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Abstract

The notion of electric-magnetic duality emerged already two decades ago in the attempts to
formulate the Kähler geometry of the ”world of classical worlds”. Quite recently a considerable
step of progress took place in the understanding of this notion. This concept leads to the iden-
tification of the physical particles as string like objects defined by magnetic charged wormhole
throats connected by magnetic flux tubes. The second end of the string contains particle having
electroweak isospin neutralizing that of elementary fermion and the size scale of the string is
electro-weak scale would be in question. Hence the screening of electro-weak force takes place
via weak confinement. This picture generalizes to magnetic color confinement. Electric-magnetic
duality leads also to a detailed understanding of how TGD reduces to almost topological quan-
tum field theory. The condition that the theory reduces to almost topological QFT and the
hydrodynamical character of field equations leads to a detailed ansatz for the general solution of
field equations and also for the solutions of the modified Dirac equation relying on the notion of
Beltrami flow for which the flow parameter associated with the flow lines defined by a conserved
current extends to a global coordinate. This makes the theory is in well-defined sense completely
integrable. Also Dirac determinant conjectured to represent Kähler function can be calculated
explicitly in terms of the geometric data characterizing 3-surfaces.

Keywords: Electric-magnetic duality, magnetic monopoles, color confinement, weak confinement,
string like objects.
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1 Introduction

The notion of electric-magnetic duality [22] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [8]. What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property o of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topolog-
ical QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
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along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

2 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

2.1 Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
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electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (2.1)

A more general form of this duality is suggested by the considerations of [7] reducing the hierarchy
of Planck constants to basic quantum TGD and also reducing Kähler function for preferred
extremals to Chern-Simons terms [21] at the boundaries of CD and at light-like wormhole
throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J , (2.3)

where J denotes the Kähler magnetic flux, makes it possible to have a non-trivial configuration
space metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler
magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants
are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be
a non-constant function of X2 depending on string world sheet coordinates. The light-like radial
coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this
slicing could be shifted along the time axis defined by the tips of CD.

2.2 Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux
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Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [20] read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (2.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (2.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3V
2
−Qem , p = sin2(θW ) . (2.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L + sin2(θW )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2Z
4π~0

=
αem

p(1− p)
. (2.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

2.3 The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.
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2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [18] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

The weak form of electric-magnetic duality has surprisingly strong implications for basic view
about quantum TGD as following considerations show.

3 Magnetic confinement, the short range of weak forces, and
color confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

3.1 How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!
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3.2 Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [25].

3.3 Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [13]. The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
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Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [19]. If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [17].

3.4 Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in the weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.
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This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2, which in turn is an arbitrary function of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(3.1)

Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [A8]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(3.2)

and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(3.3)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.
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4 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which weak
self-duality condition does not make sense [14]) so that the Coulombic term vanishes identically in
the gauge used. The addition of a gradient to A induces terms located at the ends and wormhole
throats of the space-time surface but this term must be cancelled by the other boundary terms
by gauge invariance of Kähler action. This implies that the M4 part of WCW metric vanishes
in this case. Therefore massless extremals as such are not physically realistic: wormhole throats
representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (4.1)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (4.2)
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This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (4.3)

jK is a four-dimensional counterpart of Beltrami field [23] and could be called generalized Bel-
trami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[14]. The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

4. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (4.4)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

5. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.
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6. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

5 How to define Dirac determinant?

The basic challenge is to define Dirac determinant hoped to give rise to the exponent of Kähler action
associated with the preferred extremal. The reduction to almost topological QFT gives this kind
of expression in terms of Chern-Simons action and one might hope of obtaining even more concrete
expression from the Chern-Simons Dirac determinant. The calculation of the previous section allowed
to calculate the most general spectrum of the modified Dirac operator. If the number of the eigenvalues
is infinite as the naive expectation is then Dirac determinant diverges if calculated as the product of the
eigenvalues and one must calculate it by using some kind of regularization procedure. Zeta function
regularization is the natural manner to do this.

The following arguments however lead to a concrete vision how the regularization could be avoided
and a connection with infinite primes. In fact, the manifestly finite option and the option involving zeta
function regularization give Kähler functions differing only by a scaling factor and only the manifestly
finite option satisfies number theoretical constraints coming from p-adicization. An explicit expression
for the Dirac determinant in terms of geometric data of the orbit of the partonic 2-surface emerges.

