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Abstract

The called 21-cm anomaly meaning that there is unexpected absorption of this line could
be due to the transfer of energy from gas to dark matter leading to a cooling of the gas.
This requires em interaction of the ordinary matter with dark matter but the allowed value of
electric charge must be must much smaller than elementary particle charges. In TGD Universe
the interaction would be mediated by an ordinary photon transforming to dark photon having
effective value heff/h0 = n larger than standard value h implying that em charge of dark
matter particle is effectively reduced. Interaction vertices would involve only particles with
the same value of heff/h0 = n.

In this article a simple model for the mixing of particle and its dark variants is proposed.
Due to the transformations between different values of heff/h0 = n during propagation,
mass squared eigenstates are mixtures of particle with various values of n. An the analog of
CKM matrix describing the mixing follows from mass squared matrix containing non-diagonal
terms. The model for neutrino oscillations is generalized so that it applies to any particle,
also photon. The condition that ”ordinary” photon is essentially massless during propagation
forces to assume that during propagation photon is mixture of ordinary and dark photons,
which would be both massive in absence of mixing. A reduction to ordinary photon would take
place in the interaction vertices and therefore also in the absorption. The mixing provides a
new contribution to particle mass besides that coming from p-adic thermodynamics and from
the Kähler magnetic fields assignable to the string like object associated with the particle.
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1 Introduction

In TGD Universe dark matter in TGD sense corresponds to heff/h0 = n, h = 6h0 is a good
guess [L1, L6, L2] phases of ordinary matter associated with magnetic flux tubes. These flux tubes
would be n-sheeted covering spaces, and n would correspond to the dimension of the extension
of rationals in which Galois group acts. The evidence for this interpretation of dark matter is
accumulating. I have already earlier discussed [L7] one of the latest anomalies - so called 21-cm
anomaly. This finding motivates a more detailed model for the interaction between different levels
of dark matter hierarchy and in the sequel I will propose this kind of model.
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1.1 21-cm anomaly

Sabine Hossenfelder (see http://tinyurl.com/y7h5ys2r) told about the article [E1] discussing the
possible interpretation (see http://tinyurl.com/yasgfgq8) of so called 21-cm anomaly associated
with the hyperfine transition of hydrogen atom and observed by EDGES collaboration [E2].

The EDGES Collaboration has recently reported the detection of a stronger-than-expected ab-
sorption feature in the global 21-cm spectrum, centered at a frequency corresponding to a redshift
of z ∼ 17. This observation has been interpreted as evidence that the gas was cooled during this
era as a result of scattering with dark matter. In this study, we explore this possibility, applying
constraints from the cosmic microwave background, light element abundances, Supernova 1987A,
and a variety of laboratory experiments. After taking these constraints into account, we find that
the vast majority of the parameter space capable of generating the observed 21-cm signal is ruled
out. The only range of models that remains viable is that in which a small fraction, ∼ 0.3− 2 per
cent, of the dark matter consists of particles with a mass of ∼ 10-80 MeV and which couple to
the photon through a small electric charge, ε ∼ 10−6 − 10−4. Furthermore, in order to avoid being
overproduced in the early universe, such models must be supplemented with an additional depletion
mechanism, such as annihilations through a Lµ − Lτ gauge boson or annihilations to a pair of
rapidly decaying hidden sector scalars.

What has been found is an unexpectedly strong absorption feature in 21-cm spectrum: the
redshift is about z = ∆f/f ' v/c ' 17, which from Hubble law v = HD corresponds to a distance
D ∼ 2.3 × 1011 ly. Dark matter interpretation would be in terms of scattering of the baryons
of gas from dark matter at lower temperature. The anomalous absorption of 21 cm line could
be explained with the cooling of gas caused by the flow of energy to a colder medium consisting
of dark matter. If I understood correctly, this would generate a temperature difference between
background radiation and gas and consequent energy flow to gas inducing the anomaly.

The article excludes large amount of parameter space able to generate the observed signal.
The idea is that the interaction of baryons of the gas with dark matter. The interaction would
be mediated by photons. The small em charge of the new particle is needed to make it “dark
enough”. My conviction is that tinkering with the quantization of electromagnetic charge is only a
symptom about how desperate the situation is concerning interpretation of dark matter in terms
of some exotic particles is. Something genuinely new physics is involved and the old recipes of
particle physicists do not work.

