress has taken place in TGD, in particular I have learned that the flag manifold F has interpretation as twistor space of CP2 and plays a fundamental role in twistor lift of TGD. Hence it is interesting to look what this could allow to say about honeybee dance.

It turned out that one could understand the waggle parts of the honeybee dance at space-time level in terms of the intersection of the space-time surface with the image of the Cartan sub-algebra of SU(3) represented in CP2 using exponential map. This allows to code the positional data about the food source. The frequencies assignable to the wing vibrations and waggling turn could have interpretation as cyclotron frequencies as expected if the magnetic body of the bee controls the waggle dance utilizing resonance mechanism. They could also correspond to the momenta (frequencies) defining constants of motion for geodesic in U(1)× U(1) defining one particular point of flag manifold F. Also a connection with the Chladni effect emerges: the waggle motion is along time-like curve at which Kähler force vanishes. Also the transition from waggle dance do circle dance.

See the new chapter Dance of the honeybee and New Physics or the article with the same title.

How brain selectively remembers new places?

There was a very interesting link in Minding Brain related to the storage of new memories. The title of the popular article is "How brain selectively remembers new places?". The following represents TGD based view about what might happen.

  1. In TGD framework brain/body corresponds to 4-D geometric object classically - a space-time surface with complex topology (zero energy ontology, ZEO). Brain and biological body are accompanied by magnetic body (MB) defining a topological time evolution of flux tube network having neurons (and also body cells) as its nodes and it is MB, which seems to be of fundamental significance (see this and this). Memories are located in 4-D brain (body) for the first time to the time-place, where they were formed, later successful memory recalls form new copies of them.
  2. To remember is to see in time direction to geometric past. The signal sent from hippocampus backwards in geometric time scatters back in standard time direction: this is nothing but seeing in 4 dimensions. 4-D memory storage means that there is practically no limitations on memory storage since new storage capacity is created all the geometric time! Making careful distinction between experienced and geometric times allows to both avoid paradoxes and solve the paradoxes of existing theory. Remark: Also the possibility of quantum entanglement also increases exponentially the memory storage capacity (and destroys the dreams of AI afficionados about copying human consciousness as bits telling whether neuron fires or not to a computer file!).
  3. Brain is able to detect whether the sensory percept - say completely new place - is indeed new. Brain acts as novelty detector. This requires scanning of 4-D brain to see whether there are sensory percepts in geometric past, which share common features with the recent sensory percept. This requires high level conceptualization so that perceptive field is decomposed to objects with some attributes. If common objects are not found, the percept is regarded as something new. In this case a new symbolic memory representation about perceptive field is formed.
  4. This strongly suggests that the signal sent from hippocampus scatters back from brain of past and is then compared with the recent sensory percept. If they the signals are very similar - this might give rise to some kind of resonance - the experience is "I have seen this before". The information provided by the already existing memory is utilized. If not then sensory percept is regarded as new and memory representation is formed.
Where is this new memory representation constructed?
  1. The article suggests that locus coeruleus (LC) and area CA3 of hippocampus are involved. It was found that the modulation of CA3 by LC is was involved in the formation of new memory: if the modulation was prevented, no new memory was formed and the the mice behaved next day as if the place were still new.
  2. In ZEO the new memory would correspond to a collection of activated neurons in LC and CA3 accompanied by connected flux tube structure represented the new mental image as a quantum entangled structure - tensor network. This kind of mental images would have formed for some period of time in the brain of the mice and given rise to a 4-D representation of new place to be read later by sending signals backwards in geometric time.
See the chapter Emotions as sensory percepts about the state of magnetic body? or the article with the same title.

Getting memories by eating those who already have them

While writing article about emotions as sensory percepts about the state of magnetic body I learned about extremely interesting findings. I have already earlier written about some of the finding that both pieces of split planaria have the memories (identified as learned skills or conditionings) of the original planaria (see this). The news at this time was that planaria get the memories of planaria that they have eaten!

To begin with, one must carefully distinguish between genuine memories and memories as behavioral patterns) (conditionings, skills).