Arithmetic quantum field theory defined by infinite emerges naturally. The lines of the generalized
Feynman graphs are characterized by infinite primes and the selection rules correlating the geometries
of the lines of the generalized Feynman graphs corresponds to the conservation of the sum of number
theoretic momenta log(pi) assignable to sub-braids corresponding to different primes pi assignable to
the orbit of parton. This conforms with the vision that infinite primes indeed characterize the geometry
of light-like 3-surfaces and therefore also of space-time sheets. The eigenvalues of the modified Dirac
operator are proportional 1/

√
pi where pi are the primes appearing in the definition of the p-adic prime

and the interpretation as analogs of Higgs vacuum expectation values makes sense and is consistent
with p-adic length scale hypothesis and p-adic mass calculations. It must be emphasized that all this is
essentially due to single basic hypothesis, namely the reduction of quantum TGD to almost topological
QFT guaranteed by the Beltrami ansatz for field equations and by the weak form of electric-magnetic
duality.

5.1 Dirac determinant when the number of eigenvalues is infinite

At first sight the general spectrum looks the only reasonable possibility but if the eigenvalues cor-
relate with the geometry of the partonic surface as quantum classical correspondence suggests, this
conclusion might be wrong. The original hope was the number of eigenvalues would be finite so that
also determinant would be finite automatically. There were some justifications for this hope in the
definition of Dirac determinant based on the dimensional reduction of DK as DK = DK,3 + D1 and
the identification of the generalized eigenvalues as those assigned to DK,3 as analogs of energy eigen-
values assignable to the light-like 3-surface. It will be found that number theoretic input could allow
to achieve a manifest finiteness in the case of DC−S and that this option is the only possible one if
number theoretic universality is required.
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If there are no constraints on the eigenvalue spectrum of DC−S for a given partonic orbit, the naive
definition of the determinant gives an infinite result and one must define Dirac determinant using ζ
function regularization implying that Kähler function reduces to the derivative of the zeta function
ζD(s) -call it Dirac Zeta- associated with the eigenvalue spectrum.

Consider now the situation when the number of eigenvalues is infinite.

1. In this kind of situation zeta function regularization is the standard manner to define the Dirac
determinant. What one does is to assign zeta function to the spectrum- let us call it Dirac zeta
function and denote by ζD(s)- as

ζD(s) =
∑
k

λ−sk . (5.1)

If the eigenvalue λk has degeneracy gk it appears gk times in the sum. In the case of harmonic
oscillator one obtains Riemann zeta for which sum representation converges only for Re(s) ≥ 1.
Riemann zeta can be however analytically continued to the entire complex plane and the idea
is that this can be done also in the more general case.

2. By the basic conjecture Kähler function corresponds to the logarithm of the Dirac determinant
and equals to the sum of the logarithms of the eigenvalues

K = log(
∏

λk) = −dζD
ds |s=0

. (5.2)

The expression on the left hand side diverges if taken as such but the expression on the right
had side based on the analytical continuation of the zeta function is completely well-defined and
finite quantity. Note that the replacement of eigenvalues λk by their powers λnk -or equivalently
the increase of the degeneracy by a factor n - brings in only a factor n to K: K → nK.

3. Dirac determinant involves in the minimal situation only the integer multiples of pseudo-mass
scale λ = 2π/Lmin. One can consider also rational and even algebraic multiples qLmin < Lmax,
q ≥ 1, of Lmin so that one would have several integer spectra simultaneously corresponding to
different braids. Here Lmin and Lmax are the extrema of the braid strand length determined
in terms of the effective metric as L =

∫
(ĝrr)−1/2dr. The question what multiples are involved

will be needed later.

4. Each rational or algebraic multiple of Lmin gives to the zeta function a contribution which is of
same form so that one has

ζD =
∑
q

ζ(log(qx)s) , x =
Lmin
R

, 1 ≤ q < Lmax
Lmin

. (5.3)

Kähler function can be expressed as

K =
∑
n

log(λn) = −dζD(s)

ds
= −

∑
q

log(qx)
dζ(s)

ds |s=0
, x =

Lmin
R

. (5.4)

What is remarkable that the number theoretical details of ζD determine only the overall scaling
factor of Kähler function and thus the value of Kähler coupling strength, which would be purely
number theoretically determined if the hypothesis about the role of infinite primes is correct.
Also the value of R is irrelevant since it does not affect the Kähler metric.
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5. The dependence of Kähler function on WCW degrees of freedom would be coded completely by
the dependence of the length scales qLmin on the complex coordinates of WCW: note that this
dependence is different for each scale. This is reminiscent of the coding of the shape of the drum
(or more generally - manifold) by the spectrum of its eigen frequencies. Now Kähler geometry
would code for the dependence of the spectrum on the shape of the drum defined by the partonic
2-surface and the 4-D tangent space distribution associated with it.