1.2 TGD based explanation of 21-cm anomaly

In TGD framework the dark matter at lower temperature would be heff/h = n phases of ordinary
matter residing at magnetic flux tubes. This picture follows from what I call adelic physics [L4, L5].
This kind of energy transfer between ordinary and dark matter is a general signature of dark matter
in TGD sense, and there are indications from some experiments relating to primordial life forms
for this kind of energy flow in lab scale [L3] (see http://tinyurl.com/yassnhzb) .

The ordinary photon line appearing in the Feynman diagram describing the exchange of photon
would be replaced with a photon line containing a vertex in which the photon transforms to dark
photon. The coupling in the vertex - call it m2 - would have dimensions of mass squared. This
would transform the coupling e2 associated with the photon exchange effectively to e2m2/p2, where
p2 is photon’s virtual mass squared. The slow rate for the transformation of ordinary photon to
dark photon could be see as an effective reduction of electromagnetic charge for dark matter particle
from its quantized value.

Remark: In biological systems dark cyclotron photons would transform to ordinary photons
and would be interpreted as bio-photons with energies in visible and UV.

The importance of this finding is that it supports the view about dark matter as ordinary
particles in a new phase. There are electromagnetic interactions but the transformation of ordinary
photons to dark photons slows down the process and makes these exotic phases effectively dark.

The above picture motivates the attempt to construct a model for the mixing of not only
ordinary photons but any particle with its dark variants with various values of heff/h0 = n by
generalizing the formalism developed for the mixing of neutrinos and their oscillations. Also now
oscillations are predicted and they could serve as a test for TGD based model of dark matter. Also
the description at the level of Feynman diagrams is briefly summarize. This picture in principle
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allows the modelling of the energy transfer between ordinary and dark sectors.

2 Mixing of dark photons

In TGD framework dark matter corresponds to phases of ordinary matter with non-standard value
of Planck constant heff/h0 = n [K3]. Here h = 6h0 is a good guess [L1, L6]. It has been
assumed that only the reaction vertices would be between particles with same value of heff/h = n,
whereas the transformation changing the value of n during propagation is assumed to be possible.
For instance, biophotons would be ordinary photons emerging when dark photons transform to
ordinary photons. Therefore the mixing of ordinary particles with their dark variants can be
considered.

This allows to deduce the general form of propagator which is simple for the mixed mass squared
eigenstates in terms of mass squared matrix. There is however a problem associated with photons.
They must have extremely small mass although p-adic mass calculations suggests that photon
has very small p-adic thermal mass squared [K1]. Are they exactly massless and what conditions
masslessness poses on mixing? It turns out that the eigenstates of n most naturally have same
mass and the mixing makes other state massless so that ordinary photon would not have minimal
value of n - presumably n = 6 - during propagation but in absorption the state would be projected
to n = 6.

2.1 Mixing and oscillations of ordinary and dark particles

Could the analog of CKM mixing take place for ordinary and dark photons? Is the analog of
neutrino oscillations possible for photon and dark photon? Could these oscillations occur also
for neutrinos besides ordinary neutrino oscillations? The model for the analog of ordinary-dark
oscillations could be essentially the same as that for neutrino oscillations (see http://tinyurl.

com/oov344k) and consist of the following pieces.
In the case of neutrino mixing involving 3 neutrinos the calculation gives the result given in

Wikipedia article (see http://tinyurl.com/oov344k). Since the formula does not depend on the
number of flavors, it easily generalize to the case that one has arbitrary number N of values of
heff/h0 = n, which mix. The analog of CKM matrix describing the mixing of neutrinos, the mass
squared differences, and the distance L between source and receiver determines the oscillation
dynamics and generalizes as such to the description of mixing and oscillation of particles with
different values of heff . For N values of n including n = n0 = 6 assigned with ordinary matter,
the analog of CKM matrix is N ×N unitary matrix.

This matrix, call it C, is completely determined by the mass squared matrix with non-diagonal
components. Mass squared eigenstates are superpositions of states with well-defined value of
neff having the rows of this matrix as coefficients. Therefore the non-diagonal component of mass
squared matrix, to called K2, describing the mixing of different values of n determines both mixing
and oscillations.

A non-trivial modification of the formula for the neutrino oscillations comes from the fact that
plane wave factor s exp([iEi − p)L/~eff (α)] depend on the value of ~eff (α) = nα~0.

The following model applies to any particle species.

1. The mixing of ordinary and dark particles would be an analog of CKM mixing for quarks
and leptons. Now ordinary particleand its dark variants would mix with each other. Note
that given value of n can correspond to several extensions of rationals. In principle also this
degeneracy must be also be taken into account.

