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Abstract

TGD leads to several proposals for the exact solution of field equations defining space-time
surfaces as preferred extremals of twistor lift of Kähler action. So called M8−H duality is one
of these approaches. The beauty of M8 −H duality is that it could reduce classical TGD to
algebraic geometry and would immediately provide deep insights to cognitive representation
identified as sets of rational points of these surfaces.

In the sequel I shall consider the following topics.

1. I will discuss basic notions of algebraic geometry such as algebraic variety, surface, and
curve, all rational point of variety central for TGD view about cognitive representation,
elliptic curves and surfaces, and rational and potentially rational varieties. Also the
notion of Zariski topology and Kodaira dimension are discussed briefly. I am not a
mathematician and what hopefully saves me from horrible blunders is physical intuition
developed during 4 decades of TGD.

2. It will be shown how M8−H duality could reduce TGD at fundamental level to octonionic
algebraic geometry. Space-time surfaces in M8 would be algebraic surfaces identified as
zero loci for imaginary part IM(P ) or real part RE(P ) of octonionic polynomial of
complexified octonionic variable oc decomposing as oc = q1c + q2cI

4 and projected to a
Minkowskian sub-space M8 of complexified O. Single real valued polynomial of real
variable with algebraic coefficients would determine space-time surface! As proposed
already earlier, spacetime surfaces would form commutative and associative algebra with
addition, product and functional composition.

One can interpret the products of polynomials as correlates for free many-particle states
with interactions described by added interaction polynomial, which can vanish at bound-
aries of CDs thanks to the vanishing in Minkowski signature of the complexified norm qcqc
appearing in RE(P ) or IM(P ) caused by the quaternionic non-commutativity. This leads
to the same picture as the view about preferred extremals reducing to minimal surfaces
near boundaries of CD. Also zero zero energy ontology (ZEO) could emerge naturally
from the failure of number field property for for quaternions at light-cone boundaries.

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coeffi-
cients can give rise to associative (co-associative) surfaces as the zero loci of their real
part RE(P ) (imaginary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic
sense. Contrary to the first naive working hypothesis, the identification M4 ⊂ O as as
a co-associative region turns out to be the correct choice making light-cone boundary
a counterpart of point-like singularity essential for the emergence of causal diamonds
(CDs).

The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for
complex numbers, and associativity for quaternions. This suggests a generalization of
Cauchy-Riemann conditions for complex analytic functions to quaternions and octonions.
Cauchy Riemann conditions are linear and constant value manifolds are 1-D and thus
well-ordered. Quaternionic polynomials with real coefficients define maps for which the
2-D spaces corresponding to vanishing of real/imaginary parts of the polynomial are
complex/co-complex or equivalently commutative/co-commutative. Commutativity is
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expressed by conditions bilinear in partial derivatives. Octonionic polynomials with
real coefficients define maps for which 4-D surfaces for which real/imaginary part are
quaternionic/co-quaternionic, or equivalently associative/co-associative. The conditions
are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units
to octonionic algebra are power associative so that polynomials with real coefficients
define an associative and commutative algebra. Hence octonion analyticity and M8 −H
correspondence could generalize.

2. It turns out that in the generic case associative surfaces are 3-D and are obtained
by requiring that one of the coordinates RE(Y )i or IM(Y )i in the decomposition
Y i = RE(Y )i + IM(Y )iI4 of the gradient of RE(P ) = Y = 0 with respect to the
complex coordinates zki , k = 1, 2, of O vanishes that is critical as function of quater-
nionic components zk1 or zk2 associated with q1 and q2 in the decomposition o = q1 +q2I4,
call this component Xi. In the generic case this gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD
and light-like partonic orbits to H, and only determines the boundary conditions of the
dynamics in H determined by the twistor lift of Kähler action. M8 −H duality would
allow to solve the gauge conditions for SSA (vanishing of infinite number of Noether
charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on
the coefficients of the octonionic polynomial P so that the criticality conditions do not
reduce the dimension: Xi would have possibly degenerate zero at space-time variety.
This can allow 4-D associativity with at most 3 critical components Xi. Space-time
surface would be analogous to a polynomial with a multiple root. The criticality of
Xi conforms with the general vision about quantum criticality of TGD Universe and
provides polynomials with universal dynamics of criticality. A generalization of Thom’s
catastrophe theory emerges. Criticality should be equivalent to the universal dynamics
determined by the twistor lift of Kähler action in H in regions, where Kähler action and
volume term decouple and dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative)
surfaces can be mapped by M8−H duality to preferred critical extremals for the twistor
lift of Kähler action obeying universal dynamics with no dependence on coupling con-
stants and due to the decoupling of Kähler action and volume term: these represent
external particles. M8−H duality does not apply to non-associative (non-co-associative)
space-time surfaces except at 3-D boundary surfaces. These regions correspond to inter-
action regions in which Kähler action and volume term couple and coupling constants
make themselves visible in the dynamics. M8 −H duality determines boundary condi-
tions.

3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic
dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough
to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing
of space-time surfaces?

I have proposed commutativity or co-commutatitivity of string worlds sheets/partonic
2-surfaces in quaternionic sense as number theoretic explanation (tangent space as a
sub-space of quaternionic space is commutative/co-commutative at each point). Why
not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-
commutative? The answer to these questions is criticality again: in the generic case
commutative varieties are 1-D curves. In critical case one has 2-D string worlds sheets
and partonic 2-surfaces.
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1 Introduction

There are good reasons to hope that TGD is integrable theory in some sense. Classical physics is
an exact part of quantum physics in TGD and during years I have ended up with several proposals
for the general solution of classical field equations (classical TGD is an exact part of quantum
TGD).

1.1 Various approaches to classical TGD

1.1.1 World of classical worlds

The first approach is based on the geometry of the “world of classical worlds” (WCW) [K3, K2,
K10].

1. The study of classical field equations led rather early to the realization that preferred ex-
tremals for the twistor lift of Kähler action with Minkowskian signature of induced met-
ric define a slicing of space-time surfaces defined by 2-D string world sheets and partonic
two-surfaces locally orthogonal to them. The interpretation is in terms of position depen-
dent light-like momentum vector and polarization vector defining the local decompositions
M2(x) × E2(x) of tangent space integrating to a foliation by partonic 2-surfaces and string
world sheets. I christened this structure Hamilton-Jacobi structure. Its Euclidian counterpart
is complex structure in Euclidian regions of space-time surface.

2. The formulation of quantum TGD in terms of spinor fields in WCW [K9] leads to the con-
clusion that WCW must have Kähler geometry [K3, K2] and has it only if it has maximal
group of isometries identified as symplectic transformations of δM4

± × CP2, where δM4
± de-

notes light cone boundary two which upper/lower boundary of causal diamond (CD) belongs.
Symplectic Lie algebra extends naturally to supersymplectic algebra (SSA).

3. Space-time surfaces would be preferred extremals of twistor lift of Kähler action [K19] and
the conditions realizing strong form of holography (SH) would state that sub-algebra of SSA
isomorphic with it and its commutator with SSA give rise to vanishing Noether charges and
these charges annihilate physical states or create zero norm states from them. One should
solve these conditions.

4. The dynamics involves also fermions. Induced spinor fields are located inside space-time sur-
face but for some yet not completely understood reason only the information about spinor
at 2-D string world sheets is needed in the construction of scattering amplitudes. This dy-
namics would be 2-dimensional. The construction of twistor amplitudes even suggests that
it is 1-dimensional in the sense that 1-D light-like curves at light-like partonic orbits defin-
ing boundaries of Minkowskian and Euclidian regions determines the scattering amplitudes.
String world sheets are however needed only as correlates for entanglement between fermions
at different partonic orbits.

The 2-D character of fermionic dynamics conforms with the strong form of holography (SH)
but how the string world sheets and partonic 2-surfaces are selected from Hamilton-Jacobi
slicing? Electromagnetic neutrality could select string worlds sheets but one can actually
always find a gauge in which the induced classical electroweak field at these surfaces is
purely electromagnetic.

1.1.2 Twistor lift of TGD

Second approach to preferred extremals is based on TGD version [K16, K15, K14, K19] of twistor
Grassmann approach [B1, B4, B3].

1. The twistor lift of TGD leads to a proposal that space-time surfaces can be represented as
sections in their 6-D twistor spaces identified as twistor bundles in the product T (H) =
T (M4)×T (CP2) of 6-D twistor spaces of M4 and CP2. Twistor structure would be induced
from T (H). Kähler action can be lifted to the level of twistor spaces only for M4 × CP2
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since only for these spaces twistor space allows Kähler structure [A2]. Twistors were orig-
inally introduced by Penrose with the motivation that one could apply algebraic geometry
in Minkowskian signature. The bundle property is extremely powerful and should be consis-
tent with the algebraic geometrization at the level of M8

c . The challenge is to formulate the
twistor lift at the level of M8.

2. The twistor lift of Kähler action contains also volume term. Field equations have two kinds of
solutions. For the solutions of first kind the dynamics of volume term and Käction are coupled
and the interpretation is in terms of interaction regions. Solutions of second kind are minimal
surfaces and extremals of both Kähler action and volume term, whose dynamics decouple
completely and all coupling constants disappear from the dynamics. These extremals are
natural candidates for external particles. For these solutions at least the field equations
reduce to the existence of Hamilton-Jacobi structure. The completely universal dynamics of
these regions suggests interpretation in terms of maximal quantum criticality characterized
by the extension of the usual conformal invariance to its quaternionic analog.

3. A connection with zero energy ontology (ZEO) emerges. Causal diamond (CD, intersection
of future and past directed light-cones of M4 with points replaced by CP2) would naturally
determine the interaction region to which external particles enter through its 2 future and
past boundaries. But where does ZEO emerge?

1.1.3 M8 −Hduality

The third approach is based on number theoretic vision [K7, K8, K6, K11].

1. M8−H duality [K8, K11, K12] means that one can see space-times as 4-surfaces in either M8

or H = M4 × CP2. One could speak “number theoretical compactification” having however
nothing to do with stringy version of compactification, which is dynamical. M8 −H duality
suggests that space-time surfaces in H = M4×CP2 are images of space-time surfaces in M8

or actually of M8 projections of complexified space-time surfaces in M8
c identified as space of

complexified octonions. These space-time surfaces could contain the integrated distributions
of string world sheets and partonic 2-surfaces mentioned in the previous item. Space-time
surfaces must have associative tangent or normal space for M8−H correspondence to exist.

2. The fascinating possibility mentioned already earlier is that in M8 these surfaces could
correspond to zero loci for real or imaginary parts of real analytic octonionic polynomi-
als P (o) = RE(P ) + IM(P )I4, I4 an octonionic imaginary unit orthogonal to quaternionic
ones. The condition IM(P ) = 0 (RE(P ) = 0) would give associative (co-associative) space-
time surface. In the simplest case these functions would be polynomials so that one would
have algebraic geometry for algebraically 4-D complex surfaces in 8-D complex space.

Remark: The naive guess that space-time surfaces reduce to quaternionic curves in quater-
nionic plane fails due to the non-commutativity of quaternions meaning that one has P (o) =
P (q1, q2, q1, q2) rather than P (o) = P (q1, q2).

Remark: Why not rational functions expressible as ratios R = P1/P2 of octonionic polyno-
mials? It has become clear that one can develop physical arguments in favor of this option.
The zero loci for IM(Pi) would represent space-time varieties. Zero loci for RE(P1/P2) = 0
and RE(P1/P2) = ∞ would represent their interaction presumably realized as wormhole
contacts connecting these varieties. In the sequel most considerations are for polynomials:
the replacement of polynomials with rational functions does not introduce big differences
and its discussed in the section “Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view” of [L5].

3. The objection against this proposal is obvious. M8 − H correspondence cannot hold true
since the dynamics defined by octonionic polynomials in M8 contains no coupling constants
whereas the dynamics of twistor lift of Kähler action depends on coupling constants in the
generic space-time region. However, for space-time surfaces representing external particles
entering inside CD at its boundaries this is however not the case! They could satisfy M8−H
correspondence!
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This suggests that inside CDs the space-time surfaces are not associative/co-associative in
M8 so that M8 − H correspondence cannot map them to H and the twistor lifted Kähler
action and SH take care of the dynamics. External particles are associative and quantum
critical and M8 −H correspondence makes sense. The quantum criticality and associativity
at the boundaries of CD poses extremely powerful conditions and allows to satisfy infinite
number of vanishing conditions for SSA charges.

It has later turned out [L9] that it might be possible to take the associativity conditions to
extreme in the sense that they would hold everywhere apart from a set of discrete points and
space-time surface would be minimal surfaces at all points except this finite set of points.
There would be transfer of conserved quantities assignable to the volume term and the 4-D
Kähler action (coming as dimensionally reduced 6-D Kähler action for the twistor lift of
TGD) only at these points and elementary fermions would be naturally assignable to these
points.

4. This picture is consistent with the the explicit formulation of the associativity conditions
Re(P ) = 0 and IM(P ) = 0 for varieties. The calculations shows that associativity can be
realized either by posing a condition making them 3-dimensional except, when the situation
is critical in the sense that the 4-D variety is analogous to a double root of polynomial:
now however the polynomial corresponds to prime polynomial decomposing to product of
polynomials in the extension of rationals such that the product contains higher powers of
the factors. One has ramification at the level of polynomial primes so that the criticality
condition does not bring anything new but need not make the situation associative. At most
3 conditions need to be applied to guarantee associativity and they might leave the space-time
surface 4-D.

5. The coordinates of M4 as octonionic roots x+ iy of the 4 real polynomials need not be real.
Space-time surface must have M4

c projection, which reduces to M4. There are two options.

(a) The original proposal was that the projection from M8
c to real M4 (for which M1

coordinate is real and E3 coordinates are imaginary with respect to i!) defines the real
space-time surface mappable by M8−H duality to CP2. One can howeerver critize the
allowance of a nonvanishing imaginary part of space-time surface in M4

c .

(b) A more stringent condition is that the roots of the 4 vanishing polynomials as coordinates
of M4

c belong automatically to M4 so that m0 would be real root and mk, k = 1, ..., 3
imaginary with respect to i → −i. M8

c coordinates would be invariant (“real”) under
combined conjugation i → −i, Ik → −Ik. In the following I will speak about this
property as Minkowskian reality.

This could allow to identify CDs in very elegant manner: outside CD these 4 conditions
would not hold true. This option looks more attractive than the first one. Why these
conditions can be true just inside CD, should be understood.

6. This octonionic view as also lower-dimensional quaternionic counterpart. In this case one
considers 2-D commutative/co-commutative surfaces tentatively identifiable as string world
sheets and partonic 2-surfaces. Why not all 2-surfaces appearing in the Hamilton-Jacobi
slicing are not selected? The above mechanism would work also now. The commutativity
conditions reduce in the generic case give 1-D curve as a solution. The interpretation would be
as orbit of point like particle at 3-D partonic orbit appearing in the construction of twistorial
amplitudes. In critical situation one would obtains string world sheet serving as a correlate
for entanglement between point like particles at its ends: one would have quantum critical
bound state.

I have considered also other attempts to define what quaternion structure could mean.

1. One could also consider the possibility that the tangent spaces of space-time surfaces in H are
associative or co-associative [K11]. This is not necessary although it seems that this might
be the case for the known extremals. If this holds true, one can construct further preferred
extremals by functional composition by generalization of M8 −H correspondence to H −H
correspondence.
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2. I have considered also the possibility of quaternion analyticity in the sense of generalization of
Cauchy-Riemann equations, which tell that left- or right quaternionic differentiation makes
sense [L3]. It however seems that this approach is not promising. The conditions are quite
too restrictive and bring nothing essentially new. Octonion/quaternion analyticity in the
above mentioned sense does not require the analogs of Cauchy-Riemann conditions.

1.2 Could one identify space-time surfaces as zero loci for octonionic
polynomials with real coefficients?

The identification of space-time surfaces as zero loci of real or imaginary part of octonionic poly-
nomial has several extremely nice features.

1. Octonionic polynomial is an algebraic continuation of a real valued polynomial on real line
so that the situation is effectively 1-dimensional! Once the degree of polynomial is known,
the value of polynomial at finite number of points are needed to determine it and cognitive
representation could give this information! This would strengthen the view strong form
of holography (SH) - this conforms with the fact that states in conformal field theory are
determined by 1-D data.

2. One can add, sum, multiply, and functionally compose these polynomials provided they
correspond to the same quaternionic moduli labelled by CP2 points and share same time-
line containing the origin of quaternionic and octonionic coordinates and real octonions (or
actually their complexification by commuting imaginary unit). Classical space-time surfaces
- classical worlds - would form an associative and commutative algebra. This algebra induces
an analog of group algebra since these operations can be lifted to the level of functions defined
in this algebra. These functions form a basic building brick of WCW spinor fields defining
quantum states.

3. One can interpret the products of polynomials as correlates for free many-particle states
with interactions described by added interaction polynomial, which can vanish at boundaries
of CDs. This leads to the same picture as the view about preferred extremals reducing to
minimal surfaces near boundaries of CD [L1]. Also zero zero energy ontology (ZEO) could
be forced by the failure of number field property for quaternions at light-cone boundaries. It
indeed turns out that light-cone boundary emerges quite generally as singular zero locus of
polynomials P (o) containing no linear part: this is essentially due to the non-commutativity
of the octonionic units. Also the emergence of CDs can be understood. At this surface the
region with RE(P ) = 0 can transform to IM(P ) = 0 region. In Euclidian signature this
singularity corresponds to single point. A natural conjecture is that also the light-like orbits
of partonic 2-surfaces correspond to this kind of singularities for non-trivial Hamilton-Jacobi
structures.

4. The reduction to algebraic geometry would mean enormous boost to the vision about cogni-
tion with cognitive representations identified as generalized rational points common to reals
rationals and various p-adic number fields defining the adele for given extension of rationals.
Hamilton-Jacobi structure would result automatically from the decomposition of quaternions
to real and imaginary parts which would be now complex numbers.

5. Also a connection with infinite primes is suggestive [K8]. The light-like partonic orbits,
partonic 2-surfaces at their ends, and points at the corners of string world sheets might be
interpreted in terms of singularities of varying rank and the analog of catastrophe theory
emerges.

The great challenge is to prove rigorously that these approaches - or at least some of them -
are indeed equivalent. Also it remains to be proven that the zero loci of real/imaginary parts of
octonionic polynomials with real coefficients are associative or co-associative. I shall restrict the
considerations of this article mostly to M8 −H duality. The strategy is simple: try to remember
all previous objections against M8 −H duality and invent new ones since this is the best manner
to make real progress.
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1.3 Topics to be discussed

1.3.1 Key notions and ideas of algebraic geometry

Before going of octonionic algebraic geometry, I will discuss basic notions of algebraic geometry
such as algebraic variety (see http://tinyurl.com/hl6sjmz), - surface (see http://tinyurl.

com/y8d5wsmj), and - curve (see http://tinyurl.com/nt6tkey), rational point of variety central
for TGD view about cognitive representation, elliptic curves (see http://tinyurl.com/lovksny)
and - surfaces (see http://tinyurl.com/yc33a6dg), and rational points (see http://tinyurl.

com/ybbnnysu) and potentially rational varieties (see http://tinyurl.com/yablk4xt). Also the
notion of Zariski topology (see http://tinyurl.com/h5pv4vk) and Kodaira dimension (see http:
//tinyurl.com/yadoj2ut) are discussed briefly. I am not a mathematician. What hopefully saves
me from horrible blunders is physical intuition developed during 4 decades of TGD.

