
CONTENTS 1

Quantum Arithmetics and the Relationship between Real
and p-Adic Physics

M. Pitkänen,

February 14, 2018

Email: matpitka6@gmail.com.
http://tgdtheory.com/public_html/.

Recent postal address: Rinnekatu 2-4 A 8, 03620, Karkkila, Finland.

Contents

1 Introduction 4
1.1 Overall View About Variants Of Quantum Integers . . . . . . . . . . . . . . . . . . 5
1.2 Motivations For Quantum Arithmetics . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Model for Shnoll effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 What could be the deeper mathematics behind dualities? . . . . . . . . . . 6
1.2.3 Could quantum arithmetics allow a variant of canonical identification re-

specting both symmetries and continuity? . . . . . . . . . . . . . . . . . . . 7
1.2.4 Quantum integers and preferred extremals of Kähler action . . . . . . . . . 8

1.3 Correspondence Along Common Rationals And Canonical Identification: Two Man-
ners To Relate Real And P-Adic Physics . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Identification along common rationals . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Canonical identification and its variants . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Can one fuse the two views about real-p-adic correspondence . . . . . . . . 9

1.4 Brief Summary Of The General Vision . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Two options for quantum integers . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Quantum counterparts of classical groups . . . . . . . . . . . . . . . . . . . 11

2 Various Options For Quantum Arithmetics 12
2.1 Comparing Options I And II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Quantum Arithmetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Are products mapped to products? . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Are sums mapped to sums? . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 About the choice of the quantum parameter q . . . . . . . . . . . . . . . . . 15

2.3 Canonical Identification For Quantum Rationals And Symmetries . . . . . . . . . . 17

http://tgdtheory.com/public_html/


CONTENTS 2

2.4 More About The Non-Uniqueness Of The Correspondence Between P-Adic Integers
And Their Quantum Counterparts . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 The Three Basic Options For Quantum Arithmetics . . . . . . . . . . . . . . . . . 20

3 Do Commutative Quantum Counterparts Of Lie Groups Exist? 20
3.1 Quantum Counterparts Of Special Linear Groups . . . . . . . . . . . . . . . . . . . 21
3.2 Do Classical Lie Groups Allow Quantum Counterparts? . . . . . . . . . . . . . . . 23
3.3 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 How to realize p-adic-real duality at the space-time level? . . . . . . . . . . 25
3.3.2 How commutative quantum groups could relate to the ordinary quantum

groups? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 How to define quantum counterparts of coset spaces? . . . . . . . . . . . . . 26

3.4 Quantum P-Adic Deformations Of Space-Time Surfaces As A Representation Of
Finite Measurement Resolution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Could One Understand P-Adic Length Scale Hypothesis Number Theoreti-
cally? 28
4.1 Number Theoretical Evolution As A Selector Of The Fittest P-Adic Primes? . . . 28
4.2 Only Option I Is Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Orthogonality Conditions For So(3) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Number Theoretic Functions RK(N) For K = 2, 4, 6 . . . . . . . . . . . . . . . . . 30

4.4.1 The behavior of r2(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2 The behavior of r4(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 The behavior of r6(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 What Can One Say About The Behavior Of R3? . . . . . . . . . . . . . . . . . . . 31
4.5.1 Expression of r3 in terms of class number function . . . . . . . . . . . . . . 32
4.5.2 Simplified formula for r3(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.3 Could thermodynamical analogy help? . . . . . . . . . . . . . . . . . . . . . 34
4.5.4 Expression of r3 in terms of Dirichlet L-function . . . . . . . . . . . . . . . 35
4.5.5 Could preferred integers correspond to the maxima of Dirichlet L-function? 35
4.5.6 Interference as a helpful physical analogy? . . . . . . . . . . . . . . . . . . . 36
4.5.7 Period doubling as physical analogy? . . . . . . . . . . . . . . . . . . . . . . 36
4.5.8 Does 2-adic quantum arithmetics prefer CD scales coming as powers of two? 37

5 How Quantum Arithmetics Affects Basic TGD And TGD Inspired View About
Life And Consciousness? 37
5.1 What Happens To P-Adic Mass Calculations And Quantum TGD? . . . . . . . . . 38
5.2 What Happens To TGD Inspired Theory Of Consciousness And Quantum Biology? 38

6 Appendix: Some Number Theoretical Functions 39
6.1 Characters And Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Principal character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Legendre and Kronecker symbols . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.3 Dirichlet character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Divisor Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Class Number Function And Dirichlet L-Function . . . . . . . . . . . . . . . . . . . 41



CONTENTS 3

Abstract

This chapter considers possible answers to the basic questions of the p-adicization program,
which are following.

Some of the basic questions of the p-adicization program are following.

1. Is there some kind of duality between real and p-adic physics? What is its precise math-
ematic formulation? In particular, what is the concrete map of p-adic physics in long
scales (in real sense) to real physics in short scales? Can one find a rigorous mathemat-
ical formulation of the canonical identification induced by the map p → 1/p in pinary
expansion of p-adic number such that it is both continuous and respects symmetries or
one must accept the finite measurement resolution.

Few years after writing this the answer to this question is in terms of the notion of p-
adic manifold. Canonical identification serving as its building brick however allows many
variants and it seems that quantum arithmetics provides one further variant

2. What is the origin of the p-adic length scale hypothesis suggesting that primes near power
of two are physically preferred? Why Mersenne primes seem to be especially important
(p-adic mass calculations suggest this)?

This chapter studies some ideas but does not provide a clearcut answer to these questions.
The notion of quantum arithmetics obtained is central in this approach.

The starting point of quantum arithmetics is the map n→ nq taking integers to quantum
integers: nq = (qn − q−n)/(q − q−1). Here q = exp(iπ/n) is quantum phase defined as a root
of unity. From TGD point of view prime roots q = exp(iπ/p) are of special interest. Also
prime prime power roots q = exp(iπ/pn) of unity are of interest. Quantum phase can be also
generalized to complex number with modulus different from unity.

One can consider several variants of quantum arithmetics. One can regard finite integers
as either real or p-adic. In the intersection of “real and p-adic worlds” finite integers can be
regarded both p-adic and real.

1. If one regards the integer n real one can keep some information about the prime decom-
position of n by dividing n to its prime factors and performing the mapping p→ pq. The
map takes prime first to finite field G(p, 1) and then maps it to quantum integer. Powers
of p are mapped to zero unless one modifies the quantum map so that p is mapped to p
or 1/p depending on whether one interprets the outcome as analog of p-adic number or
real number. This map can be seen as a modification of p-adic norm to a map, which
keeps some information about the prime factorization of the integer. Information about
both real and p-adic structure of integer is kept.

2. For p-adic integers the decomposition into prime factors does not make sense. In this
case it is natural to use pinary expansion of integer in powers of p and perform the
quantum map for the coefficients without decomposition to products of primes p1 < p.
This map can be seen as a modification of canonical identification.

3. If one wants to interpret finite integers as both real and p-adic then one can imagine the
definition of quantum integer obtained by de-compositing n to a product of primes, using
pinary expansion and mapping coefficients to quantum integers looks natural. This map
would keep information about both prime factorization and also a bout pinary series
of factors. One can also decompose the coefficients to prime factors but it is not clear
whether this really makes sense since in finite field G(p, 1) there are no primes.

One can distinguish between two basic options concerning the definition of quantum inte-
gers.

1. For option I the prime number decomposition of integer is mapped to its quantum
counterpart by mapping the primes l to quantum primes lq = (ql − q−l)/(q − q−1),
q = exp(iπ/p) so that image of product is product of images. Sums are not mapped to
sums as is easy to verify. p is mapped to zero for the standard definition of quantum
integer. Now p is however mapped to itself or 1/p depending on whether one wants
to interpret quantum integer as p-adic or real number. Quantum integers generate an
algebra with respect to sum and product.

2. Option II one uses pinary expansion and maps the prime factors of coefficients to quantum
primes. There seems to be no point in decomposing the pinary coefficients to their prime
factors so that they are mapped to standard quantum integers smaller than p.
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The quantum primes lq act as generators of Kac-Moody type algebra defined by powers
pn such that sum is completely analogous to that for Kac-Moody algebra: a + b =∑

n anp
n +

∑
bnp

n =
∑

n(an + bn)pn. For p-adic numbers this is not the case.

3. For both options it is natural to consider the variant for which one has expansion n =∑
k nkp

kr, nk < pr, r = 1, 2.... pk would serve as cutoff.

The notion of quantum matrix group differing from ordinary quantum groups in that matrix
elements are commuting numbers makes sense. This group forms a discrete counterpart of
ordinary quantum group and its existence suggested by quantum classical correspondence.
The existence of this group for matrices with unit determinant is guaranteed by mere ring
property since the inverse matrix involves only arithmetic product and sum.

1. The quantum counterparts of special linear groups SL(n, F ) exists always. For the
covering group SL(2, C) of SO(3, 1) this is the case so that 4-dimensional Minkowski
space is in a very special position. For orthogonal, unitary, and orthogonal groups the
quantum counterpart exists only if the number of powers of p for the generating elements
of the quantum matrix group satisfies an upper bound characterizing the matrix group.

2. For the quantum counterparts of SO(3) (SU(2)/ SU(3)) the orthogonality conditions
state that at least some multiples of the prime characterizing quantum arithmetics is
sum of three (four/six) squares. For SO(3) this condition is strongest and satisfied for
all integers, which are not of form n = 22r(8k+7)). The number r3(n) of representations
as sum of squares is known and r3(n) is invariant under the scalings n → 22rn. This
means scaling by 2 for the integers appearing in the square sum representation.

The findings about quantum SO(3) suggest a possible explanation for p-adic length scale
hypothesis and preferred p-adic primes.

1. The idea to be studied is that the quantum matrix group which is discrete is in some
sense very large for preferred p-adic primes. If cognitive representations correspond to
the representations of quantum matrix group, the representational capacity of cognitive
representations is high and this kind of primes are survivors in the algebraic evolution
leading to algebraic extensions with increasing dimension. The simple estimates of this
chapter restricting the consideration to finite fields (O(p) = 0 approximation) do not
support this idea in the case of Mersenne primes.

2. An alternative idea is that number theoretic evolution leading to algebraic extensions
of rationals with increasing dimension favors p-adic primes which do not split in the
extensions to primes of the extension. There is also a nice argument that infinite primes
which are in one-one correspondence with prime polynomials code for algebraic exten-
sions. These primes code also for bound states of elementary particles. Therefore the
stable bound states would define preferred p-adic primes as primes which do not split in
the algebraic extension defined by infinite prime. This should select Mersenne primes as
preferred ones.

1 Introduction

The construction of quantum counterparts for various mathematical structures of theoretical
physics have been a fashion for decades. Quantum counterparts for groups, Lie algebras, coset
spaces, etc... have been proposed often on purely formal grounds. In TGD framework quantum
group like structures emerge via the hyper-finite factors of type II1 (HFFs) about which WCW
spinors represent a canonical example [K13]. The inclusions of HFFs provide a very attractive
manner to realize mathematically the notion of finite measurement resolution.

In the following a proposal for what might be called quantum integers and quantum matrix
groups is discussed. One can imagine two basic definitions of quantum integers nq: option I and II.
For option I the map n → nq respects prime decomposition so that one obtains quantum variant
of primeness. For option II ordinary primeness in the ordinary sense of word is lost as it is lost
also for p-adic numbers (only p is prime for Qp).

Also quantum rationals belonging to algebraic extension of rationals can be defined as well as
their algebraic extensions. Quantum arithmetics differs from the usual one in that quantum sum
is defined in such a manner that the map n → nq commutes also with sum besides the product:
mq +q nq = (m+ n)q. Quantum matrix groups differ from their standard counterparts in that the



1.1 Overall View About Variants Of Quantum Integers 5

matrix elements are not non-commutative. The matrix multiplication involving summation over
products is however replaced with quantum summation.

The hope is that these new mathematical structures could allow a better understanding of the
relationship between real and p-adic physics for various values of p-adic prime p, to be called l in the
sequel because of its preferred physical nature resembling that of l-adic prime in l-adic cohomology.
The correspondence with the ordinary quantum groups (see http://tinyurl.com/3tors5) [A15]
is also considered and suggested to correspond to a discretization following as a correlate of finite
measurement resolution.

1.1 Overall View About Variants Of Quantum Integers

The starting point of quantum arithmetics is the map n→ nq taking integers to quantum integers:
nq = (qn− q−n)/(q− q−1). Here q = exp(iπ/n) is quantum phase defined as a root of unity. From
TGD point of view prime roots q = exp(iπ/p) are of special interest. Also prime prime power
roots q = exp(iπ/pn) of unity are of interest. Quantum phase can be also generalized to complex
number with modulus different from unity.

One can consider several variants of quantum arithmetics. One can regard finite integers as
either real or p-adic. In the intersection of “real and p-adic worlds” finite integers can be regarded
both p-adic and real.

1. If one regards the integer n real one can keep some information about the prime decomposition
of n by dividing n to its prime factors and performing the mapping p→ pq. The map takes
prime first to finite field G(p, 1) and then maps it to quantum integer. Powers of p are mapped
to zero unless one modifies the quantum map so that p is mapped to p or 1/p depending on
whether one interprets the outcome as analog of p-adic number or real number. This map
can be seen as a modification of p-adic norm to a map, which keeps some information about
the prime factorization of the integer. Information about both real and p-adic structure of
integer is kept.

2. For p-adic integers the decomposition into prime factors does not make sense. In this case it
is natural to use pinary expansion of integer in powers of p and perform the quantum map
for the coefficients without decomposition to products of primes p1 < p. This map can be
seen as a modification of canonical identification.

3. If one wants to interpret finite integers as both real and p-adic then one can imagine the
definition of quantum integer obtained by de-compositing n to a product of primes, using
pinary expansion and mapping coefficients to quantum integers looks natural. This map
would keep information about both prime factorization and also a bout pinary series of
factors. One can also decompose the coefficients to prime factors but it is not clear whether
this really makes sense since in finite field G(p, 1) there are no primes.

Clearly, many variants of quantum integers can be found and it is difficult to decide which of
them - if any - has interesting from TGD point of view.

1. If one wants to really model something using quantum integers, the second options is perhaps
the realistic one: the reason is that the decomposition into prime factors requires a lot of
computation time.

2. A second fictive criterion would be whether the definition is maximally general. Does the
definition makes sense for infinite primes? The simplest infinite primes at the first level
of hierarchy have physical interpretation as many-particle states consisting of bosons and
fermions, whose momentum values correspond to finite primes. The interpretation generalizes
to higher levels of the hierarchy. A simple argument show that the option keeping information
about prime factorization of the p-adic number allowing also infinite primes as factors makes
sense only if prime factors are not expanded in series with respect to the prime p and if p does
not correspond to a fermionic mode. The quantum map using prime root of unity therefore
makes sense for all but fermionic primes. The presence of exceptional primes in number
theory is basic phenomenon: typically they correspond to primes for which factorization is
not unique in algebraic extension.

 http://tinyurl.com/3tors5
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1.2 Motivations For Quantum Arithmetics

Quantum arithmetics has several motivations in TGD framework.

1.2.1 Model for Shnoll effect

The model for Shnoll effect [K1] suggests that this effect could be understand in terms of a de-
formation of probability distribution f(n) (n non-negative integer) for random fluctuations. The
deformation would replace the rational parameters characterizing the distribution with new ones
obtained by mapping the parameters to new ones by using the analog of canonical identification
respecting symmetries.

The idea of the model of Shnoll effect was to modify the quantum map n → nq in such a
manner that it is consistent with the prime decomposition of ordinary integers. This deformation
would involve two parameters: quantum phase q = exp(iπ/m) and preferred prime l, which need
not be independent however: m = l is a highly suggestive restriction.

1.2.2 What could be the deeper mathematics behind dualities?

Dualities certainly represent one of the great ideas of theoretical physics of the last century. On
could say that electric-magnetic duality due to Montonen and Olive [B2] is the mother of all
dualities. Later a proliferation, one might say even inflation, of dualities has taken place. AdS/CFT
correspondence (see http://tinyurl.com/2zuek8) [B3] is one example relating to each other
perturbative QFT working in short scales and string theory working in long scales.

