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Abstract

In twistor Grassmannian approach to N = 4 SYM twistors are replaced with supertwistors
and the extreme elegance of the description of various helicity states using twistor space wave
functions and M8−H duality suggest that super-twistors are realized at the level of both M8

and H. M8 supertwistors are naturally realized at the level of momentum space.

1. Basic problem of twistor approach and mass as a relative notion in TGD framework

In TGD framework M8 − H duality allows to geometrize the notion of super-twistor in
the sense that different components of super-field correspond to components of super-octonion
each of which corresponds to a space-time surfaces satisfying minimal surface equations with
string world sheets as singularities - this is geometric counterpart for masslessness.

In TGD particles are massless in 8-D sense and in general massive in 4-D sense but 4-
D twistors are needed also now so that a modification of twistor approach is needed. The
incidence relation for twistors suggests the replacement of the usual twistors with either non-
commutative quantum twistors or with octo-twistors. Quantum twistors could be associated
with the space-time level description of massive particles and octo-twistors with the description
at imbedding space level. A possible alternative interpretation of quantum spinors is in terms of
quantum measurement theory with finite measurement resolution in which precise eigenstates
as measurement outcomes are replaced with universal probability distributions defined by
quantum group. This has also application in TGD inspired theory of consciousness.

Twistor lift of TGD involves representation of space-time surfaces as 6-surfaces in twistor
space of H having structure of S2 bundle over space-time surface resulting in dimensional
reduction. These 6-surfaces would be holomorphic and thus minimal surfaces represented in
terms of polynomials having same degree as the corresponding M8 octonionic polynomial by
number theoretic universality.

2. Criticizing the notion of twistor space of M4

I have assumed that what I call geometric twistor space of M4 is simply M4×S2. One can
however consider standard twistor space CP3 with metric signature (3,-3) as an alternative.
This option reproduces the nice results of the earlier approach but the philosophy is different:
there is no fundamental length scale but the hierarchy of causal diamonds (CDs) predicted by
zero energy ontology (ZEO) gives rise to the breaking of the exact scaling invariance of M8

picture. M4 in H would not be be replaced with conformally compactified M4 (M4
conf ) but

conformally compactified cd (cdconf ) for which a natural identification is as CP2,h obtained
from CP2 by replacing second complex coordinate replaced with hypercomplex coordinate.
The sizes of twistor spaces of cdconf using CP2 size as unit would reflect the hierarchy of
size scales for CDs. The consideration on the twistor space of M8 in similar picture leads to
the identification of corresponding twistor space as HP3 - quaternionic variant of CP3: the
counterpart of CD8 would be HP2.

The outcome of octo-twistor approach together with M8 −H duality leads to a nice pic-
ture view about twistorial description of massive states based on quaternionic generalization
of twistor (super-)Grassmannian approach with twistor space identificed as HP3,h, the quater-
nionic variant of CP3,h. A radically new view is that descriptions in terms of massive and
massless states are alternative options, and correspond to two different alternative twistorial
descriptions and leads to the interpretation of p-adic thermodynamics as completely universal
massivation mechanism having nothing to do with dynamics.
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As a side product emerges a deeper understanding of ZEO based quantum measurement
theory and consciousness theory relying on the universal roots of octonionic polynomials of
M8, which are not 4-D but analogs of 6-D branes. By M8−H duality the finite sub-groups of
SU(2) of McKay correspondence appear quite concretely in the description of the measurement
resolution of 8-momentum.

The parallel progress in the understanding SUSY in TGD framework in turn led to the
identification of the super-counterparts of M8, H and of twistor spaces modifying dramati-
cally the physical interpretation of SUSY. Super-spinors in twistor space would provide the
description of quantum states. Quaternionic super Grassmannians would be involved with M8

description.
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1 Introduction

This article was inspired by a longer paper “TGD view about McKay Correspondence, ADE
Hierarchy, Inclusions of Hyperfinite Factors, and Twistors”. I found it convenient to isolate the
part of paper related to twistors. In twistor Grassmannian approach to N = 4 SYM twistors are
replaced with supertwistors and the extreme elegance of the description of various helicity states
using twistor space wave functions suggests that super-twistors are realized at the level of M8

geometry. These supertwistors are realized at the level of momentum space.
In TGD framework M8 − H duality allows to geometrize the notion of super-twistor in the

sense that different components of super-field correspond to components of super-octonion each of
which corresponds to a space-time surfaces satisfying minimal surface equations with string world
sheets as singularities - this is geometric counterpart for masslessness.

1.1 Basic problem of twistor approach and mass as a relative notion in
TGD framework

The basic problem of the ordinary twistor approach is that the states must be massless in 4-D
sense. In TGD framework particles would be massless in 8-D sense. This leads to alternative
descriptions depending on the choice of M⊂M8 and the 4-D mass of the particle depends on the
choice of M4. For M4

L description M4
L ⊂M8 is chosen so that states are massless in 4-D sense, and

the description at momentum space level would be in terms of products of ordinary M4 twistors
and CP2 twistors. For M4

T description particles are massive in 4-D sense. How to generalize the
twistor description to 8-D case?

The incidence relation for twistors suggests the replacement of the usual twistors with either
non-commutative quantum twistors or with octo-twistors. Quantum twistors could be associated
with the space-time level description of massive particles and octo-twistors with the description
at imbedding space level. A possible alternative interpretation of quantum spinors is in terms of
quantum measurement theory with finite measurement resolution in which precise eigenstates as
measurement outcomes are replaced with universal probability distributions defined by quantum
group. This has also application in TGD inspired theory of consciousness.

1.2 Criticizing the notion of twistor space of M4

Twistor lift of TGD involves representation of space-time surfaces as 6-surfaces in twistor space
of H having structure of S2 bundle over space-time surface resulting in dimensional reduction.
These 6-surfaces would be holomorphic and thus minimal surfaces represented in terms of poly-
nomials having same degree as the corresponding M8 octonionic polynomial by number theoretic
universality.

1. I have assumed that what I call geometric twistor space of M4 is simply M4×S2. It however
turned out that one can consider standard twistor space CP3 with metric signature (3,-3)
as an alternative. This option reproduces the nice results of the earlier approach but the
philosophy is different: there is no fundamental length scale but the hierarchy of causal
diamonds (CDs) predicted by zero energy ontology (ZEO) gives rise to the breaking of the
exact scaling invariance of M8 picture. This forces to modify M8 − H correspondence so
that it involves map from M4 to CP3 followed by a projection to hyperbolic variant of CP2.

M4 in H would not be replaced with conformally compactified M4 (M4
conf ) but conformally

compactified cd (cdconf ) for which a natural identification is as CP2 with second complex
coordinate replaced with hypercomplex coordinate. The sizes of twistor spaces of cdconf
using CP2 size as unit would reflect the hierarchy of size scales for CDs. The consideration
on the twistor space of M8 in similar picture leads to the identification of corresponding
twistor space as HP3 - quaternionic variant of CP3: the counterpart of CD8 would be HP2.

2. Octotwistors can be expressed as pairs of quaternionic twistors. Octotwistor approach sug-
gests a generalization of twistor Grassmannian approach obtained by replacing the bi-spinors
with complexified quaternions and complex Grassmannians with their quaternionic counter-
parts. Although TGD is not a quantum field theory, this proposal makes sense for cognitive
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representations identified as discrete sets of spacetime points with coordinates in the exten-
sion of rationals defining the adele [L2] implying effective reduction of particles to point-like
particles.

3. The outcome of octo-twistor approach together with M8 − H duality leads to a nice pic-
ture view about twistorial description of massive states based on quaternionic generalization
of twistor Grassmannian approach. A radically new view is that descriptions in terms of
massive and massless states are alternative options, and correspond to two different alter-
native twistorial descriptions and leads to the interpretation of p-adic thermodynamics as
completely universal massivation mechanism having nothing to do with dynamics. As a side
product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which
are not 4-D but analogs of 6-D branes. By M8 −H duality the finite sub-groups of SU(2)
of McKay correspondence appear quite concretely in the description of the measurement
resolution of 8-momentum.

1.3 What super-twistors are in TGD framework

What about super-twistors in TGD framework?

1. The parallel progress in the understanding SUSY in TGD framework [L5] in turn led to the
identification of the super-counterparts of M8, H and of twistor spaces modifying dramati-
cally the physical interpretation of SUSY. Super-spinors in twistor space would provide the
description of quantum states. Super-Grassmannians would be involved with the construc-
tion of scattering amplitudes. Quaternionic super Grassmannians would be involved with
M8 description.

2. The great surprise from physics point of view is that in fermionic sector only quarks are
allowed by SO(1, 7) triality and that anti-leptons are local 3-quark composites identifiable as
spartners of quarks. Gauge bosons, Higgs and graviton would be also spartners and assignable
to super-coordinates of imbedding space expressible as super-polynomials of quark oscillator
operators. Super-symmetrization means also quantization of fermions allowing local many-
quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

What about the interpretation of quantum twistors? They could make sense as 4-D space-time
description analogous to description at space-time level. Now one can consider generalization of
the twistor Grassmannian approach in terms of quantum Grassmannians.

2 Could standard view about twistors work at space-time
level after all?

While asking what super-twistors in TGD might be, I became critical about the recent view con-
cerning what I have called geometric twistor space of M4 identified as M4 × S2 rather than CP3

with hyperbolic metric. The basic motivations for the identification come from M8 picture in
which there is number theoretical breaking of Poincare and Lorentz symmetries. Second moti-
vation was that M4

conf - the conformally compactified M4 - identified as group U(2) [B1] (see

http://tinyurl.com/y35k5wwo) assigned as base space to the standard twistor space CP3 of M4,
and having metric signature (3,-3) is compact and is stated to have metric defined only modulo
conformal equivalence class.

As found in the previous section, TGD strongly suggests that M4 in H = M4×CP2 should be
replaced with hyperbolic variant of CP2, and it seems to me that these spaces are not identical.

http://tinyurl.com/y35k5wwo
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Amusingly, U(2) and CP2 are fiber and base in the representation of SU(3) as fiber space so that
the their identification does not seem plausible.

On can however ask whether the selection of a representative metric from the conformal equiva-
lence class could be seen as breaking of the scaling invariance implied also by ZEO introducing the
hierarchy of CDs in M8. Could it be enough to have M4 only at the level of M8 and conformally
compactified M4 at the level of H? Should one have H = cdconf × CP2? What cdconf would be:
is it hyperbolic variant of CP2?