Much of algebraic geometry is counting numbers of say rational points or of varieties satisfying
some conditions. One can also count dimensions of moduli spaces. Hence the basic notions and
methods of enumerative geometry are discussed. There is also a discussion of Gromow-Witten
invariants and Riemann-Roch theorem having Atyiah-Singer index theorem as a generalization.
These notions will be applied in the second part of the article [L5].

1.3.2 M8 −H duality

M8 −H duality [K12, K8, K11] would reduce classical TGD to the algebraic geometry and would
immediately provide deep insights to cognitive representation identified as sets of rational points
of these surfaces. Space-time surfaces in M8 would be algebraic varieties identified as zero loci
for imaginary part IM(P ) or real part RE(P ) of octonionic polynomial of complexified octonionic
variable o decomposing as o = q1c + q2cI4 and projected to a Minkowskian sub-space M8 of o.
Single real valued polynomial of real variable with algebraic coefficients would determine space-
time surface! As proposed already earlier, spacetime surfaces in M8 would form commutative and
associative algebra with addition, product and functional composition.

As already noticed, the associativity conditions do not allow 4-D solutions except for criticality
so that M8 −H correspondence can hold true only in these space-time regions and one has these
nice features at the level of M8. In critical regions M8 − H correspondence is true and these
features have H counterparts

The basic problem is to understand the map mediating M8 − H duality mapping the point
(m, e) of M8 = M4

0 ×E4 to a point (m, s) of M4
0 ×CP2, where M4

0 point is obtained as a projection
to a suitably chosen M4

0 ⊂ M8 and CP2 point parameterizes the tangent space as quaternionic
sub-space containing preferred M2

0 (x) ⊂M4(x). This map involves slightly non-local information
and could allow to understand why the preferred extremals at the level of H are determined by
partial differential equations rather than algebraic equations. Also the generalization to the level
of twistor lift is briefly touched.

1.3.3 Challenges of the octonionic algebraic geometry

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
determine associative (co-associative) surfaces as the zero loci of their real part RE(P ) (imag-
inary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic sense. Contrary to the
first naive working hypothesis, the identification M4 ⊂ O as as a co-associative region turns
out to be the correct choice making light-cone boundary a counterpart of point-like singularity
essential for the emergence of causal diamonds (CDs).

This suggests a generalization of Cauchy-Riemann conditions for complex analytic func-
tions to quaternions and octonions. Cauchy Riemann conditions are linear. Quaternionic
polynomials with real coefficients define maps for which the 2-D spaces corresponding to
vanishing of real/imaginary parts of the polynomial are complex/co-complex or equiva-
lently commutative/co-commutative. Commutativity is expressed by conditions bilinear in
partial derivatives. Octonionic polynomials with real coefficients define maps for which 4-
D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently
associative/co-associative. The conditions are now 3-linear.

http://tinyurl.com/hl6sjmz
http://tinyurl.com/y8d5wsmj
http://tinyurl.com/y8d5wsmj
http://tinyurl.com/nt6tkey
http://tinyurl.com/lovksny
http://tinyurl.com/yc33a6dg
http://tinyurl.com/ybbnnysu
http://tinyurl.com/ybbnnysu
http://tinyurl.com/yablk4xt
http://tinyurl.com/h5pv4vk
http://tinyurl.com/yadoj2ut
http://tinyurl.com/yadoj2ut
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In fact, all algebras obtained by Cayley-Dickson construction (see http://tinyurl.com/

ybuyla2k) by adding imaginary unit repeatedly to octonionic algebra are power associative
so that polynomials with real coefficients define an associative and commutative algebra.
Hence octonion analyticity and a M8 − H correspondence could generalize (maybe even
TGD!).

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requir-
ing that one of the coordinates RE(Y )i or IM(Y )i in the decomposition Y i = RE(Y )i +
IM(Y )iI4 of the gradient of RE(P ) = Y = 0 with respect to the complex coordinates zki ,
k = 1, 2, of O vanishes that is critical as function of quaternionic components zk1 or zk2 as-
sociated with q1 and q2 in the decomposition o = q1 + q2I4, call this component Xi. In the
generic case this gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kähler action. M8 −H duality would allow to solve
the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can have criticality. 4-dimensionality can be achieved by posing conditions on the
coefficients of the octonionic polynomial P so that the criticality conditions do not reduce
the dimension: Xi would have possibly degenerate zero at space-time variety. This can
allow 4-D associativity with at most 3 critical components Xi. Space-time surface would
be analogous to a polynomial with a multiple root. The criticality of Xi conforms with
the general vision about quantum criticality of TGD Universe and provides polynomials
with universal dynamics of criticality. A generalization of Thom’s catastrophe theory [A1]
emerges. Criticality should be equivalent to the universal dynamics determined by the twistor
lift of Kähler action in H in regions, where Kähler action and volume term decouple and
dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) sur-
faces can be mapped by M8 − H duality to preferred critical extremals for the twistor lift
of Kähler action obeying universal dynamics with no dependence on coupling constants and
due to the decoupling of Kähler action and volume term: these represent external particles.
M8 − H duality does not apply to non-associative (non-co-associative) space-time surfaces
except at 3-D boundary surfaces. These regions correspond to interaction regions in which
Kähler action and volume term couple and coupling constants make themselves visible in the
dynamics. M8 −H duality determines boundary conditions.

3. This picture generalizes also to the level of complex/co-complex surfaces associated with
fermionic dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be
enough to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing of
space-time surfaces? I have proposed commutativity or co-commutatitivity of string worlds
sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation (tangent
space as a sub-space of quaternionic space is commutative/co-commutative at each point).
Why not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-
commutative? The answer to these questions is criticality again: in the generic case commu-
tative varieties are 1-D curves. In critical case one has 2-D string worlds sheets and partonic
2-surfaces.

The easiest manner to kill M8 −H duality in the form it is represented here is to prove that
4-D zero loci for imaginary/real parts of octonionic polynomials with real coefficients can never be
associative/co-associative being always 3-D. I hope that some professional mathematician would
bother to check this.

In the sequel I will use some shorthand notations for key principles and key notions. Quantum
Field Theory (QFT); Relativity Principle (RP); Equivalence Principle (EP); General Coordinate
Invariance (GCI); Strong Form of GCI (SGCI); Quantum Criticality (QC); Strong Form of Holog-
raphy (SH); World of Classical Worlds (WCW); Preferred Extremal (PE); Zero Energy Ontology
(ZEO); Causal Diamond (CD); Number Theoretical Universality (NTU) are the most often occur-
ring acronyms.

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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2 Some basic notions, ideas, results, and conjectures of al-
gebraic geometry

In this section I will summarize very briefly the basic notions of algebraic geometry needed in the
sequel.

2.1 Algebraic varieties, curves and surfaces

The basic notion of algebraic geometry is algebraic variety.

1. One considers affine space An with n coordinates x1, ..., xn having values in a number field K
usually assumed to be algebraically closed (note that affine space has no preferred origin like
linear space). Algebraic variety is defined as a solution of one or more algebraic equations
stating the vanishing of polynomials of n variables: P i(x1, ..., xn) = 0, i = 1, ..., r ≤ n. One
can restrict the coefficients of polynomials to p-adic number field or or its extension to an
extension of rationals. One talks about polynomials on k ⊂ K.

2. The basic condition is that the variety is not a union of disjoint varieties. This for instance
happens, when the polynomial P (x1, .., xn) defining co-dimension 1 manifold is product of
polynomials P =

∏
r Pr. Algebraic variety need not be a manifold meaning that it can have

singular points. For instance, for co-dimension 1 variety the Jacobian matrix ∂P/∂xi of the
polynomial can vanish at singularity.

3. One can define projective varieties (see http://tinyurl.com/ybsqvy3r) in projective space
Pn having coordinatization in terms of n+1 homogenous coordinates (x1, ..., xn+1) in K with
points differing by an overall scaling identified. Projective variety is defined as zero locus of
homogenous polynomials of n + 1 coordinates so that solutions remain solutions under the
overall scaling of all coordinates. By identifying the points related by scaling one obtains a
surface in Pn. Grassmannian of linear space V n (not affine space!) is a projective spaces
defined as space of k-planes of V n. These spaces are encountered in twistor Grassmannian
approach to scattering amplitudes.

For polynomials of single variable one obtains just the roots of Pn(x) = 0 in an algebraic
extension assignable to the polynomial. For several variables one can in principle proceed step
by step by solving variable x1 as algebraic function of others from P1(x1, ..., xn) = 0 , proceed to
solve x2 from P2(x1(x2, ...), x2, ...) = 0 as as algebraic function of the remaining variables, and so
one. The algebraic functions involved get increasingly complex but in some exceptional situations
the solution has parametric representation in terms of rational rather than algebraic functions of
parameters tk. For co-dimension dc > 1 case the intersection of surfaces P i = 0 need not be
complete and the tangent spaces of the hyper-surfaces P i = 0 need not intersect transversally in
the generic case. Therefore dc > 1 case is not gained so much attention as dc = 1 case.

A more advanced treatment relies on ring theory by assigning to polynomials a ring as the ring
of polynomials in the space involved divided by the ring of polynomials vanishing at zero loci of
polynomials P i.

1. The notion of ideal is central and determined as a subring invariant under the multiplication
by elements of ring. Prime ideal generalizes the notion of prime and one can say that the
notion of integer generalizes to that of ideal. One can also define the notion of fractional
ideal.

2. Zariski topology (see http://tinyurl.com/h5pv4vk) replacing the topology based on real
norm is second highly advanced notion. The closed sets in this topology are algebraic varieties
of various dimensions. Since the complement of any algebraic variety is open set this topology
and open also in the ordinary real topology, this topology is considerable rougher than the
ordinary than the ordinary topology.

Some remarks from the point of view of TGD are in order.

http://tinyurl.com/ybsqvy3r
http://tinyurl.com/h5pv4vk
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1. In the scenario inspired by M8 −H duality one has co-dimension 4 surfaces in 8-D complex
space. Octonionicity of polynomials however implies huge symmetries since the polynomial
is determined by single real polynomial of real variable, whose values at finite number of
points determined the polynomial.

2. In TGD the extension of rationals can be assumed to contain also powers for some root of
e since in p-adic context this gives rise to a finite-dimensional extensions due to the fact
that ep is ordinary p-adic number. Also a restriction to a finite field are possible and re-
striction of rational coefficients to their modulo p counterparts reduces the polynomial to
polynomial in finite field. This reduction is used as a technical tool. In the case of Diophan-
tine equations (see http://tinyurl.com/nt6tkey and http://tinyurl.com/y8hm4zce) the
coefficients are restricted to be integers.

3. In adelic TGD [L7] [L6] the number fields involved are reals and extensions of p-adic num-
bers. The coefficient field for the coefficients of polynomials would be naturally extension of
rationals or extension of p-adics induced by it. The coefficients of polynomials serve as coor-
dinates of adelic WCW. p-Adic numbers are not algebraically closed and one must assume
an extension of p-adic numbers from that for the coefficients one to allow maximal number
of roots.

This suggests an evolutionary process [L8] extending the number field for the coefficients of
polynomials. Arbitrary root of polynomial for given extension can be realized only if the
original extension is extended further. But this allows polynomial coefficients in this new
extension: WCW is now larger. Now one has however roots in even larger extension so that
the unavoidable outcome is number theoretic evolution as increase of complexity.

4. What is so remarkable is that octonionic polynomials with rational coefficients could be
determined by their values at finite set of points for a polynomial of real argument once the
order of polynomial is fixed. Real coordinate corresponds to preferred time axis naturally.
A cognitive representation consisting of finite number of rational points could fix the entire
space-time surface! This would extend ordinary holography to its discrete variant!

5. Algebraic variety is rather simple object as compared to the solutions of partial differential
equations encountered in physics - say those for minimal surfaces. Now one must fix boundary
values or initial values at n−1-dimensional surface to fix the solution. For integrable theories
the situation can change. In TGD SH suggests that the classical solutions are determined
by data at 2-surfaces, which together with conformal invariance could reduce the data to
one-dimensional data specified by a polynomial. M8 −H correspondence allows to consider
this option seriously.

6. M8 −H duality suggests that space-time surfaces are co-dimension dc = 4 algebraic curves
in M8. Could space-time surfaces define closed sets for the analog of Zariski topology?
Could string world sheets and partonic 2-surfaces do the same inside space-time surfaces?
An interesting question is whether this generalizes also to the level of imbedding space H
and could perhaps define a topology rougher than real topology in better accord with the
notion of finite measurement resolution.

2.2 About algebraic curves and surfaces

The realization M8−H correspondence to be considered allows to understand space-time surfaces
as 4-D complex algebraic surfaces X4

c in the space o of complexified octonions projected to real
sub-space of Oc with Minkowskian signature. Due to the non-commutativity of quaternions, the
reduction of space-time surfaces to curves in quaternionic plane is not possible. Despite this it is
instructive to start from the algebraic geometry of curves and surfaces.

2.2.1 Degree and genus of the algebraic curve

Algebraic curve is defined as zero locus of a polynomial P (x1, x2, ..., xn) with xn in some - preferably
algebraically closed - number field K and coefficients in some number field k ⊂ K. In adelic physics
K corresponds to real or complex numbers and k to the extension of rationals defining adeles. In

http://tinyurl.com/nt6tkey
http://tinyurl.com/y8hm4zce
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p-adic sectors k corresponds to tje extension of p-adic numbers induced by k. In general roots
belong to an extension of k.

Degree, genus, and Euler characteristic are the basic characterizers of algebraic curve.

1. The degree d of algebraic curve corresponds to the highest power for the variables appearing
in the polynomial. One can also define multi-degree in an obvious manner. A useful geometric
interpretation for the degree is that line intersects curve (also complex) of degree d in at most
d points as is clear from the fact that the equation of curve reduces the equation for curve
to an equation for the roots of d:th order polynomial of single variable.

2. Also the genus g of the curve (see http://tinyurl.com/ybm3wfue) is important character-
istic. One can distinguish between topological genus, geometric genus and arithmetic genus.
For curves these notions are equivalent. The connection between genus and degree d of
non-singular algebraic curve is very useful:

g =
(d− 1)(d− 2)

2
. (2.1)

Spherical topology for complex curves corresponds to n = 1 and n = 2.

A more general formula reads as:

g =
(d− 1)(d− 2)

2
+
ns
2

. (2.2)

Here ns is the number of holes of the curve behaving like holes and increasing the genus.

3. Euler characteristic (for Euler characteristic see http://tinyurl.com/pp52zd4) is a homo-
logical invariant making sense in arbitrary dimension and also for manifolds. Homological
definition based on simplicial homology relies on counting of simplexes of various dimension.
The definition in terms of dimensions of homology groups Hn is given by

χ = b0 − b1 + b2...+ (−1)nbn , (2.3)

where bk is the dimension of k:th homology group (see http://tinyurl.com/j48ojys).

The following gives the engineering rules for obtaining Euler characteristic of the surface ob-
tained from simpler building blocks. Note that algebraic variety property is not essential here.

1. Euler characteristic is homotopy invariant so that it does not change one adds homologically
trivial space such as En as a Cartesian factor.

2. χ is additive under disjoint union. Inclusion-exclusion principle states that if M and N
intersect, one has χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N).

3. Euler characteristic for the connected sum A#B of n-dimensional manifolds obtained by
drilling balls Bn from summands, giving opposite orientation to the boundaries of the hole,
and connecting with cylinder D×Sn−1 is given by χ(A)+χ(B)−χ(Sn−1). One has χ(S2) = 2
and χ(D2) = 1.

4. The Euler characteristic for product M ×N is χ(M)× χ(N).

5. The Euler characteristic for N -fold covering space Mn is N × χ(M) with a correction term
coming from the singularities of the covering (ramified covering space).

6. For a fibration M → B with fiber S, which differs from fiber bundle in that the fibers are
only homeomorphic, one has χ(M) = χ(B)× χ(S).

http://tinyurl.com/ybm3wfue
http://tinyurl.com/pp52zd4
http://tinyurl.com/j48ojys
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Euler characteristic and the genus of 2-surface (or complex) curve are related by the equation

χ = 2(1− g) . (2.4)

having values 2, 0,−2, ..... If the 2-surface has ns holes (punctures), one has

χ = 2(1− g)− ns . (2.5)

Punctures must be distinguished from singularities at which some sheets of covering meet at single
point.

A formal generalization of the definition of genus for varieties in terms of Euler characteristic
makes sense.

g = −χ
2

+ 1− ns
2

. (2.6)

Disk has genus 1/2 and drilling of n holes increases genus by n/2. Pair of holes gives same
contribution to g and the cylinder connecting the holes. Note that for complex curves the definition
of puncture is obvious. For real curves the puncture would mean missing point of the curve.

The latter definitions of genus can be identified in terms of Euler characteristic also for higher-
dimensional varieties. For curves these notions are equivalent if there are no singularities. For
algebraic curves g is same for the real and complex variants of the curve in RP1 and CP1 respec-
tively.

2.2.2 Elliptic curves and elliptic surfaces

Elliptic curves (see http://tinyurl.com/lovksny) are cubic curves with no singularities (cusps
or self-intersections) having representation of form y2 − x3 − ax − b = 0. These singularities can
occur only at special values of parameters ((a = 0, b = 0). Since the degree equals to d = 3, elliptic
curve has genus g = 1.

Elliptic curves allow a group of Abelian symmetries generated by a finite number of generators.
The emergence of abelian group structure can be intuitively understood as follows.

1. Given line intersects the curve of degree 3 in at most 3 points. Let P and Q be two of these
points. Then there can be also a third intersection point R and by the Z2 symmetry changing
the sign of y also the reflection of R - identify it as −R - belongs to the curve. Define the
sum of P +Q to be −R.

The actual proof is slightly more complicated since the number of intersection points for the
line with curve can be also 2 or 1. By writing explicit expressions for the coordinates xR and
yR, one can also find that they are indeed rational if the points P and Q are rational. If the
elliptic curve as single rational point it has infinite number of them.

2. The generators with finite order give rise to torsion. The rank of generators of infinite order
is called rank and conjectured to be arbitrarily large (see http://tinyurl.com/lovksny) .
Therefore elliptic curve is an Abelian group and one talks about Abelian variety. If elliptic
curve contains a rational point it contains entire lattice of rational points obtained as shifts
of this point.

Remark: Complex elliptic curves are 2-surfaces in complex projective plane CP2 and therefore
highly interesting from TGD point of view. g = 1 partonic 2-surfaces would in TGD framework
correspond to second generation fermions [K1]. Abelian varieties define a generalization of el-
liptic curves to higher dimensions and simplest space-time surfaces allowing also large cognitive
representations could correspond to such.

