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Abstract

In this chapter I consider questions related to both classical and quantum aspects of twisto-
rialization.

1. The first group of questions relates to the twistor lift of classical TGD. What does the
induction of the twistor structure really mean? Can the analog of Kähler form assignable
to M4 suggested by the symmetry between M4 and CP2 and by number theoretical vision
appear in the theory. What would be the physical implications? How does gravitational
coupling emerge at fundamental level? Could one regard the localization of spinor modes
to string world sheets as a localization to Lagrangian sub-manifolds of space-time surface
with vanishing induced Kähler form. Lagrangian sub-manifolds would be commutative
in the sense of Poisson bracket. How this relates to the idea that string world sheets cor-
respond complex (commutative) surfaces of quaternionic space-time surface in octonionic
imbedding space?

During the re-processing of the details related to twistor lift, it became clear that the
earlier variant for the twistor lift can be criticized and allows an alternative. This option
led to a much simpler view about twistor lift, to the conclusion that minimal surface
extremals of Kähler action represent only asymptotic situation (external particles in
scattering), and also to a re-interpretation for the p-adic evolution of the cosmological
constant: cosmological term would correspond to the entire 4-D action and the cancella-
tion of Kähler action and cosmological term would lead to the small value of the effective
cosmological constant.

2. Second group of questions relates to the construction of scattering amplitudes. The idea
is to generalize the usual construction for massless states. In TGD all single particle
states are massless in 8-D sense and this gives excellent hopes about the applicability
of 8-D twistor approach. M8 − H duality turns out to be the key to the construction.
Also the holomorphy of twistor amplitudes in helicity spinors λi and independence on
λ̃i is crucial. The basic vertex corresponds to 4-fermion vertex for which the simplest
expression can be written immediately. n > 4-fermion scattering amplitudes can be also
written immediately.

If scattering diagrams correspond to computations as number theoretic vision suggests,
the diagrams should be reducible to tree diagrams by moves generalizing the old-fashioned
hadronic duality. This condition reduces to the vanishing of loops which in terms of
BCFW recursion formula states that the twistor diagrams correspond to closed objects
in what might be called WCFW homology.
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1 Introduction

During last couple years (I am writing this in the beginning of 2017) a kind of palace revolution
has taken place in the formulation and interpretation of TGD. The notion of twistor lift and 8-D
generalization of twistorialization have dramatically simplified and also modified the view about
what classical TGD and quantum TGD are.

The notion of adelic physics suggests the interpretation of scattering diagrams as representa-
tions of algebraic computations with diagrams producing the same output from given input are
equivalent. The simplest possible manner to perform the computation corresponds to a tree di-
agram [L2]. As will be found, it is now possible to even propose explicit twistorial formulas for
scattering formulas since the horrible problems related to the integration over WCW might be
circumvented altogether.

From the interpretation of p-adic physics as physics of cognition, heff/h = n could be in-
terpreted dimension of extension dividing the the order of its Galois group. Discrete coupling
constant evolution would correspond to phase transitions changing the extension of rationals and
its Galois group. TGD inspired theory of consciousness is an essential part of TGD and the crucial
Negentropy Maximization Principle in statistical sense follows from number theoretic evolution as
increase of the order of Galois group for extension of rationals defining adeles.

In the sequel I consider the questions related to both classical and quantum aspects of twisto-
rialization.

1.1 Questions related to the classical aspects of twistorialization

Classical aspects are related to the twistor lift of classical TGD replacing space-time surfaces with
their twistor spaces realized as extremals of 6-D analog of Kähler action in the product T (M4)×
T (CP2) of twistor space of M4 and CP2 such that twistor structure is induced. The outcome is 4-D
Kähler action with volume term having interpretation in terms of cosmological constant. Hence
the twistorialization has profound physical content rather than being mere alternative formulation
for TGD.

1. What does the induction of the twistor structure really mean? What is meant with twistor
space. For instance, is the twistor sphere for M4 time-like or space-like. The induction
procedure involves dimensional reduction forced by the condition that the projection of the
sum of Kähler forms for the twistor spaces T (M4) and T (CP2) gives Kähler form for the
twistor sphere of X4. Better understanding of the details is required.

2. Can the analog of Kähler form J(M4) assignable to M4 suggested by the symmetry between
M4 and CP2 and by number theoretical vision appear in the theory? What would be the
physical implications?

The basic objection is the loss of Poincare invariance. This can be however avoided by
introducing the moduli space for Kähler forms. This moduli space is actually the moduli
space of causal diamonds (CDs) forced in any case by zero energy ontology (ZEO) and playing
central role in the generalization of quantum measurement theory to a theory of consciousness
and in the explanation of the relationship between geometric and subjective time [K5].

Why J(M4) would be needed? J(M4) corresponds to parallel constant electric and magnetic
fields in given direction. Constant E and B = E fix directions of quantization axes for energy
(rest system) and spin. One implication is transversal localization of imbedding space spinor
modes: imbedding space spinor modes are products of harmonic oscillator Gaussians in
transversal degrees of freedom very much like quarks inside hadrons.
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Also CP breaking is implied by the electric field and the question is whether this could explain
the observed CP breaking as appearing already at the level of imbedding space M4 × CP2.
The estimate for the mass splitting of neutral kaon and anti-kaon is of correct order of
magnitude.

Whether stationary spherically symmetric metric as minimal surface allows a sensible physical
generalization is a killer test for the hypothesis that J(M4) is covariantly constant. The
question is basically about how large the moduli space of forms J(M4) can be allowed to
be. The mere self duality and closedness condition outside the line connecting the tips of
CD allows also variants which are spherically symmetric in either Minkowski coorinates or
Robertson-Walker coordinates for light-cone.

3. How does gravitational coupling emerge at fundamental level? The first naive guess is ob-
vious: string area action is scaled by 1/G as in string models. The objection is that p-adic
mass calculations suggest that string tension is determined by CP2 size R: the analog of
string tension appearing in mass formula given by p-adic mass calculations would be by a
factor about 10−8 smaller than that estimated from string tension. The discrepancy evapo-
rates by noticing that p-adic mass calculations rely on p-adic thermodynamics at imbedding
space level whereas string world sheets appear at space-time level. Furthermore, if the ac-
tion assignable to string world sheets is effective action expressing 4-D action in 2-D form
as strong form of holography (SH) suggests string tension is expected to be function of the
parameters appearing in the 4-D action.

4. Could one regard the localization of spinor modes to string world sheets as a localization to
Lagrangian sub-manifolds of space-time surface having by definition vanishing induced Kähler
form: J(M4)+J(CP2) = 0. Lagrangian sub-manifolds would be commutative in the sense of
Poisson bracket? Could string world sheets be minimal surfaces satisfying J(M4)+J(CP2) =
0. The Lagrangian condition allows also more general solutions - even 4-D space-time surfaces
and one obtains analog of brane hierarchy. Could one allow spinor modes also at these analogs
of branes. Is Lagrangian condition equivalent with the original condition that induced W
boson fields making the em charge of induced spinor modes ill-defined vanish and allowing also
solution with other dimensions. How Lagrangian property relates to the idea that string world
sheets correspond to complex (commutative) surfaces of quaternionic space-time surface in
octonionic imbedding space.

During the re-processing of the details related to twistor lift, it became clear that the earlier
variant for the twistor lift [L3] contained an error. This led to much simpler view about twistor
lift, to the conclusion that minimal surface extremals of Kähler action represent only asymptotic
situation (external particles in scattering), and also to a re-interpretation for the p-adic evolution
of the cosmological constant.

1.2 Questions related to the quantum aspects of twistorialization

Also the questions related to the quantum aspects of twistorialization of TGD are discussed.

1. There are several notions of twistor. Twistor space for M4 is T (M4) = M4 × S2 [B20]
(see http://arxiv.org/pdf/1308.2820.pdf) having projections to both M4 and to the
standard twistor space T1(M4) often identified as CP3. T (M4) = M4 × S2 is necessary for
the twistor lift of space-time dynamics. CP2 gives the factor T (CP2) = SU(3)/U(1)× U(1)
to the classical twistor space T (H). The quantal twistor space T (M8) = T1(M4)× T (CP2)
assignable to momenta. The possible way out is M8 − H duality relating the momentum
space M8 (isomorphic to the tangent space H) and H by mapping space-time associative
and co-associative surfaces in M8 to the surfaces which correspond to the base spaces of in
H: they construction would reduce to holomorphy in complete analogy with the original idea
of Penrose in the case of massless fields.

2. The standard twistor approach has problems. Twistor Fourier transform reduces to ordinary
Fourier transform only in signature (2,2) for Minkowski space: in this case twistor space is
real RP3 but can be complexified to CP3. Otherwise the transform requires residue integral

http://arxiv.org/pdf/1308.2820.pdf


1.2 Questions related to the quantum aspects of twistorialization 5

to define the transform (in fact, p-adically multiple residue calculus could provide a nice
manner to define integrals and could make sense even at space-time level making possible to
define action).

Also the positive Grassmannian requires (2,2) signature. In M8 −H relies on the existence
of the decomposition M2 ⊂ M2 = M2 × E2 ⊂ M8. M2 could even depend on position but
M2(x) should define an integrable distribution. There always exists a preferred M2, call
it M2

0 , where 8-momentum reduces to light-like M2 momentum. Hence one can apply 2-D
variant of twistor approach. Now the signature is (1,1) and spinor basis can be chosen to be
real! Twistor space is RP3 allowing complexification to CP3 if light-like complex momenta
are allowed as classical TGD suggests!

3. A further problem of the standard twistor approach is that in M4 twistor approach does not
work for massive particles. In TGD all particles are massless in 8-D sense. In M8 M4-mass
squared corresponds to transversal momentum squared coming from E4 ⊂ M4 × E4 (from
CP2 in H). In particular, Dirac action cannot contain anyo mass term since it would break
chiral invariance.

Furthermore, the ordinary twistor amplitudes are holomorphic functions of the helicity
spinors λi and have no dependence on λ̃i: no information about particle masses! Only
the momentum conserving delta function gives the dependence on masses. These amplitudes
would define as such the M4 parts of twistor amplitudes for particles massive in TGD sense.
The simplest 4-fermion amplitude is unique.

Twistor approach gives excellent hopes about the construction of the scattering amplitudes in
ZEO. The construction would split into two pieces corresponding to the orbital degrees of freedom
in ”world of classical worlds” (WCW) and to spin degrees of freedom in WCW: that is spinors,
which correspond to second quantized induced spinor fields at space-time surface (actually string
world sheets- either at fundamental level or for effective action implied by strong form of holography
(SH)).

1. At WCW level there is a perturbative functional integral over small deformations of the
3-surface to which space-time surface is associated. The strongest assumption is that this
3-surface corresponds to maximum for the real part of action and to a stationary phase for
its imaginary part: minimal surface extremal of Kähler action would be in question. A
more general but number theoretically problematic option is that an extremal for the sum of
Kähler action and volume term is in question.

By Kähler geometry of WCW the functional integral reduces to a sum over contributions
from preferred extremals with the fermionic scattering amplitude multiplied by the ration
Xi/X, where X =

∑
iXi is the sum of the action exponentials for the maxima. The ratios

of exponents are however number theoretically problematic.

Number theoretical universality is satisfied if one assigns to each maximum independent zero
energy states: with this assumption

∑
Xi reduces to single Xi and the dependence on action

exponentials becomes trivial! ZEO allow this. The dependence on coupling parameters
of the action essential for the discretized coupling constant evolution is only via boundary
conditions at the ends of the space-time surface at the boundaries of CD.

Quantum criticality of TGD [K19, K21, K22] demands that the sum over loops associated
with the functional integral over WCW vanishes and strong form of holography (SH) suggests
that the integral over 4-surfaces reduces to that over string world sheets and partonic 2-
surfaces corresponding to preferred extremals for which the WCW coordinates parametrizing
them belong to the extension of rationals defining the adele [L6]. Also the intersections of
the real and various p-adic space-time surfaces belong to this extension.

2. Second piece corresponds to the construction of twistor amplitude from fundamental 4-
fermion amplitudes. The diagrams consists of networks of light-like orbits of partonic two
surfaces, whose union with the 3-surfaces at the ends of CD is connected and defines a
boundary condition for preferred extremals and at the same time the topological scattering
diagram.
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Fermionic lines correspond to boundaries of string world sheets. Fermion scattering at par-
tonic 2-surfaces at which 3 partonic orbits meet are analogs of 3-vertices in the sense of
Feynman and fermions scatter classically. There is no local 4-vertex. This scattering is
assumed to be described by simplest 4-fermion twistor diagram. These can be fused to
form more complex diagrams. Fermionic lines runs along the partonic orbits defining the
topological diagram.

3. Number theoretic universality [K22] suggests that scattering amplitudes have interpretation
as representations for computations. All space-time surfaces giving rise to the same compu-
tation wold be equivalent and tree diagrams corresponds to the simplest computation. If the
action exponentials do not appear in the amplitudes as weights this could make sense but
would require huge symmetry based on two moves. One could glide the 4-vertex at the end
of internal fermion line along the fermion line so that one would eventually get the analog of
self energy loop, which should allow snipping away. An argument is developed stating that
this symmetry is possible if the preferred M2

0 for which 8-D momentum reduces to light-like
M2-momentum having unique direction is same along entire fermion line, which can wander
along the topological graph.

The vanishing of topological loops would correspond to the closedness of the diagrams in what
might be called BCFW homology. Boundary operation involves removal of BCFW bridge
and entangled removal of fermion pair. The latter operation forces loops. There would be
no BCFW bridges and entangled removal should give zero. Indeed, applied to the proposed
four fermion vertex entangled removal forces it to correspond to forward scattering for which
the proposed twistor amplitude vanishes.

To sum up, the twistorial approach leads to a proposal for an explicit construction of scattering
amplitudes for the fundamental fermions. Bosons and fermions as elementary particles are bound
states of fundamental fermions assignable to pairs of wormhole contacts carrying fundamental
fermions at the throats. Clearly, this description is analogous to a quark level description of
hadron. Yangian symmetry with multilocal generators is expected to crucial for the construction
of the many-fermion states giving rise to elementary particles. The problems of the standard twistor
approach find a nice solution in terms of M8 − H duality, 8-D masslessness, and holomorphy of
twistor amplitudes in λi and their indepence on λ̃i.

2 More details about the induction of twistor structure

The notion of twistor lift of TGD [L2] [L9] has turned out to have powerful implications concerning
the understanding of the relationship of TGD to general relativity. The meaning of the twistor lift
really has remained somewhat obscure. There are several questions to be answered. What does
one mean with twistor space? What does the induction of twistor structure of H = M4 × CP2 to
that of space-time surface realized as its twistor space mean?

2.1 What does one mean with twistor space?

The notion of twistor space has been discussed in [L2] from TGD point of view.

1. In the case of twistor space of M4 the starting point of Penrose was the isomorphism between
the conformal group of Spin(4,2) of 6-D Minkowski space M4,2 and the group SU(2,2) acting
on 2+2 complex spinors.

6-D twistor space could be identified as 6-D coset space SU(2, 2)/SU(2, 1)×U(1). For E6 this
would give projective space CP3 = SU(4)/SU(3)×U(1) and in twistor Grassmann approach
this definition is indeed used. It is thought that the problems caused by Euclidization are
not serious.

2. One can think SU(2, 2) as 4× 4 complex matrices with orthogonal complex row vector Zi =
(Zi1, ..., Zi4), and norms (1, 1,−1− 1) in the metric s2 =

∑
εi|zi|2, εi ↔ (1, 1,−1,−1). The

sub-matrices defined by (Zk2, Zk3, Zk4), k = 2, 3, 4, can be regarded apart from normalization

elements of SU(1, 2). The column vector with components Zi1 with Z11 =
√

1 + ρ2, ρ2 =
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|Z21|2 − |Z31|2 − |Z41|2 corresponds to a point of the twistor space. The S2 fiber for given
values of ρ and (Z31, Z41) could be identified as the space spanned by the values of Z21.
Note that S2 would have time-like signature and the signature of twistor space would be
(3,3), which conforms with the existence of complex structure. There would be dimensional
democracy at this level.

3. The identification of 4-D base of the twistor space is unclear to me. The base space of the
this twistor space should correspond to the conformal compactification M4

c of M4 having
metric defined only apart from conformal scaling. The concrete realization M4

c would be in
terms of M4,2 light-cone with points projectively identified. As a metric object this space is
ill-defined and can appear only at the level of scattering amplitudes in conformally invariant
quantum field theories in M4.

4. Mathematicians define also a second variant of twistor space with S2 fiber and this space
is just M4 × S2 [B20] (see http://tinyurl.com/yb4bt74l). This space has a well-defined
metric and seems to be the only possible one for the twistor lift of classical TGD replacing
space-time surfaces with their twistor spaces. Whether the signature of S2 is time-like or
space-like has remained an open question but time-like signature looks natural. The radius
RP of S2 has been proposed to be apart from a numerical constant equal to Planck length lP .
Note that the isometry group is 9-D SO(3, 1) × SU(2) rather than 15-D SU(2, 2). In TGD
light-likeness in 8-D sense replaces light-likeness in 4-D sense: does this somehow replace
the conformal symmetry group SO(4, 2) with SO(3, 1) × SO(3)? Could SU(2) rotate the
direction of spin quantization axis.

I must confess that I have found the notions of twistor and twistor sphere very difficult to
understand. Perhaps this is not solely due to my restricted mathematical skills. Also the physics
of twistors looks confusing to me.

The twistor space assignable to Minkowski space and corresponding twistor sphere have several
meanings. Consider first the situation in standard framework.

1. One can define twistor space as complex 8-D space C4. Given four-momentum corresponds
however to projective line so that one can argue that twistor space is 6-D space T1(M4) =
CP3 = SU(4)/SU(3)× U(1) of projective lines of C4 in C4. One could also argue that one
must take the signature of Minkowski space into account. SU(2, 2) acts as symmetries of
twistor bilinear form and one would have T1(M4) = SU(2, 2)/SU(2, 1) × U(1). In this case
twistor sphere could correspond to the projective line in C4.

2. Incidence relations µȧ = maȧλa relate M4 points to those of twistor space. In the usual
twistor formalism twistor sphere corresponds to the projective line of 8-D C4. When m is
not light-like, it corresponds to a matrix which is invertible and one can solve µ from λ and
vice versa. The twistor spheres associated with m1 and m2 are said to intersect if m1 −m2

is a complex light-like vector defining a complexified light ray. One could identify twistor
sphere of T1(M4) as the Riemann sphere defined by these complex points and going to CP3

one actually eliminates it altogether, which is somewhat unsatisfactory.

3. When m is light-like and thus expressible as µ = λ ⊗ λ̃ one has µ = µ0 + tλ̃, t a complex
number. One can say that one has a full Riemann sphere S2 of solutions. There is also
additional degeneracy due to the scaling of both λ and µ. For light-like M4 points (say
momenta) one obtains a Riemann sphere in 6-D twistor space. Which twistor sphere is the
correct one: the sphere associated with all points of M4 and 8-D twistor space or the sphere
associated with light-like points of M4 and 6-D twistor space?

Consider now the situation in TGD.

1. For the twistor lift of Kähler action lifting the dynamics of space-time surfaces to the dynamics
of their twistor spaces, the twistor lift of M4 corresponds to T (M4) = M4 × CP2. This
might look strange but the proper mathematical definition of twistor space relies on double
fibration involving both views about twistor space discussed in [B20] (see http://tinyurl.

com/yb4bt74l). This double fibration would be crucially involved with M8−H duality. The

http://tinyurl.com/yb4bt74l
http://tinyurl.com/yb4bt74l
http://tinyurl.com/yb4bt74l
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fiber space is T (M4) = M4×CP1, where CP1 corresponds to the projective sphere assignable
to complex spinors λ. This fiber is trivially projected both to M4 and less trivially to a subset
of 6-dimensional complex projective space T!(M

4) = CP3.

At space-time level T (M4) is the only correct choice since twistor space must have isometries
of M4. This choices brings into the dynamics Planck length essentially as the radius of
S2 and cosmological constant as volume term resulting in the dimensional reduction of 6-D
Kähler action forced by twistor space property of 6-surface.

At the level of momentum space - perhaps the M8 appearing in M8 −H duality identifiable
as tangent space of H - the twistor space would correspond to twistor space assignable to
momentum space and should relate to the ordinary twistor space T1(M4) - whatever it is!

2. In M8 picture the twistor space is naturally associated with preferred M2 ⊂ M4, where
M4 is quaternionic space. The moduli space of M2 ⊂ M4 for time direction assigned with
real octonion, is parametrized by S2 and a possible interpretation is as twistor sphere of
M2 × CP1. Interestingly, M2 ⊂ M4 is characterized by light-like vector together with its
unique dual light-like vector.

By restricting 4-D conformal invariance to 2-D situation, one finds that the twistor space
becomes RP3 but can be complexified to CP3 to allowing complexified M2 momenta. The
signature (1,1) of M2 and reality of spinor basis gives hopes of resolving the conceptual
problems of the ordinary twistor approach. For the real spinor spinor pair (λ, µ) the solutions
to the co-incidence relations real M2 spinors but one can allowing their complex multiples.

3. M8 − H correspondence allows to map M4 points to each other: this involves a choice of
M4 ⊂ M8. M8 − H correspondence maps quaternionic (and co-quaternionic) surfaces in
M8 to preferred extremals of Kähler in H proposed to correspond to the base bases of of
twistor bundles T (X4) ⊂ T (M4)× T (CP2) constructible using holomorphic maps. One can
thus argue that there should be also a correspondence between the twistor spaces T (M4) and
T1(M4) - the correspondence between the twistor spheres would be enough.

The two M4:s correspond to each other naturally. What is required is a map of twistorial
spheres S2 to each other. Suppose that the twistorial sphere of H corresponds to that
assignable to the choice of M2 ⊂ M8 by a choice of quaternionic imaginary unit in M4 of
equivalently by a choice of a light-like vector n of M2 plane. But by incidence relations the
light-like vector n has twistor sphere CP1 as a pre-image in complexified T1(M2) = CP3

characterized by the shifts µ → µ + λ̃. Therefore the two twistor spheres can be identified
by mapping n of S2(T (M4) to its counterpart of T1(M2) isometrically.

It therefore seems that the double fibration is essential in TGD framework and the usual twistor
space is assignable to the M8 interpreted asthe space of complexified octonion momenta subject to
the quaternionicity condition. Sharply defined transversed quaternionic momentum eigenstates in
E2 ×E4 are replaced with wave functions in T (CP2) reducing locally to CP2 ×U(2)/U(1)×U(1)
with em charge identifiable as the analog of angular momentum for the wave functions in CP1 =
U(2)/U(1) × U(1). In M4 × CP2 picture one has spinor modes labelled by electroweak quantum
numbers.

2.2 Twistor lift of TGD

In TGD one replaces imbedding space H = M4 ×CP2 with the product T = T (M4)× T (CP2) of
their 6-D twistor spaces, and calls T (H) the twistor space of H. For CP2 the twistor space is the
flag manifold T (CP2) = SU(3)/U(1)× U(1) consisting of all possible choices of quantization axis
of color isospin and hypercharge.

1. The basic idea is to generalize Penrose’s twistor program by lifting the dynamics of space-
time surfaces as preferred extremals of Kähler action to those of 6-D Kähler action in twistor
space T (H). The conjecture is that field equations reduce to the condition that the twistor
structure of space-time surface as 4-manifold is the twistor structure induced from T (H).

Induction requires that dimensional reduction occurs effectively eliminating twistor fiber
S2(X4) from the dynamics. Space-time surfaces would be preferred extremals of 4-D Kähler
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action plus volume term having interpretation in terms of cosmological constant. Twistor
lift would be more than an mere alternative formulation of TGD.

2. The reduction would take place as follows. The 6-D twistor space T (X4) has S2 as fiber and
can be expressed locally as a Cartesian product of 4-D region of space-time and of S2. The
signature of the induced metric of S2 should be space-like or time-like depending on whether
the space-time region is Euclidian or Minkowskian. This suggests that the twistor sphere of
M4 is time-like as also standard picture suggests.

3. Twistor structure of space-time surface is induced to the allowed 6-D surfaces of T (H), which
as twistor spaces T (X4) must have fiber space structure with S2 as fiber and space-time
surface X4 as base. The Kähler form of T (H) expressible as a direct sum

J(T (H)) = J(T (M4))⊕ J(T (CP2))

induces as its projection the analog of Kähler form in the region of T (X4) considered.

There are physical motivations (CP breaking, matter antimatter symmetry, the well-definedness
of em charge) to consider the possibility that also M4 has a non-trivial symplectic/Kähler
form of M4 obtained as a generalization of ordinary symplectic/Kähler form [L9]. This re-
quires the decomposition M4 = M2 ×E2 such that M2 has hypercomplex structure and E2

complex structures.

This decomposition might be even local with the tangent spaces M2(x) and E2(x) integrat-
ing to locally orthogonal 2-surfaces. These decomposition would define what I have called
Hamilton-Jacobi structure [K14]. This would give rise to a moduli space of M4 Kähler forms
allowing besides covariantly constant self-dual Kähler forms with decomposition (m0,m3)
and (m1,m2) also more general self-dual closed Kähler forms assignable to integrable local
decompositions. One example is spherically symmetric stationary self-dual Kähler form cor-
responding to the decomposition (m0, rM ) and (θ, φ) suggested by the need to get spherically
symmetric minimal surface solutions of field equations. Also the decomposition of Robertson-
Walker coordinates to (a, r) and (θ, π) assignable to light-cone M4

+ can be considered.

The moduli space giving rise to the decomposition of WCW to sectors would be finite-
dimensional if the integrable 2-surfaces defined by the decompositions correspond to orbits of
subgroups of the isometry group of M4 or CD. This would allow planes of M4, and radial half-
planes and spheres of M4 in spherical Minkowski coordinates and of M4

+ in Robertson-Walker
coordinates. These decomposition could relate to the choices of measured quantum numbers
inducing symmetry breaking to the subgroups in question. These choices would chose a
sector of WCW [K5] and would define quantum counterpart for a choice of quantization axes
as distinct from ordinary state function reduction with chosen quantization axes.

4. The induced Kähler form of S2 fiber of T (X4) is assumed to reduce to the sum of the induced
Kähler forms from S2 fibers of T (M4) and T (CP2). This requires that the projections of
the Kähler forms of M4 and CP2 to S2(X4) are trivial. Also the induced metric is assumed
to be direct sum and similar conditions holds true.These conditions are analogous to those
occurring in dimensional reduction.

Denote the radii of the spheres associated with M4 and CP2 as RP = klP and R and the
ratio RP /R by ε. Both the Kähler form and metric are proportional to R2

p resp. R2 and
satisfy the defining condition Jkrg

rsJsl = −gkl. This condition is assumed to be true also for
the induced Kähler form of J(S2(X4).