  1. Cognitive memories as behavioral patterns are assumed to be due to the strengthening of synaptic contacts (long term potentiation (LPT) giving rise to nerve circuits, which are active or easily activated. In TGD framework activation means formation of flux tube network giving rise to quantum entangled state with neurons at the nodes: neural activity generates transmitters serving as bridges between flux tubes associated with axons and create flux tube network carrying a conscious mental image. A quantum coherent entangled tensor network is formed and also classical communications using dark photons are possible in this state. These neurons are firing synchronously. Nerve pulses would not be signals between neurons but would induce communications to magnetic body in scales even larger than body.
  2. Genuine memories - say episodal memories - would in TGD (zero energy ontology, ZEO) correspond to neural activities in geometric past: kind of seeing in time direction. These are typically verbal memories but also sensory memories are possible and can be induced by electric stimulation of brain.
Consider now the experiments discussed in the popular article Somewhere in the brain is a storage device for memories). They all relate to the identification of memory as a behavioral pattern induced by conditioning and are therefore emotional memories.
  1. In one experiment sea slugs learned to avoid painful stimulus. This led to a generation of synaptic contacts between neutrons involving increased synaptic strength - long term potentiation (LPT). Then some drug was used to destroy the LPT. The problem was that the lost contacts were not those formed when the memory was formed!
  2. In second experiment mice were used. A conditioned fear (LPT) was induced in mice and again the generation of synaptic contacts was observed. Then the contacts - long term potentiation - was destroyed completely. Memories as conditioned fear however remained!
It was an amusing accident to learn about this just when I was building a model for emotions as sensory percepts about the state of magnetic body (MB) fundamental in TGD inspired quantum biology.
  1. MB consists of a part formed from highly dynamical flux tube tensor networks having cells and also other structures with other size scales (fractality) as nodes. MB has also a part outside body involving rather large values of heff= n× h and having to higher cognitive IQ. Corresponding emotions would be higher level emotions (like experience of beauty) whereas bodily emotions are primitive and involve positive/negative coloring inducing a desire to preserve/change the situation in turn inducing an emotional counterpart of motor activity as excretion of hormones from emotional brain with hypothalamus in the role of highest motor areas and lower glands (both in brain and in body) in the role of lower motor areas.
  2. In the recent case the memories are definitely emotional memories and in TGD framework they would be naturally at the level of body and generated as mental images associated with large numbers of ordinary cells appearing as nodes of quantum entangled flux tube networks giving rise to tensor networks (see this). Hormones would be the tool to modify and generate these networks.
  3. Emotional memories would be represented by the conditioning and analog of LPT at the level of body rather than at the level of brain! Hormones like also other information molecules would act as relays connecting existing pieces of network to larger ones! The neural activity would be involved only with the generation of memories and induce hypothalamus to generate the fear network using the hormones controlling hormonal activities of lower level glands.
  4. The model could also explain the finding that in the splitting of flatworm the both new flatworms inherit the memories and that even non-trained flatworms eating trained flatworms get their memories (defined as behavioral patterns involving emotional conditioning).
See the chapter Emotions as sensory percepts about the state of magnetic body? or the article with the same title.

Emotions as sensory percepts about the state of magnetic body?

What emotions are? How emotions are created? How are they represented: in brains, at body, or perhaps somewhere else? One can consider these questions from the point of view of neuroscience, endocrinology, and quantum physics. Emotions can be divided to lower level emotions accompanied by intention/need/desire (hunger is accompanied by the need to eat) and thus distinguishing them from sensory qualia whereas higher level emotions like catharsis and the experience of beauty not accompanied by any desire. What does does this division correspond to?

  1. TGD inspired answer to the questions is that emotions are sensory percepts about the state of magnetic body (MB). Sensory-motor loop generalizes: various glands excreting hormones to blood stream and binding to receptors give rise to the analog of motor output.
  2. Consider first neuronal level. Neural transmitters binding to receptors serve as bridges allowing to build connected networks of neurons from existing building bricks. They are accompanied by flux tube networks giving rise to tensor networks as quantum coherent entangled structures (tensor nets) serving as correlates of mental images and allowing classical signalling with light velocity using dark photons. These tensor networks represent our mental images only if they correspond to our sub-selves (see this).

    In a similar manner hormones give rise to networks of ordinary cells implying in particular that emotional memories are realized in (biological) body (BB). Nervous system gives information about the state of these networks to brain and hypothalamus serves as the analog of motor cortex sending hormones controlling the excretion of hormones at lower level glands.

