
Does M 8 −H duality reduce classical TGD to octonionic

algebraic geometry?

M. Pitkänen
Email: matpitka6@gmail.com.
http://tgdtheory.com/.

October 13, 2017

Abstract

TGD leads to several proposals for the exact solution of field equations defining space-time
surfaces as preferred extremals of twistor lift of Kähler action. So called M8−H duality is one
of these approaches. The beauty of M8 −H duality is that it could reduce classical TGD to
algebraic geometry and would immediately provide deep insights to cognitive representation
identified as sets of rational points of these surfaces.

In the sequel I shall consider the following topics.

1. I will discuss basic notions of algebraic geometry such as algebraic variety, surface, and
curve, all rational point of variety central for TGD view about cognitive representation,
elliptic curves and surfaces, and rational and potentially rational varieties. Also the
notion of Zariski topology and Kodaira dimension are discussed briefly. I am not a
mathematician and what hopefully saves me from horrible blunders is physical intuition
developed during 4 decades of TGD.

2. It will be shown how M8−H duality could reduce TGD at fundamental level to octonionic
algebraic geometry. Space-time surfaces in M8 would be algebraic surfaces identified as
zero loci for imaginary part IM(P ) or real part RE(P ) of octonionic polynomial of
complexified octonionic variable oc decomposing as oc = q1c + q2cI

4 and projected to a
Minkowskian sub-space M8 of complexified O. Single real valued polynomial of real
variable with algebraic coefficients would determine space-time surface! As proposed
already earlier, spacetime surfaces would form commutative and associative algebra with
addition, product and functional composition.

One can interpret the products of polynomials as correlates for free many-particle states
with interactions described by added interaction polynomial, which can vanish at bound-
aries of CDs thanks to the vanishing in Minkowski signature of the complexified norm qcqc
appearing in RE(P ) or IM(P ) caused by the quaternionic non-commutativity. This leads
to the same picture as the view about preferred extremals reducing to minimal surfaces
near boundaries of CD. Also zero zero energy ontology (ZEO) could emerge naturally
from the failure of number field property for for quaternions at light-cone boundaries.

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real co-
efficients determine associative (co-associative) surfaces as the zero loci of their real
part RE(P ) (imaginary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic
sense. Contrary to the first naive working hypothesis, the identification M4 ⊂ O as as
a co-associative region turns out to be the correct choice making light-cone boundary
a counterpart of point-like singularity essential for the emergence of causal diamonds
(CDs).

The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for
complex numbers, and associativity for quaternions. This suggests a generalization of
Cauchy-Riemann conditions for complex analytic functions to quaternions and octonions.
Cauchy Riemann conditions are linear and constant value manifolds are 1-D and thus
well-ordered. Quaternionic polynomials with real coefficients define maps for which the
2-D spaces corresponding to vanishing of real/imaginary parts of the polynomial are
complex/co-complex or equivalently commutative/co-commutative. Commutativity is
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expressed by conditions bilinear in partial derivatives. Octonionic polynomials with
real coefficients define maps for which 4-D surfaces for which real/imaginary part are
quaternionic/co-quaternionic, or equivalently associative/co-associative. The conditions
are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units
to octonionic algebra are power associative so that polynomials with real coefficients
define an associative and commutative algebra. Hence octonion analyticity and M8−H
correspondence could generalize.

2. It turns out that in the generic case associative surfaces are 3-D and are obtained
by requiring that one of the coordinates RE(Y )i or IM(Y )i in the decomposition
Y i = RE(Y )i + IM(Y )iI4 of the gradient of RE(P ) = Y = 0 with respect to the
complex coordinates zki , k = 1, 2, of O vanishes that is critical as function of quater-
nionic components zk1 or zk2 associated with q1 and q2 in the decomposition o = q1 +q2I4,
call this component Xi. In the generic case this gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD
and light-like partonic orbits to H, and only determines the boundary conditions of the
dynamics in H determined by the twistor lift of Kähler action. M8 −H duality would
allow to solve the gauge conditions for SSA (vanishing of infinite number of Noether
charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on
the coefficients of the octonionic polynomial P so that the criticality conditions do not
reduce the dimension: Xi would have possibly degenerate zero at space-time variety.
This can allow 4-D associativity with at most 3 critical components Xi. Space-time
surface would be analogous to a polynomial with a multiple root. The criticality of
Xi conforms with the general vision about quantum criticality of TGD Universe and
provides polynomials with universal dynamics of criticality. A generalization of Thom’s
catastrophe theory emerges. Criticality should be equivalent to the universal dynamics
determined by the twistor lift of Kähler action in H in regions, where Kähler action and
volume term decouple and dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative)
surfaces can be mapped by M8−H duality to preferred critical extremals for the twistor
lift of Kähler action obeying universal dynamics with no dependence on coupling con-
stants and due to the decoupling of Kähler action and volume term: these represent
external particles. M8−H duality does not apply to non-associative (non-co-associative)
space-time surfaces except at 3-D boundary surfaces. These regions correspond to inter-
action regions in which Kähler action and volume term couple and coupling constants
make themselves visible in the dynamics. M8 −H duality determines boundary condi-
tions.

3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic
dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough
to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing
of space-time surfaces? I have proposed commutativity or co-commutatitivity of string
worlds sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation
(tangent space as a sub-space of quaternionic space is commutative/co-commutative at
each point). Why not all string world sheets/partonic 2-surfaces in the slicing are not
commutative/co-commutative? The answer to these questions is criticality again: in the
generic case commutative varieties are 1-D curves. In critical case one has 2-D string
worlds sheets and partonic 2-surfaces.

Also a sketchy proposal for the description of interactions is discussed.

1. IM(P1P2) = 0 is satisfied for IM(P1) = 0 and IM(P2) = 0 since IM(o1o2) is linear in
IM(oi) and one obtains union of space-time varieties. RE(P1P2) = 0 cannot be satisfied
in this manner since RE(o1o2) is not linear in RE(oi) so that the two varieties interact
and this interaction could give rise to a wormhole contact connecting the two space-time
varieties.

2. The surprise that RE(P ) = 0 and IM(P ) = 0 conditions have as singular solutions
light-cone interior and its complement and 6-spheres S6(tn) with radii tn given by the
roots of the real P (t), whose octonionic extension defines the space-time variety X4. The
intersections X2 = X4 ∩ S6(tn) is tentatively identified as partonic 2-varieties defining
topological interaction vertices.
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The idea about the reduction of zero energy states to discrete cognitive representations
suggests that interaction vertices at partonic varieties X2 are associated with the discrete
set of intersection points of the sparticle lines at light-like orbits of partonic 2-surfaces
belonging to extension of rationals.

3. CDs and therefore also ZEO emerge naturally. For CDs with different origins the prod-
ucts of polynomials fail to commute and associate unless the CDs have tips along real
(time) axis. The first option is that all CDs under observation satisfy this condition.
Second option allows general CDs.

The proposal is that the product
∏

Pi of polynomials associated with CDs with tips along
real axis the condition IM(

∏
Pi) = 0 reduces to IM(Pi) = 0 and criticality conditions

guaranteeing associativity and provides a description of the external particles. Inside
these CDs RE(

∏
Pi) = 0 does not reduce to RE(

∏
Pi) = 0, which automatically gives

rise to geometric interactions. For general CDs the situation is more complex.

4. The possibility of super-octonionic geometry raises the hope that the twistorial construc-
tion of scattering amplitudes in N = 4 SUSY generalizes to TGD in rather straightfor-
ward manner to a purely geometric construction. Functional integral over WCW would
reduce to summations over polynomials with coefficients in extension of rationals and
criticality conditions on the coefficients could make the summation well-defined by bring-
ing in finite measurement resolution.
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1 Introduction

There are good reasons to hope that TGD is integrable theory in some sense. Classical physics is
an exact part of quantum physics in TGD and during years I have ended up with several proposals
for the general solution of classical field equations (classical TGD is an exact part of quantum
TGD).
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1.1 Various approaches to classical TGD

1.1.1 World of classical worlds

The first approach is based on the geometry of the “world of classical worlds” (WCW) [K6, K3,
K17].

1. The study of classical field equations led rather early to the realization that preferred ex-
tremals for the twistor lift of Kähler action with Minkowskian signature of induced met-
ric define a slicing of space-time surfaces defined by 2-D string world sheets and partonic
two-surfaces locally orthogonal to them. The interpretation is in terms of position depen-
dent light-like momentum vector and polarization vector defining the local decompositions
M2(x) × E2(x) of tangent space integrating to a foliation by partonic 2-surfaces and string
world sheets. I christened this structure Hamilton-Jacobi structure. Its Euclidian counterpart
is complex structure in Euclidian regions of space-time surface.

2. The formulation of quantum TGD in terms of spinor fields in WCW [K14] leads to the con-
clusion that WCW must have Kähler geometry [K6, K3] and has it only if it has maximal
group of isometries identified as symplectic transformations of δM4

± × CP2, where δM4
± de-

notes light cone boundary two which upper/lower boundary of causal diamond (CD) belongs.
Symplectic Lie algebra extends naturally to supersymplectic algebra (SSA).

3. Space-time surfaces would be preferred extremals of twistor lift of Kähler action [K23] and
the conditions realizing strong form of holography (SH) would state that sub-algebra of SSA
isomorphic with it and its commutator with SSA give rise to vanishing Noether charges and
these charges annihilate physical states or create zero norm states from them. One should
solve these conditions.

4. The dynamics involves also fermions. Induced spinor fields are located inside space-time sur-
face but for some yet not completely understood reason only the information about spinor
at 2-D string world sheets is needed in the construction of scattering amplitudes. This dy-
namics would be 2-dimensional. The construction of twistor amplitudes even suggests that
it is 1-dimensional in the sense that 1-D light-like curves at light-like partonic orbits defin-
ing boundaries of Minkowskian and Euclidian regions determines the scattering amplitudes.
String world sheets are however needed only as correlates for entanglement between fermions
at different partonic orbits.

The 2-D character of fermionic dynamics conforms with the strong form of holography (SH)
but how the string world sheets and partonic 2-surfaces are selected from Hamilton-Jacobi
slicing? Electromagnetic neutrality could select string worlds sheets but one can actually
always find a gauge in which the induced classical electroweak field at these surfaces is
purely electromagnetic.

1.1.2 Twistor lift of TGD

Second approach to preferred extremals is based on TGD version [K13, K22, K21, K23] of twistor
Grassmann approach [B1, B4, B3].

1. The twistor lift of TGD leads to a proposal that space-time surfaces can be represented as
sections in their 6-D twistor spaces identified as twistor bundles in the product T (H) =
T (M4)×T (CP2) of 6-D twistor spaces of M4 and CP2. Twistor structure would be induced
from T (H). Kähler action can be lifted to the level of twistor spaces only for M4 × CP2

since only for these spaces twistor space allows Kähler structure [A2]. Twistors were orig-
inally introduced by Penrose with the motivation that one could apply algebraic geometry
in Minkowskian signature. The bundle property is extremely powerful and should be consis-
tent with the algebraic geometrization at the level of M8

c . The challenge is to formulate the
twistor lift at the level of M8.

2. The twistor lift of Kähler action contains also volume term. Field equations have two kinds of
solutions. For the solutions of first kind the dynamics of volume term and Käction are coupled
and the interpretation is in terms of interaction regions. Solutions of second kind are minimal
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surfaces and extremals of both Kähler action and volume term, whose dynamics decouple
completely and all coupling constants disappear from the dynamics. These extremals are
natural candidates for external particles. For these solutions at least the field equations
reduce to the existence of Hamilton-Jacobi structure. The completely universal dynamics of
these regions suggests interpretation in terms of maximal quantum criticality characterized
by the extension of the usual conformal invariance to its quaternionic analog.

3. A connection with zero energy ontology (ZEO) emerges. Causal diamond (CD, intersection
of future and past directed light-cones of M4 with points replaced by CP2) would naturally
determine the interaction region to which external particles enter through its 2 future and
past boundaries. But where does ZEO emerge?

1.1.3 M8 −Hduality

The third approach is based on number theoretic vision [K11, K12, K10, K18].

1. M8−H duality [K12, K18, K19] means that one can see space-times as 4-surfaces in either M8

or H = M4 × CP2. One could speak “number theoretical compactification” having however
nothing to do with stringy version of compactification, which is dynamical. M8 −H duality
suggests that space-time surfaces in H = M4×CP2 are images of space-time surfaces in M8

or actually of M8 projections of complexified space-time surfaces in M8
c identified as space of

complexified octonions. These space-time surfaces could contain the integrated distributions
of string world sheets and partonic 2-surfaces mentioned in the previous item. Space-time
surfaces must have associative tangent or normal space for M8−H correspondence to exist.

2. The fascinating possibility mentioned already earlier is that in M8 these surfaces could
correspond to zero loci for real or imaginary parts of real analytic octonionic polynomi-
als P (o) = RE(P ) + IM(P )I4, I4 an octonionic imaginary unit orthogonal to quaternionic
ones. The condition IM(P ) = 0 (RE(P ) = 0) would give associative (co-associative) space-
time surface. In the simplest case these functions would be polynomials so that one would
have algebraic geometry for algebraically 4-D complex surfaces in 8-D complex space.

Remark: The naive guess that space-time surfaces reduce to quaternionic curves in quater-
nionic plane fails due to the non-commutativity of quaternions meaning that one has P (o) =
P (q1, q2, q1, q2) rather than P (o) = P (q1, q2).

Remark: Why not rational functions expressible as ratios R = P1/P2 of octonionic polyno-
mials? It has become clear that one can develop physical arguments in favor of this option.
The zero loci for IM(Pi) would represent space-time varieties. Zero loci for RE(P1/P2) = 0
and RE(P1/P2) = ∞ would represent their interaction presumably realized as wormhole
contacts connecting these varieties. In the sequel most considerations are for polynomials:
the replacement of polynomials with rational functions does not introduce big differences
and its discussed in the section “Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view” of [L10].

3. The objection against this proposal is obvious. M8 − H correspondence cannot hold true
since the dynamics defined by octonionic polynomials in M8 contains no coupling constants
whereas the dynamics of twistor lift of Kähler action depends on coupling constants in the
generic space-time region. However, for space-time surfaces representing external particles
entering inside CD at its boundaries this is however not the case! They could satisfy M8−H
correspondence!

This suggests that inside CDs the space-time surfaces are not associative/co-associative in
M8 so that M8 − H correspondence cannot map them to H and the twistor lifted Kähler
action and SH take care of the dynamics. External particles are associative and quantum
critical and M8 −H correspondence makes sense. The quantum criticality and associativity
at the boundaries of CD poses extremely powerful conditions and allows to satisfy infinite
number of vanishing conditions for SSA charges.

4. This picture is consistent with the the explicit formulation of the associativity conditions
Re(P ) = 0 and IM(P ) = 0 for varieties. The calculations shows that associativity can be



1.2 Could one identify space-time surfaces as zero loci for octonionic polynomials
with real coefficients? 8

realized either by posing a condition making them 3-dimensional except, when the situation
is critical in the sense that the 4-D variety is analogous to a double root of polynomial:
now however the polynomial corresponds to prime polynomial decomposing to product of
polynomials in the extension of rationals such that the product contains higher powers of
the factors. One has ramification at the level of polynomial primes so that the criticality
condition does not bring anything new but need not make the situation associative. At most
3 conditions need to be applied to guarantee associativity and they might leave the space-time
surface 4-D.

5. This octonionic view as also lower-dimensional quaternionic counterpart. In this case one
considers 2-D commutative/co-commutative surfaces tentatively identifiable as string world
sheets and partonic 2-surfaces. Why not all 2-surfaces appearing in the Hamilton-Jacobi
slicing are not selected? The above mechanism would work also now. The commutativity
conditions reduce in the generic case give 1-D curve as a solution. The interpretation would be
as orbit of point like particle at 3-D partonic orbit appearing in the construction of twistorial
amplitudes. In critical situation one would obtains string world sheet serving as a correlate
for entanglement between point like particles at its ends: one would have quantum critical
bound state.

I have considered also other attempts to define what quaternion structure could mean.

1. One could also consider the possibility that the tangent spaces of space-time surfaces in H are
associative or co-associative [K18]. This is not necessary although it seems that this might
be the case for the known extremals. If this holds true, one can construct further preferred
extremals by functional composition by generalization of M8 −H correspondence to H −H
correspondence.

2. I have considered also the possibility of quaternion analyticity in the sense of generalization of
Cauchy-Riemann equations, which tell that left- or right quaternionic differentiation makes
sense [L5]. It however seems that this approach is not promising. The conditions are quite
too restrictive and bring nothing essentially new. Octonion/quaternion analyticity in the
above mentioned sense does not require the analogs of Cauchy-Riemann conditions.

1.2 Could one identify space-time surfaces as zero loci for octonionic
polynomials with real coefficients?

The identification of space-time surfaces as zero loci of real or imaginary part of octonionic poly-
nomial has several extremely nice features.

1. Octonionic polynomial is an algebraic continuation of a real valued polynomial on real line
so that the situation is effectively 1-dimensional! Once the degree of polynomial is known,
the value of polynomial at finite number of points are needed to determine it and cognitive
representation could give this information! This would strengthen the view strong form
of holography (SH) - this conforms with the fact that states in conformal field theory are
determined by 1-D data.

2. One can add, sum, multiply, and functionally compose these polynomials provided they
correspond to the same quaternionic moduli labelled by CP2 points and share same time-
line containing the origin of quaternionic and octonionic coordinates and real octonions (or
actually their complexification by commuting imaginary unit). Classical space-time surfaces
- classical worlds - would form an associative and commutative algebra. This algebra induces
an analog of group algebra since these operations can be lifted to the level of functions defined
in this algebra. These functions form a basic building brick of WCW spinor fields defining
quantum states.

3. One can interpret the products of polynomials as correlates for free many-particle states
with interactions described by added interaction polynomial, which can vanish at boundaries
of CDs. This leads to the same picture as the view about preferred extremals reducing to
minimal surfaces near boundaries of CD [L1]. Also zero zero energy ontology (ZEO) could
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be forced by the failure of number field property for quaternions at light-cone boundaries. It
indeed turns out that light-cone boundary emerges quite generally as singular zero locus of
polynomials P (o) containing no linear part: this is essentially due to the non-commutativity
of the octonionic units. Also the emergence of CDs can be understood. At this surface the
region with RE(P ) = 0 can transform to IM(P ) = 0 region. In Euclidian signature this
singularity corresponds to single point. A natural conjecture is that also the light-like orbits
of partonic 2-surfaces correspond to this kind of singularities for non-trivial Hamilton-Jacobi
structures.

4. The reduction to algebraic geometry would mean enormous boost to the vision about cogni-
tion with cognitive representations identified as generalized rational points common to reals
rationals and various p-adic number fields defining the adele for given extension of rationals.
Hamilton-Jacobi structure would result automatically from the decomposition of quaternions
to real and imaginary parts which would be now complex numbers.

5. Also a connection with infinite primes is suggestive [K12]. The light-like partonic orbits,
partonic 2-surfaces at their ends, and points at the corners of string world sheets might be
interpreted in terms of singularities of varying rank and the analog of catastrophe theory
emerges.

The great challenge is to prove rigorously that these approaches - or at least some of them -
are indeed equivalent. Also it remains to be proven that the zero loci of real/imaginary parts of
octonionic polynomials with real coefficients are associative or co-associative. I shall restrict the
considerations of this article mostly to M8 −H duality. The strategy is simple: try to remember
all previous objections against M8 −H duality and invent new ones since this is the best manner
to make real progress.

1.3 Topics to be discussed

1.3.1 Key notions and ideas of algebraic geometry

Before going of octonionic algebraic geometry, I will discuss basic notions of algebraic geometry
such as algebraic variety (see http://tinyurl.com/hl6sjmz), - surface (see http://tinyurl.

com/y8d5wsmj), and - curve (see http://tinyurl.com/nt6tkey), rational point of variety central
for TGD view about cognitive representation, elliptic curves (see http://tinyurl.com/lovksny)
and - surfaces (see http://tinyurl.com/yc33a6dg), and rational points (see http://tinyurl.

com/ybbnnysu) and potentially rational varieties (see http://tinyurl.com/yablk4xt). Also the
notion of Zariski topology (see http://tinyurl.com/h5pv4vk) and Kodaira dimension (see http:
//tinyurl.com/yadoj2ut) are discussed briefly. I am not a mathematician. What hopefully saves
me from horrible blunders is physical intuition developed during 4 decades of TGD.

Much of algebraic geometry is counting numbers of say rational points or of varieties satisfying
some conditions. One can also count dimensions of moduli spaces. Hence the basic notions and
methods of enumerative geometry are discussed. There is also a discussion of Gromow-Witten
invariants and Riemann-Roch theorem having Atyiah-Singer index theorem as a generalization.
These notions will be applied in the second part of the article [L10].

1.3.2 M8 −H duality

M8−H duality [K19, K12, K18] would reduce classical TGD to the algebraic geometry and would
immediately provide deep insights to cognitive representation identified as sets of rational points
of these surfaces. Space-time surfaces in M8 would be algebraic varieties identified as zero loci
for imaginary part IM(P ) or real part RE(P ) of octonionic polynomial of complexified octonionic
variable o decomposing as o = q1c + q2cI4 and projected to a Minkowskian sub-space M8 of o.
Single real valued polynomial of real variable with algebraic coefficients would determine space-
time surface! As proposed already earlier, spacetime surfaces in M8 would form commutative and
associative algebra with addition, product and functional composition.

As already noticed, the associativity conditions do not allow 4-D solutions except for criticality
so that M8 −H correspondence can hold true only in these space-time regions and one has these

http://tinyurl.com/hl6sjmz
http://tinyurl.com/y8d5wsmj
http://tinyurl.com/y8d5wsmj
http://tinyurl.com/nt6tkey
http://tinyurl.com/lovksny
http://tinyurl.com/yc33a6dg
http://tinyurl.com/ybbnnysu
http://tinyurl.com/ybbnnysu
http://tinyurl.com/yablk4xt
http://tinyurl.com/h5pv4vk
http://tinyurl.com/yadoj2ut
http://tinyurl.com/yadoj2ut
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nice features at the level of M8. In critical regions M8 − H correspondence is true and these
features have H counterparts

The basic problem is to understand the map mediating M8 − H duality mapping the point
(m, e) of M8 = M4

0 ×E4 to a point (m, s) of M4
0 ×CP2, where M4

0 point is obtained as a projection
to a suitably chosen M4

0 ⊂ M8 and CP2 point parameterizes the tangent space as quaternionic
sub-space containing preferred M2

0 (x) ⊂M4(x). This map involves slightly non-local information
and could allow to understand why the preferred extremals at the level of H are determined by
partial differential equations rather than algebraic equations. Also the generalization to the level
of twistor lift is briefly touched.

1.3.3 Challenges of the octonionic algebraic geometry

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
determine associative (co-associative) surfaces as the zero loci of their real part RE(P ) (imag-
inary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic sense. Contrary to the
first naive working hypothesis, the identification M4 ⊂ O as a co-associative region turns out
to be the correct choice making light-cone boundary a counterpart of point-like singularity
essential for the emergence of causal diamonds (CDs).

This suggests a generalization of Cauchy-Riemann conditions for complex analytic func-
tions to quaternions and octonions. Cauchy Riemann conditions are linear. Quaternionic
polynomials with real coefficients define maps for which the 2-D spaces corresponding to
vanishing of real/imaginary parts of the polynomial are complex/co-complex or equiva-
lently commutative/co-commutative. Commutativity is expressed by conditions bilinear in
partial derivatives. Octonionic polynomials with real coefficients define maps for which 4-
D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently
associative/co-associative. The conditions are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction (see http://tinyurl.com/

ybuyla2k) by adding imaginary unit repeatedly to octonionic algebra are power associative
so that polynomials with real coefficients define an associative and commutative algebra.
Hence octonion analyticity and a M8 − H correspondence could generalize (maybe even
TGD!).

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requir-
ing that one of the coordinates RE(Y )i or IM(Y )i in the decomposition Y i = RE(Y )i +
IM(Y )iI4 of the gradient of RE(P ) = Y = 0 with respect to the complex coordinates zki ,
k = 1, 2, of O vanishes that is critical as function of quaternionic components zk1 or zk2 as-
sociated with q1 and q2 in the decomposition o = q1 + q2I4, call this component Xi. In the
generic case this gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kähler action. M8 −H duality would allow to solve
the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on the
coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the
dimension: Xi would have possibly degenerate zero at space-time variety. This can allow 4-D
associativity with at most 3 critical components Xi. Space-time surface would be analogous
to a polynomial with a multiple root.

Various components of octonion polynomial P of degree n are polynomials of same degree.
Could criticality reduces to the degeneracy of roots for some component polynomials? Could
P as a polynomial of real variable have degenerate roots?

The criticality of Xi conforms with the general vision about quantum criticality of TGD
Universe and provides polynomials with universal dynamics of criticality. A generalization
of Thom’s catastrophe theory [A1] emerges. Criticality should be equivalent to the universal

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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dynamics determined by the twistor lift of Kähler action in H in regions, where Kähler action
and volume term decouple and dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) sur-
faces can be mapped by M8 − H duality to preferred critical extremals for the twistor lift
of Kähler action obeying universal dynamics with no dependence on coupling constants and
due to the decoupling of Kähler action and volume term: these represent external particles.
M8 − H duality does not apply to non-associative (non-co-associative) space-time surfaces
except at 3-D boundary surfaces. These regions correspond to interaction regions in which
Kähler action and volume term couple and coupling constants make themselves visible in the
dynamics. M8 −H duality determines boundary conditions.

3. This picture generalizes also to the level of complex/co-complex surfaces associated with
fermionic dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be
enough to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing of
space-time surfaces? I have proposed commutativity or co-commutatitivity of string worlds
sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation (tangent
space as a sub-space of quaternionic space is commutative/co-commutative at each point).
Why not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-
commutative? The answer to these questions is criticality again: in the generic case commu-
tative varieties are 1-D curves. In critical case one has 2-D string worlds sheets and partonic
2-surfaces.

4. The super variant of the octonionic geometry relying on octonionic triality makes sense and
the geometry of the space-time variety correlates with fermion and antifermion numbers as-
signed with it. This new view about super-geometry involving also automatic SUSY breaking
at the level of space-time geometry.

1.3.4 Description of interactions

Also a sketchy proposal for the description of interactions is discussed.

1. IM(P1P2) = 0 is satisfied for IM(P1) = 0 and IM(P2) = 0 since IM(o1o2) is linear in
IM(oi) and one obtains union of space-time varieties. RE(P1P2) = 0 cannot be satisfied in
this manner since RE(o1o2) is not linear in RE(oi) so that the two varieties interact and this
interaction could give rise to a wormhole contact connecting the two space-time varieties.

2. The surprise that RE(P ) = 0 and IM(P ) = 0 conditions have as singular solutions light-cone
interior and its complement and 6-spheres S6(tn) with radii tn given by the roots of the real
P (t), whose octonionic extension defines the space-time variety X4. The intersections X2 =
X4 ∩ S6(tn) are tentatively identified as partonic 2-varieties defining topological interaction
vertices. S6 and therefore also X2 are doubly critical, S6 is also singular surface.

The idea about the reduction of zero energy states to discrete cognitive representations
suggests that interaction vertices at partonic varieties X2 are associated with the discrete set
of intersection points of the sparticle lines at light-like orbits of partonic 2-surfaces belonging
to extension of rationals.

3. CDs and therefore also ZEO emerge naturally. For CDs with different origins the products
of polynomials fail to commute and associate unless the CDs have tips along real (time) axis.
The first option is that all CDs under observation satisfy this condition. Second option allows
general CDs.

The proposal is that the product
∏
Pi of polynomials associated with CDs with tips along

real axis the condition IM(
∏
Pi) = 0 reduces to IM(Pi) = 0 and criticality conditions

guaranteeing associativity and provides a description of the external particles. Inside these
CDs RE(

∏
Pi) = 0 does not reduce to RE(

∏
Pi) = 0, which automatically gives rise to

geometric interactions. For general CDs the situation is more complex.
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4. The possibility of super-octonionic geometry raises the hope that the twistorial construction
of scattering amplitudes in N = 4 SUSY generalizes to TGD in rather straightforward
manner to a purely geometric construction. Functional integral over WCW would reduce
to summations over polynomials with coefficients in extension of rationals and criticality
conditions on the coefficients could make the summation well-defined by bringing in finite
measurement resolution.

If scattering diagrams are associated with discrete cognitive representations, one obtains a
generalization of twistor formalism involving polygons. Super-octonions as counterparts of
super gauge potentials are well-defined if octonionic 8-momenta are quaternionic. Indeed,
Grassmannians have quaternionic counterparts but not octonionic ones. There are good
hopes that the twistor Grassmann approach to N = 4 SUSY generalizes. The core part
in the calculation of the scattering diagram would reduce to the construction of octonionic
4-varieties and identifying the points belonging to the appropriate extension of rationals.

1.3.5 About the analogs of Gromow-Witten invariants and branes in TGD

Gromov-Witten (G-W) invariants belong to the realm of quantum enumerative geometry briefly
discussed in [L9]. They count numbers of points in the intersection of varieties (“branes”) with
quantum intersection identified as the existence of “string world sheet(s)” intersecting the branes.
Also octonionic geometry gives rise to brane like objects. G-W invariants are rational numbers but
it is proposed that they could be integers in TGD framework.

Riemann-Roch theorem (RR) and its generalization Atyiah-Singer index theorem (AS) relate
dimensions of various kinds of moduli spaces to topological invariants. The possible generalizations
of RR and AS to octonionic framework and the implications of M8 − H duality for the possible
generalizations are discussed. The adelic hierarchy of extensions of rationals and criticality condi-
tions make the moduli spaces discrete so that one expects kind of particle in box type quantization
selecting discrete points of moduli spaces about the dimension.

The discussion of RR as also the notion of infinite primes and infinite rationals as counterparts
of zero energy states suggests that rational functions R = P1/P2 could be more appropriate than
mere polynomials. The construction of space-time varieties would not be modified in essential
manner: one would have zero loci of IM(Pi) identifiable as space-time sheets and zero- and∞-loci
of RE(P1/P2) naturally identifiable as wormhole contacts connecting the space-time sheets.

1.3.6 Miscellaneous topics

As I started writing this article I had in mind cognitive representations. My hope was that M8−H
duality could help to improve my understanding about them. It indeed did so and I have therefore
included two sections strictly speaking do not represent the central topic of the article.

1. Cognitive representations are identified as sets of rational points for algebraic varieties with
“active” points containing fermion. The representations are discussed at both M8- and
H level. General conjectures from algebraic geometry support the vision that these sets are
concentrated at lower-dimensional algebraic varieties such as string world sheets and partonic
2-surfaces and their 3-D orbits identifiable also as singularities of these surfaces. For the
earlier work related to adelic TGD and cognitive representations see [L11, L12, L4, L6].

In TGD the reason would be simple: associativity and quantum criticality are satisfied in the
generic case only at lower dimensional selected varieties: 3-surfaces at the ends of space-time
surface and partonic orbits and also at string world sheets and fermion lines. For external
particles these properties hold true in 4-D sense and cognitive representation could be 4-D-
perhaps because rational points (in extension of rationals) form a dense set in these cases.
This indeed conforms with the fact that we can solve free field theories!

2. Some aspects related to homology charge (Kähler magnetic charge) and genus-generation
correspondence are discussed. Both topological quantum numbers are central in the proposed
model of elementary particles and it is interesting to see whether the picture is internally
consistent and how algebraic variety property affects the situation. Also possible problems
related to heff/h = n hierarchy [K5, K16] [L11] realized in terms of n-fold coverings of
space-time surfaces are discussed from this perspective.
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The easiest manner to kill M8 −H duality in the form it is represented here is to prove that
4-D zero loci for imaginary/real parts of octonionic polynomials with real coefficients can never be
associative/co-associative being always 3-D. I hope that some professional mathematician would
bother to check this.

In the sequel I will use some shorthand notations for key principles and key notions. Quantum
Field Theory (QFT); Relativity Principle (RP); Equivalence Principle (EP); General Coordinate
Invariance (GCI); Strong Form of GCI (SGCI); Quantum Criticality (QC); Strong Form of Holog-
raphy (SH); World of Classical Worlds (WCW); Preferred Extremal (PE); Zero Energy Ontology
(ZEO); Causal Diamond (CD); Number Theoretical Universality (NTU) are the most often occur-
ring acronyms.

2 Some basic notions, ideas, results, and conjectures of al-
gebraic geometry

In this section I will summarize very briefly the basic notions of algebraic geometry needed in the
sequel.

2.1 Algebraic varieties, curves and surfaces

The basic notion of algebraic geometry is algebraic variety.

1. One considers affine space An with n coordinates x1, ..., xn having values in a number field K
usually assumed to be algebraically closed (note that affine space has no preferred origin like
linear space). Algebraic variety is defined as a solution of one or more algebraic equations
stating the vanishing of polynomials of n variables: P i(x1, ..., xn) = 0, i = 1, ..., r ≤ n. One
can restrict the coefficients of polynomials to p-adic number field or or its extension to an
extension of rationals. One talks about polynomials on k ⊂ K.

2. The basic condition is that the variety is not a union of disjoint varieties. This for instance
happens, when the polynomial P (x1, .., xn) defining co-dimension 1 manifold is product of
polynomials P =

∏
r Pr. Algebraic variety need not be a manifold meaning that it can have

singular points. For instance, for co-dimension 1 variety the Jacobian matrix ∂P/∂xi of the
polynomial can vanish at singularity.

3. One can define projective varieties (see http://tinyurl.com/ybsqvy3r) in projective space
Pn having coordinatization in terms of n+1 homogenous coordinates (x1, ..., xn+1) in K with
points differing by an overall scaling identified. Projective variety is defined as zero locus of
homogenous polynomials of n + 1 coordinates so that solutions remain solutions under the
overall scaling of all coordinates. By identifying the points related by scaling one obtains a
surface in Pn. Grassmannian of linear space V n (not affine space!) is a projective spaces
defined as space of k-planes of V n. These spaces are encountered in twistor Grassmannian
approach to scattering amplitudes.

For polynomials of single variable one obtains just the roots of Pn(x) = 0 in an algebraic
extension assignable to the polynomial. For several variables one can in principle proceed step
by step by solving variable x1 as algebraic function of others from P1(x1, ..., xn) = 0 , proceed to
solve x2 from P2(x1(x2, ...), x2, ...) = 0 as as algebraic function of the remaining variables, and so
one. The algebraic functions involved get increasingly complex but in some exceptional situations
the solution has parametric representation in terms of rational rather than algebraic functions of
parameters tk. For co-dimension dc > 1 case the intersection of surfaces P i = 0 need not be
complete and the tangent spaces of the hyper-surfaces P i = 0 need not intersect transversally in
the generic case. Therefore dc > 1 case is not gained so much attention as dc = 1 case.

A more advanced treatment relies on ring theory by assigning to polynomials a ring as the ring
of polynomials in the space involved divided by the ring of polynomials vanishing at zero loci of
polynomials P i.

http://tinyurl.com/ybsqvy3r
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1. The notion of ideal is central and determined as a subring invariant under the multiplication
by elements of ring. Prime ideal generalizes the notion of prime and one can say that the
notion of integer generalizes to that of ideal. One can also define the notion of fractional
ideal.

2. Zariski topology (see http://tinyurl.com/h5pv4vk) replacing the topology based on real
norm is second highly advanced notion. The closed sets in this topology are algebraic varieties
of various dimensions. Since the complement of any algebraic variety is open set this topology
and open also in the ordinary real topology, this topology is considerable rougher than the
ordinary than the ordinary topology.

Some remarks from the point of view of TGD are in order.

1. In the scenario inspired by M8 −H duality one has co-dimension 4 surfaces in 8-D complex
space. Octonionicity of polynomials however implies huge symmetries since the polynomial
is determined by single real polynomial of real variable, whose values at finite number of
points determined the polynomial.

2. In TGD the extension of rationals can be assumed to contain also powers for some root of
e since in p-adic context this gives rise to a finite-dimensional extensions due to the fact
that ep is ordinary p-adic number. Also a restriction to a finite field are possible and re-
striction of rational coefficients to their modulo p counterparts reduces the polynomial to
polynomial in finite field. This reduction is used as a technical tool. In the case of Diophan-
tine equations (see http://tinyurl.com/nt6tkey and http://tinyurl.com/y8hm4zce) the
coefficients are restricted to be integers.

3. In adelic TGD [L12] [L11] the number fields involved are reals and extensions of p-adic
numbers. The coefficient field for the coefficients of polynomials would be naturally extension
of rationals or extension of p-adics induced by it. The coefficients of polynomials serve as
coordinates of adelic WCW. p-Adic numbers are not algebraically closed and one must assume
an extension of p-adic numbers from that for the coefficients one to allow maximal number
of roots.

This suggests an evolutionary process [L14] extending the number field for the coefficients
of polynomials. Arbitrary root of polynomial for given extension can be realized only if the
original extension is extended further. But this allows polynomial coefficients in this new
extension: WCW is now larger. Now one has however roots in even larger extension so that
the unavoidable outcome is number theoretic evolution as increase of complexity.

4. What is so remarkable is that octonionic polynomials with rational coefficients could be
determined by their values at finite set of points for a polynomial of real argument once the
order of polynomial is fixed. Real coordinate corresponds to preferred time axis naturally.
A cognitive representation consisting of finite number of rational points could fix the entire
space-time surface! This would extend ordinary holography to its discrete variant!

5. Algebraic variety is rather simple object as compared to the solutions of partial differential
equations encountered in physics - say those for minimal surfaces. Now one must fix boundary
values or initial values at n−1-dimensional surface to fix the solution. For integrable theories
the situation can change. In TGD SH suggests that the classical solutions are determined
by data at 2-surfaces, which together with conformal invariance could reduce the data to
one-dimensional data specified by a polynomial. M8 −H correspondence allows to consider
this option seriously.

6. M8 −H duality suggests that space-time surfaces are co-dimension dc = 4 algebraic curves
in M8. Could space-time surfaces define closed sets for the analog of Zariski topology?
Could string world sheets and partonic 2-surfaces do the same inside space-time surfaces?
An interesting question is whether this generalizes also to the level of imbedding space H
and could perhaps define a topology rougher than real topology in better accord with the
notion of finite measurement resolution.

http://tinyurl.com/h5pv4vk
http://tinyurl.com/nt6tkey
http://tinyurl.com/y8hm4zce
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2.2 About algebraic curves and surfaces

The realization M8−H correspondence to be considered allows to understand space-time surfaces
as 4-D complex algebraic surfaces X4

c in the space o of complexified octonions projected to real
sub-space of Oc with Minkowskian signature. Due to the non-commutativity of quaternions, the
reduction of space-time surfaces to curves in quaternionic plane is not possible. Despite this it is
instructive to start from the algebraic geometry of curves and surfaces.

2.2.1 Degree and genus of the algebraic curve

Algebraic curve is defined as zero locus of a polynomial P (x1, x2, ..., xn) with xn in some - preferably
algebraically closed - number field K and coefficients in some number field k ⊂ K. In adelic physics
K corresponds to real or complex numbers and k to the extension of rationals defining adeles. In
p-adic sectors k corresponds to tje extension of p-adic numbers induced by k. In general roots
belong to an extension of k.

Degree, genus, and Euler characteristic are the basic characterizers of algebraic curve.

1. The degree d of algebraic curve corresponds to the highest power for the variables appearing
in the polynomial. One can also define multi-degree in an obvious manner. A useful geometric
interpretation for the degree is that line intersects curve (also complex) of degree d in at most
d points as is clear from the fact that the equation of curve reduces the equation for curve
to an equation for the roots of d:th order polynomial of single variable.

2. Also the genus g of the curve (see http://tinyurl.com/ybm3wfue) is important character-
istic. One can distinguish between topological genus, geometric genus and arithmetic genus.
For curves these notions are equivalent. The connection between genus and degree d of
non-singular algebraic curve is very useful:

g =
(d− 1)(d− 2)

2
. (2.1)

Spherical topology for complex curves corresponds to n = 1 and n = 2.

A more general formula reads as:

g =
(d− 1)(d− 2)

2
+
ns
2

. (2.2)

Here ns is the number of holes of the curve behaving like holes and increasing the genus.

3. Euler characteristic (for Euler characteristic see http://tinyurl.com/pp52zd4) is a homo-
logical invariant making sense in arbitrary dimension and also for manifolds. Homological
definition based on simplicial homology relies on counting of simplexes of various dimension.
The definition in terms of dimensions of homology groups Hn is given by

χ = b0 − b1 + b2...+ (−1)nbn , (2.3)

where bk is the dimension of k:th homology group (see http://tinyurl.com/j48ojys).

The following gives the engineering rules for obtaining Euler characteristic of the surface ob-
tained from simpler building blocks. Note that algebraic variety property is not essential here.

1. Euler characteristic is homotopy invariant so that it does not change one adds homologically
trivial space such as En as a Cartesian factor.

2. χ is additive under disjoint union. Inclusion-exclusion principle states that if M and N
intersect, one has χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N).

http://tinyurl.com/ybm3wfue
http://tinyurl.com/pp52zd4
http://tinyurl.com/j48ojys
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3. Euler characteristic for the connected sum A#B of n-dimensional manifolds obtained by
drilling balls Bn from summands, giving opposite orientation to the boundaries of the hole,
and connecting with cylinder D×Sn−1 is given by χ(A)+χ(B)−χ(Sn−1). One has χ(S2) = 2
and χ(D2) = 1.

4. The Euler characteristic for product M ×N is χ(M)× χ(N).

5. The Euler characteristic for N -fold covering space Mn is N × χ(M) with a correction term
coming from the singularities of the covering (ramified covering space).

6. For a fibration M → B with fiber S, which differs from fiber bundle in that the fibers are
only homeomorphic, one has χ(M) = χ(B)× χ(S).

Euler characteristic and the genus of 2-surface (or complex) curve are related by the equation

χ = 2(1− g) . (2.4)

having values 2, 0,−2, ..... If the 2-surface has ns holes (punctures), one has

χ = 2(1− g)− ns . (2.5)

Punctures must be distinguished from singularities at which some sheets of covering meet at single
point.

A formal generalization of the definition of genus for varieties in terms of Euler characteristic
makes sense.

g = −χ
2

+ 1− ns
2

. (2.6)

Disk has genus 1/2 and drilling of n holes increases genus by n/2. Pair of holes gives same
contribution to g and the cylinder connecting the holes. Note that for complex curves the definition
of puncture is obvious. For real curves the puncture would mean missing point of the curve.

The latter definitions of genus can be identified in terms of Euler characteristic also for higher-
dimensional varieties. For curves these notions are equivalent if there are no singularities. For
algebraic curves g is same for the real and complex variants of the curve in RP1 and CP1 respec-
tively.

2.2.2 Elliptic curves and elliptic surfaces

Elliptic curves (see http://tinyurl.com/lovksny) are cubic curves with no singularities (cusps
or self-intersections) having representation of form y2 − x3 − ax − b = 0. These singularities can
occur only at special values of parameters ((a = 0, b = 0). Since the degree equals to d = 3, elliptic
curve has genus g = 1.

Elliptic curves allow a group of Abelian symmetries generated by a finite number of generators.
The emergence of abelian group structure can be intuitively understood as follows.

1. Given line intersects the curve of degree 3 in at most 3 points. Let P and Q be two of these
points. Then there can be also a third intersection point R and by the Z2 symmetry changing
the sign of y also the reflection of R - identify it as −R - belongs to the curve. Define the
sum of P +Q to be −R.

The actual proof is slightly more complicated since the number of intersection points for the
line with curve can be also 2 or 1. By writing explicit expressions for the coordinates xR and
yR, one can also find that they are indeed rational if the points P and Q are rational. If the
elliptic curve as single rational point it has infinite number of them.

2. The generators with finite order give rise to torsion. The rank of generators of infinite order
is called rank and conjectured to be arbitrarily large (see http://tinyurl.com/lovksny) .
Therefore elliptic curve is an Abelian group and one talks about Abelian variety. If elliptic
curve contains a rational point it contains entire lattice of rational points obtained as shifts
of this point.

http://tinyurl.com/lovksny
http://tinyurl.com/lovksny
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Remark: Complex elliptic curves are 2-surfaces in complex projective plane CP2 and therefore
highly interesting from TGD point of view. g = 1 partonic 2-surfaces would in TGD framework
correspond to second generation fermions [K2]. Abelian varieties define a generalization of el-
liptic curves to higher dimensions and simplest space-time surfaces allowing also large cognitive
representations could correspond to such.

Elliptic surfaces (see http://tinyurl.com/yc33a6dg) are fibrations with an algebraic curve
as base space and elliptic curve as fiber (fibration is more general notion than fiber space since the
fibers are only homeomorphic). The singular fibers failing to be elliptic curves have been classified
by Kodaira.

2.3 The notion of rational point and its generalization

The notion of algebraic integer (see http://tinyurl.com/y8z389a7) makes sense for any number
field as a root of a monic polynomial (polynomial with integer coefficients with coefficient of highest
power equal to unity). The field of fractions for given number field consists of ratios of algebraic
integers. The same is true for the notion of prime. The more precise definition forces to replace
integers and primes with ideals.

Rational varieties are expressible as maps defined by rational functions with rational coefficients
in some extension of Q and contain infinite number of rational points. If the variety is not rational,
one can ask whether it could allow a dense set of rational points with rational number replaced
with the ratio of algebraic integers for some extension of Q. This leads to the idea of potentially
rational point, and one can classify algebraic varieties according to whether they are potentially
rational or not. The variety is potentially rational if it allows a parameteric representation using
rational functions. Otherwise the parametric representation involves algebraic functions such as
roots of rational functions.

The interpretation in terms of cognition would be that large enough extension makes the situa-
tion “cognitively easy” since cognitive representations involving fermions at the rational points and
defining discretizations of the algebraic variety could be arbitrary large. The simpler the surface
is cognitively, the large the number of rational points or potentially rational points is.

Complexity of algebraic varieties is measured by Kodaira dimension dK (see http://tinyurl.

com/yadoj2ut). The spectrum for this dimension varies in the range (−∞, 0, 1, 2, ...d), where d is
the algebraic dimension of the variety. Maximal value equals to the ordinary topological dimension
d and corresponds to maximal complexity: in this case the set of rational points is finite. Minimal
Kodaira dimension is dK = −∞: in this case the set of rational points is infinite. Rational surfaces
are maximally simple and this corresponds to the existence of parametric representations using
only rational functions.

2.3.1 Rational points for algebraic curves

The sets of rational points for algebraic curves are well understood. Mordelli conjecture proved by
Falting as a theorem (see http://tinyurl.com/y9oq37ce) states that a curve over Q with genus
g = (d− 1)(d− 2)/2 > 1 (degree d > 3) has only finitely many rational points.

1. Sphere CP1 in CP2 has rational points as a dense set. Quite generally rational surfaces,
which by definition allow parametric representation using polynomials with rational coeffi-
cients (encountered in context of Du Val singularities characterized by the extended Dynkin
diagrams for finite subgroups of SU(2)) allow dense set of rational points [A3, A5]).

g = 0 does not yet guarantee that there is dense set of rational points. It is possible to have
complex conics (quadratic surface) in CP2 with no rational points. Note however that this
depends on the choice of the coordinates: if origin belongs to the surface, there is at least
one rational point

2. Elliptic curve y2 − x3 − ax− b in CP2 (see http://tinyurl.com/lovksny) has genus g = 1
and has a union of lattices of rational points and of finite cyclic groups of them since it has
origin as a rational point. This lattice of points are generated by translations. Note that
elliptic curve has no singularities that is self intersections or cusps (for a = 0, b = 0 origin is
a singularity).

http://tinyurl.com/yc33a6dg
http://tinyurl.com/y8z389a7
http://tinyurl.com/yadoj2ut
http://tinyurl.com/yadoj2ut
http://tinyurl.com/y9oq37ce
http://tinyurl.com/lovksny
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g = 1 does not guarantee that there is infinite number of rational points. Fermat’s last
theorem and CP2 as example. xd + yd = zd is projectively invariant statement and therefore
defines a curve with genus g = (d− 1)(d− 2)/2 in CP2 (one has g = 0, 0, 2, 3, 6, 10, ...). For
d > 2, in particular d = 3, there are no rational points.

3. g ≥ 2 curves do not allow a dense set of rational points nor even potentially cense set of
rational points.

Remark: In TGD framework algebraic varieties could be zero loci of octonionic polynomi-
als and have algebraic dimension 4 so that the classification for algebraic curves does not help.
Octonion analyticity must bring in symmetries which simplify the situation.

2.3.2 Enriques-Kodaira classification

The tables of (see http://tinyurl.com/ydelr4np) give an overall view about the Enriques-
Kodaira classification of algebraic curves, surfaces, and varieties in terms of Kodaira dimension
(see http://tinyurl.com/yadoj2ut).

1. For instance, general curves (g ≥ 2) have dK = 1, elliptic curves (g = 1) have dK = 0 and
projective line (g = 0) has dK = −∞. CP1 ⊂ CP2 is a rational curve so that rational points
are dense. Elliptic curves allow infinite number or rational points forming an Abelian group
if they containing single rational point and are therefore cognitively easy.

2. Algebraic varieties (with real dimension dR = 4 in complex case) with dK = 2 are surfaces
of general type, elliptic surfaces (see http://tinyurl.com/yc33a6dg) have dK = 1, surfaces
with attribute abelian, hyper-elliptic, K3, and Enriques, have dK = 0.

Remark: All real 2-surfaces are hyper-elliptic for g ≤ 2, in other words allow Z2 as global
conformal symmetry. Genus-generation correspondence [K2] for fermions allows to assign
to the 3 lowest generations of fermions hyper-elliptic partonic 2-surfaces with genus g =
0, 1, 2. These surfaces would have dK = 0 and be rather simple as real surfaces in Kodaira
classification. Could one regard them as M4 projection of complex hyper-elliptic surfaces of
real dimension dR = 4? dK = −∞ holds true for rational surfaces and ruled surfaces, which
allow straight line through any point are maximally simple. In complex case the line would
be CP1.