Let us introduce the following shorthand notations

S2
1 = S2(X4) , S2

2 = S2(CP2) , S2
3 = S2(M4) ,

Ji =
J(S2

i )
R2 , gi =

g(S2
i ))

R2 .

(2.1)

This gives the following equations.
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J1 = J2 + εJ3 , g1 = g2 + εg3 , J1g1J1 = −g1 .

(2.2)

Projections to S2
1 = S2(X4) are assumed at r.h.s.. The product of the third equation is

defined as tensor contraction and involves contravariant form of g.

2.3 Solutions to the conditions defining the twistor lift

Consider now solutions to the conditions defining the twistor lift.

1. The simplest solution type corresponds to the situation in which either S2
2 (S2

3) equals to
S2
1) and S2

3 (S2
2) projection of T (X4) is single point. In this case the conditions of Eq.

are trivially satisfied. These two solutions could correspond to Euclidian and Minkowskian
space-time regions. Also the solution for which twistor sphere degenerates to a point must
be considered and form J(M4) = 0 this would correspond to the reduction of dimensionally
reduced action to Kähler action defining the original variant of TGD. Note that preferred
extremals are conjectured to be minimal surfaces extremals of Kähler action always [L1].

2. One can consider also more general solutions. Depending on situation, one can use for S2(X4)
either the coordinates of S2

2 or S2
3 . Let us choose S2

2 . One can of course change the roles of
the spheres.

Consider an ansatz for which the projections of J2 and J3 to S2
1 are in constant proportionality

to each other. This is guaranteed if the spherical coordinates (u = cos(Θ),Φ) of S2
2 and S2

3 are
related by (u(M4),Φ(M4)) = (u(CP2), nΦ(CP2)) so that the map between the two spheres
has winding number n. With this assumption one has

J1 = (1 + εn)J2 ,
g1 = (1 + εn2)g2 ,

(2.3)

The third condition of Eq. 1 equation gives

(1 + nε)2 = (1 + n2ε)2 . (2.4)

This in turn gives

1 + nε = δ(1 + n2ε) , δ = ±1 .

(2.5)

The only solution for δ = +1 is n = 0 or n = 1. For δ = −1 there are no solutions.

One has 3+1 different solutions corresponding to the degenerate solution (n1, n2) = (0, 0)
and 3 solutions with (n1, n2) equal (1, 0), (0, 1) or (1, 1). The conditions are very stringent
and it is not clear whether there are any other solutions.

3. The further conditions implying locally direct sum for g and J pose strong restrictions on
space-time surfaces. The conjecture that the solutions of these conditions correspond to
preferred extremals of 6-D Kähler action leads by dimensional reduction to the conclusion
that the 4-D action contains besides 4-D Kähler action also a volume term coming from S2

Kähler actions and giving rise to cosmological constant.

What is of special interest is that for the degenerate solution the volume term vanishes,
and one has mere 4-D Kähler action with induced Kähler form possibly containing also
J(M4), which leads to a rather sensible cosmology having interpretation as infinite volume
limit for causal diamond (CD) inside which space-time surfaces exist. This limit could be
appropriate for QFT limit of TGD, which indeed corresponds to infinite-volume limit at
which cosmological constant approaches zero.
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What could be the physical interpretation of the solutions?

1. Physical intuition suggests that S2
1 must be space-like for Euclidian signature of space-time

region [(n1, n2) = (1, 0)] and time-like for Minkowskian signature [(n1, n2) = (0, 1)].

2. By quantum classical correspondence one can argue that the non-vanishing of space-time
projection of J(M4) resp. J(CP2) is necessary to fix local quantization axis of spin resp.
weak isospin. If so, then n1 = 1/0 resp. n2 = 1/0 would tell that the projection of J(CP2)
resp. J(M2) is non-vanishing/vanishes. If both contributions vanish [(n1, n2) = (0, 0)] one
has generalized Lagrangian 4-surface, which would be vacuum extremal. The products of 2-D
Lagrangian manifolds for M4 and CP2 would be vacuum extremals. One can wonder whether
there exist 4-surfaces representable as a graph of a map M4 → CP2 such that the induced
Kähler form vanishes. This picture allows only the imbeddings of trivial Robertson-Walker
cosmology as vacuum extremal of Kähler action since both M4 contribution to Kähler action
and volume term would be non-vanishing [(n1, n2) = (0, 1)].

2.4 Twistor lift and the reduction of field equations and SH to holomor-
phy

It has become clear that twistorialization has very nice physical consequences. But what is the deep
mathematical reason for twistorialization? Understanding this might allow to gain new insights
about construction of scattering amplitudes with space-time surface serving as analogs of twistor
diatrams.

Penrose’s original motivation for twistorilization was to reduce field equations for massless fields
to holomorphy conditions for their lifts to the twistor bundle. Very roughly, one can say that the
value of massless field in space-time is determined by the values of the twistor lift of the field over
the twistor sphere and helicity of the massless modes reduces to cohomology and the values of
conformal weights of the field mode so that the description applies to all spins.

I want to find the general solution of field equations associated with the Kähler action lifted to
6-D Kähler action. Also one would like to understand strong form of holography (SH). In TGD
fields in space-time are are replaced with the imbedding of space-time as 4-surface to H. Twistor
lift imbeds the twistor space of the space-time surface as 6-surface into the product of twistor
spaces of M4 and CP2. Following Penrose, these imbeddings should be holomorphic in some sense.

Twistor lift T (H) means that M4 and CP2 are replaced with their 6-D twistor spaces.

1. If S2 for M4 has 2 time-like dimensions one has 3+3 dimensions, and one can speak about
hyper-complex variants of holomorphic functions with time-like and space-like coordinate
paired for all three hypercomplex coordinates. For the Minkowskian regions of the space-
time surface X4 the situation is the same.

2. For T (CP2) Euclidian signature of twistor sphere guarantees this and one has 3 complex
coordinates corresponding to those of S2 and CP2. One can also now also pair two real
coordinates of S2 with two coordinates of CP2 to get two complex coordinates. For the
Euclidian regions of the space-time surface the situation is the same.

Consider now what the general solution could look like. Let us continue to use the shorthand
notations S2

1 = S2(X4);S2
2 = S2(CP2);S2

3 = S2(M4).

1. Consider first solution of type (1, 0) so that coordinates of S2
2 are constant. One has holomor-

phy in hypercomplex sense (light-like coordinate t− z and t+ z correspond to hypercomplex
coordinates).

(a) The general map T (X4) to T (M4) should be holomorphic in hyper-complex sense. S2
1 is

in turn identified with S2
3 by isometry realized in real coordinates. This could be also

seen as holomorphy but with different imaginary unit. One has analytical continuation of
the map S2

1 → S2
3 to a holomorphic map. Holomorphy might allows to achieve this rather

uniquely. The continued coordinates of S2
1 correspond to the coordinates assignable

with the integrable surface defined by E2(x) for local M2(x) × E2(x) decomposition
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of the local tangent space of X4. Similar condition holds true for T (M4). This leaves
only M2(x) as dynamical degrees of freedom. Therefore one has only one holomorphic
function defined by 1-D data at the surface determined by the integrable distribution
of M2(x) remains. The 1-D data could correspond to the boundary of the string world
sheet.

(b) The general map T (X4) to T (CP2) cannot satisfy holomorphy in hyper-complex sense.
One can however provide the integrable distribution of E2(x) with complex structure
and map it holomorphically to CP2. The map is defined by 1-D data.

(c) Altogether, 2-D data determine the map determining space-time surface. These two
1-D data correspond to 2-D data given at string world sheet: one would have SH.

2. What about solutions of type (0, 1) making sense in Euclidian region of space-time. One has
ordinary holomorphy in CP2 sector.

(a) The simplest picture is a direct translation of that for Minkowskian regions. The map
S2
1 → S2

2 is an isometry regarded as an identification of real coordinates but could be
also regarded as holomorphy with different imaginary unit. The real coordinates can be
analytically continued to complex coordinates on both sides, and their imaginary parts
define coordinates for a distribution of transversal Euclidian spaces E2

2(x) on X4 side
and E2(x) on M4 side. This leaves 1-D data.

(b) What about the map to T (M4)? It is possible to map the integrable distribution E2
2(x)

to the corresponding distribution for T (M4) holomorphically in the ordinary sense of the
word. One has 1-D data. Altogether one has 2-D data and SH and partonic 2-surfaces
could carry these data. One has SH again.

3. The above construction works also for the solutions of type (1, 1), which might make sense
in Euclidian regions of space-time. It is however essential that the spheres S2

2 and S2
3 have

real coordinates.

SH thus would thus emerge automatically from the twistor lift and holomorphy in the proposed
sense.

1. Two possible complex units appear in the process. This suggests a connection with quaternion
analytic functions [L2] suggested as an alternative manner to solve the field equations. Space-
time surface as associative (quaterionic) or co-associate (co-quaternionic) surface is a further
solution ansatz.

Also the integrable decompositions M2(x) × E2(x) resp. E2
1(x) × E2

2(x) for Minkowskian
resp. Euclidian space-time regions are highly suggestive and would correspond to a foliation
by string wold sheets and partonic 2-surfaces. This expectation conforms with the number
theoretically motivated conjectures [K22].

2. The foliation gives good hopes that the action indeed reduces to an effective action consisting
of an area term plus topological magnetic flux term for a suitably chosen stringy 2-surfaces
and partonic 2-surfaces. One should understand whether one must choose the string world
sheets to be Lagrangian surfaces for the Kähler form including also M4 term. Minimal surface
condition could select the Lagrangian string world sheet, which should also carry vanishing
classical W fields in order that spinors modes can be eigenstates of em charge.

The points representing intersections of string world sheets with partonic 2-surfaces defining
punctures would represent positions of fermions at partonic 2-surfaces at the boundaries of
CD and these positions should be able to vary. Should one allow also non-Lagrangian string
world sheets or does the space-time surface depend on the choice of the punctures carrying
fermion number (quantum classical correspondence)?

3. The alternative option is that any choice produces of the preferred 2-surfaces produces the
same scattering amplitudes. Does this mean that the string world sheet area is a constant for
the foliation - perhaps too strong a condition - or could the topological flux term compensate
for the change of the area?
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The selection of string world sheets and partonic 2-surfaces could indeed be also only a gauge
choice. I have considered this option earlier and proposed that it reduces to a symmetry
identifiable as U(1) gauge symmetry for Kähler function of WCW allowing addition to it of a
real part of complex function of WCW complex coordinates to Kähler action. The additional
term in the Kähler action would compensate for the change if string world sheet action in
SH. For complex Kähler action it could mean the addition of the entire complex function.

A couple of questions remain to be pondered.

1. In TGD the induced spinor structure need not be equivalent with the ordinary spinor struc-
ture. For instance, induced gamma matrices are not covariantly constant and spinors are
imbedding space spinors. Induced spinor structure saves also from problems. Induced spinor
structure exists even when standard twistor structure fails to do so. Induced spinor struc-
ture is also unique unlike the ordinary spinor structure. A practical example relates to the
difficulty of the lattice QCD as thermodynamics with periodic boundary conditions in a box:
there are 24 = 16 spinor structures.

In the same way, there is no need to expect or require that the induced twistor structure
reduces to ordinary one: it is enough to require that the S2 bundle structure implied by the
proposed dimensional reduction of 6-D surfaces to S2 bundles having space-time surface as
a base space takes place. This would simplify the construction in an essential manner.

2. Space-time surface can be identified as a section of twistor bundle. For physical reasons this
section should not only exist but be global and unique. For general bundles this need not be
the case. For non-trivial principal bundles one cannot find any sections. The tangent bundle
of sphere does not allow a global everywhere non-vanishing section. Could some additional
condition guarantee that the section exists and is unique? In algebraic geometry additional
conditions such as holomorphy can fix the global section highly uniquely.

Now the variational principle reducing the construction to finding of space-time surfaces
as an extremal of dimensionally reduced Kähler action guarantees both the existence and
uniqueness. This also gives the reason why for the twistor lift of Kähler action: one cannot
only assume that the 6-surface equals to ordinary twistor bundle of some 4-surface since in
this case the section need not be unique.

2.5 What about 2-D objects and fermions?

TGD involves also 2-D objects - partonic 2-surfaces and string world sheets in an essential manner
and strong form of holography (SH) states that these objects carry the information about quantum
states. This does not mean that the dynamics would reduce to that for string like objects since it
is essential that these objects are sub-manifolds of space-time surface. String world sheets carry
induced spinor fields and it seems that these are crucial for understanding elementary particles.
There are several questions to be answered.

1. Are fermionic fields localized to 2-surfaces? The generalization superconformal symmetry
fixing both the bosonic and fermion parts of the action requires that also the interior of
space-time carries induced spinor field. Their interpretation is not quite clear: could they
perhaps give rise to an additional supersymmetry induced by addition of interior fermions to
the state?

The condition of super-symmetry at the level of action fixes the analog of massless Dirac
action uniquely for both string world sheets, partonic 2-surfaces in the interior of causal-
diamond (CD), and for the interior of space-time surface. There is an infinite number of
conserved super currents associated with the modes of the modified Dirac operator defining
fermionic super generators. This leads to quantum classical correspondence stating that the
eigenvalues of Cartan generators for the fermionic representations of Noether charges are
equal to corresponding classical Noether charges defined by the space-time dynamics.

2. A long-standing question has been whether stringlike objects and partonic 2-surfaces are
fundamental dynamical objects or whether they emerge only at the level of effective action.
M8 −H duality [L5] suggests answer to this question.
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M8 −H duality states that space-time surfaces M8 picture are associative in the sense that
either tangent or normal space of space-time surface at any point is associative and there-
fore quaternionic. Number theoretic vision suggests that also 2-D objects are fundamental.
Commutative sub-manifolds of space-time surfaces having induced quaternionic structure re-
ducing to commutative (complex) structure are number theoretically very natural. Either the
tangent space or normal space of 2-surface can be commutative and this gives rise to string
world sheets and partonic 2-surfaces as duals of each other just as space-time surfaces have
regions for which either tangent spaces or normal spaces are associative (these correspond to
regions of space-time with Minkowskian resp. Euclidian signatures of the induced metric).

Note that the reduction of the theory to mere string theory is not possible since partonic
2-surfaces have commutative normal space (partonic 2-surfaces) as part of the tangent space
of space-time surface.

3. What action one should assign with the 2-D objects? The action should be assigned to string
world sheets and partonic 2-surfaces representing vertices but the assignent of action with
partonic 2-surfaces at the ends of CD does not look natural since they are in the role of initial
values. The naive first guess for the action is as area action. Fermionic action would be fixed
uniquely in terms of modified gamma matrices reducing to induced gamma matrices.

Also space-time surfaces in the simplest scenario are minimal surfaces except for a discrete
set of singular points at which there is energy transfer between Kähler action and volume
term. Something similar should occur also in 2-D case: there must also second part in the
action and transfer of Noether changes between the two parts in this set of points.

The singular points have an identification as point-like particles carrying fermion number and
located at partonic 2-surfaces at boundaries of causal diamond (CD) or defining topological
vertices so that a classical space-time correlates for twistor diagrams emerge.

Since particles in twistor approaches are associated with the ends of string boundaries at
the ends of light-like orbits of partonic 2-surfaces at boundaries of causal diamond (CD),
the exceptional points for both space-time surface and string world sheets would correspond
to the intersections of string world sheets and partonic 2-surfaces defining also topological
vertices.

Twistor lift provides a first principle approach to the action assignable to the 2-D surfaces.

1. The simplest possibility is that one has also now a Kähler action but now for 4-D space-time
surface in the product of twistor spaces of M4 and CP2 dimensionally reduced to Cartesian
product of twistor sphere S2 and 2-D surface. The assignment of action to partonic 2-surface
at the boundary of CD does not look feasible. 4-D Kähler action would be dimensionally
reduced to 2-D form and area term.

2. Field equations contain two terms coming from the variation with respect to the induced
metric and Kähler form respectively. The terms coming from the variation with respect to
the metric vanish for minimal surfaces since energy momentum tensor is proportional to the
induced metric. The term coming from the variation with respect to the induced Kähler
form need not vanish for minimal surfaces unless there are additional conditions.

The term is of the same form as in 4-D case, which case this term vanishes for holomorphic
solutions and also for all known extremals. There are excellent reasons to expect that this
is true also in 2-D case. It therefore seems that minimal surfaces are in question except for
a discrete set of points as in 4-D case: this conforms with universality forced by quantum
criticality stating that Kähler coupling constant disappears from dynamics except in this
discrete set of points.

In accordance with SH, this set of points at which the minimal surface property fails would
define also the corresponding points for space-time surface itself. This singularity could mean
breakdown of holomorphy, perhaps analogs of poles for analytic functions are in question.
One cannot exclude the possibility that the boundaries of string world sheets defining orbits
of fundamental fermions are analogous to cuts for holomorphic functions.
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3. One might guess that 2-D minimal surfaces in space-time are also minimal surfaces in imbed-
ding space since the induction from space-time surface to 2-surface can be also thought of as
an induction from imbedding space. The variations for minimal surfaces inside space-time
surface are more restricted so that this need not be the case. For holomorphic solutions the
situation might change. SH in strongest form would therefore suggest that space-time as 4-D
surface is determined by fixing the 2-D minimal surfaces in H and finding space-time surface
containing them. A weaker condition would force to fix also the normal space of the minimal
surface in space-time.

This space-time surface need not always exist, and one of the key ideas about cognition [K7]
is that in p-adic case the possibility of p-adic pseudo-constants allows the existence of p-adic
space-time surfaces always but that in real case this is not always the case: what is imaginable
is not necessarily realizable.

At the level of M8 the condition that the coefficients of a polynomial determining the space-
time surface are in a fixed extension of rationals is very powerful requirement and might
prevent SH. As a matter fact, SH becomes at the level of M8 even stronger: discrete set
of points naturally identifiable as the set of singular points and thus as poles and zeros of
analytic function would determine the space-time surface. If fermion lines correspond to
cuts, this super-strong form of SH would weaken. For polynomials considered in [L5] cuts
are however not possible and they should be generated in the map from H to M4 × CP2

for by allowing analytic functions instead of polynomials: this is quite possible in which case
polynomials could define a a hierarchy of resolutions.

3 How does the twistorialization at imbedding space level
emerge?

An objection against twistorialization at imbedding space level is that M4-twistorialization requires
4-D conformal invariance and massless fields. In TGD one has towers of particle with massless
particles as the lightest states. The intuitive expectation is that the resolution of the problem is
that particles are massless in 8-D sense as also the modes of the imbedding space spinor fields are.

To explain the idea, let us select a fixed decomposition M8 = M4
0 × E4

0 and assume that the
momenta are complex - for motivations see below.

1. With inspiration coming fromM8−H duality [K12] suppose that for the allowed compositions
M8 = M4×E4 one has M4 = M2

0 ×E2 with M2
0 fixed, and corresponding to real octonionic

unit and preferred imaginary unit. Obviously 8-D light-likeness for M8 = M4
0 × E4

0 reduces
to 4-D light-likeness for a preferred choice of M8 = M4 × CP2 decomposition.

2. This suggests that in the case of massive M4
0 momenta one can apply twistorialization to the

light-like M4-momentum and code the information about preferred M4 by a point of CP2 and
about 8-momentum in M8 = M4

0 ×E4
0 by an SU(3) transformation taking M4

0 to M4. Pairs
of twistors and SU(3) transformations would characterize arbitrary quaternionic 8-momenta.
8-D masslessness gives however 2 additional conditions for the complex 8-momenta probably
reducing SU(3) to SU(3)/U(1)×U(1) - the twistor space of CP2! This would also solve the
basic problem of twistor approach created by the existence of massive particles.

The assumption of complex momenta in previous considerations might raise some worries. The
space-time action of TGD is however complex if Kähler coupling strength is complex, and there
are reasons to believe that this is the case. Both four-momenta and color quantum numbers -
all Noether charges in fact - could be complex. A possible physical interpretation for complex
momenta could be in terms of the natural width of states induced by the finite size of CD. Also in
twistor Grassmannian approach one encounters complex but light-like four-momenta. Note that
complex light-like space-time momenta correspond in general to massive real momenta. It is not
clear whether it makes sense to speak about width of color quantum numbers: their reality would
give additional constraint. The emergence of M4 mass in this manner could be involved with the
classical description for the emergence of the third helicity.
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The observation that octonionic twistors make sense and their restriction to quaternionic
twistors produce ordinary M4 twistors provides an alternative view point to the problem. Also
M8 −H duality proposed to map quaternionic 4-D surfaces in octonionic M8 to (possibly quater-
nionic) 4-D surfaces in M4 × CP2 is expected to be relevant. The twistor lift of M8 −H duality
would give T (M8)− T (H) duality.

Twistor Grassmann approach [B8, B5, B4, B12, B13, B3] uses as twistor space the space
T1(M4) = SU(2, 2)/SU(2, 1)× U(1) whereas the twistor lift of classical TGD uses M4 × S2. The
formulation of the twistor amplitudes in terms of SH using the data assignable to the 2-D surfaces
- string world sheets and partonic 2-surfaces perhaps - identified as surfaces in T (M4) × T (CP2)
requires the mapping of these twistor spaces to each other - the incidence relations of Penrose
indeed realize this map.

3.1 M8 −H duality at space-time level

Twistors emerge as a description of massless particles with spin [B19] but are not needed for spin
zero particles. Therefore one can consider first mere momenta.

1. Consider first space-time surfaces of M8 with Minkowskian signature of the induced metric
so that the tangent space is M4. M8−H duality [K12] implies that CP2 points parameterize
quaternionic sub-spaces M4 of octonions containing fixed M2

0 ⊂ M4. Using the decomposi-
tion 1 + 1 + 3 + 3 of complexified octonions to representations of SU(3), it is easy to see that
this space is indeed CP2. M4 correspond to the sub-space 1+1+2 where 2 is SU(2) ⊂ SU(3)
doublet.

CP2 spinor mode would be spinor mode in the space of quaternionic sub-spaces M4 ⊂ M8

with M2
0 ⊂M4 with real octonionic unit defining preferred time like direction and imaginary

unit defining preferred spin quantization axis. M8 −H duality allows to map quaternionic
4-surfaces of M4 ⊃M2

0 to 4-surfaces in H. The latter could be quaternionic but need not to.

2. For Euclidian signature of the induced metric tangent space is E4. In this case co-associative
surfaces are needed since the above correspondence make sense only if the tangent space
corresponds to M4. For instance, for CP2 type exremals tangent space corresponds to E4.
M4 and E4 change roles. Also now the space of co-associative tangent spaces is CP2 since co-
associative tangent space is the octonionic orthogonal complement of the associative tangent
space. One would have Euclidian variant of the associative case.

M8−H correspondence raises the question whether the octonionic M8 or M4×CP2 represents
the level, which deserves to be called fundamental. Or are they just alternative descriptions made
possible by the quaternionicity of space-time surface in M8 and quaternionic momentum space
necessitating quaternionicity of the tangent space of X4? In any case, one should demonstrate
that the spectrum of states with M4 × E4 with quaternionic light-like 8-momenta is equivalent
with the spectrum of states for M4 × CP2

3.2 Parametrization of light-like quaternionic 8-momenta in terms of
T (CP2)

The following argument shows that the twistor space T (CP2) emerges naturally from M8 − H
correspondence for quaternionic light-like M8 momenta.

1. Continue to assume a fixed decomposition M8 = M4
0 × E4

0 , and that for the allowed com-
positions M8 = M4 × E4 one has M4 = M2

0 × E2 with M2
0 fixed. Light-like quaternionic

8-momentum in M8 = M4
0 × E4

0 can be reduced to light-like M4 momentum and vanishing
E4 momentum for some preferred M8 = M4 × E4 decomposition.

One can therefore describe the situation in terms of light-like M4-momentum and U(2)
transformation (as it turns out) mapping this momentum to 8-D momentum in given frame
and giving the M4

0 and E4
0 momenta. The alternative description is in terms M4

0 massive
momentum and the E4

0 momentum. The space of light-like complex M4 momenta with fixed
M2

0 part and non-vanishing E2 part is given by CP2 as also the space of quaternionic planes.
Given quaternionic plane is in turn characterized by massless M4-momentum.
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2. The description of M4-massive momentum should be based on twistor associated with the
light-like M4 momentum plus something describing the SU(3) transformation leaving the
preferred imaginary unit of M2

0 un-affected. The transformations leaving unaffected the
M4 part of M8-momentum coded by the SU(2) doublet 2 of color triplet 3 in the color
decomposition of complex 8-momentum 1+1+3+3 but acting on E4 part 1+3 non-trivially
correspond to U(2) subgroup. U(2) element thus codes for the E4 part of the light-like
momentum and SU(3) code for quaternionic 8-momenta, which can be also massive. Massless
and complex M4 momenta are coded by SU(3)/U(2) = CP2 as also the tangent spaces of
Minkowskian space-time regions (by M8 −H duality).

The complexity of particle 8-momenta -and more generally Noether charges - is not in conflict
with the hermiticity of quantal Noether charges if total classical and quantal Noether charges
are real (and equal by QCC). This would give rise to a kind of confinement condition applying
to many-particle states. I have earlier proposed that single particle conformal weights are
complex but that conformal confinement holds in the sense that the total conformal weights
are real.

3. General complex quaternionic momenta with fixed M4 part are parameterized by SU(3).
Complex light-like 8-momenta satisfy two additional constraints from light-likenes condi-
tion, and one expects the reduction of SU(3) to SU(3)/U(1) × U(1) - the twistor space
of CP2. Therefore the light-like 8-momentum is coded by a twistor assignable to massless
M4-momentum by an point of SU(3)/U(1)× U(1) giving T (M4)× T (CP2).

By the previous arguments, the inclusion of helicities and electroweak charges gives twistor lift
of M8 −H correspondence.

1. In the case of E4 the helicities would correspond to two SO(4) spins to be mapped to right
and left-handed electroweak spins or weak spin and weak charges. Twistor space T (CP2)
gives hopes about a unified description of color - and electro-weak quantum numbers in terms
of partial waves in the space SU(3)/U(1)×U(1) for selections of quantization axes for color
quantum numbers.

2. A possible problem relates to the particles massive in M4 sense having more helicity states
than massless particles. How can one describe the presence of additional helicities. Should one
introduce the analog of Higgs mechanism providing the missing massless helicities? Quantum
view about twistors describes helicity as a quantum number - conformal weight - of a wave
function in the twistor sphere S2. In the case of massive gauge bosons which would require
the introduction of zero helicity as a spin 0 wave function in twistor space.

3. One should relate the description in terms of M8 momenta to the description in terms of M4×
CP2 color partial waves massless in 8-D sense. The number of partial waves for given CP2

mass squared is finite and this should be the case for quaternionic E4 momenta. How color
quantum numbers determining the M4 mass relate to complex E4 momenta parameterized
by U(2) plus two constraints coming from complex light-likeness. The number of degrees of
freedom is 2 for given U(2) orbit and the quantization suggests dramatic reduction in the
number of 8-momenta. This strongly suggests that it is only possible to talk about wave
functions in the space of allowed E4 momenta - that is in the twistor space T (CP2). Fixing
the M4-part of 8-momentum parameterized by a point of CP2 leaves only a wave function
in the fiber S2.