Elliptic surfaces (see http://tinyurl.com/yc33a6dg) are fibrations with an algebraic curve
as base space and elliptic curve as fiber (fibration is more general notion than fiber space since the
fibers are only homeomorphic). The singular fibers failing to be elliptic curves have been classified
by Kodaira.

http://tinyurl.com/lovksny
http://tinyurl.com/lovksny
http://tinyurl.com/yc33a6dg
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2.3 The notion of rational point and its generalization

The notion of algebraic integer (see http://tinyurl.com/y8z389a7) makes sense for any number
field as a root of a monic polynomial (polynomial with integer coefficients with coefficient of highest
power equal to unity). The field of fractions for given number field consists of ratios of algebraic
integers. The same is true for the notion of prime. The more precise definition forces to replace
integers and primes with ideals.

Rational varieties are expressible as maps defined by rational functions with rational coefficients
in some extension of Q and contain infinite number of rational points. If the variety is not rational,
one can ask whether it could allow a dense set of rational points with rational number replaced
with the ratio of algebraic integers for some extension of Q. This leads to the idea of potentially
rational point, and one can classify algebraic varieties according to whether they are potentially
rational or not. The variety is potentially rational if it allows a parameteric representation using
rational functions. Otherwise the parametric representation involves algebraic functions such as
roots of rational functions.

The interpretation in terms of cognition would be that large enough extension makes the situa-
tion “cognitively easy” since cognitive representations involving fermions at the rational points and
defining discretizations of the algebraic variety could be arbitrary large. The simpler the surface
is cognitively, the large the number of rational points or potentially rational points is.

Complexity of algebraic varieties is measured by Kodaira dimension dK (see http://tinyurl.

com/yadoj2ut). The spectrum for this dimension varies in the range (−∞, 0, 1, 2, ...d), where d is
the algebraic dimension of the variety. Maximal value equals to the ordinary topological dimension
d and corresponds to maximal complexity: in this case the set of rational points is finite. Minimal
Kodaira dimension is dK = −∞: in this case the set of rational points is infinite. Rational surfaces
are maximally simple and this corresponds to the existence of parametric representations using
only rational functions.

2.3.1 Rational points for algebraic curves

The sets of rational points for algebraic curves are rather well understood. Mordelli conjecture
proved by Falting as a theorem (see http://tinyurl.com/y9oq37ce) states that a curve over Q
with genus g = (d− 1)(d− 2)/2 > 1 (degree d > 3) has only finitely many rational points.

1. Sphere CP1 in CP2 has rational points as a dense set. Quite generally rational surfaces,
which by definition allow parametric representation using polynomials with rational coeffi-
cients (encountered in context of Du Val singularities characterized by the extended Dynkin
diagrams for finite subgroups of SU(2)) allow dense set of rational points [A3, A5]).

g = 0 does not yet guarantee that there is dense set of rational points. It is possible to have
complex conics (quadratic surface) in CP2 with no rational points. Note however that this
depends on the choice of the coordinates: if origin belongs to the surface, there is at least
one rational point

2. Elliptic curve y2 − x3 − ax− b in CP2 (see http://tinyurl.com/lovksny) has genus g = 1
and has a union of lattices of rational points and of finite cyclic groups of them since it has
origin as a rational point. This lattice of points are generated by translations. Note that
elliptic curve has no singularities that is self intersections or cusps (for a = 0, b = 0 origin is
a singularity).

g = 1 does not guarantee that there is infinite number of rational points. Fermat’s last
theorem and CP2 as example. xd + yd = zd is projectively invariant statement and therefore
defines a curve with genus g = (d− 1)(d− 2)/2 in CP2 (one has g = 0, 0, 2, 3, 6, 10, ...). For
d > 2, in particular d = 3, there are no rational points.

3. g ≥ 2 curves do not allow a dense set of rational points nor even potentially dense set of
rational points.

Remark: In TGD framework algebraic varieties could be zero loci of octonionic polynomi-
als and have algebraic dimension 4 so that the classification for algebraic curves does not help.
Octonion analyticity must bring in symmetries which simplify the situation.

http://tinyurl.com/y8z389a7
http://tinyurl.com/yadoj2ut
http://tinyurl.com/yadoj2ut
http://tinyurl.com/y9oq37ce
http://tinyurl.com/lovksny


3. About enumerative algebraic geometry 15

2.3.2 Enriques-Kodaira classification

The tables of (see http://tinyurl.com/ydelr4np) give an overall view about the Enriques-
Kodaira classification of algebraic curves, surfaces, and varieties in terms of Kodaira dimension
(see http://tinyurl.com/yadoj2ut).

1. For instance, general curves (g ≥ 2) have dK = 1, elliptic curves (g = 1) have dK = 0 and
projective line (g = 0) has dK = −∞. CP1 ⊂ CP2 is a rational curve so that rational points
are dense. Elliptic curves allow infinite number or rational points forming an Abelian group
if they containing single rational point and are therefore cognitively easy.

2. Algebraic varieties (with real dimension dR = 4 in complex case) with dK = 2 are surfaces
of general type, elliptic surfaces (see http://tinyurl.com/yc33a6dg) have dK = 1, surfaces
with attribute abelian, hyper-elliptic, K3, and Enriques, have dK = 0.

Remark: All real 2-surfaces are hyper-elliptic for g ≤ 2, in other words allow Z2 as global
conformal symmetry. Genus-generation correspondence [K1] for fermions allows to assign
to the 3 lowest generations of fermions hyper-elliptic partonic 2-surfaces with genus g =
0, 1, 2. These surfaces would have dK = 0 and be rather simple as real surfaces in Kodaira
classification. Could one regard them as M4 projection of complex hyper-elliptic surfaces of
real dimension dR = 4? dK = −∞ holds true for rational surfaces and ruled surfaces, which
allow straight line through any point are maximally simple. In complex case the line would
be CP1.

3. The Wikipedia article gives also a table about the classification of algebraic 3-folds. Real
algebraic 3-surfaces might well occur in TGD framework. The twistor space for space-time
surface might allow realization as complex 3-fold and since it has S2 has fiber, it would
naturally correspond to an uni-ruled surface with dK = −∞. The table shows that one can
build higher dimensional algebraic varieties with dK < d from lower-dimensional ones as
fiber-space like structures, which based or fiber having dK < d. 3-D Abelian varieties and
Calabi-Yau 3-folds are complex manifolds with dK = 0, which cannot be engineered in this
manner.

4. Space-time surfaces would be surfaces of algebraic dimension 4. Wikipedia tables do not give
direct information about this case but one can make guesses on basis of the three tables.
Octonionic polynomials are analytic continuations of real polynomials of real variable, which
must mean a huge simplification, which also favor cognitive representability. The best that
one might have infinite sets of rational points. The examples about extremals of Kähler
action does not however favor this wish.

Bombieri-Lang conjecture (see http://tinyurl.com/y887yn5b) states that, for any variety X
of general type over a number field k, the set of k-rational points of X fails to be Zariski dense
(see http://tinyurl.com/jm9fh74) in X. This means that , the k-rational points are contained
in a finite union of lower-dimensional sub-varieties of X. In dimension 1, this is exactly Faltings
theorem, since a curve is of general type if and only if it has g ≥ 2. The conjecture of Vojta (see
http://tinyurl.com/y9sttuu4) states that varieties of general type cannot be potentially dense.
As will be found, these conjectures might be highly relevant for TGD.

3 About enumerative algebraic geometry

Algebraic geometry is something very different from Riemann geometry, Kähler geometry, or sub-
manifold geometry based on local notions. Sub-manifolds are replaced with sub-varieties defined as
zero loci for polynomials with coefficients in the field of rationals or extension of rationals. Partial
differential equations are replaced with algebraic ones. One can generalize algebraic geometry to
any number field.

String theorists have worked with algebraic geometry with motivation coming from various
moduli spaces emerging in string theory. The moduli spaces for closed and open strings possibly in
presence of branes are involved. Also Calabi-Yau compacticication leads to algebraic geometry, and

http://tinyurl.com/ydelr4np
http://tinyurl.com/yadoj2ut
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topological string theories of type A and B involve also moduli spaces and enumerative algebraic
geometry.

In TGD the motivation for enumerative algebraic geometry comes from several sources.

1. Twistor lift of TGD lifts space-time surfaces to their 6-D twistor spaces representable as
surfaces in the product of 6-D twistor spaces of M4 and CP2 and possessing Kähler struc-
ture - this makes these spaces completely unique and strongly suggests the role of algebraic
geometry, in particular in the generalization of twistor Grassmannian approach [L5].

2. There are three threads in number theoretic vision: p-adic numbers and adelics, classical
number fields, and infinite primes. Adelic physics [L7] as physics of sensory experience
and cognition unifies real physics and various p-adic physics in the adele characterized by an
extension of rationals inducing those of p-adic number fields. This leads to algebraic geometry
and counting of points with imbedding space coordinates in the extension of rationals and
defining a discrete cognitive representation. The core of the scattering amplitude would be
defined by this cognitive representation identifiable in terms of points appearing as arguments
of n-point function in QFT picture [L4].

3. M8 −M4 × CP2 duality is the analog of the rather adhoc spontaneous compactification in
string models but would be non-dynamical and thus allow to avoid landscape catastrophe.
Classical physics would reduce to octonionic algebraic geometry at the level of complexi-
fied octonions with several special features due to non-commutativity and non-associativity:
space-time could be seen as 4-surface in the complexification of of octonions. The commuting
imaginary unit would make possible the realization of algebraic extensions of rationals.

The moduli space for the varieties is discrete if the coefficients of the polynomials are in the
extension of rationals. If one poses additional conditions such as associativity of 4-surfaces,
the moduli space is further reduced by the resulting criticality conditions realizing quan-
tum criticality at the fundamental level raising hopes about extremely simple formulation of
scattering amplitudes at the level of M8 [L5].

Also complex and co-complex sub-manifolds of associative space-time surface are important
and would realize strong form of holography (SH). For non-associative regions of space-time
surface it might not be possible to define complex and co-complex surfaces in unique manner
since the basic M2 ⊂ M4 local flag structure is missing. String world sheets and partonic
2-surfaces and their moduli spaces are indeed in key role and the topology of partonic surfaces
plays a key role in understanding of family replication phenomenon in TGD [L4].

In this framework one cannot avoid enumerative algebraic geometry.

1. One might want to know the number of points of sub-variety belonging to the number field
defining the coefficients of the polynomials. This problem is very relevant in M8 formulation
of TGD, where these points are carriers of sparticles. In TGD based vision about cogni-
tion [L7] they define cognitive representations as points of space-time surface, whose M8

coordinates can be thought of as belonging to both real number field and to extensions of
various p-adic number fields induced by the extension of rationals. If these cognitive repre-
sentations define the vertices of analogs of twistor Grassmann diagrams in which sparticle
lines meet, one would have number theoretically universal adelic formulation of scattering
amplitudes and a deep connection between fundamental physics and cognition.

2. Second kind of problem involves a set algebraic surfaces represented as zero loci for polyno-
mials - lines and circles in the simplest situations. One must find the number of algebraic
surfaces intersecting or touching the surfaces in this set. Here the notion of incidence is
central. Point can be incident on line or two lines (being their intersection), line on plane,
etc.. This leads to the notion of Grassmannians and flag-manifolds.

Moduli spaces parameterizing sub-varieties of given kind - lines, circles, algebraic curves of
given degree, are central for the more advanced formulation of algebraic geometry. These mod-
uli spaces emerge also in the formulation of TGD. The moduli space of conformal equivalence
classes of partonic 2-surfaces is one example involved with the explanation of family replication
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phenomenon [K1]. One can assign moduli spaces also to octonion and quaternion structures in
M8 (or equivalently with the complexification of E8). One can identify CP2 as a moduli space of
quaternionic sub-spaces of octonions containing preferred complex sub-space.

One cannot avoid these moduli spaces in the formulation of the scattering amplitudes and
this leads to M8 − H duality. The hard core of the calculation should however reduce to the
understanding of the algebraic geometry of 4-surfaces in octonionic space. Clearly, M8 picture
seems to provide the simplest formulation of the number theoretic vision.

3.1 Some examples about enumerative algebraic geometry

Some examples give an idea about what enumerative algebraic geometry (see http://tinyurl.

com/y7yzt67b) is.

1. Consider 4 lines in 3-D space. What is the number of lines intersecting these 4 lines [A8]
(see http://tinyurl.com/ycrbr5aj). One could deduce the number of lines and lines by
writing the explicit equations for the lines with each line characterized by 2+3=5 parameters
specifying direction t vector and arbitarily chosen point x0 on the line. 2+3=5 parameters
characterize each sought-for line.

For intersection points xi of sought for line with i:th one has xi = x0 + kit0, i = 1, ..., 4
for the sought for line with direction t0. At the intersection points at the 4 lines one has
xi = x0i + Kiti with fixed directions ti. Combining the two equations for each line one has
4 × 3 = 12 equations and 3+4+2 parameters for the sought for line plus 4 parameters Ki

for the four lines. This gives 13 unknown parameters corresponding to x0, ki,Ki. One would
have one parameter set of solutions: something goes wrong.

One has however projective invariance: one can shift x0 along the line by x0 → x0 − at,
ki → ki + a and using this freedom assume for instance k1 = 0. This reduces the number
of parameters to 12 and one has finite number of solutions in the generic case. Actually the
number is 2 in the generic case but can be infinite in some special cases. The challenge is
to deduce the number of the solutions by geometric arguments.Below Schubert’s argument
proving that the number of solutions is 2 will be discussed.

The idea of enumerative geometry is to do this using general geometric arguments allowing
to deform the problem topologically to a simpler one in which case the number of solutions
is obvious which in the most abstract formulation become topological.

2. Apollonius can be seen as founder of enumerative algebraic geometry. Apollonian circles
(see http://tinyurl.com/ycvxe688) represent second example. One has 3 circles in plane.
What is the number of circles tangential to all these 3 circles. Wikipedia link represents the
geometric solution of the problem. The number of circles is 8 in the generic case but there
are exceptional cases.

3. In Steiner’s conic problem (see http://tinyurl.com/yahshsjo) one have 5 conical sections
(circles, cones, ellipsoids, hyperbole) in plane. How many different conics tangential to the
conics there exist? This problem is rather difficult and the thumb rules of enumerative
geometry (dimension counting, Bezout’s rule, Schubert calculus) fail. This is a problem in
projective geometry where one is forced to introduce moduli space for conics tangential to
given conic. This space is algebraic sub-variety of all conics in plane which is 5-D projective
space. One must be able to deduce the number of points in the intersection of these sub-
varieties so that the original problem in 2-D plane is replaced with a problem in moduli
space.

3.2 About methods of algebraic enumerative geometry

A brief summary about methods of algebraic geometry is in order to give some idea about what is
involved (see http://tinyurl.com/y7yzt67b).

1. Dimension counting is the simplest method. If two geometric objects of n-D space have
dimensions k and l, there intersection is n− k − l-dimensional for n− k − l ≥ 0 or empty in
the generic case. For k + l = n one obtains discrete set of intersection points.

http://tinyurl.com/y7yzt67b
http://tinyurl.com/y7yzt67b
http://tinyurl.com/ycrbr5aj
http://tinyurl.com/ycvxe688
http://tinyurl.com/yahshsjo
http://tinyurl.com/y7yzt67b
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2. Bezouts theorem is a more advanced method. Consider for instance, curves in plane defined
by the curves polynomials x = Pm(y) and x = Pn(y) of degrees k = m and k = n. The
number N of intersection points in the generic case is bounded above by N = m× n (in this
case all roots are real). One can understand this by noticing that one has m roots yk or given
x giving rise to a m-branched graph of function y = f(x). The number of intersections for
the graphs of the two polynomials is at most m × n. If one has curve in plane represented
by polynomial equation Pm,n(x, y) = 0, one can also estimate immediately the minimal
multi-degree (m,n) for this polynomials.

3. Schubert calculus http://tinyurl.com/y766ddw2) is a more advanced but not completely
rigorous method of enumerative geometry [A8] (see http://tinyurl.com/ycrbr5aj).

Schubert’s vision was that the number of intersection points is stable against deformations in
the generic case. This is not quite true always but in exceptional cases one can say that two
separate solutions degenerate to single one, just like roots of polynomial can do for suitable
values of coefficients.

For instance, Schubert’s solution to the already mentioned problem of finding a line intersect-
ing 4 lines in generic position relies on this assumption. The idea is to deform the situation
so that one has two intersecting pairs of lines. One solution to the problem is a line going
through the intersection points for line pairs. Second solution is obtained as intersection of
the planes. It can happen that planes are parallel in which case this does not work.

Schubert calculus it applies to linear sub-varieties but can be generalized also to non-linear
varieties. The notion of incidence allowing a general formulation for intersection and tangen-
tiality (touching) is central. This leads to the notions of flag, flag manifold, and Schubert
variety as sub-variety of Grassmannian.

Flag is a hierarchy of incident subspaces A0 ⊂ A1 ⊂ A2... ⊂ An with the property that the
dimension di ≤ n of Ai satisfies di ≥ i. As a special case this notion leads to the notion
of Grassmannian G(k, n) consisting of k-planes in n-dimensional space: in this case A0

corresponds to k-planes and A2 to space An. More general flag manifolds are moduli spaces
and sub-varieties of Grassmannian providing a solution to some conditions. Flag varieties as
sub-varieties of Grassmannians are Schubert varieties (see http://tinyurl.com/y7ehcrzg).
They are also examples of singular varieties. More general Grassmannians are obtained as
coset spaces of G/P , where G is algebraic group and P is parabolic sub-group of G.

Remark: CP2 corresponds to the space of complex lines in C3. CP2 can be also understood
as the space of quaternionic planes in octonionic 8-space containing fixed 2-plane so that also
now one has flag. String world sheets inside space-time surfaces define curved flags with 2-D
and 4-D tangent spaces defining an integrable distribution of local flags.

4. Cohomology combined with Poincare duality allows a rigorous formulation of Schubert calcu-
lus. Schubert’s idea about possibility to deform the generic position corresponds to homotopy
invariance, when the degeneracies of the solutions are taken into account. Homology and co-
homology become basic tools and the so called cup product for cohomology together with
Poincare duality and Künneth formula for the cohomology of Cartesian product in terms of
cohomologies of factors allows to deduce intersection numbers algebraically. Schubert cells
define a basis for the homology of Grassmannian containing only even-dimensional generators.

Grassmannians play a key role in twistor Grassmannian approach as auxiliary manifolds. In
particular, the singularities of the integrand of the scattering amplitude defined as a multiple
residue integral over G(k, n) define a hierarchy of Schubert cells. The so called positive
Grassmannian [B2] defines a subset of singularities appearing in the scattering amplitudes of
N = 4 SUSY. This hierarchy and its CP2 counterpart are expected also in TGD framework.