2.1 Getting critical

The only way to make progress is to become very critical now and then. These moments of almost
despair usually give rise to a progress. At this time I got very critical about the TGD inspired
identification of twistor spaces of M4 and CP2 and their properties.

2.1.1 Getting critical about geometric twistor space of M4

Let us first discuss the recent picture and how to modify it so that it is consistent with the hierarchy
of CDs. The key idea is that the twistor space and its base space represents CD so that one obtains
scale hierarchy of twistor spaces as a realization of broken scale invariance giving rise to the p-adic
length scale hierarchy.

1. I have identified the twistor space of M4 simply as T (M4) = M4 × S2. The interpretation
would be at the level of octonions as a product of M4 and choices of M2 as preferred complex
sub-space of octonions with S2 parameterizing the directions of spin quantization axes. Real
octonion axis would correspond to time coordinate. One could talk about the space of of
light-like directions. Light-like vector indeed defines M2. This view could be defended by
the breaking of both translation and Lorentz invariance in the octonionic approach due to
the choice of M2 and by the fact that it seems to work.

Remark: M8 = M4 × E4 is complexified to M8
c by adding a commuting imaginary unit i

appearing in the extensions of rationals and ordinary M8 represents its particular sub-space.
Also in twistor approach one uses often complexified M4.

2. The objection is that it is ordinary twistor space identifiable as CP3 with (3,-3) signature of
metric is what works in the construction of twistorial amplitudes. CP3 has metric as compact
space and coset space. Could this choice of twistor space make sense after all as geometric
twistor space?

Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X4 ⊂ M4 × CP2. Now Poincare symmetry has been transformed to
a symmetry acting at the level of M8 in the moduli space of octonion structures defined
by the choice of the direction of octonionic real axis reducing Poincare group to T × SO(3)
consisting of time translations and rotations. Fixing of M2 reducrs the group to T × SO(2)
and twistor space can be seen as the space for selections of quantization axis of energy and
spin.

3. But what about the space H? The first guess is H = M4
conf × CP2. According to [B1] (see

http://tinyurl.com/y35k5wwo) one has M4
conf = U(2) such that U(1) factor is time- like

and SU(2) factor is space-like. One could understand M4
conf = U(2) as resulting by addition

and identification of metrically 2-D light-cone boundaries at t = ±∞. This is topologically
like compactifying E3 to S3 and gluing the ends of cylinder S3×D1 together to the S3×S1.

The conformally compactified Minkowski space M4
conf should be analogous to base space of

CP3 regarded as bundle with fiber S2. The problem is that one cannot imagine an analog
of fiber bundle structure in CP3 having U(2) as base. The identification H = M4

conf × CP2

does not make sense.

4. In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog of
M4
conf - call it cdconf . The only candidate is cdconf = CP2 with one hypercomplex coordinate.

To understand why one can start from the following picture. The light-like boundaries of

http://tinyurl.com/y35k5wwo
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CD are metrically equivalent to spheres. The light-like boundaries at t = ±∞ are identified
as in the case of M4

conf . In the case of CP2 one has 3 homologically trivial spheres defining
coordinate patches. This suggests that cdconf is simply CP2 with second complex coordinate
made hypercomplex. M4 and E4 differ only by the signature and so would do cdconf and
CP2.

The twistor spheres of CP3 associated with points of M4 intersect at point if the points differ
by light-like vector so that one has and singular bundle structure. This structure should have
analog for the compactification of CD. CP3 has also bundle structure CP3 → CP2. The S2

fibers and base are homologically non-trivial and complex analogs of mutually orthogonal line
and plane and intersect at single point. This defines the desired singular bundle structure
via the assignment of S2 to each point of CP2.

The M4 points must belong to the interior of cd and this poses constraints on the distance of
M4 points from the tips of cd. One expects similar hierarchy of cds at the level of momentum
space.

5. In this picture M4
conf = U(2) could be interpreted as a base space for the space of CDs

with fixed direction of time axis identified as direction of octonionic real axis associated with
various points of M4 and therefore of M4

conf . For Euclidian signature one would have base
and fiber of the automorphism sub-group SU(3) regarded as U(2) bundle over CP2: now one
would have CP2 bundle over U(2). This is perhaps not an accident, and one can ask whether
these spaces could be interpreted as representing local trivialization of SU(3) as U(2)×CP2.
This would give to metric cross terms between U(2) and CP2.

6. The proposed identification can be tested by looking whether it generalizes. What the twistor
space for entire M8 would be? cd = CD4 is replaced with CD8 and the discussion of the
preceding chapter demonstrated that the only possible identification of the twistor space is
now is as the 12-D hyperbolic variant of HP3 whereas CD8,conf would correspond to 8-D
hyperbolic variant of HP2 analogous to hyperbolic variant of CP2.

The outcome of these considerations is surprising.

1. One would have T (H) = CP3×F and H = CP2,H×CP2 where CP2,H has hyperbolic metric
with metric signature (1,−3) having M4 as tangent space so that the earlier picture can be
understood as an approximation. This would reduce the construction of preferred extremals
of 6-D Kähler action in T (H) to a construction of polynomial holomorphic surfaces and
also the minimal surfaces with singularities at string world sheets should result as bundle
projection. Since M8 − H duality must respect algebraic dynamics the maximal degree of
the polynomials involved must be same as the degree of the octonionic polynomial in M8.

2. The hyperbolic variant Kähler form and also spinor connection of hyperbolic CP2 brings in
new physics beyond standard model. This Kähler form would serve as the analog of Kähler
form assigned to M4 earlier, and suggested to explain the observed CP breaking effects and
matter antimatter asymmetry for which there are two explanations [L5].

Some comments about the Minkowskian signature of the hyperbolic counterparts of CP3 and
CP2 are in order.

1. Why the metric of CP3 could not be Euclidian just as the metric of F? The basic objection
is that propagation of fields is not possible in Euclidian signature and one completely loses
the earlier picture provided by M4×CP2. The algebraic dynamics in M8 picture can hardly
replace it.

2. The map assigning to the point M4 a point of CP3 involves Minkowskian sigma matrices but
it seems that the Minkowskian metric of CP3 is not explicitly involved in the construction
of scattering amplitudes. Note however that the antisymmetric bi-spinor metric for the spin
1/2 representation of Lorentz group and its conjugate bring in the signature. U(2, 2) as
representation of conformal symmetries suggests (2, 2) signature for 8-D complex twistor
space with 2+2 complex coordinates representing twistors.
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The signature of CP3 metric is not explicitly visible in the construction of twistor amplitudes
but analytic continuations are carried out routinely. One has also complexified M4 and M8

and one could argue that the problems disappear. In the geometric situation the signatures
of the subspaces differ dramatically. As already found, analytic continuation could allow
to define the variants of twistor spaces elegantly by replacing a complex coordinate with a
hyperbolic one.

Remark: For E4 CP3 is Euclidian and if one has E4
conf = U(2), one could think of replacing

the Cartesian product of twistor spaces with SU(3) group having M4
conf = U(2) as fiber and

CP2 as base. The metric of SU(3) appearing as subgroup of quaternionic automorphisms
leaving M4 ⊂ M8 invariant would decompose to a sum of M4

conf metric and CP2 metric

plus cross terms representing correlations between the metrics of M4
conf and CP2. This is

probably mere accident.

2.1.2 M8 −H duality and twistor space counterparts of space-time surfaces

It seems that by identifying CP3,h as the twistor space of M4, one could develop M8 −H duality
to a surprisingly detailed level from the conditions that the dimensional reduction guaranteed by
the identification of the twistor spheres takes place and the extensions of rationals associated with
the polynomials defining the space-time surfaces at M8- and twistor space sides are the same.
The reason is that minimal surface conditions reduce to holomorphy meaning algebraic conditions
involving first partial derivatives in analogy with algebraic conditions at M8 side but involving no
derivatives.

1. The simplest identification of twistor spheres is by z1 = z2 for the complex coordinates of the
spheres. One can consider replacing zi by its Möbius transform but by a coordinate change
the condition reduces to z1 = z2.

2. At M8 side one has either RE(P ) = 0 or IM(P ) = 0 for octonionic polynomial obtained as
continuation of a real polynomial P with rational coefficients giving 4 conditions (RE/IM
denotes real/imaginary part in quaternionic sense). The condition guarantees that tan-
gent/normal space is associative.

Since quaternion can be decomposed to a sum of two complex numbers: q = z1 + Jz2
RE(P ) = 0 correspond to the conditions Re(RE(P )) = 0 and Im(RE(P )) = 0. IM(P ) = 0
in turn reduces to the conditions Re(IM(P )) = 0 and Im(IM(P )) = 0.

3. The extensions of rationals defined by these polynomial conditions must be the same as
at the octonionic side. Also algebraic points must be mapped to algebraic points so that
cognitive representations are mapped to cognitive representations. The counterparts of both
RE(P ) = 0 and IM(P ) = 0 should be satisfied for the polynomials at twistor side defining
the same extension of rationals.

4. M8 − H duality must map the complex coordinates z11 = Re(RE) and z12 = Im(RE)
(z21 = Re(IM) and z22 = Im(IM)) at M8 side to complex coordinates ui1 and ui2 with
ui1(0) = 0 and ui2(0) = 0 for i = 1 or i = 2, at twistor side.

Roots must be mapped to roots in the same extension of rationals, and no new roots are
allowed at the twistor side. Hence the map must be linear: ui1 = aizi1+bizi2 and ui2 = cizi1+
dizi2 so that the map for given value of i is characterized by SL(2,Q) matrix (ai, bi; ci, di).

5. These conditions do not yet specify the choices of the coordinates (ui1, ui2) at twistor side.
At CP2 side the complex coordinates would naturally correspond to Eguchi-Hanson complex
coordinates (w1, w2) determined apart from color SU(3) rotation as a counterpart of SU(3)
as sub-group of automorphisms of octonions.

