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Abstract

During years I have been thinking how quantum computation could be carried out in TGD
Universe. There are considerable deviations from the standard view. Zero Energy Ontology
(ZEO), weak form of NMP dictating the dynamics of state function reduction, negentropic
entanglement (NE), and hierarchy of Planck constants define the basic differences between
TGD based and standard quantum measurement theory. TGD suggests also the importance
of topological quantum computation (TQC) like processes with braids represented as magnetic
flux tubes/strings along them.

The natural question that popped in my mind was how NMP and Zero Energy Ontology
(ZEO) could affect the existing view about TQC. The outcome was a more precise view
about TQC. The basic observation is that the phase transition to dark matter phase reduces
dramatically the noise affecting quantum quits. This together with robustness of braiding
as TQC program raises excellent hopes about TQC in TGD Universe. The restriction to
negentropic space-like entanglement (NE) defined by a unitary matrix is something new but
does not seem to have any fatal consequences as the study of Shor’s algorithm shows.

NMP strongly suggests that when a pair of systems - the ends of braid - suffer state function
reduction, the NE must be transferred somehow from the system. How? The model for
quantum teleportation allows to identify a possible mechanism allowing to achieve this. This
mechanism could be fundamental mechanism of information transfer also in living matter and
phosphorylation could represent the transfer of NE according to this mechanism: the transfer
of metabolic energy would be at deeper level transfer of negentropy. Quantum measurements
could be actually seen as transfer of negentropy at deeper level.

NE defines an excellent candidate for an analog of error correcting code. If only the diagonal
form of the unitary entanglement matrix carries information, the quantization of phases as
roots of unity provides a scenario in which Nature itself would take care of error correction.

1 ZEO based quantum measurement theory

It is interesting to test how the view about quantum computation must be modified in TGD Uni-
verse. There are considerable deviations from the standard view. Zero Energy Ontology (ZEO),
weak form of NMP dictating the dynamics of state function reduction [K1], negentropic entangle-
ment, and hierarchy of Planck constants [K2] define the basic differences between TGD based and
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standard quantum measurement theory. TGD suggests also the importance of topological quantum
computation (TQC) like processes with braids represented as magnetic flux tubes/strings along
them.

Consider first the quantum measurement theory based on ZEO.

1. Sub-system–complement pair defining larger system defines the counterpart for the pair
observer-measured system in standard quantum measurement theory. In TGD framework
density matrix for a sub-system–complement pair defines the universal observable. As a
matter of fact, for a given system all sub-system-complement pairs defining possible splitting
of this kind and the state function reduction is realized for the pair giving rise to maximum
of maximal negentropy gain (NMP). A further essential assumption is that the reduction
proceeds from a system inside CDE to subsystems as a cascade obeying this basic rule.

2. ZEO implies that state function reductions occur at either boundary of causal diamond (CD)
- the active boundary. The sequence of reductions leaving passive boundary and state at it
unaffected gives rise to a conscious entity - self. What is new that at the active boundary
the state changes. Even the active boundary itself drifts to the geometric future so that the
size of CD increases. This gives rise to the experience about flow of time.

This is the TGD counterpart for the unitary time evolution and its duration corresponds to
the increases of the proper time distance between the tips of CD. Eventually NMP forces the
first state function reduction to the opposite boundary: this corresponds to a genuine state
function reduction. The self dies and re-incarnates at the opposite boundary as time reversed
self since CD increases after than at the opposite boundary to the direction of geometric past.

In the standard quantum models for quantum computation one assumes that measurement
can be realized by some interaction Hamiltonian: the state of entangled system-observer
pair develops to an eigen state of the interaction Hamiltonian. The time development by this
interaction Hamiltonian gives entangled state defined by the density matrix. This description
can be seen as an approximation to TGD based description in which one can assign definite
duration to the analog of the unitary evolution.