2. The analog of neutrino oscillations would mean that ordinary particles disappear from beam
by transforming to dark particles and can be regenerated. The formalism for neutrino oscil-
lations seems to generalize almost as such to ordinary-dark particle oscillations. Oscillations
could be used as test for TGD view about dark matter.

3. In the initial and final state the particle would be either ordinary or dark with some value of
n being analogous to a flavor eigenstate for neutrino. These states are not eigenstates of mass
and energy and it convenient to express them as mass squared eigenstates related by CKM
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matrix to eigenstates of n. During propagation states can be regarded as superpositions of
eigenstates of mass squared operator M2. This hermitian operator is sum of ordinary mass
squared operators for the sectors labelled by n but there are non-diagonal term is causing
the mixing.

4. One has on mass shall condition in momentum space which can be written as

(p2 −M2
op)Ψ = 0 . (2.1)

p2 represents four momentum square in various sectors labelled by nα and can be regarded
as direct sum p2 = ⊕p2(nα).

For given value of 3-momentum the situation is identical for a system consisting of N coupled
harmonic oscillators and the situation is mathematically equivalent to the diagonalization of
the system by finding the eigenmodes and eigenfrequencies.

5. Mass squared operator is direct sum

M2
op = ⊕nαm2(nα) +K2 . (2.2)

K2
αβ is non-diagonal coupling different sectors nα and thus mixing of partial waves with

different values of n. The assumption has been that m2(nα) does not depend on nα. The
presence of the non-diagonal mixing term K2

αβ causes mass squared eigenstates to have
different masses.

M2
op would have for N = 2 (ordinary particle and its dark variant with single value of n) the

form

M2
op =

[
m2 K2

K2 m2

]
. (2.3)

Note that one K2 can be also complex.

6. In this form the value of ~eff is not visible at all in p2. At the space-time level p2 = E2− p23
must be however expressed as d’Alembert operator via the usual rules E → i~eff∂t and
p→ i~eff∂z so that one has

(−�−M2
op)Ψ = 0 , � = ⊕α�nα ,

�n = n2~20� , � = ∂2t − ∂2x − ∂2y − ∂2z .
(2.4)

Plane wave solutions are of form exp(i(E− p)z/n~0) and differ by a scaling of the argument.
This applies also to general solutions. One has fractally scaled variants of the solution and
K2 matrix defines coupling between them.

7. This formulation generalizes trivially to general 4-D case solutions and to general solutions
of d’Alembert type field equations. In QFT language one has an analog of N -component
scalar field for which mass squared matrix M2

op containing quadratic couplings between field
components. The generalization seems obvious also for more general fields such as spinor
fields and gauge fields. For instance, for gauge fields one would have N copies of gauge fields
with non-diagonal couplings. The invariants FµνnαFnβ ,µν are suggestive for gauge invariant
couplings.

The new element is that these N fields have different value of heff and the solutions are
fractally scaled variants of each other.
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8. The eigenstates |i〉 of the d’Alembert type operator are eigenstates of M2
op and eigenvalues

are mass squared eigenvalues m2
i . |i〉 are superpositions states with fixed value of n with

coefficients, which are the components of the analog C of CKM matrix:

|i, x〉 = Ciαe
i
p4·x
nα~0 |nα〉 . (2.5)

Here one has summation of the repeated index α appearing as both upper and lower index.
This holds quite generally for Fourier basis. Therefore the non-diagonal part of mass squared
operator determines the C as a prediction.

The S-matrix for the effectively 2-D system considered is needed to deduce oscillation probabil-
ities. One has a beam of particles with momentum p independent of value of n travelling distance
L along line z = t. The mass parameter m2(n) is independent of n.

1. To deduce S-matrix start from the expression of the identity operator Id as

Id = |i, t = 0〉〈i, t = 0|

acting at the end z = 0. The states |i, t = 0〉 correspond to the starting point z = 0 of
propagation. The notation |nα, t = 0〉 = |nα〉 will be used. Time evolution shifts the states
|i, t = 0〉 = Ciα|nα〉 to t = z = L) by the above time evolution.

2. S-matrix is obtained by translating the states |i, t = 0〉 appearing in the identity operator to
(t = L, z = L).

S =
∑
i

|i, t = L〉〈i, t = 0| . (2.6)

3. One can find the expression of S in the basis |i, t = L〉 by writing |i, t = L〉 as a superposition
of states |nα〉:

|i, t = 0〉 = Ciα|nα〉 → |i, t = L〉 = CiαU
i
α|nα〉 ,

U iα = ei
(Ei−p)L
nα~0 , Ei =

√
p2 +m2

i .