If the base space of the twistor space CP3,h of M4 is identified as CP2,h, the hyper-complex
counterpart of CP2, the analogs of complex coordinates would be (w3, w4) with w3 hypercom-
plex and w4 complex. A priori one could select the pair (ui1, ui2) as any pair (wk(i), wl(i)),
k(i) 6= l(i). These choices should give different kinds of extremals: such as CP2 type ex-
tremals, string like objects, massless extremals, and their deformations.
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String world sheet singularitees and world-line singularities as their light-like boundaries at
the light-like orbits of partonic 2-surfaces are conjectured to characterize preferred extremals as
surfaces of H at which there is a transfer of canonical momentum currents between Kähler and
volume degrees of freedom so that the extremal is not simultaneously an extremal of both Kähler
action and volume term as elsewhere. What could be the counteparts of these surfaces in M8?

1. The interpretation of the pre-images of these singularities in M8 should be number theoretic
and related to the identification of quaternionic imaginary units. One must specify two
non-parallel octonionic imaginary units e1 and e2 to determine the third one as their cross
product e3 = e1 × e2. If e1 and e2 are parallel at a point of octonionic surface, the cross
product vanishes and the dimension of the quaternionic tangent/normal space reduces from
D = 4 to D = 2.

2. Could string world sheets/partonic 2-surfaces be images of 2-D surfaces in M8 at which
this takes place? The parallelity of the tangent/normal vectors defining imaginary units ei,
i = 1, 2 states that the component of e2 orthogonal to e1 vanishes. This indeed gives 2
conditions in the space of quaternionic units. Effectively the 4-D space-time surface would
degenerate into 2-D at string world sheets and partonic 2-surfacesa as their duals. Note that
this condition makes sense in both Euclidian and Minkowskian regions.

3. Partonic orbits in turn would correspond surfaces at which the dimension reduces to D=3
by light-likeness - this condition involves signature in an essential manner - and string world
sheets would have 1-D boundaries at partonic orbits.

2.1.3 Getting critical about implicit assumptions related to the twistor space of CP2

One can also criticize the earlier picture about implicit assumptions related the twistor spaces of
CP2.

1. The possibly singular decomposition of F to a product of S2 and CP2 would has a description
similar to that for CP3. One could assign to each point of CP2 base homologically non-trivial
sphere intersecting it orthogonally.

2. I have assumed that the twistor space T (CP2) = F = SU(3)/U(1) × U(1) allows Kaluza-
Klein type metric meaning that the metric decomposes to a sum of the metrics assignable to
the base CP2 and fiber S2 plus cross terms representing interaction between these degrees
of freedom. It is easy to check that this assumption holds true for Hopf fibration S3 → S2

having circle U(1) as fiber (see http://tinyurl.com/qbvktsx). If Kaluza-Klein picture
holds true, the metric of F would decompose to a sum of CP2 metric and S2 metric plus
cross terms representing correlations between the metrics of CP2 and S2.

3. One should demonstrate that F = SU(3)/U(1)×U(1) has metric with the expected Kaluza-
Klein property. One can represent SU(3) matrices as products XY Z of 3 matrices. X
represents a point of base space CP2 as matrix, Y represents the point of the fiber S2 =
U(2)/U(1)×U(1) of F in similar manner as U(2) matrix, and the Z represents U(1)×U(1)
element as diagonal matrix [B1](see http://tinyurl.com/y6c3pp2g).

By dropping U(1)×U(1) matrix one obtains a coordinatization of F . To get the line element
of F in these coordinates one could put the coordinate differentials of U(1) × U(1) to zero
in an expression of SU(3) line element. This should leave sum of the metrics of CP2 and S2

with constant scales plus cross terms. One might guess that the left- and righ-invariance of
the SU(3) metric under SU(3) implies KK property.

Also CP3 should have the KK structure if one wants to realize the breaking of scaling invariance
as a selection of the scale of the conformally compactified M4. In absence of KK structure the
space-time surface would depend parametrically on the point of the twistor sphere S2.

http://tinyurl.com/qbvktsx
http://tinyurl.com/y6c3pp2g
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2.2 The nice results of the earlier approach to M4 twistorialization

The basic nice results of the earlier picture should survive in the new picture.

1. Central for the entire approach is twistor lift of TGD replacing space-time surfaces with 6-D
surfaces in 12-D T (M4)× T (CP2) having space-time surfaces as base and twistor sphere S2

as fiber. Dimensional reduction identifying twistor spheres of T (M4) an T (CP2) and makes
these degrees of freedom non-dynamical.

2. Dimensionally reduced action 6-D Kähler action is sum of 4-D Kähler action and a volume
term coming from S2 contribution to the induced Kähler form. On interpretation is as a
generalization of Maxwell action for point like charge by making particle a 3-surface.

The interpretation of volume term is in terms of cosmological constant. I have proposed
that a hierarchy of length scale dependent cosmological constants emerges. The hierarchy of
cosmological constants would define the running length scale in coupling constant evolution
and would correspond to a hierarchy of preferred p-aic length scales with preferred p-adic
primes identified as ramified primes of extension of rationals.

3. The twistor spheres associated M4 × S2 and F were assumed to have same radii and most
naturally same Euclidian signature: this looks very nice since there would be only single
fundamental length equal to CP2 radius determining the radius of its twistor sphere. The
vision to be discussed would be different. There would be no fundamental scale and length
scales would emerge through the length scale hierarchy assignable to CDs in M8 and mapped
to length scales for twistor spaces.

The identification of twistor spheres with same radius would give only single value of cosmo-
logical constant and the problem of understanding the huge discrepancy between empirical
value and its naive estimate would remain. I have argued that the Kähler forms and metrics
of the two twistor spheres can be rotated with respect to each other so that the induced
metric and Kähler form are rotated with respect to each other, and the magnetic energy
density assignable to the sum of the induced Kähler forms is not maximal.

The definition of Kähler forms involving preferred coordinate frame would gives rise to sym-
metry breaking. The essential element is interference of real Kähler forms. If the signatures of
twistor spheres were opposite, the Kähler forms differ by imaginary unit and the interference
would not be possible.

Interference could give rise to a hierarchy of values of cosmological constant emerging as coef-
ficient of the Kähler magnetic action assignable to S2(X4) and predict length scale dependent
value of cosmological constant and resolve the basic problem related to the extremely small
value of cosmological constant.

4. One could criticize the allowance of relative rotation as adhoc: note that the resulting cosmo-
logical constant becomes a function depending on S2 point. For instance, does the rotation
really produce preferred extremals as minimal surfaces extremizing also Kähler action except
at string world sheets? Each point of S2 would correspond to space-time surface X4 with
different value of cosmological constant appearing as a parameter. Moreover, non-trivial rel-
ative rotation spoils the covariant constancy and J2(S2) = −g(S2) property for the S2 part
of Kähler form, and that this does not conform with the very idea of twistor space.

5. One nice implication would be that space-time surfaces would be minimal surfaces apart
from 2-D string world sheet singularities at which there is a transfer of canonical momen-
tum currents between Kähler and volume degrees of freedom. One can also consider the
possibility that the minimal surfaces correspond to surfaces give as roots of 3 polynomials of
hypercomplex coordinate of M2 and remaining complex coordinates.

Minimal surface property would be direct translation of masslessness and conform with the
twistor view. Singular surfaces would represent analogs of Abelian currents. The universal
dynamics for minimal surfaces would be a counterpart for the quantum criticality. At M8

level the preferred complex plane M2 of complexified octonions would represent the singular
string world sheets and would be forced by number theory.
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Masslessness would be realized as generalized holomorphy (allowing hyper-complexity in M2

plane) as proposed in the original twistor approach but replacing holomorphic fields in twistor
space with 6-D twistor spaces realized as holomorphic 6-surfaces.

2.3 ZEO and twistorialization as manners to introduce scales in M8

physics

M8 physics as such has no scales. One motivation for ZEO is that it brings in the scales as sizes
of causal diamonds (CDs).

2.3.1 ZEO generates scales in M8 physics

Scales are certainly present in physics and must be present also in TGD Universe.

1. In TGD Universe CP2 scale plays the role of fundamental length scale, there is also the
length scale defined by cosmological constant and the geometric mean of these two length
scales defining a scale of order 10−4 meters emerging in the earlier picture and suggesting a
biological interpretation.

The fact that conformal inversion mk → R2mk/a2, a2 = mkmk is a conformal transformation
mapping hyperboloids with a ≥ R and a ≤ R to each other, suggests that one can relate
CP2 scale and cosmological scale defined by Λ by inversion so that cell length scale would
define one possible radius of cdconf .

2. In fact, if one has R(cdconf ) = x × R(CP2) one obtains by repeated inversions a hierarchy
R(k) = xkR and for x =

√
p one obtains p-adic length scale hierarchy coming as powers of

√
p,

which can be also negative. This suggests a connection with p-adic length scale hypothesis
and connections between long length scale and short length scale physics: they could be
related by inversion. One could perhaps see Universe as a kind of Leibnizian monadic system
in which monads reflect each other with respect to hyperbolic surfaces a = constant. This
would conform with the holography.

3. Without additional assumptions there is a complete scaling invariance at the level of M8.
The scales could come from the choice of 8-D causal diamond CD8 as intersection of 8-D
future and past directed light-cones inducing choice of cd in M4. CD serves as a correlate
for the perceptive field of a conscious entity in TGD inspired theory of consciousness and is
crucial element of zero energy ontology (ZEO) allowing to solve the basic problem of quantum
measurement theory.

2.3.2 Twistorial description of CDs

Could the map of the surfaces of 4-surfaces of M8 to cdconf × CP2 by a modification of M8 −H
correspondence allow to describe these scales? If so, compactification via twistorialization and
M8 − H correspondence would be the manner to describe these scales as something emergent
rather than fundamental.

1. The simplest option is that the scale of cdconf corresponds to that of CD8 and CD4. One
should also understand what CP2 scale corresponds. The simplest option is that CP2 scale
defines just length unit since it is difficult to imagine how this scale could appear at M8

level. cdconf scale squared would be multiple or CP2 scale squared, say prime multiple of it,
and assignable to ramified primes of extension of rationals. Inversions would produce further
scales. Inversion would allow kind of hologram like representation of physics in long length
scales in arbitrary short length scales and vice versa.