Also in TGD framework several dualities suggests itself. All of them seem to relate to di-
chotomies such as weak–strong, perturbative–non-perturbative, point like particle–string. Also
number theory seems to be involved in an essential manner.

1. If M8 − −M4 × CP2 duality is true it is possible to regard space-times as surfaces in M8

or M4 × CP2 [K12]. The proper treatment of Minkowskian signature requires complexified
version M8

c of M8 allowing identification as complexified octonions. One manner to interpret
the duality would as the analog of q-p duality in wave mechanics. Surfaces in M8 (or M8

c )
would be analogous to momentum space representation of the physical states: space-time
surfaces in M8 would represent in some sense the points for the tangent space of the “world
of classical worlds” (WCW) just like tangent for a curve gives the first approximation for the
curve near a given point.

The argument supporting M8 −−M4 × CP2 duality involves the basic facts about classical
number fields - in particular octonions and their complexification - and one can understand
M4×CP2 in terms of number theory. The analog of the color group in M8 picture would be
the isometry group SO(4) of E4 which happens to be the symmetry group of the old fashioned
hadron physics. Does this mean that M4 × CP2 corresponds to short length scales and
perturbative QCD whereas M8 would correspond to long length scales and non-perturbative
approach?

2. Second duality would relate partonic 2-surfaces and string world sheets playing a key role
in the recent view about preferred extremals of Kähler action [L3]. Partonic 2-surfaces are
magnetic monopoles and TGD counterparts of elementary particles, which in QFT approach
are regarded as point like objects. The description in terms of partonic 2-surfaces forgetting
that they are parts of bigger magnetically neutral structures would correspond to perturbative
QFT. The description in terms of string like objects with vanishing magnetic charge is needed
in longer length scales. Electroweak symmetry breaking and color confinement would be the
natural applications. The essential point is that stringy description corresponds to long length
scales (strong coupling) and partonic description to short length scales (weak coupling).

Number theory seems to be involved also now: string world sheets could be seen as com-
mutative (hyper-complex) 2-surfaces of space-time surface with hyper-quaternionic tangent
space structure and partonic 2-surfaces as co-commutative (co-hyper-complex) 2-surfaces.
To avoid inflation of clumsy “hyper-”s, the terms “associative”/“co-associative” and “com-
mutative”/“co-commutative” will be used in the sequel.

http://tinyurl.com/2zuek8
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The localization of the modes of induced spinor fields to string world sheets and partonic
2-surfaces could be seen as a physical realization this and is implied by the requirement that
spinor modes are eigenstates of em charge operator [K17].

3. Space-time surface itself would decompose to associative and co-associative regions and a
duality also at this level is suggestive [L1], [K2]. The most natural candidates for dual space-
time regions are regions with Minkowskian and Euclidian signatures of the induced metric
with latter representing the generalized Feynman graphs. Minkowskian regions would corre-
spond to non-perturbative long length scale description and Euclidian regions to perturbative
short length scale description. This duality should relate closely to quantum measurement
theory and realize the assumption that the outcomes of quantum measurements are always
macroscopic long length scale effects. Again number theory is in a key role.

Real and p-adic physics and their unification to a coherent whole represent the basic pieces of
physics as generalized number theory program.

1. p-Adic physics in minimal sense would mean a discretization of real physics relying on effective
p-adic topology. p-Adic physics could also mean genuine p-adic physics at p-adic space-time
sheets identified as space-time correlates of cognition.

Real continuity and smoothness is a powerful constraint on short distance physics. p-Adic
continuity and smoothness pose similar constraints in short scales an therefore on real physics
in long length scales if one accepts that real and space-time surfaces (partonic 2-surfaces for
minimal option) intersect along rational points and possible common algebraics in preferred
coordinates. p-Adic fractality implying short range chaos and long range correlations is the
outcome. Therefore p-adic physics could allow to avoid the landscape problem of M-theory
due to the fact that the IR limit is unpredictable although UV behavior is highly unique.

2. The recent argument [L3] suggesting that the areas for partonic 2-surfaces and string world
sheets could characterize Kähler action leads to the proposal that the large Nc expansion
(see http://tinyurl.com/ya4xo926) [B1] in terms of the number of colors defining non-
perturbative stringy approach to strong coupling phase of gauge theories could have inter-
pretation in terms of the expansion in powers of 1/

√
p, p the p-adic prime. This expansion

would converge extremely rapidly since Nc would be of the order of the ratio of the sec-
ondary and primary p-adic length scales and therefore of the order of

√
p: for electron one

has p = M127 = 2127 − 1.

3. Could there exist a duality between genuinely p-adic physics and real physics? Could
the mathematics used in p-adic mass calculations - in particular canonical identification∑
n xnp

n →
∑
xnp

−n - be extended to apply to quantum TGD itself and allow to under-
stand the non-perturbative long length scale effects in terms of short distance physics dictated
by continuity and smoothness but in different number field? Could a proper generalization
of the canonical identification map allow to realize concretely the real–p-adic duality?

1.2.3 Could quantum arithmetics allow a variant of canonical identification respect-
ing both symmetries and continuity?

One could argue that a generalization of the canonical identification [K9] and its variants is needed
in order to solve the tension between algebra (symmetries) and topology: the correspondence via
common rationals respects algebra and symmetries but is discontinuous. Canonical identification
is continuous but does not respect algebra.

Concerning the correspondence between p-adics and reals the notion of p-adic manifolds seems
to represent a real step of progress. The notion of p-adic manifold [K18] is based on simple idea.
The chart maps of p-adic manifolds (now space-time surfaces) are to real manifolds (space-time
surfaces) rather than p-adic counterpart of Euclidian space and realized in terms of some variant
of canonical identification restricted to a discrete subset of rational points of manifold- now space-
time surface- and preferred extremal property allows to find a space-time surface which contains
these points. In accordance with finite measurement resolution, the correspondence is not unique.

The real image is interpreted as realization of intention represented as p-adic space-time surface.
The reverse maps providing p-adic charges about real space-time surface are interpreted as cognitive

http://tinyurl.com/ya4xo926
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representations. Building of cognitive representation and realization of intention as action could
be time reversals of each other in the sense that quantum jump could lead from p-adic sector to
real and vice versa: this requires zero energy ontology (ZEO) in order to make sense.

All forms of canonical identification break to some extent symmetries and continuity (this forces
the restriction to a discrete subset of space-time points). One could accept this or ask whether a
generalization of canonical identification resolving the tension between symmetries and continuity
could exist.

It seems that this is not the case. The tension seems to be unresolvable and have interpretation
in terms of finite measurement resolution. At best a given continuous symmetry group would be
replaced by some of its discrete subgroups. Of course, both real and p-adic variants of symmetries
are realized but the problem is that they are very different and canonical identification in its basic
form does not give close connection between them.

This chapter was written before the emergence of the notion of p-adic manifold and in the hope
that the symmetry respecting generalization of canonical identification might exist. In the new
situation quantum variant of canonical identification provides a new variant of the map taking
discretization of the p-adic space-time surfaces to its real counterpart.

1.2.4 Quantum integers and preferred extremals of Kähler action

One might hope that quantum integers have some deep function. Somehow the fact that the
images of primes 1 < pi < p are algebraic numbers might relate to this. Maybe their function
might relate to the notion of p-adic manifold [K18]. The basic challenge is to continue the discrete
canonical image of the p-adic space-time points to continuous and differentiable preferred extremal
of Kähler action. Oc-real analytic functions (Oc denotes complexified octonions) [K19] defining
four-surfaces in M8

c mappable to space-time surface in H by M8 −H correspondence might allow
to code preferred extremals by real-valued analytic functions. A hierarchy of polynomials with
rational or even algebraic arguments suggests itself.

Quantum integers might define discretization of real space-time surface by mapping p-adic
integers (continuum) representing preferred imbedding space coordinates to a set of quantum
integers nq, 0 ≤ n < p.

The notion of deformation has played central role in attempts to generalize physics and one can
see quantum physics as a deformation of classical physics. Suppose that p-adic preferred extremal
is characterized by functions which are polynomials/ rational functions. Suppose that one can
interpret these functions as functions in the ring of quantum integers. Since differentiability makes
sense for the quantum ring one could hope that these functions could define preferred extremal in
the ring of quantum integers and perhaps also in real imbedding space.

1.3 Correspondence Along Common Rationals And Canonical Identifi-
cation: Two Manners To Relate Real And P-Adic Physics

The relationship between real and p-adic physics deserves a separate discussion.

1.3.1 Identification along common rationals

The first correspondence between reals and p-adics is based on the idea that rationals are common
to all number fields implying that rational points are common to both real and p-adic worlds. This
requires preferred coordinates. It also leads to a fusion of different number fields along rationals
and common algebraics to a larger structure having a book like structure [K11, K9].

1. Quite generally, preferred space-time coordinates would correspond to a subset of preferred
imbedding space coordinates, and the isometries of the imbedding space give rise to this
kind of coordinates which are however not completely unique. This would give rise to a
moduli space corresponding to different symmetry related coordinates interpreted in terms
of different choices of causal diamonds (CDs: recall that CD is the intersection of future and
past directed light-cones.

2. Cognitive representation in the rational (partly algebraic) intersection of real and p-adic
worlds would necessarily select certain preferred coordinates and this would affect the physics
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in a delicate manner. The selection of quantization axis would be basic example of this sym-
metry breaking. Finite measurement resolution would in turn reduce continuous symmetries
to discrete ones. It deserves to be mentioned that for color color symmetries SU(3) the space
for the choices of quantization axes is flag-manifold SU(3)/U(1)×U(1) having interpretation
as twistor space of CP2: CP2 is the only compact 4-manifold allowing twistor space with
complex structure. M4 twistors are assigned with light-like vectors defining plane M2 ⊂M4

in turn defining quantization axis for spin.

3. Typically real and p-adic variants of given partonic 2-surface would have discrete and possibly
finite set of rational points plus possible common algebraic points. The intersection of real
and p-adic worlds would consist of discrete points. At more abstract level rational functions
with rational coefficients used to define partonic 2-surfaces would correspond to common
2-surfaces in the intersection of real and p-adic WCW:s. As a matter fact, the quantum
arithmetics would make most points algebraic numbers.

4. The correspondence along common rationals respects symmetries but not continuity: the
graph for the p-adic norm of rational point is totally discontinuous. Most non-algebraic reals
and p-adics do not correspond to each other. In particular, transcendental at both sides
belong to different worlds with some exceptions like ep which exists p-adically.

1.3.2 Canonical identification and its variants

There is however a totally different view about real–p-adic correspondence.
The predictions of p-adic mass calculations are mapped to real numbers via thecanonical iden-

tification applied to the p-adic value of mass squared [K9, K8]. One can imagine several forms of
canonical identification but this affects very little the predictions since the convergence in powers
of p for the mass squared thermal expectation is extremely fast.

As a matter fact, I proposed for more that 15 years ago that canonical identification could be
essential element of cognition mapping external world to p-adic cognitive representations [K10]
realized in short length scales and vice versa.

If so, then real–p-adic duality would be a cornerstone of cognition [K10]. Common rational
points would relate to the intentionality which is second aspect of the p-adic real correspondence:
the transformation of real to p-adic surfaces in quantum jump would be the correlate for the
transformation of intention to action. The realization of intention would correspond to the cor-
respondence along rationals and common algebraics (the more common points real and p-adic
surface have, the more faithful the realization of intentional action) and the generation of cognitive
representations to the canonical identification.

The already mentioned, notion of p-adic manifolds [K18] relies on this notion and provides a
very promising approach to the description of space-time correlates of cognition. Various forms of
canonical identification would define cognitive representations and their reverses.

Canonical identification is continuous but does does not respect symmetries: the action of
the p-adic symmetry followed by a canonical identification to reals is not equal to the canonical
identification map followed by the real symmetry.

1.3.3 Can one fuse the two views about real-p-adic correspondence

Could the two views about real-p-adic correspondence be fused if appropriately generalized canon-
ical identification is interpreted as a concrete duality mapping short length scale physics and long
length scale physics to each other? There are however hard technical problems involved.

1. Canonical identification is not consistent with general coordinate invariance unless one can
identify some physicallyt preferred coordinate system. For imbedding spaces the isometries
guarantee the existence of rather limited space of this kind of coordinate systems: linear
coordinates for M4 and complex coordinate systems relatd by color isometries for CP2. This
suggests taht canonical identification should be realized at the level of imbedding space.

2. Canonical identification would be locally continuous in both directions. Note that for the
points with finite pinary expansion (ordinary integers) the map is two-valued. Note also that
rationals can be expanded in infinite powers series with respect to p and one can ask whether
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one should do this or map q = m/n to I(m)/I(n) (the representation of rational is unique if
m and n have no common factors). Symmetries represented by matrix groups with rational
matrix elements require the latter option.

One can map rationals by m/n → I(m)/I(n). One can also express m and n as power
series of pk as x =

∑
xnp

nk and perform the map as x→
∑
xnp

−nk. This allows to preserve
symmetries in arbitrary good measurement resolution characterized by the power p−k on real
side. The reason would be that rationals m/n with m < pk and n < pk would be mapped to
themselves: algebra wins. If m or n or both are larger than pk the behavior associated with
canonical identification sets in: topology wins.

3. This compromize between algebra and topology looks nice but an additional problem emerges
when one brings in more TGD. If one wants to map differentiable p-adic space-time surfaces
(preferred extremals of Kähler action) to differentiable real surfaces (preferred extremals of
Kähler action), canonical identification cannot work since it is not differentiable. Second
pinary cutoff above which one simply throws out the pinary digits, is needed. p-Adic space-
time sheets are discretized and mapped to a discrete subsets of the real space-time sheet.
Completion to a preferred extremal is needed and assigning a preferred extremal to a discrete
point set becomes the challenge. The p-adic manifold concept relies essentially on this idea
about p-adic-real correspondence.

This chapter was originally written few years before the idea of p-adic manifold. The ques-
tion was whether one could circumvent the tension between symmetries and continuity without
approximations? After few years the answer is definitely “No!”.

Despite this I have decided to keep this chapter since the quantum variant of canonical identi-
fication could also be involved with the definition of p-adic manifold. In particular, the fact that it
maps p-adic numbers to algebraic numbers in the algebraic extension defined by p:th root of unity
might have some deep meaning and relate to the connection between Galois group of maximal
Abelian extension of rationals and adeles consisting of the Cartesian product of real and various
p-adic number fields.

Could the canonical identification based on quantum integers provide a generalization of the
notion of symmetry itself in order to circumvent ugly constructions? This is the question to be
addressed in this chapter.

1.4 Brief Summary Of The General Vision

Some of the basic questions of the p-adicization program are following.

1. Is there a duality between real and p-adic physics? What is its precise mathematic for-
mulation? In particular, what is the concrete map of p-adic physics in long scales (in real
sense) to real physics in short scales? Can one find a rigorous mathematical formulation
of the canonical identification induced by the map p → 1/p in pinary expansion of p-adic
number such that it is both continuous and respects symmetries or one must accept the finite
measurement resolution.

Few years after writing this the answer to this question is in terms of the notion of p-
adic manifold. Canonical identification serving as its building brick however allows many
variants and it seems that quantum arithmetics provides one further variant. The physical
interpretation could be in terms of inclusions of hyper-finite factors of type II1 parametrized
by quantum phases and allowing to interpret the action of the included algebra as having
no effects on the state in the measurement resolution used [K13]. When quantum phase
approaches unity one would obtained ordinary canonical identification.

2. What is the origin of the p-adic length scale hypothesis suggesting that primes near power of
two are physically preferred? Why Mersenne primes seem to be especially important (p-adic
mass calculations suggest this [K6])?

This chapter studies some ideas but does not provide a clearcut answer to these questions.
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1.4.1 Two options for quantum integers

In the sequel two options for definining quantum arithmetics are discussed: Options I and II. These
are not the only one imaginable but represent kind of diametrical opposites. The two options are
defined in the following manner.

