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Abstract

p-Adization of quantum TGD is one of the long term projects of TGD. The notion of
finite measurement resolution reducing to number theoretic existence in p-adic sense is the
fundamental notion. p-Adic geometries replace discrete points of discretization with p-adic
analogs of monads of Leibniz making possible to construct differential calculus and formulate
p-adic variants of field equations allowing to construct p-adic cognitive representations for real
space-time surfaces.

This leads to a construction for the hierarchy of p-adic variants of imbedding space in-
ducing in turn the construction of p-adic variants of space-time surfaces. Number theoretical
existence reduces to conditions demanding that all ordinary (hyperbolic) phases assignable to
(hyperbolic) angles are expressible in terms of roots of unity (roots of e).

The construction reduces to the construction of p-adicizable discrete subgroups of classical
Lie groups. The construction starts from SU(2) and U(1) and proceeds iteratively. Remark-
ably, the finite discrete p-adicizable subgroups of SU(2) correspond to those appearing in the
hierarchy of inclusions of hyperfinite factors and include the groups assignable to Platonic
solids. One can seen them as cognitively especially simple finite p-adicizable objects providing
p-adic approximation of sphere. The Platonic solids have analogs also for larger classical Lie
groups.

1 Introduction

In TGD framework p-adicization and adelization are carried out at all levels of geometry: imbed-
ding space, space-time and WCW. Adelization at the level of state spaces requires that it is common
from all sectors of the adele and has as coefficient field an extension of rationals allowing both real
and p-adic interpretations: the sectors of adele give only different views about the same quantum
state.

In the sequel the recent view about the p-adic variants of imbedding space, space-time and
WCW is discussed. The notion of finite measurement resolution reducing to number theoretic
existence in p-adic sense is the fundamental notion. p-Adic geometries replace discrete points of
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discretization with p-adic analogs of monads of Leibniz making possible to construct differential
calculus and formulate p-adic variants of field equations allowing to construct p-adic cognitive
representations for real space-time surfaces.

This leads to a beautiful construction for the hierarchy of p-adic variants of imbedding space
inducing in turn the construction of p-adic variants of space-time surfaces. Number theoretical
existence reduces to conditions demanding that all ordinary (hyperbolic) phases assignable to
(hyperbolic) angles are expressible in terms of roots of unity (roots of e).

For SU(2) one obtains as a special case Platonic solids and regular polygons as preferred p-adic
geometries assignable also to the inclusions of hyperfinite factors [K3, K1]. Platonic solids represent
idealized geometric objects ofthe p-adic world serving as a correlate for cognition as contrast to
the geometric objects of the sensory world relying on real continuum.

In the case of causal diamonds (CDs) - the construction leads to the discrete variants of Lorentz
group SO(1, 3) and hyperbolic spaces SO(1, 3)/SO(3). The construction gives not only the p-
adicizable discrete subgroups of SU(2) and SU(3) but applies iteratively for all classical Lie groups
meaning that the counterparts of Platonic solids are countered also for their p-adic coset spaces.
Even the p-adic variants of WCW might be constructed if the general recipe for the construction of
finite-dimensional symplectic groups applies also to the symplectic group assignable to ∆CD×CP2.

The emergence of Platonic solids is very remarkable also from the point of view of TGD inspired
theory of consciousness and quantum biology. For a couple of years ago I developed a model of
music harmony [K2] [L1] relying on the geometries of icosahedron and tetrahedron. The basic
observation is that 12-note scale can be represented as a closed curve connecting nearest number
points (Hamiltonian cycle) at icosahedron going through all 12 vertices without self intersections.
Icosahedron has also 20 triangles as faces. The idea is that the faces represent 3-chords for a given
harmony characterized by Hamiltonian cycle. Also the interpretation terms of 20 amino-acids
identifiable and genetic code with 3-chords identifiable as DNA codons consisting of three letters
is highly suggestive.

One ends up with a model of music harmony predicting correctly the numbers of DNA codons
coding for a given amino-acid. This however requires the inclusion of also tetrahedron. Why
icosahedron should relate to music experience and genetic code? Icosahedral geometry and its
dodecahedral dual as well as tetrahedral geometry appear frequently in molecular biology but
its appearance as a preferred p-adic geometry is what provides an intuitive justification for the
model of genetic code. Music experience involves both emotion and cognition. Musical notes could
code for the points of p-adic geometries of the cognitive world. The model of harmony in fact
generalizes. One can assign Hamiltonian cycles to any graph in any dimension and assign chords
and harmonies with them. Hence one can ask whether music experience could be a form of p-adic
geometric cognition in much more general sense.