  3. The hierarchy of Planck constants defines a hierarchy of dark matters and heff=n× defines a kind of IQ. The levels of MB corresponding to large/small values of n would correspond to higher/lower emotions.
MB decomposes to two basic parts: the part in the scale of BB and formed by networks having cells and larger structures as nodes (forming a fractal hierarchy) and the part in the scales larger than BB.
  1. In the scales larger than that of BB (long scales) the change the topology is not easy and the dynamics involves oscillations of MB - analogs of Alfwen waves - and analogs of ordinary motor actions changing the shape of flux tubes but leaving its topology unaffected (these actions might represent or serve as templates for ordinary motor actions in body scale (see this).
  2. In the scales larger than that of BB (long scales) the change the topology is not easy and the dynamics involves oscillations of MB - analogs of Alfwen waves - and analogs of ordinary motor actions changing the shape of flux tubes but leaving its topology unaffected (these action might represent or serve as templates for ordinary motor actions in body scale).

    Alfwen waves with cyclotron frequencies and generalized Josephson frequencies assignable to cell membrane as Josephson junction would be involved see this). The size scale of particular onion-like layer of MB corresponds to the wavelength scale for cyclotron frequencies and is proportional to heff/h=n for dark photons. For instance, alpha band in EEG corresponds to the scale of Earth but the energy scale of dark photons is that of bio-photons.

    The TGD inspired model of music harmony (see this) gives as a side product a model of genetic code predicting correctly the numbers of codons coding for aminoacids for vertebrate code. The model allows to see sensory percepts about the dynamics in large scales as analog of music experience. The notes of 3-chords of the harmony correspond to light as dark photons and frequencies defining the notes of the chord: cyclotron radiation and generalized Josephson radiation from cell membrane would represent examples of dark light. Music expresses and creates emotions and music harmonies would correspond to various emotional states/moods realized at the level of DNA and its dark counterpart (dark nuclei represented as dark proton sequences). MB would be like a music instrument with flux tubes serving as strings. It is difficult to assign any specific desire to large scale sensory percepts about MB and the interpretation as higher emotions - or rather feelings - makes sense.

See the chapter Emotions as sensory percepts about the state of magnetic body? or the article with the same title.

What could idiot savants teach to us about Natural Intelligence?

Recently a humanoid robot known as Sophia has gained a lot of attention in net (see the article by Ben Goertzel, Eddie Monroe, Julia Moss, David Hanson and Gino Yu titled with title " Loving AI: Humanoid Robots as Agents of Human Consciousness Expansion (summary of early research progress)" .

This led to ask the question about the distinctions of Natural and Artificial Intelligence and about how to model Natural Intelligence. One might think that idiot savants could help answering this kind of question but so it turned out to be!

Mathematical genii and idiot savants seem to have something in common

It is hard to understand the miraculous arithmetical abilities of both some mathematical genii and idiot savants lacking completely conceptual thinking and conscious information processing based on algorithms. I have discussed the number theoretical feats here.

Not all individual capable of memory and arithmetic feats are idiot savants. These mathematical feats are not those of idiot savant and involve high level mathematical conceptualization. How Indian self-taught number-theoretical genius Ramajunan discovered his formulas remains still a mystery suggesting totally different kind of information processing. Ramanujan himself told that he got his formulas from his personal God.

Ramajunan's feats lose some of their mystery if higher level selves are involved. I have considered a possible explanation based on ZEO, which allows to consider the possibility that quantum computation type processing could be carried out in both time directions alternately. The mental image representing the computation would experience several deaths following by re-incarnations with opposite direction of clock time (the time direction in which the size of CD increases). The process requiring very long time in the usual positive energy ontology would take only short time when measured as the total shift for the tip of either boundary of CD - the duration of computations at opposite boundary would much longer!

Sacks tells about idiot savant twins with intelligence quotient of 60 having amazing numerical abilities despite that they could not understand even the simplest mathematical concepts. For instance, twins "saw" that the number of matches scattered along floor was 111 and also "saw" the decomposition of integer to factors and primality. A mechanism explaining this based on the formation of wholes by quantum entanglement is proposed here. The model does not however involve any details.