1. For option I the prime number decomposition of integer is mapped to its quantum counter-
part by mapping the primes l to l modp (to guarantee positivity of the quantum integer)
decomposed into primes l < p and these in turn to quantum primes lq = (ql− q−l)/(q− q−1),
q = exp(iπ/p) so that image of the product is product of images. Sums are not mapped to
sums as is easy to verify. p is mapped to zero for the standard definition of quantum integer.
Now p is however mapped to itself or 1/p depending on whether one wants to interpret quan-
tum integer as p-adic or real number. Quantum integers generate an algebra with respect to
sum and product.

2. Option II one uses pinary expansion and maps the prime factors of coefficients to quantum
primes. There seems to be no point in decomposing the pinary coefficients to their prime
factors so that they are mapped to standard quantum integers smaller than p.

The quantum primes lq act as generators of Kac-Moody type algebra defined by powers pn

such that sum is completely analogous to that for Kac-Moody algebra: a + b =
∑
n anp

n +∑
bnp

n =
∑
n(an + bn)pn. For p-adic numbers this is not the case.

3. For both options it is natural to consider the variant for which one has expansion n =∑
k nkp

kr, nk < pr, r = 1, 2.... pk would serve as cutoff.

4. Non-negativity of quantum primes is important in the modelling of Shnoll effect by a defor-
mation of probability distribution P (n) by replacing the argument n by quantum integers
and the parameters of the distribution by quantum rationals [K1]. One could also replace
quantum prime by its square without losing the map of products to products.

5. At the limit when the quantum phase approaches to unit, ordinary quantum integers with
p-adic norm 1 approach to ordinary integers in real sense and ordinary arithmetics results.
Ordinary integers in real sense are obtained for option II when the coefficients of the pinary
expansion of n are much smaller than p and p approaches infinity. Same is true for option I
if the prime factors of the integer are much smaller than p.

The notion of quantum matrix group differing from ordinary quantum groups in that matrix
elements are commuting numbers makes sense. This group forms a discrete counterpart of ordinary
quantum group and its existence suggested by quantum classical correspondence. The existence
of this group for matrices with unit determinant is guaranteed by mere ring property since the
inverse matrix involves only arithmetic product and sum.

1.4.2 Quantum counterparts of classical groups

Quantum arithmetics inspires the notion of quantum matrix group as a counterpart of quantum
group for which matrix elements are non-commuting numbers. Now the elements would be ordi-
nary numbers. Quantum classical correspondence and the notion of finite measurement resolution
realized at classical level in terms of discretization suggest that these two views about quantum
groups are closely related. The preferred prime p defining the quantum matrix group is identified
as p-adic prime or its power and the inversion p→ 1/p is group homomorphism so that symmetries
are respected.

Option I gives p-adic counterparts of classical groups. p-Adic numbers are replaced with the
ring generated by the quantum images of p-adic numbers, which each correspond to some power
of p: this extension gives powers series in p. By requiring the group conditions for a subgroup of
special linear group to be satisfied in order O(p) = 0 one obtains classical groups for finite fields
G(p, 1) by simply requiring that group conditions are satisfied in order O(p) = 0. One can also
have also classical groups associated with finite fields G(p, n) having pn elements.

Option II is more interesting and quantum counterparts could be seen as counterparts of classi-
cal groups obtained by replacing group elements with the elements of ring defined by Kac-Moody
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type algebra. The difference to Option I and its variants is that one does not map p-adic integer
to G(p, 1) by n→ n mod p before quantum map but applies it to the entire p-adic integer.

1. The quantum counterparts of special linear groups SL(n, F ) exists always. For the covering
group SL(2, C) of SO(3, 1) this is the case so that 4-dimensional Minkowski space is in a very
special position. For orthogonal, unitary, and orthogonal groups the quantum counterpart
exists only if quantum arithmetics is characterized by a prime rather than general integer and
when the number of powers of p for the generating elements of the quantum matrix group
satisfies an upper bound characterizing the matrix group.

2. For the quantum counterparts of SO(3) (SU(2)/ SU(3)) the orthogonality conditions state
that at least some multiples of the prime characterizing quantum arithmetics is sum of three
(four/six) squares. For SO(3) this condition is strongest and satisfied for all integers, which
are not of form n = 22r(8k + 7)). The number r3(n) of representations as sum of squares is
known and r3(n) is invariant under the scalings n → 22rn. This means scaling by 2 for the
integers appearing in the square sum representation.

3. r3(n) is proportional to the so called class number function h(−n) telling how many non-
equivalent decompositions algebraic integers have in the quadratic algebraic extension gen-
erated by

√
−n.

The findings about quantum SO(3) encourages to consider a possible explanation for p-adic
length scale hypothesis and preferred p-adic primes.

1. The idea to be studied is that the quantum matrix group which is discrete is in some sense
very large for preferred p-adic primes. If cognitive representations correspond to the represen-
tations of quantum matrix group, the representational capacity of cognitive representations
is high and this kind of primes are survivors in the algebraic evolution leading to algebraic
extensions with increasing dimension. The simple estimates of this chapter restricting the
consideration to finite fields (O(p) = 0 approximation) do not support this idea in the case
of Mersenne primes.

2. An alternative idea discussed in [K16] is that number theoretic evolution leading to algebraic
extensions of rationals with increasing dimension favors p-adic primes which do not split in
the extensions to primes of the extension. There is also a nice argument that infinite primes
which are in one-one correspondence with prime polynomials code for algebraic extensions.
These primes code also for bound states of elementary particles. Therefore the stable bound
states would define preferred p-adic primes as primes which do not split in the algebraic
extension defined by infinite prime. This should select Mersenne primes as preferred ones.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L4].

2 Various Options For Quantum Arithmetics

In this section the notion of quantum arithmetics as a deformation of p-adic number field to a ring
is discussed. One can imagine several options for quantum arithmetics. Both for Option I and II
p-adic integers are mapped to a subset of a ring of quantum integers and the sum operation for
the ring has nothing to with that for p-adic numbers. In both cases the elements of ring makes
sense as real numbers.

2.1 Comparing Options I And II

The two options for defining quantum arithmetics are represented in the introduction so that it is
no point writing the formulas again. It is interesting to compare these options.

Consider first what is common to these options.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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1. For option I all integers are decomposed into products of primes mapped to their quantum
counterparts by p1 → p1 mod p →

∏
pip

ki
i followed by the mapping of pi to its quantum

counterpart. The modding operator for op1 guarantees positivity of the outcome. Hence the
information about prime decomposition is not lost completely. Also the information about
p-adic norm is preserved if p is mapped to itself or 1/p (this depending on whether one speaks
about p-adic or real variant of quantum integer). This option clearly respects algebra.

For option II the information about prime decomposition is lost and there is no point of
decomposing the coefficients of powers of p to prime factors. The information about pinary
expansion is not lost. This option in turn respects continuity.

2. Quantum map n → nq precedes canonical identification so that it could be interpreted as a
modification for the chart map defined by canonical identification in the proposed definition
for p-adic manifold already mentioned [K18] (see the appendix of the book).

3. For both options the quantum image belongs to a ring which is larger than the image since
for neither options the sum of two quantum integers need not be image of p-adic number.
This makes possible to assign classical groups to this ring.

4. p-Adic–real duality can be identified as the analog of canonical identification induced by the
map p → 1/p in the pinary expansion of quantum rational. This maps maps p-adic and
real physics to each other and real long distances to short ones and vice versa. This map is
especially interesting as a map for defining cognitive representations. The map pn → p−n is
generalization of this map an maps p-adic integers k < pn to itself. Note that subgroups of
Gl(m,R) consisting of matrices with integer valued elements pn are especially interesting p-
adically since one avoid p-adic rationals for which canonical identification map allows several
variants.

The differences between options I and II relate to how one treats integers n > p.

1. For option I one decomposes given integer to a product of primes and all primes are mapped to
their quantum counterparts so that products go to products. Sums are not however mapped
to sums. Quantum primes can be also negative. For q = exp(iπ/p) integers vanishing modulo
p go to zero if one defines nq by using the general formula for quantum integer. Also the
extension of the map to rationals m/n meets with difficulties if nq can vanish. It seems that
p must be mapped to 1/p to avoid these problems and this is done in the proposal developed
in the model for Shnoll effect [K1]. With this modification the image of integer is always
product of quantum primes by some power of p and one does not obtain series in powers of
p typical for p-adic numbers and canonical identification.

If quantum map would respect both product and sum, the quantum counterparts of subgroups
of classical matrix groups with elements elements smaller than pn would exist. This condition
cannot be satisfied. It is not clear whether subgroups of matrix groups exist for which their
quantum counterparts defined by matrices with matrix elements smaller than pn are groups
too.

This suggests that one must extend the image of p-adic integers (and its extension to that
of p-adic rationals) to a ring defined by quantum sums and assign matrix group acting as
symmetries to this ring. Matrix groups for which symmetries preserve volume the determi-
nant of the matrix equals to unity so that the inverse exists always even when number field
is replaced wit ring so that the existence of generalized matrix groups does not seem to be a
problem.

2. For Option II one expands integer in powers pk and maps the coefficients nk < p by quantum
map just as for the first option. The quantum counterparts of p-adic integers generate a
larger ring via products and sums.

One obtains the analog of Kac-Moody algebra with coefficients for a given power of p defining
an algebra analogy to polynomial algebra. One can define also rationals and obtains a
structure analogous to a function field. This field allows projection to p-adic numbers but
is much larger than p-adic numbers. The construction works also for more general quantum
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phases q than those defined by primes and q = exp(iπ/pn) is an especially interesting case.
For this option the symmetries of quantum p-adics would be preserved in the canonical
identification.

2.2 Quantum Arithmetics

The starting point idea was that quantum arithmetics maps products to products and sums to
sums. It has turned out that this need not be the case for the sum and even in the case of product
one can ask whether the assumption is necessary. For Option I both sum and product are respected
but this option is more or less equivalent with p-adic numbers. For Option II the images of primes
generate Kac-Moody type algebra, sums are not mapped to sums, and the number of elements of
quantum algebra is larger than that of p-adic number field. Also in this case one can consider the
option giving up the condition that products are mapped to products.

2.2.1 Are products mapped to products?

The first question is whether products are mapped to products. For Option I this is true by
construction but for option II it does not hold anymore.

1. The multiplicative structure of ordinary integers should be respected in the map taking
ordinary integers to quantum integers:

n = kl→ nq = kqlq . (2.1)

This is guaranteed if the map is induced by the map of ordinary primes to quantum primes.
This means that one decomposes n to a product of primes l and maps l → lq. For primes
l < p the map reads as l→ lq = (ql−q−l)/(q−q), q = exp(iπ/p) and gives a positive number.

For option I all primes are mapped by quantum map and products are mapped to products.
For l > p this is not the case for option II: one expands primes l > p as l =

∑
lmp

m, lm < p,
and maps the coefficients lm to quantum integers without decomposition to primes li < p.
Products are not mapped to products now. One can of course modify option two by applying
option I to the coefficients of pinary expansion.

2.2.2 Are sums mapped to sums?

Second question is about whether quantum map commutes with sum. There are two options.

1. For Option I also the sum of quantum integers is well-defined and also induces sum of the
quantum rationals. If the sum +q for quantum integers reflects the summation of ordinary
integers, one has

(k + l)q = kq +q lq . (2.2)

This is not the case in general: consider only the situation in which the sum of pinary digits
for some power of p is p as an example. Sums cannot go to sums for option I. One however
form sums of the quantum images of p-adics and the generate a ring whose elements can
be projected to p-adic numbers by projecting the summands separately. Hence one obtains
a ring and this is enough to talk about classical matrix groups for which matrix has unit
determinant.

2. Also for option II it is impossible to map sums of elements to sums of their images. p-Adic
numbers are mapped to a sub-space of a ring of quantum p-adics generated by the the images
lq of primes l < m, where m defines the quantum phase. In other words, one forms all possible
products and sums of the these generators and also their negatives. The sum is defined as the
complete analog of sum for Kac-Moody algebras: a+b =

∑
anm

n+
∑
bnm

n =
∑

(an+bn)mn
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and obviously differs from m-adic sum. The general element of algebra is x =
∑
xnm

n, where
one has

xn =
∑
{ni}

N({ni})
∏
i

xni
i , xi = pi,q, pi < m , q = exp(iπ/m) .

Here N({ni}) is integer. m = p gives what might be called quantum p-adic numbers. Note
that also zeroth order term giving rise to integers as constant term of polynomials is also
present. The map would produce integers from zeroth order terms so that skeptic could see
the construction too complex.

One has what could be regarded as analog of polynomial algebra with coefficients of polyno-
mials given by integers. Note that the coefficients can be also negative since quantum map
combined with canonical identification maps -1 to -1: canonical identification mapping −1
to (p− 1)q(1 + p+ p2...) would give only non-negative real numbers. If one wants that also
the images under canonical identification form a field (so that −x for given x belongs to the
system) one must assume that −1 is mapped to −1. Also the condition that one obtains
classical groups requires this. One can form also rationals of this algebra as ratios of this
kind of polynomials and a subset of them projects naturally to p-adic rationals.

3. One can project quantum integers for Option II to p-adic numbers by mapping the products
of powers of generators lq, l < m to products of ordinary p-adic primes l < m in the sums
defining the coefficients in the expansion in powers of m to ordinary p-adic integers. This
projection defines a structure analogous to a covering space for p-adic numbers. The covering
contains infinite number of elements since also the negatives of generators are allowed in the
construction. The covering by elements with positive coefficients of mn is finite.

4. Quantum p-adics for option II form a ring but do they form a field? One might hope this
since quantum p-adics are very much analogous to a function field for which the argument of
function is defined by integer characterizing the powers of p in quantum pinary expansion.
One would have the analogy of function field in the set of integers. This means that one
can indeed speak of quantum rationals M/N which can be mapped to reals by I(M/N) =
I(M)/I(N).

What could be the interpretation for 1-to-many character of the quantum map of p-adics
to reals? One possibility is that it could reflect the non-uniqueness due to finite measurement
resolution. One can ask whether it might be possible to extend the canonical identification with
finite measurement resolution reflected as pinary cutoffs so that all p-adic points would be mapped
to reals in such a manner that the real images would be differentiable. This is probably not
possible and by accepting this one ends up with the notion of p-adic manifold [K18]. p-Adic
manifolds could be constructed also by using quantum variant of canonical identification and this
might have some physical relevance and relate to finite resolution and inclusions of von Neuman
algebras representing it.

The identification of rationals as points common to all number fields suggests that one should
define differentiability as a weaker property consistent with finite measurement resolution: function
is differentiable if it is differentiable at rational points represented as ratios of integers.

2.2.3 About the choice of the quantum parameter q

Some comments about the quantum parameter q are in order.

1. The basic formula for quantum integers in the case of quantum groups is

nq =
qn − qn

q − q
. (2.3)

Here q is any complex number. The generalization respective the notion of primeness is
obtained by mapping only the primes p to their quantum counterparts and defining quantum
integers as products of the quantum primes involved in their prime factorization.
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pq =
qp − qp

q − q
nq =

∏
p

pnp
q for n =

∏
p

pnp . (2.4)

2. In the general case quantum phase is complex number with magnitude different from unity:

q = exp(η)exp(iπ/m) . (2.5)

The quantum map is 1-1 for a non-vanishing value of η and the limit m→∞ gives ordinary
integers. It seems that one must include the factor making the modulus of q different from
unity if one wants 1-1 correspondence between ordinary and quantum integers guaranteeing
a unique definition of quantum sum. In the p-adic context with m = p the number exp(η)
exists as an ordinary p-adic number only for η = np. One can of course introduce a finite-
dimensional extension of p-adic numbers generated by e1/k.

3. The root of unity must correspond to an element of algebraic extension of p-adic numbers.
Here Fermat’s theorem ap−1 mod p = 1 poses constraints since p−1: th root of unity exists
as ordinary p-adic number. Hence m = p−1: th root of unity is excluded. Also the modulus
of q must exist either as a p-adic number or a number in the extension of p-adic numbers.