Remark: Schubert’s vision might be relevant for the notion of conscious intelligence. Could
problem solving involve the transformation of a problem to a simple critical problem, which
is easy but for which some solutions can become degenerate? The transformation of general
position for 4 lines to a pair of intersecting lines would be example of this. One can wonder
whether quantum criticality could help problem solving by finding critical cases.

http://tinyurl.com/y766ddw2
http://tinyurl.com/ycrbr5aj
http://tinyurl.com/y7ehcrzg
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5. Moduli spaces of curves and varieties provide the most refined methods. Flag manifolds
define basic examples of moduli spaces. Quantum cohomology represents even more refined
conceptualization: the varieties (branes in M-theory terminology) are said to be connected
or intersect if each of them has a common point with the same pseudo-holomorphic variety
(“string world sheet”). Pseudo-holomorphy - which could have minimal surface property as
counterpart - implies that the connecting 2-surface is not arbitrary.

Quantum intersection for the “string world sheet” and “brane” is possible also when it is
not stable classically (the co-dimension of brane is smaller than 2). Even in the case that
it possible classically quantum intersection makes possible kind of “telepathic” quantum
contact mediated by the “string world sheet” naturally involved with the description of
quantum entanglement in TGD framework.

3.3 Gromow-Witten invariants

Gromow-Witten invariants repreent example of so called quantum invariants natural in string
models and M-theory. They provide new invariants in algebraic and symplectic geometry.

3.3.1 Formal definition

Consider first the definition of Gromow-Witten (G-W) invariants (see http://tinyurl.com/

y9b5vbcw). G-W invariants are rational number valued topological invariants useful in algebraic
and symplectic geometry. These quantum invariants give information about these geometries not
provided by classical invariants. Despite being rational numbers in the general case G-W invariants
in some sense give the number of string world sheets connecting given branes.

1. One considers collection of n surfaces (“branes”) with even dimensions in some symplectic
manifold X of dimension D = 2k (say Kähler manifold) and pseudo-holomorphic curves
(“string world sheets”) X2, which have the property that they connect these n surfaces in
the sense that they intersect the “branes” in the marked points xi, i = 1, .., n.

“Connect” does not reduce to intersection in topologically stable sense since connecting is
possible also for branes with dimension smaller than D − 2. One allows all surfaces that
X2 that intersects the n surfaces at marked points if they are pseudo-holomorphic even if
the basic dimension rule is not satisfied. In 4-dimensional case this does not seem to have
implications since partonic 2-surfaces satisfy automatically the dimension rule. The n branes
intersect or touch in quantum sense: there is no concrete intersection but intersection with
the mediation of “string world sheet”.

2. Pseudo-holomorphy means that the Jacobian df of the imbedding map f : X2 → X commutes
with the symplectic structures j resp. J of X2 resp. X: i.e. one has df(jT ) = Jdf(T ) for
any tangent vector T at given point of X2. For X2 = X = C this gives Cauchy-Riemann
conditions.

In the symplectic case X2 is characterized topologically by its genus g and homology class
A as surface of X. In algebraic geometry context the degree d of the polynomial defining
X2 replaces A. In TGD X2 corresponds to string world sheet having also boundary. X2 has
also n marked points x1, ..., xn corresponding to intersections with the n surfaces.

3. G-W invariant GWX,A
g,n gives the number of pseudo-holomorphic 2-surfaces X2 connecting n

given surfaces in X - each at single marked point. In TGD these surfaces would be partonic
2-surfaces and marked points would be carriers of sparticles.

The explicit definition of G-W invariant is rather hard to understand by a layman like me. I
however try to express the basic idea on basis of Wikipedia definition (see http://tinyurl.com/

y9b5vbcw). I apologize for my primitive understanding of higher algebraic geometry. The article of
Vakil [A6] (see http://tinyurl.com/ybobccub) discusses the notion of G-W invariant in detail.

1. The situation is conformally invariant meaning that one considers only the conformal equiv-
alence classes for the marked pseudo-holomorphic curves X2 parameterized by the points of
so called Deligne-Mumford moduli space Mg,n of curves of genus g with n marked points (see

http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/ybobccub
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http://tinyurl.com/yaq8n6dp): note that these curves are just abstract objects without
no imbedding as surface to X assumed. Mg,n has complex dimension

d0 = 3(g − 1) + n .

n corresponds complex dimensions assignable to the marked points and 3(g − 1) correspond
to the complex moduli in absence of marked points. This space appears in TGD framework
in the construction of elementary particle vacuum functionals [K1].

2. Since these curves must be represented as surfaces in X one must introduces the moduli
space Mg,n(X,A) of their maps f to X with given homology equivalence class. The elements
in this space are of form (C, x1, .., xn, f) where C is one particular representative of A.

3. The complex dimension d of Mg,n(X,A) can be calculated. One has

d = d0 + cX1 (A) + (g − 1)k .

Here cX1 (A) is the first Chern class defining element of second cohomology of X evaluated
for A. For Calabi-Yau manifolds one has c1 = 0. The contribution (g− 1)k to the dimension
vanishing for torus topology should have some simple explanation.

4. One defines so called evaluation map ev from Mg,n(X,A) → Y , Y = Mg,n × Xn in terms
of stabilization st(C, x1, ..., xn) ∈ Mg,n(X,A) of C (I understand that stabilization means
that the automophism group of the stabilized surface defined by f is finite [A7] (see http:

//tinyurl.com/y8r44uhl). I am not quite sure what the finiteness of the automorphism
group means. One might however think that conformal transformations must be in question.
One has

ev(C, x1, .., xn, f) = (st(C, x1, .., xn), f(x1), ...f(xn)) .

Evaluation map assigns to the concrete realization of string world sheet with marked points
the abstract curve st(C, x1, .., xn) and points (f(xi), ..., f(xn)) ∈ Xn possibly interpretable
as positions f(xi) of n particles. One could say that one has many particle system with
particles represented by surfaces of Xi of X connected by X2 - string world sheet - mediating
interaction between Xi via the intersection points.

5. Evaluation map takes the fundamental class of Mg,n(X,A) in Hd(Mg,n(X,A)) to an element
of homology group Hd(Y ). This homology equivalence class defines G-W invariant, which is
rational valued in the general case.

6. One can make this more concrete by considering homology equivalence class β in Mg,n

and homology equivalence classes αi, i = 1, ..., n represented by the surfaces Xi. The co-
dimensions of these n+1 homology equivalence classes must sum up to d. The homologies of
Mg,n and Y = Mg,n×Xn induce homology of Y by Künneth formula (see http://tinyurl.
com/yd9ttlfr) implying that Y has class of Hd(Y ) given by the product β · α1... · αn.

One can identify the value of GWX,A
g,n for a given class β · α1... · αn as the coefficients in its

expansion as sum of all elements in Hd(Y ). This coefficient is the value of its intersection
product of GWX,A

g,n with the product β ·α1...·αn and gives element of H0(Q), which is rational
number.

7. There are two non-classical features. Classically intersection must be topologically stable.
This would require αi to have codimension 2 but all even co-dimensions are allowed. That
the value for the number of connecting string world sheets is rational number does not
conform with the classical geometric intuition. The Wikipedia explanation is that the orbifold
singularities for the space Mg,n(X,A) of stable maps are responsible for rational number.

http://tinyurl.com/yaq8n6dp
http://tinyurl.com/y8r44uhl
http://tinyurl.com/y8r44uhl
http://tinyurl.com/yd9ttlfr
http://tinyurl.com/yd9ttlfr
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3.3.2 Application to string theory

Topological string theories give a physical realization of this picture. Here the review article
Instantons, Topological Strings, and Enumerative Geometry of Szabo [A7] (see http://tinyurl.

com/y8r44uhl) is very helpful.

1. In M-theory framework and for topological string models of type A and B the physical
interpretation for the varieties associated with αi would be as branes of various dimensions
needed to satisfy Dirichlet boundary conditions for strings.

2. In topological string theories one considers sigma model with target space X, which can
be rather general. The symplectic or complex structure of X is however essential. X is
forced to be 3-D (in complex sense) Calabi-Yau manifold by consistency of quantum theory.
Interestingly, the super twistor space CP (3|4) is super Calabi-Yau manifold although CP3

is not and must therefore have trivial first Chern class c1 appearing in the formula for the
dimension d above. I must admit that I do not understand why this is the case.

Closed topological strings have no marked points and one has n = 0. Open topological strings
world sheets meet n branes at points xi, where they satisfy Dirichlet boundary conditions.
Branes an be identified as even-dimensional Lagrangian sub-manifolds with vanishing induced
symplectic form.

3. For topological closed string theories of type A one considers holomorphically imbedded
curves in X characterized by genus g and homology class A: one speaks of world sheet
instantons. A =

∑
niSi is sum over the generating classes Si with integer coefficients.

For given g and A one has analog of product of non-interacting systems at temperatures
1/ti assignable to the homology classes Si with energies identifiable as ni. One can assign
Boltzmann weight labelled by (g,A) as Qβ =

∏
iQ

ni
i , Qi = exp(−ti).

One can construct partition function for the entire system as sum over Boltzmann weights
with degeneracy factors telling the number of world sheet instantons with given (g,A). One
can calculate free energy as sum

∑
Ng,βQ

β over contributions labelled by (g,A). The co-
efficients Ng,β count the rational valued degeneracies of the world sheet instantons of given

type and reduce to G-W invariants GWX,A
g,0 .

Remark: If one allows powers of a root e−1/n, t = n, in the extension of rationals or replace
e−t with pn, partition functions make sense also in the p-adic context.

4. For topological open string theories of type A one has also branes. Homology equivalence
classes are relative to the brane configuration. The coefficients Ng,β are given by GWX,A

g,n for
a given configuration of branes: the above described general formulas correspond to these.

5. For topological string theories of type B, string world sheets reduce to single point and thus
correspond to constant solutions to the field equations of sigma model. Quantum intersection
reduces to ordinary intersection and one has x1 = x2... = xn. G-W invariants involve only
classical cohomology and give for n = 2 the number of common points for two surfaces in X
with dimension d1 and d2 = n − d. The duality between topological string theories of type
A and B related to the mirror symmetry supports the idea that one could generalize the
calculation of these invariants in theories B to theories A. It is not clear whether this option
as any analog in TGD.

The so called Witten conjecture (see http://tinyurl.com/yccahv3q) proved by Kontsevich
states that the partition function in one formulation of stringy quantum gravity and having as
coefficients of free energy G-W invariants of the target space is same as the partition function in
second formulation and expressible in terms of so called tau function associated with KdV hierarchy.
This leads to non-trivial identities. Witten conjecture actually follows from the invariance of
partition function with respect to half Virasoro algebra and Virasoro conjecture (see http://

tinyurl.com/y7xcc9hm) stating just this generalizes Witten’s conjecture.

http://tinyurl.com/y8r44uhl
http://tinyurl.com/y8r44uhl
http://tinyurl.com/yccahv3q
http://tinyurl.com/y7xcc9hm
http://tinyurl.com/y7xcc9hm
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3.4 Riemann-Roch theorem

Riemann-Roch theorem (RR) is also part of enumerative geometry albeit more abstract. Instead
of counting of numbers of points, one counts dimensions of various function spaces associated with
Riemann surfaces. RR provides information about the dimensions for the spaces of meromorphic
functions and 1-forms with prescribed zeros and poles.

3.4.1 Basic notions

Riemann surface is the basic notion. Riemann surface is orientable is characterized by its genus g
and number of holes/punctures in it. Riemann surface can also possess marked points, which seem
to be equivalent with punctures. The moduli space of these complex curves is parameterized by a
moduli space Mg,n of curves of genus g with n marked points (see http://tinyurl.com/yaq8n6dp)
(see http://tinyurl.com/yaq8n6dp).

Dolbeault cohomology (see http://tinyurl.com/y7cvs5sx) generalizes the notion of differ-
ential form so that it has has well-defined degrees with respect to complex coordinates and their
conjugates: one can write in general complex manifold this kind of form as

ω = ωi1i2..in,j1j2...jndz
i1 ∧ dzi2 ...dzindzj1 ∧ dzj2 ...dzjn .

The ordinary exterior derivative d is replaced with its holomorphic counterpart ∂ and its conjugate.
One can construct the counterparts of cohomology groups (Hodge theory) Hp,q = Hq,p. Betti
numbers as numbers hi,j defining the dimensions of the cohomology groups forms of degrees i and
j with respect to dzi and dzj . One can define the holomorphic Euler’s characteristic as χC =
h0,0−h01 = 1− g whereas orinary Euler characteristic is χR = h0,0− (h01 +h10) +h1,1 = 2(1− g).

One considers meromorphic functions having poles and zeros as the only singularities (points at
which the map does not preserve angles): rational functions provide the basic example. Riemann
zeta provides example of meromorphic function not reducing to rational function. Holomorphic
functions have only zeros and entire functions have neither zeros nor poles. If analytic functions
on Riemann surfaces can be interpreted as maps of compact Riemann surface to itself rather than
to complex plane, meromorphy reduces to holomorphy since the point ∞ belongs to the Riemann
surface.

The elements of free group of divisors are defined as formal sums of integers associated with
the points P of Riemann surface. Divisors D =

∑
P n(P ), where (P ) is integer, are analogous

to integer valued “wave functions” on Riemann surface. The number of points with n(P ) 6= 0 is
countable. The degree of divisor is obtained as the ordinary sum deg(D) of the integers defining
the divisor.

Although divisors can be seen as purely formal objects, they are in practice associated to both
meromorphic functions and 1-forms. The divisor of a meromorphic function is known as principal
divisor. Meromorphic functions and 1-forms differing by a multiplication with meromorphic func-
tion are regarded as linearly equivalent - in other words, one can add to a given divisor a divisor of
a meromorphic function without changing its equivalence class. It can be shown that all divisors
associated with meromorphic 1-forms linearly equivalent and one can talk about canonical divisor.
Note that deg(D) is linear invariant since the degree of globally meromorphic function is zero.

The motivation for the divisors is following. Consider the space of meromorphic functions h
with the property that the degrees of poles associated with the poles of these functions are not
higher than given integers n(P ). In other words, one has 〈h(P )〉+D(P ) ≥ 0 for all points P (〈h〉
is the divisor of h). For D(P ) > 0 the pole has degree not higher than D(P ). For non-positive
D(P ) the function has zero of order D(P ) at least.

3.4.2 Formulation of RR theorem

With these prerequisites it is possibly to formulate RR (for Wikipedia article see http://tinyurl.
com/mdmbcx6). The Wikipedia article is somewhat confusing and a more precise description of
RR can be found in the article “Riemann-Roch theorem” by Vera Talovikova [A9] (see http:

//tinyurl.com/ktww7ks).
Let l(D) be the dimension of the space of meromorphic functions with principal divisor D or

1-forms linearly equivalent with canonical divisor K. Then the equality

http://tinyurl.com/yaq8n6dp
http://tinyurl.com/yaq8n6dp
http://tinyurl.com/y7cvs5sx
http://tinyurl.com/mdmbcx6
http://tinyurl.com/mdmbcx6
http://tinyurl.com/ktww7ks
http://tinyurl.com/ktww7ks
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l(D)− l(K −D) = deg(D)− g + 1 (3.1)

is true for both meromorphic functions and canonical divisors. For D = K one obtains using
l(0) = 1

l(K) = deg(K)− g + 2 (3.2)

giving the dimension of the space of canonical divisors. l(K) > 0 in general is not in conflict with
the fact that canonical divisors are linearly equivalent. deg(K) = 2g−2 in the above formula gives
l(K) = g.

l(K) = 0 for g = 0 case looks strange: one should actually make notational distinction between
dimensions of spaces of meromorphic functions and one-forms (this is done in the article of Tali-
vakova). The explanation is that l(K) here is not the dimension of the space of canonical 1-forms
but that of the holomorphic functions with the divisor of K. The canonical form K for the sphere
has second order pole at ∞ so that one cannot have meromorphic forms holomorphic outside P .

Riemann’s inequality

l(D) ≥ deg(D)− g + 1 (3.3)

follows from l(K −D) ≥ 0, which can be seen as a correction term to the formula

l(D) = deg(D)− g + 1 . (3.4)

In what sense this is true, becomes clear from what follows.

3.4.3 The dimension of the space meromorphic functions corresponding to given
divisor

The simplest divisor associated with meromorphic function involves only one point. Multiplying
a function, which is non-vanishing and finite at P by (z − z(P ))−n gives a pole of order n (zero
has negative order in this sense). One is interested on the dimension l(nP ) of the space nP of
meromorphic functions and RR allows to deduce information about l(nP ). One is interested on
the behavior of l(nP ) as function of genus g of Riemann surface (more general situation would
allow also punctures). For n = 0 one has entire function without poles and zeros. Only constant
function is possible: l(0) = 1.

First some general observations. K has degree deg(K) = 2g − 2, which gives l(K) = g. For
n = deg(D) > deg(K) = 2g − 2 the correction term vanishes since deg(K −D) becomes negative,
and one has l(D) = deg(D) − g + 1. This gives l(n = 2g − 1) = g. Therefore n ∈ {2g − 1, 2g, ...}
corresponds to l(nP ) ∈ {g, g+ 1, ...}. n < 2g− 2 corresponds to l(nP ) = 1. What about the range
n ∈ {2, ..., 2g − 2}? Note that 2g − 2 is the negative of the Euler character of Riemann surface.

1. g = 0 case. K on sphere. dz canonical 1-form on Riemann sphere covered by two complex
coordinate patches. z → w = 1/z relates the coordinates. There is second order pole at
infinity (dw = −dz/z2). One has therefore deg(K) = −2 for sphere in accordance with the
general formula deg(K) = 2g− 2. The formula l(nP ) = deg(D) + 1 holds for all n and there
is no correction term now. One as l(nP ) = n+ 1 .

2. g = 1 case.

One has deg(K) = 2g−2 = 0 for torus reflecting the fact that the canonical form ω = dz has
no poles or zeros (torus is obtained by identifying the cells of a periodic lattice in complex
plane). Correction term vanishes since it would have negative degree for all n and one has
l(nP ) ∈ {1, 1, 2, 3, ...}.
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3. g = 2 case.

For n = deg(D) ≥ 2× 2− 1 = 3 gives l(D) = n− 1 giving for n ≥ 3 l(nP ) ∈ {2, 3, ...}. What
about n = g = 2? For generic points one has l(2) = 1. There are 6 points at which one
has l(D) = 2 so that there is additional meromorphic function having pole of order 2 at this
kind of point. These points are fixed points under Z2 defining hyper-ellipticity. Note that
g ≤ 2 Riemann surfaces are always hyper-elliptic in the sense that it allows Z2 as conformal
symmetry (see http://tinyurl.com/y9sdu4o3).

One has therefore l(nP ) ∈ {1, 1, 1, 2, ..} for a generic point and l(nP ) ∈ {1, 1, 2, 2......} for
6 points fixed under Z2. An interesting question is whether this phenomenon could have
physical interpretation in TGD framework.

4. g > 2 case.