Flux tube networks as basic structures

One can build a more detailed model for what the twins did by assuming that information processing is based on 2-dimensional discrete structures formed by neurons (one can also consider 3-D structures consisting of 2-D layers and the cortex indeed has this kind of cylindrical structures consisting of 6 layers). For simplicity one can assume large enough plane region forming a square lattice and defined by neuron layer in brain. The information processing should involve minimal amount of linguistic features.

  1. A natural geometric representation of number N is as a set of active points (neurons) of a 2-D lattice. Neuron is active it is connected by a flux tube to at least one other neuron. The connection is formed/strengthened by nerve pulse activity creating small neuro-transmitter induced bridges between neurons. Quite generally, information molecules would serve the same purpose (see this and this).

    Active neurons would form a collection of connected sets of the plane region in question. Any set of this kind with given number N of active neurons would give an equivalent representation of number N. At quantum level the N neurons could form union of K connected sub-networks consisting Nk neurons with ∑ Nk=N.

  2. There is a large number of representations distinguished by the detailed topology of the network and a particular union of sub-networks would carry much more information than the mere numbers Nk and N code. Even telling, which neurons are active (Boolean information) is only part of the story.

    The subsets of Nk points would have large number of representations since the shape of these objects could vary. A natural interpretation would be in terms of objects of a picture. This kind of representation would naturally result in terms of virtual sensory input from brain to retina and possibly also other sensory organs and lead to a decomposition of the perceptive field to objects.

    The representation would thus contain both geometric information - interpretation as image - and number theoretic information provided by the decomposition. The K subsets would correspond to one particular element of a partition algebra generalizing Boolean algebra for which one has partition to set and its complement (see this).

  3. The number N provides the minimum amount of information about the situation and can be regarded as a representation of number. One can imagine two extremes for the representations of N.
    1. The first extreme corresponds to K linear structures. This would correspond to linear linguistic representation mode characteristic for information processing used in classical computers. One could consider interpretation as K words of language providing names for say objects of an image. The extreme is just one linear structure representing single word. Cognition could use this kind of representations.
    2. Second extreme corresponds to single square lattice like structure with each neuron connected to the say 4 nearest neighbors. This lattice has one incomplete layer: string with some neurons missing. This kind of representation would be optimal for representation of images representing single object.

      For N active neurons one can consider a representation as a pile of linear strings containing pk neurons, where p is prime. If N is divisible by pk: N= Mpk one obtains a M× pk lattice. If not one can have M× pk lattice connected to a subset of neurons along string with pk neurons. One would have representation of the notion of divisibility by given power of prime as a rectangle! If N is prime this representation does not exist!

Flux tube dynamics

The classical topological dynamics for the flux tube system induced by nerve pulse activity building temporary bridges between neurons would allow phase transitions changing the number of sub-networks, the numbers of neurons in them, and the topology of individual networks. This topological dynamics would generalize Boolean dynamics of computer programs.

  1. Flux tube networks as sets of all active neurons can be also identified as elements of Boolean algebra defined by the subsets of discretize planar or even 3-D regions (layer of neurons). This would allow to project flux tube networks and their dynamics to Boolean algebra and their dynamics. In this projection the topology of the flux tube network does not matter much: it is enough that each neurons is connected to some neuron (bit 1). One might therefore think of (a highly non-unique) lifting of computer programs to nerve pulse patterns activating corresponding subsets of neurons. If the dynamics of flux tube network determined by space-time dynamics is consistent with the Boolean projection, topological flux tube dynamics induced by space-time dynamics would define computer program.
  2. At the next step one could take into account the number of connected sub-networks: this suggests a generalization of Boolean algebra to partition algebras so that one does not consider only subset and its complement but decomposition into n subsets which one can think as having different colors (see this). This leads to a generalization of Boolean (2-adic) logic to p-adic logic, and a possible generalization of computer programs as Boolean dynamical evolutions.
  3. At the third step also the detailed topology of each connected sub-network is taken into account and brings in further structure. Even higher-dimensional structures could be represented as discretized versions by allowing representation of higher-dimensional simplexes as connected sub-networks. Here many-sheeted space-time suggests a possible manner to add artificial dimensions.
This dynamics would also allow to realize basic arithmetics. In the case of summation the initial state of the network would be a collection of K disjoint networks with Nk elements and in final state single connected set with N=∑ Nk elements. The simplest representation is as a pile of K strings with Nk elements. Product M× N could be reduced to a sum of M sets with N element: this could be represented as a pile of M linear strings.