3. The Wikipedia article gives also a table about the classification of algebraic 3-folds. Real
algebraic 3-surfaces might well occur in TGD framework. The twistor space for space-time
surface might allow realization as complex 3-fold and since it has S2 has fiber, it would
naturally correspond to an uni-ruled surface with dK = −∞. The table shows that one can
build higher dimensional algebraic varieties with dK < d from lower-dimensional ones as
fiber-space like structures, which based or fiber having dK < d. 3-D Abelian varieties and
Calabi-Yau 3-folds are complex manifolds with dK = 0, which cannot be engineered in this
manner.

4. Space-time surfaces would be surfaces of algebraic dimension 4. Wikipedia tables do not give
direct information about this case but one can make guesses on basis of the three tables.
Octonionic polynomials are analytic continuations of real polynomials of real variable, which
must mean a huge simplification, which also favor cognitive representability. The best that
one might have infinite sets of rational points. The examples about extremals of Kähler
action does not however favor this wish.

Bombieri-Lang conjecture (see http://tinyurl.com/y887yn5b) states that, for any variety X
of general type over a number field k, the set of k-rational points of X fails to be Zariski dense
(see http://tinyurl.com/jm9fh74) in X. This means that , the k-rational points are contained
in a finite union of lower-dimensional sub-varieties of X. In dimension 1, this is exactly Faltings
theorem, since a curve is of general type if and only if it has g ≥ 2. The conjecture of Vojta (see
http://tinyurl.com/y9sttuu4) states that varieties of general type cannot be potentially dense.
As will be found, these conjectures might be highly relevant for TGD.

http://tinyurl.com/ydelr4np
http://tinyurl.com/yadoj2ut
http://tinyurl.com/yc33a6dg
http://tinyurl.com/y887yn5b
http://tinyurl.com/jm9fh74
http://tinyurl.com/y9sttuu4
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3 About enumerative algebraic geometry

Algebraic geometry is something very different from Riemann geometry, Kähler geometry, or sub-
manifold geometry based on local notions. Sub-manifolds are replaced with sub-varieties defined as
zero loci for polynomials with coefficients in the field of rationals or extension of rationals. Partial
differential equations are replaced with algebraic ones. One can generalize algebraic geometry to
any number field.

String theorists have worked with algebraic geometry with motivation coming from various
moduli spaces emerging in string theory. The moduli spaces for closed and open strings possibly in
presence of branes are involved. Also Calabi-Yau compacticication leads to algebraic geometry, and
topological string theories of type A and B involve also moduli spaces and enumerative algebraic
geometry.

In TGD the motivation for enumerative algebraic geometry comes from several sources.

1. Twistor lift of TGD lifts space-time surfaces to their 6-D twistor spaces representable as
surfaces in the product of 6-D twistor spaces of M4 and CP2 and possessing Kähler struc-
ture - this makes these spaces completely unique and strongly suggests the role of algebraic
geometry, in particular in the generalization of twistor Grassmannian approach [L10].

2. There are three threads in number theoretic vision: p-adic numbers and adelics, classical
number fields, and infinite primes. Adelic physics [L12] as physics of sensory experience
and cognition unifies real physics and various p-adic physics in the adele characterized by an
extension of rationals inducing those of p-adic number fields. This leads to algebraic geometry
and counting of points with imbedding space coordinates in the extension of rationals and
defining a discrete cognitive representation. The core of the scattering amplitude would be
defined by this cognitive representation identifiable in terms of points appearing as arguments
of n-point function in QFT picture [L8].

3. M8 −M4 × CP2 duality is the analog of the rather adhoc spontaneous compactification in
string models but would be non-dynamical and thus allow to avoid landscape catastrophe.
Classical physics would reduce to octonionic algebraic geometry at the level of complexi-
fied octonions with several special features due to non-commutativity and non-associativity:
space-time could be seen as 4-surface in the complexification of of octonions. The commuting
imaginary unit would make possible the realization of algebraic extensions of rationals.

The moduli space for the varieties is discrete if the coefficients of the polynomials are in the
extension of rationals. If one poses additional conditions such as associativity of 4-surfaces,
the moduli space is further reduced by the resulting criticality conditions realizing quan-
tum criticality at the fundamental level raising hopes about extremely simple formulation of
scattering amplitudes at the level of M8 [L10].

Also complex and co-complex sub-manifolds of associative space-time surface are important
and would realize strong form of holography (SH). For non-associative regions of space-time
surface it might not be possible to define complex and co-complex surfaces in unique manner
since the basic M2 ⊂ M4 local flag structure is missing. String world sheets and partonic
2-surfaces and their moduli spaces are indeed in key role and the topology of partonic surfaces
plays a key role in understanding of family replication phenomenon in TGD [L8].

In this framework one cannot avoid enumerative algebraic geometry.

1. One might want to know the number of points of sub-variety belonging to the number field
defining the coefficients of the polynomials. This problem is very relevant in M8 formulation
of TGD, where these points are carriers of sparticles. In TGD based vision about cogni-
tion [L12] they define cognitive representations as points of space-time surface, whose M8

coordinates can be thought of as belonging to both real number field and to extensions of
various p-adic number fields induced by the extension of rationals. If these cognitive repre-
sentations define the vertices of analogs of twistor Grassmann diagrams in which sparticle
lines meet, one would have number theoretically universal adelic formulation of scattering
amplitudes and a deep connection between fundamental physics and cognition.
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2. Second kind of problem involves a set algebraic surfaces represented as zero loci for polyno-
mials - lines and circles in the simplest situations. One must find the number of algebraic
surfaces intersecting or touching the surfaces in this set. Here the notion of incidence is
central. Point can be incident on line or two lines (being their intersection), line on plane,
etc.. This leads to the notion of Grassmannians and flag-manifolds.

Moduli spaces parameterizing sub-varieties of given kind - lines, circles, algebraic curves of
given degree, are central for the more advanced formulation of algebraic geometry. These mod-
uli spaces emerge also in the formulation of TGD. The moduli space of conformal equivalence
classes of partonic 2-surfaces is one example involved with the explanation of family replication
phenomenon [K2]. One can assign moduli spaces also to octonion and quaternion structures in
M8 (or equivalently with the complexification of E8). One can identify CP2 as a moduli space of
quaternionic sub-spaces of octonions containing preferred complex sub-space.

One cannot avoid these moduli spaces in the formulation of the scattering amplitudes and
this leads to M8 − H duality. The hard core of the calculation should however reduce to the
understanding of the algebraic geometry of 4-surfaces in octonionic space. Clearly, M8 picture
seems to provide the simplest formulation of the number theoretic vision.

3.1 Some examples about enumerative algebraic geometry

Some examples give an idea about what enumerative algebraic geometry (see http://tinyurl.

com/y7yzt67b) is.

1. Consider 4 lines in 3-D space. What is the number of lines intersecting these 4 lines [A10]
(see http://tinyurl.com/ycrbr5aj). One could deduce the number of lines and lines by
writing the explicit equations for the lines with each line characterized by 2+3=5 parameters
specifying direction t vector and arbitarily chosen point x0 on the line. 2+3=5 parameters
characterize each sought-for line.

For intersection points xi of sought for line with i:th one has xi = x0 + kit0, i = 1, ..., 4
for the sought for line with direction t0. At the intersection points at the 4 lines one has
xi = x0i + Kiti with fixed directions ti. Combining the two equations for each line one has
4 × 3 = 12 equations and 3+4+2 parameters for the sought for line plus 4 parameters Ki

for the four lines. This gives 13 unknown parameters corresponding to x0, ki,Ki. One would
have one parameter set of solutions: something goes wrong.

One has however projective invariance: one can shift x0 along the line by x0 → x0 − at,
ki → ki + a and using this freedom assume for instance k1 = 0. This reduces the number
of parameters to 12 and one has finite number of solutions in the generic case. Actually the
number is 2 in the generic case but can be infinite in some special cases. The challenge is
to deduce the number of the solutions by geometric arguments.Below Schubert’s argument
proving that the number of solutions is 2 will be discussed.

The idea of enumerative geometry is to do this using general geometric arguments allowing
to deform the problem topologically to a simpler one in which case the number of solutions
is obvious which in the most abstract formulation become topological.

2. Apollonius can be seen as founder of enumerative algebraic geometry. Apollonian circles
(see http://tinyurl.com/ycvxe688) represent second example. One has 3 circles in plane.
What is the number of circles tangential to all these 3 circles. Wikipedia link represents the
geometric solution of the problem. The number of circles is 8 in the generic case but there
are exceptional cases.

3. In Steiner’s conic problem (see http://tinyurl.com/yahshsjo) one have 5 conical sections
(circles, cones, ellipsoids, hyperbole) in plane. How many different conics tangential to the
conics there exist? This problem is rather difficult and the thumb rules of enumerative
geometry (dimension counting, Bezout’s rule, Schubert calculus) fail. This is a problem in
projective geometry where one is forced to introduce moduli space for conics tangential to
given conic. This space is algebraic sub-variety of all conics in plane which is 5-D projective

http://tinyurl.com/y7yzt67b
http://tinyurl.com/y7yzt67b
http://tinyurl.com/ycrbr5aj
http://tinyurl.com/ycvxe688
http://tinyurl.com/yahshsjo


3.2 About methods of algebraic enumerative geometry 21

space. One must be able to deduce the number of points in the intersection of these sub-
varieties so that the original problem in 2-D plane is replaced with a problem in moduli
space.

3.2 About methods of algebraic enumerative geometry

A brief summary about methods of algebraic geometry is in order to give some idea about what is
involved (see http://tinyurl.com/y7yzt67b).

1. Dimension counting is the simplest method. If two geometric objects of n-D space have
dimensions k and l, there intersection is n− k − l-dimensional for n− k − l ≥ 0 or empty in
the generic case. For k + l = n one obtains discrete set of intersection points.

2. Bezouts theorem is a more advanced method. Consider for instance, curves in plane defined
by the curves polynomials x = Pm(y) and x = Pn(y) of degrees k = m and k = n. The
number N of intersection points in the generic case is bounded above by N = m× n (in this
case all roots are real). One can understand this by noticing that one has m roots yk or given
x giving rise to a m-branched graph of function y = f(x). The number of intersections for
the graphs of the two polynomials is at most m × n. If one has curve in plane represented
by polynomial equation Pm,n(x, y) = 0, one can also estimate immediately the minimal
multi-degree (m,n) for this polynomials.

3. Schubert calculus http://tinyurl.com/y766ddw2) is a more advanced but not completely
rigorous method of enumerative geometry [A10] (see http://tinyurl.com/ycrbr5aj).

Schubert’s vision was that the number of intersection points is stable against deformations in
the generic case. This is not quite true always but in exceptional cases one can say that two
separate solutions degenerate to single one, just like roots of polynomial can do for suitable
values of coefficients.

For instance, Schubert’s solution to the already mentioned problem of finding a line intersect-
ing 4 lines in generic position relies on this assumption. The idea is to deform the situation
so that one has two intersecting pairs of lines. One solution to the problem is a line going
through the intersection points for line pairs. Second solution is obtained as intersection of
the planes. It can happen that planes are parallel in which case this does not work.

Schubert calculus it applies to linear sub-varieties but can be generalized also to non-linear
varieties. The notion of incidence allowing a general formulation for intersection and tangen-
tiality (touching) is central. This leads to the notions of flag, flag manifold, and Schubert
variety as sub-variety of Grassmannian.

Flag is a hierarchy of incident subspaces A0 ⊂ A1 ⊂ A2... ⊂ An with the property that
the the dimension di ≤ n of Ai satisfies di ≥ i. As a special case this notion leads to the
notion of Grassmannian G(k, n) consisting of k-planes in n-dimensional space: in this case A0

corresponds to k-planes and A2 to space An. More general flag manifolds are moduli spaces
and sub-varieties of Grassmannian providing a solution to some conditions. Flag varieties as
sub-varieties of Grassmannians are Schubert varieties (see http://tinyurl.com/y7ehcrzg).
They are also examples of singular varieties. More general Grassmannians are obtained as
coset spaces of G/P , where G is algebraic group and P is parabolic sub-group of G.

Remark: CP2 corresponds to the space of complex lines in C3. CP2 can be also understood
as the space of quaternionic planes in octonionic 8-space containing fixed 2-plane so that also
now one has flag. String world sheets inside space-time surfaces define curved flags with 2-D
and 4-D tangent spaces defining an integrable distribution of local flags.

4. Cohomology combined with Poincare duality allows a rigorous formulation of Schubert calcu-
lus. Schubert’s idea about possibility to deform the generic position corresponds to homotopy
invariance, when the degeneracies of the solutions are taken into account. Homology and co-
homology become basic tools and the so called cup product for cohomology together with
Poincare duality and Künneth formula for the cohomology of Cartesian product in terms of
cohomologies of factors allows to deduce intersection numbers algebraically. Schubert cells
define a basis for the homology of Grassmannian containing only even-dimensional generators.

http://tinyurl.com/y7yzt67b
http://tinyurl.com/y766ddw2
http://tinyurl.com/ycrbr5aj
http://tinyurl.com/y7ehcrzg
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Grassmannians play a key role in twistor Grassmannian approach as auxiliary manifolds. In
particular, the singularities of the integrand of the scattering amplitude defined as a multiple
residue integral over G(k, n) define a hierarchy of Schubert cells. The so called positive
Grassmannian [?]efines a subset of singularities appearing in the scattering amplitudes of
N = 4 SUSY. This hierarchy and its CP2 counterpart are expected also in TGD framework.

Remark: Schubert’s vision might be relevant for the notion of conscious intelligence. Could
problem solving involve the transformation of a problem to a simple critical problem, which
is easy but for which some solutions can become degenerate? The transformation of general
position for 4 lines to a pair of intersecting lines would be example of this. One can wonder
whether quantum criticality could help problem solving by finding critical cases.

5. Moduli spaces of curves and varieties provide the most refined methods. Flag manifolds
define basic examples of moduli spaces. Quantum cohomology represents even more refined
conceptualization: the varieties (branes in M-theory terminology) are said to be connected
or intersect if each of them has a common point with the same pseudo-holomorphic variety
(“string world sheet”). Pseudo-holomorphy - which could have minimal surface property as
counterpart - implies that the connecting 2-surface is not arbitrary.

Quantum intersection for the “string world sheet” and “brane” is possible also when it is
not stable classically (the co-dimension of brane is smaller than 2). Even in the case that
it possible classically quantum intersection makes possible kind of “telepathic” quantum
contact mediated by the “string world sheet” naturally involved with the description of
quantum entanglement in TGD framework.

3.3 Gromow-Witten invariants

Gromow-Witten invariants repreent example of so called quantum invariants natural in string
models and M-theory. They provide new invariants in algebraic and symplectic geometry.

3.3.1 Formal definition

Consider first the definition of Gromow-Witten (G-W) invariants (see http://tinyurl.com/

y9b5vbcw). G-W invariants are rational number valued topological invariants useful in algebraic
and symplectic geometry. These quantum invariants give information about these geometries not
provided by classical invariants. Despite being rational numbers in the general case G-W invariants
in some sense give the number of string world sheets connecting given branes.

1. One considers collection of n surfaces (“branes”) with even dimensions in some symplectic
manifold X of dimension D = 2k (say Kähler manifold) and pseudo-holomorphic curves
(“string world sheets”) X2, which have the property that they connect these n surfaces in
the sense that they intersect the “branes” in the marked points xi, i = 1, .., n.

“Connect” does not reduce to intersection in topologically stable sense since connecting is
possible also for branes with dimension smaller than D − 2. One allows all surfaces that
X2 that intersects the n surfaces at marked points if they are pseudo-holomorphic even if
the basic dimension rule is not satisfied. In 4-dimensional case this does not seem to have
implications since partonic 2-surfaces satisfy automatically the dimension rule. The n branes
intersect or touch in quantum sense: there is no concrete intersection but intersection with
the mediation of “string world sheet”.

2. Pseudo-holomorphy means that the Jacobian df of the imbedding map f : X2 → X commutes
with the symplectic structures j resp. J of X2 resp. X: i.e. one has df(jT ) = Jdf(T ) for
any tangent vector T at given point of X2. For X2 = X = C this gives Cauchy-Riemann
conditions.

In the symplectic case X2 is characterized topologically by its genus g and homology class
A as surface of X. In algebraic geometry context the degree d of the polynomial defining
X2 replaces A. In TGD X2 corresponds to string world sheet having also boundary. X2 has
also n marked points x1, ..., xn corresponding to intersections with the n surfaces.

http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
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3. G-W invariant GWX,A
g,n gives the number of pseudo-holomorphic 2-surfaces X2 connecting n

given surfaces in X - each at single marked point. In TGD these surfaces would be partonic
2-surfaces and marked points would be carriers of sparticles.

The explicit definition of G-W invariant is rather hard to understand by a layman like me. I
however try to express the basic idea on basis of Wikipedia definition (see http://tinyurl.com/

y9b5vbcw). I apologize for my primitive understanding of higher algebraic geometry. The article
of Vakil [L3] (see http://tinyurl.com/ybobccub) discusses the notion of G-W invariant in detail.

1. The situation is conformally invariant meaning that one considers only the conformal equiv-
alence classes for the marked pseudo-holomorphic curves X2 parameterized by the points of
so called Deligne-Mumford moduli space Mg,n of curves of genus g with n marked points (see
http://tinyurl.com/yaq8n6dp): note that these curves are just abstract objects without
no imbedding as surface to X assumed. Mg,n has complex dimension

d0 = 3(g − 1) + n .

n corresponds complex dimensions assignable to the marked points and 3(g − 1) correspond
to the complex moduli in absence of marked points. This space appears in TGD framework
in the construction of elementary particle vacuum functionals [K2].

2. Since these curves must be represented as surfaces in X one must introduces the moduli
space Mg,n(X,A) of their maps f to X with given homology equivalence class. The elements
in this space are of form (C, x1, .., xn, f) where C is one particular representative of A.

3. The complex dimension d of Mg,n(X,A) can be calculated. One has

d = d0 + cX1 (A) + (g − 1)k .

Here cX1 (A) is the first Chern class defining element of second cohomology of X evaluated
for A. For Calabi-Yau manifolds one has c1 = 0. The contribution (g− 1)k to the dimension
vanishing for torus topology should have some simple explanation.

4. One defines so called evaluation map ev from Mg,n(X,A) → Y , Y = Mg,n × Xn in terms
of stabilization st(C, x1, ..., xn) ∈ Mg,n(X,A) of C (I understand that stabilization means
that the automophism group of the stabilized surface defined by f is finite [A9] (see http:

//tinyurl.com/y8r44uhl). I am not quite sure what the finiteness of the automorphism
group means. One might however think that conformal transformations must be in question.
One has

ev(C, x1, .., xn, f) = (st(C, x1, .., xn), f(x1), ...f(xn)) .

Evaluation map assigns to the concrete realization of string world sheet with marked points
the abstract curve st(C, x1, .., xn) and points (f(xi), ..., f(xn)) ∈ Xn possibly interpretable
as positions f(xi) of n particles. One could say that one has many particle system with
particles represented by surfaces of Xi of X connected by X2 - string world sheet - mediating
interaction between Xi via the intersection points.

5. Evaluation map takes the fundamental class of Mg,n(X,A) in Hd(Mg,n(X,A)) to an element
of homology group Hd(Y ). This homology equivalence class defines G-W invariant, which is
rational valued in the general case.

6. One can make this more concrete by considering homology equivalence class β in Mg,n

and homology equivalence classes αi, i = 1, ..., n represented by the surfaces Xi. The co-
dimensions of these n+1 homology equivalence classes must sum up to d. The homologies of
Mg,n and Y = Mg,n×Xn induce homology of Y by Künneth formula (see http://tinyurl.
com/yd9ttlfr) implying that Y has class of Hd(Y ) given by the product β · α1... · αn.

One can identify the value of GWX,A
g,n for a given class β · α1... · αn as the coefficients in its

expansion as sum of all elements in Hd(Y ). This coefficient is the value of its intersection

http://tinyurl.com/y9b5vbcw
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product of GWX,A
g,n with the product β ·α1...·αn and gives element of H0(Q), which is rational

number.

7. There are two non-classical features. Classically intersection must be topologically stable.
This would require αi to have codimension 2 but all even co-dimensions are allowed. That
the value for the number of connecting string world sheets is rational number does not
conform with the classical geometric intuition. The Wikipedia explanation is that the orbifold
singularities for the space Mg,n(X,A) of stable maps are responsible for rational number.

3.3.2 Application to string theory

Topological string theories give a physical realization of this picture. Here the review article
Instantons, Topological Strings, and Enumerative Geometry of Szabo [A9] (see http://tinyurl.

com/y8r44uhl) is very helpful.

1. In M-theory framework and for topological string models of type A and B the physical
interpretation for the varieties associated with αi would be as branes of various dimensions
needed to satisfy Dirichlet boundary conditions for strings.

2. In topological string theories one considers sigma model with target space X, which can
be rather general. The symplectic or complex structure of X is however essential. X is
forced to be 3-D (in complex sense) Calabi-Yau manifold by consistency of quantum theory.
Interestingly, the super twistor space CP (3|4) is super Calabi-Yau manifold although CP3

is not and must therefore have trivial first Chern class c1 appearing in the formula for the
dimension d above. I must admit that I do not understand why this is the case.

Closed topological strings have no marked points and one has n = 0. Open topological strings
world sheets meet n branes at points xi, where they satisfy Dirichlet boundary conditions.
Branes an be identified as even-dimensional Lagrangian sub-manifolds with vanishing induced
symplectic form.

3. For topological closed string theories of type A one considers holomorphically imbedded
curves in X characterized by genus g and homology class A: one speaks of world sheet
instantons. A =

∑
niSi is sum over the generating classes Si with integer coefficients.

For given g and A one has analog of product of non-interacting systems at temperatures
1/ti assignable to the homology classes Si with energies identifiable as ni. One can assign
Boltzmann weight labelled by (g,A) as Qβ =

∏
iQ

ni
i , Qi = exp(−ti).

One can construct partition function for the entire system as sum over Boltzmann weights
with degeneracy factors telling the number of world sheet instantons with given (g,A). One
can calculate free energy as sum

∑
Ng,βQ

β over contributions labelled by (g,A). The co-
efficients Ng,β count the rational valued degeneracies of the world sheet instantons of given

type and reduce to G-W invariants GWX,A
g,0 .

Remark: If one allows powers of a root e−1/n, t = n, in the extension of rationals or replace
e−t with pn, partition functions make sense also in the p-adic context.

4. For topological open string theories of type A one has also branes. Homology equivalence
classes are relative to the brane configuration. The coefficients Ng,β are given by GWX,A

g,n for
a given configuration of branes: the above described general formulas correspond to these.

5. For topological string theories of type B, string world sheets reduce to single point and thus
correspond to constant solutions to the field equations of sigma model. Quantum intersection
reduces to ordinary intersection and one has x1 = x2... = xn. G-W invariants involve only
classical cohomology and give for n = 2 the number of common points for two surfaces in X
with dimension d1 and d2 = n − d. The duality between topological string theories of type
A and B related to the mirror symmetry supports the idea that one could generalize the
calculation of these invariants in theories B to theories A. It is not clear whether this option
as any analog in TGD.

http://tinyurl.com/y8r44uhl
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The so called Witten conjecture (see http://tinyurl.com/yccahv3q) proved by Kontsevich
states that the partition function in one formulation of stringy quantum gravity and having as
coefficients of free energy G-W invariants of the target space is same as the partition function in
second formulation and expressible in terms of so called tau function associated with KdV hierarchy.
This leads to non-trivial identities. Witten conjecture actually follows from the invariance of
partition function with respect to half Virasoro algebra and Virasoro conjecture (see http://

tinyurl.com/y7xcc9hm) stating just this generalizes Witten’s conjecture.

3.4 Riemann-Roch theorem

Riemann-Roch theorem (RR) is also part of enumerative geometry albeit more abstract. Instead
of counting of numbers of points, one counts dimensions of various function spaces associated with
Riemann surfaces. RR provides information about the dimensions for the spaces of meromorphic
functions and 1-forms with prescribed zeros and poles.

3.4.1 Basic notions

Riemann surface is the basic notion. Riemann surface is orientable is characterized by its genus g
and number of holes/punctures in it. Riemann surface can also possess marked points, which seem
to be equivalent with punctures. The moduli space of these complex curves is parameterized by a
moduli space Mg,n of curves of genus g with n marked points (see http://tinyurl.com/yaq8n6dp)
(see http://tinyurl.com/yaq8n6dp).

Dolbeault cohomology (see http://tinyurl.com/y7cvs5sx) generalizes the notion of differ-
ential form so that it has has well-defined degrees with respect to complex coordinates and their
conjugates: one can write in general complex manifold this kind of form as

ω = ωi1i2..in,j1j2...jndz
i1 ∧ dzi2 ...dzindzj1 ∧ dzj2 ...dzjn .

The ordinary exterior derivative d is replaced with its holomorphic counterpart ∂ and its conjugate.
One can construct the counterparts of cohomology groups (Hodge theory) Hp,q = Hq,p. Betti
numbers as numbers hi,j defining the dimensions of the cohomology groups forms of degrees i and
j with respect to dzi and dzj . One can define the holomorphic Euler’s characteristic as χC =
h0,0−h01 = 1− g whereas orinary Euler characteristic is χR = h0,0− (h01 +h10) +h1,1 = 2(1− g).

One considers meromorphic functions having poles and zeros as the only singularities (points at
which the map does not preserve angles): rational functions provide the basic example. Riemann
zeta provides example of meromorphic function not reducing to rational function. Holomorphic
functions have only zeros and entire functions have neither zeros nor poles. If analytic functions
on Riemann surfaces can be interpreted as maps of compact Riemann surface to itself rather than
to complex plane, meromorphy reduces to holomorphy since the point ∞ belongs to the Riemann
surface.

The elements of free group of divisors are defined as formal sums of integers associated with
the points P of Riemann surface. Divisors D =

∑
P n(P ), where (P ) is integer, are analogous

to integer valued “wave functions” on Riemann surface. The number of points with n(P ) 6= 0 is
countable. The degree of divisor is obtained as the ordinary sum deg(D) of the integers defining
the divisor.

Although divisors can be seen as purely formal objects, they are in practice associated to both
meromorphic functions and 1-forms. The divisor of a meromorphic function is known as principal
divisor. Meromorphic functions and 1-forms differing by a multiplication with meromorphic func-
tion are regarded as linearly equivalent - in other words, one can add to a given divisor a divisor of
a meromorphic function without changing its equivalence class. It can be shown that all divisors
associated with meromorphic 1-forms linearly equivalent and one can talk about canonical divisor.
Note that deg(D) is linear invariant since the degree of globally meromorphic function is zero.

The motivation for the divisors is following. Consider the space of meromorphic functions h
with the property that the degrees of poles associated with the poles of these functions are not
higher than given integers n(P ). In other words, one has 〈h(P )〉+D(P ) ≥ 0 for all points P (〈h〉
is the divisor of h). For D(P ) > 0 the pole has degree not higher than D(P ). For non-positive
D(P ) the function has zero of order D(P ) at least.

http://tinyurl.com/yccahv3q
http://tinyurl.com/y7xcc9hm
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3.4.2 Formulation of RR theorem

With these prerequisites it is possibly to formulate RR (for Wikipedia article see http://tinyurl.
com/mdmbcx6). The Wikipedia article is somewhat confusing and a more precise description of
RR can be found in the article “Riemann-Roch theorem” by Vera Talovikova [A11] (see http:

//tinyurl.com/ktww7ks).
Let l(D) be the dimension of the space of meromorphic functions with principal divisor D or

1-forms linearly equivalent with canonical divisor K. Then the equality

l(D)− l(K −D) = deg(D)− g + 1 (3.1)

is true for both meromorphic functions and canonical divisors. For D = K one obtains using
l(0) = 1

l(K) = deg(K)− g + 2 (3.2)

giving the dimension of the space of canonical divisors. l(K) > 0 in general is not in conflict with
the fact that canonical divisors are linearly equivalent. deg(K) = 2g−2 in the above formula gives
l(K) = g.

l(K) = 0 for g = 0 case looks strange: one should actually make notational distinction between
dimensions of spaces of meromorphic functions and one-forms (this is done in the article of Tali-
vakova). The explanation is that l(K) here is not the dimension of the space of canonical 1-forms
but that of the holomorphic functions with the divisor of K. The canonical form K for the sphere
has second order pole at ∞ so that one cannot have meromorphic forms holomorphic outside P .

Riemann’s inequality

l(D) ≥ deg(D)− g + 1 (3.3)

follows from l(K −D) ≥ 0, which can be seen as a correction term to the formula

l(D) = deg(D)− g + 1 . (3.4)

In what sense this is true, becomes clear from what follows.

3.4.3 The dimension of the space meromorphic functions corresponding to given
divisor

The simplest divisor associated with meromorphic function involves only one point. Multiplying
a function, which is non-vanishing and finite at P by (z − z(P ))−n gives a pole of order n (zero
has negative order in this sense). One is interested on the dimension l(nP ) of the space nP of
meromorphic functions and RR allows to deduce information about l(nP ). One is interested on
the behavior of l(nP ) as function of genus g of Riemann surface (more general situation would
allow also punctures). For n = 0 one has entire function without poles and zeros. Only constant
function is possible: l(0) = 1.

First some general observations. K has degree deg(K) = 2g − 2, which gives l(K) = g. For
n = deg(D) > deg(K) = 2g − 2 the correction term vanishes since deg(K −D) becomes negative,
and one has l(D) = deg(D) − g + 1. This gives l(n = 2g − 1) = g. Therefore n ∈ {2g − 1, 2g, ...}
corresponds to l(nP ) ∈ {g, g+ 1, ...}. n < 2g− 2 corresponds to l(nP ) = 1. What about the range
n ∈ {2, ..., 2g − 2}? Note that 2g − 2 is the negative of the Euler character of Riemann surface.

1. g = 0 case. K on sphere. dz canonical 1-form on Riemann sphere covered by two complex
coordinate patches. z → w = 1/z relates the coordinates. There is second order pole at
infinity (dw = −dz/z2). One has therefore deg(K) = −2 for sphere in accordance with the
general formula deg(K) = 2g− 2. The formula l(nP ) = deg(D) + 1 holds for all n and there
is no correction term now. One as l(nP ) = n+ 1 .

http://tinyurl.com/mdmbcx6
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2. g = 1 case.

One has deg(K) = 2g−2 = 0 for torus reflecting the fact that the canonical form ω = dz has
no poles or zeros (torus is obtained by identifying the cells of a periodic lattice in complex
plane). Correction term vanishes since it would have negative degree for all n and one has
l(nP ) ∈ {1, 1, 2, 3, ...}.

3. g = 2 case.

For n = deg(D) ≥ 2× 2− 1 = 3 gives l(D) = n− 1 giving for n ≥ 3 l(nP ) ∈ {2, 3, ...}. What
about n = g = 2? For generic points one has l(2) = 1. There are 6 points at which one
has l(D) = 2 so that there is additional meromorphic function having pole of order 2 at this
kind of point. These points are fixed points under Z2 defining hyper-ellipticity. Note that
g ≤ 2 Riemann surfaces are always hyper-elliptic in the sense that it allows Z2 as conformal
symmetry (see http://tinyurl.com/y9sdu4o3).

One has therefore l(nP ) ∈ {1, 1, 1, 2, ..} for a generic point and l(nP ) ∈ {1, 1, 2, 2......} for
6 points fixed under Z2. An interesting question is whether this phenomenon could have
physical interpretation in TGD framework.

4. g > 2 case.

For g > 2 . l(nP ) in the range {2, 2g − 2} can depend on point and even on the conformal
moduli. There are more special points in which correction term differs from that in the
generic case. g = 3 illustrates the situation. n ∈ {1, 1, 1, 1, 1, 2, ...} is obtained for a generic
point. At special points and for n < 3 there are also other options for l(nP ). Also the
dependence of l(nP ) on moduli emerges for g ≥ 3. The natural guess layman is that these
points are fixed points of conformal symmetries. Also now hyper-elliptic surfaces allowing
projective Z2 covering are special. In the general case hyper-ellipticity is not possible.

In TGD framework Weierstrass points(see http://tinyurl.com/y9wehsml) are of special in-
terest physically.

1. My layman guess is that special points known as Weierstrass points (see http://tinyurl.

com/y9wehsml) correspond to singularities for projective coverings for which conformal sym-
metries permute the sheets of the covering. Several points coincide for the covering since a
sub-group of conformal symmetries would act trivially on the Weierstrass point.

Note that for g > 2 Z2 covering is not possible except for hyper-elliptic surfaces, and one
can wonder whether this relates to the experimental absence fo g > 2 fermion families [K2].
Second interesting point is that elementary particles indeed correspond to double sheeted
structures from the condition that monopole fluxes flow along closed flux tubes (there are no
free magnetic monopoles).

2. There is an obvious analogy with the coverings associated with the cognitive representation
defined by the points of space-time surface with coordinates in an extension of rationals
[L12, L8] [L11]. Fixed points for a sub-group of Galois group generate singularities at which
sheets touch each other. These singular points are physically the most interesting and could
carry sparticles. The action of discrete conformal groups restricted to cognitive representation
could be represented as the action of Galois group on points of cognitive representation.
Cognitive representation would indeed represent!

Remarkably, if the tangent spaces are not parallel for the touching sheets, these points are
mapped to several points in H in M8−H correspondence. If this picture is correct, the hyper-
elliptic symmetry Z2 of genera g ≤ 2 could give rise to this kind of exceptional singularities
for g ≥ 2.

What is worrying that there are two views about twistorial amplitudes. One view relying
on the notion of octonionic super-space M8 [L8] is analogous to that of SUSYs: sparticles
can be seen as completely local composites of fermions. Second view relies on imbedding
space M4 × CP2 [K23] and on the identification sparticles as non-local many-fermion states
at partonic 2-surfaces. These two views could be actually equivalent by M8 −H duality.

http://tinyurl.com/y9sdu4o3
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3. When these singular points are present at partonic 2-surfaces at boundaries of CD and at
vertices, the topology of partonic 2-surface is in well-defined sense between g and g+1 external
particles: one has criticality. The polynomials representing external particles indeed satisfy
criticality conditions guaranteeing associativity or co-associativity (quantum criticality of
TGD Universe is the basic postulate of quantum TGD). At partonic orbits the touching
pieces of partonic 2-surface could separate (g) or fuse (g + 1). Could this topological mixing
give rise to CKM mixing of fermions [K2, K7, K9]?

3.4.4 RR for algebraic varieties and bundles

RR can be generalized to algebraic varieties (see http://tinyurl.com/y9asz4qg). In complex
case the real dimension is four so that this generalization is interesting from TGD point of view
and will be considered later. The generalization involves rather advanced mathematics such as the
notion of sheaf (see http://tinyurl.com/nudhxo6). Zeros and poles appearing in the divisor are
for complex surfaces replaced with 2-D varieties so that the generalization is far from trivial.

The following is brief summary based on Wikipedia article.

1. Genus g is replaced with algebraic genus and deg(D) plus correction term is replaced with the
intersection number (see http://tinyurl.com/y7dcffb6) for D and D−K, where K is the
canonical divisor associated with 2-forms, which is also unique apart from linear equivalence
Points of divisor are replaced with 2-varieties.

2. The generalization to complex surfaces (with real dimension equal to 4) reads as

χ(D) = χ(0) +
1

2
D · (D −K) . (3.5)

χ(D) is holomorphic Euler characteristic associated with the divisor. χ(0) is defined as
χ(0) = h0,0 − h0,1 + h0,2, where hi,j are Betti numbers for holomorphic forms. ’·’ denotes
intersection product in cohomology made possibly by Poincare duality. K is canonical two-
form which is a section of determinant bundle having unique divisor (their is linear equivalence
due to the possibility to multiply with meromorphic function.

One has χ(0) = 1 + pa, where pa is arithmetic genus. Noether’s formula gives

χ(0) =
c21 + c2

12
=
K ·K + e

12
. (3.6)

c21 is Chern number and e = c2 is topological Euler characteristic.

Clearly the information given by χ(D) is about Dolbeault homology. For comparison note
that RR for curves states l(D)− l(K −D) = χ(D) = χ(0) + deg(D).

RR can be also generalized so that it applies to vector bundles. Ordinary RR can be interpreted
as applying to a bundle for which the fiber is point. This requires the notion of the inverse bundle
defined as a bundle with the property that its direct sum (Whitney sum) with the bundle itself
is trivial bundle. One ends up with various characteristic classes, which represent homologically
non-trivial forms in the base spaces characterizing the bundle. For instance, the generalizations of
RR give information about the dimensions of the spaces of sections of the vector bundle.

Atyiah-Singer index theorem (see http://tinyurl.com/k6daqco) deals with so called elliptic
operators in compact manifolds and represents a generalization important in recent theoretical
physics, in particular gauge theories and string models. The theorem relates analytical index
- typically characterizing the dimension for the spectrum of solutions of elliptic operator to a
topological index. Elliptic operator is assigned with small perturbations for a given solution of
field equations. Perturbations of a given solution of say Yang-Mills equations is a representative
example.

http://tinyurl.com/y9asz4qg
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4 Does M 8 −H duality allow to use the machinery of alge-
braic geometry?

The machinery of algebraic geometry is extremely powerful. In particular, the number theoretical
universality of algebraic geometry implies that same equations make sense for all number fields:
this is just what adelic physics [L12] [L11] demands. Therefore it would be extremely nice if one
could somehow use this machinery also in TGD framework as it is used in string models. How this
could be achieved? There are several guide lines.

1. Twistor lift of TGD [K13, K22, K21, K23] is now a rather well-established idea although a
lot of work remains to be done with the details. Twistors were originally introduced in order
to be able to use this machinery and involves complexification of Minkowski space M4 to M4

c

as an auxiliary tool. Complexification in sufficiently general sense seems to be a necessary
auxiliary tool but it cannot be a trick (like Wick rotation) but something fundamental and
here complexification at the level of M8 is suggestive. In the sequel I will used M4 for M4

c

and M8 for M8
c unless it is necessary to emphasize that M8

c is in question. The essential
point is that the Euclidian metric is complexified and it reduces to a real metric in various
sub-spaces defining besides Euclidian space also Minkowski spaces with varying signature
when the complex coordinates are real or imaginary.

2. If M8 −H duality holds true, one can solve field equations in M8 = M4 × E8 by assuming
that either the tangent space or normal space of the space-time surface X4 is associative
(quaternionic) at each point and contains preferred M2 in its tangent space. M2 could
depend on x but M2(x):s should integrate to a 2-surface. This allows to map space-time
surface M8 to a surface in M4 × CP2 since tangent spaces are parameterized by points of
CP2 and CP2 takes the role of moduli space. The image of tangent space as point of CP2 is
same irrespective of whether one has quaternions or complexified quaternions (Hc).

It came a surprise that associativity/co-associativity is possible only if the space-time surface
is critical in the sense that some gradients of 8 complex components of the octonionic poly-
nomial P vanish without posing them as additional conditions reducing thus the dimension
of the space-time surface. This occurs when the coefficients of P satisfy additional condi-
tions. One obtains associative/co-associative space-time regions and regions without either
property and they correspond nicely to two solution types for the twistor lift of Kähler action.

3. Contrary to the original expectations, M4 ⊂ M8
c must be identified as co-associative (co-

quaternionic) subspace so that E4 is the associative/quaternionic sub-space. This allows to
have light-cone boundary as the counterpart of point-like singularity in ordinary algebraic
geometry and also allows to understand the emergence of CDs and ZEO.

Remark: A useful convention to be used in the sequel. RE(o) and IM(o) denote the real and
imaginary parts of the octionion in the decomposition o = RE(o) + IM(o)I4 and Re(o) and Im(o)
its real number valued and purely imaginary parts in the usual decomposition.

The problems related to the signature of M4 have been a longstanding head-ache of M8 duality.

1. The intuitive vision has been that the problems can be solved by replacing M8 with its
complexification M8

c identifiable as complexified octonions o. This requires introduction of
imaginary unit i commuting with the octonionic units Ek ↔ (1, I1, ..., I7). The real octonionic
components are thus replaced with ordinary complex numbers zi = xi + iyi.

2. Importantly, complex conjugation o → o changes only the sign of Ii but not! that of i
so that the octonionic inner product (o1, o2) = o1o2 = ok1o

l
2δk,l becomes complex valued.

Norm is equal to OO =
∑
i z

2
i . Both norm and inner product are in general complex valued

and real valued only in sub-spaces in which octonionic coordinates are real or imaginary.
Sub-spaces have all possible signatures of metric. These sub-spaces are not closed under
multiplication and this has been an obstacle in the earlier attempts based on the notion of
octonion analyticity. This argument applies also to quaternions and one obtains signatures
(1, 1, 1, 1), (1, 1, 1,−1), (1, 1,−1,−1), and (1,−1,−1,−1). Why just the usual Minkowskian
signature (1,−1,−1,−1) is physical, should be understood.
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The convention consistent with that used in TGD corresponds to a negative length squared
for space-like vectors and positive for time-like vectors. This gives m = (o0, io1, ..., io7) with
real ok. The projection M8

c → M8 defines the projection of X4
c ⊂ M8

c to X4 ⊂ M8 serving
as the pre-image of X4 ⊂M8 in M8 −H correspondence.

3. o is not field anymore as is clear from the fact that 1/o = o/oo is formally infinite in
Minkowskian sub-spaces, when octonion defines a light-like vector. o (and Hc) remains
however a ring so that sum and products are well-defined but division can lead to problems
unless one stays inside 7+7-dimensional light-cone with Re(oo) > 0 (Re(qq) > 0).

Although the number field structure is lost, one can still define polynomials needed to define
algebraic varieties by requiring their simultaneous vanishing and rational functions make
sense inside the light-cone. Also rational functions can be defined but poles are replaced
with light-cones in Minkowskian section. Algebraic geometry would thus be forced by the
complexification of octonions. This looks to me highly non-trivial! The extension of zeros and
poles to light-cones making propagation possible could be a good reason for why Minkowskian
signature is physical. Interestingly, the allowed octonionic momenta are light-like quaternions
[K23].

4. An interesting question is whether ZEO and the emergence of CDs relates to the failure of
field property. It seems now clear that CDs must be assigned even with elementary particles.
I have asked whether they could form an analog for the covering of manifold by coordinate
patches (in TGD inspired theory of consciousness CDs would be correlates for perceptive
fields for conscious entities assignable to CDs [L14]). These observations encourage to ask
whether the tips of CD should correspond to a pair formed by two poles/two zeros or by pole
and zero assignable to positive and negative energy states.

It turns out that the space-time surfaces in the interior of CD would naturally correspond to
non-associative surfaces and only their 3-D boundaries would have associative 4-D tangent
spaces allowing mapping to H by M8-duality, which is enough by holography.

5. The relationship between light-like 3-surface bounding Minkowskian and Euclidian space-
time regions and light-like boundaries of CDs is interesting. Could also the partonic orbits
be understood a singularities of octonionic polynomials with IM(P ) = RE(P ) = 0?

4.1 What does one really mean with M8 −H duality?

The original proposal was that M8 duality should map the associative tangent/normal planes of
associative/co-associative space-time surface containing preferred M2, call it M2

0 , to CP2: the map
read as (m, e) ∈M4×E4 → (m, s) ∈M4×CP2. Eventually it became clear that the choice of M2

can depend on position with M2(x) forming an integrable distribution to CP2: this would define
what I have called Hamilton-Jacobi structures [K19]. String like objects have minimal surface as
M4 projection for almost any general coordinate invariant action, and internal consistency requires
that M2(x) integrate to a minimal surface. The details are however not understood well enough.

1. M4 coordinate would correspond simply to projection to a fixed M4
0 in the decomposition

M8 = M4
0 × E4

0 . One can however challenge this interpretation. How M4
0 is chosen? Is it

possible to choose it uniquely? Could also M4 coordinates represent moduli analogous to
CP2 coordinates? What about ZEO?

There is an elegant general manner to formulate the choice of M4
0 at the level of M8. The

complexified quaternionic sub-spaces of M8
c (M8) are parameterized by moduli space defining

the quaternionic moduli. The moduli space in question is CP2. The choice of M4
0 corresponds

to fixing of the quaternionic moduli by fixing a point of CP2.

Warning: Note that one should be very careful in distinguishing between quaternionic as
sub-spaces of M8 and as the tangent space M8 of given point of M8.

2. One can ask whether there could be a connection with ZEO, where CDs play a key role.
Indeed, the complexified Minkowski inner product means that the complexified octonions
(quaternions) inside M8

c (M4
c ) have inverse only inside 7-D (4-D) complexified light-cone and
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this would motivate the restriction of space-time surfaces inside future or past light-cone or
both but not yet force CD.

If one allows rational functions and even meromorphic functions of octonionic or quaternionic
variable, one could consider the possibility of restricting the space-time surface defined as
their zeros to a maximally sized region containing no poles.

3. Consider complexified quaternions Hc. Poles (qq)−n, n ≥ 1 would correspond M4 light-cone
boundaries since qq = 0 at them. Also zeros qq = 0, for n ≥ 1 correspond to light-like
boundaries. Could one have two poles with with time-like distance defining CD or a pair of
pole and zero?

There is also a possible connection with the notion of infinite primes [K10]. The notion of
infinite prime leads to the proposal that rationals defined as ratios of infinite integers but
having unit real norm (and also p-adic norms) could correspond pairs of positive and negative
energy states with identical total quantum numbers and located at opposite boundaries of
CD. Infinite rationals can be mapped to rational functions. Could positive energy states
correspond to the numerators with zeros at second boundary of CD and negative energy
states to denominators with zeros at opposite boundary of CD?

4.1.1 Is the choice of the pair (M2
0 ,M

4
0 ) consistent with the properties of known

extremals in H

It should be made clear that the notion of associativity/co-associativity (quaternionicity/co-quaternionicity)
of the tangent/normal space need not make sense at the level of H. I shall however study this
working hypothesis in the sequel.

The choice of the pair (M2
0 ,M

4
0 ) means choosing preferred co-commutative (commutative) sub-

space M2
0 of M8 defining a subspace of fixed co-quaternionic (quaternionic) sub-space M4

0 ⊂M8.
Remark: M4 should indeed be the co-associative/co-quaternionic subspace of M8 if the ar-

gument about emergence of CDs is accepted and if M8 − H correspondence maps associative to
associative and co-associative to co-associative.

M4
0 in turn contains preferred M2

0 defining co-commutative (hyper-complex) structure. Both
M2

0 and M4
0 are needed in order to label the choice by CP2 point (that is as a point of Grassman-

nian).
Is the projection to a fixed factor M4

0 ⊂M4
0×E4 as a choice of co-quaternionic moduli consistent

with what we know about the extremals of twistor lift of Kähler action in H? How could one fix
M4

0 from the data about the extremal in H? One can make similar equations about the choice
of M2

0 as a fixed co-complex moduli characterized by a unit quaternion. Note that this choice is
expected to relate closely to the twistor structure and Kähler structure.

It is best to check the proposal for the known extremals in H [K19]. Consider first CP2 type
extremals for which M4 projection is a piece of light-like geodesic.

1. The CP2 projection for the image of X4 ⊂ M8 differs from single point only if the tangent
space isomorphic toM4 and parameterized by CP2 point varies. Consider CP2 type extremals
for the twistor lift of Kähler action [?]n H having light-like geodesic as M4 projection as an
example. The light-like geodesic defines a light-like vector in the tangent space of CP2 type
extremal. This light-like vector together with its dual spans fixed M2, which however does
not belong to the tangent space so that associative surface would not be in question.

What about co-associativity or associativity (the latter is favored by above argument)? This
property should hold true for the pre-image of CP2 type extremal in M8 but I am not able
to say anything about this. It is questionable to require this property at the level H but one
can of course look what it would give.

What about associativity for CP2 tangent space? The normal space of CP2 type extremal is
3-D (!) since the only the light-like tangent vector of the geodesic and 2 vectors orthogonal
to it are orthogonal to CP2 tangent vectors. For Euclidian signature this would mean that
tangent space is 5-D and cannot be associative but now the tangent space is 4-D. Can one
still say that tangent space is associative. The co-associativity of the tangent space makes
sense trivially. Can one conclude that CP2 is co-associative.
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The associativity for CP2 tangent space might make sense since the tangent space is 4-
D. The light-like vector k defines M2

0 . The associativity conditions involving two tangent
space vectors of CP2 and the light-like vector k contracted with the corresponding octonion
components. The contributions from the components of k to the associator should cancel
each other. Since one can change the relative sign of the components of k, this mechanism
does not seem to work for all components. Hence associativity cannot hold true. Neither
does M2

0 belong to the normal space since k and its dual are not orthogonal.

Could one conclude that CP2 type extremal is co-associative in accordance with the original
belief thanks to the light-like projection to M4? This does not conform with what the
singularity considerations for the octonionic polynomials would suggest. Or is it simply not
correct to try to apply associativity at the level of H. Or does M8 −H correspondence map
associative tangent spaces to co-associative ones?

2. The normal space M4 of CP2 type extremal have all orientations characterized by its CP2

projection. The normal space must contain the M2
0 determined by the tangent of the light-

like geodesic and this is indeed the case. Note that CP2 type extremals cannot have entire
CP2 as CP2 projection: they necessarily have hole at either end, which would be naturally
be at the boundary of CD.

CP2 type extremals seem to be consistent with M8 −H correspondence. It however seems
that one cannot fix the choice ofM4

0 uniquely in terms of the properties of the extremal. There
is a moduli space for M4

0 :s defined by CP2 and obviously codes for moduli for quaternion
structures in octonionic space. The distributions of M2(x) (minimal surfaces) would code for
quaternion structures (decomposition of octonionic coordinates to quaternionic coordinates
in turn decomposing to pairs of complex coordinates).