What happens at the limit of vacuum extremals serves as a test for the identification of Kähler
function as Dirac determinant. The weak form of electric magnetic duality implies that all com-
ponents of the induced Kähler field vanish simultaneously if Kähler magnetic field cancels. In the
modified Chern-Simons Dirac equation one obtains L =

∫
(ĝrr)−1/2dr. The modified gamma matrix

Γ̂r approaches a finite limit when Kähler magnetic field vanishes

Γ̂r = εrβγ(2JβkAγ + JβγAk)Γk → 2εrβγJβkΓk . (5.5)

The relevant component of the effective metric is ĝrr and is given by

ĝrr = (Γ̂r)2 = 4εrβγεrµνJβkJ
k

µ AγAν . (5.6)

The limit is non-vanishing in general and therefore the eigenvalues remain finite also at this limit
as also the parameter Lmin =

∫
(ĝrr)−1/2dr defining the minimum of the length of the braid strand

defined by Kähler magnetic flux line in the effective metric unless ĝrr goes to zero everywhere inside
the partonic surface. Chern-Simons action and Kähler action vanish for vacuum extremals so that in
this case one could require that Dirac determinant approaches to unity in a properly chosen gauge.
Dirac determinant should approach to unit for vacuum extremals indeed approaches to unity since
there are no finite eigenvalues at the limit ĝrr = 0.

5.2 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic properties of
hyper-octonionic primes.

1. Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n20 −

∑
i

n2i = p or p2 . (5.7)

2. Hyper-octonionic primes have a standard representation as hyper-complex primes. The Minkowski
norm squared factorizes into a product as

n20 − n23 = (n0 + n3)(n0 − n3) . (5.8)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1 and
2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(5.9)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3). The
difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one has
n23 = p2. These hyper-octonionic primes represent particles at rest.
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3. The action of a discrete subgroup G(p) of the octonionic automorphism group G2 generates form
hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k) corresponding to the
same value of n0 and p and for these the integer valued projection to M2 satisfies n20−n23 = n > p.
It is also possible to have a state representing the system at rest with (n0, n3) = ((p + 1)/2, 0)
so that the pseudo-mass varies in the range [

√
p, (p + 1)/2]. The subgroup G(n0, n3) ⊂ SU(3)

leaving invariant the projection (n0, n3) generates the hyper-octonionic primes corresponding
to the same value of mass for hyper-octonionic primes with same Minkowskian length p and
pseudo-mass λ = n ≥ √p.

4. One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to p or√
p. The first kind of particles are always at rest whereas the second kind of particles can be

brought at rest only if one interprets the pseudo-momentum as M2 projection. This brings in
mind the secondary p-adic length scales assigned to causal diamonds (CDs) and the primary
p-adic lengths scales assigned to particles.

If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the limits
dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds Lmax and
Lmin on the length L. Lmin is scaled up to

√
n20 − n23Lmin for a given projection (n0, n3). In general

a given M2 projection (n0, n3) corresponds to several hyper-octonionic primes since SU(3) rotations
give a new hyper-octonionic prime with the same M2 projection. This leads to an inconsistency unless
one has a good explanation for why some basic momentum can appear several times. One might argue
that the spinor mode is degenerate due to the possibility to perform discrete color rotations of the
state. For hyper complex representatives there is no such problem and it seems favored. In any case,
one can look how the degeneracy factors for given projection can be calculated.

1. To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one must
find all hyper-octonionic primes Π, which can have projection in M2 with length n and sum up
the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n20 − n23 = n , Π2
p(n0, n3) = n20 − n23 −

∑
i

n2i = n−
∑
i

n2i = p . (5.10)

2. The condition n20 − n23 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components with
length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2i = p− n . (5.11)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of elements
of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy group of given
hyper-octonionic prime obtained in this manner. For n20−n23 = p2 D(n0, n3, p) obviously equals
to unity.

5.3 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degeneracies
of the mass squared eigen values. There are three options to consider.
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5.3.1 First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally characterizable
by a number N telling how many 2-D pseudo-momenta reside on mass shell n20−n23 = m2. In this case
zeta function would be proportional to a sum of Riemann Zetas with scaled arguments corresponding
to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (5.12)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and is

logarithmically divergent so that the normalization factor N of the Kähler function would be infinite.

5.3.2 Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for the
momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption that
momentum components using mmax as mass scale are integers. This would restrict the choice of the
number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n20−n23 = n2. Note that the condition is invariant under scaling.
These integers correspond to Pythagorean triangles plus the degenerate situation with n3 = 0. There
exists a finite number of pairs (n0, n3) satisfying this condition as one finds by expressing n0 as
n0 = n3 + k giving 2n3k + k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would be enough to have a
finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would be well defined. ζD would
be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (5.13)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and for loops
no divergences are possible since the integral over two-dimensional virtual momenta is replaced with
a sum over discrete mass shells containing only a finite number of points. This option looks thus
attractive but requires a regularization. On the other hand, the appearance of a zeta function having
a strong resemblance with Riemann zeta could explain the finding that Riemann zeta is closely related
to the description of critical systems. This point will be discussed later.