3. Negentropic entanglement (NE) is possible for entanglement coefficients in algebraic extension
of rationals since in this case number theoretic entropy having negative values is well-defined.
If the density matrix does not belong to the same algebraic extension, state function reduction
requires a phase transition extending the algebraic extension of rationals used and could be
seen as kind of evolutionary jump. This kind of NE could be therefore rather stable and
could be interpreted as a kind of cognitive entanglement representing a rule with instances
represented as state pairs in the superposition. If the state function reduction occurs it leads
to a ray of state space if density matrix is non-degenerate.

If the density matrix contains as a direct summand a higher-dimensional projector, a re-
duction giving rise to a projector to this sub-space is allowed by the interpretation as mea-
surement of density matrix producing its eigen space. The state remains negentropically
entangled by the unitary matrix giving rise to the projector. Weak form of NMP [K1] how-
ever allows reductions also to the subspaces of this sub-space assuming preferred state basis
so that also the reduction to a ray of state space is possible as a special case. In this case
any state basis is eigenbasis for the sub-space and this suggests an interpretation in terms of
meditative states in which distinctions disappear.

2 TQC in TGD

How could (topological) quantum computation be realized in TGD framework?

1. In standard quantum theory unitary time evolution realizes the quantum computation. Uni-
tary time evolution is engineered in terms of gates performing standardized operations for
qubits. For TQC braiding defines the space-time entanglement between the systems A and
B at the ends of the braid. Call this system A⊗B. One can speak about evolution a kind of
“space-like” topological quantum computer program with negentropically entangled “initial”
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and “final” states at the ends of the braid. Basic braiding operation defines the basic gate in
terms of so called R-matrix and the desired NE can be build using an appropriate braiding.
For the sake of concreteness the following considerations assume TQC. In fact, if there is
entanglement between ends, it must be unitary entanglement since only this entanglement is
respected by NMP.

2. In TQC the program is defined by braid and is robust against perturbations. The quantum
states at the ends of the braid are however sensitive to noise and this requires complex error
correction procedures to eliminate the errors, which are basically spin flip changing the value
of qubit and change of its phase. If only phase ± 1 is allowed phase change actually reduces
to spin flip in suitable basis.

In standard quantum computation the small value of Planck constant is the basic problem.
Coherence times tend to be very short and the control of external noise is a tough challenge.
In TGD quantum criticality gives rise to phases of matter with effective value heff = n× h
of Planck constant identified as dark matter. These phases are involved also with NE. Only
systems with same value of heff = n × h have direct interactions with each other. This
should dramatically reduce the noise since visible matter particle must transform to dark
matter particle to interact directly with dark matter to produce noise. Also the scaling up of
interaction time scales gives hopes that quantum coherence times are long enough to perform
TQC.

3. The value of heff is expected to correlate with the duration of self defined as the increase
∆T of the temporal distance during the sequence of state function reductions to the same
passive boundary of CD. ∆T could be interpreted as quantum coherence time. Coherence
time for classical fields could be identified as the temporal distance between the tips of CD
increasing during quantum computation.

4. TGD promises to guarantee the reduction of noise in terms of darkness of the particles
involved with the computation: this instability is the weakness of TQC although TQC pro-
gram itself is robust. TGD also promises the understanding of the role of quantum criticality
in quantum measurement. The very fact that quantum measurements necessarily involve
the amplification of small quantum effects to macroscopic “classical” effect, indeed strongly
suggests quantum criticality.

5. The key challenge is to prepare a desired kind of negentropically entangled state - say a dark
many-particle state associated with a braid system. One should be able to manipulate of
dark matter, which we are not yet able to even detect! That dark matter appears at quantum
criticality could be extremely helpful in the attempts to get grasp on the dark matter. A
simple clue is that the disappearance of visible matter could serve as a signature for the
emergence of dark matter.

One should somehow be able to perform state function reduction of the negentropically entan-
gled system to one of the eigenstates of the density matrix associated with unitary entanglement
matrix. This requires TGD counter part of time evolution. One can imagine two options.