Consider next the associativity condition for cosmic strings in X2 × Y 2 ⊂ M4 × CP2. Now
CP2 projection is 2-D complex surfaces and M4 projection is minimal surface. Situation is clearly
associative. How unique the choice of M4

0 is now?

1. Now M2(x) depends on position but M2(x):s define an integrable distribution defining string
orbit X2 as a minimal surface. M4

0 must contain all surfaces M2(x), which would fix M4
0 to

a high degree for complex enough cosmic strings.

2. Each point of X2 corresponds to the same partonic surface Y 2 ⊂ CP2 labelling the tangent
spaces for its pre-image in M8. All the tangent surfaces M2(x)× E2(y) for X2 × Y 2 ⊂ M8

share only M2(x) ⊂ M4
0 . M4

0 must contain all tangent spaces M2(x) and the inverse image
of Y 2 ⊂ CP2 must belong to the orthogonal complement E4 of M4

0 . This is completely
analogous with the condition X2 = X2 × Y 2 ⊂M4 × CP2.

Consider a decomposition M8 = M4
0 × E4, M4

0 = M2
0 × E2

0 . If the inverse image of Y 2 at
point x belongs to E4, the M4

0 projection belongs to M4
0 also in M8. If this does not pose

any condition on the tangent spaces assignable to the points of Y 2 defining points of CP2,
there are no problems. What could happen that the tangent spaces assignable to Y 2 could
force the projection of the inverse image of Y 2 to intersect M4

0 .

One should also understand massless extremals (MEs). How to choose M4
0 in this case?

1. MEs are given as zeros of arbitrary functions of CP2 coordinates and 2 M4 coordinates u
and v representing local light-like direction and polarization direction orthogonal to it. In
the simplest situation these directions are constant and define M4

0 = M2
0 ×E2

0 decomposition
everywhere so that M4

0 is uniquely defined. Same applies also when the directions are not
constant. In the general case light-like direction would define the local tangent plane of string
world sheet and local polarization plane. Since the dimension of M4 projection is 4 there
seems to be no problems involved.

2. Tangent plane of X4 is parameterized by CP2 coordinates depending on 2 coordinates u
and v. The surface X4 ⊂ M8 must be graph for a map M4

0 → E4 so that a 2-parameter
deformation of M4

0 as tangent plane is in question. The distribution of tangent planes of
X4 ⊂M8 is 2-D as is also the CP2 projection in H.
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To sum up, the original vision about the associativity properties of the known extremals at
level of H survives. On the other hand, CDs emerge if M4 corresponds to the co-associative
part of O. Does this mean that M8 − H correspondence maps associative to co-associative by
multiplying the quaternionic tangent space in M8 by I4 to get that in H and vice versa or that
the notions of associative and co-associative do not make sense at the level of H? This does not
affect the correspondence since the same CP2 point parametrizes both associative tangent space
and its complement.

4.1.2 Space-time surfaces as co-dimension 4 algebraic varieties defined by the van-
ishing of real or imaginary part of octonionic polynomial?

If the theory intended to be a theory of everything, the solution ansatz for the field equations
defining space-time surfaces should be ambitious enough: nothing less than a general solution of
field equations should be in question.

1. One cannot exclude the possibility that all analytic functions of complexified octonionic
variable with real Taylor or even Laurent coefficients. These would would a commutative
and associative algebra. Space-time surfaces would be identified as their zero loci. This
option is however number theoretically attractive and can also leads to problems with adelic
physics. Since Taylor series at rational point need not anymore give a rational value.

2. Polynomials of complexified octonion variable o with real coefficients define the simplest
option but also rational functions formed as ratios of this kind of polynomials must be
considered. Polynomials form a non-associative ring allowing sum, product, and functional
decomposition as basic operations. If the coefficients on of polynomials are complex numbers
on = an + ibn, an, bn real, where i refers to the commutative imaginary unit complexifying
the octonions, the ring is associative. It is essential to allow only powers on (or (o − o0))n

with o0 = a0 + ib0, a0, b0 real numbers). Physically this means that a preferred time axis is
fixed. This time axis could connect the tips of CD in ZEO.

One can write

P (o) =
∑
k pko

k ≡ RE(P )(q1, q2, q1, q2) + IM(P )(q1, q2, q1, q2)× I4 , pk real ,

(4.1)

where the notations

o = q1 + q2I4 , qi = z1i + z2i I2 , qi = z1i − z2i I2 , zji = xji + iyji
(4.2)

Note that the conjugation does not change the sign of i. Due to the non-commutativity of
octonions P i as functions of quaternions are in general not analytic in the sense that they
would be polynomials of qi with real coefficients! They are however analytic functions of zi.
The real and imaginary parts of xji correspond to Minkowskian and Euclidian signatures.

In adelic physics coefficients on of the octonionic polynomials define WCW coordinates and
should be rational numbers or rationals in the extension of rationals defining the adele. The
polynomials form an associative algebra since associativity holds for powers on multiplied by
real number. Thus complex analyticity crucial in algebraic geometry would be a key element
of adelic physics.

3. If the preferred extremals correspond to the associative algebra formed by these polynomials,
one could construct a completely general solution of the field equations as zero loci of their
real or imaginary parts and build up of new solutions using algebra operation sum, product,
and functional decomposition. One could identify space-time regions as associative or co-
associative algebraic varieties in terms of these polynomials and they would form an algebra.
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The motivation for this dream comes from 2-D electrostatics, where conducting surfaces corre-
spond to curves at which the real part u or imaginary part v of analytic function w = f(z) = u+ iv
vanishes. In electrostatics curves form families with curves orthogonal to each other locally and
the map w = u+ iv → v− iu defines a duality in which curves of constant potential and the curves
defining their normal vectors are mapped to each other.

1. The generalization to the recent situation would be vanishing of the imaginary part IM(P )
or real part RE(P ) of the octonionic polynomial, where real and imaginary parts are defined
via o = q1c + q2cI4. One can consider also the possibility that imaginary or real part has
constant value c are restricted to be rational so that one can regard the constant value set
also as zero set for a polynomial with constant shift. Note that the rationals could be also
complexified by addition of i. One would have

RE(P )(zki ) or IM(P )(zki ) = c , c = c0 rational .

(4.3)

c0 must be real. These two options should correspond to the situations in which tangent
space or normal space is associative (associativity/co-associativity). Complexified space-
time surfaces X4

c corresponding to different constant values c of imaginary or real part (with
respect to i) would define foliations of M8

c by locally orthogonal 4-dimensional surfaces in
M8
c such that normal space for surface X4

c would be tangent space for its co-surface.

CDs and ZEO emerges naturally if the IM(o) corresponds to co-quaternionic part of octonion.

2. It must be noticed that one has moduli space for the quaternionic structures even when
M4

0 is fixed. The simplest choices of complexified quaternionic space Hc = M4
c,0 containing

preferred complex plane M2
c,0 and its orthogonal complement are parameterized by CP2.

More complex choices are characterized by the choice of distribution of M2(x) integrable to
(presumably minimal) 2-surface in M4. Also the choice of the origin matters as found and
one has preferred coordinates. Also the 8-D Lorentz boosts give rise to further quaternionic
moduli. The physically interesting question concerns the interpretation of space-time surfaces
with different moduli. For instance, under which conditions they can interact?

The proposal has several extremely nice features.

1. Single real valued polynomial of real coordinate extended to octonionic polynomial and fixed
by real coefficients in extension of rationals would determine space-time surfaces.

2. The notion of analyticity needed in concrete equations is just the ordinary complex analytic-
ity forced by the octonionic complexification: there is no need for the application to have left-
or right quaternion analyticity since quaternionic derivatives are not needed. Algebraically
one has the most obvious guess for the counterpart of real analyticity for polynomials gen-
eralized to octonionic framework and there is no need for the quaternionic generalization of
Cauchy-Riemann equations [A12, A4] [A12, A4] (http://tinyurl.com/yb8l34b5) plagued
by the problems with the definition of differentiation in non-commutative and non-associative
context. There would be no problems with non-associativity and non-commutativity thanks
to commutativity of complex coordinates with octonionic units.

3. The vanishing of the real or imaginary part gives rise to 4 conditions for 8 complex coordinates
zk1 and zk2 allowing to solve zk2 as algebraic functions zk2 = fk(zl1) or vice versa. The conditions
would reduce to algebraic geometry in complex co-dimension dc = 4 and all methods and
concepts of algebraic geometry can be used! Algebraic geometry would become part of TGD
as it is part of M-theory too.

4.2 Is the associativity of tangent-/normal spaces really achieved?

The non-trivial challenge is to prove that the tangent/normal spaces are indeed associative for the
two options. The surfaces X4

c are indeed associative/co-associative if one considers the internal
geometry since points are in M4

c or its orthogonal complement.

http://tinyurl.com/yb8l34b5
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One should however prove that X4
c are also associative as sub-manifolds of O and therefore

have quaternionic tangent space or normal space at each point parameterized by a point of CP2

in the case that tangent space containing position dependent M2
c , which integrate to what might

be called a 2-D complexified string world sheet inside M4
c .

1. The first thing to notice that associativity and quaternionicity need not be identical concepts.
Any surface with complex dimension d < 4 in O is associative and any surface with dimension
d > 4 co-associative. Quaternionic and co-quaternionic surfaces are 4-D by definition. One
can of course ask whether one should consider a generalization of brane hierarchy of M-theory
also in TGD context and allow associativity in its most general sense. In fact, the study of
singularity of o2 shows that 6 and 5-dimensional surfaces are allowed for which the only
interpretation would be as co-associative spaces. This exceptional situation is due to the
additional symmetries increasing the dimension of the zero locus.

2. One has clearly quaternionicity at the level of o obtained by putting Y = 0 and at the level of
the tangent space for the resulting surface. The tangent space should be quaternionic. The
Jacobian of the map defined by P is such that it takes fixed quaternionic subspace Hc →M4

0,c

of O to a quaternionic tangent space of X4. The Jacobian applied to the vectors of Hc gives
the octonionic tangent vectors and they should span a quaternionic sub-space.

3. The notion of quaternionic surface is rigorous. M8 − H correspondence could be actually
interpreted in terms of the construction of quaternionic surface in M8. One has 4-D integrable
distribution of quaternionic planes in O with given quaternion structure labelled by points of
CP2 and has representation at the level of H as space-time surface and should be preferred
extremals. These quaternion planes should integrate to a slicing by 4-surfaces and their duals.
One obtains this slicing by fixing the values 4 of the suitably defined octonionic coordinates
P i, i = 1, .., 8, to a real constants depending on the surface of the slicing. This gives a
space-time surfaces for which tangent space-spaces or normal spaces are quaternionic.

The first guess for these coordinates P i be as real or imaginary parts of real polynomials
P (o). But how to prove and understand this?

Could the following argument be more than wishful thinking?

1. In complex case an analytic function w(z) = u + iv of z = x + iy mediates a map between
complex planes Z and W . One can interpret the imaginary unit appearing in w locally as a
tangent vector along u = constant coordinate line.

2. One can interpret also octonionic polynomials with real coefficients as mediating a map from
octonionic plane O to second octonionic plane, call if W . The decomposition P = P 1)+P 2)I4
would have interpretation in terms of coordinates of W with coordinate lines representing
quaternions and co-quaternions.

3. This would suggests that the quaternionic coordinate lines in W can be identified as coordi-
nate curves in O - that space-time surfaces - which are quaternionic/co-quaternionic surfaces
for P 1 = constant/P 2 = constant lines. One would have a representation of the same thing
in two spaces, and if sameness includes also quaternionicity/co-quaternionicity as attributes,
then also associativity and co-associativity should hold true.

The most reasonable approach is based on generality. Associativity/quaternionicity means a
slicing of octonion space by orthogonal quaternionic and co-quaternionic 4-D surfaces defined by
constant value surfaces of octonionic polynomial with real coefficients. This slicing should make
sense also for quaternions: one should have a slicing by complex and co-complex (commutative/co-
commutative) surfaces and in TGD string world sheets and partonic 2-surfaces assignable to
Hamilton-Jacobi structure would define this kind of slicing. In the case of complex numbers
one has a slicing in terms of constant value curves for real and imaginary parts of analytic function
and Cauchy-Riemann equations should define the property and co-property. The first guess that
the tangent space of the curve is real or imaginary is wrong.
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4.2.1 Could associativity and commutativity conditions be seen as a generalization
of Cauchy-Rieman conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in
complex case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial
maps with real coefficients for polynomials in case of octonions and quaternions. Of course, also
Taylor and even Laurent series might be considered. The “Whatever it is” cannot be nothing but
Cauchy-Riemann conditions defining complex analyticity for complex maps.

The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative
and associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In
the case of commutative sub-manifolds of quaternionic space the conditions are quadratic in the
partial derivatives. In the case of associative sub-manifolds of octonionic space the conditions are
trilinear in partial derivatives. One would have nothing but a generalization of Cauchy-Riemann
equations to multilinear equations in dimensions D = 2k, k = 1, 2, 3: k-linearity with k = 1, 2, 3!

One can continue the hierarchy of division algebras by assuming only algebra property by using
Cayley-Dickson construction (see http://tinyurl.com/ybuyla2k) by adding repeatedly a non-
commuting imaginary unit to the structure already obtained and thus doubling the dimension of
the algebra each time. Polynomials with real coefficients should still define an associative and
commutative algebra if the proposal is to make sense. All these algebras are indeed power asso-
ciative: one has xmxn = xm+n. For instance, sedenions define 16-D algebra. Could this hierarchy
corresponds to a hierarchy of analyticities satisfying generalized Cauchy-Riemann conditions?

4.2.2 Complex curves in real plane cannot have real tangent space

Going from octonions to quaternions to complex numbers, could constant value curves of real and
imaginary parts of ordinary analytic function in complex plane make sense? The curves u = 0
and v = 0 of functions f(z) = u + iv, z = x + iy define a slicing of plane by orthogonal curves
completely analogous to its octonionic and quaternionic variants. Can one say that the tangent
vectors for these curves are real/imaginary? For u = 0 these curves have tangent ∂xu+ i∂yu, which
is not real unless one has f(z) = k(x+ iy), k real.

Reality condition is clearly too strong. In fact, it is the well-ordering of the points of the 1-
dimensional curve, which is the property in question and lost for complex numbers and regained
at u = 0 and v = 0 curves. The reasonable interpretation is in terms of hierarchy of conditions
multilinear in the gradients of coordinates proposed above and linear Cauchy-Riemann conditions is
the only option in the case of complex plane. What is special in this curves that the tangent vectors
define flows which by Cauchy-Riemann conditions are divergenceless and irrotational locally.

Pessimistic would conclude that since the conjecture fails except for linear polynomials in
complex case, it fails also in the case of quaternions and octonions. For quaternionic polynomial q2

the conditions are however satisfied and it turns out that the resulting conditions make sense also in
the general case. Optimistic would argue that reality condition is not analogous to commutativity
and associativity so that this example tells nothing. Less enthusiastic optimist might admit that the
reality condition is a natural generalization to complex case but that the conjecture might be true
only for a restricted set of polynomials - in complex case of for f(z) = kz, k real. In quaternionic
and octonionic case but hopefully for a larger set of polynomials with real coefficients, maybe even
all polynomials with real coefficients.

4.2.3 Associativity and commmutativity conditions as a generalization of Cauchy-
Rieman conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in
complex case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial
maps with real coefficients for polynomials in case of octonions and quaternions. Of course, also
Taylor and even Laurent series might be considered. The “whatever-it-is” cannot be nothing but
Cauchy-Riemann conditions defining complex analyticity for complex maps.

The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative
and associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In
the case of commutative sub-manifolds of quaternionic space the conditions are quadratic in the
partial derivatives. In the case of associative sub-manifolds of octonionic space the conditions are

http://tinyurl.com/ybuyla2k
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trilinear in partial derivatives. One would have nothing but a generalization of Cauchy-Riemann
equations to multilinear equations in dimensions D = 2k, k = 1, 2, 3: k-linearity with k = 1, 2, 3!

One can continue the hierarchy of number fields by assuming only algebra property by adding
additional imaginary units as done in Cayley-Hamilton construction (see http://tinyurl.com/

ybuyla2k) by adding repeatedly a non-commuting imaginary unit to the algebra already obtained
and thus doubling the dimension of the algebra each time. Polynomials with real coefficients should
still define an associative and commutative algebra if the proposal is to make sense. All these
algebras are indeed power associative: one has xmxn = xm+n. For instance, sedenions define 16-D
algebra. Could this hierarchy corresponds to a hierarchy of analyticities satisfying generalized
Cauchy-Riemann conditions? Could this hierarchy corresponds to a hierarchy of analyticities
satisfying generalized Cauchy-Riemann conditions?

One would have also a nice physical interpretation: in the case of quaternions one would
have “quaternionic conformal invariance” as conformal invariances inside string world sheets and
partonic 2-surfaces in a nice agreement with basic vision about TGD. At the level of octonions
would have “quaternionic conformal invariance” inside space-time surfaces and their duals. What
selects the preferred commutative or co-commutative surfaces is of course an interesting problem. Is
a gauge choice in question? Are these surfaces selected by some special property such as singular
character? Or does one have wave function in the set of these surfaces for a given space-time
surface?

4.2.4 Could quaternionic polynomials define complex and co-complex surfaces in Hc?

What about complex and co-complex (commutative/co-commutative) surfaces in the space of
quaternions? One would have a slicing of the quaternionic space by pairs of complex and co-
complex surfaces and would have natural identification as quaternion/Hamilton-Jacobi structure
and relate to the decomposition of space-time to string world sheets and partonic 2-surfaces. Now
the condition of associativity would be replaced with commutativity.

1. In the quaternionic case the tangent vectors of the 2-D complex sub-variety would be com-
muting. Can this be the case for the zero loci real polynomials P (q) with IM(P ) = 0 or
RE(P ) = 0? In this case the commutativity condition is that the tangent vectors have imag-
inary parts (as quaternions) proportional to each other but can have different real parts.
The vanishing of cross product is the condition now and involves only two vectors whereas
associativity condition involves 3 vectors and is more difficult.

2. The tangent vectors of a commutative 2-surface commute: [t1, t2] = 0. The commutator
reduces to the vanishing of the cross product for the imaginary parts:

Im(t1)× Im(t2) = 0 .

(4.4)

3. Expressing zi1 as a function of zk2 and using (zi1, z
k
2 ) as coordinates in quaternionic space, the

tangent vectors in quaternionic spaces can be written in terms of partial derivatives ∂z
1)
1 /∂z

k)
2

as

tik = (
∂z

i)
1

∂z
k)
2

, δik) , (4.5)

Here the first part corresponds to RE(ti) as quaternion and second part to IM(ti) as quater-
nion.

The condition that the vectors are parallel implies

∂z
1)
1

∂z
k)
2

= 0 . (4.6)

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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At the commutative 2-surface X2 z
1)
1 is constant and z

2)
1 is a function of z

1)
2 and z

2)
2 . One

would have a graph of a function z
2)
1 = f2(z

k)
2 ) at X2 but not elsewhere. One could regard

z
1)
1 as an extremum of a function z

1)
1 = f1(z

k)
2 ).

How to interpret this result?

1. In the generic case this condition eliminates 1 dimension so that that 2-D surface would
reduce to a 1-D curve.

2. If one poses constraints on the coefficients of P (q) analogous to the conditions forcing the
potential function for say cusp catastrophe to have degenerate extrema at the boundaries
of the catastrophe one can get 2-D solution. For these values of parameters the conditions
would be equivalent with RE(P ) = 0 or IM(P ) = 0 conditions.

The vanishing of the gradient of z11 would indeed correspond in the case of cups catastrophe
to the condition for the co-incidence of two roots of the behavior variable x as extremum of
potential function V (x, a, b) fixing the control variable a as function of b.

This would pose constraints on the coefficients of P not all polynomials would be allowed.
This kind of conditions would realize the idea of quantum criticality of TGD at the level of
quaternion polynomials. This option is attractive if realizable also at the level of octonion
polynomials. This turns out to be the case.

3. One would thus have two kinds of commutative/co-commutative surfaces. The generic 1-D
surfaces and 2-D ones which are commutative/commutative and critical and assignable to
string world sheets and partonic 2-surfaces. 1-D surfaces would correspond to fermion lines at
the orbits of partonic 2-surfaces appearing in the twistor amplitudes in the interaction regions
defined by CDS. 2-D surfaces would correspond to the orbits of fermionic strings connecting
point-like fermions at their ends and serving as correlates for bound state entanglement for
external fermions arriving into CD. This picture would allow also to understand why just
some string world sheets and partonic 2-surfaces are selected.

The simplest manner to kill the proposal is to look for P = q2 and RE(P (q2)) = 0 surface. In
this case this condition is indeed satisfied. One has

RE(P ) = X1) +X2)I1 ,

X1) = (z
1)
1 )2 − (z

2)
1 )2 + (z

1)
2 )2 − (z

2)
2 )2 , X2) = 2z

1)
1 z

2)
1 I1 ,

IM(P ) = Y 1) + Y 2)I1 ,

Y 1) = (z
1)
2 + z

1)
2 )z

1)
1 , Y 2) = (z

2)
2 + z

2)
2 )z

2)
1

(4.7)

X2) = 0 gives z
1)
1 z

2)
1 = 0 so that one has either z

1)
1 = 0 or z

2)
1 = 0. X1) = 0 gives for z

1)
1 = 0

z
2)
1 = ±

√
(z

1)
2 )2 + (z

2)
2 )2.

The partial derivative ∂z
1)
1 /∂z

k)
2 is from implicit function theorem - following from the vanishing

of the differential d(RE(P )) along the surface - proportional ∂X1)/∂z
k)
2 , but vanishes as required.

Clearly, the quaternionic variant of the proposal survives in the simplest case its simplest test.
2-D character of the surface would be due to the criticality of q2 making it possible to satisfy the
conditions without the reduction of dimension.

4.2.5 Explicit form of associativity/quaternionicity conditions

Consider now the explicit conditions for associativity in the octonionic case.

1. One should calculate the octonionic tangent (normal) vectors ti for X = 0 in associative
(Y = 0 in co-associative case) and show that there associators Ass(ti, tj , tk) vanish for all
possible or all possible combinations i, j, k. In other words, one that one has
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Ass(ti, tj , tk) = 0 , i, j, k ∈ {1, .., 4} , Ass(a, b, c) ≡ (ab)c− a(bc) .

(4.8)

One can cast the condition to simpler from by expressing ti as octonionic vectors tikE
k:

Ass(Ea, Eb, Eb) =≡ fabcdEd , a, b, c, d ∈ {1, .., 7} ,

fabcd = εabeε cde − εaedεbce = 2εabeε cde .

(4.9)

The permutation symbols for a given triplet i, j, k are structures constants for quaternionic
inner product and completely antisymmetric (see http://tinyurl.com/p42tqsq).. εijk = 1
is true for the seven triplets 123, 145, 176, 246, 257, 347, 365 defining quaternionic sub-spaces
with 1-D intersections. The anti-associativity condition (EiEj)Ek = −(EiEj)Ek holds true
so that one has obtains the simpler expression for f ijks having values ±2.

Using this representation Ass(ti, tj , tk) reduces to 7 conditions for each triplet:

tirt
j
st
k
t f

rstu = 0 , i, j, k ∈ {1, .., 4} , r, s, t, u ∈ {1, .., 7} .

(4.10)

2. If the vanishing condition X = 0 or Y = 0 is crucial for associativity then every polynomial
is its own case to be studied separately and a general principle behind associativity should be
identified: the proposal is as a non-linear generalization of Cauchy-Riemann conditions. As
the following little calculation shows, the vanishing condition indeed appears as one calculates

partial derivatives ∂z
k)
1 /∂z

l)
2 in the expression for the tangent vectors of the surface deduced

from the vanishing gradient of X or Y .

3. I have proposed the octonionic polynomial ansatz already earlier but failed to prove that it
gives associative tangent or normal spaces. Besides the intuitive geometric argument I failed

to notice that the complex 8-D tangent vectors in coordinates z
k)
1 or z

k)
2 for complexified

space-time surface and coordinates (z
k)
1 , z

k)
2 ) for o have components

∂oi

∂z1k
↔ (δik,

∂z
i)
2

∂z
k)
1

)

or

( ∂o
i

∂z2k
)↔ (

∂z
i)
1

∂z
k)
2

, δik) .

(4.11)

These vectors correspond to complexified octonions Oi given by

δikE
k +

∂z
i)
2

∂z
k)
1

EkE4 , (4.12)

where the unit octonions are given by (E0, E1, E2, E3) = (1, I1, I2, I3) and (E5, E5, E7, E8) =
(1, I1, I2, I3)E4. The vanishing of the associators stating that one has

http://tinyurl.com/p42tqsq
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4. One can calculate the partial derivatives
∂zki
∂zkj

explicitly without solving the equations or the

complex valued quaternionic components of RE(P ) ≡ X = 0 or IM(P ) ≡ Y = 0 (note that
X and Y have for complex components labelled by Xi and Y i respectively.

Y i(z
k)
1 , z

l)
2 ) = c ∈ R , i = 1, ..., 4 , associativity ,

or

Xi(z
k)
1 , z

l)
2 ) = c ∈ R , i = 1, ..., 4 , co-associativity .

(4.13)

explicitly and check whether associativity holds true. The derivatives can be deduced from
the constancy of Y or X.

5. For instance, if one has z
k)
2 as function of z

k)
1 , one obtains in the associative case

RE(Y )ik + IM(Y )ik
∂z

r)
2

∂z
k)
1

= 0

RE(Y )ik ≡ ∂Y i

∂z
k)
1

, IM(Y )ik ≡ ∂Y i

∂z
k)
2

.

(4.14)

In co-associative case one must consider normal vectors expressible in terms of Y i so that X
is replaced with Y in these equations.

This allows to solve the partial derivatives needed in associator conditions

∂z
i)
2

∂z
k)
1

=
[
Im(Y )−1

]i
r
Re(Y )rk . (4.15)

6. The vanishing conditions for the associators are however multilinear and one can multiply
each factor by the matrix IM(P ) without affecting the condition so that IM(P )−1 disappears
and one obtains the conditions for vectors

T irT
j
s T

k
t f

rstu = 0 , i, j, k ∈ {1, .., 4} , r, s, t, u ∈ {1, .., 7} ,

T i = IM(Y )ikE
k −RE(Y )ikE

kE4 .

(4.16)

This form of conditions is computationally much more convenient.

How to solve these equations?

1. The antisymmetry of frstu with respect to the first two indices r, s leads one to ask whether
one could have

T irT
j
s T

k
t = 0 (4.17)

for the 7 quaternionic triplets. This is guaranteed if one has either RE(Y )ik = ∂Y i/∂zk1 = 0
(coquaternionic part of T i) or IM(Y )ik = ∂Y i/∂zk2 = 0 (co-quaternionic part of T i) for one
member in each triplet.
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The study of the structure constants listed above shows that indices 1,2,3 are contained in
all 7 triplets. Same holds for the indices appearing in any quaternionic triplet. Hence it is
enough to require that three gradients RE(Y )ik = 0 or IM(Y )ik = 0 k ∈ {1, 2, 3} vanish.
This condition is obviously too strong since already single vanishing condition reduces the
dimension of space-time variety to 3 in the generic case and it becomes trivially associative.

Octonionic automorphism group G2 gives additional basis with their own quaternion triplets
and the general condition would be that 3 partial derivatives vanish for a triplet obtained
from the basic triplet {1, 2, 3} by G2 transformation. It is not quite clear to me whether the
G2 transformation can depend on position on space-time surface.

2. As noticed, the vanishing of all triplets is an un-necessarily strong condition. Already the
vanishing of single gradient RE(Y )ik or IM(Y )ik reduces the dimension of the surface from
4 to 3 in the generic case. If one accepts that the dimension of associative surface is lower
than 4 then single criticality condition is enough to obtain 3-D surface.

In the generic case associativity holds true only at the 4-D tangent spaces of 3-surfaces at the
ends of CD (at light-like partonic orbits it holds true trivially in 4-D) and that the twistor
lift of Kähler action determines the space-time surfaces in their interior.

In this case one can map only the boundaries of space-time surface by M8−H duality to H.
The criticality at these 3-surfaces dictates the boundary conditions and provides a solution
to infinite number of conditions stating the vanishing of SSA Noether charges at space-like
boundaries. These space-time regions would correspond to the regions of space-time surfaces
inside CDs identifiable as interaction regions, where Kähler action and volume term couple
and dynamics depends on coupling constants.

The mappability of M8 dynamics to H dynamics in all space-time regions does not look
feasible: the dynamics of octonionic polynomials involves no coupling constants whereas
twistor lift of Kähler action involves couplings parameters. The dynamics would be non-
associative in the geometric sense in the interior of CDs. Notice that also conformal field
theories involve slight breaking of associativity and that octonions break associativity only
slightly (a(bc) = −(ab)c for octonionic imaginary units). I have discussed the breaking of
associativity from TGD viewpoint in [K20] .

3. Twistor lift of Kähler action allows also space-time regions, which are minimal surfaces [L1]
and for which the coupling between Kähler action and volume term vanishes. Preferred
extremal property reduces to the existence of Hamilton-Jacobi structure as image of the
quaternionic structure at the level of M8. The dynamics is universal as also critical dynamics
and independent of coupling constants so that M8 −H duality makes sense for it. External
particles arriving into CD via its boundaries would correspond to critical 4-surfaces: I have
discussed their interpretation from the perspective of physics and biology in [L2].

4. One should be able to produce associativity without the reduction of dimension. One can
indeed hope of obtaining 4-D associative surfaces by posing conditions on the coefficients of
the polynomial P by requiring that one RE(Y )ik or IM(Y )ik, i = i1 -call it just X1 - should
vanish so that Y i would be critical as function of zk1 or zk2 .

At X1 = 0 would have degenerate zero at the 4-surface. The decomposition of X1 to a
product of monomial factors with root in extension of rationals would have one or more
factors appearing at least twice. The associative 4-surfaces would be ramified. Also the
physically interesting p-adic primes are conjectured to be ramified in the sense that their
decomposition to primes of extension of rationals contains powers of primes of extension.
The ramification of the monomial factors is nothing but ramification for polynomials primes
in field of rationals in terms of polynomial primes in its extension.

This could lead to vanishing of say one triplet while keeping D = 4. This need not however
give rise to associativity in which case also second RE(Y )ii or IM(Y )ik, i = i2, call it X2,
should vanish. The maximal number of Xi would be nmax = 3. The natural condition
consistent with quantum criticality of TGD Universe would be that the variety is associative
but maximally quantum critical and has therefore dimension D = 3 or D = 4. Stronger
condition allows only D = 4.
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These n ≤ 3 additional conditions make the space-time surface analogous to a catastrophe
with n ≤ 3 behavior variables in Thom’s classification of 7 elementary catastrophes with
less than 11 control variables [A1]. Thom’s theory does not apply now since it has only
one potential function V (x) (now n ≤ 3 corresponding to the critical coordinates Y i!) as
a function of behaviour variables and control variables). Also the number of non-vanishing
coefficients in the polynomial having values in an extension of rationals and acting as control
variables is unlimited. In quaternionic case the number of potential functions is indeed 1 but
the number of control variables unlimited.

5. One should be able to understand the D = 3 associative objects - say light-like 3-surfaces or
3-surfaces at the boundaries of CD - as 3-surfaces along which 4-D associative (co-associative)
and non-associative (non-co-associative) surfaces are glued together.

Consider a product P of polynomials allowing 3-D surfaces as necessarily associative zero loci
to which a small interaction polynomial vanishing at the boundaries of CD (proportional to
on, n > 1) is added. Could P allow 4-D surface as a zero locus of real or imaginary part and
containing the light-like 3-surfaces thanks to the presence of additional parameters coming
from the interaction polynomial. Can one say that this small interaction polynomial would
generate 4-D space-time in some sense? 4-D associative space-time regions would naturally
emerge from the increasing algebraic complexity both via the increase of the degree of the
polynomial and the increase of the dimension of the extension of rationals making it easier
to satisfy the criticality conditions!

There are two regions to be considered: the interior and exterior of CD. Could associativity/co-
associativity be possible outside CD but not inside CD so that one would indeed have free
external particles entering to the non-associative interaction region. Why associativity condi-
tions would be more difficult to satisfy inside CD? Certainly the space-likeness of M4 points
with respect to the preferred origin of M8 in this region should be crucial since Minkowski
norm appears in the expressions of RE(P ) and IM(P ).

Do the calculations for the associative case generalize to the co-associative case?

1. Suppose that one has possibly associative surface having RE(P ) = 0. One would have
IM(P ) = 0 for dual space-time surface defining locally normal space of RE(P ) = 0 sur-
face. This would transform the co-associativity conditions to associativity conditions and
the preceding arguments should go through essentially as such.

Associative and co-associative surfaces would meet at singularity RE(P ) = IM(P ) = 0,
which need not be point in Minkowskian signature (see P = o2 example in the Appendix)
and can be even 4-D! This raises the possibility that the associative and co-associative surfaces
defined by RE(P ) = 0 and IM(P ) = 0 meet along 3-D light-like orbits partonic surfaces or
3-D ends of space-time surfaces at the ends of CD.

2. If D = 3 for associative surfaces are allowed besides D = 4 as boundaries of 4-surfaces, one
can ask why not allow D = 5 for co-associative surfaces. It seems that they do not have
a reasonable interpretation as a surface at which co-associative and non-co-associative 4-D
space-time regions would meet. Or could they in some sense be geometric “co-boundaries”
of 4-surfaces like branes in M-theory serve as co-boundaries of strings? Could this mean that
4-D space-time-surface is boundary of 5-D co-associative surface defining a TGD variant of
brane with strings world sheets replaced with 4-D space-time surfaces?

What came as a surprise that P = o2 allows 5-D and 6-D surfaces as zero loci of RE(P ) or
IM(P ) as shown in Appendix. The vanishing of the entire o2 gives 4-D interior or exterior of
CD forced also by associativity/co-associativity and thus maximal quantum criticality. This
is very probably due to the special properties of o2 as polynomial: in the generic case the
zero loci should be 4-D.

This discussion can be repeated for complex/co-complex surfaces inside space-time surfaces
associated with fermionic dynamics.
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1. Associativity condition does not force string world sheets and partonic 2-surfaces but they
could naturally correspond to commutative or co-commutative varieties inside associative/co-
associative varieties.

In the generic case commutativity/co-commutativity allows only 1-D curves - naturally light-
like fermionic world lines at the boundaries of partonic orbits and representing interacting
point-like fermions inside CDs and used in the construction of twistor amplitudes [K22, K23].
There is coupling between Kähler part and volume parts of modified Dirac action inside CDs
so that coupling constants are visible in the spinor dynamics and in dynamics of string world
sheet.

2. At criticality one obtains 2-D commutative/co-commutative surfaces necessarily associated
with external particles quantum critical in 4-D sense and allowing quaternionic structure.
String world sheets would serve as correlates for bound state entanglement between fermions
at their ends. Criticality condition would select string world sheets and partonic 2-surfacs
from the slicing of space-time surface provided by quaternionic structure (having Hamilton-
Jacobi structure as H-counterpart).

If associativity holds true and fixed M2
c is contained in the tangent space of space-time surface,

one can map the M4 projection of the space-time surface to a surface in M4 × CP2 so that the
quaternionic tangent space at given point is mapped to CP2 point. One obtains 4-D surface in
H = M4 × CP2.

1. The condition that fixed M2
c belongs to the tangent space of X4

c is true in the sense that

the coordinates z
k)
2 do not depend on z

1)
1 and z

2)
1 defining the coordinates of M2

c . It is not
clear whether this condition can be satisfied in the general case: octonionic polynomials are
expected to imply this dependence un-avoidably.

The more general condition allows M2
c to depend on position but assumes that M2

c :s associ-
ated with different points integrate to a family 2-D surfaces defining a family of complexified
string world sheets. In the similar manner the orthogonal complements E2

c of M2
c would inte-

grate to a family of partonic 2-surfaces. At each point these two tangent spaces and their real
projections would define a decomposition analogous to that define by light-like momentum
vector and polarization vector orthogonal to it. This decomposition would define decomposi-
tion of quaternionic sub-spaces to complexified complex subspace and its co-complex normal
space. The decomposition would correspond to Hamilton-Jacobi structure proposed to be
central aspect of extremals [K19].

2. What is nice that this decomposition of M4
c (M4) would (and of course should!) follow

automatically from the octonionic decomposition. This decomposition is lower-dimensional
analog to that of the complexified octonionic space induced by level sets of real octonionic
polymials but at lower level and extremely natural due to the inclusion hierarchy of classical
number fields. Also M2

c could have similar decomposition orthogonal complex curves by the
value sets of polynomials. The hierarchy of grids means the realization of the coordinate grid
consisting of quaternionic, complex, and real curves for complexified coordinates ok and their
quaternionic and complex variants and is accompanied by corresponding real grids obtained
by projecting to M4 and mapping to CP2.

Thus these decompositions would be obtained from the octonionic polynomial decomposing it
to real quaternionic and imaginary quaternionic parts first to get a grid of space-time surfaces
as constant value sets of either real or imaginary part, doing the same for the non-constant
quaternionic part of the octonionic polynomial to get similar grid of complexified 2-surfaces,
and repeating this for the complexified complex octonionic part.

Unfortunately, I do not have computer power to check the associativity directly by symbolic
calculation. I hope that the reader could perform the numerical calculations in non-trivial cases
to to this!
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4.2.6 General view about solutions to RE(P ) = 0 and IM(P ) = 0 conditions

The first challenge is to understand at general level the nature of RE(P ) = 0 and IM(P ) =
0 conditions. Appendix shows explicitly for P (o) = o2 that Minkowski signature gives rise to
unexpected phenomena. In the following these phenomena are shown to be completely general but
not quite what one obtains for P (o) = o2 having double root at origin.

1. Consider first the octonionic polynomials P (o) satisfying P (0) = 0 restricted to the light-like
boundary δM8

+ assignable to 8-D CD, where the octonionic norm of o vanishes.

(a) P (o) reduces along each light-ray of δM8
+ to the same real valued polynomial P (t) of a

real variable t apart from a multiplicative unit E = (1 + in)/2 satisfying E2 = E. Here
n is purely octonion-imaginary unit vector defining the direction of the light-ray.

IM(P ) = 0 corresponds to quaterniocity. If the E4 (M8 = M4 × E4) projection is
vanishing, there is no additional condition. 4-D light-cones M4

± are obtained as solutions
of IM(P ) = 0. Note that M4

± can correspond to any quaternionic subspace.

If the light-like ray has a non-vanishing projection to E4, one must have P (t) = 0. The
solutions form a collection of 6-spheres labelled by the roots tn of P (t) = 0. 6-spheres
are not associative.

(b) RE(PE) = 0 corresponding to co-quaternionicity leads to P (t) = 0 always and gives a
collection of 6-spheres.

2. Suppose now that P (t) is shifted to P1(t) = P (t) − c, c a real number. Also now M4
± is

obtained as solutions to IM(P ) = 0. For RE(P ) = 0 one obtains two conditions P (t) = 0
and P (t− c) = 0. The common roots define a subset of 6-spheres which for special values of
c is not empty.

The above discussion was limited to δM8
+ and light-likeness of its points played a central role.

What about the interior of 8-D CD?

1. The natural expectation is that in the interior of CD one obtains a 4-D variety X4. For
IM(P ) = 0 the outcome would be union of X4 with M4

+ and the set of 6-spheres for IM(P ) =
0. 4-D variety would intersect M4

+ in a discrete set of points and the 6-spheres along 2-D
varieties X2. The higher the degree of P , the larger the number of 6-spheres and these
2-varieties.

2. For RE(P ) = 0 X4 would intersect the union of 6-spheres along 2-D varieties. What comes
in mind that these 2-varieties correspond in H to partonic 2-surfaces defining light-like 3-
surfaces at which the induced metric is degenerate.

3. One can consider also the situation in the complement of 8-D CD which corresponds to the
complement of 4-D CD. One expects that RE(P ) = 0 condition is replaced with IM(P ) = 0
condition in the complement and RE(P ) = IM(P ) = 0 holds true at the boundary of 4-D
CD.

6-spheres and 4-D empty light-cones are special solutions of the conditions and clearly analogs
of branes. Should one make the (reluctant-to-me) conclusion that they might be relevant for TGD
at the level of M8.

1. Could M4
+ (or CDs as 4-D objects) and 6-spheres integrate the space-time varieties inside

different 4-D CDs to single connected structure with space-time varieties glued to the 6-
spheres along 2-surfaces X2 perhaps identifiable as pre-images of partonic 2-surfaces and
maybe string world sheets? Could the interactions between space-time varietiesX4

i assignable
with different CDs be describable by regarding 6-spheres as bridges between X4

i having only
a discrete set of common points. Could one say that X2

i interact via the 6-sphere somehow.
Note however that 6-spheres are not dynamical.

2. One can also have Poincare transforms of 8-D CDs. Could the description of their interactions
involve 4-D intersections of corresponding 6-spheres?



4.3 M8 −H duality: objections and challenges 45

3. 6-spheres in IM(P ) = 0 case do not have image under M8 −H correspondence. This does
not seem to be possible for RE(P ) = 0 either: it is not possible to map the 2-D normal space
to a unique CP2 point since there is 2-D continuum of quaternionic sub-spaces containing it.

4.3 M8 −H duality: objections and challenges

In the following I try to recall all objections against the reduction of classical physics to octonionic
algebraic geometry and against the notion of M8 −H duality and also invent some new counter
arguments and challenges.

4.3.1 Can on really assume distribution of M2(x)?

Hamilton-Jacobi structure means that M2(x) depends on position and M2(x) should define an
integrable distribution integrating to a 2-D surface. For cosmic string extremals this surface would
be minimal surface so that the term “string world sheet” is appropriate. There are objections.

1. It seems that the coefficients of octonionic polynomials cannot contain information about
string world sheet, and the only possible choice seems to be that string world sheets and par-
tonic 2-surfaces parallel to it assigned with integrable distribution of orthogonal complements
E2(x) should be coded by quaternionic moduli. It should be possible to define quaternionic
coordinates qi decomposing to pairs of complex coordinates to each choice of M2(x)×E2(x)
decomposition of given M4

0 . Octonionic coordinates would be given by o = q1 + q2I4 where
qi are associated with the same quaternionic moduli. The choice of Hamilton-Jacobi struc-
ture would not be ad hoc procedure anymore but part of the definition of solutions of field
equations at the level of M8.

2. It would be very nice if the quaternionic structure could be induced from a fixed structure
defined for M8

c once the choice of curvilinear M4 coordinates is made. Since Hamiltoni-Jacobi
structure [K19] involves a choice of generalized Kähler form for M4 and since quaternionic
structure means that there is full S2 of Kähler structures determined by quaternionic imag-
inary units (ordinary Kähler form for sub-space E8 ⊂ M8

c ) the natural proposal is that
Hamilton-Jacobi structures is determined by a particular local choice of the Kähler form for
M4 involving fixing of quaternionic imaginary unit fixing M2(x) ⊂ M4

0 identifiable as point
of S2. This might relate closely also to the fixing of twistor structure, which indeed involves
also self-dual Kähler form and a similar choice.

3. One can argue that it is not completely clear whether massless extremals (MEs) [K19] allow
a general Hamilton-Jacobi structure. It is certainly true that if the light-like direction and
orthogonal polarization direction are constant, MEs exist. It is clear that if the form of
field equations is preserved and thus reduces to contractions of various tensors with second
fundamental form one obtains only contractions of light-like vector with itself or polarization
vector and these contractions vanish. For spatially varying directions one could argue that
light-like direction codes for a direction of light-like momentum and that problems with local
conservation laws expressed by field equations might emerge.

4.3.2 Can one assign to the tangent plane of X4 ⊂ M8 a unique CP2 point when M2

depends on position

One should show that the choice s(x) ∈ CP2 for a given distribution of M2(x) ⊂M4(x) is unique
in order to realize the M8 −H correspondence as a map M8 → H. It would be even better if one
had an analytic formula for s(x) using tangent space-data for X4 ⊂ H.

1. If M2(x) = M2
0 holds true but the tangent space M4(x) depends on position, the assignment

of CP2 point s(x) to the tangent space of X4 ⊂M8 is trivial. When M4(x) is not constant,
the situation is not so easy.

2. The space M2(x) ⊂ M4(x) satisfies also the constraint M2(x) ⊂ M4
0 since quaternionic

moduli are fixed. To avoid confusion notice that M4(x) denotes tangent space of X4 and is
different from M4

0 fixing the quaternionic moduli.
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3. M2(x) determines the local complex subspace and its completion to quaternionic tangent
space M4(x) determines a point s(x) of CP2. The idea is that M2

0 defines a standard
reference and that one should be able to map M2(x) to M2

0 by G2 automorphism mapping
also the s(x) to a unique point s0(x) ∈ CP2 defining the CP2 point assignable to the point
of X4 ⊂M8.

4. One can assign to the point x quaternionic unit vector n(x) determining M2(x) as the
direction of the preferred imaginary unit. The G2 transformation must rotate n(x) to n0
defining M2

0 and acts on s. G2 transformation is not unique since u1gu2 has the same effect
for ui ⊂ U(2) leaving invariant the point of CP2 for initial and final situation. Hence the
equivalence classes of transformations should correspond to a point of 6-dimensional double
coset space U(2)\G2/U(2). Intuitively it seems obvious that the s0(x) is unique but proof is
required.

4.3.3 What about the inverse of M8 −H duality?

M8 − H duality should have inverse in the critical regions of X4 ⊂ M8, where associativity
conditions are satisfied. How could one construct the inverse of M8 −H duality in these regions?
One should map space-time points (m, s) ∈ M4 × CP2 to points (m, e) = (m, f(m, s)) ∈ M8.
M4

0 ⊃ M2
0 parameterized by CP2 point can be chosen arbitrarily and one can require that it

corresponds to some space-time point (m0, s0) ∈ H. CP2 point s(x) characterizes the quaternionic
tangent space containing M2(x) and can choose M2

0 to be M2(x0) for conveniently chosen x0.
Coordinates x can be used also for X4 ⊂M8.

One obtains set of points (m, e) = (m(x), f(m(x), s(x)) ∈M8 and a distribution of 4-D spaces
of labelled by s(x). This requires that the 4-D tangent space spanned by the gradients of m(x)
and f(m(x), s(x)) and characterized by s1 ⊂ CP2 for given M2(x) by using the above procedure
mapping the situation to that for M2

0 is same as the tangent space determined by s(x): s(x) =
s1(x). Also the associativity conditions should hold true. One should have a formula for s1 as
function of tangent vectors of space-time surface in M8. The ansatz based on algebraic geometry
in M8

c should be equivalent with this ansatz. The problem is that the ansatz leads to algebraic
functions which cannot be found explicitly. It might be that in practice the correspondence is easy
only in the direction M8 → H.

4.3.4 What one can say about twistor lift of M8 −H duality?

One can argue that the twistor spaces CP1 associated with M4 and E4 are in no way visible in the
dynamics of octonion polynomials and in M8 − H duality. Hence one could argue that they are
not needed for any reasonable purpose. I cannot decide whether this is indeed the case. There I
will consider the existence of twistor lift of the M8 and also the twistor lift M8−H duality in the
space-time regions, where the tangent spaces satisfy the conditions for the existence of the duality
as a map (m, e) ∈ M8 → (m, s) ∈ M4 × CP2 must be considered. This involves some non-trivial
delicacies.

1. The twistor bundles of M4
c and E4

c would be simply M4
c × CP1 and E4

c × CP1. CP1 = S2

parameterizes direction vectors in 3-D Euclidian space having interpretation as unit quater-
nions so that this interpretation might make sense. The definition of twistor structure means
a selection of a preferred quaternion unit and its representation as Kähler form so that these
twistor bundles would have thus Kähler structure. Twistor lift replaces complex quaternionic
surfaces with their twistor spaces with induced twistor structure.

2. In M8 the radii of the spheres CP1 associated with M4 and E4 would be most naturally
identical whereas in M4×CP2 they can be different since CP2 is moduli space. Is the value of
the CP2 radius visible at all in the classical dynamics in the critical associative/co-associative
space-time regions, where one has minimal surfaces. Criticality would suggest that besides
coupling constants also parameters with dimension of length should disappear from the field
equations. At least for the known extremals such as massless extremals, CP2 type extremals,
and cosmic strings CP2 radius plays no role in the equations. CP2 radius comes however
into play only in interaction regions defined by CDs since M8 −H duality works only at the
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3-D ends of space-time surface and at the partonic orbits. Therefore the different radii for
the CP1 associated with CP2 and E4 cause no obvious problems.

Consider now the idea about twistor space as real part of octonionic twistor space regarded as
quaternion-complex space.

1. One can regard CP1 = S2 as the space of unit quaternions and it is natural to replace it with
the 6-sphere S6 of octonionic imaginary units at the level of complexified octonions. The
sphere of complexified (by i) unit octonions is non-compact space since the norm is complex
valued and this generalization looks neither attractive nor necessary since the projection to
real numbers would eliminate the complex part.

The equations determining the twistor bundle of space-time surface can be indeed formulated
as vanishing of the quaternionic imaginary part of S6 coordinates, and one obtains a reduction
to quaternionic sphere S2 at space-time level.

If S2 is identified as sub-manifold S2 ⊂ S6, it can be chosen in very many manners (this is
of course not necessary). The choices are parameterized by SO(7)/SO(3) × SO(4) having
dimension D = 12. This choice has no physical content visible at the level of H. Note
that the Kähler structure determining Hamilton-Jaboci structure is fixed by the choice of
preferred direction (M2(x)). If all these moduli are allowed, it seems that one has something
resembling multiverse, the description at the level of M8 is deeper one and one must ask
whether the space-time surfaces with different twistorial, octonionic, and quaternionic moduli
can interact.