Number theoretical feats of twins and flux tube dynamics

Flux tube dynamics suggests a mechanism for how the twins managed to see the number of the matches scattered on the floor and also how they managed to see the decomposition of number into primes or prime powers. Sacks indeed tells that the eyes of the twins were rolling wildly during their feats. What is required is that the visual perception of the matches on the floor was subject to dynamics allowing to deform the topology of the associated network. Suppose that some preferred network topology or network topologies allowed to recognize the number of matches and tell it using language (therefore also linear language is involved). The natural assumption is that the favored network topology is connected.

The two extremes in which the network is connected are favored modes for this representation.

  1. Option I corresponds to any linear string giving a linguistic representation as the number neurons (which would be activated by seeing the matches scattered on the floor). A large number of equivalent representations is possible. This representation might be optimal for associating to N its name. The verbal expression of the name could be completely automatic association without any conceptual content. The different representations carry also geometric information about the shape of the string: melody in music could be this kind of curve whereas words of speech would be represented by straight lines.
  2. Option II corresponds to a maximally connected lattice like structure formed as pile of strings with pk neurons for a given prime: N= M1× pk+M2, 0≤ Mi < pk. The highest string in the pile misses some neurons. This representation would be maximally connected. It contains more information than that about the value of N.
Option II provides also number theoretical information allowing a model for the feats of the twins.
  1. As far the checking the primeness of N is considered, one can assume k=1. For the primes pi dividing N one would find a representation of N as a rectangle. If N is prime, one finds no rectangles of this kind (or finds only the degenerate 1× p rectangle). This serves a geometric signature of primeness. Twins would have tried to find all piles of strings with p neurons, p=2,3,5,... A slower procedure checkes for divisibility by n=2,3,4,....
  2. The decomposition into prime factors would proceed in the similar manner by starting from p=2 and proceeding to larger primes p=3,5,7,.... When a prime factor pi is found only single vertical string from the pile is been taken and the process is repeated for this string but considering only primes p>pi. The process would have been completely visual and would not involve any verbal thinking.
For the storage of memories the 2-D (or possibly 3-D representation) is non-economical and the use of 1-D representation replacing images with their names is much more economic. For information processing such as decomposition into primes, the 2-D or even 3-D representation are much more powerful.

See the chapter Artificial Intelligence, Natural Intelligence, and TGD or the article with the same title.

Artificial Intelligence, Natural Intelligence, and TGD

Recently a humanoid robot known as Sophia has gained a lot of attention in net (see the article by Ben Goertzel, Eddie Monroe, Julia Moss, David Hanson and Gino Yu titled with title " Loving AI: Humanoid Robots as Agents of Human Consciousness Expansion (summary of early research progress)" .

Sophia uses AI, visual data processing, and facial recognition. Sophia imitates human gestures and facial expressions and is able to answer questions and make simple conversations on predefined topics. The AI program used analyzes conversations, extracts data, and uses it to improve responses in the future. To a skeptic Sophia looks like a highly advanced version of ELIZA.

Personally I am rather skeptic view about strong AI relying on a mechanistic view about intelligence. This leads to transhumanism and notions such as mind uploading. It is however good to air out one's thinking sometimes.

Computers should have a description also in the quantal Universe of TGD and this forces to look more precisely about the idealizations of AI. This process led to a change of my attitudes. The fusion of human consciousness and presumably rather primitive computer consciousness but correlating with the program running in it might be possible in TGD Universe, and TGD inspired quantum biology and the recent ideas about prebiotic systems provide rather concrete ideas in attempts to realize this fusion.

TGD also strongly suggests that there is also what might be called Natural Intelligence relying on 2-D cognitive representations defined by networks consisting of nodes (neurons) and flux tubes (axons with nerve pulse patters) connecting them rather than linear 1-D representation used by AI. The topological dynamics of these networks has Boolean dynamics of computer programs as a projection but is much more general and could allow to represent objects of perceptive field and number theoretic cognition.

See the chapter Artificial Intelligence, Natural Intelligence, and TGD or the article with the same title.

To the index page