The geometries of biomolecules brings strongly in mind the geometry p-adic space-time sheets.
p-Adic space-time sheets can be regarded as collections of p-adic monad like objects at algebraic
space-time points common to real and p-adic space-time sheets. Monad corresponds to p-adic
units with norm smaller than unit. The collections of algebraic points defining the positions of
monads and also intersections with real space-time sheets are highly symmetric and determined by
the discrete p-adicizable subgroups of Lorentz group and color group. When the subgroup of the
rotation group is finite one obtains polygons and Platonic solids. Bio-molecules typically consists
of this kind of structures - such as regular hexagons and pentagons - and could be seen as cognitive
representations of these geometries often called sacred! I have proposed this idea long time ago
and the discovery of the recipe for the construction of p-adic geometries gave a justification for
this idea.

2 p-Adic variants of causal diamonds

To construct p-adic variants of space-time surfaces one must construct p-adic variants of the
imbedding space. The assumption that the p-adic geometry for the imbedding space induces p-
adic geometry for sub-manifolds implies a huge simplification in the definition of p-adic variants of
preferred extremals. The natural guess is that real and p-adic space-time surfaces gave algebraic
points as common: so that the first challenge is to pick the algebraic points of the real space-time
surface. To define p-adic space-time surface one needs field equations and the notion of p-adic
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continuum and by assigning to each algebraic point a p-adic continuum to make it monad, one can
solve p-adic field equations inside these monads.

The idea of finite measurement resolution suggests that the solutions of p-adic field equations
inside monads are arbitrary. Whether this is consistent with the idea that same solutions of field
equations can be interpreted either p-adically or in real sense is not quite clear. This would be
guaranteed if the p-adic solution has same formal representation as the real solution in the vicinity
of given discrete point - say in terms of polynomials with rational coefficients and coordinate
variables which vanish for the algebraic point.

Real and p-adic space-time surfaces would intersect at points common to all number fields for
given adele: cognition and sensory worlds intersect not only at the level of WCW but also at
the level of space-time. I had already considered giving up the latter assumption but it seems to
be necessary at least for string world sheets and partonic 2-surfaces if not for entire space-time
surfaces.

2.1 General recipe

The recipe would be following.

1. One starts from a discrete variant of CD×CP2 defined by an appropriate discrete symmetry
groups and their subgroups using coset space construction. This discretization consists of
points in finite-dimensional extension of p-adics induced by an extension of rationals. These
points are assumed to be in the intersection of reality and p-adicities at space-time level -
that is common for real and p-adic space-time surfaces. Cognitive representations in the real
world are thus discrete and induced by the intersection. This is the original idea which I
was ready to give up as the vision about discretization at WCW level allowing to solve all
problems related to symmetries emerged. At space-time level the p-adic discretization reduces
symmetry groups to their discrete subgroups: cognitive representations unavoidably break
the symmetries. What is important the distance between discrete p-adic points labelling
monads is naturally their real distance. This fixes metrically real-p-adic/sensory-cognitive
correspondence.

2. One replaces each point of this discrete variant CD × CP2 with p-adic continuum defined
by an algebraic extension of p-adics for the adele considered so that differentiation and
therefore also p-adic field equations make sense. The continuum for given discrete point
of CDd × CP2,d defines kind of Leibnizian monad representing field equations p-adically.
The solution decomposes to p-adically differentiable pieces and the global solution of field
equations makes sense since it can be interpreted in terms of pseudo-constants. p-Adicization
means discretization but with discrete points replaced with p-adic monads preserving also
the information about local behavior. The loss of well-ordering inside p-adic monad reflects
its loss due to the finiteness of measurement resolution.