The discussion leaves some questions to ponder.

1. M8 −H correspondence raises the question whether the octonionic M8 or M4 ×CP2 repre-
sents the fundamental level. Or are they just alternative descriptions made possible by the
quaternionicity of space-time surface in M8 and quaternionic momentum space necessitating
quaternionicity of the tangent space of X4?

2. What about more general SO(1, 7) transformations? Are they needed? One could consider
the possibility that SO(1, 7) acts in the moduli space of octonion structures of M8. If so,
then these additional moduli must be included. Otherwise given 8-D momenta have M2

0
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part fixed and orbit of given M4 momentum is the smaller, the smaller the E2 part of M4

momentum is. It reduces to point if M4 momentum reduces to M2
0 .

3.3 A new view about color, color confinement, and twistors

To my humble opinion twistor approach to the scattering amplitudes is plagued by some mathe-
matical problems. Whether this is only my personal problem is not clear.

1. As Witten shows in [B8], the twistor transform is problematic in signature (1,3) for Minkowski
space since the the bi-spinor µ playing the role of momentum is complex. Instead of defining
the twistor transform as ordinary Fourier integral, one must define it as a residue integral.
In signature (2,2) for space-time the problem disappears since the spinors µ can be taken to
be real.

2. The twistor Grassmannian approach works also nicely for (2,2) signature, and one ends up
with the notion of positive Grassmannians. Could it be that something is wrong with the
ordinary view about twistorialization rather than only my understanding of it?

3. For M4 the twistor space should be non-compact SU(2, 2)/SU(2, 1) × U(1) rather than
CP3 = SU(4)/SU(3)×U(1), which is taken to be. I do not know whether this is only about
short-hand notation or a signal about a deeper problem.

4. Twistorilizations does not force SUSY but strongly suggests it. The super-space formalism
allows to treat all helicities at the same time and this is very elegant. This however forces
Majorana spinors in M4 and breaks fermion number conservation in D = 4. LHC does not
support N = 1 SUSY. Could the interpretation of SUSY be somehow wrong? TGD seems
to allow broken SUSY but with separate conservation of baryon and lepton numbers.

In number theoretic vision something rather unexpected emerges and I will propose that this
unexpected might allow to solve the above problems and even more, to understand color and even
color confinement number theoretically. First of all, a new view about color degrees of freedom
emerges at the level of M8.

1. One can always find a decomposition M8 = M2
0 × E6 so that the possibly complex light-

like quaternionic 8-momentum restricts to M2
0 . The preferred octonionic imaginary unit

represent the direction of imaginary part of quaternionic 8-momentum. The action of G2 to
this momentum is trivial. Number theoretic color disappears with this choice. For instance,
this could take place for hadron but not for partons which have transversal momenta.

2. One can consider also the situation in which one has localized the 8-momenta only to M4 =
M2

0 × E2. The distribution for the choices of E2 ⊂ M2
0 × E2 = M4 is a wave function in

CP2. Octonionic SU(3) partial waves in the space CP2 for the choices for M2
0 × E2 would

correspond ot color partial waves in H. The same interpretation is also behind M8 − H
correspondence.

3. The transversal quaternionic light-like momenta in E2 ⊂M2
0×E2 give rise to a wave function

in transversal momenta. Intriguingly, the partons in the quark model of hadrons have only
precisely defined longitudinal momenta and only the size scale of transversal momenta can be
specified. This would of course be a profound and completely unexpected connection! The
introduction of twistor sphere of T (CP2) allows to describe electroweak charges and brings in
CP2 helicity identifiable as em charge giving to the mass squared a contribution proportional
to Q2

em so that one could understand electromagnetic mass splitting geometrically.

The physically motivated assumption is that string world sheets at which the data determin-
ing the modes of induced spinor fields carry vanishing W fields and also vanishing generalized
Kähler form J(M4) + J(CP2). Em charge is the only remaining electroweak degree of free-
dom. The identification as the helicity assignable to T (CP2) twistor sphere is natural.

4. In general case the M2 component of momentum would be massive and mass would be
equal to the mass assignable to the E6 degrees of freedom. One can however always find
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M2
0 ×E6 decomposition in which M2 momentum is light-like. The naive expectation is that

the twistorialization in terms of M2 works only if M2 momentum is light-like, possibly in
complex sense. This however allows only forward scattering: this is true for complex M2

momenta and even in M4 case.

The twistorial 4-fermion scattering amplitude is however holomorphic in the helicity spinors
λi and has no dependence on λ̃i. Therefore carries no information about M2 mass! Could
M2 momenta be allowed to be massive? If so, twistorialization might make sense for massive
fermions!

M2
0 momentum deserves a separate discussion.

1. A sharp localization of 8-momentum to M2
0 means vanishing E2 momentum so that the ac-

tion of U(2) would becomes trivial: electroweak degree of freedom would simply disappear,
which is not the same thing as having vanishing em charge (wave function in T (CP2) twisto-
rial sphere S2 would be constant). Neither M2

0 localization nor localization to single M4

(localization in CP2) looks plausible physically - consider only the size scale of CP2. For the
generic CP2 spinors this is impossible but covariantly constant right-handed neutrino spinor
mode has no electro-weak quantum numbers: this would most naturally mean constant wave
function in CP2 twistorial sphere.

For the preferred extremals of twistor lift of TGD either M4 or CP2 twistor sphere can
effectively collapse to a point. This would mean disappearence of the degrees of freedom
associated with M4 helicity or electroweak quantum numbers.

2. The localization to M4 ⊃ M2
0 is possible for the tangent space of quaternionic space-time

surface in M8. This could correlate with the fact that neither leptonic nor quark-like induced
spinors carry color as a spin like quantum number. Color would emerge only at the level
of H and M8 as color partial waves in WCW and would require de-localization in the CP2

cm coordinate for partonic 2-surface. Note that also the integrable local decompositions
M4 = M2(x) × E2(x) suggested by the general solution ansätze for field equations are
possible.

3. Could it be possible to perform a measurement localization the state precisely in fixed M2
0

always so that the complex momentum is light-like but color degrees of freedom disappear?
This does not mean that the state corresponds to color singlet wave function! Can one say
that the measurement eliminating color degrees of freedom corresponds to color confinement.
Note that the subsystems of the system need not be color singlets since their momenta need
not be complex massless momenta in M2

0 . Classically this makes sense in many-sheeted
space-time. Colored states would be always partons in color singlet state.

4. At the level of H also leptons carry color partial waves neutralized by Kac-Moody generators,
and I have proposed that the pion like bound states of color octet excitations of leptons
explain so called lepto-hadrons [K13]. Only right-handed covariantly constant neutrino is an
exception as the only color singlet fermionic state carrying vanishing 4-momentum and living
in all possible M2

0 :s, and might have a special role as a generator of supersymmetry acting
on states in all quaternionic subs-spaces M4.

5. Actually, already p-adic mass calculations performed for more than two decades ago [K4, K2,
K6], forced to seriously consider the possibility that particle momenta correspond to their
projections o M2

0 ⊂ M4. This choice does not break Poincare invariance if one introduces
moduli space for the choices of M2

0 ⊂M4 and the selection of M2
0 could define quantization

axis of energy and spin. If the tips of CD are fixed, they define a preferred time direction
assignable to preferred octonionic real unit and the moduli space is just S2. The analog of
twistor space at space-time level could be understood as T (M4) = M4 × S2 and this one
must assume since otherwise the induction of metric does not make sense.

What happens to the twistorialization at the level of M8 if one accepts that only M2
0 momentum

is sharply defined?
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1. What happens to the conformal group SO(4, 2) and its covering SU(2, 2) when M4 is re-
placed with M2

0 ⊂ M8? Translations and special conformational transformation span both
2 dimensions, boosts and scalings define 1-D groups SO(1, 1) and R respectively. Clearly,
the group is 6-D group SO(2, 2) as one might have guessed. Is this the conformal group
acting at the level of M8 so that conformal symmetry would be broken? One can of course
ask whether the 2-D conformal symmetry extends to conformal symmetries characterized by
hyper-complex Virasoro algebra.

2. Sigma matrices are by 2-dimensionality real (σ0 and σ3 - essentially representations of real
and imaginary octonionic units) so that spinors can be chosen to be real. Reality is also
crucial in signature (2, 2), where standard twistor approach works nicely and leads to 3-D
real twistor space.

Now the twistor space is replaced with the real variant of SU(2, 2)/SU(2, 1) × U(1) equal
to SO(2, 2)/SO(2, 1), which is 3-D projective space RP 3 - the real variant of twistor space
CP3, which leads to the notion of positive Grassmannian: whether the complex Grass-
mannian really allows the analog of positivity is not clear to me. For complex momenta
predicted by TGD one can consider the complexification of this space to CP3 rather than
SU(2, 2)/SU(2, 1)×U(1). For some reason the possible problems associated with the signa-
ture of SU(2, 2)/SU(2, 1)×U(1) are not discussed in literature and people talk always about
CP3. Is there a real problem or is this indeed something totally trivial?

3. SUSY is strongly suggested by the twistorial approach. The problem is that this requires
Majorana spinors leading to a loss of fermion number conservation. If one has D = 2 only
effectively, the situation changes. Since spinors in M2 can be chosen to be real, one can
have SUSY in this sense without loss of fermion number conservation! As proposed earlier,
covariantly constant right-handed neutrino modes could generate the SUSY but it could be
also possible to have SUSY generated by all fermionic helicity states. This SUSY would be
however broken.

There is an delicacy involved. If J(M4) is present, the action of the gauge commutator
[Dk, Dl] = Jkl(M

4) on right-handed neutrino is non-vanishing and gives rise to the con-
stant term Jkl(M4)Σkl appearing in the square of Dirac equation at imbedding space level.
Neutrino would become massive at imbedding space level and also other states receive an
additional contribution to mass squared. String world sheets can be however analogs of La-
grangian sub-manifolds so that J(M4) projected to them vanishes, and one can have massless
right-handed neutrino. Also the right- or left M4-handedness of operator Jkl(M4)Σkl makes
it possible to annihilate the spinor mode at string world sheet. The physical interpretation
of this picture is still unclear.

4. The selection of M2
0 could correspond at space-time level to a localization of spinor modes to

string world sheets. Could the condition that the modes of induced spinors at string world
sheets are expressible using real spinor basis imply the localization? Whether this localization
takes place at fundamental level or only for effective action being due to SH, is a question to
be settled. The latter options looks more plausible.

To sum up, these observation suggest a profound re-evaluqtion of the beliefs related to color
degrees of freedom, to color confinement, and to what twistors really are.

3.4 How do the two twistor spaces assignable to M4 relate to each other?

Twistor Grassmann approach [B8, B5, B4, B12, B13, B3] uses as twistor space the space T1(M4) =
SU(2, 2)/SU(2, 1)×U(1). Twistor lift of classical TGD uses M4 × S2: this seems to be necessary
since T1(M4) does not allow M4 as space-space. The formulation of the twistor amplitudes in terms
of SH using the data assignable to the 2-D surfaces - string world sheets and partonic 2-surfaces
perhaps - identifed as surfaces in T (M4) × T (CP2) is an attractive idea suggesting a very close
correspondence with twistor string theory of Witten and construction of scattering amplitudes in
twistor Grassmann approach.

One should be able to relate these two twistor spaces and map the twistor spaces T (X4)
identified as surfaces in T (H) = T (M4) × T (CP2) to those in T1(H) = T1(M4) × T (CP2). This
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map is strongly suggested also by twistor string theory. This map raises hopes about the analogs
of twistor Grassmann amplitudes based on introduction of T (CP2).

At least the projections of 2-surfaces to T (M4) should be mappable to those in T1(M4). A
stronger condition is that T (M4) is mappable to T1(M4). Incidence relations for twistors Z = (λ, µ)
assigning to given M4 coordinates twistor sphere, are given by

µα̇ = mαα̇λ
α .

This condition determines a 2-D sub-space - complex light ray - of complexified Minkowski space
M4
c . Also complex scaling of Z determines the same sub-space. Therefore twistor sphere corre-

sponds to a complex light ray M4
c , whose points differ by a shift by a complex light-like vector (λ

is null bi-spinor annihilated by light-like m).
Since twistor line (projective sphere) determines a point of M4

c , two points of twistor sphere
labelled by A and B are needed to determined m:

mαα̇ =
λA,αµB,α̇
〈λAλB〉〉

+
λB,αµA,α̇
〈λBλA〉

.

The solutions are invariant under complex scalings (λ, µ) → k(λ, µ). Therefore co-incidence rela-
tions allow to assign projective line - sphere S2 - to a point of M4 in T (M4). This sphere naturally
corresponds to S2 in T (M4) = M4×S2. This allows to assign pairs (m×S2) in T (M4) to spheres
of T1(M4) and one can map the projections of 2-surfaces to T (M4) to T1(M4).

Thus one cannot assign M4 point to single twistor but can map any pair of points at twistor
sphere of T1(M4) to the same point of M4 in T (M4) = M4 × S2 and also identify the twistor
sphere with S2. Twistor spheres are labelled by the base space of T1(M4) and therefore base space
can be mapped to M4.

Two M4 points separated by light-like distance correspond to twistor spheres intersecting at
one point as is clear from the fact that the difference m1−m2 of the points annihilates the twistor
λ. T1(M4) is singular as fiber bundle over M4 since the same point of fiber is projected to two
different points of M4.

Could one replace T (M4) with T1(M4) by modifying the induction procedure suitable?

1. T1(M4) = SU(2, 2)/SU(2, 1)×U(1) has SU(2, 2) invariant metric and SU(2, 2) corresponds
to the 15-D spin covering group of SO(4, 2) having SO(3, 1) as sub-group. What does one
obtain if one induces the metric of the base space of T1(M4) to M4 via the above identifica-
tion?

The induced metric would depend on the choice of the base space, and one would have
analog of gauge invariance since for a given point of the base the point of the fiber sphere
can be chosen freely. A reasonable guess is that the induced metric is determined apart from
conformal scaling. One could fix the gauge by - say - assuming that the S2 point is constant
but it is not clear whether this allows to get the flat M4 metric with any choice.

2. If the twistor sphere of T1(M4) has radius of order Planck length lP , the overall scaling
factor of the metric of T1(M4) is of order l2P . Also the induced M4 metric would have this
scaling factor. For T1(M4) one could not perform this scaling. This need not be a problem
in T (M4) since one scale up the flat metric of M4 by scaling the coordinates. This kind of
scaling would in fact smooth out the possible deviations from flat M4 metric very effectively.
In any case, it seems that one must assume that imbedding space corresponds to T (M4).

3.5 How could Planck length be actually equal to much larger CP2 ra-
dius?!

The following argument stating that Planck length lP equals to CP2 radius R: lP = R and
Newton’s constant can be identified G = R2/~eff . This idea looking non-sensical at first glance
was inspired by an FB discussion with Stephen Paul King.

First some background.
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1. I believed for long time that Planck length lP would be CP2 length scale R squared multiplied
by a numerical constant of order 10−3.5. Quantum criticality would have fixed the value of
lP and therefore G = l2P /~.

2. Twistor lift of TGD [K18, L3, L7, K30] led to the conclusion that that Planck length lP is
essentially the radius of twistor sphere of M4 so that in TGD the situation seemed to be
settled since lP would be purely geometric parameter rather than genuine coupling constant.
But it is not! One should be able to understand why the ratio lP /R but here quantum
criticality, which should determine only the values of genuine coupling parameters, does not
seem to help.

Remark: M4 has twistor space as the usual conformal sense with metric determined only
apart from a conformal factor and in geometric sense as M4 × S2: these two twistor spaces
are part of double fibering.

Could CP2 radius R be the radius of M4 twistor sphere, and could one say that Planck length
lP is actually equal to R: lP = R? One might get G = l2P /~ from G = R2/~eff !

1. It is indeed important to notice that one has G = l2P /~. ~ is in TGD replaced with a spectrum
of ~eff = n~0, where ~ = 6~0 is a good guess [L4, L11]. At flux tubes mediating gravitational
interactions one has

~eff = ~gr =
GMm

v0
,

where v0 is a parameter with dimensions of velocity. I recently proposed a concrete physical
interpretation for v0 [L10] (see http://tinyurl.com/yclefxb2). The value v0 = 2−12 is
suggestive on basis of the proposed applications but the parameter can in principle depend
on the system considered.

2. Could one consider the possibility that twistor sphere radius for M4 has CP2 radius R:
lP = R after all? This would allow to circumvent introduction of Planck length as new
fundamental length and would mean a partial return to the original picture. One would
lP = R and G = R2/~eff . ~eff/~ would be of 107 − 108!

The problem is that ~eff varies in large limits so that also G would vary. This does not seem
to make sense at all. Or does it?!

To get some perspective, consider first the phase transition replacing ~ and more generally
~eff,i with ~eff,f = hgr .

1. Fine structure constant is what matters in electrodynamics. For a pair of interacting systems
with charges Z1 and Z2 one has coupling strength Z1Z2e

2/4π~ = Z1Z2α, α ' 1/137.

2. As shown in [K11, K8, K20, K19] one can also define gravitational fine structure constant
αgr. Only αgr should matter in quantum gravitational scattering amplitudes. αgr wold be
given by

αgr =
GMm

4π~gr
=
v0
4π

. (3.1)

v0/4π would appear as a small expansion parameter in the scattering amplitudes. This in
fact suggests that v0 is analogous to α and a universal coupling constant which could however
be subject to discrete number theoretic coupling constant evolution.

3. The proposed physical interpretation is that a phase transition ~eff,i → ~eff,f = hgr at the
flux tubes mediating gravitational interaction between M and m occurs if the perturbation
series in αgr = GMm/4π/~ fails to converge (Mm ∼ m2

Pl is the naive first guess for this
value). Nature would be theoretician friendly and increase heff and reducing αgr so that
perturbation series converges again.

http://tinyurl.com/yclefxb2
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Number theoretically this means the increase of algebraic complexity as the dimension n =
heff/h0 of the extension of rationals involved increases fron ni to nf [L5] and the number
n sheets in the covering defined by space-time surfaces increases correspondingly. Also the
scale of the sheets would increase by the ratio nf/ni.

This phase transition can also occur for gauge interactions. For electromagnetism the crite-
rion is that Z1Z2α is so large that perturbation theory fails. The replacement ~→ Z1Z2e

2/v0
makes v0/4π the coupling constant strength. The phase transition could occur for atoms hav-
ing Z ≥ 137, which are indeed problematic for Dirac equation. For color interactions the
criterion would mean that v0/4π becomes coupling strength of color interactions when αs
is above some critical value. Hadronization would naturally correspond to the emergence of
this phase.

One can raise interesting questions. Is v0 (presumably depending on the extension of ratio-
nals) a completely universal coupling strength characterizing any quantum critical system
independent of the interaction making it critical? Can for instance gravitation and electro-
magnetism are mediated by the same flux tubes? I have assumed that this is not the case. It
it could be the case, one could have for GMm < m2

Pl a situtation in which effective coupling
strength is of form (GmMm/Z1Z2e

2)(v0/4π).

The possibility of the proposed phase transition has rather dramatic implications for both
quantum and classical gravitation.

1. Consider first quantum gravitation. v0 does not depend on the value of G at all! The
dependence of G on ~eff could be therefore allowed and one could have lP = R. At quantum
level scattering amplitudes would not depend on G but on v0. I was of course very happy after
having found the small expansion parameter v0 but did not realize the enormous importance
of the independence on G! Quantum gravitation would be like any gauge interaction with
dimensionless coupling, which is even small! This might relate closely to the speculated TGD
counterpart of AdS/CFT duality between gauge theories and gravitational theories.

2. What about classical gravitation? Here G should appear. What could the proportionality of
classical gravitational force on 1/~eff mean? The invariance of Newton’s equation

dv

dt
= −GMr

r3
(3.2)

under heff → xheff would be achieved by scaling r → r/x and t → t/x. Note that
these transformations have general coordinate invariant meaning as scalings of Minkowski
coordinates of M4 in M4 × CP2. This scaling means the zooming up of size of space-time
sheet by x, which indeed is expected to happen in heff → xheff !

What is so intriguing that this connects to an old problem that I pondered a lot during the
period 1980-1990 as I attempted to construct to the field equations for Kähler action approximate
spherically symmetric stationary solutions [K14]. The naive arguments based on the asymptotic
behavior of the solution ansatz suggested that the one should have G = R2/~. For a long time
indeed assumed R = lP but p-adic mass calculations [K4] and work with cosmic strings [K3] forced
to conclude that this cannot be the case. The mystery was how G = R2/~ could be normalized to
G = l2P /~: the solution of the mystery is ~→ ~eff as I have now - decades later - realized!

3.6 Can the Kähler form of M4 appear in Kähler action?

I have already earlier considered the question whether the analog of Kähler form assignable to M4

could appear in Kähler action. Could one replace the induced Kähler form J(CP2) with the sum
J = J(M4) + J(CP2) such that the latter term would give rise to a new component of Kähler
form both in space-time interior at the boundaries of string world sheets regarded as point-like
particles? This could be done both in the Kähler action for the interior of X4 and also in the
topological magnetic flux term

∫
J associated with string world sheet and reducing to a boundary

term giving couplings to U(1) gauge potentials Aµ(CP2) and Aµ(M4) associated with J(CP2) and
J(M4). The interpretation of this coupling is an interesting challenge.
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3.6.1 Conditions on J(M4)

What conditions one can pose on J(M4)?

1. The simplest possibility is that J(M4) is covariantly constant and self-dual and satisfies
J2(M4) = −g(M4) meaning that J(M4) resp. g(M4) represents imaginary resp. real unit.
Hypercomplexity for M2 would suggest the restriction J2(M2) = g(M2) and J2(E2) =
−g(E2). Since complexified octonions are used, it is convenient to include imaginary unit
to J(M2) so that one indeed obtains J2(M4) = −g(M4). J(M4) would define a global
decomposition M4 = M2 × E2 in terms of parallel constant electric and magnetic fields
of equal magnitude. CD with this variant of J(M4) would be naturally associated with
planewave like radiative solutions.

2. One could however give up the covariant constancy. In this case spherically symmetric
variants of J(M4) naturally associated with spherically symmetric stationary metric and
possible analogs of Robertson-Walker metrics. J(M4) would be closed except at the world
line connecting the tips of CD and carry identical magnetic and electric charges.

3. J(M4) would define Hamilton Jacobi-structure and an attractive idea is that the orthogonal
2-surfaces associated with the foliation of M4 are orbits of a subgroup of Poincare group.
This structure would characterize quantum measurement at the level of WCW and quantum
measurement would involve selection of a sector of WCW characterized by J(M4) [K5].

The most plausible assumption is that J(M4) is covariantly constant.

3.6.2 Objections against J(M4)

Consider now the objections against introducing J(M4) to the Kähler action at imbedding space
level.

1. J(M4) would would break translational and Lorentz symmetries at the level of imbedding
space since J(M4) cannot be Lorentz invariant. For imbedding space spinor modes this
term would bring in coupling to the self-dual Kähler form in M4. The simplest choice is
A = (At = z,Az = 0, Ax = y,Ay = 0) defining decomposition M4 = M2 × E2. For Dirac
equation in M4 one would have free motion in preferred time-like (t,z)-plane plane M2 in
whereas in x- and y-directions (E2 plane) would one have harmonic oscillator potentials due
to the gauge potentials of electric and magnetic fields. One would have something very similar
to quark model of hadron: quark momenta would have conserved longitudinal part and non-
conserved transversal part. The solution spectrum has scaling invariance Ψ(mk)→ Ψ(λmk)
so that there is no preferred scale and the transversal scales scale as 1/E and 1/kx.

2. Since J(M4) is not Lorentz invariant, Lorentz boosts would produce new M2 × E2 decom-
position (or its local variant). If one assumes above kind of linear gauge as gauge invariance
suggests, the choices with fixed second tip of causal diamond (CD) define finite-dimensional
moduli space SO(3, 1)/SO(1, 1)×SO(2) having in number theoretic vision an interpretation
as a choice of preferred hypercomplex plane and its orthogonal complement. This is the
moduli space for hypercomplex structures in M4 with the choices of origins parameterized
by M4. The introduction of the moduli space would allow to preserve Poincare invariance.

3. If one generalizes the condition for Kähler metric to J2(M4) = −g(M4) fixing the scaling
of J , the coupling to A(M4) is also large and suggests problems with the large breaking
of Poincare symmetry for the spinor modes of the imbedding space for given moduli. The
transversal localization by the self-dual magnetic and electric fields for J(M4) would produce
wave packets in transversal degrees of freedom: is this physical?

This moduli space is actually the moduli space introduced for causal diamonds (CDs) in
zero energy ontology (ZEO) forced by the finite value of volume action: fixing of the line
connecting the tips of CD the Lorentz boost fixing the position for the second tip of CD
parametrizes this moduli space apart from division with the group of transformations leaving
the planes M2 and E2 having interpretation a plane defined by light-like momentum and
polarization plane associated with a given CD invariant.
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4. Why this kind of symmetry breaking for Poincare invariance? A possible explanation pro-
posed already earlier is that quantum measurement involves a selection of quantization axis.
This choice necessarily breaks the symmetries and J(M4) would be an imbedding space cor-
relate for the selection of rest frame and quantization axis of spin. This conforms with the
fact that CD is interpreted as the perceptive field of conscious entity at imbedding space level:
the contents of consciousness would be determined by the superposition of space-time sur-
faces inside CD. The choice of J(M4) for CD would select preferred rest system (quantization
axis for energy as a line connecting tips of CD) via electric part of J(M4) and quantization
axis of spin (via magnetic part of J(M4). The moduli space for CDs would be the space for
choices of these particular quantization axis and in each state function reduction would mean
a localization in this moduli space. Clearly, this reduction would be higher level reduction
and correspond to a decision of experimenter.

To summarize, for J(M4) = 0 Poincare symmetries are realized at the level of imbedding space
but obviously broken slightly by the geometry of CD. The allowance of J(M4) 6= 0 implies that
both translational and rotational symmetries are reduced for a given CD: the interpretation would
be in terms of a choice of quantization axis in state function reduction. They are however lifted
to the level of moduli space of CDs and exact in this more abstract sense. This is nothing new:
already the introduction of ZEO and CDs force by volume term in action forced by twistor lift of
TGD implies the same. Also the view about state function reduction requires wave functions in
the moduli space of CDs. This is also essential for understanding how the arrow of geometric time
is inherited from that of subjective time in TGD inspired theory of consciousness [K1, K27].

3.6.3 Situation at space-time level

What about the situation at space-time level?

1. The introduction of J(M4) part to Kähler action has nice number theoretic aspects. In
particular, J selects the preferred complex and quaternionic sub-space of octonionic space of
imbedding space. The simplest possibility is that the Kähler action is defined by the Kähler
form J(M4) + J(CP2).