1. One can couple the negentropically entangled system pair AB to a measurement apparatus
C, whose function is to develop ordinary entanglement with both systems during the repeated
sequence of state function reductions at fixed boundary. In the state function reduction to
the opposite boundary a time reversed reduced state results and gives rise to rays of state
space for both A and B. One can however argue that the situation cannot be so simple:
NMP requires that entanglement negentropy increases so that NE should be transferred
somewhere. This will be discussed below.

2. The measurement interaction must be able to achieve ordinary state function reduction by
generating entanglement with the system formed by negentropically entangled system. One
must have interaction between ordinary and dark matter and this requires transformation of
ordinary matter to dark matter with the same value of heff . Quantum criticality allows the
transformation of ordinary matter to dark matter so that the measuring system should be
quantum critical [K2].
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3. Could one do without a third system? Weak form of NMP allows also a reduction to the lower
dimensional sub-spaces of the N -D sub-space considered and also 1-D ray is possible. This
process corresponds to a duration of single self, which dies when the first reduction to the
opposite boundary of its CD occurs. If the braid system is not changed in the state function
to the opposite boundary one can hope that a reduction to a 1-D ray can occur with some
probability. By waiting long enough one can obtain state function reductions which determine
the probabilities for the reduction to a given ray or sub-space. The important difference to
the standard picture would be that the system does it itself. No external measurements at
the end of braid would be carried out. This is however too good to be true. Only one of
the two quantum measurements required by Shor algorithm can be both carried out in his
manner.

The interpretation in terms of consciousness theory allows also to consider the possibility that
the measurement corresponds at deeper level to transfer of negentropic entanglement.

1. One has besides AB also the third system C. The NE for AB is transferred to NE for AC
and can be transferred further - say to entanglement to NE for CD. In TGD framework the
iteration of this process makes possible a transfer of conscious information associated with
NE for AB to that of conscious observer.

2. If the state of C is eigenstate of spin in the basis used, the final state of B is also an eigenstate
of spin. Hence the transfer of NE could be thus interpreted as a measurement of the state
of B or as the measurement of state of AC in Bell basis. This conforms with the fact that
state function reduction for a subsystem can be interpreted as a state function reduction for
its complement. Could the deeper interpretation of quantum measurement be as a transfer
of NE so that essentially quantum information theory would be in question.

3. The measurement is performed for the negentropically entangled Bell states for the pair
AC and performs the transfer of entanglement inducing a unitary rotation. Since in the
case of NE defined by a unitary matrix any state basis is allowed, one could ask whether
the outcomes are equivalent from the point of view of consciousness theory at least. The
knowledge of the final state of B allows to deduce the unitary rotation needed to rotate AC
state to the original AB state so that this information is enough to realize a faithful NE
transfer. Since the conscious experience is dictated both by the bit telling the state of B and
by the state of AC one can ask whether the conscious experience and is same for all four
outcomes.

3 Where and how the NE could be transferred?

NMP demands that entanglement negentropy increases. An interesting question is, where and how
the entanglement negentropy is transferred.

1. Does NE correspond to information transferred to the performer of quantum measurement?
If so, the quantum measurement process would be basically transfer of information realized
as NE. Living systems would be carrying out this all the time and ATP-ADP transformation
defining the basic step of energy metabolism would be just this kind of transfer. The transfer
corresponds at the level of space-time geometry the transfer of the end of magnetic flux tubes
plus particles from a donor to the acceptor.

2. A possible manner to carry out the transfer of negentropic entanglement is inspired by the
quantum teleportation protocol (https://en.wikipedia.org/wiki/Quantum_teleportation).
In the simplest situation this protocol is as follows. Alice wants to send qubit C to Bob. A
Bell state (https://en.wikipedia.org/wiki/Bell_state) is shared between Alice and Bob
by mutual agreement in advance so that both know it. Alice can achieve the teleportation
by a quantum measurement in the tensor product of the qubit C with the AB Bell state.

Alice reduces the system AC to one of the four Bell states and communicates the result
classically to Bob. The factored out state of B is the original state or one of three states
related to it by unitary rotation. Alice sends classically two bits telling what the measurement

https://en.wikipedia.org/wiki/Quantum_teleportation
https://en.wikipedia.org/wiki/Bell_state
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outcome was. If the outcome was the original state to be sent, Bob does nothing. If it was
one of the three remaining states, Bob performs a unitary rotation giving as a result the
original state.