For g > 2 . l(nP ) in the range {2, 2g − 2} can depend on point and even on the conformal
moduli. There are more special points in which correction term differs from that in the
generic case. g = 3 illustrates the situation. n ∈ {1, 1, 1, 1, 1, 2, ...} is obtained for a generic
point. At special points and for n < 3 there are also other options for l(nP ). Also the
dependence of l(nP ) on moduli emerges for g ≥ 3. The natural guess layman is that these
points are fixed points of conformal symmetries. Also now hyper-elliptic surfaces allowing
projective Z2 covering are special. In the general case hyper-ellipticity is not possible.

In TGD framework Weierstrass points(see http://tinyurl.com/y9wehsml) are of special in-
terest physically.

1. My layman guess is that special points known as Weierstrass points (see http://tinyurl.

com/y9wehsml) correspond to singularities for projective coverings for which conformal sym-
metries permute the sheets of the covering. Several points coincide for the covering since a
sub-group of conformal symmetries would act trivially on the Weierstrass point.

Note that for g > 2 Z2 covering is not possible except for hyper-elliptic surfaces, and one
can wonder whether this relates to the experimental absence fo g > 2 fermion families [K1].
Second interesting point is that elementary particles indeed correspond to double sheeted
structures from the condition that monopole fluxes flow along closed flux tubes (there are no
free magnetic monopoles).

2. There is an obvious analogy with the coverings associated with the cognitive representation
defined by the points of space-time surface with coordinates in an extension of rationals
[L7, L4] [L6]. Fixed points for a sub-group of Galois group generate singularities at which
sheets touch each other. These singular points are physically the most interesting and could
carry sparticles. The action of discrete conformal groups restricted to cognitive representation
could be represented as the action of Galois group on points of cognitive representation.
Cognitive representation would indeed represent!

Remarkably, if the tangent spaces are not parallel for the touching sheets, these points are
mapped to several points in H in M8−H correspondence. If this picture is correct, the hyper-
elliptic symmetry Z2 of genera g ≤ 2 could give rise to this kind of exceptional singularities
for g ≥ 2.

What is worrying that there are two views about twistorial amplitudes. One view relying
on the notion of octonionic super-space M8 [L4] is analogous to that of SUSYs: sparticles
can be seen as completely local composites of fermions. Second view relies on imbedding
space M4 × CP2 [K19] and on the identification sparticles as non-local many-fermion states
at partonic 2-surfaces. These two views could be actually equivalent by M8 −H duality.

3. When these singular points are present at partonic 2-surfaces at boundaries of CD and at
vertices, the topology of partonic 2-surface is in well-defined sense between g and g+1 external
particles: one has criticality. The polynomials representing external particles indeed satisfy
criticality conditions guaranteeing associativity or co-associativity (quantum criticality of
TGD Universe is the basic postulate of quantum TGD). At partonic orbits the touching
pieces of partonic 2-surface could separate (g) or fuse (g + 1). Could this topological mixing
give rise to CKM mixing of fermions [K1, K4, K5]?

http://tinyurl.com/y9sdu4o3
http://tinyurl.com/y9wehsml
http://tinyurl.com/y9wehsml
http://tinyurl.com/y9wehsml
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3.4.4 RR for algebraic varieties and bundles

RR can be generalized to algebraic varieties (see http://tinyurl.com/y9asz4qg). In complex
case the real dimension is four so that this generalization is interesting from TGD point of view
and will be considered later. The generalization involves rather advanced mathematics such as the
notion of sheaf (see http://tinyurl.com/nudhxo6). Zeros and poles appearing in the divisor are
for complex surfaces replaced with 2-D varieties so that the generalization is far from trivial.

The following is brief summary based on Wikipedia article.

1. Genus g is replaced with algebraic genus and deg(D) plus correction term is replaced with the
intersection number (see http://tinyurl.com/y7dcffb6) for D and D−K, where K is the
canonical divisor associated with 2-forms, which is also unique apart from linear equivalence
Points of divisor are replaced with 2-varieties.

2. The generalization to complex surfaces (with real dimension equal to 4) reads as

χ(D) = χ(0) +
1

2
D · (D −K) . (3.5)

χ(D) is holomorphic Euler characteristic associated with the divisor. χ(0) is defined as
χ(0) = h0,0 − h0,1 + h0,2, where hi,j are Betti numbers for holomorphic forms. ’·’ denotes
intersection product in cohomology made possibly by Poincare duality. K is canonical two-
form which is a section of determinant bundle having unique divisor (their is linear equivalence
due to the possibility to multiply with meromorphic function.

One has χ(0) = 1 + pa, where pa is arithmetic genus. Noether’s formula gives

χ(0) =
c21 + c2

12
=
K ·K + e

12
. (3.6)

c21 is Chern number and e = c2 is topological Euler characteristic.

Clearly the information given by χ(D) is about Dolbeault homology. For comparison note
that RR for curves states l(D)− l(K −D) = χ(D) = χ(0) + deg(D).

RR can be also generalized so that it applies to vector bundles. Ordinary RR can be interpreted
as applying to a bundle for which the fiber is point. This requires the notion of the inverse bundle
defined as a bundle with the property that its direct sum (Whitney sum) with the bundle itself
is trivial bundle. One ends up with various characteristic classes, which represent homologically
non-trivial forms in the base spaces characterizing the bundle. For instance, the generalizations of
RR give information about the dimensions of the spaces of sections of the vector bundle.

Atyiah-Singer index theorem (see http://tinyurl.com/k6daqco) deals with so called elliptic
operators in compact manifolds and represents a generalization important in recent theoretical
physics, in particular gauge theories and string models. The theorem relates analytical index
- typically characterizing the dimension for the spectrum of solutions of elliptic operator to a
topological index. Elliptic operator is assigned with small perturbations for a given solution of
field equations. Perturbations of a given solution of say Yang-Mills equations is a representative
example.

4 Does M 8 −H duality allow to use the machinery of alge-
braic geometry?

The machinery of algebraic geometry is extremely powerful. In particular, the number theoretical
universality of algebraic geometry implies that same equations make sense for all number fields:
this is just what adelic physics [L7] [L6] demands. Therefore it would be extremely nice if one
could somehow use this machinery also in TGD framework as it is used in string models. How this
could be achieved? There are several guide lines.

http://tinyurl.com/y9asz4qg
http://tinyurl.com/nudhxo6
http://tinyurl.com/y7dcffb6
http://tinyurl.com/k6daqco
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1. Twistor lift of TGD [K16, K15, K14, K19] is now a rather well-established idea although a
lot of work remains to be done with the details. Twistors were originally introduced in order
to be able to use this machinery and involves complexification of Minkowski space M4 to M4

c

as an auxiliary tool. Complexification in sufficiently general sense seems to be a necessary
auxiliary tool but it cannot be a trick (like Wick rotation) but something fundamental and
here complexification at the level of M8 is suggestive. In the sequel I will used M4 for M4

c

and M8 for M8
c unless it is necessary to emphasize that M8

c is in question. The essential
point is that the Euclidian metric is complexified and it reduces to a real metric in various
sub-spaces defining besides Euclidian space also Minkowski spaces with varying signature
when the complex coordinates are real or imaginary.

2. If M8 −H duality holds true, one can solve field equations in M8 = M4 × E8 by assuming
that either the tangent space or normal space of the space-time surface X4 is associative
(quaternionic) at each point and contains preferred M2 in its tangent space. M2 could
depend on x but M2(x):s should integrate to a 2-surface. This allows to map space-time
surface M8 to a surface in M4 × CP2 since tangent spaces are parameterized by points of
CP2 and CP2 takes the role of moduli space. The image of tangent space as point of CP2 is
same irrespective of whether one has quaternions or complexified quaternions (Hc).

It came a surprise that associativity/co-associativity is possible only if the space-time surface
is critical in the sense that some gradients of 8 complex components of the octonionic poly-
nomial P vanish without posing them as additional conditions reducing thus the dimension
of the space-time surface. This occurs when the coefficients of P satisfy additional condi-
tions. One obtains associative/co-associative space-time regions and regions without either
property and they correspond nicely to two solution types for the twistor lift of Kähler action.

3. Contrary to the original expectations, M4 ⊂ M8
c must be identified as co-associative (co-

quaternionic) subspace so that E4 is the associative/quaternionic sub-space. This allows to
have light-cone boundary as the counterpart of point-like singularity in ordinary algebraic
geometry and also allows to understand the emergence of CDs and ZEO.

Remark: A useful convention to be used in the sequel. RE(o) and IM(o) denote the real and
imaginary parts of the octionion in the decomposition o = RE(o) + IM(o)I4 and Re(o) and Im(o)
its real number valued and purely imaginary parts in the usual decomposition.

The problems related to the signature of M4 have been a longstanding head-ache of M8 duality.

1. The intuitive vision has been that the problems can be solved by replacing M8 with its
complexification M8

c identifiable as complexified octonions o. This requires introduction of
imaginary unit i commuting with the octonionic units Ek ↔ (1, I1, ..., I7). The real octonionic
components are thus replaced with ordinary complex numbers zi = xi + iyi.

2. Importantly, complex conjugation o → o changes only the sign of Ii but not! that of i
so that the octonionic inner product (o1, o2) = o1o2 = ok1o

l
2δk,l becomes complex valued.

Norm is equal to OO =
∑
i z

2
i . Both norm and inner product are in general complex valued

and real valued only in sub-spaces in which octonionic coordinates are real or imaginary.
Sub-spaces have all possible signatures of metric. These sub-spaces are not closed under
multiplication and this has been an obstacle in the earlier attempts based on the notion of
octonion analyticity. This argument applies also to quaternions and one obtains signatures
(1, 1, 1, 1), (1, 1, 1,−1), (1, 1,−1,−1), and (1,−1,−1,−1). Why just the usual Minkowskian
signature (1,−1,−1,−1) is physical, should be understood.

The convention consistent with that used in TGD corresponds to a negative length squared
for space-like vectors and positive for time-like vectors. This gives m = (o0, io1, ..., io7) with
real ok. The projection M8

c → M8 defines the projection of X4
c ⊂ M8

c to X4 ⊂ M8 serving
as the pre-image of X4 ⊂M8 in M8 −H correspondence.

3. o is not field anymore as is clear from the fact that 1/o = o/oo is formally infinite in
Minkowskian sub-spaces, when octonion defines a light-like vector. o (and Hc) remains
however a ring so that sum and products are well-defined but division can lead to problems
unless one stays inside 7+7-dimensional light-cone with Re(oo) > 0 (Re(qq) > 0).
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Although the number field structure is lost, one can still define polynomials needed to define
algebraic varieties by requiring their simultaneous vanishing and rational functions make
sense inside the light-cone. Also rational functions can be defined but poles are replaced
with light-cones in Minkowskian section. Algebraic geometry would thus be forced by the
complexification of octonions. This looks to me highly non-trivial! The extension of zeros and
poles to light-cones making propagation possible could be a good reason for why Minkowskian
signature is physical. Interestingly, the allowed octonionic momenta are light-like quaternions
[K19].

4. An interesting question is whether ZEO and the emergence of CDs relates to the failure of
field property. It seems now clear that CDs must be assigned even with elementary particles.
I have asked whether they could form an analog for the covering of manifold by coordinate
patches (in TGD inspired theory of consciousness CDs would be correlates for perceptive
fields for conscious entities assignable to CDs [L8]). These observations encourage to ask
whether the tips of CD should correspond to a pair formed by two poles/two zeros or by pole
and zero assignable to positive and negative energy states.

It turns out that the space-time surfaces in the interior of CD would naturally correspond to
non-associative surfaces and only their 3-D boundaries would have associative 4-D tangent
spaces allowing mapping to H by M8-duality, which is enough by holography.

5. The relationship between light-like 3-surface bounding Minkowskian and Euclidian space-
time regions and light-like boundaries of CDs is interesting. Could also the partonic orbits
be understood a singularities of octonionic polynomials with IM(P ) = RE(P ) = 0?

4.1 What does one really mean with M8 −H duality?

The original proposal was that M8 duality should map the associative tangent/normal planes of
associative/co-associative space-time surface containing preferred M2, call it M2

0 , to CP2: the map
read as (m, e) ∈M4×E4 → (m, s) ∈M4×CP2. Eventually it became clear that the choice of M2

can depend on position with M2(x) forming an integrable distribution to CP2: this would define
what I have called Hamilton-Jacobi structures [K12]. String like objects have minimal surface as
M4 projection for almost any general coordinate invariant action, and internal consistency requires
that M2(x) integrate to a minimal surface. The details are however not understood well enough.

1. M4 coordinate would correspond simply to projection to a fixed M4
0 in the decomposition

M8 = M4
0 × E4

0 . One can however challenge this interpretation. How M4
0 is chosen? Is it

possible to choose it uniquely? Could also M4 coordinates represent moduli analogous to
CP2 coordinates? What about ZEO?

There is an elegant general manner to formulate the choice of M4
0 at the level of M8. The

complexified quaternionic sub-spaces of M8
c (M8) are parameterized by moduli space defining

the quaternionic moduli. The moduli space in question is CP2. The choice of M4
0 corresponds

to fixing of the quaternionic moduli by fixing a point of CP2.

Warning: Note that one should be very careful in distinguishing between quaternionic as
sub-spaces of M8 and as the tangent space M8 of given point of M8.

2. One can ask whether there could be a connection with ZEO, where CDs play a key role.
Indeed, the complexified Minkowski inner product means that the complexified octonions
(quaternions) inside M8

c (M4
c ) have inverse only inside 7-D (4-D) complexified light-cone and

this would motivate the restriction of space-time surfaces inside future or past light-cone or
both but not yet force CD.

If one allows rational functions and even meromorphic functions of octonionic or quaternionic
variable, one could consider the possibility of restricting the space-time surface defined as
their zeros to a maximally sized region containing no poles.

3. Consider complexified quaternions Hc. Poles (qq)−n, n ≥ 1 would correspond M4 light-cone
boundaries since qq = 0 at them. Also zeros qq = 0, for n ≥ 1 correspond to light-like
boundaries. Could one have two poles with with time-like distance defining CD or a pair of
pole and zero?
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There is also a possible connection with the notion of infinite primes [K6]. The notion of
infinite prime leads to the proposal that rationals defined as ratios of infinite integers but
having unit real norm (and also p-adic norms) could correspond pairs of positive and negative
energy states with identical total quantum numbers and located at opposite boundaries of
CD. Infinite rationals can be mapped to rational functions. Could positive energy states
correspond to the numerators with zeros at second boundary of CD and negative energy
states to denominators with zeros at opposite boundary of CD?

4.1.1 Is the choice of the pair (M2
0 ,M

4
0 ) consistent with the properties of known

extremals in H

It should be made clear that the notion of associativity/co-associativity (quaternionicity/co-quaternionicity)
of the tangent/normal space need not make sense at the level of H. I shall however study this
working hypothesis in the sequel.

The choice of the pair (M2
0 ,M

4
0 ) means choosing preferred co-commutative (commutative) sub-

space M2
0 of M8 defining a subspace of fixed co-quaternionic (quaternionic) sub-space M4

0 ⊂M8.
Remark: M4 should indeed be the co-associative/co-quaternionic subspace of M8 if the ar-

gument about emergence of CDs is accepted and if M8 − H correspondence maps associative to
associative and co-associative to co-associative.

M4
0 in turn contains preferred M2

0 defining co-commutative (hyper-complex) structure. Both
M2

0 and M4
0 are needed in order to label the choice by CP2 point (that is as a point of Grassman-

nian).
Is the projection to a fixed factor M4

0 ⊂M4
0×E4 as a choice of co-quaternionic moduli consistent

with what we know about the extremals of twistor lift of Kähler action in H? How could one fix
M4

0 from the data about the extremal in H? One can make similar equations about the choice
of M2

0 as a fixed co-complex moduli characterized by a unit quaternion. Note that this choice is
expected to relate closely to the twistor structure and Kähler structure.

It is best to check the proposal for the known extremals in H [K12]. Consider first CP2 type
extremals for which M4 projection is a piece of light-like geodesic.

1. The CP2 projection for the image of X4 ⊂ M8 differs from single point only if the tangent
space isomorphic toM4 and parameterized by CP2 point varies. Consider CP2 type extremals
for the twistor lift of Kähler action [?]n H having light-like geodesic as M4 projection as an
example. The light-like geodesic defines a light-like vector in the tangent space of CP2 type
extremal. This light-like vector together with its dual spans fixed M2, which however does
not belong to the tangent space so that associative surface would not be in question.

What about co-associativity or associativity (the latter is favored by above argument)? This
property should hold true for the pre-image of CP2 type extremal in M8 but I am not able
to say anything about this. It is questionable to require this property at the level H but one
can of course look what it would give.

What about associativity for CP2 tangent space? The normal space of CP2 type extremal is
3-D (!) since the only the light-like tangent vector of the geodesic and 2 vectors orthogonal
to it are orthogonal to CP2 tangent vectors. For Euclidian signature this would mean that
tangent space is 5-D and cannot be associative but now the tangent space is 4-D. Can one
still say that tangent space is associative. The co-associativity of the tangent space makes
sense trivially. Can one conclude that CP2 is co-associative.

The associativity for CP2 tangent space might make sense since the tangent space is 4-
D. The light-like vector k defines M2

0 . The associativity conditions involving two tangent
space vectors of CP2 and the light-like vector k contracted with the corresponding octonion
components. The contributions from the components of k to the associator should cancel
each other. Since one can change the relative sign of the components of k, this mechanism
does not seem to work for all components. Hence associativity cannot hold true. Neither
does M2

0 belong to the normal space since k and its dual are not orthogonal.

Could one conclude that CP2 type extremal is co-associative in accordance with the original
belief thanks to the light-like projection to M4? This does not conform with what the
singularity considerations for the octonionic polynomials would suggest. Or is it simply not
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correct to try to apply associativity at the level of H. Or does M8 −H correspondence map
associative tangent spaces to co-associative ones?

2. The normal space M4 of CP2 type extremal have all orientations characterized by its CP2

projection. The normal space must contain the M2
0 determined by the tangent of the light-

like geodesic and this is indeed the case. Note that CP2 type extremals cannot have entire
CP2 as CP2 projection: they necessarily have hole at either end, which would be naturally
be at the boundary of CD.

CP2 type extremals seem to be consistent with M8 −H correspondence. It however seems
that one cannot fix the choice ofM4

0 uniquely in terms of the properties of the extremal. There
is a moduli space for M4

0 :s defined by CP2 and obviously codes for moduli for quaternion
structures in octonionic space. The distributions of M2(x) (minimal surfaces) would code for
quaternion structures (decomposition of octonionic coordinates to quaternionic coordinates
in turn decomposing to pairs of complex coordinates).

Consider next the associativity condition for cosmic strings in X2 × Y 2 ⊂ M4 × CP2. Now
CP2 projection is 2-D complex surfaces and M4 projection is minimal surface. Situation is clearly
associative. How unique the choice of M4

0 is now?

1. Now M2(x) depends on position but M2(x):s define an integrable distribution defining string
orbit X2 as a minimal surface. M4

0 must contain all surfaces M2(x), which would fix M4
0 to

a high degree for complex enough cosmic strings.