5.3.3 Third option: Infinite primes code for the allowed mass scales

According to the proposal of [15, A7] the hyper-complex parts of hyper-octonionic primes appearing
in their infinite counterparts correspond to the M2 projections of real four-momenta. This hypothesis
suggests a very detailed map between infinite primes and standard model quantum numbers and pre-
dicts a universal mass spectrum [15]. Since pseudo-momenta are automatically restricted to the plane
M2, one cannot avoid the question whether they could actually correspond to the hyper-octonionic
primes defining the infinite prime. These interpretations need not of course exclude each other. This
option allows several variants and at this stage it is not possible to exclude any of these options.

1. One must choose between two alternatives for which pseudo-momentum corresponds to hyper-
complex prime serving as a canonical representative of a hyper-octonionic prime or a projection
of hyper-octonionic prime to M2.

2. One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).
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One must also decide what hyper-octonionic primes are allowed.

1. The first guess is that all hyper-complex/hyper-octonionic primes defining length scale
√
pLmin ≤

Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the higher p-adic length
scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean vanishing
Kähler function which is of course also possible since Kähler action can vanish (for instance, for
massless extremals). It seems therefore safer to allow also the scale corresponding to the trivial
prime (n0, n3) = (1, 0) (1 is formally prime because it is not divisible by any prime different
from 1) so that at least Lmin is possible. This option also allows only rather small primes unless
the partonic 2-surface contains vacuum regions in which case Lmax is infinite: in this case all
primes would be allowed and the exponent of Kähler function would vanish.

2. The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the infinite
hyper-octonionic prime are possible looks more reasonable since large values of p would be
possible and could be identified in terms of the p-adic length scale hypothesis. All hyper-
octonionic primes appearing in infinite prime would be possible and the geometry of the orbit of
the partonic 2-surface would define an infinite prime. This would also give a concrete physical
interpretation for the earlier hypothesis that hyper-octonionic primes appearing in the infinite
prime characterize partonic 2-surfaces geometrically. One can also identify the fermionic and
purely bosonic primes appearing in the infinite prime as braid strands carrying fermion number
and purely bosonic quantum numbers. This option will be assumed in the following.

5.4 Expression for the Dirac determinant for various options

The expressions for the Dirac determinant for various options can be deduced in a straightforward
manner. Numerically Riemann option and manifestly finite option do not differ much but their number
theoretic properties are totally different.

5.4.1 Riemann option

All integer multiples of these basic pseudo-momenta would be allowed for Riemann option so that ζD
would be sum of Riemann zetas with arguments scaled by the basic pseudo-masses coming as inverses
of the basic length scales for braid strands. For the option involving only hyper-complex primes the
formula for ζD reads as

ζD = ζ(log(xmins)) +
∑
i,n ζ(log(xi,ns)) +

∑
i,n ζ(log(yi,ns)) ,

xi,n = p
n/2
i xmin ≤ xmax , pi ≥ 3 , yi,n = pni xmin ≤ xmax . pi ≥ 2 ,

(5.14)

Lmax resp. Lmin is the maximal resp. minimal length L =
∫

(ĝrr)−1/2dr for the braid strand defined
by the flux line of the Kähler magnetic field in the effective metric. The contributions correspond to
the effective hyper-complex prime p1 = (1, 0) and hyper-complex primes with Minkowski lengths

√
p

(p ≥ 3) and p, p ≥ 2. If also higher p-adic length scales Ln = pn/2Lmin < Lmax and Ln = pnLmin <
Lmax, n > 1, are allowed there is no further restriction on the summation. For the restricted option
only Ln, n = 0, 2 is allowed.

The expressions for the Kähler function and its exponent reads as

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) ,

exp(K) = (
1

xmin
)k ×

∏
i

(
1

xi
)k ×

∏
i

(
1

yi
)k ,

xi ≤ xmax , yi ≤ xmax , k = −dζ(s)

ds |s=0
=

1

2
log(2π) ' .9184 .

(5.15)
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From the point of view of p-adicization program the appearance of strongly transcendental numbers
in the normalization factor of ζD is not a well-come property.

If the scaling of the WCW Kähler metric by 1/k is a legitimate procedure it would allow to get
rid of the transcendental scaling factor k and this scaling would cancel also the transcendental from
the exponent of Kähler function. The scaling is not however consistent with the view that Kähler
coupling strength determines the normalization of the WCW metric.

This formula generalizes in a rather obvious manner to the cases when one allows M2 projections
of hyper-octonionic primes.