3. What makes this protocol so interesting is that in the reduction the NE for AB is transferred
to NE for AC as such or modified by a unitary rotation so that four different outcomes are
possible. Since the states of C and AB are in 1-1-correspondence it is indeed obvious that the
information about the state of B resulting from the measurement of Alice allows the rotation
of the Bell state AC to the original state AB. For instance, if the state of B is the original
state of C, the state is the original state AB.

One can apply this procedure by introducing four system D - call it Doris - so that AC NE
is transferred to CD NE and AB is now product state. This kind of transfer of negentropic
entanglement might be a key event in in phosphorylation and in the utilization of metabolic
energy coming from nutrients. The NE between phosphate P of ATP ==B and third system
A would be transferred to NE between acceptor molecule and C and A. Also the NE between
nutrient B and third system A could be transferred to NE between phosphate and A.

4 Shor’s algorithm from TGD point of view

Is the unitary of the entanglement matrix guaranteeing NE too strong an assumption? Just
for fun I looked Shor’s algorithm (https://en.wikipedia.org/wiki/Shor’s_algorithm) for the
factorization of a given integer, call it N , which has been shown to work for N = 15. It turns out
that unitary entanglement is not a problem. Furthermore, ordinary quantum measurements are
needed for the two systems involved and require interaction coupling negentropically entangled pair
of systems to external world so that both negentropically entangled systems generate entanglement
with external world.

Consider now the Shor’s algorithm. The genuinely quantal step of algorithm is that of finding
the period r of the function f(x) = ax mod N , for integers 1 < a < N and 1 < x < N .

1. According to the Wikipedia article , the computation involves the construction of quantum
function f(x) = ax as

1

Q

∑
x

|x, f(x)〉 .

Here Q is normalization factor. Since ar = 1 mod N , f(x) is not a bijection. Unless r
divides Q (we do not however know r!), the number N(z) of values of x satisfying f(x) = z
varies and the variation is one unit at most. Therefore the entanglement is not unitary and
the density matrix of the state is not unit matrix since the norms of states

|Z| =
∑
x

|x, f(x) = z〉

is given by N(z)- the number of x mapped to z and varies somewhat. NE would be obtained
by normalizing the states |Z〉 to unit norm and replacing Q by the the number N(Z) of
points z to get

1√
N(Z)

∑
z

1√
N(z)

∑
x

|x, f(x) = z〉 .

2. Second step in the computation is discrete quantum Fourier transform using as counterparts
of plane waves powers of the root of unity defined as ω = exp(i2π/Q), where Q satisfies
N2 ≤ Q < 2N2. This operation is unitary and gives rise to unitary entanglement. Since the
entire entanglement matrix is product of unitary matrices, it is also unitary. The action of
unitary transformation is given for given value of z by the following formula.

https://en.wikipedia.org/wiki/Shor's_algorithm
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∑
x

|x, f(x) = z)〉 →
√

1
√
N

∑
y

∑
z=f(x)

ωxy|y, z = f(x)〉 .

The entire state is transformed to

1√
N(Z)

1√
N

∑
z

1√
N(z)

∑
y

ωxy
∑
x

|y, z = f(x)〉 .

In this expression the state paired |Z〉 is a superposition of several values of y since the
number of different values of z is smaller than those of y by a factor which in ideal situation
is the sought four value of r.

3. Quantum measurement should reduce this state to a state with fixed values of y and z. This
implies that the normalization factors do not matter. Weak NMP allows a self-reduction a
state Z with fixed value of z. The self reduction of the system is however not able to reduce
the state Z to |y, z〉.
One must couple at least the “y” part of the system to external measurement apparatus gen-
erating ordinary or negentropic entanglement with non-degenerate density matrix belonging
to the extension used and having |y〉 as eigenstates. This would force y-reduction. One can
of course perform the same for both y and z. The ordinary quantum measurement theory
seems to be a necessary part of the picture. In TGD framework additional constraints come
from the condition that the measurement involves negentropy transfer. This requires explicit
introduce of systems C and D receiving the NE.