2. The resulting octonionic analog of twistor space should be mapped by M8 −H corresponds
to twistor space of space-time surface T (M4) × T (CP2). The radii of twistor spheres of
T (M4) and T (CP2) are different and this should be also understood. It would seem that the
radius of T (M4) at H = M4×CP2 side should correspond to that of T (M4) at M8 side and
thus to that of S6 as its geodesic sphere: Planck length is the natural proposal inspired by
the physical interpretation of the twistor lift. The radius of T (CP2) twistor sphere should
correspond to that of CP2 and is about 212 Planck lengths.

Therefore the scale of CP2 would emerge as a scale of moduli space and does not seem
to be present at the level of M8 as a separate scale. M8 level would correspond to what
might be called Planckian realm analogous to that associated with strings before dynamical
compactification which is now replaced with number theoretic compactification. The key
question is what determines the ratio of the radii of CP2 scale to Planck for which favored
value is 212 [K21]. Could quantum criticality determine this ratio?

5 Some challenges of octonionic algebraic geometry

Space-time surfaces in H = M4 × CP2 identified as preferred extremals of twistor lift of Kähler
action leads to rather detailed view about space-time surfaces as counterparts of particles. Does
this picture follow from X4 ⊂ M8 picture and does this description bring in something genuinely
new?

5.1 Could free many-particle states as zero loci for real or imaginary
parts for products of octonionic polynomials

In algebraic geometry zeros for the products of polynomials give rise to disjoint varieties, which
are disjoint unions of surfaces assignable to the individual surfaces and possibly having lower-
dimensional intersections. For instance, for complex curves these intersections consist of points.
For complex surfaces they are complex curves.

In the case of octonionic polynomial P = RE(P ) + IM(P )I4 (Re and Im are defined in
quaternionic sense) one considers zeros of quaternionic polynomial RE(P ) or IM(P ).

1. Product polynomial P = P1P2 decomposes to
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P = RE(P1)RE(P2)− IM(P1)IM(P2) + (RE(P1)IM(P1) + IM(P1)RE(P2)I4 .

One can require vanishing of RE(P ) or IM(P ).

(a) IM(P ) vanishes for

(RE(P1) = 0, RE(P2) = 0)

or

I(m(P1) = 0, IM(P2) = 0) .

(b) RE(P ) vanishes for

(RE(P1) = 0, IM(P2) = 0)

or

IM(P1) = 0, RE(P2) = 0) .

One could reduce the condition RE(P ) = 0 to IM(P ) = 0 by replacing P = P1 + P2I4 with
P2−P1I4. If this condition is satisfied for the factors, it is satisfied also for the product. The
set of surfaces is a commutative and associative algebra for the condition IM(P ) = 0. Note
that the quaternionic moduli must be same for the members of product. If one has quantum
superposition of quaternionic moduli, the many-particle state involves a superposition of
products with same moduli.

As found, the condition IM(P ) = 0 can transform to RE(P ) = 0 at singularities having
RE(P ) = 0, IM(P ) = 0.

2. The commutativity of the product means that the products are analogous to many-boson
states. Pn would define an algebraic analog of Bose-Einstein condensate. Does this surface
correspond to a state consisting of n identical particles or is this artefact of representation?
As a limiting case of product of different polynomials it might have interpretation as genuine
n-boson states.

3. The product of two polynomials defines a union of disjoint surfaces having discrete intersec-
tion in Euclidian signature. In Minkowskian signature the vanishing of qq (conjugation does
not affect the sign of i and changes only the sign of Ik!) can give rise to 3-D light-cone. The
non-commutativity of quaternions indeed can give rise to combinations of type qq in RE(P )
and IM(P ).

What about interactions?

1. Could one introduce interaction by simply adding a polynomial Pint to the product? This
polynomial should be small outside interaction region. CD would would define naturally
interaction regions and the interaction terms should vanish at the boundaries of CD. This
might be possible in Minkowskian signature, where f(q2) multiplying the interaction term
might vanish at the boundary of CD: in Euclidian sector qq = 0 would imply q = 0 but in
Minkowskian sector it would give light-cone as solution. One should arrange IM(Pint) to be
proportional to qq vanishing at the boundary of CD. Minkowskian signature could be crucial
for the possibility to “turning interactions on”.

2. If the imaginary part of the interaction term is proportional f1(q2)f2((q − T )2) (T is real
and corresponds to the temporal distance between the tips of CD) with fi(0) = 0, one could
obtain asymptotic states reducing to disjoint unions of zero loci of P i at the boundaries of
CD. If the order of of the perturbation terms is higher than the total order of polynomials
P i, one would obtain new roots and particle emission. Non-perturbative situation would
correspond to a dramatic modification of the space-time surface as a zero locus of IM(P ).
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This picture would be M8 counterpart for the reduction of preferred extremals to minimal
surfaces analogous to geodesic lines near the boundaries of CD: preferred extremals reduce
to extremals of both Kähler action and volume term in these regions [L1].

The singularities of scattering amplitudes at algebraic varieties of Grassmann manifolds are
central in the twistor Grassmann program [B1, B4, B3]. Since twistor lift of TGD seems to be the
correct manner to formulate classical TGD in H, one can wonder about the connection between
space-time surfaces in M8

c and scattering amplitudes. Witten’s formulation of twistor amplitudes
in terms of algebraic curves in CP3 suggests a formulation of scattering amplitudes in terms of the
4-D algebraic varieties in M8

c as of course, also TGD itself [K22, K23]! Could the huge multi-local
Yangian symmetries of twistor Grassmann amplitudes reduce to octonion analyticity.

5.2 Questions related to ZEO and CDs

Octonionic polynomials provide a promising approach to the understanding of ZEO and CDs.
Light-like boundary of CD as also light-cone emerge naturally as zeros of octonionic polynomials.
This does not yet give CDs and ZEO: one should have intersection of future and past directed
light-cones. The intuitive picture is that one has a hierarchy of CDs and that also the space-time
surfaces inside different CDs an interact.

5.2.1 Some general observations about CDs

It is good to list some basic features of CDS, which appear as both 4-D and 8-D variants.

1. There are both 4-D and 8-D CDs defined as intersections of future and past directed light-
cones with tips at say origin 0 at real point T at quaternionic or octonionic time axis. CDs
can be contained inside each other. CDs form a fractal hierarchy with CDs within CDs:
one can add smaller CDs with given CD in all possible manners and repeat the process for
the sub-CDs. One can also allow overlapping CDs and one can ask whether CDs define the
analog of covering of O so that one would have something analogous to a manifold.

2. The boundaries of two CDs (both 4-D and 8-D) can intersect along light-like ray. For 4-D
CD the image of this ray in H is light-like ray in M4 at boundary of CD. For 8-D CD the
image is in general curved line and the question is whether the light-like curves representing
fermion orbits at the orbits of partonic 2-surfaces could be images of these lines.

3. The 3-surfaces at the boundaries of the two 4-D CDs are expected to have a discrete inter-
section since 4 + 4 conditions must be satisfied (say RE(P ki )) = 0 for i = 1, 2, k = 1, 4.
Along line octonionic coordinate reduces effectively to real coordinate since one has E2 = E
for E = (1 + in)/2, n octonionic unit. The origins of CDs are shifted by a light-like vector
kE so that the light-like coordinates differ by a shift: t2 = t1−k. Therefore one has common
zero for real polynomials RE(P k1 (t)) and RE(P k2 (t− k)).

Are these intersection points somehow special physically? Could they correspond to the ends
of fermionic lines? Could it happen that the intersection is 1-D in some special cases? The
example of o2 suggest that this might be the case. Does 1-D intersection of 3-surfaces at
boundaries of 8-D CDs make possible interaction between space-time surfaces assignable to
separate CDs as suggested by the proposed TGD based twistorial construction of scattering
amplitudes?

4. Both tips of CD define naturally an origin of quaternionic coordinates forD = 4 and the origin
of octonionic coordinates for D = 8. Real analyticity requires that the octonionic polynomials
have real coefficients. This forces the origin of octonionic coordinates to be along the real
line (time axis) connecting the tips of CD. Only the translations in this specified direction
are symmetries preserving the commutativity and associativity of the polynomial algebra.

5. One expects that also Lorentz boosts of 4-D CDs are relevant. Lorentz boosts leave second
boundary of CD invariant and Lorentz transforms the other one. Same applies to 8-D CDs.
Lorentz boosts define non-equivalent octonionic and quaternionic structures and it seems
that one assume moduli spaces of them.
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One can of course ask whether the still somewhat ad hoc notion of CD general enough. Should
one generalize it to the analog of the polygonal diagram with light-like geodesic lines as its edges
appearing in the twistor Grassmannian approach to scattering diagrams? Octonionic approach
gives naturally the light-like boundaries assignable to CDs but leaves open the question whether
more complex structures with light-like boundaries are possible. How do the space-time surfaces
associated with different quaternionic structures of M8 and with different positions of tips of CD
interact?

5.2.2 The emergence of causal diamonds (CDs)

CDs are a key notion of zero energy ontology (ZEO). Could the emergence of CDs be understood
in terms of singularities of octonion polynomials located at the light-like boundaries of CDs? In
Minkowskian case the complex norm qqi is present in P . Could this allow to blow up the singular
point to a 3-D boundary of light-cone and allow to understand the emergence of causal diamonds
(CDs) crucial in ZEO.

The study of the special properties for zero loci of general polynomial P (o) at light-rays of O
indeed demonstrated that both 8-D land 4-D light-cones and their complements emerge naturally,
and that the M4 projections of these light-cones and even of their boundaries are 4-D future -
or past directed light-cones. What one should understand is how CDs as their intersections, and
therefore ZEO, emerge.

1. One manner to obtain CDs naturally is that the polynomials are sums P (t) =
∑
k Pk(o)

of products of form Pk(o) = P1,k(o)P2,k(o − T ), where T is real octonion defining the time
coordinate. Single product of this kind gives two disjoint 4-varieties inside future and past
directed light-cones M4

+(0) and M4
−(T ) for either RE(P ) = 0 (or IM(P ) = 0) condition.

The complements of these cones correspond to IM(P ) = 0 (or RE(P ) = 0) condition.

2. If one has nontrivial sum over the products, one obtains a connected 4-variety due the
interaction terms. One has also as special solutions M4

± and the 6-spheres associated with
the zeros P (t) or equivalently P1(t1) ≡ P (t), t1 = T − t vanishing at the upper tip of CD.
The causal diamond M4

+(0) ∩M4
−(T ) belongs to the intersection.

Remark: Also the union M4
−(0) ∪M4

+(T ) past and future directed light-cones belongs to
the intersection but the latter is not considered in the proposed physical interpretation.

3. The time values defined by the roots tn of P (t) define a sequence of 6-spheres intersecting 4-D
CD along 3-balls at times tn. These time slices of CD must be physically somehow special.
Space-time variety intersects 6-spheres along 2-varieties X2

n at times tn. The varieties X2
n

are perhaps identifiable as 2-D interaction vertices, pre-images of corresponding vertices in
H at which the light-like orbits of partonic 2-surfaces arriving from the opposite boundaries
of CD meet.

The expectation is that in H one as generalized Feynman diagram with interaction vertices at
times tn. The higher the evolutionary level in algebraic sense is, the higher the degree of the
polynomial P (t), the number of tn, and more complex the algebraic numbers tn. P (t) would
be coded by the values of interaction times tn. If their number is measurable, it would provide
important information about the extension of rationals defining the evolutionary level. One
can also hope of measuring tn with some accuracy! Octonionic dynamics would solve the
roots of a polynomial! This would give a direct connection with adelic physics [L12] [L13].

Remark: Could corresponding construction for higher algebras obtained by Cayley-Dickson
construction solve the “roots” of polynomials with larger number of variables? Or could
Cartesian product of octonionic spaces perhaps needed to describe interactions of CDs with
arbitrary positions of tips lead to this?

4. Above I have considered only the interiors of light-cones. Also their complements are possible.
The natural possibility is that varieties with RE(P ) = 0 and IM(P ) = 0 are glued at
the boundary of CD, where RE(P ) = IM(P ) = 0 is satisfied. The complement should
contain the external (free) particles, and the natural expectation is that in this region the
associativity/co-associativity conditions can be satisfied.
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5. The 4-varieties representing external particles would be glued at boundaries of CD to the
interacting non-associative solution in the complement of CD. The interaction terms should
be non-vanishing only inside CD so that in the exterior one would have just product P (o) =
P1,k0(o)P2,k0(o−T ) giving rise to a disjoint union of associative varieties representing external
particles. In the interior one could have interaction terms proportional to say t2(T − t)2

vanishing at the boundaries of CD in accordance with the idea that the interactions are
switched one slowly. These terms would spoil the associativity.

Remark: One can also consider sums of the products
∏
k Pk(o−Tk) of n polynomials and this

gives a sequence CDs intersecting at their tips. It seems that something else is required to make
the picture physical.

5.3 About singularities of octonionic algebraic varieties

In Minkowskian signature the notion of singularity for octonionic polynomials involves new aspects
as the study of o2 singular at origin shows (see Appendix). The region in which RE(o2) =
0, IM(o2) = 0 holds true is 4-D rather than a discrete set of points as one would naively expect.

1. At singularity the local dimension of the algebraic variety is reduced. For instance, double
cone of 3-space has origin as singular point where it becomes 0-dimensional. A more general
example is local pinch in which cylinder becomes infinitely thin at some point. This kind of
pinching could occur for fibrations as the fiber contracts to a lower-dimensional space along
a sub-variety of the base space.

A very simple analogy for this kind of singularity is the singularity of P (x, y) = y2 − x = 0
at origin: now the sheets y = ±

√
x co-incide at origin. The algebraic functions y ∓

√
x

defining the factorization of P (x, y) co-incide at origin. Quite generally, two or more factors
in the factorization of polynomial using algebraic functions co-incide at the singularity. This
is completely analogous to the degeneracy or roots of polynomials of single variable.

The signature of the singularity of algebraic variety determined by the conditions P i(zj) = 0
is the reduction of the maximal rank r for the matrix formed by the partial derivatives
P ij ≡ ∂IM(P )i/∂zj (”RE” could replace ”IM”). Rank corresponds to the largest dimension

of the minor of P ij with non-vanishing determinant. Determinant vanishes when two rows of
the minor are proportional to each other meaning that two tangent vectors become linearly
dependent. When the rank is reduced by ∆r, one has r = rmax−∆r and the local dimension
is locally reduced by ∆r. One has hierarchy of singularities within singularities.

The conditions that all independent minors of the P ij have reduced rank gives additional
constraints and define a sub-variety of the algebraic variety. Note that the dimension of
the singularity corresponds to ds = ∆r in the sense that the dimension of tangent space at
singularity is effectively ds.

2. In the recent case there are 4 polynomials and 4 complex variables so that IM(P )ij is 4× 4-
matrix. Its rank r can have values in r = 1, 2, 3, 2, 4. One can use Thom’s catastrophe
theory as a guideline. Catastrophe decomposes to pieces of various dimensions characterized
by the reduction of the rank of the matrix defined by the second derivatives Vij = ∂i∂jV
of the potential function defining the catastrophe. For instance, for cusp catastrophe with
V (x, a, b) = x4 + ax2 + bx one has V-shaped region in (a, b) plane with maximal reduction
of rank to r = 0 (∂2xV = 0) at the tip (a, b) = 0 at reduction to r = 1 at the sides of V ,
where two roots of ∂xV = 4x3 + 2ax+ b = 0 co-incide requiring that the discriminant of this
equation vanishes.

3. In the recent case IM(P ) takes the role of complex quaternion valued potential function and

the 4 coordinates z
k)
1 that of behavior variable x for cusp and z

k)
2 that of control parameters

(a, b). The reduction of the rank of n × n matrix by ∆r means that there are r linearly
independent rows in the matrix. These give ∆r additional conditions besides IM(P ) = 0 so
that the sub-variety along which the singularity takes places as dimension r. One can say
that the r-dimensional tangent spaces integrate to the singular variety of dimension r.
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The analogy with branes would be realized as a hierarchical structure of singularities of the
spacetime surfaces. This hierarchy of singularities would realize space-time correlates for
quantum criticality, which is basic principle of quantum TGD. For instance, the reduction
by 3-units would correspond to strings - say at the ends of CD and along the partonic orbits
(fermion lines), and maximal reduction might correspond to discrete points - say the ends
of fermion lines at partonic 2-surfaces. Also isolated intersection points can be regarded as
singularities and are stably present but it does not make sense to add fermions to these points
so that cognitive representations are not possible.

4. Note that also the associativity - and commutativity conditions already discuss involved the
gradients of IM(P )i and RE(P )i, which would suggests that these regions can be inter-
preted as singularities for which the dimension is not lowered by on unit since the vanishing
conditions hold true identically by criticality.

There are two cases to be considered. The usual Euclidian case in which pinch reducing the
dimension and the Minkowskian case in which metric dimension is reduced locally.

Consider first the Euclidian case.

1. In Euclidian case it is difficult to tell whether all values of ∆r are possible since octonion
analyticity poses strong conditions on the singularities. The pinch could correspond to the
singularity of the covering associated with the space-time surface defined by Galois group
for the covering associated with heff/h = n identifiable as the order of Galois group [L6].
Therefore there would be very close connection between the extensions of rationals defining
the Galois group and the extension of polynomial ring of 8 complex variables zki , i = 1, 2,
k = 1, .., 4 by algebraic functions. At the pinch, which would be algebraic point, the Galois
group would have subgroup leaving the coordinates of the point invariant and some sheets
of the covering defining roots would co-incide.

2. A very simple analogy for this kind of singularity is the singularity of P (x, y) = y2 − x = 0
at origin: now the sheets y = ±

√
x co-incide at origin. The algebraic functions y ∓

√
x

defining the factorization of P (x, y) co-incide at origin. Quite generally, two or more factors
in the factorization of polynomial using algebraic functions co-incide at the singularity. This
is completely analogous to the degeneracy or roots of polynomials of single variable.

3. Quaternion structure predicts the slicing of M4 by string world sheets inducing that of space-
time surfaces. One must ask whether singular space-time sheets emerge already for the slicing
of M4 by string world sheets. String world sheets could be considered as candidates for
∆r = 2 singularities of this kind. The physical intuition strongly suggests that there indeed
physically preferred string world sheets and identification as ∆r = 2 singularities of Euclidian
type is attractive. Partonic 2-surfaces are also candidates in this respect. Could some sheets
of the heff/h = n covering co-incide at string world sheets?

Consider next the Minkowskian case. At the level of H the rank of the induced metric is
reduced. This reduction need not be same as that for the matrix P ij and it is of course not obvious
that the partonic orbit allows description as a singularity of algebraic variety.

1. Could the matrix P ij take a role analogous to the dual of induced metric and one might

hope that the change of the sign for P ij for a fixed polynomial at singular surface could be
analogous to the change of the sign of

√
g4 so that the idea about algebraization of this

singularity at level of M8 might make sense. The information about metric could come from
the fact that IM(P ) depends on complex valued quaternion norm reducing to Minkowskian
metric in Minkowskian sub-space.

2. The condition for the reduction of rank from its maximal value of r = 4 to r = 3 occurs if one
has det(P ) = 0, which defines co-dimension 1 surface as a sub-variety of space-time surface.
The interpretation as co-incidence of two roots should make sense if IM(P ) = 0. Root pairs
would now correspond now to the points at different sides of the singular 3-surface.

Minkowskian singularity cannot be identified as the 3-D space-like boundary of many-sheeted
space-time surface located at the boundary of CD (induced metric is space-like).
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Could this sub-variety be identified as partonic orbit, the common boundary of the Euclidian
and Minkowskian regions? This would require that associative region transforms to co-
associative one here. IM(P ) = 0 condition can transform to RE(P ) = 0 condition if one has
P = 0 at this surface. Minkowskian variant of point singularity (P ij vanishes) would explode
it to a light-like partonic orbit.

What does this imply about the rank of singularity? The condition IM(P ) = RE(P ) = 0
does not reduce the rank if P is linear polynomial and one could consider a hierarchy of
reductions of rank. Since qq vanishes in Minkowskian sub-space at light-cone boundary
rather than at point q = 0 only, there are reasons to expect that it appears in P and reduces
the rank by ∆r = 4 (see Appendix for the discussion of o2 case). The rank of the induced
4-metric is however reduced only by ∆r = 1 at partonic orbit. If the complexified complex
norm zz, z = z1 + z2I2 can take the role of qq, one has ∆r = 2.

3. The reduction of rank to r = 2 would give rise to 2-surfaces, which are at the boundaries
of 3-D singularities. If partonic orbits correspond to ∆r = 1 singularities one could identify
them as partonic 2-surfaces at the ends partonic orbits.

Could the singularity at partonic 2-surface correspond to the reduction of the rank of the
induced metric by 2 units? This is impossible in strict sense since there is only one light-like
direction in signature (1,−1,−1,−1). Partonic 2-surface singularity would however corre-
spond to a corner for both Euclidian and Minkowskian regions at which the metrically 2-D
but topologically 3-D partonic orbit meets the the space-like 3-surface along the light-like
boundary of CD. Also the radial direction for space-like 3-surface could become light-like at
partonic 2-surface if the CP2 coordinates have vanishing gradient with respect to the light-
like radial coordinate rM at the partonic 2-surface. In this sense the rank could be reduced
by 2 units. The situation is analogous to that for fold singularity y2 − x = 0.

String world sheets cannot be subsets of r = 3 singularities, which suggests different inter-
pretation for partonic 2-surfaces and string world sheets.

What could this different interpretation be?

1. Perhaps the most convincing interpretation of string world sheets/partonic 2-surfaces has
been already discussed (this interpretation would generalize to associative space-time sur-
faces). They could be commutative/co-commutative (here permutation might be allowed!)
sub-manifolds of associative regions of the space-time surface allowing quaternionic tangent
spaces so that the notions of commutative and co-commutative make sense. The criticality
conditions are satisfied without the reduction of dimension from d = 2 to d = 1. In non-
associative regions string world sheets would reduce to 1-D curves. This would happen at
the boundaries of partonic orbits and 3-surfaces at the ends of space-time surface and only
the ends of strings at partonic orbits carrying fermion number would be needed to determine
twistorial scattering amplitudes [K22, K23].

2. I have also considered an interpretation in terms of singularities of space-time surfaces repre-
sented as a sections of their own twistor bundle. Self-intersections of the space-time surface
would correspond to 2-D surfaces in this case [L6] and perhaps identifiable as string world
sheets. The interpretation mentioned above would be in terms of Euclidian singularities. If
this is true, the question is only about whether these two interpretations are consistent with
each other.

If I were forced to draw conclusion on basis of these notices, it would be that only r = 4
Minkowskian singularities could be interesting and at them RE(P ) = 0 regions could be trans-
formed to IM(P ) = 0 regions. Furthermore, the reduction of rank for the induced metric cannot
be equal to the reduction of the rank for P ij .

5.4 The decomposition of space-time surface to Euclidian and Minkowskian
regions in octonionic description

The unavoidable outcome of H picture is the decomposition of space-time surface to regions with
Minkowskian or Euclidian signature of the induced metric. These regions are bounded by 3-D



5.4 The decomposition of space-time surface to Euclidian and Minkowskian regions
in octonionic description 54

regions at which the signature of the induced metric is (0,−1,−1,−1) due to the vanishing of
the determinant of the induced metric. The boundary is naturally the light-like orbit of partonic
2-surface although one can consider also the possibility that these regions have boundaries inter-
secting along light-like curves defining boundaries of string world sheets. A more detailed view
inspired by the study of extremals is following.

1. Let us assume that the above picture about decomposition of space-time surfaces in H to
two kinds regions takes place. The regions where the dynamicis universal minimal surface
dynamics have associative pre-image in M8. The regions where Kähler action and volume
term couple the associative pre-image in M8 exists only at the 3-D boundary regions and
M8 dynamics determines the boundary conditions for H dynamics, which by hologaphy is
enough.

2. In the space-time regions having associative pre-image in M8 one has a fibration of X4 with
with partonic surface as a local base and string world sheet as local fiber. In the interior
of space-time region there are no singularities but at the boundary 2-D string world sheets
becomes metrically 1-D as 1-D string boundary reduces metrically to 0-D structure analogous
to a point. This reduction of dimension would be metric, but not topological.

The singularity for plane curve P (x, y) = y2 − x3 = 0 at origin illustrates the difference
between Minkowskian and Euclidian singularity. One has (∂xP, ∂yP ) = (−3x2, 2y) vanishing
at origin so that ∆r = 1 singularity is in question and the dimension of singular manifold is
indeed r = 0. From y = ±x3/2, x ≥ 0. The induced metric gxx = 1 + (dy/dx)2 = 1 + (9/4)x,
x ≥ 0 is however non-singular at origin.

3. If the Euclidian region with pre-image corresponds to a deformation of wormhole contact,
the identification as image of a co-associative space-time region in M8 is natural so that
normal space is associative and contains also the preferred M2(x). In Minkowskian regions
the identification as image of associative space-time region in M8 is natural.

What can one say about the relationship of the M8 counterparts of neighboring Minkowskian
and Euclidian regions?

1. Do these regions intersect along light-like 3-surfaces, 1-D light-like curve (orbit of fermion)
or is the intersection disrete set of points possibly assignable to the partonic 2-surface at the
boundaries of CD? The M4 projections of the inverse image of the light-like partonic orbit
should co-incide but E4 projections need not do so. They could be however mappable to the
same partonic two surface in M8−H correspondence or the images could have at least have
light-like curve as common.

2. Is seems impossible for the space-time surfaces determined as zeros of octonionic polynomials
to have boundaries. Rather, it seems that the boundary must be between Minkowskian and
Euclidian regions of the space-time surface determined by the same octonionic polynomial.
At the boundary also associate region would transform to co-associative region suggesting
that IM(P ) = RE(P ) = 0 holds allowing to change the condition from IM(P ) = 0 to
RE(P ) = 0.

Consider now in more detail whether this view can be realized.

1. In H = M4×CP2 the boundary between the Minkowskian and Euclidian space-time regions -
light-like partonic 3-surface - is a singularity possible only in Minkowskian signature. Space-
time surface X4 at the boundary is effectively 3-D since one has

√
g4 = 0 meaning that

tangent space is effectively 3-D. The 3-D boundary itself is metrically 2-D and this gives rise
to the extended conformal invariance defining crucial distinction between TGD and super
string models.

2. The singularities of P (o) for o identified as linear coordinate of M8
c were already considered.

The singularities correspond to the boundaries of light-cone and the emergence of CDs can
be understood. Could also the light-like orbits of partonic 2-surfaces be understood in the
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same manner? Does the pre-image of this singularity in M8 emerge as a singularity of an
algebraic variety determined by the vanishing of IM(P ) for the octonionic polynomial?

What is common is that the rank of the induced metric by one unit also now. Now one has
however also det(g4) = 0. The singularities correspond to curved light-like 3-surfaces inside
space-time surfaces rather than light-like surfaces in M8: induced metric matters rather than
M4 metric.

3. Could also these regions correspond to singularities of octonionic polynomials at which P (o) =
0 is satisfied and associative region transforms to a co-associative region? For M2(x) = M2

0

this is impossible. Partonic 2-surfaces are planes E2 now. One should have closed partonic
2-surfaces.

Could the allowance of quaternionic structures with slicing of X4 by string world sheets and
partonic 2-surfaces help? If one has slicing of string world sheets by dual light-like curves
corresponding to light-like coordinates u and v, this slicing gives also rise to a slicing of light-
like 3-surfaces and dual light-like coordinate. The pair (u, v) in fact defines the analog of z
and z in hypercomplex case. Could the singularity of P (o) using the quaternionic coordinates
defined by (u, v) and coordinates of partonic 2-surface allow to identify light-like partonic
orbits with det(g4) = 0 as a generalization of light-cone boundaries in M4?

The decomposition M4
0 = M2

x ×E2(x) associated with quaternionic structure is independent
of E4. In the other hand, tangent space of space-time surface at point decomposes M2(x)×
E2
T (x), where E2

T (x) is in general different from E2(x). Is this enough to obtain partonic
2-surfaces as singularities with RE(P ) = IM(P ) = 0?

The question whether the boundaries between Minkowskian and Euclidian can correspond to
singular regions at which P (o) vanishes and the surface RE(P ) = 0 transforms to IM(P ) = 0
surface remains open. What remains poorly understood is the role of the induced metric. My hope
is that with a further work the picture could be made more detailed.

5.5 About rational points of space-time surface

What one can say about rational points of space-time surface?

1. An important special case corresponds to a generalization of so called rational surfaces for
which a parametric representation in terms of 4 complex coordinates tk exists such that ok1
are rational functions of tk. The singularities for 2-complex dimensional surfaces in C3 or
equivalently CP3 are classified by Du Val [A3, A5] (see http://tinyurl.com/ydz93hle).

2. In [L6] [L4] I considered possible singularities of the twistor bundle. These would correspond
typically 2-D self-intersections of the imbedding of space-time surfaces as 4-D base space
of 6-D twistor bundle with sphere as a fiber. They could relate to string world sheets and
partonic 2-surfaces and - as already found - are different from singularities at the level of
M8
c . The singularities of string world sheets and partonic 2-surfaces as hyper-complex and

co-complex surfaces consist of points and could relate to the singularities at octonionic level.

As already mentioned, Bombieri-Lang conjecture (see http://tinyurl.com/y887yn5b) states
that, for any variety X of general type over a number field k, the set of k-rational points of X is
not Zariski dense (see http://tinyurl.com/jm9fh74) in X. Even more, the k-rational points are
contained in a finite union of lower-dimensional sub-varieties of X.

This conjecture is highly interesting from TGD point of view if one believes in M8−H duality.
Space-time surfaces X4 ⊂ M8

c can be seen as M8 = M4 × E4 projections of zero loci for real
or imaginary parts of octonionic polynomials in o. In complex sense they reduce to M4 × E4

projections of algebraic co-dimension 4 surfaces in C8. If Bombieri-Lang conjectures makes sense
in this context, it would state that for a space-time surface X4 ⊂M8 of general type the rational
points are contained in a finite union of lower-dimensional sub-varieties. Also the conjecture
of Vojta (see http://tinyurl.com/y9sttuu4) stating that varieties of general type cannot be
potentially dense is known to be true for curves and support this general vision.

Could the finite union of sub-varieties correspond to string world sheets, partonic 2-surfaces, and
their light-like orbits define singularities? But why just singular sub-varieties would be cognitively

http://tinyurl.com/ydz93hle
http://tinyurl.com/y887yn5b
http://tinyurl.com/jm9fh74
http://tinyurl.com/y9sttuu4
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simple and have small Kodaira dimension dK allowing large number of rational points? In the
case of partonic orbits one might understand this as a reduction of metric dimension. The orbit
is effectively 2-dimensional partonic surface metrically and for the genera g = 0, 1 rational points
are dense. For string world sheets with handle number smaller than 2 the situation is same.

The proposed realizations of associativity and commutativity provide additional support for
this picture. Criticality guaranteeing associativity/commutativity would select preferred space-
time surfaces as also string world sheets and partonic 2-surfaces.

Concluding, the general wisdom of algebraic geometry conforms with SH and with the vision
about the localization of cognitive representations at 2-surfaces. There are of many possible options
for detailed interpretation and certainly the above sketch cannot be correct at the level of details.

5.6 Connection with infinite primes

The idea about space-time surfaces as zero loci of polynomials emerged for the first time as I tried
to understand the physical interpretation of infinite primes [K10], which were motivated by TGD
inspired theory of consciousness. Infinite primes form an infinite hierarchy. At the lowest level the
basic entity is the product X =

∏
p p of all finite primes. The physical interpretation could be as

an analog of fermionic sea with fermion states labelled by finite primes p.

1. The simplest infinite primes are of form P = X±1 as is easy to see. One can construct more
complex infinite primes as infinite integers of form nX/r+mr. Here r is square free integer,
n is integer having no common factors with r, and m can have only factors possessed also by
r.

The interpretation is that r defines fermionic state obtained by kicking from Dirac sea the
fermions labelled by the prime factors of r. The integers n and m define bosonic excitations in
which k:th power of p corresponds to k bosons in state labelled by p. One can also construct
more complex infinite primes as polynomials of X and having no rational factors. In fact, X
becomes coordinate variable in the correspondence with polynomials.

2. This process can be repeated at the next level. Now one introduces product Y =
∏
P P of

all primes at the previous level and repeats the same construction. These infinite correspond
to polynomials of Y with coefficients given by rational functions of X. Primality means
irreducibility in the field of rational functions so that solving Y in terms of X would give
algebraic function.

3. At the lowest level are ordinary primes. At the next level the infinite primes are indeed infinite
in real sense but have p-adic norms equal to unity. They can be mapped to polynomials
P (x1) with rational coefficients and the simplest polynomials are monomials with rational
root. Higher polynomials are irreducible polynomials with algebraic roots. At the third level
of hierarchy one has polynomials P (x2|x1) of two variables. They are polynomials of x1 with
coefficients with are rational functions of x1. This hierarchy can be continued.

One can define also infinite integers as products of infinite primes at various levels of hierarchy
and even infinite rationals.

4. This hierarchy can be interpreted in terms of a repeated quantization of an arithmetic super-
symmetric quantum field theory with elementary particles labelled by primes at given level
of hierarchy. Physical picture suggests that the hierarchy of second quantizations is realized
also in Nature and corresponds to the hierarchy of space-time sheets.

5. One could consider a mapping P (xn|xn−1|..|x1) by a diagonal projection xi = x to polynomi-
als of single variable x. One could replace x with complexified octonic coordinate oc. Could
this correspondence give rise to octonionic polynomials and could the connection with second
quantization give classical space-time correlates of real quantum states assignable to infinite
primes and integers? Even quantum states defining counterparts of infinite rationals could
be considered. One could require that the real norm of these infinite rationals equals to one.
They would define infinite number of real units with arbitrarily complex number theoretical
anatomy. The extension of real numbers by these units would mean huge extension of the
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notion of real number and one could say that each real point corresponds to platonic defined
by these units closed under multiplication.

In ZEO zero energy states formed by pairs of positive and negative energy could correspond
to these states physically. The condition that the ratio is unit would have also a physical
interpretation in terms of particle content.

6. As already noticed, the notions of analyticity, quaternionicity, and octonionicity could be
seen as a manifestation of polynomials in algebras defined by adding repeatedly a new non-
commuting imaginary unit to already existing algebra. The dimension of the algebra is
doubled in each step so that dimension comes as a power of 2. The algebra of polynomials
with real coefficients is commutative and associative. This encourages the crazy idea that
the spaces are indeed realized and the generalization of M8 −H duality holds true at each
level. At level k the counterpart for CP2 (for k = 3) would be as moduli space for sub-spaces
of dimension 2k−1 for which tangent space reduces to the algebra at level k − 1. For k = 2
CP1 is the moduli space and could correspond to twistor sphere. Essentially Grassmannian
Gl(2k, 2k−1) would be in question. This brings in mind twistor Grassmann approach involving
hierarchy of Grassmannians too, which however allows all dimensions. What is interesting
that the spinor bundle for space of even dimension d has fiber with dimension 2d/2.

The number of arguments for the hierarchy of polynomials assignable to the hierarchy of
infinite primes increases by one at each step. Hence these two hierarchies are different.

The vanishing of the octonionic polynomials indeed allow a decomposition to products of prime
polynomials with roots which in general are algebraic numbers and an exciting possibility is that
the prime polynomials have interpretation as counterparts of elementary particles in very general
sense.

Infinite primes can be mapped to polynomials and the most natural counterpart for the infinite
rational would be as a complexified octonionic rational function P1(t)/P2(t − T ), where T is real
octonion, with coefficients in extension of rationals. This would naturally give the geometry CD.
The assignment of opposite boundaries of CD to P1(t) and P2(t−T ) is suggestive and identification
of zero loci of IM(P1) and IM(P2) as incoming and outgoing particles would be natural. The zero
and ∞ loci for RE(P1/P2) would define interaction between these space-time varieties and should
give rise to wormhole contacts connecting them. Note that the linearity of IM(o1o2) in IM(oi)
and non-linearity of RE(o1o2) in RE(oi) would be a key element behind this identification. This
idea will be discussed in more detail in the section “Gromov-Witten invariants, Riemann-Roch
theorem, and Atyiah-Singer index theorem from TGD point of view”.

6 Super variant of octonionic algebraic geometry and space-
time surfaces as correlates for fermionic states

Could the octonionic level provide an elegant description of fermions in terms of super variant of
octonionic algebraic geometry? Could one even construct scattering amplitudes at the level of M8

using the variant of the twistor approach discussed in [K22, K23]?
The idea about super-geometry is of course very different from the idea that fermionic statistics

is realized in terms of the spinor structure of “world of classical worlds” (WCW) but M8−H duality
could however map these ideas and also number theoretic and geometric vision to each other. The
angel of geometry and the devil of algebra could be dual to each other.

In the following I start from the notion of emergence generalized to the vision that entire
physics emerges from the notion of number. This naturally leads to an identification of super-
variants of various number fields, in particular of complexified octonions. After that super variants
of RE(P ) = 0 and IM(P ) = 0 conditions are discussed, and the surprising finding is that the
conditions might allow only single fermion states localized at strings. This would allow only single
particle in the super-multiplet and would mean breaking of SUSY. This picture would be consistent
with the earlier H picture about construction of scattering amplitudes [K22, K23]. Finally the
problems related to the detailed physical interpretation are discussed.
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6.1 About emergence

The notion of emergence is fashionable in the recent day physics, in particular, he belief is that 3-
space emerges in some manner. In the sequel I consider briefly the standard view about emergence
idea from TGD point of view, then suggest that the emergence in the deepest sense requires
emergence of physics from the notion of number and that complexified octonions [L8] [L9, L10, L3,
L7] are the most plausible candidate in this respect. After that I will show that number theory
generalizes to super-number theory: super-number fields make sense and one can define the notion
of super-prime. Every new step of progress creates worry about consistency with the earlier work,
now the work done during last months with physics as octonionic algebraic geometry and also this
aspect is discussed.

1. The notion of holography is behind the emergence of 3-space and implies that the notion of
2-space is taken as input. This could be justified by conformal invariance.

2. The key idea is that 3-space emerges somehow from entanglement. There is something that
must entangle and this something must be labelled by points of space: one must introduce a
discretised space. Then one must do some handwaving to make it 3-D - perhaps by arguing
that holography based on 2-D holograms is unique by conformal invariance. The next hand-
wave would replace this as a 3-D continuous space at infrared limit.

3. How to get space-time and how to get general coordinate invariance? How to get the sym-
metries of standard model and special relativity? Somehow all this must be smuggled into
the theory when the audience is cheated to direct its attention elsewhere. This Münchausen
trick requires a professional magician!

4. One attempt could take as starting point what I call strong form of holography (SH) in
which 2-D data determine 4-D physics. Just like 2-D real analytic function determines
analytic function of two complex variables in spacetime of 2 complex dimensions by analytic
continuation (this hints strongly to quaternions). This is possible if conformal invariance is
generalized to that for light-like 3-surfaces such as light-cone boundary. But the emergence
magician should do the same without these.

In TGD one could make this even simpler. Octonionic polynomials and rational functions
are obtained from real polynomials of real variable by octonion-analytic continuation. And
since polynomials and rational functions P1/P2 are in question their values at finite number
of discrete points determined them if the orders of P1 and P2 are known!

If one accepts adelic hierarchy based on extensions of rationals the coefficients of polynomials
are in extensions of rationals and the situation simplifies further. The criticality conditions
guaranteeing associativity for external particles is one more simplification: everything b
becomes discrete. The physics at fundamental level could be incredibly simple: discrete
number of points determines space-time surfaces as zero loci for RE(P ) or IM(P ) (octonions
are decomposed to two quaternions gives RE(o) and IM(o)).

How this is mapped to physics leading to standard model emerging from the formulation
in M × CP2 This map exists - I call it M8 − H duality - and takes space-time varieties in
Minkowskian sector of complexified octonions to a space-time surface in M4 × CP2 coding
for standard model quantum numbers and classical fields.

How to get all this without bringing in octonionic imbedding space: this is the challenge for the
emergence-magician! I am afraid this this trick is impossible. I will however propose a deeper for
what emergence is. It would not be emergence of space-time and all physics from entanglement but
from the notion of number, which is at the base of all mathematics. This view led to a discovery
of the notion of super-number field, a completely new mathematical concept, which should show
how deep the idea is.

6.2 Does physics emerge from the notion of number field?

Concerning emergence one can start from a totally different point of view. Even if one gets rid
of space as something fundamental from Hilbert sapce and entanglement, one has not reached
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the most fundamental level. Structures like Hilbert space, manifold, etc. are not fundamental
mathematical structures: they require the notion of number field. Number field is the fundamental
notion.

Could entire physics emerge from the notion of number field alone: space-time, fermions, stan-
dard model interactions, gravitation? There are good hopes about this in TGD framework if one
accepts M8 −H duality and physics as octonionic algebraic geometry! One could however argue
that fermions do not follow from the notion of number field alone. The real surprise was that
formalizing this more precisely led to a realization that the very notion of number field generalizes
to what one could call super-number field!

6.2.1 Emergence of physics from complexified octonionic algebraic geometry

Consider first the situation for number fields postponing the addition of attribute “super” later.

1. Number field endowed with basic arithmetic operations +, −, ·, / is the basic notion for
anyone wanting to make theoretical physics. There is a rich repertoire of number fields.
Finite fields, rationals and their extensions, real numbers, complex numbers, quaternions,
and octonions. There also p-adic numbers and their extensions induced by extensions of
rationals and fusing into adele forming basic structure of adelic physics. Even the complex,
quaternionic, and octonionic rationals and their extensions make sense. p-Adic variants of
say octonions must be however restricted to have coefficients belonging to an extension of
rationals unless one is willing to give up field property (the p-adic analog of norm squared
can vanish in higher p-adic dimensions so that inverse need not exist).

There are also function fields consisting of functions with local arithmetic operations. Ana-
lytic functions of complex variable provides the basic example. If function vanishes at some
point its inverse element diverges at the same point. Function fields are derived objects
rather than fundamental.

2. Octonions are the largest classical number field and are therefore the natural choice if one
wants to reduce physics to the notion of number. Since one wants also algebraic extensions
of rationals, it is natural to introduce the notion of complexified octonion by introducing an
additional imaginary unit - call it i, commuting with the 7 octonionic imaginary units Ik.
One obtains complexified octonions.

That this is not a global number field anymore turns out to be a blessing physically. Com-
plexified octonion zkE

k has zk = zk + iyk. The complex valued norm of octonion is given
by z20 + ...z27 (there is no conjugation involved. The norm vanishes at the complex surface
z20 + ...z27 = 0 defining a 7-D surface in 7-D Oc (the dimension is defined in complex sense).
At this surface - complexified light-cone boundary - number field theory property fails but is
preserved elsewhere since one can construct the inverse of octonion.

At the real section M8 (8-D Minkowski space with one real (imaginary) coordinate and 7
imaginary (real) coordinates the vanishing takes place also. This surface corresponds to
the 7-D light-cone boundary of 8-D Minkowskian light-cone. This suggests that light-like
propagation is basically due to the complexification of octonions implying local failure of
the number field property. Same happens also in other real sections with 0 < n < 8 real
coordinates and 0 < m = 8− n < 8 imaginary coordinates and one obtains variant of light-
cone with different signatures. Euclidian signature corresponding to m = 0 or m = 8 is
an exception: light-cone boundary reduces to single point in this case and one has genuine
number field - no propagation is possible in Euclidian signature.

Similar argument applies in the case of complexified quaternionsQc and complexified complex
numbers z1 + z2I ∈ Cc, where I is octonionic imaginary unit. For Qc one obtains ordinary
3-D light-cone boundary in real section and 1-D light-cone boundary in the case of Cc. It
seems that physics demands complexification! The restriction to real sector follows from the
requirement that norm squared reduces to a real number. All real sectors are possible and I
have already considered the question whether this should be taken as a prediction of TGD
and whether it is testable.
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6.2.2 Super-octonionic algebraic geometry

There is also a natural generalization of octonionic TGD to super-octonionic TGD based on oc-
tonionic triality. SO(1, 7) allows besides 8-D vector representations also spinor representations 8c
and 8c. This suggests that super variant of number field of octonions might make sense. One
would have o = o8 + oc,8 + 0c,8.

1. Should one combine o8, oc,8 and oc,8 to a coordinate triplet (o8, oc,8, oc,8) as done in super-
symmetric theories to construct super-fields? The introduction of super-fields as primary
dynamical variables is a good idea now since the very idea is to reduce physics to algebraic
geometry at the level of M8. Polynomials of super-octonions defining space-time varieties as
zero loci for their real or imaginary part in quaternionic sense could however take the role of
super fields. Space-time surface would correspond to zero loci for RE(P ) or IM(P ).

2. The idea about super-octonions should be consistent with the idea that we live in a complex-
ified number field. How to define the notion of super-octonion? The tensor product 8 ⊗ 8c
contains 8c and 8 ⊗ 8c contains 8c and one can use Glebsch-Gordan coefficients to contract
o and θc and o and θc,n. The tensor product of 8c and 8c defined using structure constants
defining octonion product gives 8. Therefore one must have

os = o+ Ψc × θc + Ψc × θc , (6.1)

where the products are octonion products. Super parts of super-coordinates would not be
just Grassmann numbers but octonionic products of Grassmann numbers with octonionic
spinors in 8c and 8c. This would bring in the octonionic analogs of spinor fields into the
octonionic geometry.

This seems to be consistent with super field theories since octonionic polynomials and even
rational functions would give the analogs of super-fields. What TGD would provide would
be an algebraic geometrization of super-fields.

3. What is the meaning of the conditions RE(P ) = 0 and IM(P ) = 0 for super-octonions? Does
this condition hold true for all dG = 216 super components of P (os) or is it enough to pose
the condition only for the octonionic part of P (o)? In the latter case Ψc and Ψc would be
free and this does not seem sensical and does not conform with octonionic super-symmetry.
Therefore the first option will be studied in the sequel.

If super-octonions for a super variant of number field so that also inverse of super-octonion is
well-defined, then even rational functions of complexified super-octonions makes sense and poles
have interpretation in terms of 8-D light-fronts (partonic orbits at level of H). The notion must
make sense also for other classical number fields, finite fields, rationals and their extensions, and
p-adic numbers and their extensions. Does this structure form a generalization of number field to
a super counter part of number field? The easiest manner to kill the idea is to check what happens
in the case of reals.

1. The super-real would be of form s = x + yθ, θ2 = 0. Sum and product are obviously well-
defined. The inverse is also well-defined and given by 1/s = (x − yθ))/x2. Note that for
complex number x + iy the inverse would be z/zz = (x − yi)/(x2 + y2). The formula for
super-inverse follows from the same formula as the inverse of complex number by defining
conjugate of super-real s as s = x− yθ and the norm squared of s as |s|2 = ss = x2.

One can identify super-integers as N = m + nθ. One can also identify super-real units as
number of unit norm. Any number 1n = 1+nθ has unit norm and the norms form an Abelian
group under multiplication: 1m1n = 1m+n. Similar non-uniqueness of units occurs also for
algebraic extensions of rationals.

2. Could one have super variant of number theory? Can one identify super-primes? Super-norm
satisfies the usual defining property |xy| = |x||y|. Super-prime is defined only apart from the
multiplicative factor 1m giving not contribution to the norm. This is not a problem but a
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more rigorous formulation leads to the the replacement of primes with prime ideals labelled
by primes already in the ordinary number theory.

If the norm of super-prime is ordinary prime it cannot decompose to a product of super-
primes. Not all super-primes having given ordinary prime as norm are however independent.
If super-primes p + nθ and p + mθ differ by a multiplication with unit 1r = 1 + rθ, one
has n −m = pr. Hence there are only p super-primes with norm p and they can be taken
ps = p+ kθ, k ∈ {0, p− 1}. A structure analogous to a cyclic group Zp emerges.

Note that also θ is somewhat analogous to prime although its norm is vanishing.

3. Just for fun, one an ask what is the super counterpart of Riemann Zeta. Riemann zeta can
be regarded as an analog of thermodynamical partition function reducing to a product for
partition functions for bosonic systems labelled by primes p. The contribution from prime p
is factor 1/(1−p−s). p−s is analogous to Boltzmann weight N(E)exp(−E/T ), where N(E) is
number of states with energy E. The degeneracy of states labelled by prime p is for ordinary
primes N(p) = 1. For super-primes the degeneracy is N(p) = p and the weight becomes
1/(1−N(p)p−s) = 1/(1−p−s+1). Super Riemann zeta is therefore zeta(s−1) having critical
line at s = 3/2 rather than at s = 1/2 and trivial zeros at real points s = −1,−3,−5, rather
than at s = −2,−4,−6, ...

There are good reasons to expect that the above arguments work also for algebraic extensions
of super-rationals and in fact for all number fields, even for super-variants of complex numbers,
quaternions and octonions. This because the conditions for invertibility reduce to that for real
numbers. One would have a generalization of number theory to super-number theory! Net search
gives no references to anything like this. Perhaps the generalization has not been noticed because
the physical motivation has been lacking. M8−H duality would imply that entire physics, including
fermion statistics, standard model interactions and gravitation reduces to the notion of number in
accordance with number theoretical view about emergence.

6.2.3 Is it possible to satisfy super-variants of IM(P ) = 0 and RE(P ) = 0 conditions?

Instead of super-fields one would have a super variant of octonionic algebraic geometry.

1. Super variants of the polynomials and even rational functions make sense and reduce to
a sum of octonionic polynomials Pklθ

k
1θ
l
2, where the integers k and l would be tentatively

identified as fermion numbers and θk is a shorthand for a monomial of k different thetas.
The coefficients in Pkl = Pkl,no

n would be given by Pkl,n = Pn+k+lB(n+ k+ l, k+ l), where
B(r, s) = r!/(r − s)!s! is binomial coefficient. The space-time surfaces associated with Pkl
would be different and they need not be simultaneously critical, which could give rise to a
breaking of supersymmetry.