Since M4 and CP2 Kähler geometries decouple it should be possible to take the counterpart
of Kähler coupling strength in M4 to be much larger than in CP2 degrees of freedom so that
M4 Kähler action is a small perturbation and slowly varying as a functional of preferred
extremal. This option is however not in accordance with the idea that entire Kähler form is
induced.

2. Whether the proposed ansätze for general solutions make still sense is not clear. In particular,
can one still assume that preferred extremals are minimal surfaces? Number theoretical vision
strongly suggests - one could even say demands - the effective decoupling of Kähler action
and volume term. This would imply the universality of quantum critical dynamics. The
solutions would not depend at all on the coupling parameters except through the dependence
on boundary conditions. The coupling between the dynamics of Kähler action and volume
term would come also from the conservation conditions at light-like 3-surfaces at which the
signature of the induced metric changes.

3. At space-time level the field equations get more complex if the M4 projection has dimension
D(M4) > 2 and also for D(M4) = 2 if it carries non-vanishing induced J(M4). One would
obtain cosmic strings of form X2 × Y 2 as minimal surface extremals of ordinary Kähler
action or X2 Lagrangian manifold of M4 as also CP2 type vacuum extremals and their
deformations with M4 projection Lagrangian manifold. Thus the differences would not be
seen for elementary particle and string like objects. Simplest string worlds sheet for which
J(M4) vanishes would correspond to a piece of plane M2.

M4 is the simplest minimal surface extremal of Kähler action necessarily involving also
J(M4). The action in this case vanishes identically by self-duality (in Euclidian signature
self-duality does not imply this). For perturbations of M4 such as spherically symmetric
stationary metric the contribution of M4 Kähler term to the action is expected to be small
and the come mainly from cross term mostly and be proportional to the deviation from flat
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metric. The interpretation in terms of gravitational contribution from M4 degrees of freedom
could make sense.

4. What about massless extremals (MEs)? How the induced metric affects the situation and
what properties second fundamental form has? Is it possible to obtain a situation in which the
energy momentum tensor Tα and second fundamental form Hk

αβ have in common components

which are proportional to light-like vector so that the contraction TαβHk
αβ vanishes?

Minimal surface property would help to satisfy the conditions. By conformal invariance one
would expect that the total Kähler action vanishes and that one has JαγJ

γβ ∝ agαβ +bkαkβ .
These conditions together with light-likeness of Kähler current guarantee that field equations
are satisfied.

In fact, one ends up to consider a generalization of MEs by starting from a generalization
of holomorphy. Complex CP2 coordinates ξi would be functions of light-like M2 coordinate
u+ = k · m, k light-like vector, and of complex coordinate w for E2 orthogonal to M2.
Therefore the CP2 projection would 3-D rather than 2-D now.

The second fundamental form has only components of form Hk
u+w, Hk

u+w
and Hk

ww, Hk
ww.

The CP2 contribution to the induced metric has only components of form ∆gu+w, ∆g
+w,

and gww. There is also contribution gu+u− = 1, where v is the light-like dual of u in plane
M2. Contravariant metric can be expanded as a power series for in the deviation (∆gu+w,
∆gu+w) of the metric from (gu+u− , gww). Only components of form gu+,ui and gw,w are
obtained and their contractions with the second fundamental form vanish identically since
there are no common index pairs with simultaneously non-vanishing components. Hence it
seems that MEs generalize!

I have asked earlier whether this construction might generalize for ordinary MEs. One can in-
troduce what I have called Hamilton-Jacobi structure for M4 consisting of locally orthogonal
slicings by integrable 2-surfaces having tangent space having local decomposition M2

x × E2
x

with light-like direction depending on point x. An objection is that the direction of light-like
momentum depends on position: this need not be inconsistent with momentum conserva-
tion but would imply that the total four-momentum is not light-like anymore. Topological
condensation for MEs and at MEs could imply this kind modification.

5. There is also a topological magnetic flux type term for string world sheet. Topological term
can be transformed to a boundary term coupling classical particles at the boundary of string
world sheet to CP2 Kähler gauge potential (added to the equation for a light-like geodesic
line). Now also the coupling to M4 gauge potential would be obtained. The condition
J(M4) + J(CP2) = 0 at string world sheets [L2] is very attractive manner to identify string
world sheets as analogs of Lagrangian manifolds but does not imply the vanishing of the net
U(1) couplings at boundary since the induce gauge potentials are in general different.

Also topological term including also M4 Kähler magnetic flux for string world sheet con-
tributes also to the modified Dirac equation since the gamma matrices are modified gamma
matrices required by super-conformal symmetries and defined as contractions of canonical
momentum densities with imbedding space gamma matrices [K15]. This is true both in
space-time interior, at string world sheets and at their boundaries. CP2 (M4) term gives a
contribution proportional to CP2 (M4) gamma matrices.

At imbedding space level transversal localization would be the outcome and a good guess
is that the same happens also now. This is indeed the case for M4 defining the simplest
extremal. The general interpretation of M4 Kähler form could be as a quantum tool for
transversal dynamical localization of wave packets in Kähler magnetic and electric fields of
M4. Analog for decoherence occurring in transversal degrees of freedom would be in question.
Hadron physics could be one application.

3.6.4 Testing the existence of J(M4)

How to test the idea about J(M4)?
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1. It might be possible to kill the assumption that J(M4) is covariantly constant by showing
that one does not obtain spherically symmetric Schwartschild type metric as a minimal
surface extremal of generalized Kähler action: these extremals are possible for ordinary
Kähler action [L1] [K25]. For the canonical imbedding of M4 field equations are satisfied
since energy momentum tensor vanishes identically. For the small deformations the presence
of J(M4) would reduce rotational symmetry to cylindrical symmetry.

The question is basically about how large the moduli space of forms J(M4) can be allowed
to be. The mere self duality and closedness condition outside the line connecting the tips
of CD allows also variants which are spherically symmetric in either Minkowski coorinates
or Robertson-Walker coordinates for light-cone.An attractive proposal is that the pairs of
orthogonal 2-surface correspond to Hamilton-Jacobi structures for which the two surfaces
are orbits of subgroups of Poincare group.

2. J(M4) could make its presence manifest in the physics of right-handed neutrino having no
direct couplings to electroweak gauge fields. Mixing with left handed neutrino is however
induced by mixing of M4 and CP2 gamma matrices. The transversal localization of right-
handed neutrino in a background, which is a small deformation of M4 could serve as an
experimental signature.

3. CP breaking in hadronic systems is one of the poorly understood aspects of fundamental
physics and relates closely to the mysterious matter-antimatter asymmetry. The constant
electric part of self dual J(M4) implies CP breaking. I have earlier consider that Kähler
electric fields could cause this breaking but now the electric field is not constant. Second
possibility is that matter and antimatter correspond to different values of heff and are
dark relative to each other. The question is whether J(M4) could explain the observed CP
breaking as appearing already at the level of imbedding space M4 × CP2 and whether this
breaking could explain hadronic CP breaking and matter anti-matter asymmetry. Could M4

part of Kähler electric field induce different heff/h = n for particles and antiparticles.

3.6.5 Kerr effect, breaking of T symmetry, and Kähler form of M4

I encountered in Facebook a link to a very interesting article [?] (see http://tinyurl.com/

h5lmplw). Here is the abstract of the article.
We prove an instance of the Reciprocity Theorem that demonstrates that Kerr rotation, also

known as the magneto-optical Kerr effect, may only arise in materials that break microscopic time
reversal symmetry. This argument applies in the linear response regime, and only fails for nonlinear
effects. Recent measurements with a modified Sagnac Interferometer have found finite Kerr rotation
in a variety of superconductors. The Sagnac Interferometer is a probe for nonreciprocity, so it must
be that time reversal symmetry is broken in these materials.

Magneto-optic Kerr effect (see http://tinyurl.com/hef8xgv) occurs when a circularly polar-
ized light beam (plane wave) (often with normal incidence) reflects from a sample. For instance,
reflected circular polarized beams suffers a phase change in the reflection: as if they would spend
some time at the surface before reflecting. Linearly polarized light reflects as elliptically polarized
light. In magneto-optic Kerr effect there are many options depending on the relative directions
of the reflection plane (incidence is not normal in the general case so that one can talk about
reflection plane) and magnetization.

Kerr angle θK is defined as 1/2 of the difference of these phase angle increments caused by
reflection for oppositely circularly polarized plane wave beams. As the name tells, magneto-optic
Kerr effect is often associated with magnetic materials. Kerr effect has been however observed also
for high Tc superconductors and this has raised controversy. As a layman in these issues I can
safely wonder whether the controversy is created by the expectation that there are no magnetic
fields inside the super-conductor. Anti-ferromagnetism is however important for high Tc supercon-
ductivity. In TGD based model for high Tc superconductors the supracurrents would flow along
pairs of flux tubes with the members of S = 0 (S = 1) Cooper pairs at parallel flux tubes carrying
magnetic fields with opposite (parallel) magnetic fluxes. Therefore magneto-optic Kerr effect could
be in question after all.

The author claims to have proven that Kerr effect in general requires breaking of microscopic
time reversal symmetry. Time reversal symmetry breaking (TRSB) caused by the presence of

http://tinyurl.com/h5lmplw
http://tinyurl.com/h5lmplw
http://tinyurl.com/hef8xgv
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magnetic field and in the case of unconventional superconductors is explained nicely at http:

//tinyurl.com/jbabcjt. Magnetic field is required. Magnetic field is generated by a rotating
current and by right-hand rule time reversal changes the direction of the current and also of
magnetic field. For spin 1 Cooper pairs the analog of magnetization is generated, and this leads
to T breaking.

This result is very interesting from the point of TGD. The reason is that twistorial lift of TGD
requires that imbedding space M4 × CP2 has Kähler structure in generalized sense [L3, L7]. M4

has the analog of Kähler form, call it J(M4). J(M4) is assumed to be self-dual and covariantly
constant as also CP2 Kähler form, and contributes to the Abelian electroweak U(1) gauge field
(electroweak hypercharge) and therefore also to electromagnetic field. By definition it satisfies
J2(M4) = −g(M4) saying that it represents imaginary unit geometrically.

J(M4) implies breaking of Lorentz invariance since it defines decomposition M4 = M2 × E2

implying preferred rest frame and preferred spatial direction identifiable as direction of spin quan-
tization axis. In zero energy ontology (ZEO) one has moduli space of causal diamonds (CDs) and
therefore also moduli space of Kähler forms and the breaking of Lorentz invariance cancels. Note
that a similar Kähler form is conjectured in quantum group inspired non-commutative quantum
field theories and the problem is the breaking of Lorentz invariance.

What is interesting that the action of P,CP, and T on Kähler form transforms it from self-dual
to anti-self-dual form and vice versa. If J(M4) is self-dual as also J(CP2), all these 3 discrete
symmetries are broken in arbitrarily long length scales. On basis of tensor property of J(M4) one
expects P: (J(M2), J(E2) → (J(M2),−J(E2) and T: (J(M2), J(E2) → (−J(M2), J(E2). Under
C one has (J(M2), J(E2)→ (−J(M2),−J(E2). This gives CPT: (J(M2), J(E2)→ (J(M2), J(E2)
as expected.

One can imagine several consequences at the level of fundamental physics.

1. One implication is a first principle explanation for the mysterious CP violation and matter
antimatter asymmetry not predicted by standard model (see below).

2. A new kind of parity breaking is predicted. This breaking is separate from electroweak parity
breaking and perhaps closely related to the chiral selection in living matter.

3. The breaking of T might in turn relate to Kerr effect if the argument of authors is correct.
It could occur in high Tc superconductors in macroscopic scales. Also large heff/h = n
scaling up quantum scales in high Tc superconductors could be involved as with the breaking
of chiral symmetry in living matter. Strontium ruthenate for which Cooper pairs are in
S = 1 state is is indeed found to exhibit TRSB (for references and explanation see http:

//tinyurl.com/jbabcjt).

In TGD based model of high Tc superconductivity [K9, K10] the members of the Cooper
pair are at parallel magnetic flux tubes with the same spin direction of magnetic field. The
magnetic fields and thus the direction of spin component in this direction changes under T
causing TRSB. The breaking of T for S = 1 Cooper pairs is not spontaneous but would occur
at the level of physics laws: the time reversed system finds itself experiences in the original
self-dual J(M4)) rather than in (−J(M2), J(E2)) demanded by T symmetry.

3.7 What causes CP violation?

CP violation and matter antimatter asymmetry involving it represent white regions in the map
provided by recent day physics. Standard model does not predict CP violation necessarily accom-
panied by the violation of time reflection symmetry T by CPT symmetry assumed to be exact. The
violation of T must be distinguished from the emergence of time arrow implies by the randomness
associated with state function reduction.

CP violation was originally observed for mesons via the mixing of neutral kaon and antikaon
having quark content ns and ns. The lifetimes of kaon and antikaon are different and they transform
to each other. CP violation has been also observed for neutral mesons of type nb. Now it has
been observed also for baryons Λb with quark composition u-d-b and its antiparticle (see http:

//tinyurl.com/zyk8w44). Standard model gives the Feynman graphs describing the mixing in
standard model in terms of CKM matrix (see http://tinyurl.com/hvpz2su).

http://tinyurl.com/jbabcjt
http://tinyurl.com/jbabcjt
http://tinyurl.com/jbabcjt
http://tinyurl.com/jbabcjt
http://tinyurl.com/zyk8w44
http://tinyurl.com/zyk8w44
http://tinyurl.com/hvpz2su
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The CKM mixing matrix associated with weak interactions codes for the CP violation. More
precisely, the small imaginary part for the determinant of CKM matrix defines the invariant coding
for the CP violation. The standard model description of CP violation involves box diagrams in
which the coupling to heavy quarks takes place. b quark gives rise to anomalously large CP
violation effect also for mesons and this is not quite understood. Possible new heavy fermions in
the loops could explain the anomaly.

Quite generally, the origin of CP violation has remained a mystery as also CKM mixing. In
TGD framework CKM mixing has topological explanation in terms of genus of partonic 2-surface
assignable to quark (sphere, torus or sphere with two handles). Topological mixings of U and
D type quarks are different and the difference is not same for quarks and antiquarks. But this
explains only CKM mixing, not CP violation.

Classical electric field - not necessary electromagnetic - prevailing inside hadrons could cause
CP violation. So called instantons are basic prediction of gauge field theories and could cause
strong CP violation since self-dual gauge field is involved with electric and magnetic fields having
same strength and direction. That this strong CP violation is not observed is a problem of QCD.
There are however proposals that instantons in vacuum could explain the CP violation of hadron
physics (see http://tinyurl.com/zptbd4j).

What says TGD? I have considered this in [L9] and earlier blog posting (see http://tinyurl.

com/hvzqjua).

1. M4 and CP2 are unique in allowing twistor space with Kähler structure (in generalized sense
for M4). If the twistor space T (M4) = M4 × S2 having bundle projections to both M4

and to the conventional twistor space CP3, or rather its non-compact version) allows Kähler
structure then also M4 allow the generalized Kähler structure and the analog symplectic
structure.

This boils down to the existence of self-dual and covariantly constant U(1) gauge field J(M4)
for which electric and magnetic fields E and B are equal and constant and have the same
direction. This field is not dynamical like gauge fields but would characterize the geometry
of M4. J(M4) implies violation Lorentz invariance. TGD however leads to a moduli space
for causal diamonds (CDs) effectively labelled by different choices of direction for these self-
dual Maxwell fields. The common direction of E and B could correspond to that for spin
quantization axis. J(M4) has nothing to do with instanton field. It should be noticed that
also the quantum group inspired attempts to build quantum field theories for which space-
time geometry is non-commutative introduce the analog of Kähler form in M4, and are
indeed plagued by the breaking of Lorentz invariance. Here there is no moduli space saving
the situation.

2. The choice of quantization axis would therefore have a correlate at the level of “world of
classical worlds” (WCW). Different choices would correspond to different sectors of WCW.
The moduli space for the choices of preferred point of CP2 and color quantization axis corre-
sponds to the twistor space T (CP2) = SU(3)/U(1)×U(1) of WCW. One could interpret also
the twistor space T (M4) = M4 × S2 as the space with given point representing the position
of the tip of CD and the direction of the quantization axis of angular momentum. This choice
requires a characterization of a unique rest system and the directions of quantization axis and
time axes defines plane M2 playing a key role in TGD approach to twstorialization [L3, L7].

3. The prediction would be CP violation for a given choice of J(M4). Usually this violation
would be averaged out in the average over the moduli space for the choices of M2 but in some
situation this would not happen. Why the CP violation does not average out when there
is CKM mixing of quarks? Why the parity violation due to the preferred direction is not
compensated by C violation meaning that the directions of E and B fields would be exactly
opposite for quarks and antiquarks. Could the fact that quarks are not free but inside hadron
induce CP violation? Could a more abstract formulation say that the wave function in the
moduli space for J(M4) (wave function for the choices of spin quantization axis!) is not CP
symmetric and this is reflected in the CKM matrix.

4. An important delicacy is that J(M4) can be both self-dual and anti-self-dual depending on
whether the magnetic and electric field have same or opposite directions. It will be found

http://tinyurl.com/zptbd4j
http://tinyurl.com/hvzqjua
http://tinyurl.com/hvzqjua


3.7 What causes CP violation? 30

that reflection P and CP transform self-dual J(M4) to anti-self-dual one. If only self-dual
J(M4) is allowed, one has both parity breaking and CP violations.

Can one understand the emergence of CP violation in TGD framework?

1. Zero energy state is pair of two positive and negative energy parts. Let us assume that
positive energy part is fixed - one can call corresponding boundary of CD passive. This state
corresponds to the outcome of state function reduction fixing the direction of quantization
axes and producing eigenstates of measured observables, for instance spin. Single system
at passive boundary is by definition unentangled with the other systems. It can consists
of entangled subsystems hadrons are basic example of systems having entanglement in spin
degrees of freedom of quarks: only the total spin of hadron is precisely defined.

The states at the active boundary of CD evolve by repeated unitary steps by the action
of the analog of S-matrix and are not anymore eigenstates of single particle observables
but entangled. There is a sequence of trivial state function reductions at passive boundary
inducing sequence of unitary time evolutions to the state at the active boundary of CD and
shifting it. This gives rise to self as a generalized Zeno effect.

Classically the time evolution of hadron corresponds to a superposition of space-time surfaces
inside CD. The passive ends of the space-time surface or rather, the quantum superposition
of them - is fixed. At the active end one has a superposition of 3-surfaces defining classical
correlates for quantum states at the active end: this superposition changes in each unitary
step during repeated measurements not affecting the passive end. Also time flows, which
means that the distance between the tips of CD defining clock-time increases as the active
boundary of CD shifts farther away.

2. The classical field equations for space-time surface follow from an action, which at space-
time level is sum of Kähler action and volume term. If Kähler form at space-time surface
is induced (projected to space-time surface) from J = J(M4) + J(CP2), the classical time
evolution is CP violating. CKM mixing is induced by different topological mixings for U
and D type quarks (recall that 3 particle generations correspond to different genera for
partonic 2-surfaces: sphere, torus, and sphere with two handles). J(M4) + J(CP2) defines
the electroweak U(1) component of electric field so that J(M4) contributes to U(1) part of
em field and is thus physically observable.

3. Topological mixing of quarks corresponds to a superposition of time evolutions for the par-
tonic 2-surfaces, which can also change the genus of partonic 2-surface defined as the number
of handles attached to 2-sphere. For instance, sphere can transform to torus or torus to a
sphere with two handles. This induces mixing of quantum states. For instance, one can say
that a spherical partonic 2-surface containing quark would develop to quantum superposi-
tion of sphere, torus, and sphere with two handles. The sequence of state function reductions
leaving the passive boundary of CD unaffected (generalized Zeno effect) by shifting the active
boundary from its position after the first state function reduction to the passive boundary
could but need not give rise to a further evolution of CKM matrix.

4. The determinant of CKM matrix is equal to phase factor by unitarity (UU† = 1) and its
imaginary part characterizes CP breaking. The imaginary part of the determinant should be
proportional to the Jarlskog invariant J = ±Im(VusVcbV ubV cs) characterizing CP breaking
of CKM matrix (see http://tinyurl.com/kakxwl8).

If the topological mixings are different for U and D type quarks, one obtains CKM mixing.
How could the classical time evolution for quarks and for antiquarks as their CP transforms differ?
To answer the question one must look how J(M4) transforms under C, P , T and CP .

1. J(M4) = (J0z, Jxy = εJ0z), ε = ±1, characterizes hadronic space-time sheet (all space-time
sheets in fact). Since J(M4) is tensor, P changes only the sign of J0z giving J(M4) →
(−J0z, Jxy). Since C changes the signs of charges and therefore the signs of fields created
by them, one expects J(M4) → −J(M4) under C. CP would give J(M4) → (J0z,−Jxy)
transforming selfdual J(M4) to anti-selfdual J(M4). If WCW has no anti-self-dual sector,
CP is violated at the level of WCW.

http://tinyurl.com/kakxwl8
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2. If CPT leaves J(M4) invariant, one must have J(M4) → (J0z,−Jxy) under T rather than
J(M4) → (−J0z, Jxy). The anti-unitary character of T could correspond for additional
change of sign under T . Otherwise CPT should act as J(M4)→ −J(M4) and only (CPT )2

would correspond to unity.

3. Same considerations apply to J(CP2) but the difference would be that induced J(M4) for
space-time surfaces, which are small deformations of M4 covariantly constant in good ap-
proximation. Also for string world sheets corresponding to small cosmological constant
J(M4) × J(M4) − 2 ' 0 holds true in good approximation and induced J(M4) at string
world sheet is in good approximation covariantly constant. If the string world sheet is just
M2 characterizing J(M4) the condition is exact and was has Kähler electric field induced by
J(M4) but no corresponding magnetic field. This would make the CP breaking effect large.

If CP is not violated, particles and their CP transforms correspond to different sectors of WCW
with self dual and anti-self dual J(M4). If only self-dual sector of WCW is present then CP is
violated. Also P is violated at the level of WCW and this parity breaking is different from that
associated with weak interactions and could relate to the geometric parity breaking manifesting
itself via chiral selection in living matter. Classical time evolutions induce different CKM mixings
for quarks and antiquarks reflecting itself in the small imaginary part of the determinant of CKM
matrix. CP breaking at the level of WCW could explain also matter-antimatter asymmetry. For
instance, antimatter could be dark with different value of heff/h = n.

What is interesting that P is badly broken in long length scales as also CP. The same could
be true for T. Could this relate to the thermodynamical arrow of time? In ZEO state function
reductions to the opposite boundary change the direction of clock time. Most physicist believe
that the arrow of thermodynamical time and thus also clock time is always the same. There is
evidence that in living matter both arrows are possible. For instance, Fantappie has introduced
the notion of syntropy as time reversed entropy [J1]. This suggests that thermodynamical arrow of
time could correspond to the dominance of the second arrow of time and be due to self-duality of
J(M4) leading to breaking of T . For instance, the clock time spend in time reversed phase could
be considerably shorter than in the dominant phase. A quantitative estimate for the ratio of these
times might be given some power of the ratio X = lP /R.

3.8 Quantitative picture about CP breaking in TGD

One must specify the value of α1 and the scaling factor transforming J(CD) having dimension
length squared as tensor square root of metric to dimensionless U(1) gauge field F = J(CD)/S.
This leads to a series of questions.

How to fix the scaling parameter S?

1. The scaling parameter relating J(CD) and F is fixed by flux quantization implying that the
flux of J(CD) is the area of sphere S2 for the twistor space M4 × S2. The gauge field is
obtained as F = J/S, where S = 4πR2(S2) is the area of S2.

2. Note that in Minkowski coordinates the length dimension is by convention shifted from the
metric to linear Minkowski coordinates so that the magnetic field B1 has dimension of inverse
length squared and corresponds to J(CD)/SL2, where L is naturally be taken to the size
scale of CD defining the unit length in Minkowski coordinates. The U(1) magnetic flux would
the signed area using L2 as a unit.

How R(S2) relates to Planck length lP ? lP is either the radius lP = R of the twistor sphere
S2 of the twistor space T = M4 × S2 or the circumference lP = 2πR(S2) of the geodesic of S2.
Circumference is a more natural identification since it can be measured in Riemann geometry
whereas the operational definition of the radius requires imbedding to Euclidian 3-space.

How can one fix the value of U(1) coupling strength α1? As a guideline one can use CP breaking
in K and B meson systems and the parameter characterizing matter-antimatter symmetry.

1. The recent experimental estimate for so called Jarlskog parameter characterizing the CP
breaking in kaon system is J ' 3.0 × 10−5. For B mesons CP breading is about 50 times
larger than for kaons and it is clear that Jarlskog invariant does not distinguish between
different meson so that it is better to talk about orders of magnitude only.
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2. Matter-antimatter asymmetry is characterized by the number r = nB/nγ ∼ 10−10 telling
the ratio of the baryon density after annihilation to the original density. There is about one
baryon 10 billion photons of CMB left in the recent Universe.

Consider now the identification of α1.

1. Since the action is obtained by dimensional reduction from the 6-D Kähler action, one could
argue α1 = αK . This proposal leads to unphysical predictions in atomic physics since
neutron-electron U(1) interaction scales up binding energies dramatically.

U(1) part of action can be however regarded a small perturbation characterized by the
parameter ε = R2(S2)/R2(CP2), the ratio of the areas of twistor spheres of T (M4) and
T (CP2). One can however argue that since the relative magnitude of U(1) term and ordinary
Kähler action is given by ε, one has α1 = ε× αK so that the coupling constant evolution for
α1 and αK would be identical.

2. ε indeed serves in the role of coupling constant strength at classical level. αK disappears
from classical field equations at the space-time level and appears only in the conditions for
the super-symplectic algebra but ε appears in field equations since the Kähler forms of J
resp. CP2 Kähler form is proportional to R2(S2) resp. R2(CP2) times the corresponding
U(1) gauge field. R(S2) appears in the definition of 2-bein for R2(S2) and therefore in the
modified gamma matrices and modified Dirac equation. Therefore

√
ε = R(S2)/R(CP2)

appears in modified Dirac equation as required by CP breaking manifesting itself in CKM
matrix.

NTU for the field equations in the regions, where the volume term and Kähler action couple
to each other demands that ε and

√
ε are rational numbers, hopefully as simple as possible.

Otherwise there is no hope about extremals with parameters of the polynomials appearing
in the solution in an arbitrary extension of rationals and NTU is lost. Transcendental values
of ε are definitely excluded. The most stringent condition ε = 1 is also unphysical. ε = 22r

is favoured number theoretically.

Concerning the estimate for ε it is best to use the constraints coming from p-adic mass calcu-
lations.

1. p-Adic mass calculations [K4] predict electron mass as

me =
~

R(CP2)
√

5 + Y
.