(2.7)

Using this formula one can express S using basis |nα|.

S = Sαβ |nα〉〈nβ | ,

Sαβ = C
i

αCiβU
i
α . (2.8)

Here the summation convention for the repeated index i applies.

What are needed are the oscillation probabilities Pαβ .

1. The probabilities that an eigenstate |nα〉 transforms to eigenstate |nβ〉 during the travel are
given by

Pαβ = |Sαβ |2 = YαβijU
ij
αβ , Yαβij = CiαCiβCjαCjβ

U ijαβ = U iαU
j
β = cos(Xij

αβ) + isin(Xij
αβ) , Xij

αβ = (Ei−p)L
nα~0

− (Ej−p)L
nβ~0

.

(2.9)
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2. One can decompose Pαβ as

Pαβ = Re[Yαβij ]cos(X
ij
αβ)− Im[Yαβij ]sin(Xij

αβ) , (2.10)

and apply trigonometric formula cos(2x) = 1− 2sin2(x), and decompose the summation to
indices to 3 groups with i < j, j < i and i = j to get

Pαβ = δαβ − 4
∑
i<j

Re[Yαβij ]sin
2(
Xij
αβ

2
)− 2

∑
i<j

Im[Yαβij ]sin(Xij
αβ) . (2.11)

Note that
∑
β Pαβ = 1 holds true since in the summation second term vanishes due to unitary

condition U†U = 1 and i > j condition in the formula.

3. In the completely relativistic situation p >> mi one can make the analog of non-relativistic
approximation as Ei = p+m2

i /2p. In this case one has

Xij
αβ =

(Ei − p)L
nα~0

− (Ej − p)L
nβ~0

' m2
iL

pnα~0
−

m2
jL

pnβ~0
. (2.12)

4. For given 3-momentum p Pαβ is a sum over N × (N −1) periodic functions of L with periods

λijαβ =
2π

Xij
αβ

. (2.13)

5. At the limit of large L the trigonometric factors oscillate rapidly and in the averaging over
sources region. The term proportional to sin(x) gives zero whereas sin2(x) gives average 1/2.
The probabilities for various transitions induced by the oscillations depend on the analog of
CKM matrix only. If the distance L is very large and the dependence on the mass squared
differences and distance disappears in the averaging over the source region and one obtains

Pαβ = δαβ − 2Re[Yαβij ] . (2.14)

Some general comments are in order.

1. The oscillation is detectable if the size of the non-diagonal part K2 of the mass matrix is
large enough as compared to the diagonal part. It is not clear whether this condition holds
true for say fermions. The absence of tachyons requires that the value of m2 (no dependence
on n) is positive. m2 could be interpreted as thermal mass squared in terms of p-adic mass
calculations [K2, K1]. In the case of massless particles the mixing during propagation can
however make the mass arbitrarily small as will be found.

2. What can be measured is the diagonal probability P11, where α = 1 corresponds to heff = h.
The formula reduces to that for neutrino oscillations or its generalization to N flavors since
heff = h holds true now:

Xij
11 =

(Ei − p)L
~

− (Ej − p)L
~

'
(m2

i −m2
j )L

p~
. (2.15)

Remark: The part of P11 proportional to sine function has sine opposite to that in the
formula of Wikipedia article (see http://tinyurl.com/oov344k): the reason is that the
definition of Yαβij used here is complex conjugate of that used in Wikipedia formula.
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3. Mass squared matrix and mixing matrix are not uniquely determined by the mass squared
eigenvalues. Any unitary transform M2

D → UM2
DU
† of the mass matrix M2

D has the same
eigenvalues. If the states with well-defined heff have the same mass in absence of mixing,
UM2

DU
† must have diagonal part equal to m2Id.

This gives N conditions on U in both real and complex case. The conditions are however not
dependent since the trace of M2

D equal to Nm2 is preserved in the transformation so that
there are only N − 1 conditions in both real and complex case.

Since the number of the independent elements of a unitary matrix with unit determinant
is N2 − 1, this leaves in complex case (N − 1)2 parameter set of mass matrices with the
same eigenvalues. Orthogonal matrix has (N − 1)N/2 independent elements so that one has
(N − 2)(N − 1)/2 parameters in the real case. For N = 2 complex case one has 1-parameter
set of solutions corresponding to the phase of K2, in the real N = 2 case one has two solutions
corresponding to two signs for K2. For N = 3 one has 4 parameters in complex case and 1
parameter in real case.

2.2 Mass squared matrix for photons

What can one say about mass squared matrix for photons? Consider a situation in which only two
photons are mixed.