3. The distances between monads correspond to their distances for real variant of CD × CP2.
Are there natural restrictions on the p-adic sizes of monads? Since p-adic units are in question
that size in suitable units is p−N < 1. It would look natural that the p-adic size of the is
smaller than the distance to the nearest monad. The denser the discretization is, the larger
the value of N would be. The size of the monad decreases at least like 1/p and for large primes
assignable to elementary particles (M127 = 2127 − 1) is rather small. The discretizations of
the subgroups share the properties of the group invariant geometry of groups so that they
are to form a regular lattice like structure with constant distance to nearest neighbors. At
the imbedding level therefore p-adic geometries are extremely symmetric. At the level of
space-time geometries only a subset of algebraic points is picked and the symmetry tends to
be lost.

2.2 CD degrees of freedom

Consider first CD degrees of freedom.

1. For M4 one has 4 linear coordinates. Should one p-adicize these or should one discretize
CDs defined as intersections of future and past directed light-cones and strongly suggested
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by ZEO. CD seems to represent the more natural option. The construction of a given CD
suggests that one should replace the usual representation of manifold as a union of overlapping
regions with intersection of two light-cones with coordinates related in the intersection as in
the case of ordinary manifold: ∪ → ∩.

2. For a given light-cone one must introduce light-cone proper time a, hyperbolic angle η and
two angle coordinates (θ, φ). Light-cone proper time a is Lorentz invariant and corresponds
naturally to an ordinary p-adic number of more generally to a p-adic number in algebraic
extension which does not involve phases.

The two angle coordinates (θ, φ) parameterizing S2 can be represented in terms of phases
and discretized. The hyperbolic coordinate can be also discretized since ep exists p-adically,
and one obtains a finite-dimensional extension of p-adic numbers by adding roots of e and
its powers. e is completely exceptional in that it is p-adically an algebraic number.

3. This procedure gives a discretization in angle coordinates. By replacing each discrete value
of angle by p-adic continuum one obtains also now the monad structure. The replacement
with continuum means the replacement

Um,n ≡ exp(i2πm/n)→ Um,n × exp(iφ) , (2.1)

where φ is p-adic number with norm p−N < 1 It can also belong to an algebraic extension of p-
adic numbers. Building the monad is like replacing in finite measurement the representative
point of measurement resolution interval with the entire interval. By finite measurement
resolution one cannot fix the order inside the interval. Note that one obtains a hierarchy of
subgroups depending on the upper bound p−n for the modulus. For p mod 4 = 1 imaginary
unit exist as ordinary p-adic number and for p mod 4 = 3 in an extension including

√
−1.

4. For the hyperbolic angle one has

Em,n ≡ exp(m/n)→ Em,n × exp(η) (2.2)

with the ordinary p-adic number η having norm p−N < 1. Lorentz symmetry is broken to a
discrete subgroup: this could be interpreted in terms of finite cognitive resolution. Since ep

is p-adic number also hyperbolic angle has finite number of values and one has compactness
in well-defined sense although in real context one has non-compactness.

In cosmology this discretization means quantization of redshift and thus recession velocities.
A concise manner to express the discretization to say that the cosmic time constant hy-
perboloids are discrete variants of Lobatchevski spaces SO(3, 1)/SO(3). The spaces appear
naturally in TGD inspired cosmology.

5. The coordinate transformation relating the coordinates in the two intersecting coordinate
patches maps hyperbolic and ordinary phases to each other as such. Light-cone proper time
coordinates are related in more complex manner. a2+ = t2 − r2 and a2− = (t − T )2 − r2 are
related by a2+ − a2− = 2tT − T 2 = 2a+cosh(η)T − T 2.

This leads to a problem unless one allows a+ and a− to belong to an algebraic extension
containing the roots of e making possible to define hyperbolic angle. The coordinates a± can
also belong to a larger extension of p-adic numbers. The expectation is that one obtains an
infinite hierarchy of algebraic extensions of rationals involving besides the phases also other
non-Abelian extension parameters. It would seem that the Abelian extension for phases and
the extension for a must factorize somehow. Note also that the the expression of a+ in terms
of a− given by

a+ = −cosh(η)T ±
√
sinh2(η)T 2 + a2− . (2.3)
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This expression makes sense p-adically for all values of a− if one can expand the square root
as a converning power series with respect to a−. This is true if a−/sinh(η)T has p-adic norm
smaller than 1.