Expressing me in terms of Planck mass mP and assuming Y = 0 (Y ∈ (0, 1)) gives an
estimate for lP /R(CP2) as

lP
R(CP2)

' 2.0× 10−4 .

2. From lP = 2πR(S2) one obtains estimate for ε, α1, g1 =
√

4πα1 assuming αK ' α ' 1/137
in electron length scale.

ε = 2−30 ' 1.0× 10−9 ,
α1 = εαK ' 6.8× 10−12 ,
g1 =

√
4πα1 ' 9.24× 10−6 .

There are two options corresponding to lP = R(S2) and lP = 2πR(S2). Only the length of
the geodesic of S2 has meaning in the Riemann geometry of S2 whereas the radius of S2 has
operational meaning only if S2 is imbedded to E3. Hence lP = 2πR(S2) is more plausible option.

For ε = 2−30 the value of l2P /R
2(CP2) is l2P /R

2(CP2) = (2π)2×R2(S2)/R2(CP2) ' 3.7×10−8.
lP /R(S2) would be a transcendental number but since it would not be a fundamental constant but
appear only at the QFT-GRT limit of TGD, this would not be a problem.

One can make order of magnitude estimates for the Jarlskog parameter J and the fraction
r = n(B)/n(γ). Here it is not however clear whether one should use ε or α1 as the basis of the
estimate
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1. The estimate based on ε gives

J ∼
√
ε ' 3.2× 10−5 , r ∼ ε ' 1.0× 10−9 .

The estimate for J happens to be very near to the recent experimental value J ' 3.0× 10−5.
The estimate for r is by order of magnitude smaller than the empirical value.

2. The estimate based on α1 gives

J ∼ g1 ' 0.92× 10−5 , r ∼ α1 ' .68× 10−11 .

The estimate for J is excellent but the estimate for r by more than order of magnitude
smaller than the empirical value. One explanation is that αK has discrete coupling constant
evolution and increases in short scales and could have been considerably larger in the scale
characterizing the situation in which matter-antimatter asymmetry was generated.

There is an intriguing numerical co-incidence involved. heff = ~gr = GMm/v0 in solar system
corresponds to v0 ' 2−11 and appears as coupling constant parameter in the perturbative theory
obtained in this manner [K11]. What is intriguing that one has α1 = v20/4π

2 in this case. Where
does the troublesome factor (1/2π)2 come from? Could the p-adic coupling constant evolutions for
v0 and α1 correspond to each other and could they actually be one and the same thing? Can one
treat gravitational force perturbatively either in terms of gravitational field or J(CD)? Is there
somekind of duality involved?

Atomic nuclei have baryon number equal the sum B = Z +N of proton and neutron numbers
and neutral atoms have B = N . Only hydrogen atom would be also U(1) neutral. The dramatic
prediction of U(1) force is that neutrinos might not be so weakly interacting particles as has
been thought. If the quanta of U(1) force are not massive, a new long range force is in question.
U(1) quanta could become massive via U(1) super-conductivity causing Meissner effect. As found,
U(1) part of action can be however regarded a small perturbation characterized by the parameter
ε = R2(S2)/R2(CP2). One can however argue that since the relative magnitude of U(1) term and
ordinary Kähler action is given by ε, one has α1 = ε× αK .

Quantal U(1) force must be also consistent with atomic physics. The value of the parameter
α1 consistent with the size of CP breaking of K mesons and with matter antimatter asymmetry
is α1 = εαK = 2−30αK .

1. Electrons and baryons would have attractive interaction, which effectively transforms the em
charge Z of atom Zeff = rZ, r = 1 + (N/Z)ε1, ε1 = α1/α = ε × αK/α ' ε for αK ' α
predicted to hold true in electron length scale. The parameter

s = (1 + (N/Z)ε)2 − 1 = 2(N/Z)ε+ (N/Z)2ε2

would characterize the isotope dependent relative shift of the binding energy scale.

The comparison of the binding energies of hydrogen isotopes could provide a stringent bounds
of the value of α1. For lP = 2πR(S2) option one would have α1 = 2−30αK ' .68×10−11 and
s ' 1.4 × 10−10. s is by order of magnitude smaller than α4 ' 2.9 × 10−9 corrections from
QED (see http://tinyurl.com/kk9u4rh). The predicted differences between the binding
energy scales of isotopes of hydrogen might allow to test the proposal.

2. B = N would be neutralized by the neutrinos of the cosmic background. Could this occur
even at the level of single atom or does one have a plasma like state? The ground state binding
energy of neutrino atoms would be α2

1mν/2 ∼ 10−24 eV for mν = .1 eV! This is many many
orders of magnitude below the thermal energy of cosmic neutrino background estimated to
be about 1.95 × 10−4 eV (see http://tinyurl.com/ldu95o9). The Bohr radius would be
~/(α1mν) ∼ 106 meters and same order of magnitude as Earth radius. Matter should be
U(1) plasma. U(1) superconductor would be second option.

http://tinyurl.com/kk9u4rh
http://tinyurl.com/ldu95o9
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4 About the interpretation of the duality assignable to Yan-
gian symmetry

The D = 4 conformal generators acting on twistors have a dual representation in which they
act on momentum twistors: one has dual conformal symmetry, which becomes manifest in this
representation. These two separate symmetries extend to Yangian symmetry providing a powerful
constraint on the scattering amplitudes.

In TGD the conformal Yangian extends to super-symplectic Yangian - actually, all symmetry
algebras have a Yangian generalization with multi-locality generalized to multi-locality with respect
to partonic 2-surfaces. The generalization of the dual conformal symmetry has remained obscure.
In the following I describe what the generalization of the two conformal symmetries and Yangian
symmetry would mean in TGD framework. I also propose an information theoretic duality between
Euclidian and Minkowskian regions of space-time surface. I am not algebraist and apologize for
the unavoidable inaccuracies.

4.1 Formal definition associated with Yangian

The notion of Yangian appears as two very different looking variants. The first variant can be
found from Wikipedia (see goo.gl/q1twRZ) and second variant assignable to gauge theories can
be found from [B6, B7].

Consider first the Wikipedia definition. The definition is in terms of quantum group notion in
which the elements of matrix representing group element are made non-commuting operators.

1. The generators of Yangian algebra are labelled by an integer n ≥ −1 with n = −1 generator
identified as unit matrix. n ≥ 1 generators generate the algebra and commutators with
n = 1 generators preserving the weight allow to assign quantum numbers to them. From the

Wikipedia article one learns that Yangian is generated by elements t
(p)
ij , 1 ≤ i, j ≤ N , p ≥ 0

of quantum matrices satisfy the relations

[
t
(p+1)
ij , t

(q)
kl

]
−
[
t
(p)
ij , t

(q+1)
kl

]
= −(t

(p)
kj t

(q)
il − t

(q)
kj t

(p)
il ) . (4.1)

Note there are two operations involved: commutator and operator product. The formula here
is not consistent with the formula used in Yang-Mills theories for the commutators between
m = 0 generators and generators with generators having n ∈ {0, 1}, and it seems that this
formula suggesting m,n→ m+ n− 1 in commutator cannot hold true for the commutators
with m = 0 generators.

By defining t
(−1)
ij = δij and setting

T (z) =
∑
p≥−1

t
(p)
ij z

−p+1 . (4.2)

T (z) is thus a quantum matrix depending on the point of 2-D space.

2. Introduce R-matrix R(z) = 1+z−1P acting on CN ⊗CN , where P is the operator permuting
the tensor factors. This allows to write the defining relations as Yang-Baxter equation (see
http://tinyurl.com/gogn75s):

R12(z − w)T1(z)T2(w) = T2(w)T1(z)R12(z − w) . (4.3)

R12, which depends only on the difference z−w, performs the permutation of the generators
T1(z) and T2(w).

Yangian is a Hopf algebra with co-multiplication ∆ mapping T (z) acting in V to operator
acting in V ⊗ V , co-unit ε and antipode s given by

goo.gl/q1twRZ
http://tinyurl.com/gogn75s
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(∆⊗ id)T (z) = T12(z)T13(z) , (ε⊗ id)T (z) = I , (s⊗ id)T (z) = T (z)−1 . (4.4)

∆ taking generator T (z) acting in V to generator ∆(T ) = T12(z) acting in V ⊗ V . ∆
transforms a generator acting on single-particle states to a generator acting on 2-particles
states.

3. The Yangian weight of the commutator of elements with weights m and n is m + n − 1
rather than m + n as for Virasoro and Kac-Moody algebras. This means that generators
with conformal weight 1 do not affect the conformal weight and Cartan algebra elements
defining quantum numbers of generators have weight 1. For conformal algebras the Cartan
algebra defining quantum numbers has conformal weight 0.

For Virasoro algebra having integer valued conformal weights the scaling L0 = zd/dz appears
as basic derivative operation and generators are products Ln = znzd/dz. By taking trans-
lation operator T = d/dz as the derivative operator and writing Kn = znd/dz, the weight
of commutator becomes m + n − 1. This is a trivial change. The map u = exp(z) relates
these two representations. That n ≤ 2 appear in generators distinguishes the representations
from Virasoro and Kac-Moody representations - note however that also for these algebras
the generators with positive weight generate physical states.

What bothers me in this definition is that only the action of the generators with p = 1 leaves
the weight unaffected whereas for the dual conformal symmetry generators with both p = 0 and
p = 1 do this and define conformal symmetry and its dual.

4.2 Dual conformal symmetry in N = 4 SUSY

Yangian symmetry appears also in gauge theories and the definition looks very different from the
Wikipedia definition. In N = 4 SUSY conformal symmetry (in 4-D sense) has two representa-
tions. There is a duality between two representations of conformal generators crucial for twistor
Grassmannian approach [B6, B7] (see http://tinyurl.com/n22lwuy).

1. In the first representation conformal symmetry generators J
(0)
a are local and act in the space

of external momenta. This induces a local and linear action in twistor space.

2. The generators J
(1)
a of the dual conformal symmetry act in a local manner in the space of

region momenta and associated momentum twistor space whereas the action of J
(1)
a is bi-local

in the momentum space and corresponding twistor space.

Region momenta can be assigned with a twistor diagram defined by a closed polygon of
Minkowski space having region momenta (, which need not be light-like) as edges having
external light-like momenta emitted at the corners. The dual of this representation is the
representation in which the light-like external momenta summing up to zero form a closed
polygon.

Yangian is generated by ordinary generators J
(0)
a and bi-local dual generators J

(1)
a .

1. They satisfy the commutations

[
J (0)
a , J

(1)
b

]
= f c

ab J
(1)
c . (4.5)

This condition is perfectly sensible physically but is not consistent with the above general
consistency condition pf Eq. 4.1 from R-matrix requiring that the commutator has vanishing
weight. Now the weights are additive in commutator.

http://tinyurl.com/n22lwuy
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2. The generators J
(1)
a have an easy-to-guess representation:

J (1)
a = f cb

a

∑
0≤i<j≤n

J
(0)
ib J

(0)
jc (4.6)

making explicit the bi-locality. The commutators of these generators have also weight 1.
This is consistent with the above general formula unlike the formula the commutators of
generators with vanishing weight. Both generators form a closed sub-algebra of Yangian and

this must be behind the possibility to represent J
(1)
a locally.

3. Also so called Serre relations are satisfied. They look rather complex and look different from
the relations associated with R-matrix.

X(a, b, c) + ε(a, b, c)X(b, c, a) + ε(c, a, b)X(c, a, b) = hεrm,tnY (l,m, n)f larf
m
bsf

n
ctf

rst ,

X(a, b, c) =
[
J (1)
a ,

[
J
(1)
b , J (0)

c }} , Y (l,m, n) = {J (0)
l , J (0)

m , J (0)
n

]
ε(a, b, c) = (−1)|a|(|b|+|c|) , εrm,tn = (−1)|r|m|+|t|n| .

(4.7)

Here the mixed brackets the [., } denote the graded commutator, and {., ..] denotes the
graded symmetrizer. h is a parameter characterizing the Yangian and should correspond to
the parameter characterizing quantum group.

These conditions are sufficient to give a representation of graded Yangian if the tensor product
R⊗R of the representation R and its conjugate R contains adjoint representation only once.
The higher generators can be generate by applying co-product operation to the generators.

4. Both local and bi-local generators form two closed sub-algebras. This is not consistent
with the consistency conditions of appearing in Wikipedia definition. The Wikipedia defi-

nition seems to be wrong for commutators of generators [J
(m)
A , J

(n)
B ] with weights (m,n) ∈

{(0, 0), (0, 1), (1, 0)}.

5. Co-product ∆ has representation

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(QA) = QA ⊗ 1 + 1⊗QA + fABCJ
B ⊗ JC . (4.8)

The first formula is obvious. Single particle generator lifted to a tensor product is sum of
the single particle generators acting on the tensor factors. When QA annihilates single spin
representations, one obtains just the defining formula for the bi-local generators.

One could have a situation in which single particle states are actually many-particle states
annihilated by QA and satisfying the condition that adjoint is contained only once in R⊗R.
In TGD framework one might argue that this kind of effective single particle states could
quite generally define bound states behaving like single particle states physically. One would
obtain infinite hierarchy of this kind of states realizing concretely the vision about fractal
hierarchy.

4.3 Possible TGD based interpretation of Yangian symmetries

In TGD partonic 2-surfaces replace point-like objects and multi-locality is with respect to these.
The proposal is that the TGD counterpart of the Yangian algebra [B7] of gauge theories could act
as symmetries of many-parton states characterized by n partonic 2-surfaces assignable to the same
3-D surface at the boundary of causal diamond (CD). What is remarkable that this symmetry
would relate particle states with different particle numbers to each other unlike the usual single
particle symmetries.
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1. This condition forces the partons to form a bound state with partonic 2-surfaces having space-
like separations. Note that the separations along orbits of wormhole throats at opposite ends
of CD are space-like or light-like. This must be taken into account when correlation functions
are calculated. In QFT there is no description of this kind and this could explain the general
failure of QFT in the description of bound states already in QED, where Bethe-Salpeter
equation predicts large numbers of non-existing states.

2. Yangian algebra involves complex (hypercomplex) coordinate z which could be associated
with the boundaries of string world sheets connecting partonic surfaces at the same boundary
(at opposite boundaries) of CD. One can also assign complex coordinate with partonic 2-
surfaces and the braiding of fermionic lines would be described by the matrix R assignable to
the Yangian. The Cartan algebra of local and bi-local string like operators define quantum
numbers for states. That point-like and string-like operators generate the algebra conforms
with the idea about tensor networks with nodes connected by edges.

On can think that partonic 2-surfaces form a single connected unit consisting of partonic
surfaces connected by boundaries of string world sheets assignable to the topological Feynman
diagram defined by the light-like 3-surface defining the boundary between Euclidian and
Minkowskian regions of the space-time surface.

3. The operation ∆ for Yangian would assign to the generators acting on single parton states
generators acting on 2-parton states. R12 would act as an exchange operation for parton
states, which could reduces to many-fermion states at partonic 2-surfaces.

4. R12 can appear in many contexts in TGD. It can be associated with braiding of fermionic
lines inside partonic orbits or magnetic flux tubes at the ends of space-time surfaces. It can
be also associated with the fermionic lines in the preferred plane M2 associated with twistor
scattering amplitudes.

From the twistorial point of view the preferred M2 defined by light-like quaterionic 8-
momentum is of special interest. M2 identified as octonionic complex plane and its com-
plexification brings in mind integrable field theories in M2 allowing Yangian symmetry char-
acterized by R-matrix. The scattering matrix is trivial for these field theories: scattering
involves only a phase shift. In twistorial approach to TGD scattering is non-trivial. The
R-matrix would be present also now and exchange the momentum projections in preferred
M2 plane. If the entire scattering diagram -apart from external lines corresponds to the same
M2, the braiding operation permutes also fermions at different partonic 2-surfaces located
at the ends of string.

The possibility to localize the action of generators J (1) in momentum twistor representation
leads to ask whether the stringy generators appearing TGD framework could allow local action
using the analog of the space of region momenta. Could M8 − H duality [K12, K21] make this
possible? At M8 level the light-like momenta (in 8-D sense) would correspond to differences of
region momenta assignable to strings connecting the partonic 2-surfaces. The 8-D region momenta
should be quaternionic. They cannot be light-like as is easy to see.

The notion of region momentum and thus localization would make sense only in M8, where
the wave functions are completely localizable to quaternionic light-like momenta in M8, whereas
in H one has localization to light-like momenta only in preferred M2 plus wave functions in the
space of planes M4 and in the space of transverse momenta in E2 ⊂M4. This would suggest that
M8 −H duality corresponds to the duality of twistor and momentum twistor representations.

What would be new that this duality would be realized also at the level of space-time surfaces.
One would have associative/quaternionic space-time surfaces in M8 and preferred extremals of
dimensionally reduced Kähler action in H identifiable as 6-D holomorphic surfaces representing
twistor spaces of space-time surfaces.

Note that M8−H duality could be seen as a number-theoretic analog of spontaneous compact-
ification. Non-perturbative effects would force a delocalization in the space of light-like 8-momenta
in M8 to give states having interpretation as wave functions in H. Nothing would happen to the
topology of M8. Only the state space would be compactified.
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4.4 A new kind of duality of old duality from a new perspective?

M8−H duality [K12, K21] maps the preferred extremals in H to those M4×CP2 and vice versa.
The tangent spaces of an associative space-time surface in M8 would be quaternionic (Minkowski)
spaces.

In M8 one can consider also co-associative space-time surfaces having associative normal space
[K12]. Could the co-associative normal spaces of associative space-time surfaces in the case of
preferred extremals form an integrable distribution therefore defining a space-time surface in M8

mappable to H by M8−H duality? This might be possible but the associative tangent space and
the normal space correspond to the same CP2 point so that associative space-time surface in M8

and its possibly existing co-associative companion would be mapped to the same surface of H.
This dead idea however inspires an idea about a duality mapping Minkowskian space-time re-

gions to Euclidian ones. This duality would be analogous to inversion with respect to the surface of
sphere, which is conformal symmetry. Maybe this inversion could be seen as the TGD counterpart
of finite-D conformal inversion at the level of space-time surfaces. There is also an analogy with the
method of images used in some 2-D electrostatic problems used to reflect the charge distribution
outside conducting surface to its virtual image inside the surface. The 2-D conformal invariance
would generalize to its 4-D quaterionic counterpart. Euclidian/Minkowskian regions would be kind
of Leibniz monads, mirror images of each other.

1. If strong form of holography (SH) holds true, it would be enough to have this duality at
the informational level relating only 2-D surfaces carrying the holographic information. For
instance, Minkowskian string world sheets would have duals at the level of space-time surfaces
in the sense that their 2-D normal spaces in X4 form an integrable distribution defining
tangent spaces of a 2-D surface. This 2-D surface would have induced metric with Euclidian
signature.

The duality could relate either a) Minkowskian and Euclidian string world sheets or b)
Minkowskian/Euclidian string world sheets and partonic 2-surfaces common to Minkowskian
and Euclidian space-time regions. a) and b) is apparently the most powerful option infor-
mation theoretically but is actually implied by b) due to the reflexivity of the equivalence
relation. Minkowskian string world sheets are dual with partonic 2-surfaces which in turn
are dual with Euclidian string world sheets.

(a) Option a): The dual of Minkowskian string world sheet would be Euclidian string world
sheet in an Euclidian region of space-time surface, most naturally in the Euclidian
”wall neighbour” of the Minkowskian region. At parton orbits defining the light-like
boundaries between the Minkowskian and Euclidian regions the signature of 4-metric
is (0,−1,−1,−1) and the induced 3-metric has signature (0,−1,−1) allowing light-like
curves. Minkowskian and Euclidian string world sheets would naturally share these
light-like curves aas common parts of boundary.

(b) Option b): Minkowskian/Euclidian string world sheets would have partonic 2-surfaces
as duals. The normal space of the partonic 2-surface at the intersection of string world
sheet and partonic 2-surface would be the tangent space of string world sheets so that
this duality could make sense locally. The different topologies for string world sheets
and partonic 2-surfaces force to challenge this option as global option but it might hold
in some finite region near the partonic 2-surface. The weak form of electric-magnetic
duality [K17] could closely relate to this duality.

In the case of elementary particles regarded as pairs of wormhole contacts connected by flux
tubes and associated strings this would give a rather concrete space-time view about stringy
structure of elementary particle. One would have a pair of relatively long (Compton length)
Minkowskian string sheets at parallel space-time sheets completed to a parallelepiped by
adding Euclidian string world sheets connecting the two space-time sheets at two extremely
short (CP2 size scale) Euclidian wormhole contacts. These parallelepipeds would define lines
of scattering diagrams analogous to the lines of Feynman diagrams.

This duality looks like new but as already noticed is actually just the old electric-magnetic
duality [?]een from number-theoretic perspective.
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5 TGD view about construction of twistor amplitudes

In the following TGD view about twistorialization and its relation to other visions about TGD
is discussed. I start with a brief summary of twistor approach to scattering amplitudes and then
describe the application of this approach TGD.

5.1 Some key ideas of the twistor Grassmann approach

In the following I summarize the basic technical ideas of twistor Grassmann approach. I am not
a specialist. On the other hand, my views about twistorialization of TGD differ in many aspects
about those applied in the twistorialization of gauge theories, and my own attention is directed
towards the physical interpretation and mathematical consistency rather than calculational tech-
niques.

5.1.1 Variants of twistor formalism

The reader can find details about twistors in the article of Witten [B8] and in the thesis of Trnka
[B21] (see http://tinyurl.com/zbj9ad7).

1. Helicity spinor formalism assigns to light-like momentum pair of conjugate spinors (λa, λ̃ȧ)
transforming in conjugate representations of Lorentz group SL(2, C). Light-like momentum
is expressible as pkσk using Pauli sigma matrices and this gives the representation as matrix
components paȧ = λaλȧ. The determinant of the matrix equals to pkpk = 0 since its rows
are linearly dependent.

One can introduce the bilinears [λ̃1, λ̃2] = −[λ̃2, λ̃1] and 〈λ1, λ2〉 = −〈λ2, λ1〉 using the

antisymmetric Lorentz invariant bilinear defined by permutation symbols εab and εȧḃ. The
inner product p1 · p2 is expressible as p1 · p2 = 〈λ1, λ2〉[λ̃1, λ̃2].

One could express also polarization vectors of massless bosons using pair (λ, µ̃) of helicity
spinors. There is however a more elegant approach available. The spinors (tλ, λ̃/t) correspond
to same momentum for all non-vanishing complex values of t. t represents an element of little
group of Lorentz group leaving the helicity state invariant. The helicity dependence of the
scattering amplitude is fixed by the transformation property under little group and coded to
the weight under the scalings by t: A(taλ, t

−1
a λ̃a) = t−2ha

a A(λ, λ̃). Thus the formalism allows
very elegant description of spin and can be applied in SUSYs.

For Minkowski signature (2,2) the spinors are real and this makes this signature preferred.
Personally I see this as a basic problem of twistorialization. A possible TGD inspired solution
of the problem is provided by the effective replacement of M4 with M2 with signature (1, 1)
and thus allowing real spinors.

2. Twistors (λa, µȧ) are obtained by performing a twistor Fourier transform of scattering am-
plitude A(λ, λ̃) with respect to λ̃.

At local level [B8] the twistor transform corresponds to Fourier transform

λ̃ȧ → i ∂µȧ ,

−i ∂
λ̃ȧ
→ µȧ .

The action of little group corresponds now to the scaling (λ, µ)→ t(λ, µ) and does not affect
the helicity state. For this reason twistors differing by complex scaling can be identified. The
proper twistor space is CP3 rather than C4.

The twistor transform of the amplitude transforms as A(taλ, taλ̃a) = t−2ha−2
a A(λ, µ).

In signature (2,2) the helicity spinors (λ, λ̃) are real so that the twistor Fourier transform
reduces to an ordinary Fourier transform. In signature (1,3) the rigorous definition is rather
challenging and is discussed by Penrose [B19]. One manner to define the transform is by
using residue integral. Residue integral is also p-adically attractive.

The incidence relation of Penrose given by

http://tinyurl.com/zbj9ad7
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µȧ = −xaȧλa

relates M4 coordinates to λ, µ. By little group invariance entire complex twistor line corre-
sponds to a given point of M4.

The twistor transform of plane wave allows to construct the twistor transform of momentum
space wave function, and is given by δ2(µȧ+xaȧλ

a), which is non-vanishing at complex light
ray. Twistor Fourier transform in real Minkowski space is therefore non-vanishing at light
ray and maps light rays to twistors.

If the incidence relation for given (λ, µ) is satisfied at two space-time points m1,m2, the
difference m1−m2 is a light-like vector since corresponding matrix has vanishing determinant.
Two intersecting twistor lines correspond to M4 points with light-like distance. This allows
to develop geometric picture about twistor diagrams in which the external light-like momenta
correspond to intersections of twistor lines assignable to the internal lines of graph.

3. Momentum twistors define a third basic notion. It is convenient to describe particle scattering
with external light-like momenta in terms of a diagram in which the external momenta are
assigned with the vertices of a polygon such that the lines carry possibly complex momenta.
Clearly, the polygon like object is obtained by repeatedly adding light-like momenta to the
polygon and since the sum of the external momenta vanishes, the polygon closes.

The vertices of polygon correspond to intersections of twistor lines defining light-like momenta
as differences of the momenta associated with the lines meeting at the vertex. One can assign
to the complex momenta of internal lines twistors known as momentum twistors.

Dual momentum twistor is a further variant of twistor concept being defined in terms of three
adjacent momentum twistors contracting them with the 4-D permutation symbol defined in
the representation of twistor as a point of C4 [B21].

5.1.2 Leading singularities

Twistor Grassmann approach to planar loop amplitudes relies on the idea that the discontinuities
associated with the singularities of the scattering amplitudes carry all information about the am-
plitudes. This of course holds true already for the tree diagrams having only poles as singularities.

The idea is same as in the case of analytic continuation: 1-D data at poles and cuts allows
to construct the functions. This idea generalizes to functions of several variables and leads to a
generalization of residue calculus. At space-time level strong form of holography (SH) relies on the
same idea: the 3-D data determine 4-D dynamics and in TGD allowing strong form of holography
2-D data is almost enough.

The discontinuities assignable to singularities can have lower-dimensional singularities so that
a hierarchical structure is obtained. The leading singularities are those for which maximal number
of propagators are on mass shell and the diagram decomposes to a product of diagrams with
virtual particle on mass shell. For one loop diagrams the maximal number of propagators is N = 4
corresponding to the fixing of four components of loop momentum. For L loops it is N = 4L.

Non-leading singularities have less than the maximal number of propagators on shell and this
leaves integral over a subset of loop momenta. If the number of propagator is larger than 4L, one
can have kinematical singularities for some combinations of external momenta.

In the case of scattering amplitudes in twistor Grassmann formulation one encounters a similar
situation. In twistor Grassmann approach one defines also the loop integrals in momentum space
as residue integrals in the space of complexified momenta. If the functions involved are rational
functions the residue integrals are well-defined.