5 About negentropic entanglement as an analog of an error
correction code

In classical computation, the simplest manner to control errors is to take several copies of the bit
sequences. In quantum case no-cloning theorem prevents this. Error correcting codes (https:
//en.wikipedia.org/wiki/Quantum_error_correction) code n information qubits to the en-
tanglement of N > n physical qubits. Additional contraints represents the subspace of n-qubits as
a lower-dimensional sub-space of N qubits. This redundant representation is analogous to the use
of parity bits. The failure of the constraint to be satisfied tells that the error is present and also
the character of error. This makes possible the automatic correction of the error is simple enough
- such as the change of the phase of spin state or or spin flip.

Negentropic entanglement (NE) obviously gives rise to a strong reduction in the number of
states of tensor product. Consider a system consisting of two entangled systems consisting of N1

and N2 spins. Without any constraints the number of states in state basis is 2N1 × 2N2 and one as
N1 +N2 qubits. The elements of entanglement matrix can be written as EA,B A ≡ ⊗N1

i=1(mi, si),

B ≡ ⊗N2

k=1(mk, sk) in order to make manifest the tensor product structure. For simplicity one can
consider the situation N1 = N2 = N .

The un-normalized general entanglement matrix is parametrized by 2 × 22N independent real
numbers with each spin contributing two degrees of freedom. Unitary entanglement matrix is
characterized by 22N real numbers. One might perhaps say that one has 2N real bits instead
of almost 2N + 1 real qubits. If the time evolution according to ZEO respects the negentropic
character of entanglement, the sources of errors are reduced dramatically.

The challenge is to understand what kind of errors NE eliminates and how the information bits
are coded by it. NE is respected if the errors act as unitary transformations E → UEU† of the
unitary entanglement matrix. One can consider two interpretations.

1. The unitary automorphisms leave information content unaffected only if they commute with
E. In this case unitary automorphisms acting non-trivially would give rise genuine errors and
an error correction mechanism would be needed and would be coded to quantum computer
program.

https://en.wikipedia.org/wiki/Quantum_error_correction
https://en.wikipedia.org/wiki/Quantum_error_correction
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2. One can also consider the possibility that the unitary automorphisms do not affect the infor-
mation content so that the diagonal form of entanglement matrix coded by N phases would
carry of information. Clearly, the unitary automorphisms would act like gauge transforma-
tions. Nature would take care that no errors emerge. Of course, more dramatic things are in
principle allowed by NMP: for instance, the unitary entanglement matrix could reduce to a
tensor product of several unitary matrices. Negentropy could be transferred from the system
and is indeed transferred as the computation halts.

By number theoretic universality the diagonalized entanglement matrix would be parametrized
by N roots of unity with each having n possible values so that nN different NEs would be
obtained and information storage capacity would be I = log(n)/log(2) × N bits for n = 2k

one would have k × N bits. Powers of two for n are favored. Clearly the option for which
only the eigenvalues of Ematter, looks more attractive realization of entanglement matrices.
If overall phase of E does not matter as one expects, the number of full bits is k × N − 1.
This option looks more attractive realization of entanglement matrices.

In fact, Fermat polygons for which cosine and sine for the angle defining the polygon are
expressible by iterating square root besides basic arithmetic operations for rationals (ruler
and compass construction geometrically) correspond to integers, which are products of a
power of two and of different Fermat primes Fn = 22

n

+ 1. l

This picture can be related to much bigger picture.

1. In TGD framework number theoretical universality requires discretization in terms of alge-
braic extension of rationals. This is not performed at space-time level but for the parameters
characterizing space-time surfaces at the level of WCW. Strong form of holography is also
essential and allows to consider partonic 2-surfaces and string world sheets as basic objects.
Number theoretical universality (adelic physics) forces a discretization of phases and number
theoretically allowed phases are roots of unity defined by some algebraic extension of ratio-
nals. Discretization can be also interpreted in terms of finite measurement resolution. Notice
that the condition that roots of unity are in question realizes finite measurement resolution
in the sense that errors have minimum size and are thus detectable.