4. If q reduces to quantum phase, the points n = 0, 1,−1 are fixed points of n→ nq for ordinary
integers so that one could say that all these numbers are common to integers and quantum
integers for all values of q = exp(iπ/m). For p-adic integers −1 = (p − 1)(1 + p + p2 + ..
is problematic. Should one use direct formula mapping it to −1 or should one map the
expansion to (p− 1)q(1 + p+ p2 + ....)? This option looks more plausible.

(a) For the first option the images under canonical can have both signs and can form a field.
For the latter option would obtain only non-negative quantum p-adics for ordinary p-
adic numbers. They do not form a field. For algebraic extensions of p-adics by roots
of unity one can obtain more general complex numbers as quantum images. For the
latter option also the quantum p-adic numbers projecting to a given prime l regarded
as p-adic integer form a finite set and correspond to all expansions l =

∑
lkp

k where lk
is product of powers of primes pi < p but one can have also lk > p.

(b) Quantum integers containing only the O(p0) term in the binary expansion for a sub-
ring. Corresponding quantum rationals could form a field defining a kind of covering
for finite field G(p, 1).

(c) The image I(m/n) of the pinary expansion of p-adic rational is different from I(m)/I(n).
The formula m/n→ I(m)/I(n) is the correct manner to define canonical identification
map. In this case the real counterparts of p-adic quantum integers do not form the
analog of function fields since the numbers in question are always non-negative.

5. For p-adic rationals the quantum map reads as m/n→ mq/nq by definition. But what about
p-adic transcendentals such as ep? There is no manner to decompose these numbers to finite
primes and it seems that the only reasonable map is via the mapping of the coefficients xn in
x =

∑
xnp

n to their quantum adic counterparts. It seems that one must expand all quantum
transcendentals having as a signature non-periodic pinary expansion to quantum p-adics to
achieve uniqueness. Second possibility is to restrict the consideration to rational p-adics. If
one gives up the condition that products are mapped to products, one can map n = nkp

k to
nq =

∑
nkqp

k. Only the products of p-adic integers n < p smaller than p would be mapped
to products.

6. The index characterizing Jones inclusion [A19] [K4] is given by [M : N ] = 4cos2(2π/n) and
corresponds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series
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of more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces and
q = n-adicity. lq < l is in accordance with the idea about finite measurement resolution and
for large values of p one would have lq ' l.

To sum up, one can imagine several options and it is not clear which option is the correct one
(if any). Certainly Option I for which the quantum map is only part of canonical identification
is the simpler one- perhaps quite too simple. The model for Shnoll effect requires only Option I.
The notion of quantum integer as defined for Opion II imbeds p-adic numbers to a much larger
structure imbeddable to reals and therefore much more general than that proposed in the model
of Shnoll effect [K1] but gives identical predictions when the parameters characterizing the prob-
ability distribution f(n) correspond contain only single term in the p-adic power expansion. The
mysterious dependence of nuclear decay rates on physics of solar system in the time scale of years
reduces to similar dependence for the parameters characterizing f(n). Could this dependence re-
late directly to the fact that canonical identification maps long length scale physics to short length
scales physics. Could even microscopic systems such as atomic nuclei give rise to what might be
called “cognitive representations” about the physics in astrophysical length scales?

2.3 Canonical Identification For Quantum Rationals And Symmetries

The fate of symmetries in canonical identification map is different for options I and II. Before
continuing, one can of course ask why canonical identification should map p-adic symmetries to
real symmetries. There is no obvious answer to the question.

1. For option II the prime p in the expansion
∑
xnl

n is interpreted as a symbolic coordinate
variable and the product of two quantum integers is analogous to the product of polynomials
reducing to a convolution of the coefficient using quantum sum. The coefficient of a given
power of p in the product would be just the convolution of the coefficients for factors using
quantum sum. In the sum coefficients would be just the quantum sums of coefficients of
summands.

2. Option I maps p-adic integers to their quantum counterparts by mapping the prime factors
to their quantum counterparts defined by q = exp(iπ/p). The sums of the resulting quantum
integers define a linear space consisting of sums

∑
knq

n of quantum phases with integer
coefficients kn subject to the condition that the sum

∑
0≤n<p q

n vanishes. Given p-adic
integer is mapped to single phase qn. The map of all p-adic integers to p quantum phases
means loss of information and generation or ring creates information not related to the p-adic
numbers themselves.

(a) One can also define quantum rationals by writing a given rational in unique manner
as r = pkm/n, expanding m and n as finite power series in p, and by replacing the
coefficients with their quantum counterparts. The mapping of quantum rationals to
their real counterparts would be by canonical identification p→ 1/p in mq/nq. Also the
completion of quantum rationals obtained by allowing infinite powers series for m and
n makes sense and defines by canonical identification what might be called quantum
reals.

(b) Quantum arithmetics defined in this manner does not reflect faithfully the ordinary p-
adic arithmetics and also leads to a problem with symmetries. In the product of ordinary
p-adic integers the convolution for given power of p can lead to overflow and this leads
to the emergence of modulo arithmetics. As a consequence, the canonical identification∑
xnl

n →
∑
xnl
−n does not respect product and sum in general (simple example:

I((xl)2) = x2l−2 6= (I(xl))2 = (x2modl)l−2 + (x2 − x2modl)l−3 for x > l/2). Therefore
canonical identification induced by l → 1/l does not respect symmetries represented
affinely (as linear transformations and translations) although it is continuous.

(c) For quantum rationals defined as ratios mq/nq of quantum integers and mapped to
I(mq)/I(nq) the situation improves dramatically but is not cured completely. The
breaking of symmetries could have a natural interpretation in terms of finite measure-
ment resolution. For instance, one could argue that p-adic space-time sheets are extrema
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of Kähler action in algebraic sense and their real counterparts obtained by canonical
identification are kind of smoothed out quantum average space-time surfaces, which
do not satisfy real field equations and are not even differentiable. In this framework
p-adicization would defined quantum average space-time as a p-adically smooth object
which nice geometric properties.

Consider next Option II for quantum p-adics.

1. The original motivation for quantum rationals was to obtain correspondence between p-
adics and reals respecting symmetries. For option II this dream can be achieved if the
symmetries are defined for quantum rationals rather than p-adic numbers. Whether this
means that quantum rationals are somehow deeper notion that p-adic number field is an
interesting question. Since quantum rationals are obtained from quantum integers defining a
Kac-Moody type algebra in powers of pn symmetry conditions for quantum rational matrices
reduce to conditions in terms of quantum integers and hold separately for each power of p.
Therefore the value of p does not actually matter, and the replacement p→ 1/p respects the
symmetries.

For instance, for the quantum counterpart of group SL(2, Z) assuming that pN is the largest
power in the matrix elements the condition det(A) = 1 gives 2N + 1 conditions for 4(N + 1)
parameters leaving 2N + 3 parameters. The matrix elements are integers so that actual
conditions are more stringent.

2. Quantum integers generate a space in which the space of coefficients of pn is the module
generated by the sums

∑
knq

n of quantum phases with integer coefficients kn subject to the
condition that the sum

∑
0≤n<p q

n vanishes. The huge extension of the original space is an
obvious problem.

3. For this option non-uniqueness is a potential problem. One can have several quantum integers
projecting to the same finite integer in powers of p. The number would be actually infinite
when the coefficients of powers of p can occur with both signs. Does the non-uniqueness
mean that quantum p-adics are more fundamental than p-adics?

4. The non-uniqueness inspires questions about the relationship between quantum field theory
and number theory. Could the sum over different quantum representatives for p-adic integers
define the analog of the functional integral in the ideal measurement resolution? Could loop
corrections correspond number theoretically to the sum over all the alternatives allowed in
a given measurement resolution defined by maximal number of powers of p in expansions of
m and n in r = m/n? This would extend the vision about physics as generalized number
theory considerably.

Note that quantum p-adic numbers are algebraic numbers so that quantum integers are alge-
braic numbers with prime p remaining ordinary integer.

2.4 More About The Non-Uniqueness Of The Correspondence Between
P-Adic Integers And Their Quantum Counterparts

For both options the projection from quantum integers to p-adic numbers is many-to-one.
For option I p-adic integer is mapped to an integer proportional to a quantum integers propor-

tional to power of p expressing its p-adic norm. Since the primes pi in the decomposition of n are
effectively replaced with pi mod p, a large number of integers with same p-adic norm is mapped
to same quantum integer. A lot of information is lost.

For Option II p-adic number is mapped to a series in powers of p so that information is not lost.
It is interesting to have some idea about how many quantum counterparts given p-adic integer has
in this case and what might be their physical interpretation. If −1 is mapped to −1 rather than
(p − 1)q(1 + p + p2 + ...) in quantum map and therefore also in canonical identification quantum
p-adics form an analog of a function field. The number of quantum p-adics projected to same
integer is infinite.
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The number of quantum p-adics for which the coefficients of the polynomials of quantum primes
p1 < p regarded as variables are positive is finite. These kind of quantum integers could be called
strictly positive. It is easy to count the number of different strictly positive quantum counterparts
of p-adic integer n = n0 +n1p+n2p

2 + ...+nkp
k - that is elements of the ring of quantum integers

projected to a given p-adic integer n.

1. For both options the number of quantum integers projected to a given integer n is simply
the number of all partitions of to a sum of integers, whose number can vary from 1 to n
and thus expressible as the sum D(n) =

∑n
k=1 d(n, k) of numbers of partitions to k integers.

Interestingly, the number of states with total conformal weight n constructible using at
most k Virasoro generators equals to d(n, k) and the total number of states with conformal
weight n is just D(n). This result follows if one does not assumes that different quantum
representatives are really different. One cannot exclude the possibility that the condition∑p−1
n=0 q

n = 0 for quantum phases implies this kind of dependencies.

Similar situation occurs in the construction of tensor powers of group representations for
any additive quantum number for which the basic unit is fixed. Could quantum classical
correspondence be realized as a mapping of different states of a tensor product as different
quantum p-adic space-time sheets?

2. The partition of n in all possible manners resembles combinatorially the insertion of loop
corrections in all possible manners to a Feynman diagram containing corresponds up to pk−1.
Maybe the sum over quantum corrections could be reduced to the summation of amplitudes
in which p-adic integer is mapped to its quantum counterpart in all possible manners. In
zero energy ontology quantum corrections to generalized Feynman diagrams in a new p-adic
length scaled defined by pk indeed more or less reduces to the addition of zero energy states
as a new tensor factor in all possible manners so that structurally the process would be like
adding tensor factor.

To number of geometric objects to which one can assign quantum counterparts is rather limited.
For the points of imbedding space with rational coordinates the number of quantum rational coun-
terparts would be finite. If either of the integers appearing in the p-adic rational become infinite
as a real integer, the number of quantum rationals becomes infinite and one obtains continuum in
p-adic sense since p-adic integers form a continuum.

An infinite number of points of a D > 0-dimensional quantum counterpart of p-adic surface
project to the same p-adic point. The restriction to a finite number of pinary digits makes sense
only at the ends of braid strands at partonic 2-surfaces. This provides additional support for the
effective 2-dimensionality and the braid representation for the finite measurement resolution. The
selection of braid ends is strongly constrained by the condition that the number of pinary digits
for the imbedding space coordinates is finite.

The interesting question is whether the summation over the infinite number of quantum copies
of the p-adic partonic 2-surface could correspond to the functional integral over partonic 2-surfaces
with braid ends fixed and thus having only one term in their pinary expansion. This kind of
functional integral is indeed encountered in quantum TGD.

1. The summations in which the quantum positions of braid ends form a finite set would corre-
spond to finite pinary cutoff. Second question is what the quantum summation for partonic
2-surfaces means: certainly there must be correlations between very nearby points if the
summation is to make sense. The notion of finite measurement resolution suggests that
summation reduces to that over the quantum positions of the braid ends.

2. Indeed, the reduction of the functional integral to a summation over quantum copies makes
sense only if it can be carried out as a limit of a discrete sum analogous to Riemann sum
and giving as a result what might be called quantum p-adic integral. This limit would
mean inclusion of an increasing number of points of the partonic 2-surface to the quantum
sum defined by the increasing pinary cutoff. One would also sum over the number of braid
strands. This approach could make sense physically if the collection of p-adic partonic 2-
surfaces together with their tangent space data corresponds to a maximum of Kähler function.
Quantum summation would correspond to a functional integral over small deformations with
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weight coming from the p-adic counterpart of vacuum functional mapped to its quantum
counterpart. Canonical identification would give the real or complex counterpart of the
integral.

2.5 The Three Basic Options For Quantum Arithmetics

I have proposed two alternative definitions for quantum integers. In [K16] a third option is dis-
cussed.

1. For option I quantum counterparts of p-adic integers are identified as products of quantum
counterparts for the primes dividing them. Powers of p are mapped to their inverses (straight-
forward quantum map would take them to zero). The quantum integers can be extended to
ring (and algebra) by allowing sum operation. Field property is in general lost.

2. The approach adopted in the sequel is based on Option II based on the identification of
quantum p-adics as an analog of Kac-Moody algebra with powers pn in the same role as
the powers zn for Kac-Moody algebra. The two algebras have identical rules for sum and
multiplication, and one does not require the arithmetics to be induced from the p-adic arith-
metics (as assumed originally) since this would lead to a loss of associativity in the case of
sum. Therefore the quantum counterparts of primes l 6= p generate the algebra. One can
also make the limitation l < pN to the generators. The counterparts of fixed integers in the
map of integers to quantum integers are 0, 1,−1 are , 0, 1,−1 as is easy to see. The number
of quantum integers projecting to same p-adic integer is infinite.

3. One can consider also quantum m-adic option with expansion l =
∑
lkm

k in powers of integer
m with coefficients decomposable to products of primes l < m. This option is consistent with
p-adic topology for primes p divisible by m and is suggested by the inclusion of hyper-finite
factors [K4] characterized by quantum phases q = exp(iπ/m). Giving up the assumption
that coefficients are smaller than m gives what could be called quantum covering of m-adic
numbers. For this option all quantum primes lq are non-vanishing. Phases q = exp(iπ/m)
characterize Jones inclusions of hyper-finite factors of type II1 assumed to characterize finite
measurement resolution.

4. The definition of quantum p-adics discussed in [K16] replaces integers with Hilbert spaces of
same dimension and + and × with direct sum ⊕ and tensor product ⊗. Also co-product and
co-sum must be introduced and assign to the arithmetics quantum dynamics, which leads
to proposal that sequences of arithmetic operations can be interpreted arithmetic Feynman
diagrams having direct TGD counterparts. This procedure leads to what might be called
quantum mathematics or Hilbert mathematics since the replacement can be made for any
structure such as rationals, algebraic numbers, reals, p-adic numbers, even quaternions and
octonions. Even set theory has this kind of generalization. The replacement can be made
also repeatedly so that one obtains a hierarchy of structures very similar to that obtained in
the construction of infinite primes by a procedure analogous to repeated second quantization.
One possible interpretation is in terms of a hierarchy of logics of various orders. Needless
to say this definition is the really deep one and actually inspired by quantum TGD itself.
In this picture the quantum p-adics as they are defined here would relate to the canonical
identification map to reals and this map would apply also to Hilbert p-adics.

3 Do Commutative Quantum Counterparts Of Lie Groups
Exist?

The proposed definition of quantum rationals involves exceptional prime p expected to define what
might be called p-adic prime. In p-adic mass calculations canonical identification is based on the
map p→ 1/p and has several variants but quite generally these variants fail to respect symmetries.
Canonical identification for space-time coordinates fails also to be general coordinate invariant
unless one has preferred coordinates. A possible interpretation could be that cognition affects
physics: the choice of coordinate system to describe physics affects the physics.
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The natural question is whether the proposed definition of quantum integers as series of powers
of p-adic prime p with coefficients which are arbitrary quantum rationals not divisible by p with
product defined in terms of convolution for the coefficients of the series in powers of p using
quantum sum for the summands in the convolution could change (should one say “save” ?) the
situation.