One of the surprising findings is that the leading singularities of MHV loop amplitudes always
proportional to tree amplitudes. Second finding is that for N = 4 theory the leading singularities
determine completely the scattering amplitudes [B21].

In TGD framework quantum criticality suggests that locally all loop corrections vanish and
coupling constant evolution is discrete. This would mean that the only singularities correspond
to poles of propagators and this indeed leads to diagrams in which internal lines have complex on
mass shell momenta. If this vision is correct, this part of twistor Grassmann approach does not
look relevant from TGD point of view.
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5.1.3 BCFW recursion formula

The original form of BCFW recursion formula [B4] was derived for tree diagrams. The finding was
that the diagrams can be decomposed to two pieces containing with a propagator line connecting
them.

1. The proof of this result was rather simple in spinor helicity formalism and based on modifi-
cation of two momenta pk and pn by BCFW shift:

pk(z) = λk(λ̃k − zλ̃n) ,

pn(z) = (λn + zλk)λ̃n) ,
(5.1)

Obviously, the modification is induced by modifications λ̃k and λn. With some assumptions
about asymptotic behaviour of scattering amplitude A, one can express the original amplitude
A = A(z = 0) as residue integral

A(z = 0) =
1

2π

∮
C

dz
A(z)

z
. (5.2)

Here C does not close any other poles than z = 0. This integral is the negative of the residue
integral around the complement of the region closed by C.

2. It is assumed that poles are the only singularities in this region. Hence one can express A(z)
as sum of its poles

A(z) =
∑
i

ci
z − zi

. (5.3)

3. With these assumptions the residue integral gives

A = A(0) =
1

2π

∑
i

ci
zi

. (5.4)

This leads to the desired factorization with ci reducing to a product of amplitudes and
zi identifiable as a complex pole for the propagator connecting the sub-diagrams in the
decomposition.

In [B9] details of the BCFW shift in the general case are given. One assumes a more general
shift pi → p̂i = pi + zri such that ri are light-like, mutually orthogonal, orthogonal to pi, and
sum up to zero. The modified momenta are complex massless and sum up to zero. One can define

PI =
∑
i<I pi and RI =

∑
i<I ri. The shifted variant P̂I

2
= P 2

I + 2zP · RI is linear in z and
vanishes for z = zI = −P 2

I /PI ·RI . ZI define the counterparts zi. Performing the residue integral
one obtains A(0) = 1

2π

∑
I
cI
zI

.
This formula allows a recursive construction of tree diagrams by starting from the basic vertices

of YM theory. BCFW recursion formula was later generalized to a recursion for the sum planar
loops diagrams in terms of diagrams with lower number of loops [B9, B21].

5.1.4 Scattering amplitudes in terms of Yangian invariants defined as multiple residue
integrals in Grassmannian manifolds

The generators of Yangian are ordinary conformal generators with conformal weight 0 and dual
generators with conformal weight 1. The latter generators act in simple manner in momentum
twistor space.
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Twistor Grassmannian approach utilizing either twistors or momentum twistors allows to
demonstrate that these both conformal symmetry and its dual are present.

The construction of Yangian invariants is summarize in [B21]. Grassmannian residues are
Yangian invariants. Yangian transformation introduces total divergence and is exact if its integral
vanishes. The operations producing new Yangian invariant can change n or k or both.

1. There are several relatively trivial manners to construct Yangian invariants. One can take
the integrand of n-1-D invariant and formally interpret it as integrand of n-D invariant. One
can integrate over one twistor variable so that n decreases by one unit.

Invariants can be multiplied. One can a merge invariants by identifying the twistors in the
factors of the product. For instance, one can take the fundamental invariants defining 3-
vertices and multiply them to build twistor box giving rise to four particles. One can also
merge invariants by integrating over the identified invariants.

2. Inverse soft factor [B16] adds to the diagram expressed in terms of spinor helicity formalism
one new particle but keeps k constant. Therefore this operation does cannot be applied in
TGD where one has only fermions as external particles. The operation can be formulated as
a linear shift for λ̃a and λ̃b.

3. One can prove the BCFW recursion formula for tree diagrams [B4] by using a deformation of
the twistor amplitude in helicity spinor formalism allowing to deduce the factorized formula
of the amplitude, two adjacent external lines and deform the twistors λ and λ̃ in helicity
spinor representation by performing the BCFW shift [B18].

This deformation describes interaction between the external lines, and is essential in the
construction of the scattering amplitudes using BCFW recursion. One takes the sum over
the products of diagrams with left and right helicities obtained by putting internal particle
on mass shell and adds BCFW bridge. BCFW allows to construct all tree amplitudes by
starting from fundamental 3-particle amplitudes.

4. Entangled removal [?, B21, B9] removing two external particles producing a loop in the sense
of Feynman diagrammatics but residue of the pole of the propagator is possible and appears
as part of the boundary operation for the diagrams. The resulting recursion formula allows
to deduce loop corrections.

Twistor Grassmann diagrams are known to allow “moves” [B21, B11]. For instance, moves
can be used to remove boxes: it is known that apart from scaling factors depending on momenta
the diagrams are reducible to ordinary tree diagrams [B21] (http://tinyurl.com/zbj9ad7). This
allows to consider the possibility that twistor trees could allow to construct all diagrams. Note
however that the moves reducing the twistor diagram to a counterpart of tree diagram gives an
overall multiplicative factor depending on momenta and helicities.

From TGD point the definition of loop integrals and Grassmannian integrals as residue integrals
is of great potential importance. Scattering amplitudes should be number theoretically universal
but in p-adic context the definition of definite integral is very difficult. Residue integral provides
however a manner to define multiple residue integrals using only holomorphy and the notion of
pole. This could be the deep reason for why one should be able to reduce loop integrals to residue
integrals.

There is however a potential problem involved related to number theoretic universality. 2π does
not exist p-adically in any reasonable sense (if one wants to define it one must introduce infinite-
D extension of rationals by powers of 2π. One might hope that 2π cancels from the scattering
amplitudes by normalization. Another possibility is that for an extension containing exp(i2π/N)
as the highest root of unity, one can define π approximately as iπ ≡ N × (exp(iπ/N) − 1). An
alternative option is that only the analogs of tree diagrams having only poles as singularities are
possible

5.1.5 Linearization of the twistorial representation of overall momentum delta func-
tion

An little but not insignificant technical detail [B12] is the linearization of the constraint expressing
the overall momentum conservation by interpreting it as a condition in Grassmannian G(k, n),

http://tinyurl.com/zbj9ad7
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where k is the number of negative helicities and n is the number of particles, and allowing to
reduce integrations over G(k, n) to those over G(k − 2, n− 4).

Spinor helicity diagrams and twistor diagrams are proportional to a delta function express-
ing overall momentum conservation. Dropping twistor indices this delta function one reads as
δ(
∑
k Pk) = δ(λiλ̃i). One can combine the 2 components of λi and λ̃i to form 2+2 n-component

vectors and interpret momentum conservation as orthogonality conditions for the 2-planes spanned
by λa and λ̃ȧ for k > 2. These plane spanned by 2 n-component λ vectors can be interpreted as 2
vectors in G(k, n− k) defining rows of G(k, n− k) matrix. λ̃ defines a similar plane in G(n− k, k).

These conditions are equivalent with the condition that there exists in G(k, n) a 2-D C and its
n− k-dimensional orthogonal complement C̃ such that the 2-plane spanned by λa is orthogonal to
C̃ and the two-plane spanned by λ̃ȧ is orthogonal to C. These conditions can be expressed as a
product of delta functions δ(C · λ̃) and δ(C̃ · λ).

Since G(k) acts as a ”gauge symmetry” for G(k, n), the first k × k block of the k × n matrix
representing a point of C can be transformed to a unit matrix so that k× (n−k) variables remain..
Same can be carried out for the last n × (n − k) block of C̃ by G(n) ”gauge invariance” so that
(n− k)× n variables remain. With these gauge choices the orthogonality conditions can be solved
explicitly and corresponding integrations can be carried out. The integration over delta functions
leaves (k−2)(n−k−2) variables, the dimension of G(k−2, n−4). G(k, n) reduces to G(k−2, n−4)
by momentum conservation.

5.2 Basic vision behind scattering amplitudes

It is good to summarize the basic vision about TGD first.

5.2.1 Separation of WCW functional integral and fermionic dynamics

The works of Penrose and Witten have served as inspiration in the attempts to twistorialize TGD
and led to the conjecture that the twistor lift of TGD is possible and means that space-time
surfaces are replaced with their twistor spaces representable as 6-D surfaces in 12-D product of
twistor spaces of M4 and CP2. What makes this idea so attractive is that S4 and CP2 are the only
4-D compact manifolds with Euclidian signature having twistor space with Kähler structure [?].
TGD would be unique both from the existence of the lift of Kähler action to the product of twistor
spaces of M4 and CP2!

What the twistor space of M4 is, is however not at all clear. It can be defined in two manners:
as the usual CP3 very natural at the level of momentum space or as the trivial bundle T (M4) =
M4 × S2 natural in the twistorialization at classical space-time level. Standard twistorialization
has however problems.

1. There is problem associated with the signature. Twistorialization works best at signature
(2, 2) for Minkowski space and gives rise to real projective space P 3.

2. Second problem is that CP3 should be actually SU(2, 2)/SU(2, 1) × U(1). There is clearly
something not so well understood.

In the number theoretic vision about TGD twistor space would be replaced with commutative
hyper-complex M2 ⊂M4 ⊂M8 and this space is just RP 3 and problems wth signature disappear
since 2-D spinors can be chosen to have real basis. For complex momenta this extends to CP3.
Number theory would also justify the identification of geometric twistor sphere as M4 × S2.

In TGD the dynamics of fields is replaced with that for 4-surfaces. Penrose’s idea about
generalization of holomorphy of field modes in twistor space generalizes to the holomorphy of the
representation of 6-surface representing twistor bundle of space-time leads to a concrete ansatz for
space-time surfaces as preferred extremals [L3] [L9].

SH leads to the proposal that the data determining space-surfaces are preferred extremals is
given at 2-D surfaces and these 2-D surfaces bring in mind Witten’s twistor strings [B8]. By SH
the functional integral over them would correspond to that over WCW and twistor amplitudes
asignable to given space-time surface would be constructed at fermionic level by the analog of
twistor Grassmannian approach. This integral over 2-surfaces corresponds to the deviation of
TGD from QFT in fixed background and cannot be equivalent with the introduction of twistor
strings.
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5.2.2 Adelic physics and scattering diagram as a representation of computation

Adelic physics [L6] suggested to provide quantum physical correlates also for cognition is in a central
role. Adelic physics predicts the hierarchy heff = n × h, where n as dimension of the extension
is divisor of the order its Galois group identified in terms of dark matter regarded as a phase of
ordinary matter. p-Adic physics and p-adic length scale hypothesis could be also understood.

The number theoretic universality of scattering amplitudes suggests that all loops vanish iden-
tically and the evolution of various couplings constants is discrete occurring by phase transitions
changing the extension of rationals and values of various coupling parameters.

1. The vanishing of loops at the level of space-time action would mean that the loops associ-
ated with the functional integral defined by the action, which is sum of Kähler action and
volume term. This vanishing would state essentially local quantum criticality as invariance
of coupling parameters under local renormalization group evolution. One would obtain only
a sum of action exponentials since Gaussian and metric determinants cancel each other in
Kähler metric.

2. Exponents of Kähler action represent a number theoretical nightmare.

(a) The functional integral expressions for scattering amplitudes are normalized by a func-
tional integral for for the vacuum state. This implies that only the ratios Xi/X of the
exponents Xi for the extrema and sum

∑
Xi appear in the amplitudes [L6] so that there

are slightly better hopes of achieving number theoretic universality.

(b) Number theoretical universality forces to imagine even more attractive option making
sense in ZEO but not in standard ontology. If the amplitude is sum over the contri-
butions normalized by corresponding exponentials Xi rather than

∑
Xi, exponentials

cancel altogether and the couplings constants appear only in boundary conditions. In
this case one could speak of a basis of zero energy states assignable to various extrema
of the action. The real part of the action is maximum and the the imaginary part of
the action saddle point if preferred extrema are minimal surface extremals of Kähler
action [L3]. Number-theoretical universality more or less forces this option.

3. An even stronger proposal is based on the idea that that the TGD analogs of stringy diagrams.
The lines of these diagrams correspond to light-like parton orbits carrying fermion lines
and meeting at vertices which are partonic 2-surfaces. The proposal is that the topological
diagrams involving analogs of loops represent algebraic computations so that all diagrams
with given initial and final collection of algebraic objects are equivalent.

If this is the case, all topological diagrams should reduce to topological tree diagrams by a
generalization of the duality symmetry of the old-fashioned hadronic string model stating
that the sum of s-channel resonances equals to the sum of t-channel exchanges and that
these diagrams can be constructed as twistor Grassmann diagrams by allowing on mass shell
fermions with complex momenta at internal lines. For external particles the momenta could
be real and light-like in 8-D sense. A weaker condition is that real and imaginary parts of
complex momenta 8-D momenta are separately light-like and orthogonal.

One could indeed argue that one cannot allow loops of this kind since it would be impossible to
decide which kind graph experimental scattering situation corresponds if all these graphs are
different since one observes only the initial and final states. Therefore all scattering diagrams
with same real particles in the final states correspond to identical scattering amplitudes.

These diagrams would correspond to the same amplitude but it might be possible to perform
a localization to any of them. p-Adically however the corresponding space-time surface
would be different by p-adic non-determinism (the number theoretic discretization - cognitive
representation - defined by the common points of reality and p-adicities as space-time surfaces
would be different): one might say that the tree representation involves smallest cognitive
representation and is therefore the shortest one.

If the action exponentials Xi cancel from the scattering amplitudes, this option can indeed
make sense. Otherwise it is extremely implausible since different contributions would have
different vacuum weights.
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4. If only the twistor analogs from tree diagrams in Feynman sense are allowed, the scattering
amplitudes are rational functions of external momenta as strongly suggested by the number
theoretic universality and by the requirement that the diagrams can be interpreted in terms
of algebraic computations so that the simplest manner to do the computation corresponds
to a tree diagram. Even tree diagrams in Feynman sense are planar so that one would get
rid of the basic problem of the twistor approach to SUSY.

Quantum classical correspondence (QCC) states that scattering diagrams have classical counter-
parts in the sense that fermion lines correspond to the boundaries of string worlds sheets assignable
to the light-like orbits of partonic 2-surfaces and topological 3.vertices correspond to 2-surfaces at
which the ends of light-like orbits meet. This correlation is extremely restrictive and it is not at
all clear whether it leaves room for loops.

In the most general case one would have a superposition of allowed space-time surfaces realiz-
ing scattering diagram with given initial and final quantum numbers identified as corresponding
classical charges.

The idea about diagram as computation suggests that the simplest possible diagram - tree
diagram - is realized together with the corresponding space-time topology. If diagrams with topo-
logical loops are possible this requires the existence of moves transforming diagrams to each other.
This condition might be not consistent with the condition that the move acts on the space-time
surface too. Very simple diagrammatics - even twistor tree diagrammatics - could follow from mere
QCC.

5.2.3 Classical number fields and M8 −H duality

Quaternionicity and octonionicity is second central aspect of number theoretical vision.

1. The key concept is M8 −M4 ×CP2 duality allowing to see space-time surfaces quaternionic
surface in M8 or as holomorphic surfaces in the twistor space T (M4)× T (CP2). This would
realize SH. Physical states are characterized by quaternionic (possibly complexified-) octonion
valued 8-momenta in accordance with the vision that tangent space Minkowskian region
of space-time surface is quaternionic and contains preferred hyper-complex M2, which can
depend on point provided that tangent spaces M2(x) integrate to 2-D surface. This view
leads to a new view about QCD color as octonionic color.

2. Twistor space reduces to that associated with M2 and 2-D variant of conformal invariance
corresponds to SO(2,2) and leads to the identification real projective space P 3 as twistor
space. One can however complexify it to CP3 since momenta are in general complex. The
signature is (1,1) so that bi-spinors λ, λ̃ have real basis and twistor Fourier transform can be
defined as ordinary Fourier transform. The reality of M2 or induced spinors at string world
sheets might allow to have SUSY without Majorana spinors.

The reduction of external momenta to M2 implies that real and imaginary parts are parallel
and light-like. At classical level this poses strong conditions on preferred extremals. This
does not require that color and electroweak quantum numbers are complex. The reason
is that they emerge as labels of wave functions in twistor space T (CP2) representing wave
functions in the moduli space of transversal E2s with corresponding helicity identifiable as
em charge.

Localization of the light-like 8-momentum is possible to preferred M2
0 . Localization does not

imply the disappearance of color wave function. The transversal E2 momentum degrees of
freedom however disappear. In the case of leptons and hadrons complete localization could
be a good approximation but not in the case of quarks.

5.2.4 Elementary particles have fundamental fermions as building bricks

The assumption that the physics of elementary particles reduces at fundamental level to that
of fundamental fermions has strong implications, when combined with the twistor Grassmann
approach.
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1. In TGD elementary particle would correspond to a pair of wormhole throats of wormhole
connecting two space-time sheets with Minkowski signature. Wormhole itself would have
Euclidian signature. Wormhole contacts would be connected by monopole flux tube with
fermionic quantum numbers at the 4 wormhole throats defining the partonic 2-surfaces.

2. Fundamental vertices are associated with 2-surfaces at which light-like 3-surfaces carrying
fermions and antifermions as string world sheet boundaries are glued together along their
ends. Note that these surfaces are analogous to vertices of Feynman diagrams and singular
as 4-surfaces but 3-surfaces are smooth unlike for stringy vertices.

3. Fermion lines correspond to the boundaries of string world sheets at the light-like orbits
of partonic 2-surface at which the signature of the induced metric changes. At momentum
space M8 this picture should also make sense since space-time surfaces in M8 and H would
correspond to each other by M8 −H duality. At the level of M8 the orbits of fermion lines
could be seen as light-like geodesics along with twistor spheres move. At the edges of string
world sheets they would intersect at single point and give rise to external massless particle.

4. The basic vertex is 4-fermion vertex in which fermions scatter classically and assignable to
the 2-surface at which the ends of light-like 3-surfaces representing partonic orbits intersect.
There would be no local 4-fermion vertex. Fermions would move as free particles in the
background and the background would gives rise to the interaction between fermions at
partonic vertices analogous to vertices of Feynman diagrams. This would automatically
resolve possible problems caused by divergences and would be analogous to the vanishing of
bosonic loops from WCW functional integration.

5. FFB couplings could be identified in terms of FF (FF ) couplings, where FF is associated
with the same partonic orbit. These couplings would not be fundamental.

5.2.5 What could SUSY mean in TGD?

Extended super-conformal invariance is basic symmetry of TGD but it is not whether it possible
to have SUSY (space-time supersymmetry) in TGD framework. Certainly the SUSY in question
is not N = 1 SUSY since Majorana spinors are definitely excluded. N = 2 SUSY generated by
right-handed neutrino and antineutrino can be however considered.

1. If one allows the boundaries of string world sheets carry fermion number bounded only by
statistics (all spin-charge states for quarks and leptons would define maximal N for SUSY).
This would allow local vertices for fermions and does not look like an attractive option unless
SUSY manages to cancel the divergences.

2. SUSY could mean addition of fermions as separate lines to the orbits of wormhole throat.
This SUSY would be broken and only approximately local. The question what the propagator
for the many-fermion state at same string line is, is not quite obvious. SUSY would suggest
propagator determined by the total spin of the state. I have also considered the possibility
that the propagator is just the product of fermionic propagators acting on tensor power of
single fermion spaces. The propagator behaves as 1/pN for N fermion state and only for
N = 1, 2 one would have the usual behavior. This option is not attractive.

3. SUSY could mean addition of right-handed neutrino or its antiparticle to the throat. The
short range of weak interactions is explained by assuming that pair of right-handed neu-
trino and left-handed neutrino compensates the weak isospin at the second wormhole throat
carrying quantum numbers of quark or lepton.

Addition of right-handed neutrino or its antiparticle or both to a given boundary component
could give rise to N = 2 SUSY. The breaking of SUSY could correspond to different p-adic
length scales for spartners. Mass formula could be exactly the same and provided by p-
adic thermodynamics. Why the p-adic mass scale would depend so much on the presence of
covariantly constant νR having no color and ew interactions nor even gravitational interaction,
remains to be understood. If the extensions of rationals are different for the members of SUSY
multiplet, the corresponding preferred p-adic primes would be different and this could explain
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the widely different p-adic mass scales. One can of course ask the covariant constancy means
that νR does not have any coupling to anything and its presence is undetectable.

5.3 Options for the construction of scattering amplitudes

There are several guidelines in the construction of scattering amplitudes.

1. SH in strongest form would mean that string word sheets and partonic 2-surfaces are all that
is needed. In number theoretical vision also fixing the extension of rationals associated with
the intersection of realities and p-adicities is needed and leads to a hierarchy of extensions
which could realized discrete coupling constant evolution. SH would suggest that hybrids for
analogs of string diagrams and Feynman diagrams code for the scattering amplitudes.

2. QCC suggests that the eigenvalues of the Cartan algebra generators of symmetries are equal to
classical Noether charges. A weaker condition is that the eigenvalues of fermionic generators
not affecting space-time surfaces are equal to the classical Noether charges. The generators
have also bosonic parts acting in WCW.

A prediction following from the condition that there is charge transfer between Euclidian
and Minkowskian space-time regions is that the classical charges must be complex valued
guaranteed if Kähler coupling strength as a spectrum of complex values. One proposal is
that the spectrum of zeros of Riemann zeta determines if [K23]. This supports the twistorial
view that momenta in the internal lines can be regarded as complex light-like on mass shell
momenta.

3. QCC also suggests that scattering diagrams have space-time correlates. The lines of diagrams
correspond to light-like orbits of partons at which the signature of induced metric changes.
Vertices correspond to partonic 2-surfaces at which these 3-D lines meet. At fermion level
fermion lines at partonic orbits correspond to boundaries of string world sheets.

This however leaves several alternative visions concerning the construction of scattering ampli-
tudes.

5.3.1 What scattering diagrams are?

What does one mean with scattering diagrams is not at alle clear.

1. Are they counterparts of Feynman diagrams so that one would have a superposition of all
space-time topologies corresponding to these diagrams? Probably not.

2. Or are they counterparts of twistor Grassmannian diagrams in which all particles are on
mass shell but with possibly complex light-like quaternionic 8-momenta in M8 = M4 × E4

with M4 = M2
0 × E2. Why this option is interesting is that twistor Grassmann diagrams

allow large number of moves reducing their number.

This would translate to a conserved and massive longitudinal M2-momentum; which for a
special choice of M2 is light-like, a wave function in the space of transversal E2 momenta;
color partial wave in the moduli space of E2 planes for given M2

0 ; and em charge describable
as CP2 helicity and allowing twistorialization.

There is however a problem: the transverse E6-momentum makes M2 momentum massive
and twistorialization fails. But what if the 8-momenta are real and in twistorial description
M2 momentum becomes complex but light-like. The square for the real part of M2 momen-
tum would be equal to the square of real E6 momentum and twistor approach would apply!
This map would be define the essence of M2-twistorialization.

In ZEO one can interpret the construction of preferred extremals as a boundary value problem
with ends of space-time surfaces at the boundaries of CD and the light-like orbits of partonic
2-surfaces defining a closed 3-surface and defining the scattering diagram as 3-D boundary. If
so, it might be possible to construct rather large number of diagrams, even counterpartz of loop
diagrams.
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The situation would be analogous to the construction of soap films spanned by wires with wire
network analogous to the network formed by the partonic orbits. Also an analogy with 4-D tensor
network suggests strongly itself and scattering diagrams representing zero energy states would
correxpond to the states of the tensor network.

The basic space-time vertex would be 3-vertex defined by partonic 2-surface.The basic fermionic
vertex would be 4-fermion vertex in which fermions do not exchange gauge boson but interact
classically at the 2-D vertex. All particles emerge as bound states of fundamental fermions at
boundaries of string world sheets.

1. The basic view would be that M2 momenta, and transversal momenta correspond to M4-
momenta. The moduli space for M2

0 × E2 planes corresponds to CP2 and color quantum
numbers. M2 helicities and electroweak quantum numbers would be coded to the weights
twistor wave functions in twistor space if M2 × CP2.

2. One approach to scattering amplitudes relies on symmetries. Twistor Grassmannian ap-
proach suggest strongly Yangian symmetry. The diagrams should be representations of
multi-local Yangian algebra with basic algebra being that of the conformal group of M4

restricted to M2.

This would give nicely real projective space RP 3 allowing to solve some problems of the stan-
dard twistor approach. In color degrees of freedom one would have color Yangian: hadrons
could correspond to the multilocal generators created by multi-local Yangian generators. The
E2 degrees of freedom would correspond to states generated by Kac-Moody algebra and also
now one could have Yangian algebra. The states for the representation of Yangian itself
would be singlets.

Besides fermionic lines there are string world sheets. Infinite-D 2-D conformal group and Kac-
Moody symmetries act as symmetries for string world sheets. The super-symplectic group
would the isometry group of WCW and would give rise to conditions analogous to Super
Virasoro conditions. These conditions would be satisfied by preferred extremals realizing
number theoretic variant of SH. Also these symmetries would be extended to their Yangian
versions naturally.

3. One can argue that classical field equations do not allow all possible diagrams. More precisely,
for a given extension of rationals adelic physics allows only finite number diagrams and the
extension induces a natural cutoff as minimal distance between points with coordinates in
the extension representing intersection of reality and p-adicities [L6].

The assumption that the end points of fermionic lines at partonic 2-surfaces at ends of CD and
at the vertices carry fermions would give an immediate connection with the adelic physics. As
the dimension of the extension increases, the number of the points in the intersection increases
and more lines appear in the allowed diagrams. This would give rise to a discrete coupling
constant evolution, hierarchy of Planck constants, and p-adic length scale hypothesis.

Quantum criticality strongly suggests that coupling constant evolution is locally trivial and
is discretized with discrete steps realized as phase transitions changing the extension. Galois
group would be the fundamental number theoretic symmetry group acting on the intersection
and its order would correspond to heff/h = n allowing to realize the analogs of perturbative
phases of gauge theories as perturbative phases.

4. The discreteness of coupling constant evolution demands that loop corrections vanish. This
makes perfect sense for the functional integral over WCW. But what about fermionic degrees
of freedom and topological counterparts of scattering diagrams, which very probably do
not correspond to Feynman diagrams but could be analogous to twistor diagrams? For
fermions there is actually no perturbation theory since effective 4-fermion vertices correspond
to classical scattering of external fermions at partonic 2-surfaces defining the vertices. This
is not a problem since thanks to heff guaranteeing the existence of perturbative expansion.