2. Hierarchy of quantum criticalities corresponds to a fractal inclusion hierarchy of isomorphic
sub-algebras of the super-symplectic algebra acting as conformal gauge symmetries. The
generators in the complement of this algebra can act as dynamical symmetries affecting
the physical states. Infinite hierarchy of gauge symmetry breakings is the outcome and the
weakening of measurement resolution would correspond to the reduction in the size of the
broken gauge group. The hierarchy of quantum criticalities is accompanied by the hierarchy
of measurement resolutions and hierarchy of effective Planck constants heff = n× h.

3. These hierarchies are argued to correspond to the hierarchy of inclusions for hyperfinite
factors of type II1 labelled by quantum phases and quantum groups. Inclusion defines fi-
nite measurement resolution since included sub-algebra does induce observable effects on the
state. By Mac-Kay correspondence the hierarchy of inclusions is accompanied by a hierar-
chy of simply laced Lie groups which get bigger as one climbs up in the hierarchy. There
interpretation as genuine gauge groups does make sense since their sizes should be reduced.
An attractive possibility is that these groups are factor groups G/H such that the normal
subgroup H (necessarily so) is the gauge group and indeed gets smaller and G/H is the
dynamical group identifiable as simply laced group which gets bigger. This would require
that both G and H are infinite-dimensional groups. An interesting question is how they
relate to the super-symplectic group assignable to ”light-cone boundary” δM4

±×CP2. I have
proposed this interpretation in the context of WCW geometry earlier.

4. Here I have spoken only about dynamical symmetries defined by discrete subgroups of simply
laced groups. I have earlier considered the possibility that discrete symmetries provide a
description of finite resolution, which would be equivalent with quantum group description.

Summarizing, these arguments boil down to the conjecture that discrete subgroups of these
groups act as effective symmetry groups of entanglement matrices and realize finite quantum
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measurement resolution. A very deep connection between quantum information theory and these
hierarchies would exist.

Gauge invariance has turned out to be a fundamental symmetry principle, and one can ask
whether unitary entanglement matrices assuming that only the eigenvalues matter, could give rise
to a simulation of discrete gauge theories. The reduction of the information to that provided by
the diagonal form be interpreted as an analog of gauge invariance?

1. The hierarchy of inclusions of hyper-finite factors of type II1 suggests strongly a hierarchy of
effective gauge invariances characterizing measurement resolution realized in terms of hier-
archy of normal subgroups and dynamical symmetries realized as coset groups G/H. Could
these effective gauge symmetries allow to realize unitary entanglement matrices invariant
under these symmetries.

2. A natural parametrization for single qubit errors is as rotations of qubit. If the error acts
as a rotation on all qubits, the rotational invariance of the entanglement matrix defining the
analog of S-matrix is enough to eliminate the effect on information processing.

Quaternionic unitary transformations act on qubits as unitary rotations. Could one assume
that complex numbers as the coefficient field of QM is effectively replaced with quaternions?
If so, the multiplication by unit quaternion for states would leave the physics and information
content invariant just like the multiplication by a complex phase leaves it invariant in the
standard quantum theory.

One could consider the possibility that quaternions act as a discretized version of local gauge
symmetry affecting the information qubits and thus reducing further their number and thus
also errors. This requires the introduction of the analog of gauge potential and coding of
quantum information in terms of SU(2) gauge invariants. In discrete situation gauge potential
would be replaced with a non-integrable phase factors along the links of a lattice in lattice
gauge theory. In TGD framework the links would correspond the fermionic strings connecting
partonic two-surfaces carrying the fundamental fermions at string ends as point like particles.
Fermionic entanglement is indeed between the ends of these strings.

3. Since entanglement is multilocal and quantum groups accompany the inclusion, one cannot
avoid the question whether Yangian symmetry crucial for the formulation of quantum TGD
[K3] could be involved.
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