2. The compactness of cdconf corresponds to periodic time assignable to over-critical cosmologies
starting with big bang and ending with big crunch. Also CD brings in mind over-critical
cosmology, and one can argue that the dynamics at the level of cdconf reflects the dynamics
of ZEO at the level of M8.
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2.3.3 Modification of H and M8 −H correspondence

It is often said that the metric of M4
conf is defined only modulo conformal scaling factor. This would

reflect projectivity. One can however endow projective space CP3 with a metric with isometry
group SU(2, 2) and the fixing of the metric is like gauge choice by choosing representative in
the projective equivalence class. Thus CP3 with signature (3,-3) might perhaps define geometric
twistor space with base cdconf rather than M4

conf very much like the twistor space T (CP2) = F =

SU(3)/U(1)× U(1) at the level. Second projection would be to M4 and map twistor sphere to a
point of M4. The latter bundle structure would be singular since for points of M4 with light-like
separation the twistor spheres have a common point: this is an essential feature in the construction
of twistor amplitudes.

New picture requires a modification of the view about H and about M8 −H correspondence.

1. H would be replaced with cdconf ×CP2 and the corresponding twistor space with CP3 ×F .
M8 − H duality involves the decomposition M2 ⊂ M4 ⊂ M8 = M4 × CP2, where M4 is
quaternionic sub-space containing preferred place M2. The tangent or normal space of X4

would be characterized by a point of CP2 and would be mapped to a point of CP2 and the
point of CP2 - or rather point plus the space S2 or light-like vectors characterizing the choices
of M2 - would mapped to the twistor sphere S2 of CP3 by the standard formulas.

S2(cdconf ) would correspond to the choices of the direction of preferred octonionic imaginary
unit fixing M2 as quantization axis of spin and S2(CP2) would correspond to the choice
of isospin quantization axis: the quantization axis for color hyperspin would be fixed by
the choice of quaternionic M4 ⊂ M8. Hence one would have a nice information theoretic
interpretation.

2. The M4 point mapped to twistor sphere S2(CP3) would be projected to a point of cdconf
and define M8 −H correspondence at the level of M4. This would define compactification
and associate two scales with it. Only the ratio R(cdconf )/R(CP2) matters by the scaling
invariance at M8 level and one can just fixe the scale assignable to T (CP2) and call it CP2

length scale.

One should have a concrete construction for the hyperbolic variants of CPn.

1. One can represent Minkowski space and its variants with varying signatures as sub-spaces of
complexified quaternions, and it would seem that the structure of sub-space must be lifted to
the level of the twistor space. One could imagine variants of projective spaces CPn, n = 2, 3
as and HPn, n = 2, 3. They would be obtained by multiplying imaginary quaternionic
unit Ik with the imaginary unit i commuting with quaternionic units. If the quaternions
λ involved with the projectivization (q1, ..., qn) ≡ λ(q1, ..., qn) are ordinary quaternions, the
multiplication respects the signature of the subspace. By non-commutativity of quaternions
one can talk about left- and right projective spaces.

2. One would have extremely close correspondence between M4 and CP2 degrees of freedom
reflecting the M8−H correspondence. The projection CP3 → CP2 for E4 would be replaced
with the projection for the hyperbolic analogs of these spaces in the case of M4. The twistor
space of M4 identified as hyperbolic variant of CP3 would give hyperbolic variant of CP2 as
conformally compactified cd. The flag manifold F = SU(3)/U(1)× U(1) as twistor space of
CP2 would also give CP2 as base space.

The general solution of field equations at the level of T (H) would correspond to holomorphy
in general sense for the 6-surfaces defined by 3 vanishing conditions for holomorphic functions - 6
real conditions. Effectively this would mean the knowledge of the exact solutions of field equations
also at the level of H: TGD would be an integrable theory. Scattering amplitudes would in turn
constructible from these solutions using ordinary partial differential equations [L5].

1. The first condition would identify the complex coordinates of S2(cdconf ) and S2(CP2): here
one cannot exclude relative rotation represented as a holomorphic transformation but for
R(cdconf )� R(CP2) the effect of the rotation is small.
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2. Besides this there would be vanishing conditions for 2 holomorphic polynomials. The coor-
dinate pairs corresponding to M2 ⊂ M4 would correspond to hypercomplex behavior with
hyper complex coordinate u = ±t − z. t and z could be assigned with U(1) fibers of Hopf
fibrations SU(2)→ S2 .

3. The octonionic polynomial P (o) of degree n = heff/h0 with rational coefficients fixes the
extension of rationals and since the algebraic extension should be same at both sides, the
polynomials in twistor space should have same degree. This would give enormous boos
concerning the understanding of the proposed cancellation of fermionic Wick contractions in
SUSY scattering amplitudes forced by number theoretic vision [L5].

2.3.4 Possible problems related to the signatures

The different signatures for the metrics of the twistor spheres of cdconf and CP2 can pose technical
problems.

1. Twistor lift would replaceX4 with 6-D twistor spaceX6 represented as a 6-surface in T (M4)×
T (CP2). X6 is defined by dimensional reduction in which the twistor spheres S2(cdconf ) and
S2(CP2) are identified and define the twistor sphere S2(X4) of X6 serving as a fiber whereas
space-time surface X4 serves as a base. The simplest identification is as (θ, φ)S2(M4) =
(θ, φ)S2(CP2): the same can be done for the complex coordinates zS2(M4

conf )
= zS2(CP2))). An

open question is whether a Möbius transformation could relate the complex coordinates. The
metrics of the spheres are of opposite sign and differ only by the scaling factors R2(cdconf )
and R2(CP2).

2. For cdconf option the signatures of the 2 twistor spheres would be opposite (time-like for
cdconf ). For R(cdconf )/R(CP2) = 1. J2 = −g is the only consistent option unless the
signature of space is not totally positive or negative and implies that the Kähler forms of
the two twistor spheres differ by i. The magnetic contribution from S2(X4) would give rise
to an infinite value of cosmological constant proportional to 1/

√
g2, which would diverge

R(cdconf )/R(CP2) = 1. There is however no need to assume this condition as in the original
approach.

2.4 Hierarchy of length scale dependent cosmological constants in twisto-
rial description

At the level of M8 the hierarchy of CDs defines a hierarchy of length scales and must correspond
to a hierarchy of length scale dependent cosmological constants. Even fundamental scales would
emerge.

1. If one has R(cdconf )/R(CP2) >> 1 as the idea about macroscopic cdconf would suggest, the
contribution of S2(cdconf ) to the cosmological constant dominates and the relative rotation
of metrics and Kähler form cannot affect the outcome considerably. Therefore different
mechanism producing the hierarchy of cosmological constants is needed and the freedom to
choose rather freely the ratio R(cdconf )/R(CP2) would provide the mechanism. What looked
like a weakness would become a strength.

2. S2(cdconf would have time-like metric and could have large scale. Is this really accept-
able? Dimensional reduction essential for the twistor induction however makes S2(cdconf )
non-dynamical so that time-likeness would not be visible even for large radii of S2(cdconf )
expected if the size of cdconf can be even macroscopic. The corresponding contribution to
the action as cosmological constant has the sign of magnetic action and also Kähler mag-
netic energy is positive. If the scales are identical so that twistor spheres have same radius,
the contributions to the induced metric cancel each other and the twistor space becomes
metrically 4-D.

3. At the limit R(cdconf )→ RCP2) cosmological constant coming from magnetic energy density
diverges for J2 = −G option since it is proportional to 1/

√
g2. Hence the scaling factors must

be different. The interpretation is that cosmological constant has arbitrarily large values near
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CP2 length scale. Note however that time dependence is replaced with scale dependence and
space-time sheets with different scales have only wormhole contacts.

It would seem that this approach could produce the nice results of the earlier approach. The
view about how the hierarchy of cosmological constants emerges would change but the idea about
reducing coupling constant evolution to that for cosmological constant would survive. The inter-
pretation would be in terms of the breaking of scale invariance manifesting as the scales of CDs
defining the scales for the twistor spaces involved. New insights about p-adic coupling constant
evolution emerge and one finds a new “must” for ZEO. H = M4 × CP2 picture would emerge
as an approximation when cdconf is replaced with its tangent space M4. The consideration of
the quaternionic generalization of twistor space suggests natural identification of the conformally
compactified twistor space as being obtained from CP2 by making second complex coordinate
hyperbolic. This need not conform with the identification as U(2).

3 How to generalize twistor Grassmannian approach in TGD
framework?

One should be able to generalize twistor Grassmannian approach in TGD framework. The basic
modification is replacement of 4-D light-like momenta with their 8-D counterparts. The octonionic
interpretation encourages the idea that twistor approach could generalize to 8-D context. Higher-
dimensional generalizations of twistors have been proposed but the basic problem is that the index
raising and lifting operations for twistors do not generalize (see http://tinyurl.com/y24lkwce).

1. For octonionic twistors as pairs of quaternionic twistors index raising would not be lost work-
ing for MT option and light-like M8 momenta can be regarded sums of M4

T and E4 parts
as also twistors. Quaternionic twistor components do not commute and this is essential for
incidence relation requiring also the possibility to raise or lower the indices of twistors. Ordi-
nary complex twistor Grassmannians would be replaced with their quaternionic countparts.
The twistor space as a generalization of CP3 would be 3-D quaternionic projective space
T (M8) = HP3 with Minkowskian signature (6,6) of metric and having real dimension 12 as
one might expect.

Another option realizing non-commutativity could be based on the notion of quantum twistor
to be also discussed.

2. Second approach would rely on the identification of M4 × CP2 twistor space as a Cartesian
product of twistor spaces of M4 and CP2. For this symmetries are not broken, M4

L ⊂ M8

depends on the state and is chosen so that the projection of M8 momentum is light-like so
that ordinary twistors and CP2 twistors should be enough. M8−H relates varying M4

L based
and M4

T based descriptions.

3. The identification of the twistor space of M4 as T (M4) = M4 × S2 can be motivated by
octonionic considerations but might be criticized as non-standard one. The fact that quater-
nionic twistor space HP3 looks natural for M8 forces to ask whether T (M4) = CP3 endowed
with metric having signature (3,3) could work in the case of M4. In the sequel also a vision
based on the identification T (M4) = CP3 endowed with metric having signature (3,3) will
be discussed.

3.1 Twistor lift of TGD at classical level

In TGD framework twistor structure is generalized [K10, K12, K8, L4]. The inspiration for TGD
approach to twistorialization has come from the work of Nima Arkani-Hamed and colleagues [B11,
B5, B6, B8, B14, B12, B2]. The new element is the formulation of twistor lift also at the level of
classical dynamics rather than for the scattering amplitudes only [K10, K8, K12, L4].