5.4.2 Manifestly finite options

The options for which one does not allow summation over all integer multiples of the basic momenta
characterized by the canonical representatives of hyper-complex primes or their projections to M2

are manifestly finite. They differ from the Riemann option only in that the normalization factor
k =' .9184 defined by the derivative Riemann Zeta at origin is replaced with k = 1. This would mean
manifest finiteness of ζD. Kähler function and its exponent are given by

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) , xi ≤ xmax , yi ≤ xmax ,

exp(K) =
1

xmin
×
∏
i

1

xi
×
∏
i

1

yi
.

(5.16)

Numerically the Kähler functions do not differ much since their ratio is .9184. Number theoretically
these functions are however completely different. The resulting dependence involves only square roots
of primes and is an algebraic function of the lengths pi and rational function of xmin. p-Adicization
program would require rational values of the lengths xmin in the intersection of the real and p-adic
worlds if one allows algebraic extension containing the square roots of the primes involved. Note that
in p-adic context this algebraic extension involves two additional square roots for p > 2 if one does
not want square root of p. Whether one should allow for Rp also extension based on

√
p is not quite

clear. This would give 8-D extension.
For the more general option allowing all projections of hyper-complex primes to M2 the general

form of Kähler function is same. Instead of pseudo-masses coming as primes and their square roots
one has pseudomasses coming as square roots of some integers n ≤ p or n ≤ p2 for each p. In this
case the conservation laws are not so strong.

Note that in the case of vacuum extremals xmin = ∞ holds true so that there are no primes
satisfying the condition and Kähler function vanishes as it indeed should.

5.4.3 More concrete picture about the option based on infinite primes

The identification of pseudo-momenta in terms of infinite primes suggests a rather concrete connection
between number theory and physics.

1. One could assign the finite hyper-octonionic primes Πi making the infinite prime to the sub-
braids identified as Kähler magnetic flux lines with the same length L in the effective metric.
The primes assigned to the finite part of the infinite prime correspond to single fermion and
some number of bosons. The primes assigned to the infinite part correspond to purely bosonic
states assignable to the purely bosonic braid strands. Purely bosonic state would correspond to
the action of a WCW Hamiltonian to the state.

This correspondence can be expanded to include all quantum numbers by using the pair of
infinite primes corresponding to the ”vacuum primes” X±1, where X is the product of all finite
primes [15]. The only difference with respect to the earlier proposal is that physical momenta
would be replaced by pseudo-momenta.

2. Different primes pi appearing in the infinite prime would correspond to their own sub-braids.
For each sub-braid there is a N -fold degeneracy of the generalized eigen modes corresponding
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to the number N of braid strands so that many particle states are possible as required by the
braid picture.

3. The correspondence of infinite primes with the hierarchy of Planck constants could allow to
understand the fermion-many boson states and many boson states assigned with a given finite
prime in terms of many-particle states assigned to na and nb-sheeted singular covering spaces of
CD and CP2 assignable to the two infinite primes. This interpretation requires that only single
p-adic prime pi is realized as quantum state meaning that quantum measurement always selects
a particular p-adic prime pi (and corresponding sub-braid) characterizing the p-adicity of the
quantum state. This selection of number field behind p-adic physics responsible for cognition
looks very plausible.

4. The correspondence between pairs of infinite primes and quantum states [15] allows to interpret
color quantum numbers in terms of the states associated with the representations of a finite
subgroup of SU(3) transforming hyper-octonionic primes to each other and preserving the M2

pseudo-momentum. Same applies to SO(3). The most natural interpretation is in terms of wave
functions in the space of discrete SU(3) and SO(3) transforms of the partonic 2-surface. The
dependence of the pseudo-masses on these quantum numbers is natural so that the projection
hypothesis finds support from this interpretation.

5. The infinite prime characterizing the orbit of the partonic 2-surface would thus code which
multiples of the basic mass 2π/Lmin are possible. Either the M2 projections of hyper-octonionic
primes or their hyper-complex canonical representatives would fix the basic M2 pseudo-momenta
for the corresponding number theoretic braid associated. In the reverse direction the knowledge
of the light-like 3-surface, the CD and CP2 coverings, and the number of the allowed discrete
SU(3) and SU(2) rotations of the partonic 2-surface would dictate the infinite prime assignable
to the orbit of the partonic 2-surface.

One would also like to understand whether there is some kind of conservation laws associated
with the pseudo-momenta at vertices. The arithmetic QFT assignable to infinite primes would indeed
predict this kind of conservation laws.

1. For the manifestly finite option the ordinary conservation of pseudo-momentum conservation
at vertices is not possible since the addition of pseudo-momenta does not respect the condition
n0−n3 = 1. In fact, this difference in the sum of hyper-complex prime momenta tells how many
momenta are present. If one applies the conservation law to the sum of the pseudo-momenta
corresponding to different primes and corresponding braids, one can have reactions in which the
number of primes involved is conserved. This would give the selection rule

∑N
1 pi =

∑N
1 pf .