5.3.2 Three roads to follow

In ZEO construction of scattering amplitudes is basically a construction of zero energy states and
one must be very cautious in applying QFT intuitions relying on positive energy ontology. One
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ends up to to a road fork.
Option I: Can one interpret the topological space-time diagrams as analogs of Feynman di-

agrams and assume that by quantum criticality the sum over the topological loops vanish? This
option looks rather ad hoc.

Option II: Can one assume - with inspiration coming from adelic physics - that the number of
these loops with fixed states at the boundaries of CD is finite and one just sums over these states
with weights given by the exponential of the space-time action?

Here one encounters problems with number theoretical universality [L6]. One has superposition
of vacuum exponentials over the diagrams and number theoretical universality demands that the
ratio of given exponential to the sum is in the extension of rationals involved. This is very tough
order - perhaps too tough.

Option III: Can one follow number theoretical vision suggesting that scattering diagrams
correspond to computations in some sense [L2]. This leads to a new road fork.

1. Option IIIa): Could one generalize the old-fashioned string duality and require that there
exist a huge symmetry allowing to transform the scattering diagrams using basic moves
to tree diagrams? The basic moves would allow to shift the end of line past vertex and
to remove self energy loop and hence the transformation to tree diagrams would become
possible. Originally it was inspired by the idea that the vertices of the scattering diagram
correspond to products and co-products in quantum algebra and that the condition involved
can be interpreted as algebraic identities.

Twistor Grassmannian diagrams indeed allow moves allowing surprising simplification allow-
ing to show that all loop corrections with a given number of loops sum up to something
proportional to a tree diagram [B21].

The assumption that the states moving in the internal lines have light-like quaternionic
M8 momenta gives very strong constraints on the moves and it might well be that the
moves are not possible in the general case. Even if the move is possible, the value of the
action exponential can change so that this option seems to demand mathematical miracles.
The proposed manner to achieve number theoretical universality however eliminates action
exponentials.

The mathematical miracle might be made possible by the possibility to find preferred M2
0 in

which the 2-momentum of fermion line is light-like. If M2
0 is constant along entire fermion

line, it seems to be possible perform the gliding operation past vertices as will be found. Note
that ach fermion can wander around the network formed by the partonic orbits.

Note that the different space-time surface realizing equivalent computations would be cogni-
tively non-equivalent since the cognitive representation defined by the points in extension of
rationals would be different. Optimum computation would have smallest number of points
and would correspond to tree diagram.

2. Option IIIb): Should one sum over the possible diagrams so that one would have quantum
superposition of computations. This is done for loop diagrams in twistor Grassmann ap-
proach. Infinite sum is however awkward number theoretically. Adelic vision suggests that
the number of loops is finite. The action exponentials would not disappear from the scat-
tering amplitudes and are very problematic from the point of view of number theoretical
universality.

3. Option IIIc): Could one regard the light-like partonic orbits as part of the dynamical system -
this is what effectively is done if they form part of connected 3-surface defining the topological
scattering diagram - and assume that each such diagram corresponds to a different physical
situation analogous to a computation?

One can argue that one must be also able to localize the zero energy state to single compu-
tation by state function reduction [L8]! State function reduction to single diagram should
be possible. A rather classical picture about space-time would emerge: one would have just
a superposition of space-time surfaces with the same topology and same action apart from
quantum fluctuations around the point which is maximum with stationary phase. One would
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also have color wave functions and momentum wave functions in cm degrees of freedom of
partonic 2-surfaces as WCW degrees of freedom.

The action exponential, which is very problematic from the point of view of number the-
oretic vision, would be cancelled from the functional integral since it is normalized by the
action exponential. The dependence on coupling parameters is however visible in the bound-
ary conditions at boundaries of CD stating the vanishing of most supersymplectic charges
and identifying the remaining super-symplectic charges and also isometry charge with the
fermionic counterparts.

This picture would be extremely simple and would be analogous to that of integrable quantum
field theories in which the integral over small fluctuations gives Gaussian determinant and
action exponential (now Gaussian determinant is cancelled by the metric determinant coming
the Kähler metric of WCW) [K21].

One can argue that the absence of loops makes it impossible to have non-perturbative effects.
This is not true in adelic physics. Recall that the original motivation for heff = n × h was
that this phase is generated with perturbation theory ceases to converge [K19]. The large
value of heff scales down the coupling strengths proportional to 1/heff and perturbation
theory works again.

It must be admitted that one must accept all these options. Number theoretical universality of
scattering amplitudes would select IIIa) and the need to realize given topological diagram using
complex enough extension of rationals supports Option IIIc). I believe that the large number of
the options reflects my limited mathematical understanding of the situation a careful analysis of
the general implications of the options allows to pinpoint the most feasible one.

5.4 About problems related to the construction of twistor amplitudes

The dream is to construct twistorially fermionic scattering amplitudes and this requires the iden-
tification of fermionic 4-vertex. There are however several conceptual problems to be solved.

5.4.1 Could M2 momenta be massive?

The naive objection against massive particles is that one loses the twistorial description both
in M4 sense and M2 sense. Real quaternionic M8 momenta are massless but the transversal
momentum in E6 degrees of freedom makes M2 momenta and M4 momenta for arbitrary choice
of M4 are massive, and one cannot describe the M2 and M4 momenta using the helicity spinor
pair (λ, ˜lambda). The beautiful formalism seems to be lost.

1. The naive argument is however wrong in TGD framework where particles are massless in
M8 sense. This means that mass does not correspond to ΨΨ in Dirac action but to comes
from E4 momentum (CP2 ”momentum”). 8-D chiral symmetry is unbroken as required by
separate conservation of lepton and baryon numbers. In preferred M2

0 one can indeed make
M2-momentum light-like.

2. Furthermore, 4-fermion twistor amplitudes are holomorphic functions of λi . There is no
dependence of λ̃ and therefore no information about light-likeness! Why this amplitude
could not describe the scattering of fermions only apparently massive in TGD Universe? Note
that the momentum conserving delta function depends on the masses of the particles so that
mass-dependence would be purely kinematical and analogous to the dependence on transverse
momentum squared. Note that this argument makes sense also for M4 twistorialization. If
this view is correct then twistors are something more profound than momenta.

3. For M2 twistorialization end would end up to effective (2,2) signature favored by twistori-
alization. (1,1) signature of real M2 becomes (2,2) signature for complexified M2 and real
twistor space RP 3 is replaced with CP3. This looks attractive description. If this picture
is correct, all the nice results such as the possibility to assume reduction of amplitudes to
positive Grassmannian remain unaffected.
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5.4.2 Momentum conservation and mass shell conditions in 4-vertex

What is the exact meaning of the mass shell condition?

1. H = M4 ×CP2 harmonics would suggest that it mass squared in M4 is eigenvalue of spinor
d’Alembertian plus possible super-conformal contribution from Super Virasoro algebra, which
is integer valued in suitable units. M4-momentum decomposes to longitudinal M2

0 momen-
tum and transversal E2 momentum. Super Virasoro algebra in transversal degrees of freedom
suggests quantization of E2 mass squared in integer multiples of a basic unit.

2. The CP2 part of wave function in H corresponds in M8 to a wave function in the moduli
space of transversal planes E2 assignable to M2

0 and is involved only if the deformations of
M4 (or equivalently E2) are present.

3. In the preferred frame M4
0 the wave function would be strictly localized in single point of

CP2 and have maximally uncertain color quantum numbers. This kind of localization does
look feasible physically. For instance, for color singlet CP2 wave function of right-handed
neutrino there is no localization. For sharp localization of 8-momentum to M2

0 both color
degrees and transvervsal E2 degrees of freedom would effectively disappear.

4. The wave function in transversal E2 momentum space with interpretation in terms of transver-
sal momentum distribution - this at least in the case of hadrons.

5. The physically motivated assumption is that string world sheets at which the data determin-
ing the modes of induced spinor fields carry vanishing W fields and also vanishing generalized
Kähler form J(M4)+J(CP2). Em charge would be the only remaining electroweak degree of
freedom. The identification as the helicity assignable to T (CP2) twistor sphere looks there-
fore natural. Note that the contribution to mass squared would be proportional to Q2

em so
that one would obtain the electroweak mass splitting automatically. This is true also for CP2

spinor harmonics.

5.4.3 How plausible topological loops are?

Topological loops are associated with the networks formed from the orbits of partonic 2-surfaces
meeting at their ends (this would define topological 3-vertex containing fermionic 4-vertex). The
tree topologies would provide a nice space-time description of particle reactions but loops could be
possible? The original vision about construction of WCW geometry indeed was that the space-time
surfaces with fixed ends are unique.

In the original vision the non-determinism of Kähler action inspired the hypothesis that loops
are possible but volume term removes to high extent this non-determinism. In the recent vision
the fusion of 3-surfaces at the ends of CD with light-like parton orbits to single 3-surface as a
boundary condition (analogous to a fixing of a frame for soap films) would define the scattering
diagram classically. There is no reason why it could not contain topological loops. Option IIIa)
assuming that one can transform the diagrams ot tree diagrams, is therefore attractive.

1. There are also conditions from space-time dynamics. Twistor graph topologies correlate with
space-time topologies since fermion line are inside the parton orbits and at vertices the ends
of the orbits meet. Topological vertices would be basically 3-vertices for partonic 2-surfaces.
The fermion and anti-fermion lines associated with the effective boson exchange would be
naturally associated with opposite throats of wormhole contact.

By above argument one can in ZEO pose at space-time level conditions fixing the vertices
and identify the graph topology as a topology of the network of light-like 3-surfaces defining
the diagram as boundary of 3-surface defined by the union of the ends of space-time and by
parton orbits forming a connected surface.

2. There is a further delicacy to be taken into account - measurement resolution coded by the
extension of rationals involved. This might allow to interpret addition of loops as in quantum
field theories: as a result of increased measurement resolution determined dynamically by the
intersection of reality and p-adicities. Different computation yielding the same result would
not be cognitively equivalent since these intersections would be different.
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3. If this view is correct, one can obtain also loops but non-negativity of energy for a given
arrow of time for quantum state would allow only loops resulting from the decay and re-
fusion of partonic 2-surfaces. Tadpoles appearing in BCFW recursion formula are impossible
if the energy is non-negative. One can of course ask whether the sign of energy could be also
negative if complex four-momenta are allowed. If so, one could have also tadpoles classically.

5.4.4 Identification of the fundamental 4-fermion vertex

The fundamental 4-fermion vertex would not be local 4-fermion vertex but correspond to classical
scattering at partonic 2-surface. This saves from the TGD counterparts of the problems of QFT
approach produced by non-renormalizability.

What would be this 4-fermion vertex? Yangian invariance suggests that the classical interaction
between fermions must be expressible in terms of fictive 3-vertex of SUSY theories describing
classical interaction as exchange of a fictive boson. This leaves 3 options.

Option I: 4-fermion vertex could be fusion of two 3-vertices with complex massless 8-momenta
in M8 picture. For instance, the exchanged momentum could be complex massless momentum
and external momenta real on-mass-shell momenta. This vertex does not have QFT counterpart
as such.

Loops could be absent either in the strong sense twistorial loops are absent (Option Ia) or in the
sense that corresponding Feynman diagrams contain no loops (Option Ib). In particular, formation
of BCFW bridge would not be allowed for Option Ia). Given diagram would be twistorial tree
diagram obtained by replacing the vertices of ordinary tree diagram with these 4-vertices with
complex massless fermions in 8-D sense.

Option II: 4-fermion could be identified as BCFW bridge associated with a tree Feynman
diagram describing an exchange of a fictive boson. This 4-vertex would be analogous to an exchange
of ordinary boson and counterpart for a QFT tree diagram. One can even forget the presence of
the fictive boson exchange and write the formula for the simplest Yangian invariant as a candidate
for four-fermion vertex.

Option III: If one allows higher fermion numbers at the same line, it is also natural to allow
branching of lines. This requires allowance of 3-vertex as branching of fermion line as analog of
splitting of open string (now strings are actually closed if they continue to another space-time sheet
through wormhole contact). The situation would resemble that in SUSY. One cannot completely
exclude this possibility.

Consider now the construction of 4-fermion vertex in more detail.

1. The helicities of fermions are hi = ±1 and the general conjecture for the 4-fermion twistorial
scattering amplitude is the simplest possible holomorphic rational function in λi, which does
not depend on λ̃i, and satisfies the condition that the scaling λi → tλi introduces the scaling
factor t−2.

2. The rule is that fermions correspond to 2 positive powers of λi and antifermions to 2 negative
powers in λi: schematically the F1F2F̄3F̄4 vertex is of form λ21λ

1
2/λ

2
3λ

2
4 and constructible from

〈λi, λj . One can multiply any term in the expression of vertex by a rational function of for
which the weights associated with λi vanish. Ratios Pi(f)/Pj(f) of functions P (f) obtained
by via odd permutations P of the arguments λi of function

f(λ1, λ2, λ3, λ4) = 〈λ1, λ2〉〈λ2, λ3〉〈λ3, λ4〉〈λ4, λ1〉

3. invariant under 4 cyclic permutations. The number of these functions would be 4!/4 = 3! = 6
corresponding to the 6 orbits of an odd permutation under the cyclic group Z4. The simplest
assumption is that these functions are not involved.

The simplest guess for the 4-fermion scattering amplitude would be following:

T (F1, F2, F 3, F 4) = J × 〈λ1, λ2〉
2

〈λ3, λ4〉2
. (5.5)

Charge conjugation would take the function to itse inverse. J is constant.
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4. In 4-fermion vertex one has exchange of fictive boson and annihilation to fictive boson and
the particles i, j in the vertex should contribute 〈λi, λj〉 to the scattering amplitudes.

Remarkably, this amplitude is holomorphic in λi and has no dependence on λ̃i and therefore
carries no information about whether the momenta are light-like or not. It seems that one could
allow massive fermions characterized by (λi, µi) and fermion masses would not be a problem! As
already explained in TGD mass is not M8-scalar and states are massless in 8-D sense: hence
twistorialization should work!

One could construct more complex diagrams in very simple manner using these basic diagrams
as building bricks just as in the twistor Grassmann approach. One could form product of diagrams
A and B using merge operation [B21] identifying twistor variables Za and Zb belonging to the two
diagrams A and B to be fused.

For Option Ia) the diagram would represent repeated on mass shell 4-fermion scatterings but
with of mass shell particles having complex momenta in 8-D sense. Real on mass shell particles
would have massless but real 8-D momenta and physical polarizations.

The conservation of baryon and lepton numbers implies for all options that onlyG(m,n = 2×m)
Grassmannians are needed. This simplifies considerably the twistor Grassmannian approach.

Why fermions as fundamental particles (to be distinguished from elementary particles in TGD)
are so special?

1. The mass of the fundamental fermion is not visible in the holomorphic basic amplitude being
visible only via momentum conserving delta function δ(

∑
i λiµ̃i). This property holds true

also for more complex diagrams. Massivation does not require in TGD framework Ψ̄Ψ term
in Dirac action since M4-massive fermions are M8-massless and have only chiral couplings in
8-D sense. Scalar coupling would also break separate baryon and lepton conservation. Mass
term correspond to a momentum in E4 ⊂ M4 × E4 = M8 degrees of freedom. Massivation
without losing 8-D light-likeness is consistent with conformal symmetry and with 8-D twistor
approach.

2. Fermions are exceptional in the sense that the number of helicities is same for both mas-
sive and massless fermions. In particular, 4-fermion amplitude has k = n/2 and positive
Grassmannian G(n/2, n) with special symmetry property that one can take either negative
or positive helicities in preferred role, could be important. For massless states with higher
spin the number of helicities is 2 and maximal spin is Jmax = hmax/2. For M4 -massive
states also the lower helicities hmax − 2k are possible. The scattering amplitudes remain
holomorphic.

3. For SUSY one would have all helicities h(k) = hmax − k and the general form of amplitude
could be written from the knowledge of h(k). The number of fermions at the boundary of
string world sheets could be maximal allowed by statistics. This would give SUSY in TGD
sense but would require splitting of string boundaries: it is not clear whether this can be
allowed. For light-like orbits of partonic 2-surface it has been assumed.

Sparticles could correspond to states with higher fermion number at given partonic orbits.
In this case one expects only approximate SUSY: the p-adic primes characterizing different
SUSY states could be different. In adelic physics different p-adic prime could correspond to
a different extension of rationals: one might say that the particles inside super-multiplets are
at different levels in number theoretic evolution!

5.4.5 BCFW recursion formula as a consistency condition: BCFW homology

The basic consistency condition is that the boundary operation in the BCFW recursion formula
gives zero so that the recursion formula can be solved without introducing sum over topological
loops. The twistorial trees would have no boundaries but would not be boundaries and would be
therefore closed in what might be called BCFW homology. Diagrams would correspond to closed
forms.

Consider first the proposal assuming that all diagrams are equivalent with twistorial string
diagrams with fermionic 4-vertex as the basic vertex. The boundary operation appearing in BCFW
formula gives two terms [B12, B21, B9]. Recall that options I, II, and III correspond to twistorial
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diagrams without loops created by BCFW bridges, to twistor diagrams assignable to Feynman
diagrams without loops, and to diagrams analogous to SUSY diagrams for which fermion lines
carry also higher fermion number and can split.

1. The first term results as one BCFW bridge by contracting the three lines connecting the
external particles to a larger diagram to a point in all possible manners. The non-vanishing
of this term does not force loops in the sense of Feynman diagrams. For Option Ia) (no
twistorial loops) there are no BCFW boxes to be reduced so that the outcome is zero.

For option Ib) (no Feynman loops) a BCFW box diagram for which the two outward direct
lines of the bridge are fictive, this operation makes sense and reduces the box to that describ-
ing the basic 4-fermion vertex. Same is true for the option II. For option III the operation
would be essentially the same as in SUSY.

2. Second term corresponds to entangled removal of a fermion and anti-fermion and if it is
non-vanishing, loops are unavoidable. This operation creates a closed fermionic loop to
which several internal lines couple. By QCC the fermionic loop would be associated with a
topological loop. One can argue that the topological tadpole loop must be closed time loop
and that this is not possible since the sign of energy must change at the top and bottom
of the loop, where the arrow of time changes: actually the energy should vanish. The same
result would obtained if one requires that the energy identified as real part of complexified
energy is non-negative for all on mass shell particles.

Consider the 4-fermion vertex to which the fermionic tadpole loop is associated. Entangled
removal gives for the members of a pair of external lines opposite momenta and helicities in
twistor-diagrammatics. If so, there exist a vertex for which one fermion scatters in forward
direction. Momentum conservation implies the same for the second fermion. One would ob-
tain amplitude, which equals to unity rather than vanishing! Integration over four-momenta
would give divergence. However, if the 4-momentum in the tadpole vanishes, the correspond-
ing helicity spinor and also the amplitude vanishes. QCC indeed demands that fermionic
loop corresponds to a time loop possible only only if the energy and by time-likeness also
3-momentum vanishes.

It seems that only the simplest option - Option Ia) - is consistent with the BCFW reduction
formula. One can say that scattering diagrams are closed objects in the BCFW cohomology.
Closedness condition might allow also topological loops, which are not tadpole loops: say decay of
fermion to 3 fermions fusing back to the fermion.

5.4.6 Under what conditions fermionic self energy loop is removable?

Scattering diagram as a representation of computation demands that the fermionic ”self energy”
loop involving two external fermions gives free propagator. The situation in which the vertex
contains only light-like complex momenta in M2

0 can be considered as an example. In fact, one can
always choose in M8 the frame for given component of state in this manner.

1. The three fermion/antifermion internal lines in the loop would be light-like in complex 2-D
sense as also external momentum. For external momenta Re(p(M2)) would be light-like and
orthogonal to light-like Im(p(M2)): it is not clear whether Im(p(M2)) vanishes.

Light-likeness condition gives Re(k)2 − Im(k)2 = 0 and Re(k) · Im(k) = 0, and Re(k) =
±Im(k) as a solution meaning that Re(k) is proportional to a light-like vector (1, 1) or
(1 − 1). This applies to p, k1,k2, and p − k1 − k2. All these vectors are proportional to the
same light-like vector in M2.

Apart from the degeneracy for sign factors the situation is equivalent with real 2-D case
and one has from momentum conservation that the real parts of the virtual momenta are
light-like and parallel and one has Re(ki) = λip leaving two real parameters λi.

2. The only possible outcome from the integral is proportional to DF (p). The outcome is non-
vanishing if the proportionality constant is proportional to 1/p2. This dependence should
come from 4-fermion vertices. The integrand is proportional to the product λ1λ2(1−λ1−λ2)
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and involves times the DF (p). Vertices give the inverses of these scaling factors. Since the
outcome should be proportional to 1/DF and lines are proportional to p3, the 4- vertices
should give a factor 1/p2 each.

Assuming this one obtains integrand 1/(λ1λ2(1 − (λ1 − λ2)2. The integral over λi is of
proportional to

I =

∫
dλ1dλ2/λ1λ2(1− λ1 − λ2) .

The ranges of integration are from (−∞,∞).

One can decompose the integral to four parts so that integration ranges are positive. The
outcome is

I =

∫
dlog(λ1)dlog(λ2)

[
1

1− λ1 − λ2
+

1

1 + λ1 + λ2
− 1

1 + λ1 − λ2
− 1

1− λ1 + λ2

]
.

The change of variables (u, v) = (λ1 + λ2, λ1 − λ2) transforms the integral to a product of
integrals

I =

∫
dudv

1

1− u2

∫
dv

1

1− v2
.

The interpretation as residue integral gives the outcome I = (4π)2.

Residue integration gives finite result for this integrals. One can worry about the singularity
of the vertices for M2

0 on mass shell momenta. The problem is that p is on mass shell so that
the outcome from loop diverges. The outcome is DFwould be however finite.

5.4.7 Gliding conditions for 4-vertices

One can construct also loop diagrams with loops understood in twistorial sense. The interpretation
of twistor diagram as computation requires that there exist moves reducing general loopy diagrams
to tree diagrams. This requires that the vertices connected by a fermionic loop lines can be glided
along fermion lines such that they become nearest neighbors and that these loops can be removed
without affective the diagram.

If these diagrams are acceptable mathematically, moves reducing these loop diagrams to twisto-
rial tree diagrams should exist. Could the basic rule be following?

1. One can glide the vertices past each other along fermion lines and reduce loops connecting
points at different part of graph to the analogs of self-energy loops located at single fermion
lines. These loops involve decay of fermion to 2 fermions and 1 anfifermion which then fuse to
single fermion. All fermions are on mass shell in complex sense. The situation thus reduces
to single fermion self energy loop if the gliding is possible always. Mass shell conditions could
however prevent this.

2. To single fermion line one can assign DF - the inverse of massless fermion propagator - having
formal interpretation as a density matrix. The loop would not vanish but would give rise to a
inverse of fermionic propagator so that the overall outcome should be just DF . Is it possible
to achieve this?

Under what conditions the gliding is possible?

1. Suppose that the 4-vertex V1 is glided along fermion line past second 4-vertex V1. V1 cor-
responds to momenta (Pi,in, Pi1,in − P, Pi,1, Pi,2). The momentum Pi =

∑2
k=1 Pi,k of 2

particles emanates from Vi so that the outgoing and incoming momenta are Pi,in − Pi, and
Pi,in i = 1, 2. Furthermore P1,in = P2,in − P2. These complex momenta are on M2 mass
shell in the proposed sense.
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2. Can one perform the gliding without changing the M2
0 -momenta Pi,1 and Pi,2? Gliding is

possible if the on mass shell condition is satisfied also for P2,in − P1 + P2 rather than only
P2,in + P2. If the mass squared spectrum is integer valued in suitable units the condition
reduces to the requirement that 2P2,in · P1 is real and integer valued.

These conditions are independent of the conditions for 2P2,in ·P2 coming from V2, the condi-
tions would correlate P1 and P2. The construction of the amplitude would involve non-local
conditions on vertices rather than only momentum conservation and mass shell conditions at
vertices as expected.

M2-momentum is however light-like for a special choiceM2 = M2
0 . If M2

0 same along con-
nected fermion lines, the gliding condition would make sense. M2

0 is constant of motion along
fermion line which can wander along the network formed by partonic orbits.

In fact, M2
0 must be same for all fermions in given vertex so that its is constant for all

connected regions of fermionic part of the graph. Is there any hope of having non-trivial
scattering amplitude or must all momenta be light-like and parallel in plane M2

0 ? Tree
diagrams certainly give rise to non-trivial scattering. One can also assign to all internal lines
this kind of networks with M2

0 that assignable to the internal line. It is quite possible that
for general graphs allowing different M2

0 s in internal lines and loops, the reduction to tree
graph is not possible.

3. The analogs of these conditions apply also to tree graphs. So that one must either sum over
trees with different orderings of vertices or pose additional conditions on the M2-momenta
say the assumption that they are light-like and proportional to the same real momentum
(1,±1) along the fermion line.

To conclude: if M2
0 is constant of motion along the connected networks of fermion lines, the

gliding conditions could be satisfied. Action exponentials do not produce trouble if one identifies
the basis of zero energy states in such a manner that every maximum of action gives its own
separate amplitude (state) as also number theoretic universality demands. The most attractive
option number theoretically is the option IIIa) assuming that localization of zero energy state to
single computation is possible as quantum measurement: different localizations would have differ-
ent intersections between reality and p-adicities and would correspond to different computation
sequences as cognitive processes. The idea that twistor diagrams are closed forms in the sense that
tadpole diagrams vanish is also very attractive and natural in this framework.

5.4.8 Permutation as basic data for a scattering diagram

In twistor Grassmannian approach to N = 4 SUSY the data determining the Yangian invariants
defining the basic building bricks of the amplitudes can be constructed using two 3-vertices. For
the first (second) kind of vertex the helicity spinors λi (λ̃i) are parallel that is λ1 ∝ λ2 ∝ λ3
(λ1 ∝ λ2 ∝ λ3) and can be chosen to be identical by complex scaling invariant: momentum
conservation reduces to that for λ̃i (λi). The graphical notation for the two vertices is as a small
white resp. black disk [B21, B9] (see Fig. 3.3.35 http://tinyurl.com/zbj9ad7).

There are two basic moves leaving the amplitude unaffected (see Fig. 3.3.38 at http://

tinyurl.com/zbj9ad7). Merging symmetry implies that 4-vertices satisfy a symmetry analogous
to the duality of old-fashioned hadron physics: an internal line connecting black (white) vertices as
exchange in s-channel can be transformed to an exchange in t-channel: 1+2→ 3+4 ≡ 1+3→ 2+4.
Merging symmetry allows to transform the diagram into a form in which neighboring vertices have
opposite colors. Square move symmetry follows from the cyclic symmetry of the 4-particle ampli-
tude and means black↔white replacement in 4-vertex.

These two moves do not affect the permutation defining the diagram. A given diagram is
represented as a disk with external lines ordered cyclically along its boundary. The permutation
of the n external particles associated with the diagram is constructed from the two 3-particle
diagrams is defined by the following rule.

Start from k:th point at boundary end and go to the left in each white vertex and to the right
in each black vertex (see Fig. 3.3.35 at http: // tinyurl. com/ zbj9ad7 ).