1. The 4-D light-like momenta in ordinary twistor approach are replaced by 8-D light-like mo-
menta so that massive particles in 4-D sense become possible. Twistor lift of TGD takes

http://tinyurl.com/y24lkwce
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places also at the space-time level and is geometric counterpart for the Penrose’s replace-
ment of massless fields with twistors. Roughly, space-time surfaces are replaced with their
6-D twistor spaces represented as 6-surfaces. Space-time surfaces as preferred extremals are
minimal surfaces with 2-D string world sheets as singularities. This is the geometric manner
to express masslessness. X4 is simultaneously also extremal of 4-D Kähler action outside
singularities: this realizes preferred extremal property.

2. One can say that twistor structure of X4 is induced from the twistor structure of H =
M4 × CP2, whose twistor space T (H) is the Cartesian product of geometric twistor space
T (M4) = M4 × CP1 and T (CP2) = SU(3)/U(1)× U(1). The twistor space of M4 assigned
to momenta is usually taken as a variant of CP3 with metric having Minkowski signature and
both CP1 fibrations appear in the more precise definition of T (M4). Double fibration [B13]
(see http://tinyurl.com/yb4bt74l) means that one has fibration from M4 × CP1 - the
trivial CP1 bundle defining the geometric twistor space to the twistors space identified as
complex projective space defining conformal compactification of M4. Double fibration is
essential in the twistorialization of TGD [K9].

3. The basic objects in the twistor lift of classical TGD are 6-D surfaces in T (H) having the
structure of twistor space in the sense that they are CP1 bundles having X4 as base space.
Dimensional reduction to CP1 bundle effectively eliminates the dynamics in CP1 degrees
of freedom and its only remnant is the value of cosmological constant appearing as coeffi-
cient of volume term of the dimensionally reduced action containing also 4-D Kähler action.
Cosmological term depends on p-adic length scales and has a discrete spectrum [L4, L3].

CP1 has also an interpretation as a projective space constructed from 2-D complex spinors.
Could the replacement of these 2-spinors with their quantum counterparts defining in turn quan-
tum CP1 realize finite quantum measurement resolution in M4 degrees of freedom? Projective
invariance for the complex 2-spinors would mean that one indeed has effectively CP1.

3.2 Octonionic twistors or quantum twistors as twistor description of
massive particles

For M4
T option the particles are massive and the one encounters the problem whether and how to

generalize the ordinary twistor description.

3.3 Basic facts about twistors and bi-spinors

It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a

′
with λ̃ defined as complex conjugate of λ

and having opposite chirality (see http://tinyurl.com/y6bnznyn).

1. When λ is scaled by a complex number λ̃ suffers an opposite scaling. The bi-spinors allow
the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′ λ̃
a′ µ̃b

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (3.1)

2. Spinor indices are lowered and raised using antisymmetric tensors εαβ and εα̇β̇ . If the particle
has spin one can assign it a positive or negative helicity h = ±1. Positive helicity can be
represented by introducing artitrary negative (positive) helicity bispinor µa (µa′) not parallel
to λa (µa′) so that one can write for the polarization vector

http://tinyurl.com/yb4bt74l
http://tinyurl.com/y6bnznyn
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εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (3.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

3. What makes 4-D twistors unique is the existence of the index raising and lifting operations
using ε tensors. In higher dimensions they do not exist and this causes difficulties. For octo-
nionic twistors with quaternionic components possibly only in D = 8 the situation changes.

To get a very rough idea about twistor Grassmannian approach idea, consider tree amplitudes
of N = 4 SUSY as example and it is convenient to drop the group theory factor Tr(T1T2 · · ·Tn).
The starting point is the observation that tree amplitude for which more than n − 2 gluons have
the same helicity vanish. MHV amplitudes have exactly n− 2 gluons of same helicity- taken by a
convention to be negative- have extremely simple form in terms of the spinors and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(3.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].
An essential point in what follows is that the amplitudes are expressible in terms of the an-

tisymmetric bi-linears 〈λi, λj〉 making sense also for octotwistors and identifiable as quaternions
rather than octonions.

3.3.1 M8 −H duality and two alternative twistorializations of TGD

M8 −H duality suggests two alternative twistorializations of TGD.

1. The first approach would be in terms of M8 twistors suggested by quaternionic light-lineness
of 8-momenta. M8 twistors would be Cartesian products of M4 and E4 twistors. One can
imagine a straightforward generalization of twistor scattering amplitudes in terms of general-
ized Grassmannian approach replacing complex Grassmannian with quaternionic Grassman-
nian, which is a mathematically well-defined notion.

2. Second approach would rely on M4 × CP2 twistors, which are products of M4 twistors and
CP2 twistors: this description works nicely at classical space-time level but at the level of
momentum space the problem is how to describe massivation of M4 momenta using twistors.

3.3.2 Why the components of twistors must be non-commutative?

How to modify the 4-D twistor description of light-like 4-momenta so that it applies to massive
4-momenta?

1. Twistor consists of a pair (µα̇, λ
α) of bi-spinors in conjugate representations of SU(2). One

can start from the 4-D incidence relations for twistors

µα̇ = pαα̇λ
α .

Here pαα̇ denotes the representation of four-momentum pkσk. The antisymmetric permu-
tation symbols εαβ and its dotted version define antisymmetric “inner product” in twistor
space. By taking the inner product of µ with itself, one obtains the commutation relation
µ1µ2−µ2µ1 = 0, which is consistent with right-hand side for massless particles with pkp

k = 0.
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2. In TGD framework particles are massless only in 8-D sense so that the right hand side in
the contraction is in general non-vanishing. In massive case one can replace four-momentum
with unit vector. This requires

〈µ, µ〉 = µ1µ2 − µ2µ1 6= 0 .

The components of 2-spinor become non-commutative.

This raises two questions.

1. Could the replacement of complex twistors by quaternionic twistors make them non-commutative
and allow massive states?

2. Could non-commutative quantum twistors solve the problem caused by the light-likeness of
momenta allowing 4-D twistor description?

3.3.3 Octotwistors or quantum twistors?

One should be able to generalize twistor amplitudes and twistor Grassmannian approach to TGD
framework, where particles are massless in 8-D sense and massive in 4-D sense. Could twistors be
replaced by octonionic or quantum twistors.

1. One can express mass squared as a product of commutators of components of the twistors λ
and λ̃, which is essentially the conjugate of λ:

p · p = 〈λ, λ〉
[
λ̃, λ̃

]
. (3.4)

This operator should be non-vanishing for non-vanishing mass squared. Both terms in the
product vanish unless commutativity fails so that mass vanishes. The commutators should
have the quantum state as its eigenstate.

2. Also 4-momentum components should have well-defined values. Four-momentum has ex-
pression paa

′
= λaλ̃a

′
in massless case. This expression should generalized to massive case

as such. Eigenvalue condition and reality of the momentum components requires that the
components paa

′
are commuting Hermitian operators.

In twistor Grassmannian approach complex but light-like momenta are possible as analogs of
virtual momenta. Also in TGD framework the complexity of Kähler coupling strength allows
to consider complex momenta. For twistor lift they however differ from real momenta only
by a phase factor associated with the 1/αK associated with 6-D Kähler action.

Remark: I have considered also the possibility that states are eigenstates only for the longi-
tudinal M2 projection of 4-momentum with quark model of hadrons serving as a motivation.

(a) Could this equation be obtained in massive case by regarding λa and λ̃a
′

as commuting
octo-spinors and their complex conjugates? Octotwistors would naturally emerge in the
description at imbedding space level. I have already earlier considered the notion of
octotwistor [K4] [L1]).

(b) Or could it be obtained for quantum bi-spinors having same states as eigenstates. Could
quantum twistors as generalization of the ordinary twistors correspond to the reduction
of the description from the level of M8 or H to at space-time level so that one would have
4-D twistors and massive particles with 4-momentum identifiable as Noether charge for
the action principle determining preferred extremals? I have considered also the notion
of quantum spinor earlier [K2, K6, K3, K5, K7].

3. In the case of quantum twistors the generalization of the product of the quantities 〈λi, λi+1〉
appearing in the formula should give rise to c-number in the case of quantum spinors. Can
one require that the quantities 〈λi, λi+1〉 or even 〈λi, λj〉 are c-numbers simultaneously? This
would also require that 〈λ, λ〉 is non-vanishing c-number in massive case: also incidence rela-
tion suggest this condition. Could one think λ as an operator such that 〈λ, λ〉 has eigenvalue
spectrum corresponding to the quantities 〈λi, λi+1〉 appearing in the scattering amplitude?
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3.4 The description for M4
T option using octo-twistors?

For option I with massive M4
T projection of 8-momentum one could imagine twistorial description

by using M8 twistors as products of M4
T and E4 twistors, and a rather straightforward generaliza-

tion of standard twistor Grassmann approach can be considered.

3.4.1 Could twistor Grassmannians be replaced with their quaternionic variants?

The first guess would simply replace Gr(k, n) with Gr(2k, 2n) 4-D twistors 8-D twistors. From
twistor amplitudes with quaternionic M8-momenta one could construct physical amplitudes by
going from 8-momentum basis to the 4-momentum- basis with wave functions in irreps of SO(3).
Life is however not so simple.

1. The notion of ordinary twistor involves in an essential manner Pauli matrices σi satisfying
the well-known anti-commutation relations. They should be generalized. In fact, σ0 and√
−1σi can be regarded as a matrix representation for quaternionic units. They should have

analogs in 8-D case.

Octonionic units iei indeed provide this analog of sigma matrices. Octonionic units for
the complexification of octonions allow to define incidence relation and representation of 8-
momenta in terms of octo-spinors. They do not however allow matrix representation whereas
time-like octonions allow interpretation as quaternion in suitable bases and thus matrix
representation. Index raising operation is essential for twistors and makes dimension D = 4
very special. For naive generalizations of twistors to higher dimensions this operation is lost
(see http://tinyurl.com/y24lkwce).

2. Could one avoid multiplication of more than two octo-twistors in Grassmann amplitudes
leading to difficulties with associativity. An important observation is that in the expressions
for the twistorial scattering amplitudes only products 〈λi, λj〉 or [λ̃i, λ̃i+1] but not both occur.
These products are associative even if the spinors are replaced by quaternionic spinors.