These reactions have interpretation in terms of the geometry of the 3-surface representing the
line of the generalized Feynman diagram.

2. Infinite primes define an arithmetic quantum field theory in which the total momentum defined
as
∑
nilog(pi) is a conserved quantity. As matter fact, each prime pi would define a separately

conserved momentum so that there would be an infinite number of conservation laws. If the sum∑
i log(pi) is conserved in the vertex , the primes pi associated with the incoming particle are

shared with the outgoing particles so that also the total momentum is conserved. This looks the
most plausible option and would give very powerful number theoretical selection rules at vertices
since the collection of primes associated with incoming line would be union of the collections
associated with the outgoing lines and also total pseudo-momentum would be conserved.

3. For the both Riemann zeta option and manifestly finite options the arithmetic QFT associated
with infinite primes would be realized at the level of pseudo-momenta meaning very strong
selection rules at vertices coding for how the geometries of the partonic lines entering the vertex
correlate. WCW integration would reduce for the lines of Feynman diagram to a sum over light-
like 3-surfaces characterized by (xmin, xmax) with a suitable weighting factor and the exponent
of Kähler function would give an exponential damping as a function of xmin.
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5.4.4 Which option to choose?

One should be able to make two choices. One must select between hyper-complex representations
and the projections of hyper-octonionic primes and between the manifestly finite options and the one
producing Riemann zeta?

Hyper-complex option seems to be slightly favored over the projection option.

1. The appearance of the scales
√
pixmin and possibly also their pn multiples brings in mind p-

adic length scales coming as
√
pn multiples of CP2 length scale. The scales pixmin associated

with hyper-complex primes reducing to ordinary primes in turn bring in mind the size scales
assignable to CDs. The hierarchy of Planck constants implies also ~/~0 =

√
nanb multiples of

these length scales but mass scales would not depend on na and nb [?]. For large values of p the
pseudo-momenta are almost light-like for hyper-complex option whereas the projection option
allows also states at rest.

2. Hyper-complex option predicts that only the p-adic pseudo-mass scales appear in the partition
function and is thus favored by the p-adic length scale hypothesis. Projection option predicts
also the possibility of the mass scales (not all of them) coming as 1/

√
n. These mass scales are

however not predicted by the hierarchy of Planck constants.

3. The same pseudo-mass scale can appear several times for the projection option. This degeneracy
corresponds to the orbit of the hyper-complex prime under the subgroup of SU(3) respecting
integer property. Similar statement holds true in the case of SO(3): these groups are assigned
to the two infinite primes characterizing parton. The natural assignment of this degeneracy is to
the discrete color rotational and rotational degrees associated with the partonic 2-surface itself
rather than spinor modes at fixed partonic 2-surface. That the pseudo-mass would depend on
color and angular momentum quantum numbers would make sense.

Consider next the arguments in favor of the manifestly finite option.

1. The manifestly finite option is admittedly more elegant than the one based on Riemann zeta
and also guarantees that no additional loop summations over pseudo-momenta are present. The
strongest support for the manifestly finite option comes from number theoretical universality.

2. One could however argue that the restriction of the pseudo-momenta to a finite number is not
consistent with the modified Dirac-Chern-Simons equation. Quantum classical correspondence
however implies correlation between the geometry of the partonic orbits and the pseudo-momenta
and the summation over all prime valued pseudo-momenta is present but with a weighting factor
coming from Kähler function implying exponential suppression.

The Riemann zeta option could be also defended.

1. The numerical difference of the normalization factors of the Kähler function is however only
about 8 per cent and quantum field theorists might interpret the replacement the length scales
xi and yi with xdi and ydi , d ' .9184, in terms of an anomalous dimension of these length scales.
Could one say that radiative corrections mean the scaling of the original preferred coordinates
so that one could still have consistency with number theoretic universality?

2. Riemann zeta with a non-vanishing argument could have also other applications in quantum
TGD. Riemann zeta has interpretation as a partition function and the zeros of partition func-
tions have interpretation in terms of phase transitions. The quantum criticality of TGD indeed
corresponds to a phase transition point. There is also experimental evidence that the distribu-
tion of zeros of zeta corresponds to the distribution of energies of quantum critical systems in
the sense that the energies correspond to the imaginary parts of the zeros of zeta [24].

The first explanation would be in terms of the analogs of the harmonic oscillator coherent states
with integer multiple of the basic momentum taking the role of occupation number of harmonic
oscillator and the zeros s = 1/2+iy of ζ defining the values of the complex coherence parameters.
TGD inspired strategy for the proof of Riemann hypothesis indeed leads to the identification of
the zeros as coherence parameters rather than energies as in the case of Hilbert-Polya hypothesis
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[16] and the vanishing of the zeta at zero has interpretation as orthogonality of the state with
respect to the state defined by a vanishing coherence parameter interpreted as a tachyon. One
should demonstrate that the energies of quantum states can correspond to the imaginary parts
of the coherence parameters.