2. Each point of X2 corresponds to the same partonic surface Y 2 ⊂ CP2 labelling the tangent
spaces for its pre-image in M8. All the tangent surfaces M2(x)× E2(y) for X2 × Y 2 ⊂ M8

share only M2(x) ⊂ M4
0 . M4

0 must contain all tangent spaces M2(x) and the inverse image
of Y 2 ⊂ CP2 must belong to the orthogonal complement E4 of M4

0 . This is completely
analogous with the condition X2 = X2 × Y 2 ⊂M4 × CP2.

Consider a decomposition M8 = M4
0 × E4, M4

0 = M2
0 × E2

0 . If the inverse image of Y 2 at
point x belongs to E4, the M4

0 projection belongs to M4
0 also in M8. If this does not pose

any condition on the tangent spaces assignable to the points of Y 2 defining points of CP2,
there are no problems. What could happen that the tangent spaces assignable to Y 2 could
force the projection of the inverse image of Y 2 to intersect M4

0 .

One should also understand massless extremals (MEs). How to choose M4
0 in this case?

1. MEs are given as zeros of arbitrary functions of CP2 coordinates and 2 M4 coordinates u
and v representing local light-like direction and polarization direction orthogonal to it. In
the simplest situation these directions are constant and define M4

0 = M2
0 ×E2

0 decomposition
everywhere so that M4

0 is uniquely defined. Same applies also when the directions are not
constant. In the general case light-like direction would define the local tangent plane of string
world sheet and local polarization plane. Since the dimension of M4 projection is 4 there
seems to be no problems involved.

2. Tangent plane of X4 is parameterized by CP2 coordinates depending on 2 coordinates u
and v. The surface X4 ⊂ M8 must be graph for a map M4

0 → E4 so that a 2-parameter
deformation of M4

0 as tangent plane is in question. The distribution of tangent planes of
X4 ⊂M8 is 2-D as is also the CP2 projection in H.

To sum up, the original vision about the associativity properties of the known extremals at
level of H survives. On the other hand, CDs emerge if M4 corresponds to the co-associative
part of O. Does this mean that M8 − H correspondence maps associative to co-associative by
multiplying the quaternionic tangent space in M8 by I4 to get that in H and vice versa or that
the notions of associative and co-associative do not make sense at the level of H? This does not
affect the correspondence since the same CP2 point parametrizes both associative tangent space
and its complement.
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4.1.2 Space-time surfaces as co-dimension 4 algebraic varieties defined by the van-
ishing of real or imaginary part of octonionic polynomial?

If the theory intended to be a theory of everything, the solution ansatz for the field equations
defining space-time surfaces should be ambitious enough: nothing less than a general solution of
field equations should be in question.

1. One cannot exclude the possibility that all analytic functions of complexified octonionic
variable with real Taylor or even Laurent coefficients. These would would a commutative
and associative algebra. Space-time surfaces would be identified as their zero loci. This
option is however number theoretically attractive and can also leads to problems with adelic
physics. Since Taylor series at rational point need not anymore give a rational value.

2. Polynomials of complexified octonion variable o with real coefficients define the simplest
option but also rational functions formed as ratios of this kind of polynomials must be
considered. Polynomials form a non-associative ring allowing sum, product, and functional
decomposition as basic operations. If the coefficients on of polynomials are complex numbers
on = an + ibn, an, bn real, where i refers to the commutative imaginary unit complexifying
the octonions, the ring is associative. It is essential to allow only powers on (or (o − o0))n

with o0 = a0 + ib0, a0, b0 real numbers). Physically this means that a preferred time axis is
fixed. This time axis could connect the tips of CD in ZEO.

One can write

P (o) =
∑
k pko

k ≡ RE(P )(q1, q2, q1, q2) + IM(P )(q1, q2, q1, q2)× I4 , pk real ,

(4.1)

where the notations

o = q1 + q2I4 , qi = z1i + z2i I2 , qi = z1i − z2i I2 , zji = xji + iyji
(4.2)

Note that the conjugation does not change the sign of i. Due to the non-commutativity of
octonions P i as functions of quaternions are in general not analytic in the sense that they
would be polynomials of qi with real coefficients! They are however analytic functions of zi.
The real and imaginary parts of xji correspond to Minkowskian and Euclidian signatures.

In adelic physics coefficients on of the octonionic polynomials define WCW coordinates and
should be rational numbers or rationals in the extension of rationals defining the adele. The
polynomials form an associative algebra since associativity holds for powers on multiplied by
real number. Thus complex analyticity crucial in algebraic geometry would be a key element
of adelic physics.

3. If the preferred extremals correspond to the associative algebra formed by these polynomials,
one could construct a completely general solution of the field equations as zero loci of their
real or imaginary parts and build up of new solutions using algebra operation sum, product,
and functional decomposition. One could identify space-time regions as associative or co-
associative algebraic varieties in terms of these polynomials and they would form an algebra.

The motivation for this dream comes from 2-D electrostatics, where conducting surfaces corre-
spond to curves at which the real part u or imaginary part v of analytic function w = f(z) = u+ iv
vanishes. In electrostatics curves form families with curves orthogonal to each other locally and
the map w = u+ iv → v− iu defines a duality in which curves of constant potential and the curves
defining their normal vectors are mapped to each other.

1. The generalization to the recent situation would be vanishing of the imaginary part IM(P )
or real part RE(P ) of the octonionic polynomial, where real and imaginary parts are defined
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via o = q1c + q2cI4. One can consider also the possibility that imaginary or real part has
constant value c are restricted to be rational so that one can regard the constant value set
also as zero set for a polynomial with constant shift. Note that the rationals could be also
complexified by addition of i. One would have

RE(P )(zki ) or IM(P )(zki ) = c , c = c0 rational .

(4.3)

c0 must be real. These two options should correspond to the situations in which tangent
space or normal space is associative (associativity/co-associativity). Complexified space-
time surfaces X4

c corresponding to different constant values c of imaginary or real part (with
respect to i) would define foliations of M8

c by locally orthogonal 4-dimensional surfaces in
M8
c such that normal space for surface X4

c would be tangent space for its co-surface.

CDs and ZEO emerges naturally if the IM(o) corresponds to co-quaternionic part of octonion.

2. It must be noticed that one has moduli space for the quaternionic structures even when
M4

0 is fixed. The simplest choices of complexified quaternionic space Hc = M4
c,0 containing

preferred complex plane M2
c,0 and its orthogonal complement are parameterized by CP2.

More complex choices are characterized by the choice of distribution of M2(x) integrable to
(presumably minimal) 2-surface in M4. Also the choice of the origin matters as found and
one has preferred coordinates. Also the 8-D Lorentz boosts give rise to further quaternionic
moduli. The physically interesting question concerns the interpretation of space-time surfaces
with different moduli. For instance, under which conditions they can interact?

The proposal has several extremely nice features.

1. Single real valued polynomial of real coordinate extended to octonionic polynomial and fixed
by real coefficients in extension of rationals would determine space-time surfaces.

2. The notion of analyticity needed in concrete equations is just the ordinary complex analytic-
ity forced by the octonionic complexification: there is no need for the application to have left-
or right quaternion analyticity since quaternionic derivatives are not needed. Algebraically
one has the most obvious guess for the counterpart of real analyticity for polynomials gen-
eralized to octonionic framework and there is no need for the quaternionic generalization of
Cauchy-Riemann equations [A10, A4] [A10, A4] (http://tinyurl.com/yb8l34b5) plagued
by the problems with the definition of differentiation in non-commutative and non-associative
context. There would be no problems with non-associativity and non-commutativity thanks
to commutativity of complex coordinates with octonionic units.

3. The vanishing of the real or imaginary part gives rise to 4 conditions for 8 complex coordinates
zk1 and zk2 allowing to solve zk2 as algebraic functions zk2 = fk(zl1) or vice versa. The conditions
would reduce to algebraic geometry in complex co-dimension dc = 4 and all methods and
concepts of algebraic geometry can be used! Algebraic geometry would become part of TGD
as it is part of M-theory too.

4.2 Is the associativity of tangent-/normal spaces really achieved?

The non-trivial challenge is to prove that the tangent/normal spaces are indeed associative for the
two options. The surfaces X4

c are indeed associative/co-associative if one considers the internal
geometry since points are in M4

c or its orthogonal complement.
One should however prove that X4

c are also associative as sub-manifolds of O and therefore
have quaternionic tangent space or normal space at each point parameterized by a point of CP2

in the case that tangent space containing position dependent M2
c , which integrate to what might

be called a 2-D complexified string world sheet inside M4
c .

1. The first thing to notice that associativity and quaternionicity need not be identical concepts.
Any surface with complex dimension d < 4 in O is associative and any surface with dimension

http://tinyurl.com/yb8l34b5
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d > 4 co-associative. Quaternionic and co-quaternionic surfaces are 4-D by definition. One
can of course ask whether one should consider a generalization of brane hierarchy of M-theory
also in TGD context and allow associativity in its most general sense. In fact, the study of
singularity of o2 shows that 6 and 5-dimensional surfaces are allowed for which the only
interpretation would be as co-associative spaces. This exceptional situation is due to the
additional symmetries increasing the dimension of the zero locus.

2. One has clearly quaternionicity at the level of o obtained by putting Y = 0 and at the level of
the tangent space for the resulting surface. The tangent space should be quaternionic. The
Jacobian of the map defined by P is such that it takes fixed quaternionic subspace Hc →M4

0,c

of O to a quaternionic tangent space of X4. The Jacobian applied to the vectors of Hc gives
the octonionic tangent vectors and they should span a quaternionic sub-space.

3. The notion of quaternionic surface is rigorous. M8 − H correspondence could be actually
interpreted in terms of the construction of quaternionic surface in M8. One has 4-D integrable
distribution of quaternionic planes in O with given quaternion structure labelled by points of
CP2 and has representation at the level of H as space-time surface and should be preferred
extremals. These quaternion planes should integrate to a slicing by 4-surfaces and their duals.
One obtains this slicing by fixing the values 4 of the suitably defined octonionic coordinates
P i, i = 1, .., 8, to a real constants depending on the surface of the slicing. This gives a
space-time surfaces for which tangent space-spaces or normal spaces are quaternionic.

The first guess for these coordinates P i be as real or imaginary parts of real polynomials
P (o). But how to prove and understand this?

Could the following argument be more than wishful thinking?

1. In complex case an analytic function w(z) = u + iv of z = x + iy mediates a map between
complex planes Z and W . One can interpret the imaginary unit appearing in w locally as a
tangent vector along u = constant coordinate line.

2. One can interpret also octonionic polynomials with real coefficients as mediating a map from
octonionic plane O to second octonionic plane, call if W . The decomposition P = P 1)+P 2)I4
would have interpretation in terms of coordinates of W with coordinate lines representing
quaternions and co-quaternions.

3. This would suggests that the quaternionic coordinate lines in W can be identified as coordi-
nate curves in O - that space-time surfaces - which are quaternionic/co-quaternionic surfaces
for P 1 = constant/P 2 = constant lines. One would have a representation of the same thing
in two spaces, and if sameness includes also quaternionicity/co-quaternionicity as attributes,
then also associativity and co-associativity should hold true.

The most reasonable approach is based on generality. Associativity/quaternionicity means a
slicing of octonion space by orthogonal quaternionic and co-quaternionic 4-D surfaces defined by
constant value surfaces of octonionic polynomial with real coefficients. This slicing should make
sense also for quaternions: one should have a slicing by complex and co-complex (commutative/co-
commutative) surfaces and in TGD string world sheets and partonic 2-surfaces assignable to
Hamilton-Jacobi structure would define this kind of slicing. In the case of complex numbers
one has a slicing in terms of constant value curves for real and imaginary parts of analytic function
and Cauchy-Riemann equations should define the property and co-property. The first guess that
the tangent space of the curve is real or imaginary is wrong.

4.2.1 Could associativity and commutativity conditions be seen as a generalization
of Cauchy-Rieman conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in
complex case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial
maps with real coefficients for polynomials in case of octonions and quaternions. Of course, also
Taylor and even Laurent series might be considered. The “Whatever it is” cannot be nothing but
Cauchy-Riemann conditions defining complex analyticity for complex maps.
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The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative
and associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In
the case of commutative sub-manifolds of quaternionic space the conditions are quadratic in the
partial derivatives. In the case of associative sub-manifolds of octonionic space the conditions are
trilinear in partial derivatives. One would have nothing but a generalization of Cauchy-Riemann
equations to multilinear equations in dimensions D = 2k, k = 1, 2, 3: k-linearity with k = 1, 2, 3!

One can continue the hierarchy of division algebras by assuming only algebra property by using
Cayley-Dickson construction (see http://tinyurl.com/ybuyla2k) by adding repeatedly a non-
commuting imaginary unit to the structure already obtained and thus doubling the dimension of
the algebra each time. Polynomials with real coefficients should still define an associative and
commutative algebra if the proposal is to make sense. All these algebras are indeed power asso-
ciative: one has xmxn = xm+n. For instance, sedenions define 16-D algebra. Could this hierarchy
corresponds to a hierarchy of analyticities satisfying generalized Cauchy-Riemann conditions?

4.2.2 Complex curves in real plane cannot have real tangent space

Going from octonions to quaternions to complex numbers, could constant value curves of real and
imaginary parts of ordinary analytic function in complex plane make sense? The curves u = 0
and v = 0 of functions f(z) = u + iv, z = x + iy define a slicing of plane by orthogonal curves
completely analogous to its octonionic and quaternionic variants. Can one say that the tangent
vectors for these curves are real/imaginary? For u = 0 these curves have tangent ∂xu+ i∂yu, which
is not real unless one has f(z) = k(x+ iy), k real.

Reality condition is clearly too strong. In fact, it is the well-ordering of the points of the 1-
dimensional curve, which is the property in question and lost for complex numbers and regained
at u = 0 and v = 0 curves. The reasonable interpretation is in terms of hierarchy of conditions
multilinear in the gradients of coordinates proposed above and linear Cauchy-Riemann conditions is
the only option in the case of complex plane. What is special in this curves that the tangent vectors
define flows which by Cauchy-Riemann conditions are divergenceless and irrotational locally.

Pessimistic would conclude that since the conjecture fails except for linear polynomials in
complex case, it fails also in the case of quaternions and octonions. For quaternionic polynomial q2

the conditions are however satisfied and it turns out that the resulting conditions make sense also in
the general case. Optimistic would argue that reality condition is not analogous to commutativity
and associativity so that this example tells nothing. Less enthusiastic optimist might admit that the
reality condition is a natural generalization to complex case but that the conjecture might be true
only for a restricted set of polynomials - in complex case of for f(z) = kz, k real. In quaternionic
and octonionic case but hopefully for a larger set of polynomials with real coefficients, maybe even
all polynomials with real coefficients.

4.2.3 Associativity and commmutativity conditions as a generalization of Cauchy-
Rieman conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in
complex case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial
maps with real coefficients for polynomials in case of octonions and quaternions. Of course, also
Taylor and even Laurent series might be considered. The “whatever-it-is” cannot be nothing but
Cauchy-Riemann conditions defining complex analyticity for complex maps.

The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative
and associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In
the case of commutative sub-manifolds of quaternionic space the conditions are quadratic in the
partial derivatives. In the case of associative sub-manifolds of octonionic space the conditions are
trilinear in partial derivatives. One would have nothing but a generalization of Cauchy-Riemann
equations to multilinear equations in dimensions D = 2k, k = 1, 2, 3: k-linearity with k = 1, 2, 3!

One can continue the hierarchy of number fields by assuming only algebra property by adding
additional imaginary units as done in Cayley-Hamilton construction (see http://tinyurl.com/

ybuyla2k) by adding repeatedly a non-commuting imaginary unit to the algebra already obtained
and thus doubling the dimension of the algebra each time. Polynomials with real coefficients should
still define an associative and commutative algebra if the proposal is to make sense. All these

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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algebras are indeed power associative: one has xmxn = xm+n. For instance, sedenions define 16-D
algebra. Could this hierarchy corresponds to a hierarchy of analyticities satisfying generalized
Cauchy-Riemann conditions? Could this hierarchy corresponds to a hierarchy of analyticities
satisfying generalized Cauchy-Riemann conditions?

One would have also a nice physical interpretation: in the case of quaternions one would
have “quaternionic conformal invariance” as conformal invariances inside string world sheets and
partonic 2-surfaces in a nice agreement with basic vision about TGD. At the level of octonions
would have “quaternionic conformal invariance” inside space-time surfaces and their duals. What
selects the preferred commutative or co-commutative surfaces is of course an interesting problem. Is
a gauge choice in question? Are these surfaces selected by some special property such as singular
character? Or does one have wave function in the set of these surfaces for a given space-time
surface?

4.2.4 Could quaternionic polynomials define complex and co-complex surfaces in Hc?

What about complex and co-complex (commutative/co-commutative) surfaces in the space of
quaternions? One would have a slicing of the quaternionic space by pairs of complex and co-
complex surfaces and would have natural identification as quaternion/Hamilton-Jacobi structure
and relate to the decomposition of space-time to string world sheets and partonic 2-surfaces. Now
the condition of associativity would be replaced with commutativity.

1. In the quaternionic case the tangent vectors of the 2-D complex sub-variety would be com-
muting. Can this be the case for the zero loci real polynomials P (q) with IM(P ) = 0 or
RE(P ) = 0? In this case the commutativity condition is that the tangent vectors have imag-
inary parts (as quaternions) proportional to each other but can have different real parts.
The vanishing of cross product is the condition now and involves only two vectors whereas
associativity condition involves 3 vectors and is more difficult.

2. The tangent vectors of a commutative 2-surface commute: [t1, t2] = 0. The commutator
reduces to the vanishing of the cross product for the imaginary parts:

Im(t1)× Im(t2) = 0 .

(4.4)

3. Expressing zi1 as a function of zk2 and using (zi1, z
k
2 ) as coordinates in quaternionic space, the

tangent vectors in quaternionic spaces can be written in terms of partial derivatives ∂z
1)
1 /∂z

k)
2

as

tik = (
∂z

i)
1

∂z
k)
2

, δik) , (4.5)

Here the first part corresponds to RE(ti) as quaternion and second part to IM(ti) as quater-
nion.

The condition that the vectors are parallel implies

∂z
1)
1

∂z
k)
2

= 0 . (4.6)

At the commutative 2-surface X2 z
1)
1 is constant and z

2)
1 is a function of z

1)
2 and z

2)
2 . One

would have a graph of a function z
2)
1 = f2(z

k)
2 ) at X2 but not elsewhere. One could regard

z
1)
1 as an extremum of a function z

1)
1 = f1(z

k)
2 ).

How to interpret this result?
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1. In the generic case this condition eliminates 1 dimension so that that 2-D surface would
reduce to a 1-D curve.

2. If one poses constraints on the coefficients of P (q) analogous to the conditions forcing the
potential function for say cusp catastrophe to have degenerate extrema at the boundaries
of the catastrophe one can get 2-D solution. For these values of parameters the conditions
would be equivalent with RE(P ) = 0 or IM(P ) = 0 conditions.