These operations are antisymmetric in the arguments, which suggests cross product for
quaternions giving rise to imaginary quaternion so that the product of objects would give
rise to a product of imaginary quaternions. This might be a problem since a large number
of terms in the product would approach to zero for random imaginary quaternions.

An ad hoc guess would be that scattering probability is proportional to the product of
amplitude as product 〈λi, λj〉 and its “hermitian conjugate” with the conjugates [λ̃i, λ̃i+1]
in the reverse order (this does not affect the outcome) so that the result would be real.
Scattering amplitude would be more like quaternion valued operator. Could one have a
formulation of quantum theory or at least TGD view about quantum theory allowing this?

3. If ordinary massless 4-momenta correspond to quaternionic sigma matrices, twistors can be
regarded as pairs of 2-spinors in matrix representation. Octonionic 8-momenta should cor-
respond to pairs of 4-spinors. As already noticed, octonions do not however allow matrix
representation! Octonions for a fixed decomposition M8 = M4 ×E4 can be however decom-
posed to linear combination of two quaternions just like complex numbers to a combination of
real numbers. These quaternions would have matrix representation and quaternionic analogs
of twistor pair (µ, λ̃). One could perhaps formulate the generalization of twistor Grassmann
amplitudes using these pairs. This would suggest replacement of complex bi-spinors with
complexified quaternions in the ordinary formalism. This might allow to solve problems with
associativity if only 〈λi, λj〉 or [λ̃i, λ̃i+1] appear in the amplitudes.

4. The argument in the momentum conserving delta function δ(λiλ̃i) should be real so that the
conjugation with respect to i would not change the argument and non-commutativity would
not be problem. In twistor Grassmann amplitudes the argument C · Z of delta momentum
conserving function is linear in the components of complex twistor Z. If complex twistor
is replaced with quaternionic twistor, the Grassmannian coordinates C in delta functions
δ(C · Z) must be replaced with quaternionic one.

http://tinyurl.com/y24lkwce
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The replacement of complex GrassmanniansGrC(k, n) with quaternionic GrassmanniansGrH(k, n)
is therefore highly suggestive. Quaternionic Grassmannians (see http://tinyurl.com/y23jsffn)
are quotients of symplectic Lie groups GrH(k, n) = Un(H)/(Ur(H) × Un−r(H)) and thus well-
defined. In the description using GlH(k, n) matrices the matrix elements would be quaternions
and k × k minors would be quaternionic determinants.

Remark: Higher-D projective spaces of octonions do not exist so that in this sense dimension
D = 8 for imbedding space would be maximal.

3.4.2 Twistor space of M8 as quaternionic projective space HP3?

The simplest Grassmannian corresponds to twistor space and one can look what one obtains in
this case. One can also try to understand how to cope with the problems caused by Minkowskian
signature.

1. In previous section it was found that the modification of H to H = cdconf×CP2 with cdconf =
CP2,h identifiable as CP2 with Minkowskian signature of metric is strongly suggestive.

2. For E8 quaternionic twistor space as analog of CP3 would be its quaternionic variant HP3

with expected dimension D = 16 − 4 = 12. Twistor sphere would be replaced with its
quaternionic counterpart SU(2)H/U(1)H having dimension 4 as expected. CD8,conf as con-
formally compactified CD8 must be 8-D. The space HP2 has dimension 8 and is analog of
CP2 appearing as analog of base space of CP3 identified as conformally compactified 4-D
causal diamond cdconf . The quaternionic analogy of M4

conf = U(2) identified as conformally

compactified M4 would be U(2)H having dimension D = 10 rather than 8.

HP3 and HP2 might work for E8 but it seems that the 4-D analog of twistor sphere should
have signature (2,-2) whereas base space should have signature (1,-7). Some kind of hy-
perbolic analogs of these spaces obtained by replacing quaternions with their hypercomplex
variant seem to be needed. The same receipe in the twistorialization of M4 would give cdconf
as analog of CP2 with second complex coordinate made hyperbolic. I have already considered
the construction of hyperbolic analogs of CP2 and CP3 as projective spaces. These results
apply to HP2 and HP3.

3. What about octonions? Could one define octonionic projective plane OP2 and its hyperbolic
variants corresponding to various sub-spaces of M8? Euclidian OP2 known as Cayley plane
exists as discovered by Ruth Moufang in 1933. Octonionic higher-D projective spaces and
Grassmannians do not however exist so that one cannot assign OP3 as twistor spaces.

3.4.3 Can one obtain scattering amplitudes as quaternionic analogs of residue inte-
grals?

Can one obtain complex valued scattering amplitudes (i commuting with octonionic units) in this
framework?

1. The residue integral over quaternionic C-coordinates should make sense, and pick up the
poles as vanishing points of minors. The outcome of repeated residue integrations should
give a sum over poles with complex residues.

2. Residue calculus requires analyticity. The problem is that quaternion analyticity based on a
generalization of Cauchy-Riemann equations allows only linear functions. One could define
quaternion (and octonion) analyticity in restricted sense using powers series with real coeffi-
cients (or in extension involving i commuting with octonion units). The quaternion/octonion
analytic functions with real coefficients are closed with respect to sum and product. I have
used this definition in the proposed construction of algebraic dynamics for in X4 ⊂M8 [L1].

3. Could one define the residue integral purely algebraically? Could complexity of the coeffi-
cients (i) force complex outcome: if pole q0 is not quaternionically real the function would
not allow decompose to f(q)/(q − q0) with f allowing similar Taylor series at pole. If so,
then the formulas of Grassmannian formalism could generalize more or less as such at M8

level and one could map the predictions to predictions of M4 × CP2 approach by analog of
Fourier transform transforming these quantum state basis to each other.

http://tinyurl.com/y23jsffn
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This option looks rather interesting and involves the key number theoretic aspects of TGD in
a crucial manner.

3.5 Do super-twistors make sense at the level of M8?

By M8 −H duality [L1] there are two levels involved: M8 and H. These levels are encountered
both at the space-time level and momentum space level. Do super-octonions and super-twistors
make sense at M8 level?

1. At the level of M8 the high uniqueness and linearity of octonion coordinates makes the
notion of super-octonion natural. By SO(8) triality octonionic coordinates (bosonic octet
80), octonionic spinors (fermionic octet 81), and their conjugates (anti-fermionic octet 8−1)
would for triplet related by triality. A possible problem is caused by the presence of separately
conserved B and L. Together with fermion number conservation this would require N = 4
or even N = 4 SUSY, which is indeed the simplest and most beautiful SUSY.

2. At the level of the 8-D momentum space octonionic twistors would be pairs of two quater-
nionic spinors as a generalization of ordinary twistors. Super octo-twistors would be obtained
as generalization of these.

The progress in the understanding of the TGD version of SUSY [L5] led to a dramatic progress
in the understanding of super-twistors.

1. In non-twistorial description using space-time surfaces and Dirac spinors in H, imbedding
space coordinates are replaced with super-coordinates and spinors with super-spinors. Theta
parameters are replaced with quark creation and annihilation operators. Super-coordinate is
a super-polynomial consisting of monomials with vanishing total quark number and appearing
in pairs of monomial and its conjugate to guarantee hermiticity.

Dirac spinor is a polynomial consisting of powers of quark creation operators multiplied by
monomials similar to those appearing in the super-coordinate. Anti-leptons are identified
as spartners ofquarks identified as local 3-quark states. The multi-spinors appearing in the
expansions describe as such local many-quark-antiquark states so that super-symmetrization
means also second quantization. Fermionic and bosonic states assignable to H-geometry
interact since super-Dirac action contains induced metric and couplings to induced gauge
potentials.

2. The same recipe works at the level of twistor space. One introduces twistor super-coordinates
analogous to super-coordinates of H and M8. The super YM field of N = 4 SUSY is replaced
with super-Dirac spinor in twistor space. The spin degrees of freedom associated with twistor
spheres S2 would bring in 2 additional spin-like degrees of freedom.

The most plausible option is that the new spin degrees are frozen just like the geometric S2

degrees of freedom. The freezing of bosonic degrees of freedom is implied by the construction
of twistor space of X4 by dimensional reduction as a 6-D surface in the product of twistor
spaces of M4 and CP2. Chirality conditions would allow only single spin state for both
spheres.

3. Number theoretical vision implies that the number of Wick contractions of quarks and anti-
quarks cannot be larger than the degree of the octonionic polynomial, which in turn should be
same as that of the polynomials of twistor space giving rise to the twistor space of space-time
surface as 6-surface. The resulting conditions correspond to conserved currents identifiable
as Noether currents assignable to symmetries.

Also Grassmannian is replaced with super-Grassmannian and super-coordinates as matrix ele-
ments of super matrices are introduced.

1. The integrand of the Grassmannian integral defining the amplitude can be expanded in Taylor
series with respect to theta parameters associated with the super coordinates C as rows of
super G(k, n) matrix.
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2. The delta function δ(C,Z) factorizing into a product of delta functions is also expanded in
Taylor series to get derivatives of delta function in which only coordinates appear. By partial
integration the derivatives acting on delta function are transformed to derivatives acting on
integrand already expanded in Taylor series in theta parameters. The integration over the
theta parameters using the standard rules gives the amplitudes associated with different
powers of theta parameters associated with Z and from this expression one can pick up the
scattering amplitudes for various helicities of external particles.

The super-Grassmannian formalism is extremely beautiful but one must remember that one is
dealing with quantum field theory. It is not at all clear whether this kind of formalism generalizes
to TGD framework, where particle are 3-surfaces [L1]. The notion of cognitive representation ef-
fectively reducing 3-surfaces to a set of point-like particles strongly suggests that the generalization
exists.

The progress in understanding of M8 − H duality throws also light to the problem whether
SUSY is realized in TGD and what SUSY breaking does mean. It seems now clear that sparticles
are predicted and SUSY remains in the simplest scenario exact but that p-adic thermodynamics
causes thermal massivation: unlike Higgs mechanism, this massivation mechanism is universal and
has nothing to do with dynamics. This is due to the fact that zero energy states are superpositions
of states with different masses. The selection of p-adic prime characterizing the sparticle causes
the mass splitting between members of super-multiplets although the mass formula is same for all
of them.