One would clearly have an upper bound for k and l for given CD. Therefore these many-
fermion states must correspond to fundamental particles rather than many-fermion Fock
states. One would obtain bosons with non-vanishing fermion numbers if the proposed iden-
tification is correct. Octonionic algebraic geometry for single CD would describe only funda-
mental particles or states with bounded fermion numbers. Fundamental particles would be
indeed fundamental also geometrically.

2. One can also now define space-time varieties as zero loci via the conditions RE(Ps)(os) = 0
or IM(Ps)(os) = 0. One obtains a collection of 4-surfaces as zero loci of Pkl. One would have
a correlation with between fermion content and algebraic geometry of the space-time surface
unlike in the ordinary super-space approach, where the notion of the geometry remains rather
formal and there is no natural coupling between fermionic content and classical geometry.
At the level of H this comes from quantum classical correspondence (QCC) stating that the
classical Noether charges are equal to eigenvalues of fermionic Noether charges.

In the definition of the first variant of super-octonions I followed the standard idea about
what super-coordinates assuming that the super-part of super-octonion is just an anti-commuting
Grassmann number without any structure: I just replaced o with o+ θkE

k + θkE
k regarding θk as
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anticommiting coordinates. Now θk receives octonionic coefficient: θk → okθk. θk is now analogous
to unit vector.

For the super-number field inspired formulation the situation is different since one assigns in-
dependent octonionic coordinates to anticommuting degrees of freedom. One has linear space with
partially anti-commutative basis. Oc is effectively replaced with O3

c so that one has 8+8+8=24-
dimensional Cartesian product (it is amusing that the magic dimension 24 for physical polarizations
of bosonic string models emerges).

What is the number of equations in the new picture? For N super-coordinates one has 2N

separate monomials analogous to many-fermion states. Now one has N = 8 + 8 = 16 and this
gives 216 monomials! In the general case RE = 0 or IM = 0 gives 4 equations for each of the
dG = 216 monomials: the number of equations RE = 0 or IM = 0 is 4 × 216 and exceeds the
number dO = 24 of octonion valued coordinates. In the original interpretation these equations
were regarded as independent and gave different space-time variety for each many-fermion state.

In the new framework these equations cannot be treated independently. One has 24 octonionic
coordinates and 216 equations. In the generic case there are no solutions. This is actually what
one hopes since otherwise one would have a state involving superposition of many-fermion states
with several fermion numbers.

The freedom to pose constraints on the coefficients of Grassmann parameters however allows to
reduce degrees of freedom. All coefficients must be however expressible as products of 3× 8 = 24
components of super-octonion.

1. One can have solutions for which both 8c part and 8c parts vanish. This gives the familiar 4
equations for 8 variables and 4-surfaces.

2. Consider first options, which fail. If 8c- or 8c part vanishes one has dG = 28 and 4×dG = 4×64
equations for dO=8+8 = 16 variables having no solutions in the generic case. The restriction
of 8c to its 4-D quaternionic sub-space would give dO = 4 and 4dG = 4× 24 = 64 conditions
and 16 variables. The reduction to complex sub-space z1 +z2I of super-octonions would give
dO = 22 and 4× 22 = 16 conditions for 8 + 2 = 10 variables.

3. The restriction to 1-D sub-space of super-octonions would give 4 × 21 = 8 conditions and
8 + 1 = 9 variables. Could the solution be interpreted as 1-D fermionic string assignable to
the space-like boundary of space-time surface at the boundary of CD? Skeptic inside me asks
whether this could mean the analog of N = 1 SUSY, which is not consistent with H picture.

Second possibility is restriction to light-like subspace for which powers of light-like octonion
reduce effectively to powers of real coordinate. Fermions would be along light-lines in M8 and
along light-like curves in H. The powers of super-octonion have super-part, which belongs
to the 1-D super-space in question: only single fermion state is present besides scalar state.

4. There are probably other solutions to the conditions but the presence of fermions certainly
forces a localization of fermionic states to lower-dimensional varieties. This is what happens
also in H picture. During years the localization of fermion to string worlds sheets and their
boundaries has popped up again and again from various arguments. Could one hope that
super-number theory provides the eventual argument.

But how could one understand string world sheets in this framework? If they do not carry
fermions at H-level, do they appear naturally as 2-D structures in the ordinary sense?

To sum up, although many details must be checked and up-dated, super-number theory provides
and extremely attractive approach promising ultimate emergence as a reduction of physics to the
notion of number. When physical theory leads to a discovery of new mathematics, one must take
it seriously.

6.3 About physical interpretation

Super-octonionic algebraic geometry should be consistent with the H picture in which baryon and
lepton numbers as well as other standard model quantum numbers can be understood. There are
still many details, which are not properly understood.
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6.3.1 The interpretation of theta parameters

The interpretation of theta parameters is not completely straightforward.

1. The first interpretation is that θc and θc correspond to objects with opposite fermion numbers.
If this is not the case, one could perhaps define the conjugate of super-coordinate as octonionic
conjugate os = o+ θ1 + θ2. This looks ugly but cannot be excluded.

There is also the question about spinor property. Octonionic spinors are 2-spinors with
octonion valued components. Could one say that the coefficients of octonion units have been
replaced with Grassmann numbers and the entire 2-component spinor is represented as a
pair of θc and θc? The two components of spinor in massless theories indeed correspond to
massless particle and its antiparticle.

2. One should obtain particles and antiparticles naturally as also separately conserved baryon
and lepton numbers (I have also considered the identification of hadrons in terms of anyonic
bound states of leptons with fractional charges).

Quarks and leptons have different coupling to the induced Kähler form at the level of H.
It seems impossible to understand this at the level of M8, where the dynamics is purely
algebraic and contains no gauge couplings.

The difference between quarks and leptons is that they allow color partial waves with triality
t = ±1 and triality t = 0. Color partial waves correspond to wave functions in the moduli
space CP2 for M4

0 ⊃ M2
0 . Could the distinction between quarks and leptons emerge at the

level of this moduli space rather than at the fundamental octonionic level? There would be
no need for gauge couplings to distinguish between quarks and leptons at the level of M8.
All couplings would follow from the criticality conditions guaranteeing 4-D associativity for
external particles (on mass shell states would be critical).

If so, one would have only the super octonions and θc and θc would correspond to fermions and
antifermions with no differentiation to quarks or leptons. Fermion number conservation would
be coded by the Grassmann algebra. Quantum classical correspondence (QCC) however
suggests that it should be possible to distinguish between quarks and leptons already at M8

level. Is it really enough that the distinction comes at the level of moduli space for CDs?

One can imagine also other options but they have their problems. Therefore this option will
be considered in the sequel.

6.3.2 Questions about quantum numbers

The first questions relate to fermionic statistics.

1. Do super-octonions really realize fermionic statistics and how? The polynomials of super-
octonions can have only finite degree in θ and θc. One an say that only finite number of
fermions are possible at given space-time point. As found, the conditions IM(P ) = 0 and
RE(P ) = 0 might allow only single fermion strings as solutions perhaps assignable to partonic
2-surfaces.

Can one allow for given CD arbitrary number of this kind of points as the idea that identical
fermions can reside at different points suggests? Or is the number of fermions finite for given
CD or correspond to the highest degree monomial of θ and θc in P?

Finite fermion number of CD looks somewhat disappointing at first. The states with high
fermion numbers would be described in terms of Cartesian products just like in condensed
matter physics. Note however that space-time varieties with different octonionic time axes
must be in any case described in this manner. It seems possible to describe the interactions
using super-space delta functions stating that the interaction occur only in the intersection
points of the space-time surfaces. The delta function would have also super-part as in SUSYs.

2. As found, the theta degree effectively reduces to d = 1 for the pointlike solutions, which
by above argument are the only possible solutions besides purely bosonic solutions. Only
single fermion would be allowed at given point. I have already earlier considered the question
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whether the partonic 2-surfaces can carry also many-fermion states or not [K22, K23], and
adopted the working hypothesis that fermion numbers are not larger than 1 for given worm-
hole throat, possibly for purely dynamical reasons. This picture however looks too limited.
The many fermion states might not however propagate as ordinary particles (the proposal
has been that their propagator pole corresponds to higher power of p2).

The M8 description of particle quantum numbers should be consistent with H description.

1. Can octonionic super geometry code for the quantum numbers of the particle states? It
seems that super-octonionic polynomials multiplied by octonionic multi-spinors inside single
CD can code only for the electroweak quantum numbers of fundamental particles besides
their fermion and anti-fermion numbers. What about color?

As already suggested, color corresponds to partial waves in CP2 serving as moduli space for
M4

0 ⊃ M2
0 . Also four-momentum and angular momentum are naturally assigned with the

translational degrees for the tip of CD assignable with the fundamental particle.

2. Quarks and leptons have different trialities at H level. How can one understand this at
M8 level. Could the color triality of fermion be determined by the color representation
assignable to the color decomposition of octonion as 8 = 1 + 1 + 3 + 3. This decomposition
occurs for all 3 terms in the super-octonion. Could the octet in question correspond to the
term D(8⊗ 8c; 8c)

mn
k oc,mθc,nE

k and analogous θc term in super octonion. Only this kind of
term survives from the entire super-octonion polynomial at fermionic string for the solutions
found.

3. There is however a problem: 8 = 1 + 1 + 3 + 3 decomposition is not consistent with the idea
that θc and θc have definite fermion numbers. Quarks appear only as 3, not 3. Why 3 from
θ term and 3 from θc term should drop out as allowed single fermion state?

There are also other questions.

1. What about twistors in this framework? M4×CP1 as twistor space with CP1 coding for the
choice of M2

0 ⊂M4
0 allows projection to the usual twistor space CP3. Twistor wave functions

describing spin elegantly would correspond to wave functions in the twistor space and one
expects that the notion of super-twistor is well-defined also now. The 6-D twistor space
SU(3)/U(2)×U(1) of CP2 would code besides the choice of M4

0 ⊃M2
0 also quantization axis

for color hypercharge and isospin.

2. The intersection of space-time surfaces with S6 giving analogs of partonic 2-surfaces might
make possible for two sparticle lines to fuse to form a third one at these surfaces. This would
define sparticle 3-vertex in very much the same manner as in twistor Grassmann approach
to N = 4 SUSY.

H-picture however supports the alternative option that sparticles just scatter but there is no
contact interaction defining analog of 3-vertex. If the lines can carry only single fermion, the
H picture about twistor diagrams [K22, K23] would be realized also at the level of M8! This
means breaking of SUSY since only single fermion states from the octonionic SUSY multiplet
are realized. This would provide and easy - perhaps too easy - explanation for the failure to
find SUSY at LHC.

3. What about the sphere S6 serving as the moduli space for the choices of M8
+? Should one

have wave functions in S6 or can one restrict the consideration to single M8
+? As found, one

obtains S6 also as the zero locus of Im(P ) = 0 for some radii identifiable as values tn of time
coordinates given as roots of P (t): as matter of fact, S6(tn) is a solution of both RE(P ) = 0
and IM(P ) = 0. Can one identify the intersections X4 ∩ S6 are 2-D as partonic 2-surfaces
serving as topological vertices?
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7 Could scattering amplitudes be computed in the octo-
nionic framework?

Octonionic algebraic geometry might provide incredibly simple framework for constructing scat-
tering amplitudes since now variational principle is involved and WCW reduces to a discrete set
of points in extension of rationals.

7.1 Could scattering amplitudes be computed at the level of M8?

It would be extremely nice if the scattering amplitudes could be computed at the octonionic level
by using a generalization of twistor approach in ZEO finding a nice justification at the level of M8.
Something rather similar to N = 4 twistor Grassmann approach suggests itself.

1. In ZEO picture one would consider the situation in which the passive boundary of CD and
members of state pairs at it appearing in zero energy state remain fixed during the sequence
of state function reductions inducing stepwise drift of the active boundary of CD and change
of states at it by unitary U-matrix at each step following by a localization in the moduli
space for the positions of the active boundary.

2. At the active boundary one would obtain quantum superposition of states corresponding to
different octonionic geometries for the outgoing particles. Instead of functional integral one
would have sum over discrete points of WCW. WCW coordinates would be the coefficients
of polynomial P in the extension of rationals. This would give undefined result without
additional constraints since rationals are a dense set of reals.

Criticality however serves as a constraint on the coefficients of the polynomials and is expected
to realize finite measurement resolution, and hopefully give a well defined finite result in the
summation. Criticality for the outgoing states would realize purely number theoretically
the cutoff due to finite measurement resolution and would be absolutely essential for the
finiteness and well-definedness of the theory.

7.2 Interaction vertices for space-time surfaces with the same CD

Consider interaction vertices for space-time surfaces associated with given CD. At the level of H
the fundamental interactions vertices are partonic 2-surfaces at which 3 light-like partonic orbits
meet. The incoming light-like sparticle lines scatter at this surface and they are not assumed to
meet at single vertex. This assumption is motivated because it allows to avoid infinities but one
must be ready to challenge it. It is essential that wormhole throats appear in pairs assignable to
wormhole contacts and also contacts form pairs by the conservation of Kähler magnetic flux.

What could be the counterpart of this picture at level of M8?

1. The simplest interaction could be associated with the common stable intersection points of
the space-time regions. By dimensional consideration these intersections are stable and form
a discrete set. This would however allow only 2-vertices involved in processes like mixing of
states. In the generic case the intersection would consist of discrete points.

2. A stronger condition would be that these points belong to the extension of rationals defining
adeles or is extension defined by the polynomial P . This would conform with the idea that
scattering amplitudes involve only data associated with the points in the extension. The
interaction points could be ramified points at which the action of a subgroup H of Galois
group G would leave sheets of the Galois covering invariant so that some number of sheets
would touch each other. I have discussed this proposal in [L6]. These points could be
seen as analogs of interaction points in QFT description in terms of n-point functions and
the sum over polynomials would give rise to the analog over integral over different n-point
configurations.

3. A possible interpretation is that if the subgroup H ⊂ G has k-elements the vertex represents
meeting of k sparticle lines and thus k-vertex would be in question. This picture is not what
the H view about twistor diagrams [K23] suggests: in these diagrams sparticle lines at the



7.2 Interaction vertices for space-time surfaces with the same CD 66

light-like orbits of partonic 2-surfaces do not meet at single point but only scatter at partonic
2-surface, where three light-like orbits of partonic 2-surfaces meet.

4. An alternative interpretation is that k-vertex describes the decay of particle to k fractional
particles at partonic 2-surfaces and has nothing do with the usual interaction vertex.

This proposal need not describe usual particle scattering. Could the intersection of space-
time varieties defined as zero loci for RE(Pi) and IM(Pi) with the special solutions S6(tn) and
CD = M4

+ ∩M4
− define the loci of interaction? It is difficult to believe that these special solutions

could be only a beauty spot of the theory. X2 = X4 ∩ S6(tn) is 2-D and X0 = X4 ∩ CD consists
of discrete points.

Consider now the possible role of the singular (RE(P ) = IM(P ) = 0) maximally critical surface
S6(tn) in the scattering.

1. As already found, the 6-D spheres S6 with radii tn given by the zeros of P (t) are universal
and have interpretation as t = tn snapshots of 7-D spherical light front projection to t = tn
3-balls as cross sections of 4-D CD. Could the 2-D intersection X2 = X4 ∩ S6(tn) play a
fundamental role in the description of interaction vertices?

2. Suppose that 3-vertices realize the dynamical realization of octonionic SUSY predicting large
number of sparticles. Could one understand in this framework the 3-vertex for the orbits X3

i

of partonic 2-surfaces meeting each other along their 2-D end defining partonic 2-surface and
undersand how 3 fermions lines meet at single point in this picture?

3. Assume that 3 partonic orbits X3
i , i = 1, 2, 3 meet at X2 = X4 ∩ S6(tn). That this occurs

could be part of boundary conditions, which should follow from interaction consistency. If
fermions just go through the X2

i in time direction they cannot meet at single point in the
generic case. If the sparticle lines however can move along X2 - maybe due the fact that an
intersection X2 = X4 ∩S6(tn) is in question - they intersect in the generic case and fuse to a
third fermion line. Note that this portion of fermion line would be space-like whereas outside
X2 the line would be light-like. This can be used as an objection against the idea.

The picture allowing 3-vertices would be different from H picture in which fermion lines only
scatter and only 2+2 fermion vertex assignable to topological 3-vertex is fundamental.

1. One would have 2 wormhole contacts carrying fermion and third one carrying fermion anti-
fermion pair at its opposite throats and analogous to boson. Of course, one can reproduce the
earlier picture by giving up the condition about supersymmetric fermionic 3-vertex. On the
other hand, the idea that interactions occur only at discrete points in extension of rationals
is extremely attractive.

2. The surprising outcome from the construction of solutions of super-variants of RE(P ) = 0
and IM(P ) = 0 conditions was that if the superpart of super-octonion is non-vanishing, the
variety can be only 1-D string like entity carrying one-fermion state. This does allow strings
with higher fermion number so that the 3-vertex would not be possible! This suggests that
fermionic lines appear as sub-varieties of space-time variety.

If so the original picture [K23] applying at the level of H applies also at the level of M8. SUSY
is broken dynamically allowing only single fermion states localized at strings and scattering
of these occurs by classical interactions at the partonic 2-surfaces defining the topological
vertices.

3. The only manner to have a point/line containing sparticle with higher fermion number
would be as a singularity along which several branches of super-variety degenerate to single
point/line: each variety would carry one fermion line. Unbroken octonionic SUSY would
characterize singularities of the space-time varieties, which would be unstable so that SUSY
would break. Singularities are indeed critical and thus unstable and also tend to possess
enhanced symmetries.
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What could be the interpretation of X0 = X4∩CD? For instance, could it be that these points
code for 4-momenta classically so that quantum classical correspondence (QCC) would be realized
also at the level of M8 although there are no Noether charges now. But what about angular
momenta? Could twistorialization realized in terms of the quaternionic structure of M4

0 help here.
What is the role of the intersections of 6-D twistor bundle of X4 with 6-D twistor bundle of M4

0

consisting of discrete points?
The interaction vertex would involve delta function telling that the interacting space-time

varieties or their regions touch at same point of M8. Delta function in theta parameter degrees of
freedom and Grassmann integral over them would be also involved and guarantee fermion number
conservation. Vertex factor should be determined by arguments used in Grassmannian twistor
approach. I have developed a proposal in [K23] but this proposal allows only fermion number ±1
at fermion lines. Now all members of the multiplet would be allowed.

7.3 How could the space-time varieties associated with different CDs
interact?

The interaction of space-time surfaces inside given CD is well-defined in the octonionic algebraic
geometry. The situation is not so clear for different CDs for which the choice of the origin of octo-
nionic coordinates is in general different and polynomial bases for different CDs do not commute
nor associate.

The intuitive expectation is that 4-D/8-D CDs can be located everywhere in M4/M8. The
polynomials with different origins neither commute nor are associative. Their sum is a polynomial
whose coefficients are not real. How could one avoid losing the extremely beautiful associative and
commutative algebra of polynomials?

1. Should one assume that the physics observable by single conscious observer corresponds to
single CD defining the perceptive field of this observer [L14].

2. Or should one give up associativity and allow products (but not sums since one should give
up the assumption that the coefficients of polynomials are real) of polynomials associated
with different CDs as an analog for the formation of free many-particle states.

Consider first what happens for the single particle solutions defined as solutions of either
RE(Pi) = 0 or IM(Pi) = 0.

1. The polynomials associated with different 8-D CDs do not commute nor associate. Should
one allow their products so that one would still effectively have a Cartesian product of com-
mutative and associative algebras? This would realize non-commutative and non-associative
physics emerging in conformal field theories also at the level of space-time geometry.

2. If the CDs differ by a real (time) translation o2 = o1 + T one still obtains IM(P1) = 0 and
IM(P2) = 0 as solutions to IM(P1P2) = 0. This applies also to states with more particles.
The identification would be in terms of external particles. For RE(P1P2) = 0 this is not the
case. If the interior of CD corresponds to RE(P1P2) = 0, the dynamics in the interior is not
only non-trivial but also non-commutative and non-associative. Non-trivial interaction would
be obtained even without interaction terms in the polynomial vanishing at the boundaries of
CD!

Could one consider allowing only CDs with tips at the same real axis but having all sizes
scales? This hierarchy of CD would characterize a particular hierarchy of conscious observers -
selves having sub-selves (sub-CDs) [L14]. The allowance of only these CD would be analogous
to a fixing of quantization axes.

3. What happens if one allows CDs differing by arbitrary octonion translation? Consider
external particles. For P1 and P2 RE and IM are defined for different decompositions
oi = RE(oi) + niIm(oi), where ni, i = 1, 2 is a unit octonion.

What decomposition should one use for P1P2? The decomposition for P1 or P2 or some other
decomposition? One can express P2(o2) using o1 as coordinate but the coefficients multiplying
powers of o1 from right would not be real numbers anymore implying IM(P2)1 6= IM(P2)2.
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IM(P2)1 = 0 makes sense but the presence of particle 1 would have affected particle 2 or
vice versa.

Could one argue that the coordinate systems satisfying the condition that some external
particles described by Pi have real coefficients and perhaps serving in the role of observers
are preferred? Or could one imagine that o12 is a kind of center of mass coordinate? In this
case the 4-varieties associated with both particles would be affected. What is clear that the
choice of the octonionic coordinate origin would affect the space-time varieties of external
particles even if they could remain associative/critical.

4. Are there preferred coordinates in which criticality is preserved? For instance, can one
achiever criticality for P2 on coordinates of o1 if P1 is critical. Could one see this as a kind
of number theoretic observer effect at the level of space-time geometry?

Remark: Pi(o) would reduce to a real polynomial at light-like rays with origin for oi irre-
spective of the octonionic coordinate used so that the spheres S6

i with origin at the origin of
oi as solutions of Pi(o) = 0 would not be lost.

If one does not give up associativity and commutativity for polynomials, how can one describe
the interactions between space-time surfaces inside different CDs at the level of M8? The following
proposal is the simplest one that one can imagine by assuming that interactions take place at
discrete points of space-time surfaces with coordinates belonging an extension of rationals.

1. The most straightforward manner would be to introduce Cartesian powers of O and CD:s
inside these powers to describe the interaction between CDs with different origin. This
would be analogous to what one does in condensed matter physics. What seems clear is that
M8 − H correspondence should map all the factors of (M8)n to the same M4 × CP2 by a
kind of diagonal projection.

In topological 3-parton vertex X2 three light-like partonic orbits along X4 would meet. X2

would be the contact of X4 with S6 associated with second 8-D CD. Together with SH this
gives hopes about an elegant description of interactions in terms of connected space-time
varieties.

2. The intersection X4
i ∩ X4

j consists of discrete set of points. This would suggest that the

interaction means transfer of fermion between X4
1 and X4

2 . The intersection of X = S6
1(tm)∩

S6
2(tn) is 4-D and space-like. The intersection X4

i ∩X consists of discrete points could these
discrete points allow to construct interaction vertices.

To make this more concrete, assume that the external particles outside the interaction CD
(CDint) defining the interaction region correspond to associative (or co-associative) space-time
varieties with different CDs.

Remark: CDs are now 8-dimensional.

1. One can assign the external particles to the Cartesian factors of (M8)n giving (P1, ..., Pn)
just like one does in condensed matter physics for particles in 3-space E3. Inside CDint the
Cartesian factors would fuse to single factor and instead of Cartesian product one would have
the octonionic product P =

∏
Pi plus the condition RE(P ) = 0 (or IM(P ) = 0: one should

avoid too strong assumptions at this stage) would give to the space-time surface defining the
interaction region.

2. RE(P ) = 0 and IM(P ) = 0 conditions make sense even, when the polynomials do not have
origin at common real axis and give rise to 4 conditions for 8 polynomials of 8 complexified
octonion components P i. It is not possible to reduce the situation at the light-like boundaries
of 8-D light-cone to a vanishing of polynomial P (t) of real coordinate t anymore, and one
loses the the surfaces S6

i as special solutions and therefore also the partonic 2-surfaces X2
i =

X4 ∩ S6
i . Should one assign all X2

i with the intersections of external particles with the two
boundaries δ± CD of CD defining the interaction region. They would intersect δ±CD at
highly unique discrete points defining the sparticle interaction vertices. By 7-dimensionality
of δ±CD the intersection points would be at the boundaries of 4-D CD and presumably at



7.4 Twistor Grassmannians and algebraic geometry 69

light-like partonic orbits at which the induced metric is singular at H side at least just as
required by H picture.

The most general external single-sparticle state would be defined by a product P of mutually
commuting and associating polynomials with tips of CD along common real axis and satisfy-
ing IM(Pi) = 0 or RE(Pi) = 0. This could give both free and bound states of constituents.

3. Different orders and associations for P =
∏
Pi give rise to different interaction regions. This

requires a sum over the scattering amplitudes
∑
p T (

∏
i Pp(i)) associated with the permuta-

tions p: (1, ..., n)→ (p(1), .., p(n)) and T =
∑
p U(p)T (Pp(1)...Pp(n)) (T (AB) +T (BA) in the

simplest case) with suitable phase factors U(p). Note that one does not have a sum over the
polynomials Pp(1)...Pp(n) but over the scattering amplitudes associated with them.

4. Depending on the monomial of theta parameters in super-octonion part of Pi, one has plus
or minus signs under the exchange of Pi and Pj . One can also have braid group as a lift
of the permutation group. In this case given contribution to the scattering amplitude has a
phase factor depending on the permutation (say T = T (AB) + exp(iθ)T (BA).

One must also form the sum T =
∑
Ass U(Ass)T (Ass(P )) over all associations for a given

permutation with phase factors U(Ass). Here T = T ((AB)C) + UT (A(BC)), U phase
factor, is the simplest case. One has “association statistics” as the analog of braid statistics.
Permutations and associations have now a concrete geometric meaning at the level of space-
time geometry - also at the level of H.

5. The geometric realization of permutations and associations could relate to the basic problem
encountered in the twistorial construction of the scattering amplitudes. One has essentially
sum over the cyclic permutations of the external particles but does not know how to construct
the amplitudes for general permutations, which correspond to non-planar Feynman diagrams.
The geometric realization of the permutations and associations would solve this problem in
TGD framework.

7.4 Twistor Grassmannians and algebraic geometry

Twistor Grassmannians provide an application of algebraic geometry involving the above described
notions [B2] (see http://tinyurl.com/yd9tf2ya). This approach allows extremely elegant ex-
pressions for planar amplitudes of N = 4 SYM theory in terms of amplitudes formulated in
Grassmannians G(k, n).

It seems that this approach generalizes to TGD in such a manner that CP2 degrees of free-
dom give rise to additional factors in the amplitudes having form very similar to the M4 part of
amplitudes and involving also G(k, n) with ordinary twistor space CP3 being replaced with the
flag manifold SU(3)/U(1)×U(1): k would now correspond to the number sparticles with negative
weak isospin. Therefore the understanding of the algebraic geometry of twistor amplitudes could
be helpful also in TGD framework.

7.4.1 Twistor Grassmannian approach very concisely

I try to compress my non-professional understanding of twistor Grassmann approach to some key
points.

1. Twistor Grassmannian approach constructs the scattering amplitudes by fusing 3-vertices
(+,-,-) (one positive helicity) and (-,+,+) (one negative helicity) to a more complex diagrams.
All particles are on mass shell and massless but complex. If only real massless momenta are
allowed the scattering amplitudes would allow only collinear gluons. Incoming particles have
real momenta.

Remark: Remarkably, M4×CP2 twistor lift of TGD predicts also complex Noether charges,
in particular momenta, already at classical level. Also M8−H duality requires a complexifi-
cation of octonions by adding commuting imaginary unit and allows to circumvent problems
related to the Minkowski signature since the metric tensor can be regarded as Euclidian
metric tensor defining complex value norm as bilinear mkmklm

l in complexified M8 so that

http://tinyurl.com/yd9tf2ya
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real metric is obtained only in sub-spaces with real or purely imaginary coordinates. The
additional imaginary unit allows also to define what complex algebraic numbers mean.

The unique property of 3-vertex is that the twistorial formulation for the conservation of
four-momentum implies that in the vertex one has either λ1 ∝ λ2 ∝ λ3 or λ1 ∝ λ2 ∝ λ3.
These cases correspond to the 2 3-vertices distinguished notationally by the color of the
vertex taken to be white or black [B2].

Remark: One must allow octonionic super-space in M8 formulation so that octonionic SUSY
broken by CP2 geometry reducing to the quaternionicity of 8-momenta in given scattering
diagram is obtained.

2. The conservation condition for the total four-momentum is quadratic in twistor variables for
incoming particles. One can linearize this condition by introducing auxiliary Grassmannian
G(k, n) over which the tree amplitude can be expressed as a residue integral. The number
theoretical beauty of the multiple residue integral is that it can make sense also p-adically
unlike ordinary integral.

The outcome of residue integral is a sum of residues at discrete set of points. One can
construct general planar diagrams containing loops from tree diagrams with loops by BCFW
recursion. I have considered the possibility that BCFW recursion is trivial in TGD since
coupling constants should be invariant under the addition of loops: the proposed scattering
diagrammatics however assumed that scattering vertices reduce to scattering vertices for 2
fermions. The justification for renormalization group invariance would be number theoretical:
there is no guarantee that infinite sum of diagrams gives simple function defined in all number
fields with parameters in extension of rationals (say rational function).

3. The general form of the Grassmannian integrand in G(k, n) can be deduced and follows from
Yangian invariance meaning that one has conformal symmetries and their duals which ex-
pand to full infinite-dimensional Yangian symmetry. The denominator of the integrand of
planar tree diagram is the product of determinants of k × k minors for the k × n matrix
providing representation of a point of G(k, n) unique apart from SL(k, k) transformations.
Only minors consisting of k consecutive columns are assumed in the product. The residue
integral is determined by the poles of the denominator. There are also dynamical singular-
ities allowing the amplitude to be non-vanishing only for some special configurations of the
external momenta.

4. On mass-shell diagrams obtained by fusing 3-vertices are highly redundant. One can describe
the general diagram by using a disk such that its boundary contains the external particles
with positive or negative helicity. The diagram has certain number nF of faces. There are
moves, which do not affect the amplitude and it is possible to reduce the number of faces to
minimal one: this gives what is called reduced diagram. Reduced diagrams with nF faces
define a unique nF − 1-dimensional sub-manifold of G(k, n) over which the residue integral
can be defined. Since the dimension of G(k, n) is finite, also nF is finite so that the number
of diagrams is finite.

5. On mass shell diagrams can be labelled by the permutations of the external lines. This gives
a connection with 1+1-dimensional QFTs and with braid group. In 1+1-D integral QFTs
however scattering matrix induces only particle exchanges.

The permutation has simple geometric description: one starts from the boundary point of
the diagram and moves always from left or right depending on the color of the point from
which one started. One arrives some other point at the boundary and the final points are
different for different starting points so that the process assigns a unique perturbation for
a given diagram. Diagrams which are obtained by moves from each other define the same
permutation. BFCW bridge which is a manner to obtain new Yangian invariant corresponds
to a permutation of consecutive external particles in the diagram.

6. The poles of the denominator determine the value of the multiple residue integrals. If one al-
lowed all minors, one would have extremely complex structure of singularities. The allowance
only cyclically taken minors simplifies the situation dramatically. Singularities correspond to
n subgroups of more than 2 collinear k-vectors implying vanishing of some of the minors.
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7. Algebraic geometry comes in rescue in the understanding of singularities. Since residue
integral is in question, the choice is rather free and only the homology equivalence class of
the cell decomposition matters. The poles for a hierarchy with poles inside poles since given
singularity contains sub-singularities. This hierarchy gives rise to a what is known as cell
composition - stratification - of Grassmannian consisting of varieties with various dimensions.
These sub-varieties define representatives for the homology group of Grassmannian. Schubert
cells already mentioned define this kind of stratification.

Remark: The stratification has very strong analogy of the decomposition of catastrophe in
Thom’s catastrophe theory to pieces of various dimensions. The smaller the dimension, the
higher the criticality involved. A connection with quantum criticality of TGD is therefore
highly suggestive.

Cyclicity implies a reduction of the stratification to that for positive Grassmannians for which
the points are representable as k × n matrices with non-negative k × k determinants. This
simplifies the situation even further.

Yangian symmetries have a geometric interpretation as symmetries of the stratification: level
1 Yangian symmetries are diffeomorphisms preserving the cell decomposition.

7.4.2 Problems of twistor approach

Twistor approach is extremely beautiful and elegant but has some problems.

1. The notion of twistor structure is problematic in curved space-times. In TGD framework
the twistor structures of M4 and CP2 (E4) induce twistor structure of space-time surface
and the problem disappears just like the problems related to classical conservation laws are
circumvented. Complexification of octonions allows to solve the problems related to the
metric signature in twistorialization.

2. The description of massive particles is a problem. In TGD framework M8 approach allows
to replace massive particles with particles with octonionic momenta light-like in 8-D sense
belonging to quaternionic subspace for a given diagram. The situation reduces to that for
ordinary twistors in this quaternionic sub-space but since quaternionic sub-space can vary,
additional degrees of freedom bringing in CP2 emerge and manifest themselves as transversal
8-D mass giving real mass in 4-D sense.

3. Non-planar diagrams are also a problem. In TGD framework a natural guess is that they
correspond to various permutations of free particle octonionic polynomials. Their product
defines interaction region in the interior of CD to which free particles satisfying associativity
conditions (quantum criticality) arrive. If the origins of polynomials are not along same time
axis, the polynomials do not commute nor associate. One must sum over their permutations
and for each permutation over its associations.

7.5 About the concrete construction of twistor amplitudes

At H-side the ground states of super-conformal representations are given by the anti-symmetrized
products of the modes of H-spinor fields labelled by four-momentum, color quantum numbers,
and electroweak (ew) quantum numbers. At partonic 2-surface one has finite number of many
fermion states. Single fermion states are assigned with H-spinor basis and the fermion states form
a representation of a finite-D Clifford algebra.

M8 picture should reproduce the physical equivalent of H picture: in particular, one should
understand four-momentum, color quantum numbers, ew quantum numbers, and B and L. M8−H
correspondence requires that the super-twistorial description of scattering amplitudes in M8 is
equivalent with that in H.

The M8 picture is roughly following.

1. The ground states of super-conformal representations expressible in terms of spinor modes
of H correspond at level of M8 wave functions in super variant of the product T (M4) ×
T (CP2) of twistor spaces of M4 and CP2. This twistor space emerges naturally in M8 −H
correspondence from the quaternionicity condition for 8-momenta.
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2. Bosonic M8 degrees of freedom translate to wave functions in the product T (M4)× T (CP2)
labelled by four-momentum and color. Super parts of the M4 and CP2 twistors code for spin
and ew degrees of freedom and fermion numbers. Only a finite number of spin-ew spin states
is possible for a given fundamental particle since one has finite-D Grassmann algebra.

3. Contrary to the earlier expectations [K23], the view about scattering diagrams is very similar
to that in N = 4 SUSY. The analog of 3-gluon vertex is fundamental and emerges naturally
from number theoretic vision in which scattering diagrams defines a cognitive representation
and vertices of the diagram correspond to fusion of sparticle lines.

7.5.1 Identification of H quantum numbers in terms of M8 quantum numbers

The first challenge is to understand how M8 −H correspondence maps M8 quantum numbers to
H quantum numbers. At the level of M8 one does not have action principle and conservation laws
must follow from the properties of wave functions in various moduli spaces assignable to 4-D and
8-D CDs that is quaternion and octonion structures. The symmetries of the moduli spaces would
dictate the properties of wave functions.

There are three types of symmetries and quantum numbers.

1. WCW quantum numbers

At level of H the quantum numbers in WCW“vibrational”degrees of freedom are associated
with the representations of super-symplectic group acting as isometries of WCW. Super-symplectic
generators correspond to Hamiltonians labelled by color and angular momentum quantum numbers
for SU(3) × SO(3). In M4

± there are also super-symplectic conformal weights assignable to the
radial light-coordinate in δM4

±. These conformal weights could be complex and might relate closely
to the zeros of Riemann zeta [K4]. Physical states should however have integer valued conformal
weights (conformal confinement).

At the level of M8 WCW “vibrational”degrees of freedom are discrete and correspond to the
degree of the octonionic polynomial P and its coefficients in the extension of rationals considered.
WCW integration reduces to a discrete sum, which should be well-defined by the criticality con-
ditions on the coefficients of the polynomials. M8 −H correspondence guarantees that 4-varieties
in M8 are mappable to space-time surfaces in H. Therefore also quantum numbers should be
mappable to each other.

There are also spinorial degrees of freedom associated with WCW spinors with spin-like quan-
tum numbers assignable to fermionic oscillator operators labelled by spin, ew quantum numbers,
fermion numbers, and by super-symplectic conformal weights.

2. Quantum numbers assignable to isometries of H.

These quantum numbers are special assignable to the ground states of the representations of
Kac-Moody algebras associated with light-like partonic orbits.

1. The isometry group of H consists of Poincare group and color group for CP2. M8 isometries
correspond to 8 − D Poincare group. Only G2 respects given octonion structure and 8-D
Lorentz transformations transform to each other different octonion structures. Quantum
numbers consist of 8-momentum and analogs of spin and ew spin. M8 −H correspondence
is non-trivial since one must map light-like quaternionic 8-momenta to 4-momenta and color
quantum numbers.

2. There are quantum numbers assignable to cm spinor degrees of freedom. They correspond
for both M8 and H to 8-D spinors and give rise to spin and ew quantum numbers. For these
quantum numbers M8 − H correspondence is trivial. At the level of H baryon and lepton
numbers are assignable to the conserved chiralities of H-spinors.

Quantum classical correspondence (QCC) is a key piece of TGD.

1. At the level of H QCC states that the eigenvalues of the fermionic Noether charges are equal
to the classical bosonic Noether charges in Cartan algebra implies that fermionic quantum
number as also ew quantum numbers and spin have correlates at the level of space-time
geometry.
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2. A the level of M8 QCC is very concrete. Both bosonic and superpart of octonions have the de-
composition 1+1+3+3 under color rotations. Each monomial of theta parameters character-
izes one particular many-fermion state containing leptons/antileptons and quarks/antiquarks.
Leptons/antileptons are assignable to complexified octonionic units (1 ± iI1)/

√
2 defining

preferred octonion plane M2 and quarks/antiquarks are assignable to triplet and antitriplet,
which also involve complexified octonion units. One obtains breaking of SUSY in the sense
that space-time varieties assignable to different theta monomials are different (one can argue
that the sum 8s + 8s can be regarded as real).

Purely leptonic and antileptonic varieties correspond to 1 and 1 and quark and antiquark
varieties to 3 and 3 and the monomial transforms as a tensor product of thetas. The monomial
has well defined quark and lepton numbers and the interpretation is that it characterizes
fundamental sparticle. At the level of H this kind of correspondence follows form QCC.

3. Also super-momentum leads to a characterization of spin and fermion numbers of the state
since delta function expressing conservation of super-momentum codes the supersymmetry
for scattering amplitudes and gives rise to vertices conserving fermion numbers. Does this
mean QCC in the sense that the super parts of super-momentum and super twistor should
be associated with space-time varieties with same fermion and spin content?

How the light-like quaternionic 8-momenta are mapped to H quantum numbers?

The key challenge is to understand how the light-like quaternionic 8-momenta are mapped to
massive M4 momenta and color quantum numbers.

1. One has wave function in the space of CP2 quaternionic four-momenta. M4
0 momentum

can be identified as M2
0 projection and in general massive unless M2

0 and M4
0 are chosen so

that the light-like M8 momentum belongs to M2
0 . The situation is analogous to that in the

partonic description of hadron scattering.

The space of quaternionic sub-spaces M4
0 ⊃M2

0 with this property is parameterized by CP2,
and one obtains color partial waves. The inclusion of the choice of quantization axis extends
this space to T (CP2) = SU(3)/U(1)×U(1). Without quaternionicity/associativity condition
the space of momenta would correspond to M8.

The wave functions in the moduli space for the position of the tip of CD and for the choice
M2

0 ⊃M4
0 specifying M4

0 twistor structure and choice of quantization axis of spin correspond
to wave functions in the twistor space CP3 of M4

± coding for momentum and spin.

Remark: The inclusion of M4 spin quantization axis characterized by the choice of M2
0

extends M4
0 to geometric twistor space T (M4) = M4

0 ×S2 ⊃M2
0 having bundle projection to

CP3. Twistorialization means essentially the inclusion of the choice of various quantization
axis as degrees of freedom. This space is for symmetry group G the space G/H, where
H is the Cartan sub-group of G. This description might make sense also at the level of
super-symplectic and super-Kac-Moody symmetries.

2. Ordinary octonionic degrees of freedom for super-octonions in M8 must be mapped to M4×
CP2 cm degrees of freedom. Super octonionic parts should correspond to fermionic and spin
and electroweak degrees of freedom. The space of super-twistorial states should same as the
space of the super-symplectic grounds states describable in terms H-spinor modes.

3. One has wave function in the moduli space of CDs. The states in M8 are labelled by
quaternionic super-momenta. Bosonic part must correspond to four-momentum and color
and super-part to spin and ew quantum numbers of CP2. This part of the moduli space
wave function is characterized by the spin and ew spin quantum numbers of the fundamental
particle. Wave functions in the super counterpart of T (M4)× T (CP2) allow to characterize
these degrees of freedom without the introduction of spinors and should correspond to the
ground states of super-conformal representations in H.

It seems that H-description is an abstract description at the level moduli spaces and M8

description for single space-time variety represents reduction to the primary level, where number
theory dictates the dynamics.
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7.5.2 Octonionic twistors and super-twistors

How to define octonionic twistors? Or is it enough to identify quaternionic/associative twistors as
sub-spaces of octonionic twistors?

1. Ordinary twistors and super-twistors

Consider first how ordinary twistors and their super counterparts could be defined, and how
they could allow an elegant description of spin and ew quantum numbers as quantum numbers
analogous to angular momenta.

1. Ordinary twistors are defined as pairs of 2-spinors giving rise to a representation of four-
momentum. The spinors are complex spinors transforming as a doublet representation of
SL(2,C) and its conjugate.

The 2-spinors are related by incidence relation, a linear condition in which M4 coordinates
represented as 2 × 2 matrix appears linearly [K23]. The expression of four-momentum is
bilinear in the spinors and invariant under complex scalings of the 2-spinors compensating
each other so that instead of 8-D space one has actually 6-D space, which reduces to CP3 to
which the geometric twistor space M4 × S2 has a projection.

2. For light-like four-momenta p the determinant of the matrix having the two 2-spinors as
rows and representing p as a point of M4 vanishes. Wave functions in CP3 allow to describe
spin in terms of bosonic wave function. What is so beautiful is that this puts particles with
different spin in a democratic position.

Super-twistors allow to integrate the states constructible as many-fermion states of N el-
ementary fermions in the same representations involving several spins. The many-fermion
states - sparticles - are in 1-1-correspondence with Grassmann algebra basis.

3. The description of massless particles in terms of M4 (super-)twistors is elegant but one
encounters problems in the case of massive particles [K13, K22, K23].

2. Octonionic twistors at the level of M8?

How to define octonionic twistors at the level of M8?

1. At the level of M8 one has light-like 8-momenta. The M4 momentum identified as M4
0

projection can there be massive. This solves the basic problem of the standard twistor
approach.

2. The additional assumption is that the 8-momenta in given vertex of scattering diagram
belong to the same quaternionic sub-space M4

0 ⊂ M8 satisfying M4
0 ⊃ M2

0 . This effectively
transforms momentum space M4×E4 to M4×CP2. A stronger condition is that all momenta
in a given diagram belong to the same sub-space M4

0 ⊃M2
0 .

Remark: Quaternionicity implies that the 8-momentum is time-like or light-like if one re-
quires that quaternionicity for an arbitrary choice of the octonionic structure (the action of
8-D Poincare group gives rise transforms octonionic structures to each other).

3. Complex 2-spinors are replaced with complexified octonionic spinors which must be consistent
quaternionicity condition for 8-momenta. A good guess is that the spinors belong to a
quaternionic sub-space of octonions too. This is expected to transform them effectively to
quaternionic spinors. Without effective quaternionicity the number of 2-spinor components
would be 8 rather than 4 times larger than for ordinary 2-spinors.

Remark: One has complexified octonions (i commutes with the octonionic imaginary units
Ek).

4. Octonionic/quaternionic twistors should be pairs of octonionic/quaternionic 2-spinors de-
termined only modulo octonionic/quaternionic scaling. If quaternionicity holds true, the
number of 2-spinor components is 4 times larger than usually. Does this mean that one has
basically quaternionic twistors plus moduli space CP2 for M4

0 ⊃ M2
0 . One should be able
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to express octonionic twistors as bi-linears formed from 2 octonionic/quaternionic 2-spinors.
Octonionic option should give the octonionic counterpart OP3 of Grassmannian CP3, which
does not however exist.

Remark: Octonions allow only projective plane OP2 as the octonionic counterpart of
CP2 (see http://tinyurl.com/ybwaeu2s) but do not allow higher-D projective spaces nor
Grassmannians (see http://tinyurl.com/ybm8ubef, whereas reals, complex numbers, and
quaternions do so. The non-existence of Grassmannians for rings obtained by Cayley-Dickson
construction could mean that M8 −H correspondence and TGD do not generalize beyond
octonions.

Does the restriction to quaternionic 8-momenta the Grassmannians to be quaternionic (sub-
spaces of octonions). This would give quaternionic counterpart HP3 of CP3. Quaternions
indeed allow projective spaces and Grassmannians and (see http://tinyurl.com/y9htjstc

and http://tinyurl.com/y87gpq8l).

Remark: One can wonder whether non-commutativity forces to distinguish between left- and
right Grassmannians (points as lines {c(q1, .., qn)|c ∈ H} or as lines as lines {(q1, .., qn)c|c ∈
H}.

5. Concerning the generalization to octonionic case, it is crucial to realize that the 2× 2-matrix
representing four-momentum as a pair 2-spinor can be regarded as an element in the sub-
space of complexified quaternions. The representation of four-momentum would be as sum
of p8 = pk1σk + I4p

k
2σk, where I4 octonionic imaginary unit orthogonal to σk representing

quaternionic units.

No! The twistorial representation of the 4-momentum is already quaternionic! Choosing
the decomposition of M8 to quaternionic sub-space and its complement suitably, one has
IM(p8) = 0 for quaternionic 8-momenta and one obtains standard representation of 4-
momentum in this sub-space! The only new element is that one has now moduli specifying
the quaternionic sub-space. If the sub-space contains a fixed M2

0 one obtains just CP2 and
ordinary twistor codes for the choices of M2

0 . If the choice of color quantization axes matters
as it indeed does, one has twistor space SU(3)/U(1)×U(1) instead of CP2. This would sug-
gest that ordinary representation of scattering amplitudes reduces apart from the presence
of CP2 twistor to the usual representation.

One can hope for a reduction to ordinary twistors and projective spaces, moduli space CP2

for quaternion structures, and moduli space for the choices of real axis of octonion structures.
One can even consider the possibility [K23] of using standard M2

0 with the property that M8

momentum reduces to M2
0 momentum and coding the information about real M2

0 to moduli.
This could reduce the twistor space to RP (3) associated with M2

0 is considered and solve the
problems related to the signature of M4. Note however that the complexification of octonions
in any case allow to regard the metric as Euclidian albeit complexified so that these problems
should disappear.

3. Octonionic super-twistors at the level of M8?

Should one generalize the notion of super-twistor to octonionic context or can one do by using
only the moduli space and the fact that octonionic geometry codes for various components of
octonion as analog of super-field? It seems that super-twistors are needed.

1. It seems that super-twistors are needed. Octonionic super-momentum would appear in the
super variant of momentum conserving delta function resulting in the integration over trans-
lational moduli. In twistor Grassmann approach this delta function is super-twistorialized
and this leads to the amazingly simple expressions for the scattering amplitudes.

2. At the level of M8 one should generalize ordinary momentum to super-momentum and per-
form super-twistorialization. Different monomials of theta parameters emerging from super
part of momentum conserving delta function (for N = 1 one has δ(θ− θ0) = exp(iθ− θ0)/i)
correspond to different spin states of the super multiplet and anti-commutativity guarantees
correct statistics. At the level of H the finite-D Clifford algebra of 8-spinors at fixed point of

http://tinyurl.com/ybwaeu2s
http://tinyurl.com/ybm8ubef
http://tinyurl.com/y9htjstc
http://tinyurl.com/y87gpq8l
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H gives states obtained as monomials or polynomials for the components of super-momentum
in M8.

3. Octonionic super-momentum satisfying quaternionicity condition can be defined as a combi-
nation of ordinary octonionic 8-momentum and super-parts transforming like 8s and 8s. One
can express the octonionic super-momentum as a bilinear of the super-spinors defining quater-
nionic super-twistor. Quaternionicity is assumed at least for the octonionic super-momenta
in the same vertex. Hence the M4 part of the super-twistorialization reduces to that in
SUSYs and one obtains standard formulas. The new elements is the super-twistorialization
of T (CP2).

Remark: Octonionic SUSY involving 8 + 8s + 8s would be an analog of N = 8 SUSY as-
sociated with maximal supergravity (see http://tinyurl.com/nv3aajy) and in M4 degrees
of freedom twistorialization should be straightforward.

The octonionic super-momentum belongs to a quaternionic sub-space labelled by CP2 point
and corresponds to a particular sub-space M2

0 in which it is light-like (has no other octonionic
components). M2

0 is characterized by point of S2 point of twistor spaceM4×S2 having bundle
projection to CP3.