To see whether this is the case one must find whether the quantum analogues of classical matrix
groups exist. To avoid confusion it should be emphasized that these quantum counterparts are
distinct from the usual quantum groups having non-commutative matrix elements. Later a possible
connection between these notions is discussed. In the recent case matrix elements commute but
sum is replaced with quantum sum and the matrix element is interpreted as a powers series or
polynomial in symbolic variable x = p or x = 1/p, p prime such that coefficients are rationals not
divisible by p.

The crucial points are the following ones.

1. All classical groups (see http://tinyurl.com/y86oror3) [A3] are subgroups of the special
linear groups (see http://tinyurl.com/3vpk8o8) [A16] SLn(F ), F = R,C, consisting of
matrices with unit determinant. One can also replace F with the integers of the field F to
get groups like SL(2, Z). Classical groups are obtained by posing additional conditions on
SLn(F ) such as the orthonormality of the rows with respect to real, complex or quaternionic
inner product. Determinant defines a homomorphism mapping the product of matrices to
the product of determinants in the field F .

Could one generalize rational special linear group (matrices with determinant 1) and its
algebraic extensions by replacing the group elements by ratios of polynomials of a formal
variable x, which has as its value the preferred prime p such that the coefficients of the
polynomials are quantum integers not divisible by p? For Option I the situation one has just
ratios of p-adic integers finite as real integers and for Option II the integers are polynomials
x =

∑
xnp

n, where one has

xn =
∑
{ni}

N({ni})
∏
i

xni
i , xi = pi,q, pi < p , q = exp(iπ/p) .

Here N({ni}) is integer. Could one perform this generalization in such a manner that the
canonical identification p→ 1/p maps this group to an isomorphic group? If quantum p-adic
counterpart of the group is non-trivial, this seems to be the case since p plays the role of an
argument of a polynomial with a specific values.

2. The identity det(AB) = det(A)det(B) and the fact that the condition det(A) = 1 involves
at the right hand side only the unit element common to all quantum integers suggests that
this generalization could exist. If one has found a set of elements satisfying the condition
detq(A) = 1 all quantum products satisfy the same condition and subgroup of rational special
linear group is generated.

3.1 Quantum Counterparts Of Special Linear Groups

Special linear groups (see http://tinyurl.com/3vpk8o8) [A16] defined by matrices with deter-
minant equal to 1 contain classical groups as subgroups and the conditions for their quantum
counterparts are therefore the weakest possible. Special linear group makes sense also when one
restricts the matrix elements to be integers of the field so that one has for instance SLn(Z). Opiton
I reduces to that for ordinary p-adics. For Option II each power of p can be treated independently
so that the situation is easier. The treatment of conditions in two cases differs only in that overflows
in p are possible for Option I. The numbers of conditions are same.

Let us consider SLn(Z) first.

1. To see that the generalization exists in the case of special linear groups one just just writes
the matrix elements aij in series in powers of p

aij =
∑
n

aij(n)pn . (3.1)

http://tinyurl.com/y86oror3
http://tinyurl.com/3vpk8o8
http://tinyurl.com/3vpk8o8


3.1 Quantum Counterparts Of Special Linear Groups 22

This expansion is very much analogous to that for the Kac-Moody algebra element and also
the product and sum obey similar algebraic structure. p is treated as a symbolic variable
in the conditions stating detq(A) = 1. It is essential that detq(A) = 1 holds true when p is
treated as a formal symbol so that each power of p gives rise to separate conditions.

2. For SLn the definition of determinant involves sum over products of n elements. Quantum
sums of these elements are in question.

3. Consider now the number of conditions involved. The number of matrix elements is in real
case N2(k + 1), where k is the highest power of p involved. det(A) = 1 condition involves
powers of p up to lNk and the total number of conditions is kN + 1 - one for each power. For
higher powers of p the conditions state the vanishing of the coefficients of pm. This is achieved
elegantly in the sense of modulo arithmetics if the quantum sum involved is proportional to
lq.

The number of free parameters is

# = (k + 1)N2 − kN − 1 = kN(N − 1) +N2 − 1 . (3.2)

For N = 2, k = 0 one obtains # = 3 as expected for SL(2, R). For N = 2, k = 1 one obtains
# = 5. This can be verified by a direct calculation. Writing aij = bij + cijp one obtains
three conditions

detq(B) = 1 , T rq(BC) = 0 , detq(C) = 0 . (3.3)

for the 8 parameters leaving 5 integer parameters.

Integer values of the parameters are indeed possible. Using the notation

bij =

(
a0 b0
c0 d0

)
, cij =

(
a1 b1
c1 d1

)
(3.4)

one can write the solutions as

(a1, b1) = k(c1, d1) , (c1, d1) = l(a0 − kc0, b0 − kd0) ,
a0d0 − b0c0 = 1 .

(3.5)

Therefore 6 integers characterize the solution.

4. Complex case can be treated in similar manner. In this case the number of three parameters
is 2(k + 1)N2, the number of conditions is 2(kN + 1) and the number of parameters is

# = 2(k + 1)N2 − 2(kN + 1) . (3.6)

5. Since the conditions hold separately for each power of p, the formulate detq(AB) = detq(A)detq(B)
implies that the matrices satisfying the conditions generate a subgroup of SLn.

One can generalize the argument to rational values of matrix elements in a simple manner.
The matrix elements can be written in the form Aij = Zij/K and the only modification of the
equations is that the zeroth order term in p gives det(Z) = Kn for SLn. One can expand Kn in
powers of p and it gives inhomogenous term to in each power of p. For instance, if K is zeroth
order in p, solutions to the conditions certainly exist.

The result means that rational subgroups of special linear groups SLn(R) and SL(n,C) and
also the real and complex counterparts of SL(n,Z) quantum matrix groups characterized by prime
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p exist in both real and p-adic context and can be related by the map p→ 1/p mapping short and
length scales to each other.

It is remarkable that only the Lorentz groups SO(2, 1) and SO(3, 1) have covering groups
are isomorphic to SL(2, R) and SL(2, C) allow these subgroups. All classical Lie groups involve
additional conditions besides the condition that the determinant of the matrix equals to one and
all these groups except symplectic groups fail to allow the generalization of this kind for arbitrary
values of k. Therefore four-dimensional Minkowski space is in completely exceptional position.

3.2 Do Classical Lie Groups Allow Quantum Counterparts?

In the case of classical groups one has additional conditions stating orthonormality of the rows of
the matrix in real, complex, or quaternionic number field. It is quite possible that the conditions
might not be satisfied always and it turns out that for G2 and probably also for other exceptional
groups this is the case.

1. Non-exceptional classical groups

It is easy to see that all non-exceptional classical groups quantum counterparts in the proposed
sense for sufficiently small values of k and in the case of symplectic groups quite generally. In this
case one must assume rational values of group elements and one can transform the conditions to
those involving integers by writing Aij = Zij/K. The expansion of K gives for orthogonal groups
the condition that the lengths of the integer rows defining Zij have length K2 plus orthogonality
conditions. det(A) = 1 condition holds true also now since a subgroup of special linear group is in
question.

1. Consider first orthogonal groups SO(N).

(a) For q = 1 there are N2 parameters. There are N conditions stating that the rows are
unit vectors and N(N − 1)/2 conditions stating that they are orthogonal. The total
number of free parameters is # = N(N − 1)/2.

(b) If the highest power of p is k there are (k + 1)N2 parameters and (2k + 1)[N +N(N −
1)/2] = (2k + 1)(N + 1)/2 conditions. The number of parameters is

# = N2(k + 1)− N(N + 1)(2k + 1)

2
=
N(N − 2k + 1)

2
. (3.7)

This is negative for k > (N + 1)/2. It is quite not clear how to interpret this result.
Does it mean that when one forms products of group elements satisfying the conditions
the powers higher than kmax = [(N + 1)/2] vanish by quantum modulo arithmetics. Or
do the conditions separate to separate conditions for factors in AB: this indeed occurs
in the unitarity conditions as is easy to verify. For SO(3) and SO(2, 1) this would give
kmax = 2. For SO(3, 1) one would have kmax = 2 too. Note that for the covering groups
SL(2, R) and SL(2, C) there is no restrictions of this kind.

(c) The normalization conditions for the coefficients of the highest power of a given row
imply that the vector in question has vanishing length squared in quantum inner prod-
uct. For q = 1 this implies that the coefficients vanish. The repeated application of
this condition one would obtain that k = 0 is the only possible solution. For q 6= 1 the
conditions can be satisfied if the quantum length squared is proportional to lq = 0. It
seems that this condition is absolutely essential and serves as a refined manner to realize
p-adic cutoff and quantum group structure and p-adicity are extremely closely related
to each other. This conclusion applies also in the case of unitary groups and symplectic
groups.

(d) Complex forms of rotation groups can be treated similarly. Both the number of param-
eters and the number of conditions is doubled so that one obtains # = N2(k + 1) −
N(N + 1)(2k + 1) = N(N − 2k + 1) which is negative for k > (N + 1)/2.
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2. Consider next the unitary groups U(N). Similar argument leads to the expression

# = 2N2(k + 1)− (2k + 1)N2 = N2 (3.8)

so that the number of three parameters would be N2- same as for U(N). The determinant has
modulus one and the additional conditions requires that this phase is trivial. This is expected
to give k+ 1 conditions since the fixed phase has l-adic expansion with k+ 1 powers. Hence
the number of parameters for SU(N) is

# = N2 − k + 1 (3.9)

giving the condition kmax < N2 − 1 which is the dimension of SU(N).

3. Symplectic group can be regarded as a quaternionic unitary group. The number of parameters
is 4N2(k+ 1) and the number of conditions is (2k+ 1)(N + 2N(N −1)) = N(2N −1)(2k+ 1)
so that the number of three parameters is # = 4N2(k+1)−(2k+1)N(N−1) = (2k+3)N2 +
N(2k + 1). Fixing single quaternionic phase gives 3(k+1) conditions so that the number of
parameters reduces to

# = (2k + 3)N2 + (2k + 1)N − 3(k + 1) = (k + 1)(2N2 + 2N − 3) +N(N − 1) , (3.10)

which is positive for all values of N and k so that also symplectic groups are in preferred
position. This is rather interesting, since the infinite-dimensional variant of symplectic group
associated with the δM4 × CP2 is in the key role in quantum TGD and one expects that in
finite measurement resolution its finite-dimensional counterparts should appear naturally.

2. Exceptional groups are exceptional

Also exceptional groups (see http://tinyurl.com/y779ldyt) [A7] [A7] related closely to octo-
nions allow an analogous treatment once the nature of the conditions on matrix elements is known
explicitly. The number of conditions can be deduced from the dimension of the ordinary variant of
exceptional group in the defining matrix representation to deduce the number of conditions. The
following argument allows to expect that exceptional groups are indeed exceptional in the sense
that they do not allow non-trivial quantum counterparts.

The general reason for this is that exceptional groups are very low dimensional subgroups
of matrix groups so that for the quantum counterparts of these groups the number Ncond of
group conditions is too large since the number of parameters is (k + 1)N2 in the defining matrix
representation (if such exists) and the number of conditions is at least (2k+ 1)Nclass, where Nclass
is the number of condition for the classical counterpart of the exceptional group. Note that r-linear
conditions the number of conditions is proportional to rk + 1.

One can study the automorphism group G2 (see http://tinyurl.com/y9rrs7un) [A8] of oc-
tonions as an example to demonstrate that the truth of the conjecture is plausible.

1. G2 is a subgroup of SO(7). One can consider 7-D real spinor representation so that a
representation consists of real 7 × 7matrices so that one has 72 = 49 parameters. One
has N(N + 1)/2 orthonormality conditions giving for N = 7 orthonormality conditions 28
conditions. This leaves 21 parameters. Besides this one has conditions stating that the 7-
dimensional analogs of the 3-dimensional scalar-3-products A · (B×C) for the rows are equal
1, -1, or 0. The number of these conditions is N(N − 1)(N − 2)/3!. For N = 7 this gives
35 conditions meaning that these conditions cannot be independent of orthonormalization
conditions The number of parameters is # = 49 − 35 = 14 - the dimension of G2 - so that
these conditions must imply orthonormality conditions.

2. Consider now the quantum counterpart of G2. There are (k + 1)N2 = 49(k + 1) parameters
altogether. The number of cross product conditions is (3k + 1)× 35 since the highest power
of p in the scalar-3-product is l3k. This would give

http://tinyurl.com/y779ldyt
http://tinyurl.com/y9rrs7un
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# = −56k + 14 . (3.11)

This number is negative for k > 0. Hence G2 would not allow quantum variant. Could this
be interpreted by saying that the breaking of G2 to SU(3) must take place and indeed occurs
in quantum TGD as a consequence of associativity conditions for space-time surfaces.

3. The conjecture is that the situation is same for all exceptional groups.

The general results suggest that both the covering group of the Lorenz group of 4-D Minkowski
space and the hierarchy symplectic groups have very special mathematical role and that the notions
of finite measurement resolution and p-adic physics have tight connections to classical number
fields, in particular to the non-associativity of octonions.

3.3 Questions

In the following some questions are introduced and discussed.

3.3.1 How to realize p-adic-real duality at the space-time level?

The concrete realization of p-adic–real duality would require a map from p-adic realm to real realm
and vice-versa. The naive expectation is that it is induced by the map p→ 1/p leading from p-adic
number field to real number field or vice versa.

If possible, the realization of p-adic real duality at the space-time level should not pose addi-
tional conditions on the preferred extremals themselves. Together with effective 2-dimensionality
this suggests that the map from p-adic realm to real realm maps partonic 2-surfaces to partonic
2-surfaces defining at least partially the boundary data for holography.

It turned out that the situation is not so simple. Or putting it correctly - so complex. The
point is that the direct mapping of real space-time sheets to real ones requires discretization and
length scale cutoff bringing in a lot of arbitrariness and the continuity of the map is in conflict
with the preservation of symmetries.

A more realistic view is based on the idea that p-adic space-time sheets indeed define a the-
ory about real space-time sheets. The interaction between real and p-adic number fields would
mean that p-adic space-time surfaces define cognitive representations of real space-time surfaces
(preferred extremals). One could also say that real space-time surface represents sensory aspects
of conscious experience and p-adic space-time surfaces its cognitive aspects. Both real and p-adics
rather than real or p-adics.

Strong form of holography implied by strong form of General Coordinate Invariance leads to the
suggestion that partonic 2-surfaces and string world sheets at which the induced spinor fields are
localized in order to have a well-defined em charge (this is only one of the reasons) and having having
discrete set as intersection points with partonic 2-surfaces define what might called “space-time
genes”. Space-time surfaces would be obtained as preferred extremals satisfying certain boundary
conditions at string world sheets. Space-time surfaces are defined only modulo transformations of
super-symplectic algebra defining its sub-algebra and acting as conformal gauge transformations
so that one can talk about conformal gauge equivalences classes of space-time surfaces.

The map assigning to real space-time surface a cognitive representation would be replaced by a
correspondence assigning to the string world sheets preferred extremals of Kähler action in various
number fields: string world sheets would be indeed like genes. String world sheets would be in
the intersection of realities and p-adicities in the sense that the parameters characterizing them
would be algebraic numbers associated with the algebraic extension of p-adic numbers in question.
It is not clear whether the preferred extremal is possible for all p-adic primes but this would fit
nicely with the vision that elementary particles are characterized by p-adic primes. It could be also
that the classical non-determinism of Kähler action responsible for the conformal gauge symmetry
corresponds to p-adic non-determinism for some particular prime so that the cognitive map is
especially good for this prime.
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3.3.2 How commutative quantum groups could relate to the ordinary quantum groups?

The interesting question is whether and how the commutative quantum groups relate to ordinary
quantum groups.

This kind of question is also encountered when considers what finite measurement resolution
means for second quantized induced spinor fields [K14]. Finite measurement resolution implies
a cutoff on the number of the modes of the induced spinor fields on partonic 2-surfaces. As a
consequence, the induced spinor fields at different points cannot ant-commute anymore. One can
however require anti-commutativity at a discrete set of points with the number of points “more or
less equal” to the number of modes. Discretization would follow naturally from finite measurement
resolution in its quantum formulation.