6. What about the boundary of CD which corresponds to a coordinate singularity? It seems that
this must be treated separately. The boundary has topology S2×R+ and S2 can be p-adicized
as already explained. The light-like radial coordinate r = asinh(η) vanishes identically for
finite values of sinh(η). Should one regard r as ordinary p-adic number? Or should one
think that entire light-one boundary corresponds to single point r = 0? The discretization of
r is in powers of a roots of e is very natural so that each power Em,n corresponds to a p-adic
monad. If now powers Em,n are involved, one obtains just the monad at r = 0.

The construction of quantum TGD leads to the introduction of powers exp(log(r/r0)s), where
s is zero of Riemann Zeta [K4]. These make sense p-adically if u = log(r/r0) has p-adic norm
smaller than unity and s makes sense p-adically. The latter condition demanding that the
zeros are algebraic numbers is quite strong.

3 Construction for SU(2), SU(3), and classical Lie groups

In the following the detailed construction for SU(2), SU(3), and classical Lie groups will be
sketched.

3.1 Subgroups of SU(2) having p-adic counterparts

In the case U(1) the subgroups defined by roots of unity reduce to a finite group Zn. What can
one say about p-adicizable discrete subgroups of SU(2)?

1. To see what happens in the case of SU(2) one can write SU(2) element explicitly in quater-
nionic matrix representation

(θ, n) ≡ cos(θ)Id+ sin(θ)
∑
i

niIi . (3.1)

Here Id is quaternionic real unit and Ii are quaternionic imaginary units. n = (n1, n2, n2) is a
unit vector representable as (cos(φ), sin(φ)cos(ψ), sin(φ)sin(ψ)). This representation exists
p-adically if the phases exp(iθ), exp(i(φ) and exp(iψ) exist p-adically so that they must be
roots of unity.

The geometric interpretation is that n defines the direction of rotation axis and θ defines the
rotation angle.

2. This representation is not the most general one in p-adic context. Suppose that one has two
elements of this kind characterized by (θi, ni)such that the rotation axes are different. From
the multiplication table of quaternions one has for the product (θ12, n12) of these

cos(θ12) = cos(θ1)cos(θ2)− sin(θ1)sin(θ2)n1 · n2 . (3.2)

This makes sense p-adically if the inner product cos(χ) ≡ n1 ·n2 corresponds to root of unity
in the extension of rationals used. Therefore the angle between the rotation axes is number
theoretically quantized in order that p-adicization works.

One can solve θ12 from the above equation in real context but in the general case it does not
correspond to Um,n. This is not however a problem from p-adic point of view. The reduction
to a root of unity is true only in some special cases. For n1 = n2 the group generated by
the products reduces a discrete Zn ⊂ U(1) generated by a root of unity. If n1 and n2 are
orthogonal the angle between rotation axes corresponds trivially to a root of unity. In this
case one has the isometries of cube. For other Platonic solids the angles between rotation
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axes associated with various U(1) subgroups generating the entire sub-group are fixed by
their geometries. The rotation angles correspond to n = 3 for tetrahedron and icosahedron
and n = 5 dodecahedron and for n = 3. There is also duality between cube and octahedron
and icosahedron and dodecahedron.

3. Platonic solids can be geometrically seen as discretized variants of SU(2) and it seems that
they correspond to finite discrete subgroups of SU(2) defining SU(2)d. Platonic sub-groups
appear in the hierarchy of Jones inclusions. The other finite subgroups of SU(2) appearing
in this hierarchy act on polygons of plane and being generated by Zn and rotations around
the axes of plane and would naturally correspond to discrete U(1) sub-groups of SU(2) and
in a well-defined sense to a degenerate situation. By Mc-Kay correspondence all these groups
correspond to ADE type Lie groups. These subgroups define finite discretizations of SU(2)
and S2. p-Adicization would lead directly to the hierarchy of inclusions assigned also with
the hierarchy of sub-algebras of super-symplectic algebra characterized by the hierarchy of
Planck constants.

4. There are also p-adicizable discrete subgroups, which are infinite. By taking two rotations
with angles which correspond to root of unity with rotation axes, whose mutual angle corre-
sponds to root of unity one can generate an infinite discrete subgroup of SU(2) existing in
p-adic sense. More general discrete U(1) subgroups are obtained by taking n rotation axes
with mutual angles corresponding to roots of unity and generating the subgroup from these.
In case of Platonic solids this gives a finite subgroup.

3.2 Construction of p-adicizable discrete subgroups of CP2

The construction of p-adic CP2 proceeds along similar lines.