4. That the twistor space T (CP2) = SU(3)/U(1)×U(1) coding for the color quantization axes
rather than only CP2 emerges must relate to the presence of electroweak quantum numbers
related to the super part of octonionic momentum. Why the rotations of SU(2) × U(1) ⊂
SU(3) have indeed interpretation also as tangent space-rotations interpreted as electroweak
rotations. The transformations having an effect on the choice of quantization axies are
parameterized by S2 relating naturally to the choice of SO(4) quantization axis in E4 and
coded by the geometric twistor space T (E4) = E4 × S2.

5. Since the super-structure is very closely related to the construction of the exterior algebra in
the tangent space, super-twistorialization of T (CP2) should be possible. Octonionic triality
could be also in a key role and octonionic structure in the tangent space of SU(3) is highly
suggestive. SU(3) triality could relate to the octonionic triality.

SU(3)/U(1)×U(1) is analogous with the ordinary twistor space CP3 obtained from C4 as a
projective space. Now however U(1)×U(1) instead of group of complex scalings would define
the equivalence classes. Generalization of projective space would be in question. The super-
part of twistor would be obtained as U(1)× U(1) equivalence class and gauge choice should
be possible to get manifestly 6-D representation. One can ask whether the CP2 counterparts
of higher- D Grassmannians appear at the level of generalized twistor diagrams: could the
spaces SU(n)/G, H Cartan group correspond to these spaces?

4. How the wave functions in super-counterpart of T (CP2) correspond to quantum states in
CP2 degrees of freedom?

In CP2 spinor partial waves have vanishing triality t = 0 for leptonic chirality and t = ±1
for quarks and antiquarks. One can say that the triality t 6= 1 states are possible thanks to the
anomalous hypercharge equal to fractional electromagnetic charge YA = Qem of quarks: this gives
also correlation between color quantum numbers and electroweak quantum numbers which is wrong
for spinor partial waves. The super-symplectic and super Kac-Moody algebras however bring in
vibrationals degrees of freedom and one obtains correct quantum number assignments [K7].

This mechanism should have a counterpart at the level of the super variant of the twistor
space T (CP2) = SU(3)/U(1)× U(1). The group algebra of SU(3) gives the scalar wave functions
for all irreps of SU(3) as matrix elements. Allowing only matrix elements that are left- or right
invariant under U(1) × U(1) one obtains all irreps realized in T (CP2) as scalar wave functions.
These representations have t = 0. The situation would be analogous for scalar functions in CP2.
One must however obtain also electroweak quantum numbers and t 6= 0 colored states. Here the
octonionic algebraic geometry and superpart of the T (CP2) should come in rescue. The electroweak
degrees of freedom in CP2 should correspond to the super-parts of twistors.

The SU(3) triplets assignable to the triplets 3 and 3 of space-time surfaces would make possible
also the t = ±1 states. Color would be associated with the octonionic geometry. The simplest

http://tinyurl.com/nv3aajy
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possibility would be that one has just tensor products of the triplets with SU(3)/U(1) × U(1)
partial waves. In the case of CP2 there is however a correlation between color partial waves and
electroweak quantum numbers and the same is expected also now between super-part of the twistor
and geometric color wave function: minimum correlation is via YA = Qem. The minimal option is
that the number theoretic color for the octonionic variety modifies the transformation properties
of T (CP2) wave function only by a phase factor due to YA = Qem as in the case of CP2.

The most elegant outcome would be that super-twistorial state basis in T (M4)timesT (CP2) is
equivalent with the state basis defined by super-symplectic and super Kac-Moody representations
in H.

7.5.3 About the analogs of twistor diagrams

There seems to be a strong analogy with the construction of twistor amplitudes in N = 4 SUSY
[B1, B4, B3] and one can hope of obtaining a purely geometric analog of SUSY with dynamics of
fields replaced by the dynamics of algebraic super-octonionic surfaces.

1. Number theoretical vision leads to the proposal that the scattering amplitudes involve only
data at discrete points of the space-time variety belonging to extension of rationals defining
cognitive representation. The identification of these points has been already considered in
the case of partonic orbits entering to the partonic 2-vertex and for the regions of space-
time surfaces intersecting at discrete set of points. Scattering diagrams should therefore
correspond to polygons with vertices of polygons defining cognitive representation and lines
assignable to the external fundamental particles with given quark and lepton numbers having
correlates at the level of space-time geometry. This occurs also in twistor Grassmannian
approach [B1, B4, B3].

Since polynomials determine space-time surfaces, this data is enough to determine the space-
time variety completely. Indeed, the zeros of P (t) determining the space-time variety give also
rise to a set of spheres S6(tn) and partonic 2-surfaces X2(tn) = X4∩S6(tn), where tn is root
of P (t). The discretization need not mean a loss of information. The scattering amplitudes
would be expressible as an analog of n-point function with points having coordinates in the
extension of rationals.

2. (Super) octonion as“field”in X4 is dynamically analogous to (super) gauge potentials and
super-octonion to its super variant. (Super) gauge potentials are replaced with M8 (super-)
octonion coordinate and gauge interactions are geometrized. Here I encounter a problem with
terminology. Neither sparticle nor sboson sounds good. Hence I will talk about sparticles.

3. The amplitude for a given space-time variety contains no information M8-momentum. M8-
momentum emerges as a label for a wave function in the moduli space of 4-D and 8-D CDs
involving both translational and orientational degrees of freedom. For fixed time axis the
orientational degrees of freedom reduce to rotational degrees of freedom identifiable in terms
of the twistor sphere S2. The delta functions expressing conservation of 8-D quaternionic
super-momentum in M8 coming from the integration over the moduli space of 8-D transla-
tions.

As found, quaternionicity of 8-momenta implies that standard M4 twistor description of
momenta applies but one obtains CP2 twistors as additional contribution. This is of course
what one would intuitively expect.

8-D momentum conservation in turn translates to the conservation of momentum and color
quantum numbers in the manner described. The amplitudes in momentum and color degrees
of freedom reduce to kinematics as in SUSYs. It is however not clear whether one should
also perform number theoretical discretization of various moduli spaces.

In any case, it seems that all the details of the scattering amplitudes related to moduli spaces
reduce to symmetries and the core of calculations reduces to the construction of space-time
varieties as zero loci of octonionic polynomials and identification of the points of the 4-
varieties in extension of rationals. Classical theory would indeed be an exact part of the
quantum theory.
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4. Quaternionic 8-D light-likeness reduces the situation to the level of ordinary complex and
thus even positive (real) Grassmannians. This is crucial from the p-adic point of view. CP2

twistors characterizes the moduli related to the choice of quaternionic sub-space, where 8-
momentum reduces to ordinary 4-momentum. M4 parts of the scattering amplitudes in
twistor Grassmann approach should be essentially the same as in N = 4 SUSY apart from
the replacement of super degrees of freedom with super-octonionic ones. The challenge is
to generalize the formalism so that it applies also to CP2 twistors. The challenge would
be to generalize the formalism so that it applies also to CP2 twistors. The M4 and CP2

degrees of freedom are expected to factorize in twistorial amplitudes. A good guess is that
the scattering amplitudes are obtained as residue integrals in the analogs of Grassmannians
associated with T (CP2). Could one have Grassmannians also now?

Consider the formula of tree amplitude for n gluons with k negative helicities conjectured
Arkani-Hamed et al in the twistor Grassmannian approach [B3]. The amplitude follows from
the twistorial representation for momentum conservation and is equal to an k × n-fold mul-
tiple residue integral over the complex variables Cαa defining coordinates for Grassmannian
Gl(n, k) and reduces to a sum over residues. The integrand is the inverse for the product of all
k×k minors of the matrix Cαa in cyclic order and the resides corresponds to zeros for one or
more minors. This part does not depend on twistor variables. The dependence on n twistor
variables comes from the product

∏k
α=1 δ(CαaW

a) of k delta functions related to momentum
conservation. W a denotes super-twistors in the 8-D representation, which is linear. One has
projective invariance and therefore a reduction to T (M4) = CP3 = SU(4)/SU(3)× U(1).

Could this formula generalize almost as such to T (CP2) and come from the conservation of E4

momentum? One has n sparticles to which super-twistors in T (CP2) are assigned. The first
guess is that the sign of helicity are replaced by the sign of electroweak isospin - essentially
E4 spin at the level of M8. For electromagnetic charge identified as the analog of helicity
one would have problems in the case of neutrinos. T (M4) = CP3 = SU(4)/SU(3)× U(1) is
replaced with T (CP2) = SU(3)/U(1) × U(1). T (CP2) does not have a representation as a
projective space but there is a close analogy since the group of complex scalings is replaced
with U(1) × U(1). The (apparent) linearity is lost but one represent the points of T (CP2)
as exponentials of su(3) Lie-algebra elements with vanishing u(1)× u(1) part. The resulting
3 complex coordinates are analogous to two complex CP2 coordinates. The basic difference
between M4 and CP2 degrees of freedom would come from the exponential representation of
twistors.

5. By Yangian invariance one should obtain very similar formulas for the amplitudes except
that one has instead of N = 4 SUSY N = 8 octonionic SUSY analogous to N = 8 SUGRA.

7.5.4 Trying to understand the fundamental 3-vertex

Due to its unique twistorial properties as far as realization of four-momentum conservation is con-
sidered 3-vertex is fundamental in the construction of scattering diagrams in twistor Grassmannian
approach toN = 4 SYM [B2] (see http://tinyurl.com/yd9tf2ya). Twistor Grassmann approach
suggests that 3-vertex with complexified light-like 8-momenta represents the basic building brick
representing from which more complex diagrams can be constructed using the BCFW recursion
formula [B2]. In TGD 3-vertex generalized to 8-D light-like quaternionic momenta should be highly
analogous to the 4-D 3-vertex and in a well-defined sense reduce to it if all momenta of the diagram
belong to the same quaternionic sub-space M4

0 . It is however not completely clear how 3-vertex
emerges in TGD framework.

1. A possible identification of the 3-vertex at the level of M8 would be as a vertex at which 3
sparticle lines with light-like complexified quaternionic 8-momenta meet. This vertex would
be associated with the partonic vertex X2(tn) = X4∩S6(tn). Incoming sparticle lines at the
light-like partonic orbits identified as boundaries of string world sheets (for entangled states
at least) would be light-like.

Does the fusion of two sparticle lines to third one require that either or both fusing lines
become space-like - say pieces of geodesic line inside the Euclidian space-time region- bounded

http://tinyurl.com/yd9tf2ya
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by the partonic orbit? The identification of the lines of twistor diagrams as carriers of light-
like complexified quaternionic momenta in 8-D sense does not encourage this interpretation
(also classical momenta are complex). Should one pose the fusion of the light-like lines as a
boundary condition? Or should one give up the idea that sparticle lines make sense inside
interaction region?

2. As found, one can challenge the assumption about the existence of string world sheets as
commutative regions in the non-associative interaction region. Could one have just fermion
lines as light-like curves at partonic orbits inside CD? Or cannot one have even them?

Even if the polynomial
∏
i Pi defining the interaction region is product of polynomials with

origins of octonionic coordinates not along the same real line, the 7-D light-cones of M8

associated with the particles still make sense in the sense that Pi(oi) = 0 reduces at it to
Pi(ti) = 0, ti real number, giving spheres S6(ti(n)) and partonic 2-surfaces and vertices
X2(ti(n)). The light-like curves as geodesics the boundary of 7-D light-cones mapped to
light-like curves along partonic orbits in H would not be lost inside interaction regions.

3. At the level of H this relates to a long standing interpretational problem related to the notion
of induced spinor fields. SH suggests strongly the localization of the induced spinor fields at
string world sheets and even at sparton lines in absence of entanglement. Super-conformal
symmetry however requires that induced spinor fields are 4-D and thus seems to favor de-
localization. The information theoretic interpretation is that the induced spinor fields at
string world sheets or even at sparton lines contain all information needed to construct the
scattering amplitudes. One can also say that string world sheets and sparton lines correspond
to a description in terms of an effective action.

7.5.5 Could the M8 view about twistorial scattering amplitudes be consistent with
the earlier H picture?

The proposed M8 picture involving super coordinates of M8 and super-twistors does not conform
with the earlier proposal for the construction of scattering amplitudes at the level of H [K23]. In
H picture the introduction of super-space does not look natural, and one can say that fundamental
fermions are the only fundamental particles [K22, K23]. The H view about super-symmetry is as
broken supersymmetry in which many fermion states at partonic 2-surfaces give rise to supermulti-
plets such that fermions are at different points. Fermion 4-vertex would be the fundamental vertex
and involve classical scattering without fusion of fermion lines. Only a redistribution of fermion
and anti-fermion lines among the orbits of partonic 2-surfaces would take place in scattering and
one would have kind of OZI rule.

Could this H view conform with the recent M8 view much closer to the SUSY picture. The
intuitive idea without a rigorous justification has been that the fermion lines at partonic 2-surfaces
correspond to singularities of many-sheeted space-time surface at which some sheets co-incide. M8

sparticle consists effectively of n fermions at the same point in M8. Could it be mapped by M8−H
duality to n fermions at distinct locations of partonic 2-surface in H?

M8−H correspondence maps the points of M4 ⊂M4×E4 to points of M4 ⊂M4×CP2. The
tangent plane of space-time surface containing a preferred M2 is mapped to a point of CP2. If the
effective n-fermion state M8 is at point at which n sheets of space-time surface co-incide and if the
tangent spaces of different sheets are not identical, which is quite possible and even plausible, the
point is indeed mapped to n points of H with same M4 coordinates but different CP2 coordinates
and sparticle would be mapped to a genuine many-fermion state. But what happens to scalar
sparticle. Should one regard it as a pure gauge degree of freedom in accordance with the chiral
symmetry at the level of M8 and H?

8 Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view

Gromov-Witten (G-W) invariants, Riemann-Roch theorem (RR), and Atyiah-Singer index theorem
(AS) are applied in advanced algebraic geometry, and it is interesting to see whether they could have
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counterparts in TGD framework. The basic difference between TGD and conventional algebraic
geometry is due to the adelic hierarchy demanding that the coefficients of polynomials involved
are in given extension of rationals. Continuous moduli spaces are replaced with discrete ones
by number theoretical quantization due to the criticality guaranteeing associativity of tangent or
normal space. M8 − H duality brings in powerful consistency conditions: counting of allowed
combinations of coefficients of polynomials on M8 side and counting of dimensions on H side using
AS should give same results. M8 −H duality might be in fact analogous to the mirror symmetry
of M-theory.

8.1 About the analogs of Gromow-Witten invariants and branes in TGD

Gromow-Witten invariants, whose definition was discussed in [L9], play a central role in superstring
theories and M-theory and are closely related to branes. For instance, partition functions can
be expressed in terms of these invariants giving additional invariants of symplectic and algebraic
geometries. Hence it is interesting to look whether they could be important also in TGD framework.

1. As such the definition of G-W invariants discussed in [L9] do not make sense in TGD frame-
work. For instance, space-time surface is not a closed symplectic manifold whereas M8

and H are analogs of symplectic spaces. Minkowskian regions of space-time surface have
Hamilton-Jacobi structure at the level of both M8 and H and this might replace the sym-
plectic structure. Space-time surfaces are not closed manifolds.

Physical intuition however suggests that the generalization exists. The fact that Minkowskian
metric and Euclidian metric for complexified octonions are obtained in various sectors for
which complex valued length squared is real suggests that signature is not a problem. Kähler
form for complexified z gives as special case analog of Kähler form for E4 and M4.

2. The quantum intersection defines a description of interactions in terms of string world sheets.
If I have understood G-W invariant correctly, one could have for D > 4-dimensional symplec-
tic spaces besides partonic 2k − 2-D surfaces also surfaces with smaller but even dimension
identifiable as branes of various dimensions. Branes would correspond to a generalization of
relative cohomology. In TGD framework one has 2k = 4 and the partonic 2-surfaces have
dimension 2 so that classical intersections consisting of discrete points are possible and stable
for string world sheets and partonic 2-surfaces. This is a unique feature of 4-D space-time.

One might think a generalization of G-W invariant allowing to see string world sheets as con-
necting the spaced-like 3-surfaces at the boundaries of CDs and light-like orbits of partonic
2-surfaces. The intersection is not discrete now and marked points would naturally corre-
spond to the ends points of strings at partonic 2-surfaces associated with the boundaries of
CD and with the vertices of topological scattering diagrams.

3. The idea about 2-D string world sheet as interaction region could generalize in TGD to
space-time surface inside CD defining 4-D interaction region. In [L10] one indeed ends up
with amazingly similar description of interactions for n external particles entering CD and
represented as zero loci for quaternion valued “real” part RE(P ) or “imaginary” part IM(P )
for the complexified octonionic polynomial.

Associativity forces quantum criticality posing conditions on the coefficients of the polyno-
mials. Polynomials with the origin of octonion coordinate along the same real axis commute
and associate. Since the origins are different for external particles in the general case, the
polynomials representing particles neither commute nor associate inside the interaction re-
gion defined by CD but one can also now define zero loci for both RE(

∏
Pi) and IM(

∏
Pi)

giving Pi = 0 for some i. Now different permutations and different associations give rise to
different interaction regions and amplitude must be sum over all these.

3-vertices would correspond to conditions Pi = 0 for 3 indices i simultaneously. The strongest
condition is that 3 partonic 2-surfaces X2

i co-incide: this condition does not satisfy classical
dimension rule and should be posed as essentially 4-D boundary condition. Two partonic
2-surfaces X2

i (ti(n)) intersect at discrete set of points: could one assume that the sparticle
lines intersect and there fusion is forced by boundary condition? Or could one imagine that
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partonic 2-surfaces turns back in time and second partonic 2-surface intersects it at the
turning point?

4. In 4-D context string world sheets are associated with magnetic flux tubes connecting partonic
orbits and together with strings serve as correlates for negentropic entanglement assignable
to the p-adic sectors of the adele considered, to attention in consciousness theory, and to
remote mental interactions in general and occurring routinely between magnetic body and
biological body also in ordinary biology. This raises the question whether “quantum touch”
generalizes from 2-D string world sheets to 4-D space-time surface (magnetic flux tubes)
connecting 3-surfaces at the orbits and partonic orbits.

5. The above formulation applies to closed symplectic manifolds X. One can however generalize
the formulation to algebraic geometry. Now the algebraic curve X2 is characterized by genus
g and order of polynomial n defining it. This formulation looks very natural in M8 picture.

An interesting question is whether the notion of brane makes sense in TGD framework.

1. In TGD branes inside space-time variety are replaced by partonic 2-surfaces and possibly
by their light-like orbits at which the induced metric changes signature. These surfaces are
metrically 2-D. String world sheets inside space-time surfaces have discrete intersection with
the partonic 2-surfaces. The intersection of strings as space-like resp. light-like boundaries of
string world sheet with partonic orbit sheet resp. space-like 3-D ends of space-time surface
at boundaries of CD is also discrete classically.

2. An interesting question concerns the role of 6-spheres S6(tn) appearing as special solutions
to the octonionic zero locus conditions solving both RE(Pn) = 0 and IM(Pn) = 0 requiring
Pn(o) = 0. This can be true at 7-D light cone o = et, e light-like vector and t a real parameter.
The roots tn of P (t) = 0 give 6-spheres S6(tn) with radius tn as solutions to the singularity
condition. As found, one can assign to each factor Pi in the product of polynomials defining
many-particle state in interaction region its own partonic 2-surfaces X2(tn) related to the
solution of Pi(t) = 0

Could one interpret 6-spheres as brane like objects, which can be connected by 2-D “free”
string world sheets as 2-varieties in M8 and having discrete intersection with them implied
by the classical dimension condition for the intersection. Free string world sheets would be
something new and could be seen as trivially associative surfaces whereas 6-spheres would
represent trivially co-associative surfaces in M8.

The 2-D intersections of S6(tn) with space-time surfaces define partonic 2-surfaces X2 ap-
pearing at then ends of space-time and as vertices of topological diagrams. Light-like sparticle
lines along parton orbits would fuse at the partonic 2-surfaces and give rise to the analog of
3-vertex in N = 4 SUSY.

Some further TGD inspired remarks are in order.

1. Virasoro conjecture generalizing Witten conjecture involves half Virasoro algebra. Super-
Virasoro algebra algebra and its super-symplectic counterpart (SSA) play a key role in the
formulation of TGD at level of H. Also these algebras are half algebras. The analogs of
super-conformal conformal gauge conditions state that sub-algebra of SSA with conformal
weights coming as n-ples of those for entire algebra and its commutator with entire SSA give
rise to vanishing Noether charges and annihilate physical states.

These conditions are conjecture to fix the preferred extremals and serve as boundary con-
ditions allowing the formulation of M8 − H correspondence inside space-time regions (in-
teraction regions), where the associativity conditions fail to be true and direct M8 − H
correspondence does not make sense. Non-trivial solutions to these conditions are possi-
ble only if one assumes half super-conformal and half super-symplectic algebras. Otherwise
the generators of the entire SSA annihilate the physical states and all SSA Noether charges
vanish. The invariance of partition function for string world sheets in this sense could be
interpreted in terms of emergent dynamical symmetries.



8.2 Does Riemann-Roch theorem have applications to TGD? 82

2. Just for fun one can consider the conjecture that the reduction of quantum intersections to
classical intersections mediated by string world sheets implies that the numbers of string
world sheets as given by the analog of G-W invariants are integers.

8.2 Does Riemann-Roch theorem have applications to TGD?

Riemann-Roch theorem (RR) (see http://tinyurl.com/mdmbcx6) is a central piece of algebraic
geometry. Atyiah-Singer index theorem is one of its generalizations relating the solution spectrum
of partial differential equations and topological data. For instance, characteristic classes classifying
bundles associated with Yang-Mills theories (see http://tinyurl.com/y9xvkhyy) have applica-
tions in gauge theories and string models.

The advent of octonionic approach to the dynamics of space-time surfaces inspired by M8−H
duality [L8] [L9, L10] gives hopes that dynamics at the level of complexified octonionic M8 could
reduce to algebraic equations plus criticality conditions guaranteeing associativity for space-time
surfaces representing external particles, in interaction region commutativity and associativity would
be broken. The complexification of octonionic M8 replacing norm in flat space metric with its
complexification would unify various signatures for flat space metric and allow to overcome the
problems due to Minkowskian signature. Wick rotation would not be a mere calculational trick.

For these reasons time might be ripe for applications of possibly existing generalization of RR
to TGD framework. In the following I summarize my admittedly unprofessional understanding of
RR discussing the generalization of RR for complex algebraic surfaces having real dimension 4:
this is obviously interesting from TGD point of view.

I will also consider the possible interpretation of RR in TGD framework. One interesting idea
is possible identification of light-like 3-surfaces and curves (string boundaries) as generalized poles
and zeros with topological (but not metric) dimension one unit higher than in Euclidian signature.

8.2.1 Could a generalization of Riemann-Roch theorem be useful in TGD frame-
work?

The generalization of RR for algebraic varieties, in particular for complex surfaces (real dimension
equal to 4) exists. In M8 picture the complexified metric Minkowskian signature need not cause
any problems since the situation can be reduced to Euclidian sector. Clearly, this picture would
provide a realization of Wick rotation as more than a trick to calculate scattering amplitudes.

Consider first the motivations for the desire of having analog of Riemann-Roch theorem (RR)
at the level of space-time surfaces in M8.

1. It would be very nice if partonic 2-surfaces would have interpretation as analogs of zeros
or poles of a meromorphic function. RR applies to the divisors characterizing meromorphic
functions and 2-forms, and one could hope of obtaining information about the dimensions of
these function spaces giving rise to octonionic space-time varieties. Note however that the
reduction to real polynomials or even rational functions might be already enough to give the
needed information. Rational functions are required by the simplest generalization whereas
the earlier approach assumed only polynomials. This generalization does not however change
the construction of space-time varieties as zero loci of polynomials in an essential manner as
will be found.

2. One would like to count the degeneracies for the intersections of 2-surfaces of space-time sur-
face and here RR might help since its generalization to complex surfaces involves intersection
form as was found in the brief summary of RR for complex surfaces with real dimension 4
(see Eq. 3.5).

In particular, one would like to know about the intersections of partonic 2-surfaces and
string world sheets defining the points at which fermions reside. The intersection form
reduces the problem via Poincare duality to 2-cohomology of space-time surfaces. More
generally, it is known that the intersection form for 2-surfaces tells a lot about the topology
of 4-D manifolds (see http://tinyurl.com/y8tmqtef). This conforms with SH. Gromow-
Witten invariants [L3] (see http://tinyurl.com/ybobccub) are more advanced rational
valued invariants but might reduce to integer valued in variants in TGD framework [L10].

http://tinyurl.com/mdmbcx6
http://tinyurl.com/y9xvkhyy
http://tinyurl.com/y8tmqtef
http://tinyurl.com/ybobccub
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There are also other challenges to which RR might relate.

1. One would like to know whether the intersection points for string world sheets and partonic
2-surfaces can belong in an extension of rationals used for adele. If the points belong to
cognitive representations and subgroup of Galois group acts trivially then the number of
points is reduces as the points at its orbit fuse together. The sheets of the Galois covering
would intersect at point. The images of the fused points in H could be disjoint points since
tangent spaces need not be parallel.

2. One would also like to have idea about what makes partonic 2-surfaces and string world sheets
so special. In 2-D space-time one would have points instead of 2-surfaces. The obvious idea
is that at the level of M8 these 2-surfaces are in some sense analogous to poles and zeros of
meromorphic functions. At the level of H the non-local character of M8−H would imply that
preferred extremals are solutions of an action principle giving partial differential equations.

8.2.2 What could be the analogs of zeros and poles of meromorphic function?

The basic challenge is to define what notions like pole, zero, meromorphic function, and divisor
could mean in TGD context. The most natural approach based on a simple observation that
rational functions need not define map of space-time surface to itself. Even though rational function
can have pole inside CD, the point∞ need not belong to the space-time variety defined the rational
functions. Hence one can try the modification of the original hypothesis by replacing the octonionic
polynomials with rational functions. One cannot exclude the possibility that although the interior
of CD contains only finite points, the external particles outside CD could extend to infinity.

1. For octonionic analytic polynomials the notion of zero is well-defined. The notion of pole
is well-defined only if one allows rational functions R = P1(o)/P2(o) so that poles would
correspond to zeros for the denominator of rational function. 0 and ∞ are both unaffected
by multiplication and ∞ also by addition so that they are algebraically special. There are
several variants of this picture. The most general option is that for a given variety zeros of
both Pi are allowed.

2. The zeros of IM(P1) = 0 and IM(P2) = 0 would give solutions as unions of surfaces asso-
ciated with Pi. This is because IM(o1o2) = IM(o1)RE(o2) + IM(o2)RE(o1). There is no
need to emphasize how important this property of IM for product is. One might say that
one has two surfaces which behave like free non-interacting particles.

3. These surfaces should however interact somehow. The intuitive expectation is that the two
solutions are glued by wormhole contacts connecting partonic 2-surfaces corresponding to
IM(P1) = 0 and IM(P2) = 0 =∞. For RE(Pi) = 0 and RE(Pi) =∞ the solutions do not
reduce to separate solutions RE(P1) = 0 and RE(P2) = 0. The reason is that the real part
of o1o2 satisfies Re(o1o2) = Re(o1)Re(o2) − Im(o1)Im(o2). There is a genuine interaction,
which should generate the wormhole contact. Only at points for which P1 = 0 and P2 = 0
holds true, RE(P1) = 0 and RE(P2) = 0 are satisfied simultaneously. This happens in the
discrete intersection of partonic 2-surfaces.

4. Elementary particles correspond even for heff = h to two-sheeted structures with partonic
surfaces defining wormhole throats. The model for elementary particles requires that parti-
cles are minimally 2-sheeted structures since otherwise the conservation of monopole Kähler
magnetic flux cannot be satisfied: the flux is transferred between space-time sheets through
wormhole contacts with Euclidian signature of induced metric and one obtains closed flux
loop. Euclidian wormhole contact would connect the two Minkowskian sheets. Could the
Minkowskian sheets corresponds to zeros IM(Pi) for P1 and P2 and could wormhole contacts
emerge as zeros of RE(P1/P2)?

One can however wonder whether this picture could allow more detailed specification. The
simplest possibility would be following. The basic condition is that CD emerges automatically
from this picture.
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1. The simplest possibility is that one has P1(o) and P2(T − o) with the origin of octions at the
“lower” tip of CD. One would have P1(0) = 0 and P2(0) = 0. P1(o) would give rise to the
“lower” boundary of CD and P2(T − o) to the “upper” boundary of CD.

ZEO combined with the ideas inspired by infinite rationals as counterparts of space-time
surfaces connecting 3-surfaces at opposite boundaries of CD [K10] would suggest that the
opposite boundaries of CD could correspond zeros and poles respectively and the ratio
P1(o)/P2(T − o) and to zeros of P1 resp. P2 assignable to different boundaries of CD. Both
light-like parton orbits and string world sheets would interpolate between the two boundaries
of CD at which partonic 2-surface would correspond to zeros and poles.

The notion divisor would be a straightforward generalization of this notion in the case of
complex plane. What would matter would be the rational function P1(t)/P2(T − t) extended
from the real (time) axis of octonions to the entire space of complexified octonions. Positive
degree of divisor would multiply P1(t) with (t− t1)m inducing a new zero at or increasing the
order of existing zero at t1. Negative orders n would multiply the denominator by (t− t1)n.

2. One can also consider the possibility that both boundaries of CD emerge for both P1 and
P2 and without assigning either boundary of CD with Pi. In this case Pi would be sum
over terms Pik = Piak(o)Pibk(T − o) of this kind of products satisfying Piak(0) = 0 and
Pibk(0) = 0.

One can imagine also an alternative approach in which 0 and ∞ correspond to opposite tips
of CD and have geometric meaning. Now zeros and poles would correspond to 2-surfaces, which
need not be partonic. Note that in the case of Riemann surfaces ∞ can represent any point. This
approach does not however look attractive.

8.2.3 Could one generalize RR to octonionic algebraic varieties?

RR is associated with complex structure, which in TGD framework seems to make sense inde-
pendent of signature thanks to complexification of octonions. Divisors are the key notion and
characterize what might be called local winding numbers. De-Rham cohomology is replaced with
much richer Dolbeault cohomology (see http://tinyurl.com/y7cvs5sx) since the notion of con-
tinuity is replaced with that of meromorphy. Symplectic approach about which G-W invariants
for symplectic manifolds provide an example define a different approach and now one has ordinary
cohomology.

An interesting question is whether M8 − H-duality corresponds to the mirror symmetry of
string models (see http://tinyurl.com/yc2m2e5m) relating complex structures and symplectic
structures. If this were the case, M8 would correspond to complex structure and H to symplectic
structure.

RR for curves gives information about dimensions for the spaces of meromorphic functions
having poles with order not higher than specified by divisor. This kind of interpretation would
be very attractive now since the poles and zeros represented as partonic 2-surfaces would have
direct physical interpretation in terms of external particles and interaction vertices. RR for curves
involves poles with orders not higher than specified by the divisor and gives a formula for the
dimension of the space of meromorphic functions fora given divisor. As a special case give the
dimension l(nD) for a given divisor.

Could something similar be true in TGD framework?

1. Arithmetic genus makes sense for polynomials P (t) since t can be naturally complexified
giving a complex curve with well-defined arithmetic genus. What could correspond to the
intersection form for 2-surfaces representing D and K −D? The most straightforward pos-
sibility is that partonic 2-surfaces correspond to poles and zeros.

Divisor −D would correspond to the inverse of P2/P1 representing it. D −K would also a
well-defined meaning provided the canonical divisor associated with holomorphic 2-form has
well-defined meaning in the Dolbeault cohomology of the space-time surface with complex
structure. RR would give direct information about the space of space-time varieties defined
by RE(P ) = 0 or IM(P ) = 0 condition.

http://tinyurl.com/y7cvs5sx
http://tinyurl.com/yc2m2e5m
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One could hope of obtaining information about intersection form for string world sheets and
partonic 2-surfaces. Whether the divisor D−K has anything to do string world sheets, is of
course far from clear.

2. Complexification means that field property fails in the sense that complexified Euclidian norm
vanishes and the inverse of complexified octonion/quaternion/complex number is infinite
formally. For Euclidian sector with real coordinates this does not happen but does take
place when some coordinates are real and some imaginary so that signature is effectively
Minkowskian signature.

At 7-D light-cone of M8 the condition P (o) = 0 reduces to a condition for real polynomial
P (t) = 0 giving roots tn. Partonic 2-varieties are intersections of 4-D space-time varieties
with 6-spheres with radii tn. There are good reasons to expect that the 3-D light-like orbits
of partonic 3-surfaces are intersections of space-time variety with 7-D light-cone boundary
and their H counterparts are obtained as images under M8 −H duality.

For light-like complefixied octonionic points the inverse of octonion does not exist since the
complexified norm vanishes. Could the light-like 3-surfaces as partonic orbits correspond
to images under M8 − H duality for zeros and/or poles as 3-D light-like surfaces? Could
also the light-like boundaries of strings correspond to this kind of generalized poles or zeros?
This could give a dynamical realization for the notions of zero and pole and increase the
topological dimension of pole and zero for both 2-varieties and 4-varieties by one unit. The
metric dimension would be unaffected and this implies huge extension of conformal symme-
tries central in TGD since the light-like coordinate appears as additional parameter in the
infinitesimal generators of symmetries.

Could one formulate the counterpart of RR at the level of H? The interpretation of M8 −H
duality as analog of mirror symmetry (see http://tinyurl.com/yc2m2e5m) suggests this. In this
case the first guess for the identification of the counterpart of canonical divisor could be as Kähler
form of CP2. This description would provide symplectic dual for the description based on divisors
at the level of M8. G-W invariants and their possible generalization are natural candidates in this
respect.

8.3 Could the TGD variant of Atyiah-Singer index theorem be useful
in TGD?

Atyiah-Singer index theorem (AS) is one of the generalizations of RR and has shown its power in
gauge field theories and string models as a method to deduce the dimensions of various moduli
spaces for the solutions of field equations. A natural question is whether AS could be useful in TGD
and whether the predictions of AS at H side could be consistent with M8 −H duality suggesting
very simple counting for the numbers of solutions at M8 side as coefficient combinations of poly-
nomials in given extension of rationals satisfying criticality conditions. One can also ask whether
the hierarchy of degrees n for octonion polynomials could correspond to the fractal hierarchy of
generalized conformal sub-algebras with conformal weights coming as n-multiples for those for the
entire algebras.

Atyiah-Singer index theorem (AS) and other generalizations of RR involve extremely abstract
concepts. The best manner to get some idea about AS is to learn the motivations for it. The
article http://tinyurl.com/yc49lljp gives a very nice general view about the motivations of
Atyiah-Singer index theorem and also avoids killing the reader with details.

Solving problems of algebraic geometry is very demanding. The spectrum of solutions can be
discrete (say number of points of space-time surface having linear M8 coordinates in an extension of
rationals) or continuous such as the space of roots for n:th order polynomials with real coefficients.

An even more difficult challenge is solving of partial differential equations in some space, call
it X, of say Yang-Mills gauge field coupled to matter fields. In this case the set of solutions is
typically continuous moduli space.

One can however pose easier questions. What is the number of solutions in counting problem?
What is the dimension of the moduli space of solutions? Atiyiah-Singer index theorem relates
this number - analytic index - to topological index expressible in terms of topological invariants

http://tinyurl.com/yc2m2e5m
http://tinyurl.com/yc49lljp
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assignable to complexified tangent bundle of X and to the bundle structure - call it field bundle -
accompanying the fields for which field equations are formulated.

8.3.1 AS very briefly

Consider first the assumptions of AS.

1. The idea is to study perturbations of a given solution and linearize the equations in some
manifold X often assumed to be compact. This leads to a linear partial differential equations
defined by linear operator P . One can deduce the dimension of the solution space of P . This
number defines the dimension of the tangent space of solution space of full partial differential
equations, call it moduli space.

2. The idea is to assign to the partial differential operator P its symbol σ(P ) obtained by
replacing derivatives with what might be called momentum components. The reversal of this
operaion is familiar from elementary wave mechanics: pi → id/dxi. This operation can be
formulated in terms of co-tangent bundle. The resulting object is purely algebraic. If this
matrix is reversible for all momentum values and points of X, one says that the operator is
elliptic.

Note that for field equations in Minkowski space M4 the invertibility constraint is not satisfied
and this produces problems. For instance, for massive M4 d’Alembertian for scalar field
the symbol is four-momentum squared, which vanishes, when on-mass shell condition is
satisfied. Wick rotation is somewhat questionable manner to escape this problem. One
replaces Minkowski space with its Euclidian counterpart or by 4-sphere. If all goes well the
dimension of the solution space does not depend on the signature of the metric.

3. In the general case one studies linear equation of form DP = f , where f is homogenuity
term representing external perturbation. f can also vanish. Quite generally, one can write
the dimension of the solution space as

Indanal(P ) = dim(ker(P ))− dim(coker(P )) . (8.1)

ker(P ) denotes the solution space for DP = 0 without taking into account the possible re-
strictions coming from the fact that f can involve part f0 satisfying Df0 = 0 (for instance,
f0 corresponds to resonance frequency of oscillator system) nor boundary conditions guar-
anteing hermiticity. Indeed, the hermitian conjugate D† of D is not automatically identical
with D. D† is defined in terms of the inner product for small perturbations as

〈D†P ∗1 |DP2〉 = 〈P1|DP2〉 . (8.2)

The inner product involves integration over X and partial integrations transfer the action
of partial derivatives from P2 to P ∗1 . This however gives boundary terms given by surface
integral and hermiticity requires that they vanish. This poses additional conditions on P
and contributes to dim(coker(P )).

The challenge is to calculate Indanal(P ) and here AS is of enormous help. AS relates analytical
index Indanal(P ) for P to topological index Indtop(σ(P )) for its symbol σ(P ).

1. Indtop(σ(P )) involves only data associated with the topology X and with the bundles as-
sociated with field variables. In the case of Yang-Mills fields coupled to matter the bundle
is the bundle associated with the matter fields with a connection determined by Yang-Mills
gauge potentials. So called Todd class Td(X) brings in information about the topology of
complexified tangent bundle.
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2. Indtop(σ(P )) is not at all easy to define but is rather easily calculable as integrals of various
invariants assignable to the bundle structure involved. Say instanton density for YM fields
and various topological invariants expressing the topological invariants associated with the
metric of the space. What is so nice and so non-trivial is that the dimension of the moduli
space for non-linear partial differential equations is determined by topological invariants.
Much of the dynamics reduces to topology.

The expression for Indtop(σ(P )) involves besides σP topological data related to the field bundle
and to the complexified tangent bundle. The expression Indtop as a function of the symbol σ(P )
is given by

Indtop(σ(P )) = (−1)n〈ch(σ(P )) · Td(TC(X), [X])〉 . (8.3)

The expression involves various topological data.

1. Dimension of X.

2. The quantity 〈x.y〉 involving cup product x.y of cohomology classes, which contains a con-
tribution in the highest homology group Hn(X) of X corresponding to the dimension of X
and is contracted with this fundamental class [X]. 〈x.y〉 denotes matrix trace for the oper-
ator ch(σ(P )) formed as polynomial of σ(P ). [X] denotes so called fundamental class fr X
belonging to Hn and defines the orientation of X.

3. Chern character chE(t) (see http://tinyurl.com/ybavu66h). I must admit that I ended
up to a garden of branching paths while trying to understand the definition of chE is. In
any case, chE(t) characterizes complex vector bundle E expressible in terms of Chern classes
(see http://tinyurl.com/y8jlaznc) of E. E is the bundle assignable to field variables, say
Yang Mills fields and various matter fields.

Both direct sums and tensor products of fiber spaces of bundles are possible and the nice
feature of Chern class is that it is additive under tensor product and multiplicative under
direct sum. The fiber space of the entire bundle is now direct sum of the tangent space of X
and field space, which suggests that Ind(top) is actually the analog of Chern character for
the entire bundle.

t = σP has interpretation as an argument appearing in the definition of Chern class general-
ized to Chern character. t = σ(P ) would naturally correspond to a matrix valued argument
of the polynomial defining Chern class as cohomology element. ch(σ(P )) is a polynomial of
the linear operator defined by symbol σ(P ). chE for given complex vector bundle is a poly-
nomial, whose coefficients are relatively easily calculable as topological invariants assignable
to bundle E. E must be the field bundle now.

4. Todd class Td(TC(X)) for the complexified tangent bundle (see http://tinyurl.com/yckv4w84)
appears also in the expression. Note that also now the complexification occurs. The cup prod-
uct gives element in Hn(X), which is contracted with fundamental class [X] and integrated
over X.

8.3.2 AS and TGD

The dynamics of TGD involves two levels: the level of complexified M8 (or equivalently E8) and
the level of H related to M8 −H correspondence.

1. At the level of M8 one has algebraic equations rather than partial differential equations and
the situation is extremely simple as compared to the situation for a general action principle.
At the level of H one has action principle and partial differential equations plus infinite
number of gauge conditions selecting preferred extremals and making dynamics for partial
differential equations dual to the dynamics determined by purely number theoretic conditions.

The space-time varieties representing external particles outside CDs in M8 satisfy associa-
tivity conditions for tangent space or normal space and reducing to criticality conditions for

http://tinyurl.com/ybavu66h
http://tinyurl.com/y8jlaznc
http://tinyurl.com/yckv4w84
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the real coefficients of the polynomials defining the space-time variety. In the interior of CDs
associativity conditions are not satisfied but the boundary conditions fix the values of the
coefficients to be those determined by criticality conditions guaranteing associativity outside
the CD.

In the interiors space-time surfaces of CDs M8-duality does not apply but associativity of
tangent spaces or normal spaces at the boundary of CD fixes boundary values and minimal
surface dynamics and strong form of holography (SH) fixes the space-time surfaces in the
interior of CD.

2. For the H-images of space-time varieties in H under M8−H duality the dynamics is universal
coupling constant independent critical dynamics of minimal surfaces reducing to holomorphy
in appropriate sense. For minimal surfaces the 4-D Kähler current density vanishes so that
the solutions are 4-D analogs of geodesic lines outside CD. Inside CD interactions are coupled
on and this current is non-vanishing. Infinite number of gauge conditions for various half
conformal algebras in generalized sense code at H side for the number theoretical critical
conditions at M8 side. The sub-algebra with conformal weights coming as n-ples of the
entire algebra and its commutator with entire algebra gives rise to vanishing classical Noether
charges. An attractive assumption is that the value of n at H side corresponds to the order
n of the polynomials at M8 side.

3. The coefficients of polynomials P (o) determining space-time varieties are real numbers (also
complexified reals can be considered without losing associativity) restricted to be numbers in
extension of rationals. This makes it possible to speak about p-adic variants of the space-time
surfaces at the level of M8 at least.

Could Atyiah-Singer theorem have relevance for TGD?

1. For real polynomials it is easy to calculate the dimension of the moduli space by counting
the number of independent real (in octonionic sense) coefficients of the polynomials of real
variable (one cannot exclude that the coefficients are in complex extension of rationals).
Criticality conditions reduce this number and the condition that coefficients are in extension
of rationals reduces it further. One has quite nice overall view about the number of solutions
and one can see them as subset of continuous moduli space. If M8 −H duality really works
then this gives also the number of preferred extremals at H side.

2. This picture is not quite complete. It assumes fixing of 8-D CD in M8 as well as fixing of
the decomposition M2 ⊂ M4 ⊂ M4 × E4. This brings in moduli space for different choices
of octonion structures (8-D Lorentz group is involved). Also moduli spaces for partonic 2-
surfaces are involved. Number theoretical universality seems to require that also these moduli
spaces have only points with coordinates in extension of rationals involved.

3. In principle one can try to formulate the counterpart of AS at H side for the linearization of
minimal surface equations, which are nothing but the counterpart of massless field equations
in a fixed background metric. Note that additional conditions come from the requirement
that the term from Kähler action reduces to minimal surface term.

Discrete sets of solutions for the extensions of rationals should correspond to each other at
the two sides. One can also ask whether the dimensions for the effective continuous moduli
spaces labelled by n characterizing the sub-algebras of various conformal algebras isomorphic
to the entire algebra and those for the polynomials of order n satisfying criticality conditions.
One would have a number theoretic analog for a particle in box leading to the quantization
of momenta.

All this is of course very speculative and motivated only by the general physical vision. If the
speculations were true, they would mean huge amount of new mathematics.

9 Could the precursors of perfectoids emerge in TGD?

In algebraic-geometry community the work of Peter Stolze [A6] (see http://tinyurl.com/y7h2sms7)
introducing the notion of perfectoid related to p-adic geometry has raised a lot of interest. There

http://tinyurl.com/y7h2sms7
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are two excellent popular articles about perfectoids: the first article in AMS (see http://tinyurl.
com/ydx38vk4) and second one in Quanta Magazine (see http://tinyurl.com/yc2mxxqh). I had
heard already earlier about the work of Stolze but was too lazy to even attempt to understand
what is buried under the horrible technicalities of modern mathematical prose. Rachel Francon
re-directed my attention to the work of Stolze (see http://tinyurl.com/yb46oza6). The work
of Stolze is interesting also from TGD point of view since the construction of p-adic geometry is a
highly non-trivial challenge in TGD.

1. One should define first the notion of continuous manifold but compact-open characteristic
of p-adic topology makes the definition of open set essential for the definition of topology
problematic. Even single point is open so that hopes about p-adic manifold seem to decay
to dust. One should pose restrictions on the allowed open sets and p-adic balls with radii
coming as powers of p are the natural candidates. p-Adic balls are either disjoint or nested:
note that also this is in conflict with intuitive picture about covering of manifold with open
sets. All this strangeness originates in the special features of p-adic distance function known
as ultra-metricity. Note however that for extensions of p-adic numbers one can say that the
Cartesian products of p-adic 1-balls at different genuinely algebraic points of extension along
particular axis of extension are disjoint.

2. At level of M8 the p-adic variants of algebraic varieties defined as zero loci of polynomials do
not seem to be a problem. Equations are algebraic conditions and do not involve derivatives
like partial differential equations naturally encountered if Taylor series instead of polynomials
are allowed. Analytic functions might be encountered at level of H = M4 × CP2 and here
p-adic geometry might well be needed.

The idea is to define the generalization of p-adic algebraic geometry in terms of p-adic
function fields using definitions very similar to those used in algebraic geometry. For instance,
generalization of variety corresponds to zero locus for an ideal of p-adic valued function field.
p-Adic ball of say unit radius is taken as the basic structure taking the role of open ball in
the topology of ordinary manifolds. This kind of analytic geometry allowing all power series
with suitable restrictions to function field rather than allowing only polynomials is something
different from algebraic geometry making sense for p-adic numbers and even for finite fields.

3. One would like to generalize the notion of analytic geometry even to the case of number
fields with characteristic p (p-multiple of element vanishes), in particular for finite fields Fp
and for function fields Fp[t]. Here one encounters difficulties. For instance, the factorial 1/n!
appearing as normalization factor of forms diverges if p divides it. Also the failure of Frobe-
nius homomorphism to be automorphism for Fp[t] causes difficulties in the understanding of
Galois groups.

The work of Stolze has led to a breakthrough in unifying the existing ideas in the new framework
provided by the notion of perfectoid. The work is highly technical and involves infinite-D extension
of ordinary p-adic numbers adding all powers of all roots p1/p

m

, m = 1, 2.... Formally, an extension
by powers of p1/p

∞
is in question.

This looks strange at first but it guarantees that all p-adic numbers in the extension have p:th
roots, one might say that one forms a p-fold covering/wrapping of extension somewhat analogous to
complex numbers. This number field is called perfectoid since it is perfect meaning that Frobenius
homomorphism a→ ap is automorphism by construction. Frob is injection always and by requiring
that p:th roots exist always, it becomes also a surjection.

This number field has same Galois groups for all of its extensions as the function field G[t]
associated with the union of function fields G = Fp[t

1/pm ]. Automorphism property of Frob
saves from the difficulties with the factorization of polynomials and p-adic arithmetics involving
remainders is replaced with purely local modulo p arithmetics.

9.1 About motivations of Stolze

Stolze has several motivations for this work. Since I am not a mathematician, I am unable to really
understand all of this at deep level but feel that my duty as user of this mathematics is at least to
try!

http://tinyurl.com/ydx38vk4
http://tinyurl.com/ydx38vk4
http://tinyurl.com/yc2mxxqh
http://tinyurl.com/yb46oza6
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1. Diophantine equations is a study of polynomial equations in several variables, say x2 +2xy+
y = 0. The solutions are required to be integer valued: in the example considered x = y = 0
and x = −y = −1 is such a solution. For integers the study of the solution is very difficult
and one approach is to study these equations modulo p that is reduced the equations to finite
field Gp for any p. The equations simplify enormously since ane has ap = a in Fp. This
identity in fact defines so called Frobenius homomorphism acting as automorphism for finite
fields. This holds true also for more complex fields with characteristic p say the ring Fp[t] of
power series of t with coefficients in Fp.

The powers of variables, say x, appearing in the equation is reduced to at most xp−1. One
can study the solutions also in p-adic number fields. The idea is to find first whether finite
field solution, that is solution modulo p, does exist. If this is the case, one can calculate
higher powers in p. If the series contains finite number of terms, one has solution also in the
sense of ordinary integers.

2. One of the related challenges is the generalization of the notion of variety to a geometry
defined in arbitrary number field. One would like to have the notion of geometry also for finite
fields, and for their generalizations such as Fp[t] characterized by characteristic p (px = 0
holds true for any element of the field). For fields of characteristic 1 - extensions of rationals,
real, and p-adic number fields) xp = 0 not hold true for any x 6= 0. Any field containing
rationals as sub-field, being thus local field, is said to have characteristic equal to 1. For local
fields the challenge is relatively easy.