This leads to a particle P (k) and the outcome is a permutation P : k → P (k) charactering the
twistor diagram.

http://tinyurl.com/zbj9ad7
http://tinyurl.com/zbj9ad7
http://tinyurl.com/zbj9ad7
http://tinyurl.com/zbj9ad7
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Moves do not affect the permutation associated with the diagram and leave the amplitude
unaffected. BCFW bridge can be interpreted as a permutation of two neighboring external lines
and allows to generate non-equivalent diagrams.

This permutation symmetry generalizes to 4-D SUSY the role of permutations in 1+1-D inte-
grable field theories, where the scattering S-matrix induces only a phase shift of the wave functions
of identical particles. The scattering diagram depends only on the permutation of particles induced
by the scattering event. Yang-Baxter relation expresses this . Scattering corresponds to particles
passing by each other and diagram is drawn in M2 plane.

1. In 1+1-D integrable theory 3+3 scattering reduces to 2 particle scatterings. This can be illus-
trated using world lines in M2 plane (see the illustration of http://tinyurl.com/gogn75s).
The particle 2 can be taken to be at rest and 1 and 3 move with opposite velocities. There are
three 2-particle scatterings of i and j as crossings of world-lines of i and j (pass-by spatially):
denote the crossing by ij.

For the diagram on the left hand side one has crossings 12, 13 and 23 with this time order. For
the second case one has crossings 23, 13, and 12 in this time order. Graphically YB relation
(see the illustration of http://tinyurl.com/gogn75s) says that the scattering amplitude
fo 3+3 scattering does not depend on whether the position of the stationary particle 2 is
to the left or right from the point at which the second scattering occurs: the time order of
scatterings 12 and 23 does not matter.

2. Mathematically the two-particle scatterings are described by operators R12(u), R13(u+ v) ,
and R23(v) representing basic braiding operation ij → ji. u, u + v, and v are parameters
characterizing the Lorentz boosts determining the velocities of particles. YB equation reads
as

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) .

For a graphical illustration see http://tinyurl.com/gogn75s. The first and third R-
matrices are permuted and the outcome is trivial. In pass-by interpretation YB equation
states that the two manners to realize 123→ 321 give the same amplitude.

Instead of pass-by one could assume a reconnection of the world lines at the intersection:
world lines are split and future pieces are permuted and connected to the past pieces again.
With this interpretation one has 123→ 123 (the illustration of Wikipedia article corresponds
to this interpretation).

3. At the static limit u, v → 0 YB equation gives rise to an identity satisfied by braiding
matrices. The pass-by at this limit can be interpreted as permutation lifted to braiding
(braid groups is covering group of permutation group).

2+2 vertices are fundamental in integrable theories in M2. Also in TGD 2+2 vertices for
fundamental fermions are proposed to be fundamental, and the effective reduction to M2 is crucial
in many respects and reflects M8 − CP2 duality and 8-D quaternionic light-likeness implying
that 2+2 fermion vertices reduce to vertices in M2. TGD could be an integrable theory able to
circumvent the limitations of integrable QFTs in M2.

1. How could the 2+2-fermionic scattering matrix relate to the R-matrix? In TGD framework
the scattering involves momentum transfer even in M2

0 frame: the parallel light-like M2

momenta are rescaled in momentum conserving manner. CouldR matrix appear as additional
factor in the scattering? The earlier picture indeed is that the fermion lines at partonic
orbits can experience braiding described by R-matrix at the static limit (string world sheet
boundaries would braid!).

2. In TGD the scattering of 2 fermions could occur in two manners by classical interactions at
partonic 2-surface. The world lines either cross each other or not. In M2 the first contribu-
tion is planar and second one non-planar. Both options should contribute to the 4-fermion
amplitude but this is not be visible in the proposed form of the amplitude. Does the proposed
4-fermion scattering amplitude allow this interpretation?

http://tinyurl.com/gogn75s
http://tinyurl.com/gogn75s
http://tinyurl.com/gogn75s
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In N = 4 SUSY the addition of BCFW bridge would permute the two external particles.
In TGD the introduction of BCFW bridge would force to have bosonic lines in the BCFW
bridge. This is not possible. The only manner to have BCFW diagram is to allow SUSY
perhaps realized as and addition right-handed neutrinos to the fermion lines but this would
force to allow splitting of fermion lines requiring splitting of strings.

3. Annihilations of fermion-antifermion pairs to bosons are not possible in 1+1-D QFTs but
in TGD topological 3-vertices allow them. Boson would correspond to the final B ≡ FF
pair at same parton orbit. There are two manners to achieve the annihilation. In s-channel
FF → vacuum→ FF ≡ B is possible. Both F1 coming from past and F2 from future scatter
classically backwards in time to give F 1 travelling back to past and F 2 travelling back to
future. In t-channel one can have braiding (FF → FF ≡ B.

5.4.9 About unitarity for scattering amplitudes

The first question is what one means with S-matrix in ZEO. I have considered several proposals
for the counterparts of S-matrix [K16].In the original U-matrix, M-matrix and S-matrix were
introduced but it seems that U-matrix is not needed.

1. The first question is whether the unitary matrix is between zero energy states or whether
it characterizes zero energy states themselves as time-like entanglement coefficients between
positive and negative energy parts of zero energy states associated with the ends of CD. One
can argue that the first option is not sensible since positive and negative energy parts of zero
energy states are strongly correlated rather than forming a tensor product: the S-matrix
would in fact characterize this correlation partially.

The latter option is simpler and is natural in the proposed identification of conscious entity -
self - as a generalized Zeno effect, that is as a sequence of repeated state function reductions
at either boundary of CD shifting also the boundary of CD farther away from the second
boundary so that the temporal distance between the tips of CD increases. Each shift of this
kind is a step in which superposition of states with different distances of upper boundary from
lower boundary results followed by a localization fixing the active boundary and inducing
unitary transformation for the states at the original boundary.

2. The proposal is that the the proper object of study for given CD is M-matrix. M-matrix is a
product for a hermitian square root of diagonalized density matrix ρ with positive elements
and unitary S-matrix S : M =

√
ρS. Density matrix ρ could be interpreted in this approach

as a non-trivial Hilbert space metric. Unitarity conditions are replaced with the conditions
MM† = ρ and M†M = ρ. For the single step in the sequence of reductions at active
boundary of CD one has M →MS(∆T ) so that one has S → SS(∆T ). S(∆T ) depends on
the time interval ∆T measured as the increase in the proper time distance between the tips
of CD assignable to the step.

What does unitarity mean in the twistorial approach?

1. In accordance with the idea that scattering diagrams is a representation for a computation,
suppose that the deformations of space-time surfaces defining a given topological diagram as
a maximum of the exponent of Kähler function, are the basic objects. They would define
different quantum phases of a larger quantum theory regarded as a square root of thermody-
namics in ZEO and analogous to those appearing also in QFTs. Unitarity would hold true
for each phase separately.

The topological diagrams would not play the role of Feynman diagrams in unitarity conditions
although their vertices would be analogous to those appearing in Feynman diagrams. This
would reduce the unitarity conditions to those for fermionic states at partonic 2-surfaces at
the ends of CDs, actually at the ends of fermionic lines assigned to the boundaries of string
world sheets.

2. The unitarity conditions be interpreted stating the orthonormality of the basis of zero en-
ergy states assignable with given topological diagram. Since 3-surfaces as points of WCW
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appearing as argument of WCW spinor field are pairs consisting of 3-surfaces at the opposite
boundaries of CD, unitarity condition would state the orthonormality of modes of WCW
spinor field. If might be even that no mathematically well-defined inner product assignable
to either boundary of CD exists since it does not conform with the view provided by WCW
geometry. Perhaps this approach might help in identifying the correct form of S-matrix.

3. If only tree diagrams constructed using 4-fermion twistorial vertex are allowed, the unitarity
relations would be analogous to those obtained using only tree diagrams. They should express
the discontinuity for T in S = 1 + iT along unitary cut as Disc(T ) = TT †. T and T † would
be T-matrix and its time reversal.

4. The correlation between the structure of the fermionic scattering diagram and topological
scattering diagrams poses very strong restrictions on allowed scattering reactions for given
topological scattering diagram. One can of course have many-fermion states at partonic 2-
surfaces and this would allow arbitrarily high fermion numbers but physical intuition suggests
that for given partonic 2-surface (throat of wormhole contact) the fermion number is only 0,
1, or perhaps 2 in the case of supersymmetry possibly generated by right-handed neutrino.

The number of fundamental fermions both in initial and final states would be finite for this
option. In quantum field theory with only masive particles the total energy in the final state
poses upper bound on the number of particles in the final state. When massless particles are
allowed there is no upper bound. Now the complexity of partonic 2-surface poses an upper
bound on fermions.

This would dramatically simplify the unitarity conditions but might also make impossible to
satisfy them. The finite number of conditions would be in spirit with the general philosophy
behind the notion of hyper-finite factor. The larger the number of fundamental fermions
associated with the state, the higher the complexity of the topological diagram. This would
conform with the idea about QCC. One can make non-trivial conclusions about the total
energy at which the phase transitions changing the topology of space-time surface defined by
a topological diagram must take place.

5.5 Criticism

One can criticize the proposed vision.

5.5.1 What about loops of QFT?

The idea about cancellation of loop corrections in functional integral and moves allowing to trans-
form scattering diagrams represented as networks of partonic orbits meeting at partonic 2-surfaces
defining topological vertices is nice.

Loops are however unavoidable in QFT description and their importance is undeniable. Photon-
photon (see http://tinyurl.com/lqhdujm) scattering is described by a loop diagram in which
fermions appear in box like loop. Magnetic moment of muon see http://tinyurl.com/p7znfmd)
involves a triangle loop. A further, interesting case is CP violation for mesons (see http://

tinyurl.com/oop4apy) involving box-like loop diagrams.
Apart from divergence problems and problems with bound states, QFT works magically well

and loops are important. How can one understand QFT loops if there are no fundamental loops?
How could QFT emerge from TGD as an approximate description assuming lengths scale cutoff?

The key observation is that QFT basically replaces extended particles by point like particles.
Maybe loop diagrams can be “unlooped” by introducing a better resolution revealing the non-point
like character of the particles. What looks like loop for a particle line becomes in an improved
resolution a tree diagram describing exchange of particle between sub-lines of line of the origi-
nal diagram. In the optimal resolution one would have the scattering diagrams for fundamental
fermions serving as building bricks of elementary particles.

To see the concrete meaning of the “unlooping” in TGD framework, it is necessary to recall
the qualitative view about what elementary particles are in TGD framework.

1. The fundamental fermions are assigned to the boundaries of string world sheets at the light-
like orbits of partonic 2-surfaces: both fermions and bosons are built from them. The classical

http://tinyurl.com/lqhdujm
http://tinyurl.com/p7znfmd
http://tinyurl.com/oop4apy
http://tinyurl.com/oop4apy
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scatterings of fundamental fermions at the 2-D partonic 2-surface defining the vertices of
topological scattering diagrams give rise to scattering amplitudes at the level of fundamental
fermions and twistor lift with 8-D light-likeness suggests essentially unique expressions for
the 4-fermion vertex.

2. Elementary particle is modelled as a pair of wormhole contacts (Euclidian signature of metric)
connecting two space-time sheets with throats at the two sheets connected by monopole flux
tubes. All elementary particles are hadronlike systems but at recent energies the substructure
is not visible. The fundamental fermions at the wormhole throats at given space-time sheet
are connected by strings. There are altogether 4 wormhole throats per elementary particle
in the simplest model.

Elementary boson corresponds to fundamental fermion and antifermion at opposite wormhole
throats with very small size (CP2 size). Elementary fermion has only single fundamental
fermion at either throat. There is νLνR pair or its CP conjugate at the other end of the
flux tube to neutralize the weak isospin. The flux tube has length of order Compton length
(or elementary particle or of weak boson) gigantic as compared to the size of the wormhole
contact.

3. The vertices of topological diagram involve joining of the stringy diagrams associated with
elementary particles at their ends defined by wormhole contacts. Wormhole contacts defining
the ends of partonic orbits of say 3 interacting particles meet at the vertex - like lines in
Feynman diagram - and fundamental fermion scattering redistributes fundamental fermions
between the outgoing partonic orbits.

4. The important point is that there are 2 × 2 = 4 manners for the wormhole contacts at the
ends of two elementary particle flux tubes to join together. This makes a possible a diagrams
in which particle described by a string like object is emitted at either end and glued back at
the other end of string like object. This is basically tree diagram at the level of wormhole
contacts but if one looks it at a resolution reducing string to a point, it becomes a loop
diagram.

5. Improvement of the resolution reveals particles inside particles, which can scatter by tree
diagrams. This allows to “unloop” the QFT loops. By increasing resolution new space-time
sheets with smaller size emerge and one obtains “unlooped” loops in shorter scales. The
space-time sheets are characterized by p-adic length scale and primes near powers of 2 are
favored. p-Adic coupling constant evolution corresponds to the gradual “unlooping” by going
to shorter and shorter p-adic length scales revealing smaller and smaller space-time sheets.

The loop diagrams of QFTs could thus be seen as a direct evidence of the fractal many-sheeted
space-time and quantum criticality and number theoretical universality (NTU) of TGD Universe.
Quantum critical dynamics makes the dynamics universal and this explains the unreasonable suc-
cess of QFT models as far as length scale dependence of couplings constants is considered. The
weak point of QFT models is that they are not able to describe bound states: this indeed requires
that the extended structure of particles as 3-surfaces is taken into account.

5.5.2 Can action exponentials really disappear?

The disappearance of the action exponentials from the scattering amplitudes can be criticized.
In standard approach the action exponentials associated with extremals determine which config-
urations are important. In the recent case they should be the 3-surfaces for which Kähler action
is maximum and has stationary phase. But what would select them if the action exponentials
disappear in scattering amplitudes?

The first thing to notice is that one has functional integral around a maximum of vacuum
functional and the disappearance of loops is assumed to follow from quantum criticality. This
would produce exponential since Gaussian and metric determinants cancel, and exponentials would
cancel for the proposal inspired by the interpretation of diagrams as computations. One could in
fact define the functional integral in this manner so that a discretization making possible NTU
would result.



6. Appendix: Some background about twistors 61

Fermionic scattering amplitudes should depend on space-time surface somehow to reveal that
space-time dynamics matters. In fact, QCC stating that classical Noether charges for bosonic
action are equal to the eigenvalues of quantal charges for fermionic action in Cartan algebra would
bring in the dependence of scattering amplitudes on space-time surface via the values of Noether
charges. For four-momentum this dependence is obvious. The identification of heff/h = n as the
dimension of the extension dividing the order of its Galois group would mean that the basic unit for
discrete charges depends on the extension characterizing the space-time surface. Also the cognitive
representations defined by the set of points for which preferred imbedding space coordinates are
in this extension. Could the cognitive representations carry maximum amount of information for
maxima? For instance, the number of the points in extension be maximal. Could the maximum
configurations correspond to just those points of WCW, which have preferred coordinates in the
extension of rationals defining the adele? These 3-surfaces would be in the intersection of reality
and p-adicities and would define cognitive representation.

These ideas suggest that the usual quantitative criterion for the importance of configurations
could be equivalent with a purely number theoretical criterion. p-Adic physics describing cognition
and real physics describing matter would lead to the same result. Maximization for action would
correspond to maximization for information.

Irrespective of these arguments, the intuitive feeling is that the exponent of the bosonic action
must have physical meaning. It is number theoretically universal if action satisfies S = q1 + iq2π.
This condition could actually be used to fix the dependence of the coupling parameters on the
extension of rationals [L3]. By allowing sum over several maxima of vacuum functional these
exponentials become important. Therefore the above ideas are interesting speculations but should
be taken with a big grain of salt.

6 Appendix: Some background about twistors

In the following I try to summarize my view about how the ideas related to the twistor approach to
scattering amplitudes evolved. A readable summary of specialist about twistor approach is given in
the article Scattering amplitudes of Elvang and Huang [B9]. Also the thesis Grassmannian Origin of
Scattering Amplitudes of Trnka [B21] gives a good summary about the work done in association with
Nima Arkani-Hamed. I am not a specialist and have not been endowed with practical calculations
so that my representation considers only the basic ideas and their relationship to TGD. In the
following I summarize my very partial view about the development of ideas.

6.1 The pioneering works of Penrose and Witten

The pioneering work of Penrose discussed in The Central Programme of Twistor Theory [B19]
on twistors initiated the twistor program, which had already had applications in Yang-Mills the-
ories int he description of instantons. The key vision is that massless field equations reduce to
holomorphy in twistor formulation.

Witten’s Perturbative Gauge Theory As a String Theory In Twistor Space [B8] in 2003 initiated
the progress leading to dramatic understanding of the planar scattering amplitudes of N = 4 SUSY
and eventually to the notion of amplituhedron. The abstract gives some idea about the key ideas.

Perturbative scattering amplitudes in Yang-Mills theory have many unexpected properties, such
as holomorphy of the maximally helicity violating amplitudes. To interpret these results, we Fourier
transform the scattering amplitudes from momentum space to twistor space, and argue that the
transformed amplitudes are supported on certain holomorphic curves. This in turn is apparently
a consequence of an equivalence between the perturbative expansion of N = 4 super Yang-Mills
theory and the D-instanton expansion of a certain string theory, namely the topological B model
whose target space is the Calabi-Yau supermanifold CP3|4.

Witten’s observation was that the twistor Fourier transform of the scattering amplitudes of YM
theories seem to be localized at 2-dimensional complex surfaces of twistor space and this led him to
propose that twistor string theory in the twistor space CP3 could allow to describe the scattering
amplitudes. The basic problem of the twistor approach relates to space-time signature: all works
nicely in signature (2,2), which suggests that something might be wrong in the basic assumptions.
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6.2 BCFW recursion formula

BCFW recursion was first derived for tree amplitudes and later generalized to planar loop diagrams.

1. Twistor diagram recursion for all gauge-theoretic tree amplitudes by Hodges [B1] in 2005 and
Direct Proof of Tree-Level Recursion Relation in Yang- Mills Theory by Britto, Cachazo,
Feng, and Witten [B4] in 2005 proposed at tree level a recursion formula for the tree level
MHV amplitudes of Yang-Mills theory in twistor space.

2. Scattering Amplitudes and BCFW Recursion in Twistor Space By Mason and Skinner [B4]
discussed BCFW recursion relations for tree diagrams of YM theories.

3. The S-Matrix in Twistor Space by Arkani-Hamed, Cachazo, Cheung and Kaplan [B10] in 2009
discussed NkMHV amplitudes with more than two negative helicities (MHV amplitudes have
2 negative helicities are are extremely simple).

This work is carried out in metric signature (2,2), where the twistor transform reduces to
ordinary Fourier transform. The other signatures are problematic. Only planar diagrams are
considered. On-Shell Structures of MHV Amplitudes Beyond the Planar Limit [B14] in 2014 of
Arkani-Hamed et al consider the problem posed by the non-planar diagrams.

6.3 Yangian symmetry and Grassmannian

The discovery of dual super-conformal invariance is one of the key steps of progress. This symmetry
means extension of the conformal algebra from space-time level to the level of twistor space so that
the dual superconformal invariance acts also on so called momentum twistors assigned with the
twistor diagram. These dual conformal symmetries extend to a Yangian algebra containing besides
local generators also multilocal generators. The dual conformal generators are bi-local generators
and have weight n = 1. The Yangian symmetry is completely general and expected to generalize.

In the following I list the abstracts of some important articles.

1. Magic identities for conformal four-point integrals by Drummond, Henn, Smirnov, and Sokatchev
[B15] in 2006 initiated the development of ideas. The interpretation is as dual conformal in-
variance generator by the weight 1 generators of Yangian.

We propose an iterative procedure for constructing classes of off-shell four-point conformal
integrals which are identical. The proof of the identity is based on the conformal properties
of a sub-integral common for the whole class. The simplest example are the so-called ”triple
scalar box” and ”tennis court” integrals. In this case we also give an independent proof using
the method of Mellin-Barnes representation which can be applied in a similar way for general
off-shell Feynman integrals.

2. Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory [B7] by Drum-
mond, Henn, and Plefka in 2009 continued this work and discussed Yangian algebra as as a
symmetry having besides local generators also multilocal generators.

Tree-level scattering amplitudes in N = 4 super Yang-Mills theory have recently been shown
to transform covariantly with respect to a ”dual” superconformal symmetry algebra, thus
extending the conventional superconformal symmetry algebra psu(2, 2|4) of the theory. In
this paper we derive the action of the dual superconformal generators in on-shell superspace
and extend the dual generators suitably to leave scattering amplitudes invariant. We then
study the algebra of standard and dual symmetry generators and show that the inclusion of
the dual superconformal generators lifts the psu(2,2|4) symmetry algebra to a Yangian. The
non-local Yangian generators acting on amplitudes turn out to be cyclically invariant due to
special properties of psu(2,2|4). The representation of the Yangian generators takes the same
form as in the case of local operators, suggesting that the Yangian symmetry is an intrinsic
property of planar N = 4 super Yang-Mills, at least at tree level.

3. Dual Superconformal Invariance, Momentum Twistors and Grassmannians [B17] by Mason
and Skinner introduces momentum twistors and Grassmannians.
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Dual superconformal invariance has recently emerged as a hidden symmetry of planar scat-
tering amplitudes in N = 4 super Yang-Mills theory. This symmetry can be made manifest
by expressing amplitudes in terms of ”momentum twistors”, as opposed to the usual twistors
that make the ordinary superconformal properties manifest. The relation between momentum
twistors and on-shell momenta is algebraic, so the translation procedure does not rely on any
choice of space-time signature. We show that tree amplitudes and box coefficients are suc-
cinctly generated by integration of holomorphic delta-functions in momentum twistors over
cycles in a Grassmannian. This is analogous to, although distinct from, recent results ob-
tained by Arkani-Hamed et al. in ordinary twistor space. We also make contact with Hodges
polyhedral representation of NMHV amplitudes in momentum twistor space.

4. A Duality For The S Matrix [B12] in 2009 by Arkani-Hamed et al discusses also Yan-
gian invariance and introduces central ideas in algebraic geometry: Grassmannians, higher-
dimensional residue theorems, intersection theory, and the Schubert calculus.

We propose a dual formulation for the S Matrix of N = 4 SYM. The dual provides a basis for
the leading singularities of scattering amplitudes to all orders in perturbation theory, which
are sharply defined, IR safe data that uniquely determine the full amplitudes at tree level
and 1-loop, and are conjectured to do so at all loop orders. The scattering amplitude for
n particles in the sector with k negative helicity gluons is associated with a simple integral
over the space of k planes in n dimensions, with the action of parity and cyclic symmetries
manifest. The residues of the integrand compute a basis for the leading singularities. A given
leading singularity is associated with a particular choice of integration contour, which we
explicitly identify at tree level and 1-loop for all NMHV amplitudes as well as the 8 particle
N2MHV amplitude. We also identify a number of 2-loop leading singularities for up to 8
particles. There are a large number of relations among residues which follow from the multi-
variable generalization of Cauchys theorem known as the ”global residue theorem”. These
relations imply highly non-trivial identities guaranteeing the equivalence of many different
representa- tions of the same amplitude. They also enforce the cancellation of non-local poles
as well as consistent infrared structure at loop level. Our conjecture connects the physics
of scattering amplitudes to a particular subvariety in a Grassmannian; space-time locality is
reflected in the topological properties of this space.

5. The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM [B13] by Arkani-
Hamed et al in 2010.

We give an explicit recursive formula for the all L-loop integrand for scattering amplitudes in
N = 4 SYM in the planar limit, manifesting the full Yangian symmetry of the theory. This
generalizes the BCFW recursion relation for tree amplitudes to all loop orders, and extends
the Grassmannian duality for leading singularities to the full amplitude. It also provides a new
physical picture for the meaning of loops, associated with canonical operations for removing
particles in a Yangian-invariant way. Loop amplitudes arise from the ”entangled” removal of
pairs of particles, and are naturally presented as an integral over lines in momentum-twistor
space. As expected from manifest Yangian-invariance, the integrand is given as a sum over
non-local terms, rather than the familiar decomposition in terms of local scalar integrals with
rational coefficients. Knowing the integrands explicitly, it is straightforward to express them
in local forms if desired; this turns out to be done most naturally using a novel basis of
chiral, tensor integrals written in momentum-twistor space, each of which has unit leading
singularities. As simple illustrative examples, we present a number of new multi-loop results
written in local form, including the 6- and 7-point 2-loop NMHV amplitudes. Very concise
expressions are presented for all 2-loop MHV amplitudes, as well as the 5-point 3-loop MHV
amplitude. The structure of the loop integrand strongly suggests that the integrals yielding
the physical amplitudes are ”simple”, and determined by IR-anomalies. We briefly comment
on extending these ideas to more general planar theories.

6.4 Amplituhedron

The latest development in twistorial revolution was the notion of amplituhedron. Since I do not
have intuitive understanding about amplituhedron and since amplituhedron does not have role in
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the twistorialization of TGD as I understand it now, I provide only abstracts about two articles to
it.

1. The Amplituhedron [B3] by Arkani-Hamed and Trnka in 2013.

Perturbative scattering amplitudes in gauge theories have remarkable simplicity and hidden
infinite dimensional symmetries that are completely obscured in the conventional formulation
of field theory using Feynman diagrams. This suggests the existence of a new understanding
for scattering amplitudes where locality and unitarity do not play a central role but are derived
consequences from a different starting point. In this note we provide such an understanding
for N = 4 SYM scattering amplitudes in the planar limit, which we identify as ”the volume”
of a new mathematical object–the Amplituhedron–generalizing the positive Grassmannian.
Locality and unitarity emerge hand-in-hand from positive geometry.

2. Positive Amplitudes in the Amplituhedron [B2] by Arkani-Hamed et al in 2014.

The all-loop integrand for scattering amplitudes in planar N = 4 SYM is determined by
an ”amplitude form” with logarithmic singularities on the boundary of the amplituhedron.
In this note we provide strong evidence for a new striking property of the superamplitude,
which we conjecture to be true to all loop orders: the amplitude form is positive when eval-
uated inside the amplituhedron. The statement is sensibly formulated thanks to the natural
”bosonization” of the superamplitude associated with the amplituhedron geometry. However
this positivity is not manifest in any of the current approaches to scattering amplitudes, and
in particular not in the cellulations of the amplituhedron related to on-shell diagrams and
the positive Grassmannian. The surprising positivity of the form suggests the existence of a
”dual amplituhedron” formulation where this feature would be made obvious. We also suggest
that the positivity is associated with an extended picture of amplituhedron geometry, with the
amplituhedron sitting inside a co-dimension one surface separating ”legal” and ”illegal” local
singularities of the amplitude. We illustrate this in several simple examples, obtaining new
expressions for amplitudes not associated with any triangulations, but following in a more
invariant manner from a global view of the positive geometry.
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