The same line of thinking might apply to to quantum groups. The matrix elements of quantum
group might be seen as quantum fields in the field of real or complex numbers or possibly p-adic
number field or of its extension. Finite measurement resolution means a cutoff in the number of
modes and commutativity of the matrix elements in a discrete set of points of the number field
rather than for all points. Finite measurement resolution would apply already at the level of
symmetry groups themselves. The condition that the commutative set of points defines a group
would lead to the notion of commutative quantum group and imply p-adicity as an additional and
completely universal outcome and select quantum phases exp(iπ/p) in a preferred position. Also
the generalization of canonical identification so central for quantum TGD would emerge naturally.

One must of course remember that the above considerations probably generalize so that one
should not take the details of the discussion too seriously.

3.3.3 How to define quantum counterparts of coset spaces?

The notion of commutative quantum group implies also a generalization of the notion of coset
space G/H of two groups G and H ⊂ G. This allows to define the quantum counterparts of
the proper time constant hyperboloid and CP2 = SU(3)/U(2) as discrete spaces consisting of
quantum points identifiable as representatives of cosets of the coset space of discrete quantum
groups. This approach is very similar but more precise than the earlier approach in which the
points in discretization had angle coordinates corresponding to roots of unity and radial coordinates
with discretization defined by p-adic prime.

The infinite-dimensional “world of classical worlds” ( WCW ) can be seen as a union of infinite-
dimensional symmetric spaces (coset spaces) [K3] and the definition as a quantum coset group could
make sense also now in finite measurement resolution. This kind of approach has been already
suggested and might be made rigorous by constructing quantum counterparts for the coset spaces
associated with the infinite-dimensional symplectic group associated with the boundary of causal
diamond. The problem is that matrix group is not in question. There are however good hopes
that the symplectic group could reduces to a finite-dimensional matrix group in finite measurement
resolution. Maybe it is enough to achieve this reduction for matrix representations of the symplectic
group.

3.4 Quantum P-Adic Deformations Of Space-Time Surfaces As A Rep-
resentation Of Finite Measurement Resolution?

A mathematically fascinating question is whether one could use quantum arithmetics as a tool to
build quantum deformations of partonic 2-surfaces or even of space-time surfaces and how could
one achieve this. These quantum space-times would be commutative and therefore not like non-
commutative geometries assigned with quantum groups. Perhaps one could see them as commuta-
tive semiclassical counterparts of non-commutative quantum geometries just as the commutative
quantum groups discussed in [K15] could be seen commutative counterparts of quantum groups.

As one tries to develop a new mathematical notion and interpret it, one tends to forget the
motivations for the notion. It is however extremely important to remember why the new notion is
needed.

1. In the case of quantum arithmetics Shnoll effect is one excellent experimental motivation. The
understanding of canonical identification and realization of number theoretical universality
are also good motivations coming already from p-adic mass calculations. A further motivation
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comes from a need to solve a mathematical problem: canonical identification for ordinary
p-adic numbers does not commute with symmetries.

2. There are also good motivations for p-adic numbers. p-Adic numbers and quantum phases
can be assigned to finite measurement resolution in length measurement and in angle mea-
surement. This with a good reason since finite measurement resolution means the loss of
ordering of points of real axis in short scales and this is certainly one outcome of a finite
measurement resolution. This is also assumed to relate to the fact that cognition organizes
the world to objects defined by clumps of matter and with the lumps ordering of points does
not matter.

3. Why quantum deformations of partonic 2-surfaces (or more ambitiously: space-time surfaces)
would be needed? Could they represent convenient representatives for partonic 2-surfaces
(space-time surfaces) within finite measurement resolution?

(a) If this is accepted, there is no compelling need to assume that this kind of space-time
surfaces are preferred extremals of Kähler action.

(b) The notion of quantum arithmetics and the interpretation of p-adic topology in terms
of finite measurement resolution however suggest that they might obey field equations
in preferred coordinates but not in the real differentiable structure but in what might
be called quantum p-adic differentiable structure associated with prime p.

(c) Canonical identification would map these quantum p-adic partonic (space-time surfaces)
to their real counterparts in a unique continuous manner and the image would be real
space-time surface in finite measurement resolution. It would be continuous but not
differentiable and would not of course satisfy field equations for Kähler action anymore.
What is nice is that the inverse of the canonical identification which is two-valued for
finite number of pinary digits would not be needed in the correspondence.

(d) This description might be relevant also to quantum field theories (QFTs). One usually
assumes that minima obey partial differential equations although the local interactions
in QFTs are highly singular so that the quantum average field configuration might not
even possess differentiable structure in the ordinary sense! Therefore quantum p-adicity
might be more appropriate for the minima of effective action.

The cautious conclusion would be that commutative quantum deformations of space-time
surfaces could have a useful function in TGD Universe.

Consider now in more detail the identification of the quantum deformations of space-time
surfaces.

1. Rationals are in the intersection of real and p-adic number fields and the representation of
numbers as rationals r = m/n is the essence of quantum arithmetics. This means that m and
n are expanded to series in powers of p and coefficients of the powers of p which are smaller
than p are replaced by the quantum counterparts. They are quantum quantum counterparts
of integers smaller than p. This restriction is essential for the uniqueness of the map assigning
to a give rational quantum rationals.

2. One must get also quantum p-adics and the idea is simple: if the pinary expansions of
m and n in positive powers of p are allowed o become infinite, one obtains a continuum
very much analogous to that of ordinary p-adic integers with exactly the same arithmetics.
This continuum can be mapped to reals by canonical identification. The possibility to work
with numbers which are formally rationals is utmost importance for achieving the correct
map to reals. It is possible to use the counterparts of ordinary pinary expansions in p-adic
arithmetics.

3. One can defined quantum p-adic derivatives and the rules are familiar to anyone. Quantum
p-adic variants of field equations for Kähler action make sense.
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(a) One can take a solution of p-adic field equations and by the commutativity of the map
r = m/n→ rq = mq/nq and of arithmetic operations replace p-adic rationals with their
quantum counterparts in the expressions of quantum p-adic imbedding space coordinates
hk in terms of space-time coordinates xα.

(b) After this one can map the quantum p-adic surface to a continuous real surface by
using the replacement p → 1/p for every quantum rational. This space-time surface
does not anymore satisfy the field equations since canonical identification is not even
differentiable. This surface - or rather its quantum p-adic pre-image - would represent a
space-time surface within measurement resolution. One can however map the induced
metric and induced gauge fields to their real counterparts using canonical identification
to get something which is continuous but non-differentiable.

4. This construction works nicely if in the preferred coordinates for imbedding space and par-
tonic (space-time) surface itself the imbedding space coordinates are rational functions of
space-time coordinates with rational coefficients of polynomials (also Taylor and Laurent
series with rational coefficients could be considered as limits). This kind of assumption is
very restrictive but in accordance with the fact that the measurement resolution is finite and
that the representative for the space-time surface in finite measurement resolution is to some
extent a convention. The use of rational coefficients for the polynomials involved implies that
for polynomials of finite degree WCW reduces to a discrete set so that finite measurement
resolution has been indeed realized quite concretely!

Consider now how the notion of finite measurement resolution allows to circumvent the objec-
tions against the construction.

1. Manifest GCI is lost because the expression for space-time coordinates as quantum rationals
is not general coordinate invariant notion unless one restricts the consideration to rational
maps and because the real counterpart of the quantum p-adic space-time surface depends on
the choice of coordinates. The condition that the space-time surface is represented in terms
of rational functions is a strong constraint but not enough to fix the choice of coordinates.
Rational maps of both imbedding space and space-time produce new coordinates similar to
these provided the coefficients are rational.

2. Different choices for imbedding space and space-time surface lead to different quantum p-
adic space-time surface and its real counterpart. This is an outcome of finite measurement
resolution. Since one cannot order the space-time points below the measurement resolution,
one cannot fix uniquely the space-time surface nor uniquely fix the coordinates used. This
implies the loss of manifest general coordinate invariance and also the non-uniqueness of
quantum real space-time surface. The choice of coordinates is analogous to gauge choice and
quantum real space-time surface preserves the information about the gauge.

4 Could One Understand P-Adic Length Scale Hypothesis
Number Theoretically?

p-Adic length scale hypothesis states that primes near powers of two are physically interesting. In
particular, both real and Gaussian Mersenne primes seem to be fundamental and can be tentatively
assigned to charged leptons and living matter in the length scales between cell membrane thickness
and size of the cell nucleus. They can be also assigned to various scaled up variants of hadron
physics and with lepto-hadron physics suggested by TGD.

4.1 Number Theoretical Evolution As A Selector Of The Fittest P-Adic
Primes?

How could one understand p-adic length scale hypothesis? The general explanation would be in
terms of number theoretic evolution by quantum jumps selecting the primes that are the fittest.
The vision discussed in [K16] d leads to the proposal that the fittest p-adic primes are those which
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do not split in the physically preferred algebraic extensions of rationals. Algebraic extensions
are naturally characterized by infinite primes characterizing also stable bound states of particles.
Therefore these stable infinite primes or equivalently stable bound states would characterize also
the p-adic primes which are fit. This explanation looks rather attractive.

p-Adic evolution would mean also a selection of preferred scales for CDs, instead of integer
multiples of CP2 scale only prime multiples or possibly prime power multiples would be favored
and primes near powers of two were especially fit. A possible “biological” explanation is that for
the preferred primes the number of quantum states is especially large making possible to build
complex sensory and cognitive representations about external world.

The proposed vision about commutative quantum groups encourages to consider a number
theoretic explanation for the p-adic length scale hypothesis consistent with the evolutionary ex-
planation is that the quantum counterpart of symmetry groups are especially large for preferred
primes. Large symmetries indeed imply large numbers of states related by symmetry transforma-
tions and high representational capacity provided by the p-adic–real duality. It is easy to make a
rough test of the proposal for G = SO(3), SU(2) or SU(3) associated with p-adic integers modulo
p reducing to the counterpart of G for finite field might be especially large for physically preferred
primes. Mersenne primes do not however seem to be special in this sense so that the following
considerations can be taken as an exercise in the use of number theoretic functions and the reader
can quite well skip the section.

4.2 Only Option I Is Considered

One considers only the Option I, which reduces to ordinary p-adic numbers effectively since quan-
tum map induced by pi → piq for pi < p can be combined with canonical identification. The
arguments developed say nothing about option II. For option I the group transformations for
which the conditions hold true modulo p make sense if matrix elements are integers satisfying
aij < p. This makes sense for large values of p associated with elementary particles. This implies a
reduction to finite field G(p, 1). The original argument was more general and used same condition
but involved an error.

1. For SL(2, C) - the covering group of Lorentz group - one obtains no constraints and all
quantum phases exp(iπ/n) are allowed: this would mean that all CDs are in the same
position. The rational SL(2, C) matrices whose determinant is zero modulo p form a group
assignable to finite field andit might be that for some values of p this group is exceptionally
large. SL(2, C) defines also the covering group of conformal symmetries of sphere.

2. For orthogonal, unitary, and symplectic groups only n = p, p prime allows k > 0 and genuine
p-adicity. Since SO(3, 1), SO(3), SU(2) and SU(3) should alow p-adicization this selects
CDs with size scale characterized by prime p.

3. For orthogonal, unitary, and symplectic groups one obtains non-trivial solutions to the uni-
tarity conditions only if the highest power of p corresponds quantum image of a vector with
zero norm modulo p as follows from the basic properties of quantum arithmetics.

(a) In the case of SO(3) one has the condition

3∑
i=1

x2
i = 1 + k × p (4.1)

Note that this condition can degenerate to a condition stating that a sum of two squares
is multiple of prime. As noticed the prime must be large and x2

i < p holds true.

(b) For the covering group SU(2) of SO(3) one has the condition

4∑
i=1

x2
i = 1 + k × p (4.2)

since two complex numbers for the row of SU(2) matrix correspond to four real numbers.
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(c) For SU(3) one has the condition

6∑
i=1

x2
i = 1 + k × p (4.3)

corresponding to 3 complex numbers defining the row of SU(3) matrix.

What can one say about these conditions? The first thing to look is whether the conditions
can be satisfied at all. Second thing to look is the number of solutions to the conditions.

4.3 Orthogonality Conditions For So(3)

The conditions for SO(3) are certainly the strongest ones so that it is reasonable to study this case
first.

1. One must remember that there are also integers -in particular primes- allowing representation
as a sum of two squares. For instance, Fermat primes whose number is very small, allow
representation Fn = 2+1. More generally, Fermat’s theorem on sums of two squares states
that and odd prime is expressible as sum of two squares only if it satisfies p mod 4 = 1. The
second possibility is p mod 4 = 3 so that roughly one half of primes satisfy the p mod 4 = 1
condition: Mersenne primes do not satisfy it.

The more general condition giving sum proportional to prime is satisfied for all n = k2l,
k = 1, 2, ...

2. For the sums of three non-vanishing squares one can use the well-known classical theorem
stating that integer n can be represented as a sum of three squares (see http://tinyurl.

com/y6vkccv7) [A11] only if it is it not of the form

n = 22r(8k + 7) (4.4)

For instance, squares of odd integers are of form 8k + 1 and multiplied by any power of two
satisfy the condition of being expressible as a sum of three squares.

If n satisfies (does not satisfy) this condition then nm2 satisfies (doe not satisfy) it for any
m this since m2 gives some power of 2 multiplied by a 8k + 1 type factor so that one can
say that square free odd integers for which the condition n 6= 7 (mod 8) generate this set
of integers. Note that the integers representable as sums of three non-vanishing squares do
not allow a representation using two squares. The product of odd primes p1 = 8m1 + k1 and
p1 = 8m2 + k2 fails to satisfy the condition only if one has k1 = 3 and k2 = 5. The product
of n primes pi = 8mi + ki must satisfy the condition

∏
ki 6= 7 (mod 8) in order to serve as a

generating square free prime.

In the recent case one must have n mod p = 1. For Mersenne primes m = 1 + kMn allows
representation as a sum of three squares for most values of k. In particular, for k = 1
one obtains m = 2n allowing at least the representation m = 2n−1 + 2n−1. One must also
remember that all that is needed is that sufficiently small multiples of Mersenne primes
correspond to large value of r3(n) if the proposed idea has any sense.

4.4 Number Theoretic Functions RK(N) For K = 2, 4, 6

The number theoretical functions rk(n) telling the number of vectors with length squared equal
to a given integer n are well-known for k = 2, 3, 4, 6 and can be used to gain information about
the constraints posed by the existence of quantum groups SO(2), SO(3), SU(2) and SU(3). In
the following the easy cases corresponding to k = 2, 4, 6 are treated first and after than the more
difficult case k = 3 is discussed. For the auxiliary function the reader can consult to the Appendix.

http://tinyurl.com/y6vkccv7
http://tinyurl.com/y6vkccv7
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4.4.1 The behavior of r2(n)

r2(n) gives information not only about quantum SO(2) but also about SO(3) since 2-D vectors
define 3-D vectors in an obvious manner. The expression for r2(n) is given by

r2(n) =
∑
d|n

χ(d) , χ(d) =

(
−4

d

)
. (4.5)

χ(d) is so called principal character defined in appendix. For n = 1 + Mk = 2k only powers of 2
and 1 divide n and for even numbers principal character vanishes so that one obtains r2(1+Mk) =
χ(1) = 1. This corresponds to the representation 2k = 2k−1 + 2k−1.

4.4.2 The behavior of r4(n)

The expression for r4(n) reads as

r4(n) =

{
8σ(n) if n is odd ,
24σ(m) if n = 2νm, m odd .

. (4.6)

For n = Mk + 1 = 2k one has r4(n) = 24σ(1) = 24.
The asymptotic behavior of σ function is known so that it is relatively easy to estimate the

behavior of r4(n). The behavior involves random looking local fluctuation which can be understood
as reflective the multiplicative character implying correlation between the values associated with
multiples of a given prime.