1. In the original ultra-naive approach the local p-adic metric of CP2 is obtained by a purely
formal replacement of the ordinary metric of CP2 with its p-adic counterpart and it defines
the CP2 contribution to induced metric. This makes sense since Kähler function is rational
function and components of CP2 metric and spinor connection are rational functions. This
allows to formulate p-adic variants of field equations. This description is however only local.
It says nothing about global aspects of CP2 related to the introduction of algebraic extension
of p-adic numbers.

One should be able to realize the angle coordinates of CP2 in a physically acceptable manner.
The coordinates of CP2 can be expressed by compactness in terms of trigonometric functions,
which suggests a realization of them as phases for the roots of unity. The number of points
depends on the Abelian extension of rationals inducing that of p-adics which is chosen. This
gives however only discrete version of p-adic CP2 serving as a kind of spine. Also the flesh
replacing points with monads is needed.

2. A more profound approach constructs the algebraic variants of CP2 as discrete versions of the
coset space CP2 = SU(3)/U(2). One restricts the consideration to an algebraic subgroup
of SU(3)d with elements, which are 3 × 3 matrices with components, which are algebraic
numbers in the extension of rationals. Since they are expressible in terms of phases one can
express them in terms of roots of unity. In the same manner one identifies U(2)d ⊂ SU(3)d.
CP2,d is the coset space SU(3)D/U(2)d of these. The representative of a given coset is a
point in the coset and expressible in terms of roots of unity.

3. The construction of the p-adicizable subgroups of SU(3) suggests a generalization. Since
SU(3) is 8-D and Cartan algebra is 2-D the coset space is 6-dimensional flag-manifold F =
SU(3)/U(1)×U(1) with coset consisting of elements related by automorphism g ≡ hgh−1. F
defines the twistor space of CP2 characerizing the choices for the quantization axes of color
quantum numbers. The points of F should be expressible in terms of phase angles analogous
to the angle defining rotation axis in the case of SU(2).

In the case of SU(2) n U(1) subgroups with specified rotation axes with p-adically existing
mutual angles are considered. The construction as such generates only SU(2)d subgroup
which can be trivially extended to U(2)d. The challenge is to proceed further.
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Cartan decomposition of the Lie algebra (see https://en.wikipedia.org/wiki/Cartan_

decomposition) seems to provide a solution to the problem. In the case of SU(3) it cor-
responds to the decomposition to U(2) sub-algebra and its complement. One could use the
decomposition G = KAK where K is maximal compact subgroup. A is exponentiation
of the maximal Abelian subalgebra, which is 3-dimensional for CP2. By Abelianity the
p-adicization of A in terms of roots of unity simple. The image of A in G/K is totally
geodesic sub-manifold. In the recent case one has G/Ki = CP2 so that the image of A is
geodesic sphere S2. This decomposition implies the representation using roots of unity. The
construction of discrete p-adicizable subgroups of SU(n) for n > 3 would continue iteratively.

4. Since the construction starts from SU(2), U(1), and Abelian groups, and proceeds iteratively
it seems that Platonic solids have counterparts for all classical Lie groups containing SU(2).
Also level p-adicizable discrete coset spaces have analogous of Platonic solids.

The results imply that CD×CP2 is replaced by a discrete set of p-adic monads at a given level
of hierarchy corresponding to the finite cognitive resolution.

3.3 Generalization to other groups

The above argument demonstrates that p-adicization works iteratively for SU(n) and thus for
U(n). For finite-dimensional symplectic group Sp(n,R) the maximal compact sub-group is U(n)
so that that KAK construction should work also now. SO(n) can be regarded as subgroup of SU(n)
so that the p-adiced discretrized variants of maximal compact subgroups should be constructible
and KAK give the groups. The inspection of the table of the Wikipedia article (see https:

//en.wikipedia.org/wiki/Classical_group) encourages the conjecture that the construction
of SU(n) and U(n) generalizes to all classical Lie groups.

This construction could simplify enormously also the p-adicization of WCW and the theory
would discretize even in non-compact degrees of freedom. The non-zero modes of WCW correspond
to the symplectic group for δM4 × CP2, and one might hope that the p-adicization works also at
the limit of infinite-dimensional symplectic group with U(∞) taking the role of K.

Acknowledgements: I want to thank Santeri Satama for questions and stimulating discus-
sions.
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