Second interpretation could be in terms of quantum critical zero energy states for which the
”complex square root of density matrix” defines time-like entanglement coefficients of M -matrix.
The complex square roots of the probabilities defined by the coefficient of harmonic oscillator
states (perhaps identifiable in terms of the multiples of pseudo-momentum) in the coherent state
defined by the zero of ζ would define the M -matrix in this situation. Energy would correspond
also now to the imaginary part of the coherence parameter. The norm of the state would be
completely well-defined.

5.4.5 Representation of configuration Kähler metric in terms of eigenvalues of DC−S

A surprisingly concrete connection of the configuration space metric in terms of generalized eigenvalue
spectrum of DC−S results. From the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (5.17)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of DC−S

, the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(5.18)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space. Hence the knowledge of the eigenvalue spectrum of DC−S(X3) as function of
some complex coordinates of configuration space allows to deduce the metric to arbitrary accuracy.
If the above arguments are correct the calculation reduces to the calculation of the derivatives of
log(
√
pLmin/R), where Lmin is the length of the Kähler magnetic flux line between partonic 2-surfaces

with respect to the effective metric defined by the anti-commutators of the modified gamma matrices.
Note that these length scales have different dependence on WCW coordinates so that one cannot
reduce everything to Lmin. Therefore one would have explicit representation of the basic building
brick of WCW Kähler metric in terms of the geometric data associated with the orbit of the partonic
2-surface.

5.4.6 The formula for the Kähler action of CP2 type vacuum extremals is consistent
with the Dirac determinant formula

The first killer test for the formula of Kähler function in terms of the Dirac determinant based on
infinite prime hypothesis is provided by the action of CP2 type vacuum extremals. One of the first
attempts to make quantitative predictions in TGD framework was the prediction for the gravitational
constant. The argument went as follows.

1. For dimensional reasons gravitational constant must be proportional to p-adic length scale
squared, where p characterizes the space-time sheet of the graviton. It must be also proportional
to the square of the vacuum function for the graviton representing a line of generalized Feynman
diagram and thus to the exponent exp(−2K) of Kähler action for topologically condensed CP2

type vacuum extremals with very long projection. If topological condensation does not reduce
much of the volume of CP2 type vacuum extremal, the action is just Kähler action for CP2

itself. This gives

~0G = L2
pexp(2LK(CP2) = pR2exp(2LK(CP2) . (5.19)
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2. Using as input the constraint αK ' αem ∼ 1/137 for Kähler coupling strengths coming from the
comparison of the TGD prediction for the rotation velocity of distant galaxies around galactic
nucleus and the p-adic mass calculation for the electron mass, one obtained the result

exp(2LK(CP2) =
1

p×
∏
pi≤23 pi

. (5.20)

The product contains the product of all primes smaller than 24 (pi ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}).
The expression for the Kähler function would be just of the form predicted by the Dirac deter-
minant formula with Lmin replaced with CP2 length scale. As a matter fact, this was the first
indication that particles are characterized by several p-adic primes but that only one of them is
”active”. As explained, the number theoretical state function reduction explains this.

3. The same formula for the gravitational constant would result for any prime p but the value
of Kähler coupling strength would depend on prime p logarithmically for this option. I indeed
proposed that this formula fixes the discrete evolution of the Kähler coupling strength as function
of p-adic prime from the condition that gravitational constant is renormalization group invariant
quantity but gave up this hypothesis later. It is wisest to keep an agnostic attitude to this issue.

4. I also made numerous brave attempts to deduce an explicit formula for Kähler coupling strength.
The general form of the formula is

1

αK
= klog(K2), K2 = p× 2× 3× 5..× 23 . (5.21)

The problem is the exact value of k cannot be known precisely and the guesses for is value depend
on what one means with number theoretical universality. Should Kähler action be a rational
number? Or is it Kähler function which is rational number (it is for the Dirac determinant
option in this particular case). Is Kähler coupling strength g2K/4π or g2K a rational number?
Some of the guesses were k = π/4 and k = 137/107. The facts that the value of Kähler action
for the line of a generalized diagram is not exactly CP2 action and the value of αK is not known
precisely makes these kind of attempts hopeless in absence of additional ideas.