4.4.3 The behavior of r6(n)

The analytic expression for r6(n) is given by

r6(n) =
∑
d|n

[
16χ(

n

d
)− 4χ(d)

]
d2 ,

χ(n) =

(
−4

n

)
=

 0 if n is even
1 if n = 1 (mod 4)
−1 if n = 3 (mod 4)

(4.7)

For n = Mk + 1 = 2k this gives r6(n) = 12× 22k − 4 so that the number of representation is very
large for large Mersenne primes.

4.5 What Can One Say About The Behavior Of R3?

The proportionality of r3(D) to the order of h(−D) (see http://tinyurl.com/23sp45v) [A1]
of the ideal class group (see http://tinyurl.com/cbxkhge) [A10] for quadratic extensions of
rationals [A1] inspires some conjectures.

1. The conjecture that preferred primes p correspond to large commutative quantum groups
translates to a conjecture that the order of ideal class group is large for the algebraic extension
generated by

√
−p− 1 or more generally

√
−kp− 1 - at least for some values of k. Could

suitable integer multiples primes near power of 2 - in particular Mersenne primes - be such
primes? Note that only integer multiple is required by the basic argument.

2. Also some kind of approximate fractal behavior rk(sp) ' rk(p)fk(s) for some values of s
analogous to that encountered for r4(D) for all values of s might hold true since k = 3 is
a critical transition dimension between k = 2 and k = 3. In particular, an approximate
periodicity in octaves of primes might hold true: rk(2sp) ' rk(p): this would support p-adic
length scale hypothesis and make the commutative quantum group large.

http://tinyurl.com/23sp45v
http://tinyurl.com/cbxkhge
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4.5.1 Expression of r3 in terms of class number function

To proceed one must have an explicit expression for the class number function h(D) and the
expression of r3 in terms of h(D).

1. The expression for h(D) discussed in the Appendix reads as gives

h(−D) = − 1

D

D∑
1

r ×
(
−D
r

)
. (4.8)

The symbols(
(−D
r

)
are Dirichlet and Kronecker symbols defined in the Appendix. Note that

for D = Mk + 1 = 2k the algebraic expansion in question reduces to that generated by
√
−2

so that the algebraic extension is definitely special.

2. One can express r3(|D|) in terms of h(D) as

r3(|D|) = 12(1− (
D

2
))h(D) . (4.9)

Note that (p2 ) refers to Kronecker symbol.

3. From Wolfram (see http://tinyurl.com/ybl4hnp) one finds the following expressions of
r3(n) for square free integers.

r3(n) = 24h(−n) n = 3 (mod 8) ,
r3(n) = 12h(−4n) n = 1, 2, 5, 6 (mod 8) ,
r3(n) = 0 n = 7 (mod 8) .

(4.10)

4. The generating function for r3 (see http://tinyurl.com/ybl4hnp) [A17] is third power of
theta function θ3.

∑
n≥0

r3(n)xn = θ3
3(n) = 1 + 6x+ 12x2 + 8x3 + 6x4 + 24x5 + 24x6 + 12x8 + 30x9 + ... .(4.11)

This representation follows trivially from the definition of θ function as sum
∑∞
n=−∞ xn

2

.

The behavior of h(−D) for large arguments is not easy to deduce without numerical calculations
which probably get too heavy for primes of order M127. The definition involves sum of p terms
labeled by r = 1, ..., p, and each term is a product is product of terms expressible as a product
over the prime factors of of r with over all term being a sign factor. “Interference” effects between
terms of different sign are obviously possible in this kind of situation and one might hope that for
large primes these effects imply wild fluctuations of r3(p).

4.5.2 Simplified formula for r3(D)

Recall that the proportionality of r3(|D|) to the ideal class number h(D) is for D < −4 given by

r3(|D|) = 12[1−
(
D

2

)
]h(D) . (4.12)

The expression for the Kronecker symbol appears in the formula as well as formulas to be discussed
below and reads as

http://tinyurl.com/ybl4hnp
http://tinyurl.com/ybl4hnp
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(
D

2

)
=

 0 if D is even ,
1 if D = −1 (mod 8) ,
−1 if D = ±3 (mod 8) .

(4.13)

The proportionality factor vanishes for D = 22r(8m+ 7) and equals to 12 for even values of D and
to 24 for D = ±3 (mod 8).

To get more detailed information about r3 one can begin from class number formula (see
http://tinyurl.com/yaopszpl) [A2] for D < −4 reading as

h(D) =
1

|D|

|D|∑
r=1

r

(
D

r

)
. (4.14)

Each Jacobi symbol
(
D
r

)
decomposes to a product of Legendre and Kronecker symbols

(
D
pi

)
in

the decomposition of odd integer r to a product of primes pi.

For
(
D
pi

)
= 1 pi splits into a product of primes in quadratic extension generated by

√
D. If

it vanishes pi is square of prime in the quadratic extension. In the recent case neither of these
options are possible for the primes involved as is easy to see by using the definition of algebraic

integers. Hence one has
(
D
pi

)
= −1 for all odd primes to transform the formula for D < −4 to the

form

h(D) =
1

|D|

|D|∑
r=1

r[

(
D

2

)
]ν2(r)(−1)Ω(r)−ν2(r)

=
1

|D|

|D|∑
r=1

r[−
(
D

2

)
]ν2(r)(−1)Ω(r)) .

. (4.15)

Here ν2(r) characterizes the power of 2 appearing in r and Ω(r) is the number of prime divisors
of r with same divisor counted so many times as it appears. Hence the sign factor is same for all
integers r which are obtained from the same square free integer by multiplying it by a product of
even powers of primes.

Consider next various special cases.

1. For even values D < −4 (say D = −1−Mn) only odd integers r contribute to the sum since
the Kronecker symbols vanish for even values of r.

h(D = 2d) =
1

|D|
∑

1≤r<|D| odd

r(−1)Ω(r)

. (4.16)

2. For D = ±1 (mod 8), the factors
(
D
2

)
= −1 implies that one can forget the factors of 2

altogether in this case (note that for D = −1 (mod 8) r3(|D|) vanishes unlike h(D)).

h(D = ±1(mod 8)) =
1

|D|

|D|∑
r=1

r(−1)Ω(r))

. (4.17)

http://tinyurl.com/yaopszpl
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3. For D = ±3 (mod 8), the factors
(
D
2

)
= 1 implies that one has

h(D = ±3(mod 8)) =
1

|D|

|D|∑
r=1

r(−1)Ω(r)−ν2(r)

. (4.18)

The magnitudes of the terms in the sum increase linearly but the sign factor fluctuates wildly
so that the value of h(−D) varies chaotically but must be divisible by p and negative since r3(p)
must be a positive integer.

4.5.3 Could thermodynamical analogy help?

For D < −4 h(D) is expressible in terms of sign factors determined by the number of prime factors
or odd prime factors modulo two for integers or odd integers r < D. This raises hopes that h(D)
could be calculated for even large values of D.

1. Consider first the case D = ±1 (mod 8)). The function λ(r) = (−1)Ω(r) is known as Liouville
function (see http://tinyurl.com/y883uk5d) [A12]. From the product expansion of zeta
function in terms of “prime factors” it is easy to see that the generating function for λ(r)

∑
n

λ(n)n−s =
ζ(2s)

ζ(s)
=

1

ζF (s)
,

ζ(s) =
∏
p

(1− p−s)−1 , ζF (s) =
∏
p

(1 + p−s) . (4.19)

Recall that ζ(s) resp. ζF (s) has a formal interpretation as partition functions for the ther-
modynamics of bosonic resp. fermionic system. This representation applies to h(D =
±1(mod8)).

2. For D = 2d the representation is obtained just by dropping away the contribution of all
even integers from Liouville function and this means division of (1 + 2−s) from the fermionic
partition function ζF (s). The generating function is therefore

∑
n odd

λ(n)n−s =
∏
p odd

(1 + p−s)−1 = (1 + 2−s)
1

ζF (s)
. (4.20)

3. For h(D = ±3( mod 8)). One most modify the Liouville function by replacing Ω(r) by the
number of odd prime factors but allow also even integers r. The generating function is now

∑
n

λ(n)(−1)ν2(n)n−s =
1

1− 2−s

∏
p odd

(1 + p−s)−1 =
1

1− 2−s
1

ζF (s)
. (4.21)

The generating functions raise the hope that it might be possible to estimate the values of the
h(D) numerically for large values of D using a thermodynamical analogy.

1. h(D) is obtained as a kind of thermodynamical average 〈r(−1)Ω(r)〉 for particle number r
weighted by a sign factor telling the number of divisors interpreted as particle number. s
plays the role of the inverse of the temperature and infinite temperature limit s = 0 is
considered. One can also interpret this number as difference of average particle number for
states restricted to contain even resp. odd particle number identified as the number of prime
divisors with 2 and even particle numbers possibly excluded.

http://tinyurl.com/y883uk5d
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2. The average is obtained at temperature corresponding to s = 0 so that n−s = 1 holds true
identically. The upper bound r < D means cutoff in the partition sum and has interpreta-
tion as an upper bound on the energy log(r) of many particle states defined by the prime
decomposition. This means that one must replace Riemann zeta and its analogs with their
cutoffs with n ≤ |D|. Physically this is natural.

3. One must consider bosonic system all the cases considered. To get the required sign factor one
must associated to the bosonic partition functions assigned with individual primes in ζ(s) the
analog of chemical potential term exp(−µ/T ) as the sign factor exp(iπ) = −1 transforming
ζ to 1/ζF in the simplest case.

One might hope that one could calculate the partition function without explicitly constructing
all the needed prime factorizations since only the number of prime factors modulo two is needed
for r ≤ |D|.

4.5.4 Expression of r3 in terms of Dirichlet L-function

It is known [A13] that the function r3(D) is proportional to Dirichlet L-function (see http://

tinyurl.com/yatdk384) L(1, χ(D)) [A5]:

r3(|D|) =
12
√
D

π
L(1, χ(D))) ,

L(s, χ) =
∑
n>0

χ(n,D)

ns
,

(4.22)

χ(n,D) is Dirichlet character (see http://tinyurl.com/2fuudea) [A4] which is periodic and mul-
tiplicative function - essentially a phase factor- satisfying the conditions

χ(n,D) 6= 0 if n and D have no common divisors > 1 ,

χ(n,D) = 0 if n and D have a common divisor > 1 ,

χ(mn,D) = χ(m,D)χ(n,D) , χ(m+D,D) = χ(m,D) ,

χ(1, D) = 1 .

(4.23)

1. L(1, χ(D)) varies in average sense slowly but fluctuates wildly between certain bounds (see
http://tinyurl.com/yc879v6e). One can say that there is local chaos.

The following estimates for the bounds are given in [A18]:

c1(D) ≡ k1log(log(D) < L1(1, χ(D)) < c2(D) ≡ k2log(log(D)) . (4.24)

Also other bounds are represented in the article.

4.5.5 Could preferred integers correspond to the maxima of Dirichlet L-function?

The maxima of Dirichlet L-function are excellent candidates for the local maxima of r3(D) since√
D is slowly varying function.

1. As already found, integers n = 1 + Mk = 2k cannot represent pronounced maxima of r3(n)
since there are no representation as a sum of three squares and the proportionality constant
vanishes. Note that in this case the representation reduces to a representation in terms of
two integers. In this special case it does not matter whether L-function has a maximum or
not.

http://tinyurl.com/yatdk384
http://tinyurl.com/yatdk384
http://tinyurl.com/2fuudea
http://tinyurl.com/yc879v6e
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(a) Could just the fact that the representation for n = 1 + Mk = 2k in terms of three
primes is not possible, select Mersenne primes Mn > 3 as preferred ones? For SU(2),
which is covering group of SO(3) the representation as a sum of four squares is possible.
Could it be that the spin 1/2 character of the fermionic building blocks of elementary
particles means that a representation as sum of four squares is what matters. But why
the non-existence of representation of n as a sum of three squares might make Mersenne
primes so special?

2. Could also primes near power of 2 define maxima? Unfortunately, the calculations of [A18]
involve averaging, minimum, and maximum over 106 integers in the ranges n × 106 < D <
(n+ 1)× 106, so that they give very slowly varying maximum and minimum.

3. Could Dirichlet function have some kind of fractal structure such that for any prime one would
have approximate factorization? The naivest guesses would be L(1, χkl) ' f1(k)L(1, χl) with
k = 2s. This would mean that the primes for which D(1, χp) is maximum would be of special
importance.

4. p-Adic fractality and effective p-adic topology inspire the question whether L-function is p-
adic fractal in the regions above certain primes defining effective p-adic topology D(1, χpk) '
f1(k)DK(1, χp) for preferred primes.

4.5.6 Interference as a helpful physical analogy?

Could one use physical analog such as interference for the terms of varying sign appearing in
L-function to gain some intuition about the situation?

1. One could interpret L-function as a number theoretic Fourier transform with D interpreted
as a wave vector and one has an interference of infinite number of terms in position space
whose points are labelled by positive integers defining a half -lattice with unit lattice length.
The magnitude of n: th summand 1/n and its phase is periodic with period D = kp. The
value of the Fourier component is finite except for D = 0 which corresponds to Riemann
Zeta at s = 1. Could this means that the Fourier component behaves roughly like 1/D apart
from an oscillating multiplicative factor.

2. The number theoretic counterparts of plane waves are special in that besides D-periodicity
they are multiplicative making thema lso analogs of logarithmic waves. For ordinary Fourier
components one additivity in the sense that Ψ(k1 + k2) = Ψ(k1)Ψ(k2). Now one has
Ψ(k1k2) = Ψ(k1)Ψ(k2) so that log(D) corresponds to ordinary wave vector. p-Adic frac-
tality is an analog for periodicity in the sense of logarithmic waves so that powers rather
than integer multiples of the basic scale define periodicity. Could the multiplicative nature of
Dirichlet characters imply p-adic - or at least 2-adic - fractality, which also means logarithmic
periodicity?

3. Could one say that for these special primes a constructive interference takes place in the
sum defining the L-function. Certainly each prime represents the analog of fundamental
wavelength whose multiples characterize the summands. In frequency space this would mean
fundamental frequency and its sub-harmonics.

4.5.7 Period doubling as physical analogy?

1. For k = 4 all scales are present because of the multiplicative nature of σ function. Now
only the Dirichlet characters are multiplicative which suggests that only few integers define
preferred scales? Prime power multiples of the basic scale are certainly good candidates for
preferred scales but amongst them must be some very special prime powers. p = 2 is the
only even prime so that it is the first guess.

2. Could the system be chaotic or nearly chaotic in the sense of period doubling so that octaves
of preferred primes interfere constructively? Why constructively? Could complete chaos
-interpreted as randomness- correspond to a destructive interference and minimum of the
L-function?



5. How Quantum Arithmetics Affects Basic TGD And TGD Inspired View About
Life And Consciousness? 37

3. What about scalings by squares of a given prime? It seems that these scalings cannot be
excluded by any simple argument. The point is that r3(n) contains also the factor

√
n which

must transform by integer in the scaling n→ kn. Therefore k must be power of square.

This leaves two extreme options. Both options are certainly testable by simple numerical
calculations for small primes. For instance one can use generating function θ3

3(x) =
∑
r3(n)xn to

kill the conjectures.

1. The first option corresponds to scalings by all integers that are squares. This option is also
consistent with the condition n 6= 2k(8m+7) since both the scaling by a square of odd prime
and by a square of 2 preserve this condition since one has n2 = 1 (mod 8) for odd integers.
This is also consistent with the finding that r3(n) = 1 holds true only for a finite number
of integers. A simple numerical calculation for the sums of 3 squares of 16 first integers
demonstrates that the conjecture is wrong.