The vanishing of the gradient of z11 would indeed correspond in the case of cups catastrophe
to the condition for the co-incidence of two roots of the behavior variable x as extremum of
potential function V (x, a, b) fixing the control variable a as function of b.

This would pose constraints on the coefficients of P not all polynomials would be allowed.
This kind of conditions would realize the idea of quantum criticality of TGD at the level of
quaternion polynomials. This option is attractive if realizable also at the level of octonion
polynomials. This turns out to be the case.

3. One would thus have two kinds of commutative/co-commutative surfaces. The generic 1-D
surfaces and 2-D ones which are commutative/commutative and critical and assignable to
string world sheets and partonic 2-surfaces. 1-D surfaces would correspond to fermion lines at
the orbits of partonic 2-surfaces appearing in the twistor amplitudes in the interaction regions
defined by CDS. 2-D surfaces would correspond to the orbits of fermionic strings connecting
point-like fermions at their ends and serving as correlates for bound state entanglement for
external fermions arriving into CD. This picture would allow also to understand why just
some string world sheets and partonic 2-surfaces are selected.

The simplest manner to kill the proposal is to look for P = q2 and RE(P (q2)) = 0 surface. In
this case this condition is indeed satisfied. One has

RE(P ) = X1) +X2)I1 ,

X1) = (z
1)
1 )2 − (z

2)
1 )2 + (z

1)
2 )2 − (z

2)
2 )2 , X2) = 2z

1)
1 z

2)
1 I1 ,

IM(P ) = Y 1) + Y 2)I1 ,

Y 1) = (z
1)
2 + z

1)
2 )z

1)
1 , Y 2) = (z

2)
2 + z

2)
2 )z

2)
1

(4.7)

X2) = 0 gives z
1)
1 z

2)
1 = 0 so that one has either z

1)
1 = 0 or z

2)
1 = 0. X1) = 0 gives for z

1)
1 = 0

z
2)
1 = ±

√
(z

1)
2 )2 + (z

2)
2 )2.

The partial derivative ∂z
1)
1 /∂z

k)
2 is from implicit function theorem - following from the vanishing

of the differential d(RE(P )) along the surface - proportional ∂X1)/∂z
k)
2 , but vanishes as required.

Clearly, the quaternionic variant of the proposal survives in the simplest case its simplest test.
2-D character of the surface would be due to the criticality of q2 making it possible to satisfy the
conditions without the reduction of dimension.

4.2.5 Explicit form of associativity/quaternionicity conditions

Consider now the explicit conditions for associativity in the octonionic case.

1. One should calculate the octonionic tangent (normal) vectors ti for X = 0 in associative
(Y = 0 in co-associative case) and show that there associators Ass(ti, tj , tk) vanish for all
possible or all possible combinations i, j, k. In other words, one that one has

Ass(ti, tj , tk) = 0 , i, j, k ∈ {1, .., 4} , Ass(a, b, c) ≡ (ab)c− a(bc) .

(4.8)
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One can cast the condition to simpler from by expressing ti as octonionic vectors tikE
k:

Ass(Ea, Eb, Eb) =≡ fabcdEd , a, b, c, d ∈ {1, .., 7} ,

fabcd = εabeε cde − εaedεbce = 2εabeε cde .

(4.9)

The permutation symbols for a given triplet i, j, k are structures constants for quaternionic
inner product and completely antisymmetric (see http://tinyurl.com/p42tqsq).. εijk = 1
is true for the seven triplets 123, 145, 176, 246, 257, 347, 365 defining quaternionic sub-spaces
with 1-D intersections. The anti-associativity condition (EiEj)Ek = −(EiEj)Ek holds true
so that one has obtains the simpler expression for f ijks having values ±2.

Using this representation Ass(ti, tj , tk) reduces to 7 conditions for each triplet:

tirt
j
st
k
t f

rstu = 0 , i, j, k ∈ {1, .., 4} , r, s, t, u ∈ {1, .., 7} .

(4.10)

2. If the vanishing condition X = 0 or Y = 0 is crucial for associativity then every polynomial
is its own case to be studied separately and a general principle behind associativity should be
identified: the proposal is as a non-linear generalization of Cauchy-Riemann conditions. As
the following little calculation shows, the vanishing condition indeed appears as one calculates

partial derivatives ∂z
k)
1 /∂z

l)
2 in the expression for the tangent vectors of the surface deduced

from the vanishing gradient of X or Y .

3. I have proposed the octonionic polynomial ansatz already earlier but failed to prove that it
gives associative tangent or normal spaces. Besides the intuitive geometric argument I failed

to notice that the complex 8-D tangent vectors in coordinates z
k)
1 or z

k)
2 for complexified

space-time surface and coordinates (z
k)
1 , z

k)
2 ) for o have components

∂oi

∂z1k
↔ (δik,

∂z
i)
2

∂z
k)
1

)

or

( ∂o
i

∂z2k
)↔ (

∂z
i)
1

∂z
k)
2

, δik) .

(4.11)

These vectors correspond to complexified octonions Oi given by

δikE
k +

∂z
i)
2

∂z
k)
1

EkE4 , (4.12)

where the unit octonions are given by (E0, E1, E2, E3) = (1, I1, I2, I3) and (E5, E5, E7, E8) =
(1, I1, I2, I3)E4. The vanishing of the associators stating that one has

4. One can calculate the partial derivatives
∂zki
∂zkj

explicitly without solving the equations or the

complex valued quaternionic components of RE(P ) ≡ X = 0 or IM(P ) ≡ Y = 0 (note that
X and Y have for complex components labelled by Xi and Y i respectively.

http://tinyurl.com/p42tqsq
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Y i(z
k)
1 , z

l)
2 ) = c ∈ R , i = 1, ..., 4 , associativity ,

or

Xi(z
k)
1 , z

l)
2 ) = c ∈ R , i = 1, ..., 4 , co-associativity .

(4.13)

explicitly and check whether associativity holds true. The derivatives can be deduced from
the constancy of Y or X.

5. For instance, if one has z
k)
2 as function of z

k)
1 , one obtains in the associative case

RE(Y )ik + IM(Y )ik
∂z

r)
2

∂z
k)
1

= 0

RE(Y )ik ≡ ∂Y i

∂z
k)
1

, IM(Y )ik ≡ ∂Y i

∂z
k)
2

.

(4.14)

In co-associative case one must consider normal vectors expressible in terms of Y i so that X
is replaced with Y in these equations.

This allows to solve the partial derivatives needed in associator conditions

∂z
i)
2

∂z
k)
1

=
[
Im(Y )−1

]i
r
Re(Y )rk . (4.15)

6. The vanishing conditions for the associators are however multilinear and one can multiply
each factor by the matrix IM(P ) without affecting the condition so that IM(P )−1 disappears
and one obtains the conditions for vectors

T irT
j
s T

k
t f

rstu = 0 , i, j, k ∈ {1, .., 4} , r, s, t, u ∈ {1, .., 7} ,

T i = IM(Y )ikE
k −RE(Y )ikE

kE4 .

(4.16)

This form of conditions is computationally much more convenient.

How to solve these equations?

1. The antisymmetry of frstu with respect to the first two indices r, s leads one to ask whether
one could have

T irT
j
s T

k
t = 0 (4.17)

for the 7 quaternionic triplets. This is guaranteed if one has either RE(Y )ik = ∂Y i/∂zk1 = 0
(coquaternionic part of T i) or IM(Y )ik = ∂Y i/∂zk2 = 0 (co-quaternionic part of T i) for one
member in each triplet.

The study of the structure constants listed above shows that indices 1,2,3 are contained in
all 7 triplets. Same holds for the indices appearing in any quaternionic triplet. Hence it is
enough to require that three gradients RE(Y )ik = 0 or IM(Y )ik = 0 k ∈ {1, 2, 3} vanish.
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This condition is obviously too strong since already single vanishing condition reduces the
dimension of space-time variety to 3 in the generic case and it becomes trivially associative.

Octonionic automorphism group G2 gives additional basis with their own quaternion triplets
and the general condition would be that 3 partial derivatives vanish for a triplet obtained
from the basic triplet {1, 2, 3} by G2 transformation. It is not quite clear to me whether the
G2 transformation can depend on position on space-time surface.

2. As noticed, the vanishing of all triplets is an un-necessarily strong condition. Already the
vanishing of single gradient RE(Y )ik or IM(Y )ik reduces the dimension of the surface from
4 to 3 in the generic case. If one accepts that the dimension of associative surface is lower
than 4 then single criticality condition is enough to obtain 3-D surface.

In the generic case associativity holds true only at the 4-D tangent spaces of 3-surfaces at the
ends of CD (at light-like partonic orbits it holds true trivially in 4-D) and that the twistor
lift of Kähler action determines the space-time surfaces in their interior.

In this case one can map only the boundaries of space-time surface by M8−H duality to H.
The criticality at these 3-surfaces dictates the boundary conditions and provides a solution
to infinite number of conditions stating the vanishing of SSA Noether charges at space-like
boundaries. These space-time regions would correspond to the regions of space-time surfaces
inside CDs identifiable as interaction regions, where Kähler action and volume term couple
and dynamics depends on coupling constants.

The mappability of M8 dynamics to H dynamics in all space-time regions does not look
feasible: the dynamics of octonionic polynomials involves no coupling constants whereas
twistor lift of Kähler action involves couplings parameters. The dynamics would be non-
associative in the geometric sense in the interior of CDs. Notice that also conformal field
theories involve slight breaking of associativity and that octonions break associativity only
slightly (a(bc) = −(ab)c for octonionic imaginary units). I have discussed the breaking of
associativity from TGD viewpoint in [K13] .

3. Twistor lift of Kähler action allows also space-time regions, which are minimal surfaces [L1]
and for which the coupling between Kähler action and volume term vanishes. Preferred
extremal property reduces to the existence of Hamilton-Jacobi structure as image of the
quaternionic structure at the level of M8. The dynamics is universal as also critical dynamics
and independent of coupling constants so that M8 −H duality makes sense for it. External
particles arriving into CD via its boundaries would correspond to critical 4-surfaces: I have
discussed their interpretation from the perspective of physics and biology in [L2].

4. One should be able to produce associativity without the reduction of dimension. One can
indeed hope of obtaining 4-D associative surfaces by posing conditions on the coefficients of
the polynomial P by requiring that one RE(Y )ik or IM(Y )ik, i = i1 -call it just X1 - should
vanish so that Y i would be critical as function of zk1 or zk2 .

At X1 = 0 would have degenerate zero at the 4-surface. The decomposition of X1 to a
product of monomial factors with root in extension of rationals would have one or more
factors appearing at least twice. The associative 4-surfaces would be ramified. Also the
physically interesting p-adic primes are conjectured to be ramified in the sense that their
decomposition to primes of extension of rationals contains powers of primes of extension.
The ramification of the monomial factors is nothing but ramification for polynomials primes
in field of rationals in terms of polynomial primes in its extension.

This could lead to vanishing of say one triplet while keeping D = 4. This need not however
give rise to associativity in which case also second RE(Y )ii or IM(Y )ik, i = i2, call it X2,
should vanish. The maximal number of Xi would be nmax = 3. The natural condition
consistent with quantum criticality of TGD Universe would be that the variety is associative
but maximally quantum critical and has therefore dimension D = 3 or D = 4. Stronger
condition allows only D = 4.

These n ≤ 3 additional conditions make the space-time surface analogous to a catastrophe
with n ≤ 3 behavior variables in Thom’s classification of 7 elementary catastrophes with
less than 11 control variables [A1]. Thom’s theory does not apply now since it has only
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one potential function V (x) (now n ≤ 3 corresponding to the critical coordinates Y i!) as
a function of behaviour variables and control variables). Also the number of non-vanishing
coefficients in the polynomial having values in an extension of rationals and acting as control
variables is unlimited. In quaternionic case the number of potential functions is indeed 1 but
the number of control variables unlimited.

5. One should be able to understand the D = 3 associative objects - say light-like 3-surfaces or
3-surfaces at the boundaries of CD - as 3-surfaces along which 4-D associative (co-associative)
and non-associative (non-co-associative) surfaces are glued together.

Consider a product P of polynomials allowing 3-D surfaces as necessarily associative zero loci
to which a small interaction polynomial vanishing at the boundaries of CD (proportional to
on, n > 1) is added. Could P allow 4-D surface as a zero locus of real or imaginary part and
containing the light-like 3-surfaces thanks to the presence of additional parameters coming
from the interaction polynomial. Can one say that this small interaction polynomial would
generate 4-D space-time in some sense? 4-D associative space-time regions would naturally
emerge from the increasing algebraic complexity both via the increase of the degree of the
polynomial and the increase of the dimension of the extension of rationals making it easier
to satisfy the criticality conditions!

There are two regions to be considered: the interior and exterior of CD. Could associativity/co-
associativity be possible outside CD but not inside CD so that one would indeed have free
external particles entering to the non-associative interaction region. Why associativity condi-
tions would be more difficult to satisfy inside CD? Certainly the space-likeness of M4 points
with respect to the preferred origin of M8 in this region should be crucial since Minkowski
norm appears in the expressions of RE(P ) and IM(P ).

Do the calculations for the associative case generalize to the co-associative case?

1. Suppose that one has possibly associative surface having RE(P ) = 0. One would have
IM(P ) = 0 for dual space-time surface defining locally normal space of RE(P ) = 0 sur-
face. This would transform the co-associativity conditions to associativity conditions and
the preceding arguments should go through essentially as such.

Associative and co-associative surfaces would meet at singularity RE(P ) = IM(P ) = 0,
which need not be point in Minkowskian signature (see P = o2 example in the Appendix)
and can be even 4-D! This raises the possibility that the associative and co-associative surfaces
defined by RE(P ) = 0 and IM(P ) = 0 meet along 3-D light-like orbits partonic surfaces or
3-D ends of space-time surfaces at the ends of CD.

2. If D = 3 for associative surfaces are allowed besides D = 4 as boundaries of 4-surfaces, one
can ask why not allow D = 5 for co-associative surfaces. It seems that they do not have
a reasonable interpretation as a surface at which co-associative and non-co-associative 4-D
space-time regions would meet. Or could they in some sense be geometric “co-boundaries”
of 4-surfaces like branes in M-theory serve as co-boundaries of strings? Could this mean that
4-D space-time-surface is boundary of 5-D co-associative surface defining a TGD variant of
brane with strings world sheets replaced with 4-D space-time surfaces?

What came as a surprise that P = o2 allows 5-D and 6-D surfaces as zero loci of RE(P ) or
IM(P ) as shown in Appendix. The vanishing of the entire o2 gives 4-D interior or exterior of
CD forced also by associativity/co-associativity and thus maximal quantum criticality. This
is very probably due to the special properties of o2 as polynomial: in the generic case the
zero loci should be 4-D.

This discussion can be repeated for complex/co-complex surfaces inside space-time surfaces
associated with fermionic dynamics.

1. Associativity condition does not force string world sheets and partonic 2-surfaces but they
could naturally correspond to commutative or co-commutative varieties inside associative/co-
associative varieties.
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In the generic case commutativity/co-commutativity allows only 1-D curves - naturally light-
like fermionic world lines at the boundaries of partonic orbits and representing interacting
point-like fermions inside CDs and used in the construction of twistor amplitudes [K15, K19].
There is coupling between Kähler part and volume parts of modified Dirac action inside CDs
so that coupling constants are visible in the spinor dynamics and in dynamics of string world
sheet.

2. At criticality one obtains 2-D commutative/co-commutative surfaces necessarily associated
with external particles quantum critical in 4-D sense and allowing quaternionic structure.
String world sheets would serve as correlates for bound state entanglement between fermions
at their ends. Criticality condition would select string world sheets and partonic 2-surfacs
from the slicing of space-time surface provided by quaternionic structure (having Hamilton-
Jacobi structure as H-counterpart).

If associativity holds true and fixed M2
c is contained in the tangent space of space-time surface,

one can map the M4 projection of the space-time surface to a surface in M4 × CP2 so that the
quaternionic tangent space at given point is mapped to CP2 point. One obtains 4-D surface in
H = M4 × CP2.

1. The condition that fixed M2
c belongs to the tangent space of X4

c is true in the sense that

the coordinates z
k)
2 do not depend on z

1)
1 and z

2)
1 defining the coordinates of M2

c . It is not
clear whether this condition can be satisfied in the general case: octonionic polynomials are
expected to imply this dependence un-avoidably.

The more general condition allows M2
c to depend on position but assumes that M2

c :s associ-
ated with different points integrate to a family 2-D surfaces defining a family of complexified
string world sheets. In the similar manner the orthogonal complements E2

c of M2
c would inte-

grate to a family of partonic 2-surfaces. At each point these two tangent spaces and their real
projections would define a decomposition analogous to that define by light-like momentum
vector and polarization vector orthogonal to it. This decomposition would define decomposi-
tion of quaternionic sub-spaces to complexified complex subspace and its co-complex normal
space. The decomposition would correspond to Hamilton-Jacobi structure proposed to be
central aspect of extremals [K12].

2. What is nice that this decomposition of M4
c (M4) would (and of course should!) follow

automatically from the octonionic decomposition. This decomposition is lower-dimensional
analog to that of the complexified octonionic space induced by level sets of real octonionic
polymials but at lower level and extremely natural due to the inclusion hierarchy of classical
number fields. Also M2

c could have similar decomposition orthogonal complex curves by the
value sets of polynomials. The hierarchy of grids means the realization of the coordinate grid
consisting of quaternionic, complex, and real curves for complexified coordinates ok and their
quaternionic and complex variants and is accompanied by corresponding real grids obtained
by projecting to M4 and mapping to CP2.

Thus these decompositions would be obtained from the octonionic polynomial decomposing it
to real quaternionic and imaginary quaternionic parts first to get a grid of space-time surfaces
as constant value sets of either real or imaginary part, doing the same for the non-constant
quaternionic part of the octonionic polynomial to get similar grid of complexified 2-surfaces,
and repeating this for the complexified complex octonionic part.

Unfortunately, I do not have computer power to check the associativity directly by symbolic
calculation. I hope that the reader could perform the numerical calculations in non-trivial cases
to this!

4.2.6 General view about solutions to RE(P ) = 0 and IM(P ) = 0 conditions

The first challenge is to understand at general level the nature of RE(P ) = 0 and IM(P ) =
0 conditions. Appendix shows explicitly for P (o) = o2 that Minkowski signature gives rise to
unexpected phenomena. In the following these phenomena are shown to be completely general but
not quite what one obtains for P (o) = o2 having double root at origin.
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1. Consider first the octonionic polynomials P (o) satisfying P (0) = 0 restricted to the light-like
boundary δM8

+ assignable to 8-D CD, where the octonionic norm of o vanishes.

(a) P (o) reduces along each light-ray of δM8
+ to the same real valued polynomial P (t) of a

real variable t apart from a multiplicative unit E = (1 + in)/2 satisfying E2 = E. Here
n is purely octonion-imaginary unit vector defining the direction of the light-ray.