The increased undestanding of what twistorialization leads to an improved understanding of
what twistor space in TGD could be. It turns out that the hyperbolic variant CP3,h of the
standard twistor space CP3 is a more natural identification than the earlier M4×S2 also in TGD
framework but with a scale corresponding to the scale of CD at the level of M8 so that one obtains
a scale hierarchy of twistor spaces. Twistor space has besides the projection to M4 also a bundle
projection to the hyperbolic variant CP2,h of CP2 so that a remarkable analogy between M4 and
CP2 emerges. One can formulate super-twistor approach to TGD using the same formalism as will
be discussed in this article for the formulation at the level of H. This requires introducing besides
6-D Kähler action and its super-variant also spinors and their super-variants in super-twistor space.
The two formulations are equivalent apart from the hierarchy of scales for the twistor space. Also
M8 allows analog of twistor space as quaternionic Grassmannian HP3 with signature (6,6). What
about super- variant of twistor lift of TGD? consider first the situation before the twistorialization.

1. The parallel progress in the understanding SUSY in TGD framework [L5] leads to the iden-
tification of the super-counterparts of M8, H and of twistor spaces modifying dramatically
the physical interpretation of SUSY. Super-spinors in twistor space would provide the de-
scription of quantum states. Super-Grassmannians would be involved with the construction
of scattering amplitudes. Quaternionic super Grassmannians would be involved with M8

description.

2. In fermionic sector only quarks are allowed by SO(1, 7) triality and that anti-leptons are local
3-quark composites identifiable as spartners of quarks. Gauge bosons, Higgs and graviton
would be also spartners and assignable to super-coordinates of imbedding space express-
ible as super-polynomials of quark oscillator operators. Super-symmetrization means also
quantization of fermions allowing local many-quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

3.5.1 Super-counterpart of twistor lift using the proposed formalism

The construction of super-coordinates and super-spinors [L5] suggests a straightforward formula-
tion of the super variant of twistor lift . One should only replace the super-imbedding space and
super-spinors with super-twistor space and corresponding super-spinors and formulate the theory
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using 6-D super-Kähler action and super-Dirac equation and the same general prescription for
constructing S-matrix. Dimensional reduction should give essentially the 4-D theory apart from
the variation of the radius of the twistor space predicting variation of cosmological constant. The
size scale of CD would correspond to the size scale of the twistor space for M4 and for CP2 the
size scale would serve as unit and would not vary.

The first step is the construction of ordinary variant of Kähler action and modified Dirac action
for 6-D surfaces in 12-D twistor space.

1. Replace the spinors of H with the spinors of 12-D twistor space and assume only quark
chirality. By the bundle property of the twistor space one can express the spinors as tensor
products of spinors of the twistor spaces T (M4) and T (CP2). One can express the spinors
of T (M4) tensor products of spinors of M4 - and S2 spinors locally and spinors of T (CP2)
as tensor products of CP2 - and S2 spinors locally. Chirality conditions should reduce the
number of 2 spin components for both T (M4) and T (CP2) to one so that there are no
additional spin degrees of freedom.

The dimensional reduction can be generalized by identifying the two S2 fibers for the preferred
extremals so that one obtains induced twistor structure. In spinorial sector the dimensional
reduction must identify spinorial degrees of freedom of the two S2s by the proposed chirality
conditions also make them non-dynamical. The S2 spinors covariantly constant in S2 degrees
of freedom.

2. Define the spinor structure of 12-D twistor space, define induced spinor structure at 6-D
surfaces defining the twistor space of space-time surface. Define the twistor counterpart of
the analog of modified Dirac action using same general formulas as in case of H.

Construct next the super-variant of this structure.

1. Introduce second quark oscillator operators labelled by the points of cognitive representa-
tion in 12-D twistor space effectively replacing 6-D surface with its discretization and having
quantized quark field q as its continuum counterpart. Replace the coordinates of the 12-D
twistor space with super coordinates hs expressed in terms of quark and anti-quark oscil-
lator operators labelled by points of cognitive representation, and having interpretation as
quantized quark field q restricted to the points of representation.

2. Express 6-D Kähler action and Dirac action density in terms of super-coordinates hs. The
local monomials of q appear in hs and therefore also in the expansion of super-variants of
modified gamma matrices defined by 6-D ähler action as contractions of canonical momentum
currents of the action density LK with the gamma matrices of 12-D twistor space. In super-
Kähler action also the local composites of q giving rise to currents formed from the local
composites of 3-quarks and antiquarks and having interpretation as leptons and anti-leptons
occur - leptons would be therefore spartners of squarks.

3. Perform super-expansion also for the induced spinor field qs in terms of monomials of q. qs(q)
obeys super-Dirac equation non-linear in q. But also q should satisfy super-Dirac action
as an analog of quantized quark field and non-linearity indeed forces also q to have has
super-expansion. Thus both quark field q and super-quark field qs both satisfy super-Dirac
equation.

The only possibility is qs = q stating fixed point property under q → qs having interpretation
in terms of quantum criticality fixing the values of the coefficients of various terms in qs and
in the super-coordinate hs having interpretation as coupling constants. One has quantum
criticality and discrete coupling constant evolution with respect to extension of rationals
characterizing adelic physics.

4. Super-Dirac action vanishes for its solutions and the exponent of super-action reduces to
exponent of super-Kähler action, whose matrix elements between positive and negative energy
parts of zero energy states give S-matrix elements.

Super-Dirac action has however an important function: the derivatives of quark currents
appearing in the super-Kähler action can be transformed to a linear strictly local action of
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super spinor connection (∂α → Aα,s effectively). Without this lattice discretization would
be needed and cognitive representation would not be enough.

To sum up, the super variants of modified gamma matrices of the 6-surface would satisfy the
condition Dα,sΓ

α
s = 0 expressing preferred extremal property and guaranteeing super-hermicity of

Ds. qs would obey super-Dirac equation Dsqs = 0. The self-referential identification q = qs would
express quantum criticality of TGD.

4 Could one describe massive particles using 4-D quantum
twistors?

The quaternionic generalization of twistors looks almost must. But before this I considered also
the possibility that ordinary twistors could be generalized to quantum twistors to describe particle
massivation. Quantum twistors could provide space-time level description, which requires 4-D
twistors, which cannot be ordinary M4 twistors. Also the classical 4-momenta, which by QCC
would be equal to M8 momenta, are in general massive so that the ordinary twistor approach
cannot work. One cannot of course exclude the possibility that octo-twistors are enough or that
M8
L description is equivalent with space-time description using quantum twistors.

4.1 How to define quantum Grassmannian?

The approach to twistor amplitude relies on twistor Grassmann approach [B7, B4, B3, B10, B11,
B2] (see http://tinyurl.com/yxllwcsn). This approach should be replaced by replacing Grass-
mannian GR(K,N) = Gl(n,C)/Gl(n−m,C)×Gl(m,C) with quantum Grassmannian.

4.1.1 Naive approach to the definition of quantum Grassmannian

Quantum Grassmannian is a notion studied in mathematics and the approach of [A1] (see http:

//tinyurl.com/y5q6kv6b) looks reasonably comprehensible even for physicist. I have already
earlier tried to understand quantum algebras and their possible role in TGD [K1]. It is however
better to start as ignorant physicist and proceed by trial and error and find whether mathematicians
have ended up with something similar.

1. Twistor Grassmannian scattering amplitudes involving k negative helicity gluons involve
product of k × k minors of an k × n matrix C taken in cyclic order. C defines k × n
coordinates for Grassmannian Gr(k, n) of which part is redundant by the analogs of gauge
symmetries Gl(n − m,C) × Gl(m,C). Here n is the number of external gluons and k the
number of negative helicity gluons. The k × k determinants taken in cyclic order appear
in the integrand over Grassmannian. Also the quantum variants of these determinants and
integral over quantum Grassmannian should be well-defined and residue calculus gives hopes
for achieving this.

2. One should define quantum Grassmannian as algebra according to my physicist’s understand-
ing algebra can be defined by starting from a free algebra generated by a set of elements -
now the matrix elements of quantum matrix. One poses on these elements relations to get
the algebra considered. What could these conditions be in the recent case.

3. A natural condition is that the definition allows induction in the sense that its restriction to
quantum sub-matrices is consistent with the general definition of k × n quantum matrices.
In particular, one can identify the columns and rows of quantum matrices as instances of
quantum vectors.

4. How to generalize from 2× 2 case to k×n case? The commutation relations for neighboring
elements of rows and columns are fixed by induction. In 4× 4 corresponding to M4 twistors
one would obtain for (a1, ..., a4). aiai+1 = qai+1ai cyclically (k = 1 follows k = 4).

What about commutations of ai and ai+k, k > 1. Is there need to say anything about these
commutators? In twistor Grassmann approach only connected k × k minors in cyclic order

http://tinyurl.com/yxllwcsn
http://tinyurl.com/y5q6kv6b
http://tinyurl.com/y5q6kv6b
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appear. Without additional relations the algebra might be too large. One could argue that
the simplest option is that one has aiai+k = qai+kai for k odd aiai+k = q−1ai+kai for k
even. This is required from the consistency with cyclicity. These conditions would allow to
define also sub-determinants, which do not correspond to connected k×k squares by moving
the elements to a a connected patch by permutations of rows and columns.

5. What about elements along diagonal? The induction from 2 × 2 would require the commu-
tativity of elements along right-left diagonals. Only commutativity of the elements along
left-right diagonal be modified. Or is the commutativity lost only along directions parallel
to left-right diagonal? The problem is that the left-right and right-left directions are trans-
formed to each other in odd permutations. This would suggest that only even permutations
are allowed in the definition of determinant

6. Could one proceed inductively and require that one obtains the algebra for 2 × 2 matrices
for all 2 × 2 minors? Does this apply to all 2 × 2 minors or only to connected 2 × 2 minors
with cyclic ordering of rows and columns so that top and bottom row are nearest neighbors
as also right and left column. Also in the definition of 3× 3 determinant only the connected
developed along the top row or left column only 2×2 determinants involving nearest neighbor
matrix elements appear. This generalizes to k × k case.

It is time to check how wrong the naive intuition has been. Consider 2× 2 matrices as simple
example. In this case this gives only 1 condition (ad − bc = −da + cb) corresponding to the
permutation of rows or columns. Stronger condition suggested by higher-D case would be ad = da
and bc = cb. The definition of 2 × 2 in [A1] however gives for quantum 2-matrices (a, b; c, d) the
conditions

ac = qca , bd = qda ,
ab = qba , cd = qdc ,
bc = cb , ad− da = (q − q−1)bc .