Also other elementary particles -in particular exchanged bosons- should involve the exponent of
Kähler action for CP2 type vacuum extremal. Since the values of gauge couplings are gigantic as
compared to the expression of the gravitational constant the value of Kähler action must be rather
small form them. CP2 type vacuum extremals must be short in the sense that Lmin in the effective
metric is very short. Note however that the p-adic prime characterizing the particle according to
p-adic mass calculations would be large also now. One can of course ask whether this p-adic prime
characterizes the gravitational space-time sheets associated with the particle and not the particle
itself. The assignment of p-adic mass calculations with thermodynamics at gravitational space-time
sheets of the particle would be indeed natural. The value of αK would depend on p in logarithmic
manner for this option. The topological condensation of could also eat a lot of CP2 volume for them.

5.4.7 Eigenvalues of DC−S as vacuum expectations of Higgs field?

Infinite prime hypothesis implies the analog of p-adic length scale hypothesis but since pseudo-
momenta are in question, this need not correspond to the p-adic length scale hypothesis for the
actual masses justified by p-adic thermodynamics. Note also that Lmin does not correspond to CP2

length scale. This is actually not a problem since the effective metric is not M4 metric and one can
quite well consider the possibility that Lmin corresponds to CP2 length scale in the the induced metric.
The reason is that light-like 3- surface is in question the distance along the Kähler magnetic flux line
reduces essentially to a distance along the partonic 2-surface having size scale of order CP2 length for
the partonic 2-surfaces identified as wormhole throats. Therefore infinite prime can code for genuine
p-adic length scales associated with the light-like 3-surface and quantum states would correspond by
number theoretical state function reduction hypothesis to single ordinary prime.
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Support for this identification comes also from the expression of gravitational constant deduced
from p-adic length scale hypothesis. The result is that gravitational constant is assumed to be pro-
portional to have the expression G = L2

pexp(−2SK(CP2)), where p characterizes graviton or the
space-time sheet mediating gravitational interaction and exponent gives Kähler action for CP2 type
vacuum extremal representing graviton. The argument allows to identify the p-adic prime p = M127

associated with electron (largest Mersenne prime which does not correspond to super-astronomical
length scale) as the p-adic prime characterizing also graviton. The exponent of Kähler action is pro-
portional to 1/p which conforms with the general expression for Kähler function. I have considered
several identifications of the numerical factor and one of them has been as product of primes 2 ≤ p ≤ 23
assuming that somehow the primes {2, ..., 23, p} characterize graviton. This guess is indeed consistent
with the prediction of the infinite-prime hypothesis.

The first guess inspired by the p-adic mass calculations is that the squares λ2i of the eigenvalues
of DC−S could correspond to the conformal weights of ground states. Another natural physical
interpretation of λ is as an analog of the Higgs vacuum expectation. The instability of the Higgs=0
phase would corresponds to the fact that λ = 0 mode is not localized to any region in which ew
magnetic field or induced Kähler field is non-vanishing. By the previous argument one would have
order of magnitude estimate h0 =

√
2π/Lmin.

1. The vacuum expectation value of Higgs is only proportional to the scale of λ. Indeed, Higgs
and gauge bosons as elementary particles correspond to wormhole contacts carrying fermion
and anti-fermion at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to λ. For free fermions the vacuum
expectation value of Higgs does not seem to be even possible since free fermions do not correspond
to wormhole contacts between two space-time sheets but possess only single wormhole throat
(p-adic mass calculations are consistent with this). If fermion suffers topological condensation as
indeed assumed to do in interaction region, a wormhole contact is generated and makes possible
the generation of Higgs vacuum expectation value.

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of modified Chern-Simons Dirac operator so that the eigenvalues λi
would define TGD counterparts for the minima of Higgs potential. For the minimal option
one has only a finite number of pseudo-mass eigenvalues inversely proportional

√
p so that the

identification as a Higgs vacuum expectation is consistent with the p-adic length scale hypothesis.
Since the vacuum expectation of Higgs corresponds to a condensate of wormhole contacts giving
rise to a coherent state, the vacuum expectation cannot be present for topologically condensed
CP2 type vacuum extremals representing fermions since only single wormhole throat is involved.
This raises a hen-egg question about whether Higgs contributes to the mass or whether Higgs is
only a correlate for massivation having description using more profound concepts. From TGD
point of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to λi. With this
interpretation λi could give a contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. λ2i is very natural candidate for the ground
state conformal weights identified but would have wrong sign. Therefore it seems that λ2i can
define only a deviation of the ground state conformal weight from negative value and is positive.

4. In accordance with this λ2i would give constant contribution to the ground state conformal
weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = −n/2+λ2i where the negative contribution comes from Super Virasoro representation. The
negative integer part of the net conformal weight can be canceled using Super Virasoro generators
but ∆hc would give to mass squared a contribution analogous to Higgs contribution. The
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mapping of the real ground state conformal weight to a p-adic number by canonical identification
involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.
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