3. The situation becomes more difficult if one wants a generalization of differential geometry.
In differential geometry differential forms are in a key role. One wants to define the notion
of differential form in fields of characteristic p and construct a generalization of cohomology
theory. This would generalize the notion of topology to p-adic context and even for finite
fields of finite character. A lot of work has been indeed done and Grothendieck has been the
leading pioneer.

The analogs of cohomology groups have values in the field of p-adic numbers instead of
ordinary integers and provide representations for Galois groups for the extensions of rationals
inducing extensions of p-adic numbers and finite fields.

In ordinary homology theory non-contractible sub-manifolds of various dimensions corre-
spond to direct summands Z (group of integers) for homology groups and by Poincare du-
ality those for cohomology groups. For Galois groups Z is replaced with ZN . N depends
on extension to which Galois group is associated and if N is divisible by p one encounters
technical problems.

There are many characteristic p- and p-adic cohomologies such as etale cohomology, chrys-
talline cohomology, algebraic de-Rham cohomology. Also Hodge theory for complex differen-
tial forms generalizes. These cohomologies should be related by homomorphism and category
theoretic thinking the proof of the homomorphism requires the construction of appropriate
functor between them.

The integrals of forms over sub-varieties define the elements of cohomology groups in ordinary
cohomology and should have p-adic counterparts. Since p-adic numbers are not well-ordered,
definite integral has no straightforward generalization to p-adic context. One might however
be able to define integrals analogous to those associated with differential forms and depending
only on the topology of sub-manifold over which they are taken. These integrals would
be analogous to multiple residue integrals, which are the crux of the twistor approach to
scattering amplitudes in super-symmetric gauge theories. One technical difficulty is that for
a field of finite characteristic the derivative of Xp is pXp−1 and vanishes. This does not allow
to define what integral

∫
Xp−1dX could mean. Also 1/n! appears as natural normalization

factor of forms but if p divides it, it becomes infinite.

9.2 Attempt to understand the notion of perfectoid

Consider now the basic ideas behind the notion of perfectoid.



9.2 Attempt to understand the notion of perfectoid 91

1. For finite finite fields Fp Frobenius homomorphism a → ap is automorphism since one has
ap = a in modulo p arithmetics. A field with this property is called perfect and all local
fields are perfect. Perfectness means that an algebraic number in any extension L of perfect
field K is a root of a separable minimal polynomial. Separability means that the number of
roots in the algebraic closure of K of the polynomial is maximal and the roots are distinct.

2. All fields containing rationals as sub-fields are perfect. For fields of characteristic p Frob
need not be a surjection so that perfectness is lost. For instance, for Fp[t] Frob is trivially
injection but surjective property is lost: t1/p is not integer power of t.

One can however extend the field to make it perfect. The trick is simple: add to to Fp[t]
all fractional powers t1/p

n

so that all p:th roots exist and Frob becomes and automorphism.
The automorphism property of Frob allows to get rid of technical problems related to a
factorization of polynomials. The resulting extension is infinite-dimensional but satisfies the
perfectness property allowing to understand Galois groups, which play key role in various
cohomology theories in characteristic p.

3. Let K = Qp[p
1/p∞ ] denote the infinite-dimensional extension of p-adic number field Qp by

adding all powers of pm:th roots for all all m = 1, 2, .... This is not the most general option:
K could be also only a ring. The outcome is perfect field although it does not of course have
Frobenius automorphism since characteristic equals to 1.

One can divide K by p to get K/p as the analog of finite field Fp as its infinite-dimensional
extension. K/p allows all p:th roots by construction and Frob is automorphism so that K/p
is perfect by construction.

The structure obtained in this manner is closely related to a perfect field with characteristic
p having same Galois groups for all its extensions. This object is computationally much
more attractive and allows to prove theorems in p-adic geometry. This motivates the term
perfectoid.

4. One can assign to K another object, which is also perfectoid but has characteristic p. The
correspondence is as follows.

(a) Let Fp be finite field. Fp is perfect since it allows trivially all p:th roots by ap = a. The
ring Fp[t] is however not prefect since t1/p

m

is not integer power of t. One must modify
Fp[t] to obtain a perfect field. Let Gm = Fp[t

1/pm ] be the ring of formal series in powers
of t1/p

m

defining also function field. These serious are called t-adic and one can define
t-adic norm.

(b) Define t-adic function field Kb called the tilt of K as

Kb = ∪m=1,...(K/p)[t
1/pm][t] .

One has all possible power series with coefficients in K/p involving all roots t1/p
m

,
m = 1, 2, ..., besides powers of positive integer powers of t. This function field has
characteristic p and all roots exist by construction and Frob is automorphism. Kb/t
is perfect meaning that the minimal polynomials for the for given analog of algebraic
number in any of its extensions allows separable polynomial with maximal number of
roots in its closure.

This sounds rather complicated! In any case, Kb/t has same number theoretical structure as
Qp[p

1/p∞ ]/p meaning that Galois groups for all of its extensions are canonically isomorphic to
those for extensions of K. Arithmetics modulo p is much simpler than p-adic arithmetic since
products are purely local and there is no need to take care about remainders in arithmetic
operations, this object is much easier to handle.

Note that also p-adic number fields fields Qp as also Fp = Qp/p are perfect but the analog
of Kb = Fb[t] fails to be perfect.
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9.3 TGD view about p-adic geometries

As already mentioned, it is possible to define p-adic counterparts of n-forms and also various p-adic
cohomologies with coefficient field taken as p-adic numbers and these constructions presumably
make sense in TGD framework too. The so called rigid analytic geometry is the standard proposal
for what p-adic geometry might be.

The very close correspondence between real space-time surfaces and their p-adic variants plays
realized in terms of cognitive representations [L14] [L13, L8] plays a key role in TGD framework
and distinguishes it from approaches trying to formulate p-adic geometry as a notion independent
of real geometry.

Ordinary approaches to p-adic geometry concentrate the attention to single p-adic prime. In
the adelic approach of TGD one considers both reals and all p-adic number fields simultaneously.

Also in TGD framework Galois groups take key role in this framework and effectively replace
homotopy groups and act on points of cognitive representations consisting of points with coordi-
nates in extension of rationals shared by real and p-adic space-time surfaces. One could say that
homotopy groups at level of sensory experience are replaced by Galois at the level of cognition. It
also seems that there is very close connection between Galois groups and various symmetry groups.
Galois groups would provide representations for discrete subgroups of symmetry groups.

In TGD framework there is strong motivation for formulating the analog of Riemannian geome-
try of H = M4×CP2 for p-adic variants of H. This would mean p-adic variant of Kähler geometry.
The same challenge is encountered even at the level of “World of Classical Worlds” (WCW) having
Kähler geometry with maximal isometries. p-Adic Riemann geometry and n-forms make sense
locally as tensors but integrals defining distances do not make sense p-adically and it seems that
the dream about global geometry in p-adic context is not realizable. This makes sense: p-adic
physics is a correlate for cognition and one cannot put thoughts in weigh or measure their length.

9.3.1 Formulation of adelic geometry in terms of cognitive representations

Consider now the key ideas of adelic geometry and of cognitive representations.

1. The king idea is that p-adic geometries in TGD framework consists of p-adic balls of possibly
varying radii pn assignable to points of space-time surface for which the preferred imbed-
ding space coordinates are in the extension of rationals. At level of M8 octonion property
fixes preferred coordinates highly uniquely. At level of H preferred coordinates come from
symmetries.

These points define a cognitive representation and inside p-adic points the solution of field
equations is p-adic variant of real solution in some sense. At M8 level the field equations
would be algebraic equations and real-p-adic correspondence would be very straightforward.
Cognitive representations would make sense at both M8 level and H level.

Remark: In ordinary homology theory the decomposition of real manifold to simplexes
reduces topology to homology theory. One forgets completely the interiors of simplices.
Could the cognitive representations with points labelling the p-adic balls could be seen as
analogous to decompositions to simplices. If so, homology would emerge as something number
theoretically universal. The larger the extension of rationals, the more precise the resolution
of homology would be. Therefore p-adic homology and cohomology as its Poincare dual
would reduce to their real counterparts in the cognitive resolution used.

2. M8 −H correspondence would play a key role in mapping the associative regions of space-
time varieties in M8 to those in H. There are two kinds of regions. Associative regions
in which polynomials defining the surfaces satisfy criticality conditions and non-associative
regions. Associative regions represent external particles arriving in CDs and non-associative
regions interaction regions within CDs.

3. In associative regions one has minimal surface dynamics (geodesic motion) at level of H
and coupling parameters disappear from the field equations in accordance with quantum
criticality. The challenge is to prove that M8 − H correspondence is consistent with the
minimal surface dynamics n H. The dynamics in these regions is determined in M8 as zero
loci of polynomials satisfying quantum criticality conditions guaranteeing associativity and
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is deterministic also in p-adic sectors since derivatives are not involved and pseudo constants
depending on finite number of pinary digits and having vanishing derivative do not appear.
M8 −H correspondence guarantees determinism in p-adic sectors also in H.

4. In non-associative regions M8 − H correspondence does not make sense since the tangent
space of space-time variety cannot be labelled by CP2 point and the real and p-adic H
counterparts of these regions would be constructed from boundary data and using field equa-
tions of a variational principle (sum of the volume term and Kähler action term), which in
non-associative regions gives a dynamics completely analogous to that of charged particle in
induced Kähler field. Now however the field characterizes extended particle itself.

Boundary data would correspond to partonic 2-surfaces and string world sheets and possibly
also the 3-surfaces at the ends of space-time surface at boundaries of CD and the light-like
orbits of partonic 2-surfaces. At these surfaces the 4-D (!) tangent/normal space of space-
time surface would be associative and could be mapped by M8−H correspondence from M8

to H and give rise to boundary conditions.

Due to the existence of p-adic pseudo-constants the p-adic dynamics determined by the action
principle in non-associative regions inside CD would not be deterministic in p-adic sectors.
The interpretation would be in terms of freedom of imagination. It could even happen that
boundary values are consistent with the existence of space-time surface in p-adic sense but
not with the existence of real space-time surfaces. Not all that can be imagined is realizable.

At the level of M8 this vision seems to have no obvious problems. Inside each ball the same
algebraic equations stating vanishing of IM(P ) (imaginary part of P in quaternionic sense) hold
true. At the level of H one has second order partial differential equations, which also make sense
also p-adically. Besides this one has infinite number of boundary conditions stating the vanishing
of Noether charges assignable to sub-algebra super-symplectic algebra and its commutator with
the entire algebra at the 3-surfaces at the boundaries of CD. Are these two descriptions really
equivalent?

During writing I discovered an argument, which skeptic might see as an objection against
M8 −H correspondence.

1. M8 correspondence maps the space-time varieties in M8 in non-local manner to those in
H = M4×CP2. CP2 coordinates characterize the tangent space of space-time variety in M8

and this might produce technical problems. One can map the real variety to H and find the
points of the image variety satisfying the condition and demand that they define the “spine”
of the p-adic surface in p-adic H.

2. The points in extensions of rationals inH need not be images of those inM8 but should this be
the case? Is this really possible? M4 point in M4×E4 would be mapped to M4 ⊂M4×CP2:
this is trivial. 4-D associative tangent/normal space at m containing preferred M2 would
be characterized by CP2 coordinates: this is the essence of M8 − H correspondence. How
could one guarantee that the CP2 coordinates characterizing the tangent space are really in
the extension of rationals considered? If not, then the points of cognitive representation in
H are not images of points of cognitive representation in M8. Does this matter?

9.3.2 Are almost-perfectoids evolutionary winners in TGD Universe?

One could take perfectoids and perfectoid spaces as a mere technical tool of highly refiner mathe-
matical cognition. Since cognition is basic aspect of TGD Universe, one could also ask perfectoids
or more realistically, almost-perfectoids, could be an outcome of cognitive evolution in TGD Uni-
verse?

1. p-Adic algebraic varieties are defined as zero loci of polynomials. In the octonionic M8 ap-
proach identifying space-time varieties as zero loci for RE or IM of octonionic polynomial
(RE and IM in quaternionic sense) this allows to define p-adic variants of space-time surfaces
as varieties obeying same polynomial equations as their real counterparts provided the co-
efficients of octonion polynomials obtainable from real polynomials by analytic continuation
are in an extension of rationals inducing also extension of p-adic numbers.
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The points with coordinates in the extension of rationals common to real and p-adic variants
of M8 identified as cognitive representations are in key role. One can see p-adic space-time
surfaces as collections of “monads” labelled by these points at which Cartesian product of
1-D p-adic balls in each coordinate degree. The radius of the p-adic ball can vary. Inside
each ball the same polynomial equations are satisfied so that the monads indeed reflect other
monads.

Kind of algebraic hologram would be in question consisting of the monads. The points in
extension allow to define ordinary real distance between monads. Only finite number of
monads would be involved since the number of points in extension tends to be finite. As the
extension increases, this number increases. Cognitive representations become more complex:
evolution as increase of algebraic complexity takes place.

2. Finite-dimensionality for the allowed extensions of p-adic number fields is motivated by the
idea about finiteness of cognition. Perfectoids are however infinite-dimensional. Number
theoretical universality demands that on only extensions of p-adics induced by those of ra-
tionals are allowed and defined extension of the entire adele. Extensions should be therefore
be induced by the same extension of rationals for all p-adic number fields.

Perfectoids correspond to an extension of Qp apparently depending on p. This dependence
is in conflict with number theoretical universality if real. This extension could be induced
by corresponding extension of rationals for all p-adic number fields. For p-adic numbers Qq
q 6= p all equation ap

n

= x reduces to an = x mod p and this in term to am = x mod p,
m = n mod p. Finite-dimensional extension is needed to have all roots of required kind! This
extension is therefore finite-D for all q 6= p and infinite-D for p.

3. What about infinite-dimensionality of the extension. The real world is rarely perfect and our
thoughts about it even less so, and one could argue that we should be happy with almost-
perfectoids! “Almost” would mean extension induced by powers of p1/p

m

for large enough
m, which is however not infinite. A finite-dimensional extension approaching perfectoid
asymptotically is quite possible!

4. One could see the almost perfectoid as an outcome of evolution and perfectoid as the asymp-
totic states. High dimension of extension means that p-adic numbers and extension of ra-
tionals have large number of common numbers so that also cognitive representations contain
a large number of common points. Maybe the p-adic number fields, which are evolutionary
winners, have managed to evolve to especially high-dimensional almost-perfectoids! Note
however that also the roots of e can be considered as extensions of rationals since corre-
sponding p-adic extensions are finite-dimensional. Similar evolution can be considered also
now.

To get some perspective mote that for large primes such as M127 = 2127 − 1 characterizing

electron the lowest almost perfectoid would give powers of M
1/M127

127 = (2127 − 1)1/(2
127−1) ∼

1 + log(2)2−120! The lattice of points in extension is extremely dense near real unit. The
density of of points in cognitive representations near this point would be huge. Note that
the length scales comes as negative powers of two, which brings in mind p-adic length scale
hypothesis [K15].

Although the octonionic formulation in terms of polynomials (or rational functions identifying
space-time varieties as zeros or poles of RE(P ) or IM(P ) is attractive in its simplicity, one can also
consider the possibility of allowing analytic functions of octonion coordinate obtained from real
analytic functions. These define complex analytic functions with commutative imaginary unit used
to complexify octonions. Could meromorphic functions real analytic at real axis having only zeros
and poles be allowed? The condition that all p-adic variants of these functions exist simultaneously
is non-trivial. Coefficients must be in the extension of rationals considered and convergence poses
restrictions. For instance, ex converges only for |x|p < 1. These functions might appear at the
level of H.
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10 Cognitive representations and algebraic geometry

The general vision about cognition is realized in terms of adelic physics as physics of sensory
experience and cognition [L12, L11]. Rational points and their generalization as ratios of algebraic
integers for geometric objects would define cognitive representations as points common for real
and various p-adic variants of the space-time surface. The finite-dimensionality for induced p-adic
extensions allows also extensions of rationals involving root of e and its powers. This picture
applies both at space-time level, imbedding space level, and at the level of space-time surfaces but
basically reduces to imbedding space level. Hence counting of the (generalized) rational points for
geometric objects would be determination of the cognitive representability.

10.1 Cognitive representations as sets of generalized rational points

The set of rational points depends on the coordinates chosen and one can argue that one must
allow different cognitive representations and classify them according to their effectiveness.

How uniquely the M8
c coordinates can be chosen?

1. Polynomial property allows only linear transformations of the complex octonionic coordinates
with coefficients which belong to the extension of rationals used. This poses extremely strong
restrictions on the allowed representations once the quaternionic moduli defining a foliation
of M4

0 is chosen. One has therefore moduli space of quaternionic structures. One must also
fix the time axis in M4 assignable to real octonions.

2. One can also define several inequivalent octonionic structures and associate a moduli space
to these. The moduli space for octonionic structures would correspond to the space of
M4

0 ⊂ M8s as quaternionic planes containing fixed M2
0 . One can allow even allow Lorentz

transforms mixing real and imaginary octonionic coordinates. It seems that these moduli are
not relevant at the level of H.

What could the precise definition of rationality?

1. The coordinates of point are rational in the sense defined by the extension of rationals used.
Suppose that one considers parametric representations of surfaces as maps from space-time
surface to imbedding space. Suppose that one uses as space-time coordinates subset of
preferred coordinates for imbedding space. These coordinate changes cannot be global and
one space-time surface decomposes to regions in which different coordinates apply.

2. The coordinate transformations between over-lapping regions are birational in the sense that
both the map and its inverse are in terms of rational functions. This makes the notion of
rationality global.

3. When cognitively easy rational parametric representations are possible? For algebraic curves
with g ≥ 2 in CP2 represented as zeros of polynomials this cannot the case since the number
of rational points is finite for instance for g ≥ 2 surfaces. There is simple explanation for
this. Solving second complex coordinate in terms of the other one gives it as an algebraic
function for g ≥ 2: this must be the reason for the loss of dense set of rational points. For
elliptic surfaces y2− x3− ax− b = 0 y2 is however polynomial of x and one can find rational
parametric representation by taking y2 as coordinate [L6]. For g = 0 one has linear equations
and one obtains dense set of rational points. For conic sections one can also have dense set
of rational points but not always. Generalizing from this it would seem that the failure to
have rational parametric representation is the basic reason for the loss of dense set of rational
points.

This picture does not work for general surfaces but generalizes for algebraic varieties defined
by several polynomial equations. The co-dimension dc = 1 case is however unique and the most
studied one since for several polynomial equations one encounters technical difficulties when the
intersection of the surfaces defined by the dc polynomials need not be complete for dc > 1. In
the recent situation one has dc = 4 but octonion analyticity could be powerful enough symmetry
to solve the problem of non-complete intersections by eliminating them or providing a physical
interpretation for them.
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10.2 Cognitive representations assuming M8 −H duality

Many questions should be answered.

1. Can one generalize the results applying to algebraic varieties? Could the general vision
about rational and potentially dense set of rational points generalize?. At M8 side the
description of space-time surfaces as algebraic varieties indeed conforms with this picture.
Could one understand SH from the fact that real analyticity octonionic polynomials are
determined by ordinary polynomial real coordinate completely? In information theoretic
sense sense SH reduces to 1-D holography and the polynomial property makes the situation
effectively discrete since finite number of points of real axis allows to determine the octonionic
polynomial completely! It is a pity that one cannot measure octonionic polynomial directly!

2. Also the notion of Zariski dimension should make sense in TGD at M8 side. Preferred
extremals define the notion of closed set for given CD at M8 side? It would indeed seem that
one define Zariski topology at the level of M8

c . Zariski topology would require 4-surfaces,
string world sheets, or partonic 2-surfaces and even 1-D curves. This picture conforms with
the recent view about TGD and and resembles the M-theory picture, where one has branes.
SH suggests that the analog of Zariski dimension of space-time surface reduces to that for
strings world sheets and partonic 2-surfaces and that even these are analogous to 1-D curves
by complex analyticity. Integrability of TGD and preferred extremal property would indeed
suggest simplicity.

M8 −H hypothesis suggests that these conjectures make sense also at H side. String world
sheets, partonic 2-surface, space-like 3-surfaces at the ends of space-time surface at boundaries
of CD, and light-like 3-surfaces correspond to closed sets also at the level of WCW in the
topology most natural for WCW.

3. Also the problems related to Minkowskian signature could be solved. String world sheets
are problematic because of the Minkowskian signature. They however have the topology of
disk plus handles suggesting immediately a vision about cognitive representations in terms of
rational points. One can can complexify string world sheets and it seems possible to apply the
results of algebraic geometry holding true in Euclidian signature. This would be analogous
to the Wick rotation used in QFTs and also in twistor Grassmann approach.

4. What about algebraic geometrization of the twistor lift? How complex are twistor spaces of
M4, CP2 and space-time surface? How can one generalize twistor lift to the level of M8.
S2 bundle structure and the fact that S2 allows a dense set of rational suggests that the
complexity of twistor space is that of space-time surface itself so that the situation actually
reduces to the level of space-time surfaces.

Suppose one accepts M8 −H duality requiring that the tangent space of space-time surface at
given point x contains M2(x) such that M2(x) define an integrable distribution giving rise to string
world sheets and their orthogonal complements give rise to partonic 2-surfaces. This would give
rise to a foliation of the space-time surface by string world sheets and partonic 2-surface conjecture
on basis of the properties of extremals of Kähler action. As found these foliations could correspond
to quaternion structures that is allowed choices of quaterionic coordinates.

Should one define cognitive representations at the level of M8 or at the level of M4 × CP2?
Or both? For M8 option the condition that space-time point belongs to an extension of rationals
applies at the level of M8 coordinates. For M4 × CP2 option cognitive representations are at
the level of M4 and CP2 parameterizing the points of M4 and their tangent spaces. The formal
study of partial differential equations alone does not help much in counting the number of ratio-
nal points. One can define cognitive representation in very many manners, and some cognitive
representation could be preferred only because they are more efficient than others. Hence both
cognitive representations seems to be acceptable.

Some cognitive representations are more efficient than others. General coordinate invariance
(GCI) at the level of cognition is broken. The precise determination of cognitive efficiency is a
challenge in itself. For instance, the use of coordinates for which coordinate lines are orbits of
subgroups of the symmetry group should be highly efficient. Only coordinate transformations
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mediated by bi-rational maps can take polynomial representations to polynomial representations.
It might well be that only a rational (in generalized sense) sub-group G2 of octonionic automor-
phisms is allowed. For rational surfaces allowing parametric representation in terms of polynomial
functions the rational points form a dense set.

The cognitive resolution for a dense set of rational points is unrealistically high since cognitive
representation would contain infinite number of points. Hence one must tighten the notion of
cognitive representation. The rational points must contain a fermion. Fermions are indeed are
identified as correlates for Boolean cognition [K1]. This would suggests a view in which cognitive
representations are realized at the light-like orbits of partonic 2-surfaces at which Minkowskian
associative and Euclidian co-associative space-time surfaces meet. The general wisdom is that
rational points are localized to lower-dimensional sub-varieties (Bombieri-Lang conjecture): this
conforms with the view that fermion lines reside at the orbits of partonic 2-surfaces.

10.3 Are the known extremals in H easily cognitively representable?

Suppose that one takes TGD inspired adelic view about cognition seriously. If cognitive repre-
sentations correspond to rational points for an extension of rationals, then the surfaces allowing
large number of this kind of points are easily representable cognitively by adding fermions to these
points. One could even speculate that mathematical cognition invents those geometric objects,
which are easily cognitively representable and thus have a large number of rational points.

10.3.1 Could the known extremals of twistor lift be cognitively easy?

Also TGD is outcome of mathematical cognition. Could the known extremals of the twistor lift
of Kähler action be cognitively easy? This is suggested by the fact that even such a pariah class
theoretician as I am have managed to discover then! Positive answer could be seen as support for
the proposed description of cognition!

1. If one believes in M8 − H duality and the proposed identification of associative and co-
associative space-time surfaces in terms of algebraic surfaces in octonionic space M8

c , the
generalization of the results of algebraic geometry should give overall view about the cogni-
tive representations at the level of M8. In particular, surfaces allowing rational parametric
representation (polynomials would have rational coefficients) would allow dense set or ratio-
nal points since the images of rational points are rational. Rationals are understood here as
ratios of algebraic integers in extension of rationals.

2. Also for H the existence of parameter representation using preferred H-coordinates and
rational functions with rational coefficients implies that rational points are dense. If M8−H
correspondence maps the parametric representations in terms of rational functions to similar
representations, dense set of rational points is preserved in the correspondence. There is
however no obvious reason why M8 −H duality should have this nice property.

One can even play with the idea that the surfaces, which are cognitively difficult at the M8

side, might be cognitively easy at H-side or vice versa. Of course, if the explicit representation
as algebraic functions makes sense at M8 side, this side looks cognitively ridiculously easy
as compared to H side. The preferred extremal property and SH can however change the
situation.

3. At M8 side and for a given point of M4 there are several points of E4 (or vice versa) if the
degree of the polynomial is larger than n = 1 so that for the image of the surface H there
are several CP2 points for a given point of M4 (or vice versa) depending on the choice of
coordinates. This is what the notion of the many-sheeted space-time predicts.

4. The equations for the surface at H side are obtained by a composite map assigning first to the
coordinates of X4 ⊂M8 point of M4×E4, and then assigning to the points of X4 ⊂M8 CP2

coordinates of the tangent space of the point. At this step the slightly non-local tangent space
information is fed in and the surfaces in M4×CP2 cannot be given by zeros of polynomials.
The indeed satisfy instead of algebraic equations partial differential equations given by the
Kähler action for the twistor lift TGD. Algebraic equations instead of partial differential
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equations suggests that the M8 representation is much simpler than H-representation. On
the other hand, reduction to algebraic equations at M8 side could have interpretation in
terms of the conjectured complete integrability of TGD [K19, K13].

10.3.2 Testing the idea about self-reference

In any case, it is possible to test the idea about self-reference by looking whether the known
extremals in H are cognitively easy and even have a dense set of rational points in natural coordi-
nates. Here I will consider the situation at the level of M4 × CP2. It was already found that the
known extremals can have inverse images in M8.

1. Canonically imbedded M4 with linear coordinates and constant CP2 coordinates rational is
the simple example about preferred extremal and it seems that TGD based cosmology at
microscopic relies on these extremals. In this case it is obvious that one has a dense set of
rational points at both sides. Could this somehow relate to the fact that physics as physics
M4 was discovered before general relativity?

Canonically imbedded M4 corresponds to a first order octonionic polynomial for which imag-
inary part is put to constant so that tangent space is same everywhere and corresponds to a
constant CP2 coordinate.

2. CP2 type extremals have 4-D CP2 projection and light-like geodesic line of M4 as M4

projection. One can choose the time parameter as a function of CP2 coordinates in infinitely
many manners. Clearly the rational points are dense in any CP2 coordinates.

3. Massless extremals (MEs) are given as zeros of arbitrary functions of CP2 coordinates and 2
M4 coordinates representing local light-like direction and polarization direction orthogonal
to it. In the simplest situation these directions are constant. In the general case light-like
direction would define tangent space of string world sheet giving rise also to a distribution of
ortogonal polarization planes. This is consistent with the general properties of the M8 rep-
resentation and corresponds to the decomposition of quaternionic tangent plane to complex
plane and its complement. One can ask whether one should allow only polynomials with
rational coefficients as octonionic polynomials.

4. String like objects X2×Y 2 with X2 ⊂M4 a minimal surface and Y 2 complex or Lagrangian
surface of CP2 are also basic extremals and their deformations in M4 directions are expected
to give rise to magnetic flux tubes.

If Y 2 is complex surface with genus g = 0 rational points are dense. Also for g = 1 one
obtains a dense set of rational points in some extension of rationals. For elliptic curves one
has lattice of rational points. What happens for Lagrangian surfaces Y 2? In this case one
does not have complex curves but real co-dimension 2 surfaces. There is no obvious objection
why these surfaces would not be possible.

5. What about string world sheets? If the string world is static M2 ⊂ M4 one has a dense
set of rational points. One however expects something more complex. If the string world
sheet is rational map M2 to its orthogonal complement E2 one has rational surface. For
rotating strings this does not make sense except for certain period of time. If the choice
of the quaternion structure corresponds to a choice of minimal surface in M4 as integrable
distribution for M2(x), the coordinates associated with the Hamilton-Jacobi structure could
make the situation simple.

If one restricts the consideration the intersections of partonic 2-surfaces and string world
sheets at two boundaries of CD the situation simplifies and the question is only about the
rationality of the M4 coordinates at rational points of Y 2 ⊂ CP2. This would simplify the
situation enormously and might even allow to use existing knowledge.

6. The slicing of of space-time surfaces by string world sheets and partonic 2-surfaces required by
Hamilton-Jacobi structure could be seen as a fibering analogous to that possessed by elliptic
surfaces. This suggest that M8 counterparts of spacetime surfaces are not of general type in
Kodaira classification and that the number of rational points can be large. If the existence
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of Hamilton-Jacobi structure does not allow handles, this factor would be cognitively simple.
This would however suggests that fermion number is not localized at the ends of strings only
- as assumed in the construction of scattering amplitudes inspired by twistor Grassmann
approach [K22] - but also to the interior of the light-like curves inside string world sheets.

10.4 Twistor lift and cognitive representations

What about twistor lift of TGD replacing space-time surfaces with their twistor spaces. Consider
first M8 side.

1. At M8 side S2 seems to introduce nothing new. One might expect that the situation does not
change at H-side since space-time surfaces are obtained essentially by dimensional reduction
and the possible problem relates to the choice of base space as section of is twistor bundle
and the imbedding of space-time as base space could have singularities at the boundary of
Euclidian and Minkowskian space-time regions as discussed in [L6].

At the side of M8 the proposed induction of twistor structure is just a projection of the
twistor sphere S6 to its geodesic sphere and one has 4-D moduli space for geodesic spheres
S2 ⊂ S6. If one interprets the choice of S2 ⊂ S6 as as a section in the moduli space, the
moduli of S2 can depend on the point of space-time surface. Note that there are is also a
position dependent choice of preferred point of S2 representing Kähler form, and this choice
is good candidate for giving rise to Hamilton-Jacobi structures with position dependent M2.

2. The notion of Kodaira dimension is defined also for co-dimension 4 algebraic varieties in M8
c .

The cognitively easiest spacetime surfaces would allow rational parametric representation
with complex coordinates serving as parameters. If this is not possible, one has algebraic
functions, which makes the situation much more complex so that the number of rational
points would be small.

3. For some complex enough extensions of rationals the set of rational points can be dense.
g ≥ 2 genera are basic example and one expects also in more general case that polynomials
involving powers larger than n = 4 make the situation problematic. The condition that real
or imaginary part of real analytic octonionic polynomial is in question is a strong symmetry
expected to faciliate cognitive representability.

4. The general intuitive wisdom from algebraic geometry is that the rational points are dense
only in lower-dimensional sub-varieties (Bombieri-Lang and Vojta conjectures mentioned in
the first section). The general vision inspired by SH and the proposal for the construction of
twistor amplitudes indeed is that the algebraic points (rational in generalized sense) defining
cognitive representations are associated with the intersections of string world sheets and
partonic 2-surfaces to which fermions are assigned. This would suggest that partonic 2-
surfaces and string world sheets contain the cognitive representation, which under additional
conditions can contain very many points.

5. An interesting question concerns the M8 counterparts of partonic 2-surfaces as space-time
regions with Minkowskian and Euclidian signature. The partonic orbits representing the
boundaries between these regions should be mapped to each other by M8 −H duality. This
conforms with the fact that induced metric must have degenerate signature (0,−1,−1,−1)
at partonic orbits. Can one assume that the topologies of partonic 2-surfaces at two sides
are identical? Consider partonic 2-surface of genus g in M4 × CP2 - say at the boundary of
CD. It should be inverse image of a 2-surface in M4×E4 such that the tangent space of this
surface labelled by CP2 coordinates is mapped to a 2-surface in M4 ×CP2. If the inverse of
M8 −H correspondence is continuous one expects that g is preserved.

Consider next the H-side. There is a conjecture that for Cartesian product the Kodaira di-
mension is sum dK =

∑
i dK,i of the Kodaira dimensions for factors. Suppose that CP1 fiber as

surface in the 12-D twistor bundle T (M4) × T (CP2) has Kodaira dimension dK(CP1) = −∞ (it
is expected to be rational surface) then the fact that the bundle decomposes to Cartesian product
locally and rational points are pairs of rational points in the factors, is indeed consistent with the
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proposal. S2 would give dense set of rational points in S2 and the bundle would have infinite
number of rational points.

In TGD context, it is however space-time surface which matters. Space-time surface as section
of the bundle would not however have a dense set of points in the general case and the relevant
Kodaira dimension be dK = dK(X4). One can of course ask whether the space-time surface as an
algebraic section (not many of them) of the twistor bundle could chosen to be cognitively simple.

10.5 What does cognitive representability really mean?

The following considerations reflect the ideas inspired by Face Book debate with Santeri Satama
(SS) relating to the notion of number and the notion of cognitive representation.

SS wants to accept only those numbers that are constructible, and SS mentioned the notion of
demonstrability due to Gödel. According to my impression demonstrability means that number
can be constructed by a finite algorithm or at least that the information needed to construct the
number can be constructed by a finite algorithm although the construction itself would not be
possible as digit sequence in finite time. If the constructibility condition is taken to extreme, one
is left only with rationals.

As a physicists, I cannot consider starting to do physics armed only with rationals: for instance,
continuous symmetries and the notion of Riemann manifold would be lost. My basic view is that
we should identify the limitations of cognitive representability as limitations for what can exist. I
talked about cognitive representability of numbers central in the adelic physics approach to TGD.
Not all real numbers are cognitively representable and need not be so.

Numbers in the extensions of rationals would be cognitively representable as points with coordi-
nates in an extension of rationals. The coordinates themselves are highly unique in the octonionic
approach to TGD and different coordinates choices for complexified octonionic M8 are related
by transformations changing the moduli of the octonion structure. Hence one avoids problems
with general coordinate invariance). Not only algebraic extensions of rationals are allowed. Neper
number e is an exceptional transcendental in that ep is p-adic number and finite-D extensions of
p-adic numbers by powers for root of e are possible.

My own basic interest is to find a deeper intuitive justification for why algebraic numbers shoud
be cognitively representable. The naive view about cognitive representability is that the number
can be produced in a finite number of steps using an algorithm. This would leave only rationals
under consideration and would mean intellectual time travel to ancient Greece.

Situation changes if one requires that only the information about the construction of number
can be produced in a finite number of steps using an algorithm. This would replace construction
with the recipe for construction and lead to a higher abstraction level. The concrete construction
itself need not be possible in a finite time as bit sequence but could be possible physically (

√
2 as a

diagonal of unit square, one can of course wonder where to buy ideal unit squares). Both number
theory and geometry would be needed.

Stern-Brocot tree associated with partial fractions indeed allows to identify rationals as finite
paths connecting the root of S-B tree to the rational in question. Algebraic numbers can be
identified as infinite periodic paths so that finite amount of information specifies the path. Tran-
scendental numbers would correspond to infinite non-periodic paths. A very close analogy with
chaos theory suggests itself.

10.5.1 Demonstrability viz. cognitive representability

SS talked about demonstrable numbers. According to Gödel demonstrable number would be
representable by a formula G, which is provable in some axiom system. I understand this that
G would give a recipe for constructing that number. In computer programs this can even mean
infinite loop, which is easy to write but impossible to realize in practice. Here comes the possibility
that demonstrability does not mean constructibility in finite number of steps but only a finite recipe
for this.

The requirement that all numbers are demonstrable looks strange to me. I would talk about
cognitive representability and reals and p-adic number fields emerge unavoidably as prerequisites
for this notion: cognitive representation must be about something in order to be a representation.
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About precise construction of reals or something bigger - such as surreals - containing them,
there are many views and I am not mathematician enough to take strong stance here. Note however
that if one accepts surreals as being demonstrable (I do not really understand what this could mean)
one also accept reals as such. These delicacies are not very interesting for the formulation of physics
as it is now.

The algorithm defining G defines a proof. But what does proof mean? Proof in mathematical
sense would reduce in TGD framework be a purely cognitive act and assignable to the p-adic
sectors of adele. Mathematicians however tend to forget that for physicist the demonstration
is also experimental. Physicist does not believe unless he sees: sensory perception is needed.
Experimental proofs are what physicists want. The existence of

√
2 as a diagonal of unit square is

experimentally demonstrable in the sense of being cognitively representable but not deducible from
the axioms for rational numbers. As a physicist I cannot but accept both sensory and cognitive
aspects of existence.

Instead of demonstrable numbers I prefer to talk about cognitively representable numbers.

1. All numbers are cognizable (p-adic) or sensorily perceivable (real). These must form continua
if one wants to avoid problems in the construction of physical theories, where continuous
symmetries are in a key role.

Some numbers but not all are also cognitively representable that is being in the intersection
reals and p-adics - that is in extension of rationals if one allows extensions of p-adics in-
duced by extensions of rationals. This generalizes to intersection of space-time surfaces with
real/p-adic coordinates, which are highly unique linear coordinates at octonionic level so
that objections relating to a loss of general coordinate invariance are circumvented. General
coordinate transformations reduce to automorphisms of octonions.

The relationship to the axiom of choice is interesting. Should axiom of choice be restricted
to the points of complexified octonions with coordinates in extensions of rationals? Only
points in the extensions could be selected and this selection process would be physical in the
sense that fermions providing realization of quantum Boolean algebra would reside at these
points [K1]. In preferred octonionic coordinates the M8 coordinates of these points would
be in given extension of rationals. At the limit of algebraic numbers these points would form
a dense set of reals.

Remark: The spinor structure of “world of classical worlds” (WCW) gives rise to WCW
spinors as fermionic Fock states at given 3-surface. In ZEO many-fermion states have inter-
pretation in terms of superpositions of pairs of Boolean statements A → B with A and B
represented as many-fermion states at the ends of space-time surface located at the opposite
light-like boundaries of causal diamond (CD). One could say that quantum Boolean logic
emerges as square root of Kähler geometry of WCW.

At partonic 2-surfaces these special points correspond to points at which fermions can be
localized so that the representation is physical. Universe itself would come in rescue to make
representability possible. One would not anymore try to construct mathematics and physics
as distinct independent disciplines.

Even observer as conscious entity is necessarily brought into both mathematics and physics.
TGD Universe as a spinor field in WCW is re-created state function reduction by reduction
and evolves: evolution for given CD corresponds to the increase of the size of extension of
rationals in statistical sense. Hence also mathematics with fixed axioms is replaced with a q
dynamical structure adding to itself new axioms discovery by discovery [?, L12].

2. Rationals as cognitively representable numbers conforms with naive intuition. One can how-
ever criticize the assumption that also algebraic numbers are such. Consider

√
2: one can

simply define it as length of diagonal of unit square and this gives a meter stick of length√
2: one can represent any algebraic number of form m + n

√
2 by using meter stricks with

length of 1 and
√

2. Cognitive representation is also sensory representation and would bring
in additional manner to represent numbers.

Note that algebraic numbers in n-dimensional extension are points of n-dimensional space
and their cognitive representations as points on real axis obtained by using the meter sticks
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assignable to the algebraic numbers defining base vectors. This should generalize to the roots
arbitrary polynomials with rational or even algebraic coefficients. Essentially projection form
n-D extension to 1-D real line is in question. This kind of projection might be important in
number theoretical dynamics. For instance, quasi-periodic quasi-crystals are obtained from
higher-D periodic crystals as projections.

n-D algebraic extensions of p-adics induced by those of rationals might also related to our
ability to imagine higher-dimensional spaces.

3. In TGD Universe cognitive representability would emerge from fundamental physics. Exten-
sions of rationals define a hierarchy of adeles and octonionic surfaces are defined as zero loci
for real or imaginary parts (in quaternionic sense) of polynomials of real argument with coef-
ficients in extension continued to octonionic polynomials [L8]. The zeros of real polynomial
have a direct physical interpretation and would represent algebraic numbers physically. They
would give the temporal positions of partonic 2-surfaces representing particles at light-like
boundary of CD.

4. Note that all calculations with algebraic numbers can be done without using approximations
for the genuinely algebraic numbers defining the basis for the extension. This actually sim-
plifies enormously the calculation and one avoids accumulating errors. Only at the end one
represents the algebraic units concretely and is forced to use rational approximation unless
one uses above kind of cognitive representation.

For these reasons I do not feel any need to get rid of algebraics or even transcendentals. Sensory
aspects of experience require reals and cognitive aspects of experience require p-adic numbers fields
and one ends up with adelic physics. Cognitive representations are in the intersection of reality
and various p-adicities, something expressible as formulas and concrete physical realizations or at
least finite recipes for them.

10.5.2 What the cognitive representability of algebraic numbers could mean?

Algebraic numbers should be in some sense simple in order to be cognitively representable.

1. For rationals representation as partial fractions produces the rational number by using a
finite number of steps. One starts from the top of Stern-Brocot (S-B) tree (see http://

tinyurl.com/yb6ldekq) and moves to right or left at each step and ends up to the rational
number appearing only once in S-B tree.

2. Algebraic numbers cannot be produced in a finite number of steps. During the discussion
I however realized that one can produce the information needed to construct the algebraic
number in a finite number of steps. One steps to a new level of abstraction by replacing the
object with the information allowing to construct the object using infinite number of steps
but repeating the same sub-algorithm with finite number of steps: infinite loop would be in
question.

Similar abstraction takes place as one makes a step from the level of space-time surface to
the level of WCW. Space-time surface with a continuum of points is represented by a finite
number of WCW coordinates, in the octonionic representation of space-time surface by the
coefficients of polynomial of finite degree belonging to an extension of rationals [L8]. Crit-
icality conditions pose additional conditions on the coefficients. Finite number of algebraic
points at space-time surface determines the entire space-time surface under these conditions!
Simple names for complex things replacing the complex things is the essence of cognition!

3. The interpretation for expansions of numbers in given base suggests an analog with com-
plexity theory and symbolic dynamics associated with division. For cognitively representable
numbers the information about this dynamics should be coded by an algorithm with finite
steps. Periodic orbit or fixed point orbit would be the dynamical analog for simplicity. Non-
periodic orbit would correspond to complexity and possibly also chaos.

These ideas led to two approaches in attempt to understand the cognitive representability of
algebraic numbers.

http://tinyurl.com/yb6ldekq
http://tinyurl.com/yb6ldekq
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Generalized rationals in extensions of rationals as periodic orbits for the dynamics of division
The first approach allows to represent ratios of algebraic integers for given extension using

periodic expansion in the base so that a finite amount of information is needed to code the number
if one accepts the numbers defining the basis of the algebraic extension as given.

1. Rationals allow periodic expansion with respect to any base. For p-adic numbers the base is
naturally prime. Therefore the information about rational is finite. One can see the expansion
as a periodic orbit in dynamics determining the expansion by division m/n in given base.
Periodicity follows from the fact that the output of the division algorithm for a given digit
has only a finite number of outcomes so that the process begins to repeat itself sooner or
later.

2. This generalizes to generalized rationals in given extension of rationals defined as ratios
of algebraic integers. One can reduce the division to the construction of the expansion of
ordinary rational identified as number theoretic norm |N | of the denominator in the extension
of rationals considered.

The norm |N | of N is the determinant |N | = det(N) for the linear map of extension induced
by multiplication with N . det(N) is ordinary (possibly p-adic) integer. This is achieved by
multiplying 1/N by n− 1 conjugates of N both in numerator and denominator so that one
obtains product of n − 1 conjugates in the numerator and det(N) in the denominator. The
computation of 1/N as series in the base used reduces to that in the case of rationals.

3. One has now periodic orbits in n-dimensional space defined by algebraic extensions which for
ordinary rationals reduced to periodic orbits in 1-D space. This supports the interpretation of
numbers as orbits of number theoretic dynamics determining the next digit of the generalized
rational for given base. This picture also suggests that transcendentals correspond to non-
periodic orbits. Some transcendentals could still allow a finite algorithm: in this case the
dynamics would be still deterministic. Some transcendentals would be chaotic.

4. Given expansion of algebraic number is same for all extensions of rationals containing the
extension in question and the ultimate extension corresponds to algebraic numbers.

The problem of this approach is that the algebraic numbers defining the extension do not have
representation and must be accepted as irreducibles.

Algebraic numbers as infinite periodic orbits in the dynamics of partial fractions
Second approach is based on partial fractions and Stern-Brocot tree (see http://tinyurl.com/

yb6ldekq, see also http://tinyurl.com/yc6hhboo) and indeed allows to see information about
algebraic numbers as constructible by using an algorithm with finite number of steps, which is
allowed if one accepts abstraction as basic aspect of cognition. I had managed to not become
aware of this possibility and am grateful for SS for mentioning the representation of algebraics in
terms of S-B tree.

1. The definition S-B tree is simple: if m/n and m′/n′ are any neighboring rationals at given
level in the tree, one adds (m+m′)/(n+ n′) between them and obtains in this manner the
next level in the tree. By starting from (0/1) and (1/0) as representations of zero and∞ one
obtains (0/1)(1/1)(1/0) as the next level. One can continue in this manner ad infinitum. The
nodes of S-B tree represent rational points and it can be shown that given rational appears
only once in the tree.

Given rational can be represented as a finite path beginning from 1/1 at the top of tree
consisting of left moves L and right moves R and ending to the rational which appears
only once in S-B tree. Rational can be thus constructured by a sequences Ra0La1La2 ....
characterized by the sequence a0; a1, a2.... For instance, 4/11 = 0+1/(2+x) , x = 1/(1+1/3)
corresponds to R0L2R1L3−1 labelled by 0; 2, 1, 3.

2. Algebraic numbers correspond to infinite but periodic paths in S-B tree in the sense that
some sequence of L:s and R:s characterized by sequences of non-negative integers starts to
repeat itself. Periodicity means that the information needed to construct the number is finite.

http://tinyurl.com/yb6ldekq
http://tinyurl.com/yb6ldekq
http://tinyurl.com/yc6hhboo
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The actual construction as a digit sequence representing algebraic number requires infinite
amount of time. In TGD framework octonionic physics would come in rescue and construct
algebraic numbers as roots of polynomials having concrete interpretations as coordinate val-
ues assignable to fermions at partonic 2-surfaces.

3. Transcendentals would correspond to non-periodic infinite sequences of L:s and R:s. This
does not exclude the possibility that these sequences are expressible in terms of some rule
involving finite number of steps so that the amount of information would be also now finite.
Information about number would be replaced by information about rule.

This picture conforms with the ideas about transition to chaos. Rationals have finite paths.
A possible dynamical analog is particle coming at rest due to the dissipation. Algebraic
numbers would correspond to periodic orbits possible in presence of dissipation if there is
external feed of energy. They would correspond to dynamical self-organization patterns.

Remark: If one interprets the situation in terms of conservative dynamics, rationals would
correspond to potential minima and algebraic numbers closed orbits around them.

The assignment of period doubling and p-pling to this dynamics as the dimension of extension
increases is an attractive idea. One would expect that the complexity of periodic orbits
increases as the degree of the defining irreducible polynomial increases. Algebraic numbers
as maximal extension of rationals possibly also containing extension containing all rational
roots of e and transcendentals would correspond to chaos.

Transcendentals would correspond to non-periodic orbits. These orbits need not be always
chaotic in the sense of being non-predictable. For instance, Neper number e can be said to
be p-adically algebraic number (ep is p-adic integer albeit infinite as real integer). Does the
sequence of L:s and R:s allow a formula for the powers of L and R in this case?

4. TGD should be an integrable theory. This suggests that scattering amplitudes involve only
cognitive representations as number theoretic vision indeed strongly suggests [L8]. Cogni-
tively representable numbers would correspond to the integrable sub-dynamics [L15]. Also
in chaotic systems both periodic and chaotic orbits are present. Complexity theory for char-
acterization of real numbers exists. The basic idea is that complexity is measured by the
length of the shortest program needed to code the bit sequences coding for the number.

10.5.3 Surreals and ZEO

The following comment is not directly related to cognitive representability but since it emerged dur-
ing discussion, I will include it. SS favors surreals (see http://tinyurl.com/86jatas) as ultimate
number field containing reals as sub-field. I must admit that my knowledge and understanding of
surreals is rather fragmentary.

I am agnostic in these issues and see no conflict between TGD view about numbers and surreals.
Personally I however like very much infinite primes, integers, and rationals over surreals since they
allow infinite numbers to have number theoretical anatomy [K10]. A further reason is that the
construction of infinite primes resembles structurally repeated second quantization of the arithmetic
number field theory and could have direct space-time correlate at the level of many-sheeted space-
time. One ends up also to a generalization of real number. Infinity can be seen as something
related to real norm: everything is finite with respect to various p-adic norms.

Infinite rationals with unit real norm and various p-adic norms bring in infinitely complex
number theoretic anatomy, which could be even able to represent even the huge WCW and the
space of WCW spinor fields. One could speak of number theoretical holography or algebraic
Brahman=Atman principle. One would have just complexified octonions with infinitely richly
structure points.

Surreals are represented in terms of pairs of sets. One starts the recursive construction from
empty set identified as 0. The definition says that the pairs (.|.) of sets defining surreals x and y
satisfy x ≤ y if the left hand part of x as set is to left from the pair defining y and the right hand
part of y is to the right from the pair defining x. This does not imply that one has always x < y,
y < x or x = y as for reals.

What is interesting that the pair of sets defining surreal x is analogous to a pair of states at
boundaries of CD defining zero energy state. Is there a connection with zero energy ontology

http://tinyurl.com/86jatas
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(ZEO)? One could perhaps say at the level of CD - forgetting everything related to zero energy
states - following. The number represented by CD1 - say represented as the distance between its
tip - is smaller than than the number represented by CD2, if CD1 is inside CD2. This conforms
with the left and righ rule if left and right correspond to the opposite boundaries of CD. A more
detailed definition would presumably say that CD1 can be moved so that it is inside CD2.

What makes this also interesting is that CD is the geometric correlate for self, conscious entity,
also mathematical mental image about number.