IM(P ) = 0 corresponds to quaterniocity. If the E4 (M8 = M4 × E4) projection is
vanishing, there is no additional condition. 4-D light-cones M4

± are obtained as solutions
of IM(P ) = 0. Note that M4

± can correspond to any quaternionic subspace.

If the light-like ray has a non-vanishing projection to E4, one must have P (t) = 0. The
solutions form a collection of 6-spheres labelled by the roots tn of P (t) = 0. 6-spheres
are not associative.

(b) RE(PE) = 0 corresponding to co-quaternionicity leads to P (t) = 0 always and gives a
collection of 6-spheres.

2. Suppose now that P (t) is shifted to P1(t) = P (t) − c, c a real number. Also now M4
± is

obtained as solutions to IM(P ) = 0. For RE(P ) = 0 one obtains two conditions P (t) = 0
and P (t− c) = 0. The common roots define a subset of 6-spheres which for special values of
c is not empty.

The above discussion was limited to δM8
+ and light-likeness of its points played a central role.

What about the interior of 8-D CD?

1. The natural expectation is that in the interior of CD one obtains a 4-D variety X4. For
IM(P ) = 0 the outcome would be union of X4 with M4

+ and the set of 6-spheres for IM(P ) =
0. 4-D variety would intersect M4

+ in a discrete set of points and the 6-spheres along 2-D
varieties X2. The higher the degree of P , the larger the number of 6-spheres and these
2-varieties.

2. For RE(P ) = 0 X4 would intersect the union of 6-spheres along 2-D varieties. What comes
in mind that these 2-varieties correspond in H to partonic 2-surfaces defining light-like 3-
surfaces at which the induced metric is degenerate.

3. One can consider also the situation in the complement of 8-D CD which corresponds to the
complement of 4-D CD. One expects that RE(P ) = 0 condition is replaced with IM(P ) = 0
condition in the complement and RE(P ) = IM(P ) = 0 holds true at the boundary of 4-D
CD.

6-spheres and 4-D empty light-cones are special solutions of the conditions and clearly analogs
of branes. Should one make the (reluctant-to-me) conclusion that they might be relevant for TGD
at the level of M8.

1. Could M4
+ (or CDs as 4-D objects) and 6-spheres integrate the space-time varieties inside

different 4-D CDs to single connected structure with space-time varieties glued to the 6-
spheres along 2-surfaces X2 perhaps identifiable as pre-images of partonic 2-surfaces and
maybe string world sheets? Could the interactions between space-time varietiesX4

i assignable
with different CDs be describable by regarding 6-spheres as bridges between X4

i having only
a discrete set of common points. Could one say that X2

i interact via the 6-sphere somehow.
Note however that 6-spheres are not dynamical.

2. One can also have Poincare transforms of 8-D CDs. Could the description of their interactions
involve 4-D intersections of corresponding 6-spheres?

3. 6-spheres in IM(P ) = 0 case do not have image under M8 −H correspondence. This does
not seem to be possible for RE(P ) = 0 either: it is not possible to map the 2-D normal space
to a unique CP2 point since there is 2-D continuum of quaternionic sub-spaces containing it.
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4.3 M8 −H duality: objections and challenges

In the following I try to recall all objections against the reduction of classical physics to octonionic
algebraic geometry and against the notion of M8 −H duality and also invent some new counter
arguments and challenges.

4.3.1 Can on really assume distribution of M2(x)?

Hamilton-Jacobi structure means that M2(x) depends on position and M2(x) should define an
integrable distribution integrating to a 2-D surface. For cosmic string extremals this surface would
be minimal surface so that the term “string world sheet” is appropriate. There are objections.

1. It seems that the coefficients of octonionic polynomials cannot contain information about
string world sheet, and the only possible choice seems to be that string world sheets and par-
tonic 2-surfaces parallel to it assigned with integrable distribution of orthogonal complements
E2(x) should be coded by quaternionic moduli. It should be possible to define quaternionic
coordinates qi decomposing to pairs of complex coordinates to each choice of M2(x)×E2(x)
decomposition of given M4

0 . Octonionic coordinates would be given by o = q1 + q2I4 where
qi are associated with the same quaternionic moduli. The choice of Hamilton-Jacobi struc-
ture would not be ad hoc procedure anymore but part of the definition of solutions of field
equations at the level of M8.

2. It would be very nice if the quaternionic structure could be induced from a fixed structure
defined for M8

c once the choice of curvilinear M4 coordinates is made. Since Hamiltoni-Jacobi
structure [K12] involves a choice of generalized Kähler form for M4 and since quaternionic
structure means that there is full S2 of Kähler structures determined by quaternionic imag-
inary units (ordinary Kähler form for sub-space E8 ⊂ M8

c ) the natural proposal is that
Hamilton-Jacobi structures is determined by a particular local choice of the Kähler form for
M4 involving fixing of quaternionic imaginary unit fixing M2(x) ⊂ M4

0 identifiable as point
of S2. This might relate closely also to the fixing of twistor structure, which indeed involves
also self-dual Kähler form and a similar choice.

3. One can argue that it is not completely clear whether massless extremals (MEs) [K12] allow
a general Hamilton-Jacobi structure. It is certainly true that if the light-like direction and
orthogonal polarization direction are constant, MEs exist. It is clear that if the form of
field equations is preserved and thus reduces to contractions of various tensors with second
fundamental form one obtains only contractions of light-like vector with itself or polarization
vector and these contractions vanish. For spatially varying directions one could argue that
light-like direction codes for a direction of light-like momentum and that problems with local
conservation laws expressed by field equations might emerge.

4.3.2 Can one assign to the tangent plane of X4 ⊂ M8 a unique CP2 point when M2

depends on position

One should show that the choice s(x) ∈ CP2 for a given distribution of M2(x) ⊂M4(x) is unique
in order to realize the M8 −H correspondence as a map M8 → H. It would be even better if one
had an analytic formula for s(x) using tangent space-data for X4 ⊂ H.

1. If M2(x) = M2
0 holds true but the tangent space M4(x) depends on position, the assignment

of CP2 point s(x) to the tangent space of X4 ⊂M8 is trivial. When M4(x) is not constant,
the situation is not so easy.

2. The space M2(x) ⊂ M4(x) satisfies also the constraint M2(x) ⊂ M4
0 since quaternionic

moduli are fixed. To avoid confusion notice that M4(x) denotes tangent space of X4 and is
different from M4

0 fixing the quaternionic moduli.

3. M2(x) determines the local complex subspace and its completion to quaternionic tangent
space M4(x) determines a point s(x) of CP2. The idea is that M2

0 defines a standard
reference and that one should be able to map M2(x) to M2

0 by G2 automorphism mapping
also the s(x) to a unique point s0(x) ∈ CP2 defining the CP2 point assignable to the point
of X4 ⊂M8.
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4. One can assign to the point x quaternionic unit vector n(x) determining M2(x) as the
direction of the preferred imaginary unit. The G2 transformation must rotate n(x) to n0
defining M2

0 and acts on s. G2 transformation is not unique since u1gu2 has the same effect
for ui ⊂ U(2) leaving invariant the point of CP2 for initial and final situation. Hence the
equivalence classes of transformations should correspond to a point of 6-dimensional double
coset space U(2)\G2/U(2). Intuitively it seems obvious that the s0(x) is unique but proof is
required.

4.3.3 What about the inverse of M8 −H duality?

M8 − H duality should have inverse in the critical regions of X4 ⊂ M8, where associativity
conditions are satisfied. How could one construct the inverse of M8 −H duality in these regions?
One should map space-time points (m, s) ∈ M4 × CP2 to points (m, e) = (m, f(m, s)) ∈ M8.
M4

0 ⊃ M2
0 parameterized by CP2 point can be chosen arbitrarily and one can require that it

corresponds to some space-time point (m0, s0) ∈ H. CP2 point s(x) characterizes the quaternionic
tangent space containing M2(x) and can choose M2

0 to be M2(x0) for conveniently chosen x0.
Coordinates x can be used also for X4 ⊂M8.

One obtains set of points (m, e) = (m(x), f(m(x), s(x)) ∈M8 and a distribution of 4-D spaces
of labelled by s(x). This requires that the 4-D tangent space spanned by the gradients of m(x)
and f(m(x), s(x)) and characterized by s1 ⊂ CP2 for given M2(x) by using the above procedure
mapping the situation to that for M2

0 is same as the tangent space determined by s(x): s(x) =
s1(x). Also the associativity conditions should hold true. One should have a formula for s1 as
function of tangent vectors of space-time surface in M8. The ansatz based on algebraic geometry
in M8

c should be equivalent with this ansatz. The problem is that the ansatz leads to algebraic
functions which cannot be found explicitly. It might be that in practice the correspondence is easy
only in the direction M8 → H.

4.3.4 What one can say about twistor lift of M8 −H duality?

One can argue that the twistor spaces CP1 associated with M4 and E4 are in no way visible in the
dynamics of octonion polynomials and in M8 − H duality. Hence one could argue that they are
not needed for any reasonable purpose. I cannot decide whether this is indeed the case. There I
will consider the existence of twistor lift of the M8 and also the twistor lift M8−H duality in the
space-time regions, where the tangent spaces satisfy the conditions for the existence of the duality
as a map (m, e) ∈ M8 → (m, s) ∈ M4 × CP2 must be considered. This involves some non-trivial
delicacies.

1. The twistor bundles of M4
c and E4

c would be simply M4
c × CP1 and E4

c × CP1. CP1 = S2

parameterizes direction vectors in 3-D Euclidian space having interpretation as unit quater-
nions so that this interpretation might make sense. The definition of twistor structure means
a selection of a preferred quaternion unit and its representation as Kähler form so that these
twistor bundles would have thus Kähler structure. Twistor lift replaces complex quaternionic
surfaces with their twistor spaces with induced twistor structure.

2. In M8 the radii of the spheres CP1 associated with M4 and E4 would be most naturally
identical whereas in M4×CP2 they can be different since CP2 is moduli space. Is the value of
the CP2 radius visible at all in the classical dynamics in the critical associative/co-associative
space-time regions, where one has minimal surfaces. Criticality would suggest that besides
coupling constants also parameters with dimension of length should disappear from the field
equations. At least for the known extremals such as massless extremals, CP2 type extremals,
and cosmic strings CP2 radius plays no role in the equations. CP2 radius comes however
into play only in interaction regions defined by CDs since M8 −H duality works only at the
3-D ends of space-time surface and at the partonic orbits. Therefore the different radii for
the CP1 associated with CP2 and E4 cause no obvious problems.

Consider now the idea about twistor space as real part of octonionic twistor space regarded as
quaternion-complex space.
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1. One can regard CP1 = S2 as the space of unit quaternions and it is natural to replace it with
the 6-sphere S6 of octonionic imaginary units at the level of complexified octonions. The
sphere of complexified (by i) unit octonions is non-compact space since the norm is complex
valued and this generalization looks neither attractive nor necessary since the projection to
real numbers would eliminate the complex part.

The equations determining the twistor bundle of space-time surface can be indeed formulated
as vanishing of the quaternionic imaginary part of S6 coordinates, and one obtains a reduction
to quaternionic sphere S2 at space-time level.

If S2 is identified as sub-manifold S2 ⊂ S6, it can be chosen in very many manners (this is
of course not necessary). The choices are parameterized by SO(7)/SO(3) × SO(4) having
dimension D = 12. This choice has no physical content visible at the level of H. Note
that the Kähler structure determining Hamilton-Jaboci structure is fixed by the choice of
preferred direction (M2(x)). If all these moduli are allowed, it seems that one has something
resembling multiverse, the description at the level of M8 is deeper one and one must ask
whether the space-time surfaces with different twistorial, octonionic, and quaternionic moduli
can interact.

2. The resulting octonionic analog of twistor space should be mapped by M8 −H corresponds
to twistor space of space-time surface T (M4) × T (CP2). The radii of twistor spheres of
T (M4) and T (CP2) are different and this should be also understood. It would seem that the
radius of T (M4) at H = M4×CP2 side should correspond to that of T (M4) at M8 side and
thus to that of S6 as its geodesic sphere: Planck length is the natural proposal inspired by
the physical interpretation of the twistor lift. The radius of T (CP2) twistor sphere should
correspond to that of CP2 and is about 212 Planck lengths.

Therefore the scale of CP2 would emerge as a scale of moduli space and does not seem
to be present at the level of M8 as a separate scale. M8 level would correspond to what
might be called Planckian realm analogous to that associated with strings before dynamical
compactification which is now replaced with number theoretic compactification. The key
question is what determines the ratio of the radii of CP2 scale to Planck for which favored
value is 212 [K14]. Could quantum criticality determine this ratio?

5 Appendix: o2 as a simple test case

Octonionic polynomial o2 serves as a simple testing case. o2 is not irreducible so that its properties
might not be generic and it might be better to study polynomial of form P (o) = o+ po2 instead.

Before continuing, some conventions are needed.

1. The convention is that in M8 = M1 × E7 E7 corresponds to purely imaginary complexified
octonions in both octonionic sense and in the sense that they are proportional to i. M1 corre-
sponds to octonions real in both senses. This corresponds to the signature (1,−1,−1,−1, ...)
for M8 metric obtained as restriction of complexified metric. For M4 = M1 ×E3 analogous
conventions hold true.

2. Conjugation o = o0 + okIk → o ≡ o0 − Ikok does not change the sign of i. Quaternions
can be decomposed to real and imaginary parts and some notation is needed. The notation
q = Re(q) + Im(q) seems to be the least clumsy one: here Im(q) is 3-vector.

The explicit expression in terms of quaternionic decomposition o = q1 + q2I4 reads as

P (o) = o2 = q21 − q2q2 + (q1q2 + q2q1)I4 . (5.1)

o corresponds to complexified octonion and there are two options concerning the interpretation of
M4 and E4. M4 could correspond to quaternionic or co-quaternionic sub-space. I have assumed
the first interpretation hitherto but actually the identification is not obvious. This two cases are
different and must be treated both.

With these notations quaternionic inner product reads as
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q1q2 = Re(q1q2) + Im(q1q2) ,
Re(q1q2) = Re(q1)Re(q2)− Im(q1) · Im(q2) ,
Im(q1q2) = Re(q1)Im(q2) +Re(q2)Im(q1) + Im(q1)× Im(q2) .

(5.2)

Here a · b denotes the inner product of 3-vectors and a× b their cross product.
Note that one has real and imaginary parts of octonions as two quaternions and real and

imaginary parts of quaternions. To avoid confusion, I will use RE and IM to denote the decom-
position of octonions to quaterions and Re and Im for the decomposition of quaternions to real
and imaginary parts.

One can express the RE(o2) as

RE(o2) ≡ X ≡ q21 − q2q2 ,
Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ,
Im(X) = Im(q21) = 2Re(q1)Im(q1) .

(5.3)

For IM(o2) one has

IM(o2) ≡ Y = q1q2 + q2q1
Re(Y ) = 2Re(q1)Re(q2) ,
Im(Y ) = Re(q1)Im(q2)−Re(q2)Im(q1) + Im(q1)× Im(q2) .

(5.4)

The essential point is that only RE(o2) contains the complexified Euclidian norm q2q2 which
becomes Minkowskian of Euclidian norm depending on whether one identifies M4 as associative
or co-associative surface in o8c .

5.1 Option I: M4 is quaternionic

Consider first the condition RE(o2) = 0. The condition decomposes to two conditions stating the
vanishing of quaternionic real and imaginary parts:

Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ≡ NM4(q1)−NE4(q2) = 0 ,

Im(X) = Im(q21) = 2Re(q1)Im(q1) = 0 .

(5.5)

Im(X) = 0 is satisfied for Re(q1) = 0 or Im(q1) = 0 so that one has two options. This gives
1-D line in time direction of 3-D hyperplane as a solution for M4 factor.

Re(X) = 0 states NM4(q1) = NE4(q2). q2 coordinate itself is free. NE4(q2) is negative so that
q1 must be space-like with respect to the NM4 so that only the solution Re(q1) = 0 is possible.
Therefore one has Re(q1) = 0 and NM4(q1) = NE4(q2).

One can assign to each E4 point a section of hyperboloid with t = 0 hyper-plane giving a sphere
and the surface is 6-dimensional sphere bundle like variety! This is completely unexpected result
and presumably is due to the additional accidental symmetries due to the octonionicity. Also the
fact that o2 is not irreducible polynomial is a probably reason since for o the surface is 4-D. The
addition of linear term is expected to remove the degeneracy.

Consider next the case IM(o2) = 0. The conditions read now as

Re(Y ) = 2Re(q1)Re(q2) = 0 ,

Im(Y ) = Re(q1)Im(q2)−Re(q2)Im(q1) + Im(q1)× Im(q2) = 0 .
(5.6)
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Since cross product is orthogonal to the factors Im(Y ) = 0 condition requires that Im(q1) and
Im(q2) are parallel vectors: Im(q1) = λIm(q2) and one has the condition Re(q1) = λRe(q2)
implying q1 = Λq2. Therefore to each point of E4 is associated a line of M4. The surface is
5-dimensional.

It is interesting to look what the situation is if both conditions are true so that one would have
a singularity. In this case Re(q1) = 0 and Re(q1) = λRe(q2) imply λ = 0 so that q1 = 0 is obtained
and the solution reduces to 4-D E4, which would be co-associative.

5.2 Option II: M4 is co-quaternionic

This case is obtained by the inspection of the previous calculation by looking what changes the
identification of M4 as co-quaternionic factor means. Now q1 is Euclidian and q2 Minkowskian
coordinate and q2q2 gives Minkowskian rather than Euclidian norm.

Consider first RE(o2) = 0 case.

Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ≡ NM4(q1)−NM4(q2) = 0 ,

Im(X) = Im(q21) = 2Re(q1)Im(q1) = 0 .

(5.7)

NM4(q1)−NM4(q2) = 0 condition holds true now besides the condition Re(q1) = 0 or Im(q1) = 0
so that one has also now two options.

1. For Re(q1) = 0 NM4(q1) is non-positive and this must be the case for NM4(q2)) so that the
exterior of the light-cone is selected. In this case the points of M4 with fixed NM4 give rise
to a 2-D intersection with Re(q1) = 0 hyper-plane that is sphere so that one has 6-D surface,
kind of sphere bundle.

2. For Im(q1) = 0 Minkowski norm is positive and so must be corresponding norm in E4 so that
in E4 surface has future ligt-cone as projection. This surface is 4-D. The emergence of future
light-cone might provide justification for the emergence of CDs and zero energy ontology.

For IM(o2) the discussion is same as in quaternionic case since norm does not appear in the
equations.

At singularity both RE(o2) and IM(o2) = 0 vanish. The condition q1 = Λq2 reduces to Λ = 0
so that q1 = 0 is only allowed. This leaves only light-cone boundary under consideration.

The appearance of surfaces with dimension higher than 4 raises the question whether something
is wrong. One could of course argue that associativity allows also lower than 4-D surfaces as
associative surfaces and higher than 4-D surfaces as co-associative surfaces. At H-level one can
say that one has 4-D surfaces. A good guess is that this behavior disappears when the linear term
is absent and origin ceases to be a singularity.
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