2. The second option corresponds only to the scaling by even powers of two and is clearly the
minimal option. This period quadrupling for n corresponds to period doubling for the com-
ponents of 3-vector. A calculation of the sums of squares of the 16 first integers demonstrates
that for n = 3, 6, 9, 11, .. the conjecture the value of r3(n) is same so that the conjecture might
hold true! If it holds true then Dirichlet L-function should suffer scaling by 2−r in the scaling
n → 22rn. The integer solutions for n scaled by 2r are certainly solutions for 22rn. Quite
generally, one has r3(m2n) ≥ r3(n) for any integer m. The non-trivial question is whether
some new solutions are possible when the scaling is by 22r.

A simple argument demonstrates that there cannot be any other solutions to
∑3
ni=1m

2
i =

22rn than the scaled up solutions mi = 2ni obtained from
∑3
ni=1 n

2
i = n. This is seen by

noticing that non-scaled up solutions must contain 1, 2, or3 integers mi, which are odd. For
this kind of integers one has m2 = 1 (mod 4) so that the sum (

∑
im

2
i )= 1, 2, or 3 (mod 4)

whereas the right hand side vanishes mod 4.

3. If D is interpreted as wave vector, period quadrupling could be interpreted as a presence of
logarithmic wave in wave-vector space with period 2log(2).

4.5.8 Does 2-adic quantum arithmetics prefer CD scales coming as powers of two?

For p = 2 quantum arithmetics looks singular at the first glance. This is actually not the case
since odd quantum integers are equal to their ordinary counterparts in this case. This applies also
to powers of two interpreted as 2-adic integers. The real counterparts of these are mapped to their
inverses in canonical identification.

Clearly, odd 2-adic quantum quantum rationals are very special mathematically since they
correspond to ordinary rationals. It is fair to call them “classical” rationals. This special role
might relate to the fact that primes near powers of 2 are physically preferred. CDs with n = 2k

would be in a unique position number theoretically. This would conform with the original - and
as such wrong - hypothesis that only these time scales are possible for CDs. The preferred role of
powers of two supports also p-adic length scale hypothesis.

The discussion of the role of quantum arithmetics in the construction of generalized Feynman
diagrams in [K5] allows to understand how for a quantum arithmetics based on particular prime p
particle mass squared - equal to conformal weight in suitable mass units- divisible by p appears as
an effective propagator pole for large values of p. In p-adic mass calculations real mass squared is
obtained by canonical identification from the p-adic one. The construction of generalized Feynman
diagrams allows to understand this strange sounding rule as a direct implication of the number
theoretical universality realized in terms of quantum arithmetics.

5 How Quantum Arithmetics Affects Basic TGD And TGD
Inspired View About Life And Consciousness?

The vision about real and p-adic physics as completions of rational physics or physics associated
with extensions of rational numbers is central element of number theoretical universality. The
physics in the extensions of rationals are assigned with the interaction of real and p-adic worlds.
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1. At the level of the world of classical worlds ( WCW ) the points in the intersection of real
and p-adic worlds are 2-surfaces defined by equations making sense both in real and p-adic
sense. Rational functions with polynomials having rational (or algebraic coefficients in some
extension of rationals) would define the partonic 2-surface. One can of course consider more
stringent formulations obtained by replacing 2-surface with certain 3-surfaces or even by
4-surfaces.

2. At the space-time level the intersection of real and p-adic worlds corresponds to rational
points common to real partonic 2-surface obeying same equations (the simplest assumption).
This conforms with the vision that finite measurement resolution implies discretization at
the level of partonic 2-surfaces and replaces light-like 3-surfaces and space-like 3-surfaces at
the ends of causal diamonds with braids so that almost topological QFT is the outcome.

How does the replacement of rationals with quantum rationals modify quantum TGD and the
TGD inspired vision about quantum biology and consciousness?

5.1 What Happens To P-Adic Mass Calculations And Quantum TGD?

The basic assumption behind the p-adic mass calculations and all applications is that one can
assign to a given partonic 2-surface (or even light-like 3-surface) a preferred p-adic prime (or
possibly several primes).

The replacement of rationals with quantum rationals in p-adic mass calculations implies effects,
which are extremely small since the difference between rationals and quantum rationals is extremely
small due to the fact that the primes assignable to elementary particles are so large (M127 = 2127−1
for electron). The predictions of p-adic mass calculations remains almost as such in excellent
accuracy. The bonus is the uniqueness of the canonical identification making the theory unique.

The problem of the original p-adic mass calculations is that the number of common rationals
(plus possible algebraics in some extension of rationals) is same for all primes p. What is the
additional criterion selecting the preferred prime assigned to the elementary particle?

Could the preferred prime correspond to the maximization of number theoretic negentropy for
a quantum state involved and therefore for the partonic 2-surface by quantum classical correspon-
dence? The solution ansatz for the Kähler-Dirac equation indeed allows this assignment [K14]:
could this provide the first principle selecting the preferred p-adic prime? Here the replacement of
rationals with quantum rationals improves the situation dramatically.

1. Quantum rationals are characterized by a quantum phase q = exp(iπ/p) and thus by prime
p (in the most general but not so plausible case by an integer n). The set of points shared
by real and p-adic partonic 2-surfaces would be discrete also now but consist of points in the
algebraic extension defined by the quantum phase q = exp(iπ/p).

2. What is of crucial importance is that the number of common quantum rational points of
partonic 2-surface and its p-adic counterpart would depend on the p-adic prime p. For some
primes p would be large and in accordance with the original intuition this suggests that the
interaction between p-adic and real partonic 2-surface is stronger. This kind of prime is
the natural candidate for the p-adic prime defining effective p-adic topology assignable to
the partonic 2-surface and elementary particle. Quantum rationals would thus bring in the
preferred prime and perhaps at the deepest possible level that one can imagine.

5.2 What Happens To TGD Inspired Theory Of Consciousness And
Quantum Biology?

The vision about rationals as common to reals and p-adics is central for TGD inspired theory of
consciousness and the applications of TGD in biology.

1. One can say that life resides in the intersection of real and p-adic worlds. The basic moti-
vation comes from the observation that number theoretical entanglement entropy can have
negative values and has minimum for a unique prime [K7]. Negative entanglement entropy
has a natural interpretation as a genuine information and this leads to a modification of
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Negentropy Maximization Principle (NMP) allowing quantum jumps generating negentropic
entanglement. This tendency is something completely new: NMP for ordinary entanglement
entropy would force always a state function reduction leading to unentangled states and the
increase of ensemble entropy.

What happens at the level of ensemble in TGD Universe is an interesting question. The
pessimistic view (see http://tinyurl.com/ybm6rxz3) [K7], [L2] is that the generation of
negentropic entanglement (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or Fig.
?? in the appendix of this book) is accompanied by entropic entanglement somewhere else
guaranteeing that second law still holds true. Living matter would be bound to pollute its
environment if the pessimistic view is correct. I cannot decide whether this is so: this seems
like deciding whether Riemann hypothesis is true or not or perhaps unprovable.

2. Replacing rationals with quantum rationals however modifies somewhat the overall vision
about what life is. It would be quantum rationals which would be common to real and p-
adic variants of the partonic 2-surface. Also now an algebraic extension of rationals would
be in question so that the proposal would be only more specific. The notion of number
theoretic entropy still makes sense so that the basic vision about quantum biology survives
the modification.

3. The large number of common points for some prime would mean that the quantum jump
transforming p-adic partonic 2-surface to its real counterpart would take place with a large
probability. Using the language of TGD inspired theory of consciousness one would say
that the intentional powers are strong for the conscious entity involved. This applies also
to the reverse transition generating a cognitive representation if p-adic-real duality induced
by the canonical identification is true. This conclusion seems to apply even in the case of
elementary particles. Could even elementary particles cognize and intend in some primitive
sense? Intriguingly, the secondary p-adic time scale associated with electron defining the
size of corresponding CD is.1 seconds defining the fundamental 10 Hz bio-rhythm. Just an
accident or something very deep: a direct connection between elementary particle level and
biology perhaps?

6 Appendix: Some Number Theoretical Functions

Explicit formulas for the number rk(n) of the solutions to the conditions
∑k

1 x
2
k = n are known and

define standard number theoretical functions closely related to the quadratic algebraic extensions
of rationals. The formulas for rk(n) require some knowledge about the basic number theoretical
functions to be discussed first. Wikipedia contains a good overall summary about basic arithmetic
functions (see http://tinyurl.com/23sp45v) [A1] including the most important multiplicative
and additive arithmetic functions.

Included are character functions which are periodic and multiplicative: examples are symbols
(m/n) assigned with the names of Legendre, Jacobi, and Kronecker as well as Dirichlet character.

6.1 Characters And Symbols

6.1.1 Principal character

Principal character (see http://tinyurl.com/23sp45v) [A1] χ(n) distinguishes between three
situations: n is even, n = 1 (mod 4), and n = 3 (mod 4) and is defined as

χ(n) =

(
−4

n

)
=

 0 if n=0 (mod 2)
+1 if n = 1 (mod 4)
−1 if n = 3 (mod 4)

(6.1)

Principal character is multiplicative and periodic with period k = 4.

http://tinyurl.com/ybm6rxz3
http://tgdtheory.fi/appfigures/cat.jpg
http://tinyurl.com/23sp45v
http://tinyurl.com/23sp45v
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6.1.2 Legendre and Kronecker symbols

Legendre symbol
(
n
p

)
characterizes what happens to ordinary primes in the quadratic extensions

of rationals. Legendre symbol is defined for odd integers n and odd primes p as

(
n

p

)
=

 0 if n = 0 (mod p) ,
+1 if n 6= 0 (mod p) and n = x2 (mod p) ,
−1 if there is no such x .

(6.2)

When D is so called fundamental discriminant- that is discriminant D = b2 − 4c for the equation
x2 − bx + c = 0 with integer coefficients b, c, Legendre symbols tells what happens to ordinary
primes in the extension:

1.
(
D
p

)
= 0 tells that the prime in question divides D and that p is expressible as a square in

the quadratic extension of rationals defined by
√
D.

2.
(
D
p

)
= 1 tells that p splits into a product of two different primes in the quadratic extension.

3. For
(
D
p

)
= −1 the splitting of p does not occur.

This explains why Legendre symbols appear in the ideal class number h(D) characterizing the
number of different splittings of primes in quadratic extension.

Legendre symbol can be generalized to Kronecker symbol well-defined for also for even integers
D. The multiplicative nature requires only the definition of

(
n
2

)
for arbitrary n:

(n
2

)
=

{
0 if n is even ,

(−1)
n2−1

8 if n is odd .
(6.3)

Kronecker symbol for p = 2 tells whether the integer is even, and if odd whether n = ±1 (mod
8) or a = ±3 (mod 8) holds true. Note that principal character χ(n) can be regarded as Dirichlet
character

(−4
n

)
.

For D = p quadratic resiprocity (see http://tinyurl.com/yz2okpf) [A14] allows to transform
the formula

χp(n) = (−1)(p−1)/2(−1)(n−1)/2
( p
n

)
= (−1)(p−1)/2(−1)(n−1)/2

∏
pi|n

(
p

pi

)
. (6.4)

6.1.3 Dirichlet character

Dirichlet character (see http://tinyurl.com/2fuudea) [A4]
(
a
n

)
is also a multiplicative function.

Dirichlet character is defined for all values of a and odd values of n and is fixed completely by the
conditions

χD(k) = χD(k +D) , χD(kl) = χD(k)χD(l) ,

If D|n then χD(n) = 0 , otherwise χD(n) 6= 0 .
(6.5)

Dirichlet character associated with quadratic residues is real and can be expressed as

χD(n) =
( n
D

)
=
∏
pi|D

(
n

pi

)
. (6.6)

Here
(
n
pi

)
is Legendre symbol described above. Note that the primes pi are odd.

(
n
1

)
= 1 holds

true by definition.

http://tinyurl.com/yz2okpf
http://tinyurl.com/2fuudea
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For prime values of D Dirichet character reduces to Legendre symbol. For odd integers Dirichlet
character reduces to Jacobi symbol defined as a product of the Legendre symbols associated with
the prime factors. For n = pk Dirichlet character reduces to (

(
p
n

)
)k and is non-vanishing only for

odd integers not divisible by p and containing only odd prime factors larger than p besides power
of 2 factor.

6.2 Divisor Functions

Divisor functions (see http://tinyurl.com/2qyngq) [A6] σk(n) are defined in terms of the divisors
d of integer n with d = 1 and d = n included and are also multiplicative functions. σk(n) is defined
as

σk(n) =
∑
d|n

dk , (6.7)

and can be expressed in terms of prime factors of n as

σk(n) =
∑
i

(pki + p2k
i + ...+ paiki ) . (6.8)

σ1 ≡ σ appears in the formula for r4(n).
The figures in Wikipedia (see http://tinyurl.com/y8vrrhx9) [A9] give an idea about the

locally chaotic behavior of the sigma function.

6.3 Class Number Function And Dirichlet L-Function

In the most interesting k = 3 case the situation is more complicated and more refined number
theoretic notions are needed. The function r3(D) is expressible in terms of so called class number
function h(n) characterizing the order of the ideal class group for a quadratic extension of rationals
associated with D, which can be negative. In the recent case D = −p is of special interest as also
D = −kp, especially so for k = 2r. h(n) in turn is expressible in terms of Dirichlet L-function so
that both functions are needed.

1. Dirichlet L-function (see http://tinyurl.com/yatdk384) [A5] can be regarded as a gener-
alization of Riemann zeta and is also conjectured to satisfy Riemann hypothesis. Dirichlet
L-function can be assigned to any Dirichlet character χD appearing in it as a function valued
parameter and is defined as

L(s, χD) =
∑
n

χD(n)

ns
. (6.9)

For χ1 = 1 one obtains Riemann Zeta. Also L-function has expression as product of terms
associated with primes converging for Re(s) > 1, and must be analytically continued to get
an analytic function in the entire complex plane. The value of L-function at s = 1 is needed
and for Riemann zeta this corresponds to pole. For Dirichlet zeta the value is finite and
L(1, χ−n) indeed appears in the formula for r3(n).

2. Consider next what class number function h means.

(a) Class number function (see http://tinyurl.com/yaopszpl) [A2] characterizes quadratic
extensions defined by

√
D for both positive and negative values of D. For these alge-

braic extensions the prime factorization in the ring of algebraic integers need not be
unique. Algebraic integers are complex algebraic numbers which are not solutions of
a polynomial with coefficients in Z and with leading term with unit coefficient. What
is important is that they are closed under addition and multiplication. One can also
defined algebraic primes. For instance, for the quadratic extension generated by

√
±5

http://tinyurl.com/2qyngq
http://tinyurl.com/y8vrrhx9
http://tinyurl.com/yatdk384
http://tinyurl.com/yaopszpl
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algebraic integers are of form m + n
√
±5 since

√
±5 satisfies the polynomial equation

x2 = ±5.

Given algebraic integer n can have several prime decompositions: n = p1p2 = p3p4,
where pi algebraic primes. In a more advance treatment primes correspond to ideals of
the algebra involved: obviously algebra of algebraic integers multiplied by a prime is
closed with respect to multiplication with any algebraic integer.

A good example about non-unique prime decomposition is 6 = 2×3 = (1+
√
−5)(

√
1−
√
−5

in the quadratic extension generated by
√
−5.

(b) Non-uniqueness means that one has what might be called fractional ideals: two ideals
I and J are equivalent if one can write (a)J = (b)I where (n) is the integer ideal
consisting of algebraic integers divisible by algebraic integer n. This is the counterpart
for the non-uniqueness of prime decomposition. These ideals form an Abelian group
known as ideal class group (see http://tinyurl.com/cbxkhge) [A10]. For algebraic
fields the ideal class group is always finite.

(c) The order of elements of the ideal class group for the quadratic extension determined
by integer D can be written as

h(D) =
1

D

|D|∑
1

r ×
(
D

r

)
, D < −4 . (6.10)

Here
(
D
r

)
denotes the value of Dirichlet character. In the recent case D is negative.

3. It is perhaps not completely surprising that one can express r3(|D|) characterizing quadratic
form in terms of h(D) charactering quadratic algebraic extensions as

r3(|D|) = 12(1−
(
D

2

)
)h(D) , D < −4 . (6.11)

Here
(
D
2

)
denotes Kronecker symbol.
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