11 A possible connection with family replication phenomenon?

In TGD framework the genus g of the partonic 2-surfaces is proposed to label fermion families
[K2, K7, K8]. One can characterize by genus g the topology of light-like partonic orbits and
identify the three fermion generators as 2-surfaces with genus g = 0, 1, 2 with the special property
that they are always hyper-elliptic. Quantum mechanically also topological mixing giving rise to
CKM mixing is possible. The view is that given connected 3-surface can contain several light-like
3-surface with different genera. For instance, hadrons would be such surfaces.

There are however questions to be answered.

1. The genera g = 0, 1, 2 assigned with the free fermion families correspond to Riemann surfaces,
which are always hyper-elliptic allowing therefore Z2 as a global conformal symmetry. These
complex curves correspond to degrees n = 2, 3, 4 for the corresponding polynomials. For
n ≤ 4 can write explicit solutions for the roots of the polynomials. Could there be a deep
connection between particle physics and mathematical cognition?

2. The homology and genus for 2-surfaces of CP2 correlate with each other [A7]: is this consis-
tent with the proposed topologicization of color hypercharge implying color confinement?

3. heff/h = n hypothesis means that dark variant of particle particle characterized by genus
g is n-fold covering of this surface. In the general case the genus of covering is different. Is
this consistent with the genus-generation correspondence?

4. The degree of complex curve correlates with the genus of the curve. Is generation-genus
correspondence consistent with the assumption that partonic 2-surfaces have algebraic curve
as CP2 projection (this need not be the case)?

11.1 How the homology charge and genus correlate?

Complex surfaces in CP2 are highly interesting from TGD point of view.

1. The model for elementary particles assumes that the partonic 2-surfaces carrying fermion
number are homologically non-trivial, in other words they carry Kähler magnetic monopole
flux having values q = ±1 and q = ±2. The idea is that color hyper charge Y = {±2/3,±1/3}
is proportional to n for quarks and color confinement topologizes to the vanishing of total
homology charge [K8].

2. The explanation of the family replication phenomenon [K2] in terms of genus-generation
correspondence states that the three quarks and lepton generations correspond to the three
lowest genera g = 0, 1, 2 for partonic 2-surfaces. Only these genera are always hyper-elliptic
allowing thus a global Z2 conformal symmetry. The physical vision is that for higher genera
the handles behave like free particles. Is this proposal consistent with the proposal for the
topologization of color confinement?

There is a result [A7] (page 124) stating that if the homology charge q is divisible by 2 then
one must have g ≥ q2/4 − 1. If q is divisible by h, which is odd power of prime, one has g ≥
(q2/4 − 1) − (q2/4h2). For q = 2 the theorem allows g ≥ 0 so that all genera with color hyper
charge Y = ±2/3 are realized.

The theorem says however nothing about q = 0, 1. These charges can be assigned to the two
different geodesic spheres of CP2 with g = 0 remaining invariant under SO(3) and U(2) subgroups
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of SU(3) respectively. Is g > 0 possible for q = 1 as the universality of topological color confinement
would require? For q = 3 one would have g ≥ 1. For q = 4 h = 2 divides q and one has g ≥ 2. It
would seem g ≥ 5. The conditions become more restrictive for higher q, which suggests that for
q = 0, 1 one has g ≥ 0 so that the topologization of color hypercharge would make sense.

11.2 Euler characteristic and genus for the covering of partonic 2-surface

Hierarchy of Planck constants heff/h = n means a hierarchy of space-time surfaces identifiable
as n-fold coverings. The proposal is that the number of sheets in absence of singularities is the
maximal possible one and equal to the order of Galois group for the extension of rationals but this
result is not really proven. Second naive guess is that it corresponds to the dimension of extension.

The Euler characteristic of n-fold covering in absence of singular points is χn = nχ. If there
are singular (ramified) points these give a correction term given by Riemann-Hurwitz formula (see
http://tinyurl.com/y7n2acub.)

In absence of singularities one has from χ = −2(g − 1) and χn = nχ

gn = n(g − 1) + 1 . (11.1)

For n = 1 this indeed gives g1 = g independent of g. One can also combine this with the formula
g = (d− 1)(d− 2)/2 holding for non-singular algebraic curves of degree d.

Singularities are unavoidable at algebraic points of cognitive representations at which some
subgroup of Galois group leaves the point invariant (say rational point in ordinary sense). One can
consider the possibility that fermions are located at the singular points at which several sheets of
covering touch each other. This would give a correction factor to the formula. If the projection map
from the covering to based is of form Π(z) = zn at the singular point P , one says that singularity
has ramimifaction index eP = n and the algebraic genus would increase to

gn = n(g − 1) + 1 +
1

2

∑
P

(eP − 1) . (11.2)

Indeed, singularities mean that sheets touch each other at singular points and this increases con-
nectivity.

Under what conditions the genus of dark partonic surface with n > 1 can be same as that of
the ordinary partonic surface representing visible matter? For the genera g = 0 and g = 1 this is
possible so that these genera would be in an exceptional role also from the point of view of dark
matter.

1. For g = 1 one has gn = g = 1 independent of n in absence of singular point. Torus topology
(assignable to muon and (c,s) quarks) is exceptional. In presence of singularities the genus
would increase by the

∑
P (eP − 1)/2 independent of the value of n. The lattice of points for

elliptic surfaces would suggest existence of infinite number of singular points if the abelian
group operations preserve the singular character of the points so that the genus would become
infinite.

2. For g = 0 one would have gn = −n + 1 in absence of singularities. Only n = 1 - ordinary
matter - is possible without singularities. Dark matter is however possible if singularities are
allowed. For sphere one would obtain gn = −n + 1 +

∑
P (eP − 1)/2 ≥ 0. The condition

n ≤
∑
P (eP − 1)/2 + 1 must therefore hold true for g ≥ 0.

The condition gn = −n + 1 +
∑
P (eP − 1)/2 = g = 0 gives

∑
P (eP − 1) = 2(n − 1). For

spherical topology it is possible to have dense set of rational points so that it is possible
create cognitive representations with arbitrary number of points which can be also singular.
One might argue that this kind of situation corresponds to a non-perturbative phase.

3. For g = 2 one would have gn = n+ 1 +
∑
P (eP − 1)/2 and genus would grow with n even in

absence of singularities and would be very large for large values of heff . gn = 2 is obtained
with n = 1 (ordinary matter) and no singular points not even allowed for n = 1. gn = g = 2
is not possible for n > 1.

http://tinyurl.com/y7n2acub
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Note that dark g ≥ 2 fermions cannot correspond to lower generation fermions with singular
points of covering. More generally, one could say that g ≥ 2 fermions can exists only with
standard value of Planck constant unless they are singular coverings of g < 2 fermions.

What is clear that the model of dark matter predicts breaking of universality. This breaking is
not seen in the standard model couplings but makes it visible in amore delicate manner and might
allow to understand why the masses of fermions increase with generation index.

11.3 All genera are not representable as non-singular algebraic curves

Suppose for a moment that partonic 2-surfaces correspond to rational maps of algebraic curves in
CP2 to M4 that is deformations of these curves in M4 direction. This assumption is of course
questionable but deserves to be sttudied.

The formula (for algebraic curve see http://tinyurl.com/nt6tkey)

g =
(d− 1)(d− 2)

2
+

∑
δs

2
,

where δs > 0 characterizes the singularity, does not allow all genera for algebraic curves for∑
δs = 0: one has g = 0, 0, 1, 3, 6, 10, .. for d = 1, 2, ....
For instance, g = 2, which would correspond in TGD to third quark or lepton generation is not

possible without singularities for d = 3 curve having g = 1 without singularities!
This raises questions. Could the third fermion generation actually correspond to g = 3? Or

does it correspond to g = 2 2-surface of CP2, which is more general surface than algebraic curve
meaning that it is not representable as complex surface? Or could third generation fermions
correspond to g = 0 or g = 1 curves with singular point of covering by Galois group so that several
sheets touch each other?

To sum up, if the results for algebraic varieties generalize to TGD framework, they suggest
notable differences between different fermion families. Universality of standard model interactions
says that the only differences between fermion families are due to the differ masses. It is not clear
whether the different masses could be due to the differences at number theoretical level and dark
matter sectors.

1. All genera can appear as as ordinary matter (d = 1). Dark variants of g = 1 states have
gd = 1 automatically in absence of singular points. Dark variants of g = 0 states must have
singular point in order to give gn = 0. Dark variants of g = 2 states with gd = 2 are obtained
from g = 1 states with singularities. The special role of the two lowest is analogous to their
special role for algebraic curves.

2. If one assumes that partonic 2-surfacs correspond to algebraic curves, one obtains again that
g = 2 surfaces must correspond to singular g = 0 and g = 1 which could be dark in TGD
sense.

12 Summary and future prospects

In the following I give a brief summary about what has been done. I concentrate on M8 − H
duality since the most significant results are achieved here.

It is fair to say that the new view answers the following a long list of open questions.

1. When M8−H correspondence is true (to be honest, this question emerged during this work!)?
What are the explicit formulas expressing associativity of the tangent space or normal space
of the 4-surface?

The key element is the formulation in terms of complexified M8 identified in terms of octo-
nions and restriction to M8. One loses the number field property but for polynomials ring
property is enough. The level surfaces for real and imaginary parts of octonionic polynomials
with real coefficients define 4-D surfaces in the generic case.

Associativity condition is an additional condition reducing the dimension of the space-time
surface unless some components of RE(P ) or IM(P ) are critical meaning that also their

http://tinyurl.com/nt6tkey
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gradients vanish. This conforms with the quantum criticality of TGD and provides a concrete
first principle realization for it.

An important property of IM(P1P2) is its linearity with respect to IM(Pi) implying that
this condition gives the surfaces IM(Pi) = 0 as solutions. This generalizes by induction
to IM(P1P2...Pn). For RE(P1P2) = 0 linearity does not hold true and there is a genuine
interaction. A physically attractive idea idea is that RE(P1P2) = 0 holds true inside CDs
and for wormhole contacts between space-time sheets with Minkoskian signature. One can
generalizes this also to IM(P1/P2) and RE(P1/P2) if rational functions are allowed. Note
however that the origins of octonionic coordinates in Pi must be on the octonionic real line.

2. How this picture corresponds to twistor lift? The twistor lift of Kähler action (dimension-
ally reduced Kähler action in twistor space of space-time surface) one obtains two kinds of
space-time regions. The regions, which are minimal surfaces and obey dynamics having no
dependence on coupling constants, correspond naturally to the critical regions in M8 and H.

There are also regions in which one does not have extremal property for both Kähler action
and volume term and the dynamics depends on coupling constant at the level of H. These
regions are associative only at their 3-D ends at boundaries of CD and at partonic orbits,
and the associativity conditions at these 3-surfaces force the initial values to satisfy the
conditions guaranteeing preferred extremal property. The non-associative space-time regions
are assigned with the interiors of CDs. . The particle orbit like space-time surfaces entering
to CD are critical and correspond to external particles.

3. The surprise was that M4 ⊂ M8 is naturally co-associative. If associativity holds true also
at the level of H, M4 ⊂ H must be associative. This is possible if M8 − H duality maps
tangent space in M8 to normal space in H and vice versa.

4. The connection to the realization of the preferred extremal property in terms of gauge con-
ditions of subalgebra of SSA is highly suggestive. Octonionic polynomials critical at the
boundaries of space-time surfaces would determine by M8 −H correspondence the solution
to the gauge conditions and thus initial values and by holography the space-time surfaces in
H.

5. A beautiful connection between algebraic geometry and particle physics emerges. Free many-
particle states as disjoint critical 4-surfaces can be described by products of corresponding
polynomials satisfying criticality conditions. These particles enter into CD , and the non-
associative and non-critical portions of the space-time surface inside CD describe the interac-
tions. One can define the notion of interaction polynomial as a term added to the product of
polynomials. It can vanish at the boundary of CD and forces the 4-surface to be connected
inside CD. It also spoils associativity: interactions are switched on. For bound states the
coefficients of interaction polynomial are such that one obtains a bound state as associative
space-time surface.

6. This picture generalizes to the level of quaternions. One can speak about 2-surfaces of space-
time surface with commutative or co-commutative tangent space. Also these 2-surfaces would
be critical. In the generic case commutativity/co-commutativity allows only 1-D curves.

At partonic orbits defining boundaries between Minkowskian and Euclidian space-time re-
gions inside CD the string world sheets degenerate to the 1-D orbits of point like particles at
their boundaries. This conforms with the twistorial description of scattering amplitudes in
terms of point like fermions.

For critical space-time surfaces representing incoming states string world sheets are possible
as commutative/co-commutative surfaces (as also partonic 2-surfaces) and serve as correlates
for (long range) entaglement) assignable also to macroscopically quantum coherent system
(heff/h = n hierarchy implied by adelic physics).

7. The octonionic polynomials with real coefficients form a commutative and associative algebra
allowing besides algebraic operations function composition. Space-time surfaces therefore
form an algebra and WCW has algebra structure. This could be true for the entire hierarchy
of Cayley-Dickson algebras, and one would have a highly non-trivial generalization of the
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conformal invariance and Cauchy-Riemann conditions to their n-linear counterparts at the
n:th level of hierarchy with n = 1, 2, 3, .. for complex numbers, quaternions, octonions,... One
can even wonder whether TGD generalizes to this entire hierarchy!

All big pieces of quantum TGD are now tightly interlinked.

1. The notion of causal diamond (CD) and therefore also ZEO can be now regarded as a conse-
quence of the number theoretic vision and M8−H correspondence, which is also understood
physically.

2. The hierarchy of algebraic extensions of rationals defining evolutionary hierarchy corresponds
to the hierarchy of octonionic polynomials.

3. Associative varieties for which the dynamics is critical are mapped to minimal surfaces with
universal dynamics without any dependence on coupling constants as predicted by twistor lift
of TGD. The 3-D associative boundaries of non-associative 4-varieties are mapped to initial
values of space-time surfaces inside CDs for which there is coupling between Kähler action
and volume term.

4. Free many particle states as algebraic 4-varieties correspond to product polynomials in the
complement of CD and are associative. Inside CD the addition of interaction terms vanishing
at its boundaries spoils associativity and makes these varieties connected.

5. The super variant of the octonionic algebraic geometry makes sense, and one obtains a
beautiful correlation between the fermion content of the state and corresponding space-time
variety. This suggests that twistorial construction indeed generalizes. Criticality for the
external particles giving rise to additional constraints on the coefficients of polynomials could
make possible to have well-define summation over corresponding varieties.

What mathematical challenges one must meet?

1. One should prove more rigorously that criticality is possible without the reduction of dimen-
sion of the space-time surface.

2. One must demonstrate that SSA conditions can be true for the images of the associative
regions (with 3-D or 4-D). This would obviously pose strong conditions on the values of
coupling constants at the level of H.

Concerning the description of interactions there are several challenges.

1. Do associative space-time regions have minimal surface extremals as images in H and indeed
obeying universal critical dynamics? As found, the study of the known extremals supports
this view.

2. Could one construct the scattering amplitudes at the level of M8? Here the possible problems
are caused by the exponents of action (Kähler action and volume term) at H side. Twistorial
construction [K23] however leads to a proposal that the exponents actually cancel. This
happens if the scattering amplitude can be thought as an analog of Gaussian path integral
around single extremum of action and conforms with the integrability of the theory. In fact,
nothing prevents from defining zero energy states in this manner! If this holds true then it
might be possible to construct scattering amplitudes at the level of M8.

3. What about coupling constants? Coupling constants make themselves visible at H side
both via the vanishing conditions for Noether charges in sub-algebra of SSA and via the
values of the non-vanishing Noether charges. M8 − H correspondence determining the 3-
D boundaries of interaction regions within CDs suggests that these couplings must emerge
from the level M8 via the criticality conditions posing conditions on the coefficients of the
octonionic polynomials coding for interactions.

Could all coupling constant emerge from the criticality conditions at the level of M8? The
ratio of R2/l2P of CP2 scale and Planck length appears at H level. Also this parameter should
emerge from M8 −H correspondence and thus from criticality at M8 level. Physics would
reduce to a generalization of the catastrophe theory of Rene Thom!
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4. The description of interactions at the space-time surface associated with single CD should be
M8 counterpart of the H picture in which 3 light-like partonic orbits meet at common end
topological vertex - defined by a partonic 2-surface and fermions scatter without touching.
Now one has octonionic sparticle lines and interaction vertex becomes possible. This conforms
with the idea that interactions take place at discrete points belonging to the extension of
rationals. The partonic 2-surfaces defining topological vertices would naturally correspond
to the intersections X2 = X4 ∩ S6(tn). If sparticle lines are allowed to move along this
space-like 2-surface (the line becomes space-like) they can intersect and give rise to a fusion
vertex producing the third fermionic line.

The partonic 2-surfaces defining topological vertices would naturally correspond to the inter-
sections X2 = X4 ∩ S6(tn), which satisfy RE(P ) = IM(P ) = 0 and are singular and doubly
critical. If sparticle lines are allowed to move along this space-like 2-surface (the line becomes
space-like) they can intersect and give rise to a fusion vertex producing the third fermionic
line.

5. Real analyticity requires that the octonionic polynomials have real coefficients. This forces
the origin of octonionic coordinates to be at real line (time axis) in the octonionic sense, and
guarantees the associativity and commutativity of the polynomials. Arbitrary CDs cannot
be located along this line. Can one assume that all CDs involved with observable processes
satisfy this condition?

If not, how do the 4-varieties associated with octonionic polynomials with different origins
interact? How could one avoid losing the extremely beautiful associative and commutative
algebra? It seems that one cannot form their products and sums and must form the Cartesian
product of M8:s with different tips for CDS and formulate the interaction in this framework.
In the case of space-time surfaces associated with different CDs the discrete intersections of
space-time surfaces would define the interaction vertices.

6. Super-octonionic geometry suggests that the twistorial construction of scattering amplitudes
in N = 4 SUSY generalizes to TGD in rather straightforward manner to a purely geometric
construction. Functional integral over WCW would reduce to summations over polynomi-
als with coefficients in an appropriate extension of rationals and criticality conditions on
the coefficients could make the summation well-defined by bringing in finite measurement
resolution.

If scattering diagrams are associated with discrete cognitive representations, one obtains a
generalization of super-twistor formalism involving polygons. Super-octonions as counter-
parts of super gauge potentials are well-defined if octonionic 8-momenta are quaternionic:
indeed, Grassmannians have quaternionic counterparts but not octonionic ones. There are
good hopes that the twistor Grassmann approach to N = 4 SUSY generalizes. The core part
in the calculation of the scattering diagram would reduce to the construction of octonionic
4-varieties and identifying the points belonging to the extension of rationals considered. The
rest would be dictated by symmetries and integrations over various moduli spaces, which
should be number theoretically universal so that residue calculus strongly suggests itself.

7. What is the connection with super conformal variant of Yangian symmetry, whose generaliza-
tion in TGD framework is highly suggestive? Twistorial construction of scattering amplitudes
at the level of M8 looks highly promising idea and could also realize Yangian supersymmetry.
The conjecture is that the twistorial amplitudes decompose to M4 and CP2 parts with similar
structure with E4 spin (electroweak isospin) replacing ordinary spin and that the integrands
in Grassmannians emerging from the conservation of M4 and E4 4-momenta are identical in
the two cases and thus guarantee Yangian supersymmetry in both sectors. The only differ-
ence would be due to the product of delta functions associated with the “negative helicities”
(weak isospins with negative sign) expressible as a delta function in the complement of SU(3)
Cartan algebra U(1)× U(1) by using exponential map.

It is appropriate to close with a question about fundamentals.

1. The basic structure at M8 side consists of complexified octonions. The metric tensor for the
complexified inner product for complexified octonions (no complex conjugation with respect
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to i for the vectors in the inner product) can be taken to have any signature (ε1, ..., ε8),
εi = ±1. By allowing some coordinates to be real and some coordinates imaginary one
obtains effectively any signature from say purely Euclidian signature. What matters is that
the restriction of complexified metric to the allowed sub-space is real. These sub-spaces are
linear Lagrangian manifolds for Kähler form representing the commuting imaginary unit i.
There is analogy with wave mechanics. Why M8 -actually M4 - should be so special real
section? Why not some other signature?

2. The first observation is that the CP2 point labelling tangent space is independent of the
signature so that the problem reduces to the question why M4 rather than some other signa-
ture (ε1, .., ε4). The intersection of real subspaces with different signatures and same origin
(t, r) = 0 is the common sub-space with the same signature. For instance, for (1,−1,−1,−1)
and (−1,−1,−1,−1) this subspace is 3-D t = 0 plane sharing with CD the lower tips of CD.
For (−1, 1, 1, 1) and (1, 1, 1, 1) the situation is same. For (1,−1,−1,−1) and (1, 1,−1,−1)
z = 0 holds in the intersection having as common with the lower boundary of CD the bound-
ary of 3-D light-cone. One obtains in a similar manner boundaries of 2-D and 1-D light-cones
as intersections.

3. What about CDs in various signatures? For a fully Euclidian signature the counterparts
for the interiors of CDs reduce to 4-D intervals t ∈ [0, T ] and their exteriors and thus the
space-time varieties representing incoming particles reduce to pairs of points (t, r) = (0, 0)
and (t, r) = (T, 0): it does not make sense to speak about external particles. For other
signatures the external particles correspond to 4-D surfaces and dynamics makes sense. The
CDs associated with the real sectors intersect at boundaries of lower dimensional CDs: these
lower-dimensional boundaries are analogous to subspaces of Big Bang (BB) and Big Crunch
(BC).

4. I have not found any good argument for selecting M4 = M1,3 as a unique signature. Should
one allow also other real sections? Could the quantum numbers be transferred between
sectors of different signature at BB and BC? The counterpart of Lorentz group acting as a
symmetry group depends on signature and would change in the transfer. Conservation laws
should be satisfied in this kind of process if it is possible. For instance, in the leakage from
M4 = M1,3 to Mi, j, say M2,2, the intersection would be M1,2. Momentum components
for which signature changes, should vanish if this is true. Angular momentum quantization
axis normal to the plane is defined by two axis with the same signature. If the signatures of
these axes are preserved, angular momentum projection in this direction should be conserved.
The amplitude for the transfer would involve integral over either boundary component of the
lower-dimensional CD.

Final question: Could the leakage between signatures be detected as disappearance of matter
for CDs in elementary particle scales or lab scales?

13 Appendix: o2 as a simple test case

Octonionic polynomial o2 serves as a simple testing case. o2 is not irreducible so that its
properties might not be generic and it might be better to study polynomial of form P (o) =
o+ po2 instead.

Before continuing, some conventions are needed.

(a) The convention is that in M8 = M1×E7 E7 corresponds to purely imaginary complex-
ified octonions in both octonionic sense and in the sense that they are proportional to
i. M1 corresponds to octonions real in both senses. This corresponds to the signature
(1,−1,−1,−1, ...) for M8 metric obtained as restriction of complexified metric. For
M4 = M1 × E3 analogous conventions hold true.

(b) Conjugation o = o0 + okIk → o ≡ o0 − Ikok does not change the sign of i. Quaternions
can be decomposed to real and imaginary parts and some notation is needed. The
notation q = Re(q) + Im(q) seems to be the least clumsy one: here Im(q) is 3-vector.
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The explicit expression in terms of quaternionic decomposition o = q1 + q2I4 reads as

P (o) = o2 = q21 − q2q2 + (q1q2 + q2q1)I4 . (13.1)

o corresponds to complexified octonion and there are two options concerning the interpreta-
tion of M4 and E4. M4 could correspond to quaternionic or co-quaternionic sub-space. I
have assumed the first interpretation hitherto but actually the identification is not obvious.
This two cases are different and must be treated both.

With these notations quaternionic inner product reads as

q1q2 = Re(q1q2) + Im(q1q2) ,
Re(q1q2) = Re(q1)Re(q2)− Im(q1) · Im(q2) ,
Im(q1q2) = Re(q1)Im(q2) +Re(q2)Im(q1) + Im(q1)× Im(q2) .

(13.2)

Here a · b denotes the inner product of 3-vectors and a× b their cross product.

Note that one has real and imaginary parts of octonions as two quaternions and real and
imaginary parts of quaternions. To avoid confusion, I will use RE and IM to denote the
decomposition of octonions to quaterions and Re and Im for the decomposition of quaternions
to real and imaginary parts.

One can express the RE(o2) as

RE(o2) ≡ X ≡ q21 − q2q2 ,
Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ,
Im(X) = Im(q21) = 2Re(q1)Im(q1) .

(13.3)

For IM(o2) one has

IM(o2) ≡ Y = q1q2 + q2q1
Re(Y ) = 2Re(q1)Re(q2) ,
Im(Y ) = Re(q1)Im(q2)−Re(q2)Im(q1) + Im(q1)× Im(q2) .

(13.4)

The essential point is that only RE(o2) contains the complexified Euclidian norm q2q2 which
becomes Minkowskian of Euclidian norm depending on whether one identifies M4 as asso-
ciative or co-associative surface in o8c .

13.1 Option I: M4 is quaternionic

Consider first the condition RE(o2) = 0. The condition decomposes to two conditions stating
the vanishing of quaternionic real and imaginary parts:

Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ≡ NM4(q1)−NE4(q2) = 0 ,

Im(X) = Im(q21) = 2Re(q1)Im(q1) = 0 .

(13.5)

Im(X) = 0 is satisfied for Re(q1) = 0 or Im(q1) = 0 so that one has two options. This gives
1-D line in time direction of 3-D hyperplane as a solution for M4 factor.
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Re(X) = 0 states NM4(q1) = NE4(q2). q2 coordinate itself is free. NE4(q2) is negative so
that q1 must be space-like with respect to the NM4 so that only the solution Re(q1) = 0 is
possible. Therefore one has Re(q1) = 0 and NM4(q1) = NE4(q2).

One can assign to each E4 point a section of hyperboloid with t = 0 hyper-plane giving
a sphere and the surface is 6-dimensional sphere bundle like variety! This is completely
unexpected result and presumably is due to the additional accidental symmetries due to the
octonionicity. Also the fact that o2 is not irreducible polynomial is a probably reason since
for o the surface is 4-D. The addition of linear term is expected to remove the degeneracy.

Consider next the case IM(o2) = 0. The conditions read now as

Re(Y ) = 2Re(q1)Re(q2) = 0 ,

Im(Y ) = Re(q1)Im(q2)−Re(q2)Im(q1) + Im(q1)× Im(q2) = 0 .
(13.6)

Since cross product is orthogonal to the factors Im(Y ) = 0 condition requires that Im(q1) and
Im(q2) are parallel vectors: Im(q1) = λIm(q2) and one has the condition Re(q1) = λRe(q2)
implying q1 = Λq2. Therefore to each point of E4 is associated a line of M4. The surface is
5-dimensional.

It is interesting to look what the situation is if both conditions are true so that one would
have a singularity. In this case Re(q1) = 0 and Re(q1) = λRe(q2) imply λ = 0 so that q1 = 0
is obtained and the solution reduces to 4-D E4, which would be co-associative.

13.2 Option II: M4 is co-quaternionic

This case is obtained by the inspection of the previous calculation by looking what changes the
identification ofM4 as co-quaternionic factor means. Now q1 is Euclidian and q2 Minkowskian
coordinate and q2q2 gives Minkowskian rather than Euclidian norm.

Consider first RE(o2) = 0 case.

Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ≡ NM4(q1)−NM4(q2) = 0 ,

Im(X) = Im(q21) = 2Re(q1)Im(q1) = 0 .

(13.7)

NM4(q1) − NM4(q2) = 0 condition holds true now besides the condition Re(q1) = 0 or
Im(q1) = 0 so that one has also now two options.

(a) For Re(q1) = 0 NM4(q1) is non-positive and this must be the case for NM4(q2)) so that
the exterior of the light-cone is selected. In this case the points of M4 with fixed NM4

give rise to a 2-D intersection with Re(q1) = 0 hyper-plane that is sphere so that one
has 6-D surface, kind of sphere bundle.

(b) For Im(q1) = 0 Minkowski norm is positive and so must be corresponding norm in
E4 so that in E4 surface has future ligt-cone as projection. This surface is 4-D. The
emergence of future light-cone might provide justification for the emergence of CDs and
zero energy ontology.

For IM(o2) the discussion is same as in quaternionic case since norm does not appear in the
equations.

At singularity both RE(o2) and IM(o2) = 0 vanish. The condition q1 = Λq2 reduces to Λ = 0
so that q1 = 0 is only allowed. This leaves only light-cone boundary under consideration.

The appearance of surfaces with dimension higher than 4 raises the question whether some-
thing is wrong. One could of course argue that associativity allows also lower than 4-D
surfaces as associative surfaces and higher than 4-D surfaces as co-associative surfaces. At
H-level one can say that one has 4-D surfaces. A good guess is that this behavior disappears
when the linear term is absent and origin ceases to be a singularity.



MATHEMATICS 114

REFERENCES

Mathematics

[A1] Zeeman EC. Catastrophe Theory. Addison-Wessley Publishing Company, 1977.

[A2] N. Hitchin. Kählerian twistor spaces. Proc London Math Soc. Available at: http:

//tinyurl.com/pb8zpqo, 8(43):133–151, 1981.

[A3] McKay J. Cartan matrices, finite groups of quaternions, and kleinian singularities. Proc
AMS. http: // tinyurl. com/ ydygjgge , 1981.

[A4] Rotelli P Leo de S. A New Definition of Hypercomplex Analyticity. Available at:
http://arxiv.org/pdf/funct-an/9701004.pdf, 1997.

[A5] Reid M. The du val singularities an, dn, e6, e7, e8. Available at:http://homepages.
warwick.ac.uk/~masda/surf/more/DuVal.pdf.

[A6] Stolze P. Perfectoid spaces. Available at: https://arxiv.org/abs/1111.4914, 2011.

[A7] Mandelbaum R. Four-dimensional topology: an introduction. Bulletin of the AMS.
Eds. Browder FE, Jerison M, Singer IM, 2(1):1–159, 1980.

[A8] Vakil R. The moduli space of curves and Gromov-Witten theory. Available at: https:
//arxiv.org/pdf/math/0602347.pdf, 2006.

[A9] Szabo RJ. Instantons, topological strings, and enumerative geometry. Advances
in Mathematical Physics. Article ID 107857. http: // dx. doi. org/ 10. 1155/ 2010/

107857 , 2010, 2010.

[A10] Kleiman SL and Laksov D. Schubert calculus. The American Mathematical
Monthly.http: // tinyurl. com/ ycrbr5aj , 79(10):1061–1082, 1972.

[A11] Talovikova V. Riemann-Roch theorem. Available at: http://www.math.uchicago.

edu/~may/VIGRE/VIGRE2009/REUPapers/Talovikova.pdf, 2009.

[A12] Vandoren S Wit de B, Rocek M. Hypermultiplets, Hyperkähler Cones and Quaternion-
Kähler Geometry. Available at: http://arxiv.org/pdf/hep-th/0101161.pdf, 2001.

Theoretical Physics

[B1] Huang Y-T Elvang H. Scattering amplitudes. Available at: http://arxiv.org/pdf/

1308.1697v1.pdf, 2013.

[B2] Arkani-Hamed N et al. Scattering amplitides and the positive Grassmannian. Available
at: http://arxiv.org/pdf/1212.5605v1.pdf.

[B3] Arkani-Hamed N et al. The All-Loop Integrand For Scattering Amplitudes in Planar
N=4 SYM. Available at: http://arxiv.org/abs/1008.2958, 2011.

[B4] Trnka Y. Grassmannian Origin of Scattering Amplitudes. Available at: https:

//www.princeton.edu/physics/graduate-program/theses/theses-from-2013/

Trnka-Thesis.pdf, 2013.

Books related to TGD

[K1] Pitkänen M. Conscious Information and Intelligence. In TGD Inspired Theory of Con-
sciousness. Online book. Available at: http://tgdtheory.fi/public_html/tgdconsc/
tgdconsc.html#intsysc, 2006.

[K2] Pitkänen M. Construction of elementary particle vacuum functionals. In p-Adic
Physics. Online book. Available at: http://tgdtheory.fi/public_html/padphys/

padphys.html#elvafu, 2006.

http://tinyurl.com/pb8zpqo
http://tinyurl.com/pb8zpqo
http://tinyurl.com/ydygjgge
http://arxiv.org/pdf/funct-an/9701004.pdf
http://homepages.warwick.ac.uk/~masda/surf/more/DuVal.pdf
http://homepages.warwick.ac.uk/~masda/surf/more/DuVal.pdf
https://arxiv.org/abs/1111.4914
https://arxiv.org/pdf/math/0602347.pdf
https://arxiv.org/pdf/math/0602347.pdf
http://dx.doi.org/10.1155/2010/107857
http://dx.doi.org/10.1155/2010/107857
http://tinyurl.com/ycrbr5aj
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Talovikova.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Talovikova.pdf
http://arxiv.org/pdf/hep-th/0101161.pdf
http://arxiv.org/pdf/1308.1697v1.pdf
http://arxiv.org/pdf/1308.1697v1.pdf
http://arxiv.org/pdf/1212.5605v1.pdf
http://arxiv.org/abs/1008.2958
https://www.princeton.edu/physics/graduate-program/theses/theses-from-2013/Trnka-Thesis.pdf
https://www.princeton.edu/physics/graduate-program/theses/theses-from-2013/Trnka-Thesis.pdf
https://www.princeton.edu/physics/graduate-program/theses/theses-from-2013/Trnka-Thesis.pdf
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#intsysc
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#intsysc
http://tgdtheory.fi/public_html/padphys/padphys.html#elvafu
http://tgdtheory.fi/public_html/padphys/padphys.html#elvafu


BOOKS RELATED TO TGD 115

[K3] Pitkänen M. Construction of WCW Kähler Geometry from Symmetry Principles. In
Quantum Physics as Infinite-Dimensional Geometry. Online book. Available at: http:

//tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1, 2006.

[K4] Pitkänen M. Does Riemann Zeta Code for Generic Coupling Constant Evolution? In
Towards M-Matrix. Online book. Available at: http://tgdtheory.fi/public_html/

tgdquantum/tgdquantum.html#fermizeta, 2006.

[K5] Pitkänen M. Does TGD Predict the Spectrum of Planck Constants? In Hyper-finite
Factors and Dark Matter Hierarchy. Online book. Available at: http://tgdtheory.fi/
public_html/neuplanck/neuplanck.html#Planck, 2006.

[K6] Pitkänen M. Identification of the WCW Kähler Function. In Quantum Physics
as Infinite-Dimensional Geometry. Online book. Available at: http://tgdtheory.fi/

public_html/tgdgeom/tgdgeom.html#kahler, 2006.

[K7] Pitkänen M. Massless states and particle massivation. In p-Adic Physics. On-
line book. Available at: http://tgdtheory.fi/public_html/padphys/padphys.html#
mless, 2006.

[K8] Pitkänen M. New Particle Physics Predicted by TGD: Part I. In p-Adic Physics. On-
line book. Available at: http://tgdtheory.fi/public_html/padphys/padphys.html#
mass4, 2006.

[K9] Pitkänen M. p-Adic Particle Massivation: Hadron Masses. In p-Adic Length Scale
Hypothesis and Dark Matter Hierarchy. Online book. Available at: http://tgdtheory.
fi/public_html/padphys/padphys.html#mass3, 2006.

[K10] Pitkänen M. TGD as a Generalized Number Theory: Infinite Primes. In TGD
as a Generalized Number Theory. Online book. Available at: http://tgdtheory.fi/

public_html/tgdnumber/tgdnumber.html#visionc, 2006.

[K11] Pitkänen M. TGD as a Generalized Number Theory: p-Adicization Program. In TGD
as a Generalized Number Theory. Online book. Available at: http://tgdtheory.fi/

public_html/tgdnumber/tgdnumber.html#visiona, 2006.

[K12] Pitkänen M. TGD as a Generalized Number Theory: Quaternions, Octonions,
and their Hyper Counterparts. In TGD as a Generalized Number Theory. On-
line book. Available at: http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.

html#visionb, 2006.

[K13] Pitkänen M. The classical part of the twistor story. In Towards M-Matrix. Online
book. Available at: http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.

html#twistorstory, 2006.

[K14] Pitkänen M. WCW Spinor Structure. In Quantum Physics as Infinite-Dimensional
Geometry. Online book. Available at: http://tgdtheory.fi/public_html/tgdgeom/

tgdgeom.html#cspin, 2006.

[K15] Pitkänen M. p-Adic length Scale Hypothesis. Online book. Available at: http://

tgdtheory.fi/public_html/padphys/padphys.html, 2013.

[K16] Pitkänen M. Criticality and dark matter. In Hyper-finite Factors and Dark Matter Hi-
erarchy. Online book. Available at: http://tgdtheory.fi/public_html/neuplanck/

neuplanck.html#qcritdark, 2014.

[K17] Pitkänen M. Recent View about Kähler Geometry and Spin Structure of WCW . In
Quantum Physics as Infinite-Dimensional Geometry. Online book. Available at: http:

//tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#wcwnew, 2014.

[K18] Pitkänen M. Unified Number Theoretical Vision. In TGD as a Generalized Number
Theory. Online book. Available at: http://tgdtheory.fi/public_html/tgdnumber/

tgdnumber.html#numbervision, 2014.

[K19] Pitkänen M. About Preferred Extremals of Kähler Action. In Physics in Many-
Sheeted Space-Time. Online book. Available at: http://tgdtheory.fi/public_html/

tgdclass/tgdclass.html#prext, 2015.

http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#fermizeta
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#fermizeta
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#Planck
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#Planck
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#kahler
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#kahler
http://tgdtheory.fi/public_html/padphys/padphys.html#mless
http://tgdtheory.fi/public_html/padphys/padphys.html#mless
http://tgdtheory.fi/public_html/padphys/padphys.html#mass4
http://tgdtheory.fi/public_html/padphys/padphys.html#mass4
http://tgdtheory.fi/public_html/padphys/padphys.html#mass3
http://tgdtheory.fi/public_html/padphys/padphys.html#mass3
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionc
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionc
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visiona
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visiona
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionb
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionb
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#twistorstory
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#twistorstory
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#cspin
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#cspin
http://tgdtheory.fi/public_html/padphys/padphys.html
http://tgdtheory.fi/public_html/padphys/padphys.html
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#qcritdark
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#qcritdark
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#wcwnew
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#wcwnew
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#numbervision
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#numbervision
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#prext
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#prext


ARTICLES ABOUT TGD 116

[K20] Pitkänen M. Is Non-Associative Physics and Language Possible Only in Many-Sheeted
Space-Time? In Towards M-Matrix. Online book. Available at: http://tgdtheory.

fi/public_html/tgdquantum/tgdquantum.html#braidparse, 2015.

[K21] Pitkänen M. About twistor lift of TGD? In Towards M-Matrix. Online book. Available
at: http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#hgrtwistor,
2016.

[K22] Pitkänen M. From Principles to Diagrams. In Towards M-Matrix. Online
book.Available at: http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.

html#diagrams, 2016.

[K23] Pitkänen M. Questions related to the twistor lift of TGD. In Towards M-
Matrix. Online book. Available at: http://tgdtheory.fi/public_html/tgdquantum/

tgdquantum.html#twistquestions, 2016.

[K24] Pitkänen M. Are higher structures needed in the categorification of TGD? In
Towards M-Matrix. Online book. Available at: http://tgdtheory.fi/public_html/

tgdquantum/tgdquantum.html#nstructures, 2017.

[K25] Pitkänen M. Does M8 − H duality reduce classical TGD to octonionic algebraic
geometry? In TGD as a Generalized Number Theory. Online book. Available at:
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#ratpoints, 2017.

[K26] Pitkänen M. Philosophy of Adelic Physics. In TGD as a Generalized Number
Theory. Online book. Available at: http://tgdtheory.fi/public_html/tgdnumber/

tgdnumber.html#adelephysics, 2017.

Articles about TGD

[L1] Pitkänen M. About minimal surface extremals of Kähler action. Available at: http:

//tgdtheory.fi/public_html/articles/minimalkahler.pdf, 2016.

[L2] Pitkänen M. Bio-catalysis, morphogenesis by generalized Chladni mechanism,
and bio-harmonies. Available at: http://tgdtheory.fi/public_html/articles/

chladnicata.pdf, 2016.

[L3] Pitkänen M. About enumerative algebraic geometry in TGD framework. Available at:
http://tgdtheory.fi/public_html/articles/GWinvariant.pdf, 2017.

[L4] Pitkänen M. Are higher structures needed in the categorification of TGD? Available
at: http://tgdtheory.fi/public_html/articles/nstructures.pdf, 2017.

[L5] Pitkänen M. Are preferred extremals quaternion analytic in some sense? Available at:
http://tgdtheory.fi/public_html/articles/quateranal.pdf, 2017.

[L6] Pitkänen M. Could McKay correspondence generalize in TGD framework? Available
at: http://tgdtheory.fi/public_html/articles/McKay.pdf, 2017.

[L7] Pitkänen M. Do Riemann-Rochtheorem and Atyiah-Singer index theorem have ap-
plications in TGD? Available at: http://tgdtheory.fi/public_html/articles/

Riemann-Roch.pdf, 2017.

[L8] Pitkänen M. Does M8 −H duality reduce classical TGD to octonionic algebraic geom-
etry? Available at: http://tgdtheory.fi/public_html/articles/ratpoints.pdf,
2017.

[L9] Pitkänen M. Does M8 − H duality reduce classical TGD to octonionic algebraic
geometry?: part I. Available at: http://tgdtheory.fi/public_html/articles/

ratpoints1.pdf, 2017.

[L10] Pitkänen M. Does M8 − H duality reduce classical TGD to octonionic algebraic
geometry?: part II. Available at: http://tgdtheory.fi/public_html/articles/

ratpoints2.pdf, 2017.

[L11] Pitkänen M. p-Adicization and adelic physics. Available at: http://tgdtheory.fi/

public_html/articles/adelicphysics.pdf, 2017.

http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#braidparse
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#braidparse
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#hgrtwistor
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#diagrams
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#diagrams
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#twistquestions
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#twistquestions
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#nstructures
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#nstructures
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#ratpoints
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#adelephysics
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#adelephysics
http://tgdtheory.fi/public_html/articles/minimalkahler.pdf
http://tgdtheory.fi/public_html/articles/minimalkahler.pdf
http://tgdtheory.fi/public_html/articles/chladnicata.pdf
http://tgdtheory.fi/public_html/articles/chladnicata.pdf
http://tgdtheory.fi/public_html/articles/GWinvariant.pdf
http://tgdtheory.fi/public_html/articles/nstructures.pdf
http://tgdtheory.fi/public_html/articles/quateranal.pdf
http://tgdtheory.fi/public_html/articles/McKay.pdf
http://tgdtheory.fi/public_html/articles/Riemann-Roch.pdf
http://tgdtheory.fi/public_html/articles/Riemann-Roch.pdf
http://tgdtheory.fi/public_html/articles/ratpoints.pdf
http://tgdtheory.fi/public_html/articles/ratpoints1.pdf
http://tgdtheory.fi/public_html/articles/ratpoints1.pdf
http://tgdtheory.fi/public_html/articles/ratpoints2.pdf
http://tgdtheory.fi/public_html/articles/ratpoints2.pdf
http://tgdtheory.fi/public_html/articles/adelicphysics.pdf
http://tgdtheory.fi/public_html/articles/adelicphysics.pdf


ARTICLES ABOUT TGD 117

[L12] Pitkänen M. Philosophy of Adelic Physics. Available at: http://tgdtheory.fi/

public_html/articles/adelephysics.pdf, 2017.

[L13] Pitkänen M. Philosophy of Adelic Physics. In Trends and Mathematical Methods in
Interdisciplinary Mathematical Sciences, pages 241–319. Springer.Available at: https:

//link.springer.com/chapter/10.1007/978-3-319-55612-3_11, 2017.

[L14] Pitkänen M. Re-examination of the basic notions of TGD inspired theory of conscious-
ness. Available at: http://tgdtheory.fi/public_html/articles/conscrit.pdf,
2017.

[L15] Pitkänen M. What could be the role of complexity theory in TGD? Available at:
http://tgdtheory.fi/public_html/articles/numberchaos.pdf, 2017.

http://tgdtheory.fi/public_html/articles/adelephysics.pdf
http://tgdtheory.fi/public_html/articles/adelephysics.pdf
https://link.springer.com/chapter/10.1007/978-3-319-55612-3_11
https://link.springer.com/chapter/10.1007/978-3-319-55612-3_11
http://tgdtheory.fi/public_html/articles/conscrit.pdf
http://tgdtheory.fi/public_html/articles/numberchaos.pdf

	Introduction
	Various approaches to classical TGD
	World of classical worlds
	Twistor lift of TGD
	M8-HÂ€duality

	Could one identify space-time surfaces as zero loci for octonionic polynomials with real coefficients?
	Topics to be discussed
	Key notions and ideas of algebraic geometry
	M8-H duality
	Challenges of the octonionic algebraic geometry
	Description of interactions
	About the analogs of Gromow-Witten invariants and branes in TGD
	Miscellaneous topics


	Some basic notions, ideas, results, and conjectures of algebraic geometry
	Algebraic varieties, curves and surfaces
	About algebraic curves and surfaces
	Degree and genus of the algebraic curve
	Elliptic curves and elliptic surfaces

	The notion of rational point and its generalization
	Rational points for algebraic curves
	Enriques-Kodaira classification


	About enumerative algebraic geometry
	Some examples about enumerative algebraic geometry
	About methods of algebraic enumerative geometry
	Gromow-Witten invariants
	Formal definition
	Application to string theory

	Riemann-Roch theorem
	Basic notions
	Formulation of RR theorem
	The dimension of the space meromorphic functions corresponding to given divisor
	RR for algebraic varieties and bundles


	Does M8-H duality allow to use the machinery of algebraic geometry?
	What does one really mean with M8-H duality?
	Is the choice of the pair (M20,M40) consistent with the properties of known extremals in H
	Space-time surfaces as co-dimension 4 algebraic varieties defined by the vanishing of real or imaginary part of octonionic polynomial?

	Is the associativity of tangent-/normal spaces really achieved?
	Could associativity and commutativity conditions be seen as a generalization of Cauchy-Rieman conditions?
	Complex curves in real plane cannot have real tangent space
	Associativity and commmutativity conditions as a generalization of Cauchy-Rieman conditions?
	Could quaternionic polynomials define complex and co-complex surfaces in Hc?
	Explicit form of associativity/quaternionicity conditions
	General view about solutions to RE(P)=0 and IM(P)=0 conditions

	M8-H duality: objections and challenges
	Can on really assume distribution of M2(x)?
	Can one assign to the tangent plane of X4M8 a unique CP2 point when M2 depends on position
	What about the inverse of M8-H duality?
	What one can say about twistor lift of M8-H duality?


	Some challenges of octonionic algebraic geometry
	Could free many-particle states as zero loci for real or imaginary parts for products of octonionic polynomials
	Questions related to ZEO and CDs
	Some general observations about CDs
	The emergence of causal diamonds (CDs)

	About singularities of octonionic algebraic varieties
	The decomposition of space-time surface to Euclidian and Minkowskian regions in octonionic description
	About rational points of space-time surface
	Connection with infinite primes

	Super variant of octonionic algebraic geometry and space-time surfaces as correlates for fermionic states
	About emergence
	Does physics emerge from the notion of number field?
	Emergence of physics from complexified octonionic algebraic geometry
	Super-octonionic algebraic geometry
	Is it possible to satisfy super-variants of IM(P)=0 and RE(P)=0 conditions?

	About physical interpretation
	The interpretation of theta parameters
	Questions about quantum numbers


	Could scattering amplitudes be computed in the octonionic framework?
	Could scattering amplitudes be computed at the level of M8?
	Interaction vertices for space-time surfaces with the same CD
	How could the space-time varieties associated with different CDs interact?
	Twistor Grassmannians and algebraic geometry
	Twistor Grassmannian approach very concisely
	Problems of twistor approach

	About the concrete construction of twistor amplitudes
	Identification of H quantum numbers in terms of M8 quantum numbers
	Octonionic twistors and super-twistors
	About the analogs of twistor diagrams
	Trying to understand the fundamental 3-vertex
	Could the M8 view about twistorial scattering amplitudes be consistent with the earlier H picture?


	Gromov-Witten invariants, Riemann-Roch theorem, and Atyiah-Singer index theorem from TGD point of view
	About the analogs of Gromow-Witten invariants and branes in TGD
	Does Riemann-Roch theorem have applications to TGD?
	Could a generalization of Riemann-Roch theorem be useful in TGD framework?
	What could be the analogs of zeros and poles of meromorphic function?
	Could one generalize RR to octonionic algebraic varieties?

	Could the TGD variant of Atyiah-Singer index theorem be useful in TGD?
	AS very briefly
	AS and TGD


	Could the precursors of perfectoids emerge in TGD?
	About motivations of Stolze
	Attempt to understand the notion of perfectoid
	TGD view about p-adic geometries
	Formulation of adelic geometry in terms of cognitive representations
	Are almost-perfectoids evolutionary winners in TGD Universe?


	Cognitive representations and algebraic geometry
	Cognitive representations as sets of generalized rational points
	Cognitive representations assuming M8-H duality
	Are the known extremals in H easily cognitively representable?
	Could the known extremals of twistor lift be cognitively easy?
	Testing the idea about self-reference

	Twistor lift and cognitive representations
	What does cognitive representability really mean?
	Demonstrability viz. cognitive representability
	What the cognitive representability of algebraic numbers could mean?
	Surreals and ZEO


	A possible connection with family replication phenomenon?
	How the homology charge and genus correlate?
	Euler characteristic and genus for the covering of partonic 2-surface
	All genera are not representable as non-singular algebraic curves

	Summary and future prospects
	Appendix: o2 as a simple test case
	Option I: M4 is quaternionic
	Option II: M4 is co-quaternionic