(4.1)

The commutativity along left-right diagonal is however lost for q 6= 1 so that quantum determinant
depends on what row or column is used to expand it. The modification of the commutation relations
along rows and columns is what one might expect and wants in order to achieve non-commutativity
of twistor components making possible massivation in M4 sense.

The limit q → 1 corresponds to non-trivial algebra in general and would correspond to β = 4
for inclusions of HFFs expected to give representations of Kac-Moody algebras. At this limit
only massless particles in 4-D sense are allowed. This suggests that the reduction of Kac-Moody
algebras to quantum groups corresponds to symmetry breaking associated with massivation in 4-D
sense.

4.1.2 Mathematical definition of quantum Grassmannian

It would seem that the proposed approach is reasonable. The article [A2] (see http://tinyurl.

com/yycflgrd) proposing a definition of quantum determinant explains also the basic interpreta-
tion of what the non-commutativity of elements of quantum matrices does mean.

1. The first observation is that the commutation of the elements of quantum matrix corresponds
to braiding rather than permutation and this operation is represented by R-matrix. The
formula for the action of braiding is

Rabcdt
c
et
d
f = tadt

b
cR

cd
ef . (4.2)

Here R-matrix is a solution of Yang-Baxter equaion and characterizes completely the commu-
tation relations between the elements of quantum matrix. The action of braiding is obtained
by applying the inverse of R-matrix from left to the equation. By iterating the braidings of
nearest neighbors one can deduce what happens in the braiding exchanging quantum matrix
elements which are not nearest neighbors. What is nice that the R-matrix would fix the
quantum algebra, in particular quantum Grassmannian completely.

http://tinyurl.com/yycflgrd
http://tinyurl.com/yycflgrd
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2. In the article the notion of quantum determinant is discussed and usually the definition of
quantum determinant involves also the introduction of metric gab allowing the raising of the
indices of the permutation symbol. One obtains formulas relating metric and R-matrix and
restricting the choice of the metric. Note however that if ordinary permutation symbol is
used there is no need to introduce the metric.

The definition quantum Grassmannian proposed does not involve hermitian conjugates of the
matrices involved. One can define the elements of Grassmannian and Grassmannian residue inte-
grals without reference to complex conjugation: could one do without hermitian conjugates? On
the other hand, Grassmannians have complex structure and Kähler structure: could this require
hermitian conjugates and commutation relations for these?

4.2 Two views about quantum determinant

If one wants to define quantum matrices in Gr(k, n) so that quantal twistor-Grassmann amplitudes
make sense, the first challenge is to generalize the notion of k × k determinant.

One can consider two approaches concerning the definition of quantum determinant.

1. The first guess is that determinant should not depend on the ordering of rows or columns
apart from the standard sign factor. This option fails unless one modifies the definition of
permutation symbol.

2. The alternative view is that permutation symbol is ordinary and there is dependence on
the row or column with respect to which one develops. This dependence would however
disappear in the scattering amplitudes. If the poles and corresponding residues associated
with the k× k-minors of the twistor amplitude remain invariant under the permutation, this
is not a problem. In other words, the scattering amplitudes are invariant under braid group.
This is what twistor Grassmann approach implies and also TGD predict.

For the first option quantum determinant would be braiding invariant. The standard definition
of quantum determinant is discussed in detail in [A2] (see http://tinyurl.com/yycflgrd).

1. The commutation of the elements of quantum matrix corresponds to braiding rather than
permutation and as found, this operation is represented by R-matrix.

2. Quantum determinant would change only by sign under the braidings of neighboring rows and
columns. The braiding for the elements of quantum matrix would compensate the braiding
for quantum permutation symbol. Permutation symbol is assumed to be q-antisymmetric
under braiding of any adjacent indices. This requires that permutation ik ↔ ik+1 regarded
as braiding gives a contraction of quantum permutation symbol εi1,...1k with Rijikik+1

plus
scaling by some normalization factor λ besides the change of sign.

εa1...akak+1...an = −λεa1...ij...anRjiakak+1
. (4.3)

The value of λ can be calculated.

3. The calculation however leads to the result that that quantum determinantD satisfiesD2 = 1!
If the result generalizes for sub-determinants defined by k×k-minors (, which need not be the
case) would have determinants satisfying D2 = 1, and the idea about vanishing of k×k-minor
essential for getting non-trivial twistor scattering amplitude as residue would not make sense.

It seems that the braiding invariant definition of quantum determinant, which of course in-
volves technical assumptions) is too restrictive. Does this mean that the usual definition requiring
development with respect to preferred row is the physically acceptable option? This makes sense
if only the integral but not integrand is invariant under braidings. Braiding symmetry would be
analogous to gauge invariance.

http://tinyurl.com/yycflgrd
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4.3 How to understand the Grassmannian integrals defining the scat-
tering amplitudes?

The beauty of the twistor Grassmannian approach is that the residue integrals over quantum
Gr(k, n) would reduce to sum over poles (or possibly integrals over higher-D poles). Could residue
calculus provide a manner to integrate q-number valued functions of q-numbers? What would be
the minimal assumptions allowing to obtain scattering amplitudes as c-numbers?

Consider first what the integrand to be replaced with its quantum version looks like.

1. Twistor scattering amplitudes involve also momentum conserving delta function expressible
as δ(λaλ̃

a). This sum and - as it seems - also the summands should be c-numbers - in other
words one has eigenstates of the operators defining the summands.

2. By introducing Grassmannian space Gr(k, n) with coordinates Cα,i (see http://tinyurl.

com/yxllwcsn), one can linearize δ(λaλ̃
a) to a product of delta functions δ(C ·Z) = δ(C ·λ̃)×

δ(C⊥ · λ) (I have not written the delta function is Grassmann parameters related to super
coordinates). Z is the n-vector formed by the twistors associated with incoming particles.

The 4×k components of Cα,kZ
k should be c-numbers at least when they vanish. One should

define quantum twistors and quantum Grassmannian and pose the constraints on the poles.

How to achieve the goal? Before proceeding it is good to recall the notion of non-commutative
geometry (see http://tinyurl.com/yxrcr8xv). Ordinary Riemann geometry can be obtained
from exterior algebra bundle, call it E. The Hilbert space of square integrable sections in E carries
a representation of the space of continuous functions C(M) by multiplication operators. Besides
this there is unbounded differential operator D, which so called signature operator and defined in
terms of exterior derivative and its dual: D = d+d∗. This spectral triple of algebra, Hilbert space,
and operator D allows to deduce the Riemann geometry.

The dream is that one could assign to non-commutative algebras non-commutative spaces using
this spectral triple. The standard q-p quantization is example of this: one obtains now Lagrange
manifolds as ordinary commutative manifolds.

Consider now the situation in the case of quantum Grassmannian.

1. In the recent case the points defining the poles of the function - it might be that the eventual
poles are not a set of discrete points but a higher-dimensional object - would form the
commutative part of non-commutative quantum space. In this space the product of quantum
minors would become ordinary number as also the argument C ·Z of the delta function. This
commutative sub-space would correspond to a space in which maximum number of minors
vanish and residues reduce to c-numbers.

Thus poles of the integrand of twistor amplitude would correspond to eigenstates for some
k× k minors of Grassmannian with a vanishing eigenvalue. The residue at the pole at given
step in the recursion pole by pole need not be c-number but the further residue integrals
should eventually lead to a c-number or c-number valued integrand.

2. The most general option would be that the conditions hold true only in the sense that some
k×k minors for k ≥ 2 are c-numbers and have a vanishing eigenvalue but that smaller minors
need not have this property. Also Cα,kZ

k should be c-numbers and vanish. Residue calculus
would give rise to lower-D integrals in step-wise manner.

The simplest and most general option is that one can speak only about eigenvalues of k × k
minors. At pole it is enough to have one minor for which eigenvalue vanishes whereas other
minors could remain quantal. In the final reduction the product of all non-vanishing k × k
minors appearing in cyclic order in the integrand should have a well-defined c-number as
eigenvalue. Does this allow the appearance of only cyclic minors.

A stronger condition would be that all non-vanishing minors reduce to their eigenvalues.
Could it be that only the n cyclic minors can commute simultaneously and serve as analogs
of q-coordinates in phase space? The complex dimension of GC(n, k) is d = (n− k)k. If the
space spaced by minors corresponds to Lagrangian manifold with real dimension not larger
than d, one has k ≤ d = (n − k)k. This gives k ≤ n/2(1 +

√
1− 2/n) For k = 2 this gives

http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxrcr8xv
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k ≤ n/2. For n → ∞ one has k ≤ n/2 + 1. For k > n/2 one can change the roles of
positive and negative helicities. It has been found that in certain sense the Grassmannian
contributing to the twistor amplitude is positive.

The notion of positivity found to characterize the part of Grassmannian contributing to
the residue integral and also the minors and the argument of delta function [B9](see http:

//tinyurl.com/yd9tf2ya) would suggest that it is also real sub-space in some sense and
this finding supports this picture.

The delta function constraint forcing C ·Z to zero must also make sense. C ·Z defines k× 6
matrix and also now one must consider eigenvalues of C · Z. Positivity suggest reality also
now. Z adds 4×n degrees of freedom and the number 6×k of additional conditions is smaller
than 4 × n. 6k ≤ 4 × n combined with k ≤ n/2 gives k ≤ n/2 so that the conditions seems
to be consistent.

3. The c-number property for the cyclic minors could define the analog of Lagrangian manifold
for the phase space or Kähler manifold. One can of course ask, whether Kähler structure
of Gr(k, n) could generalize to quantum context and give the integration region as a sub-
manifold of Lagrangian manifold of Gr(k, n) and whether the twistor amplitudes could reduce
to integral over sub-manifold of Lagrangian manifold of ordinary Gr(k, n).

To sum up, I have hitherto thought that TGD allows to get rid of the idea of quantization of
coordinates. Now I have encountered this idea from totally unexpected perspective in an attempt
to understand how 8-D masslessness and its twistor description could relate to 4-D one. Grass-
mannians are however very simple and symmetric objects and have natural coordinates as k × n
matrices interpretable as quantum matrices. The notion of quantum group could find very concrete
application as a solution to the basic problem of the standard twistor approach. Therefore one
can consider the possibility that they have quantum counterparts and at least the residue integrals
reducing to c-numbers make sense for quantum Grassmannians in algebraic sense.
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