1. The most general form of mass matrix is in the case of single value of n given by M2
op =

[m2,K2;K2,m2]. Note that the diagonal element is assumed to be nonvanishing: this allows
to avoid tachyonic mass squared eigenstate. The eigen valuels of M2

op are given by

M2
± = m2 ± |K|2 . (2.16)

2. The condition M2
− ≥ 0 gives m2 ≥ |K|2. For the general mass squared matrix M2

op =

[m2
1,K

2;K2,m2
2] the condition reads m1m2 ≥ |K|2. If m1 is very small, m2 must be large in

the scale defined by |K|.
One can argue that this form of mass squared matrix is the only reasonable option. If n = 6
photon is massless one obtains photons with masses m2 = ±K2 and tachyonic photon is
physically very problematic. It must be remembered that fort wistor lift of TGD all particles
are massless in 8-D sense and can be massive in 4-D sense. Thereforethe assumption that
“free” photon is massive need not lead to problems.

3. The mass of what we identify as ordinary photon and identified now as a mixed photon with
lowest mass is extremely small: the recent upper bound is 7 × 1017 eV, which corresponds
to Compton length of 1011 meters, which is of the order one astronomical unit AU: this
probably relates to the measurement method. Photons thus behave like massless particles in
the scale of Sun-Earth system. Therefore the approximation would m2 = |K|2 is excellent.
The masses would be M2

− = 0 and M2
+ = 2m2.

Dark photons in TGD sense play a key role in TGD inspired model of living matter. Bio-photons
would result in the transformation of dark photons to ordinary photons. Mass squared eigenstates
of photons have mass spectrum and a natural question is whether dark photon mass relevant to
biology corresponds to a Compton length scale relevant to biology. In p-adic physics Compton
lengths correspond to p-adic length scales which by p-adic length scale hypothesis correspond to
primes p ' 2k near power of 2 (slightly below it).

Mersenne primes and their Gaussian analogs are especially interesting physically and in the
length scale range 10 nm (neural membrane thickness) and 2.5 µ (size scale of nucleus) there are as
many as 4 Gaussian Mersennes MG,k = (1+i)k−1 corresponding to k ∈ {151, 157, 163, 167}. Could
the p-adic mass scales m/me = 2(k−127)/2 associated with these length scales be especially impor-
tant in biology. More generally all p-adic mass scales assignable to these two kinds of Mersenne
primes could be important as mass scales of mixed photons.
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2.3 Could the mixing with dark photons provide and additional contri-
bution to particle masses?

p-Adic thermodynamics [K1] provides an excellent description of particle massivation in the fermionic
sector. It assumes only p-adic thermodynamics and superconformal invariance with partition func-
tions determined by it, p-adic length scale hypothesis, and canonical identification x =

∑
xnp

n →∑
xnp

−n mapping p-adic thermodynamical mass squared expectations to their real counterparts.
This need not however be the entire story. It is not clear whether one can really understand

most of the hadron mass in this manner and whether gauge boson masses involving in the usual
approach Higgs mechanism can be completely understood in this manner. Therefore one can ask
whether the mixing of particles with their dark variants could contribute to the particle masses.
In case of gauge bosons this contribution could be significant.

2.4 Description of ordinary-dark scattering diagrams

One would like also to develop a model for the scattering of ordinary and dark particles via exchange
of ordinary photons transforming to dark photons or vice versa. Here one must be satisfied to
phenomenological description although it is clear that there are non-trivial issues related to the
gauge invariance in presence of massivation. The general TGD picture strongly suggests that these
problems can be solved. In twistor lift of TGD particles become massless in 8-D sense and can be
massive in 4-D sense.

The simplest assumption is that the massless photon propagator D = P/p2 − iε, where P is a
projector to the space of physical polarizations, is replaced with matrix propagator

D = [
P

p2Id−M2(op)
]ij =

P

p2

∑
n≥0

[
M2(op)

p2
]nij . (2.17)

For the mass squared eigenstates this gives diagonal matrix with poles corresponding to mass
squared eigenvalues. What looks problematic is that the projector P for massive states projects
to a 3-D space of polarization and for massless states to 2-D space of polarization. If also ordinary
photon has very small mass as p-adic mass calculations strongly suggest, also it has longitudinal
polarization and all projectors are 3-D.

The reaction vertices are possible only between particles with same value of n so that the
propagator must be replaced in this basis by C†DC, where C is the analog of CKM mixing matrix
mediating transition to mass eigenstates.
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