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Abstract

In this article 4 topics are discussed. McKay correspondence, SUSY, and twistors are
discussed from TGD point of view, and new aspects of M8 −H duality are considered.

1. McKay correspondence in TGD framework

There are two mysterious looking correspondences involving ADE groups. McKay corre-
spondence between McKay graphs characterizing tensor products for finite subgroups of SU(2)
and Dynkin diagrams of affine ADE groups is the first one. The correspondence between prin-
cipal diagrams characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin
diagrams for a subset of ADE groups and Dynkin diagrams for affine ADE groups is the second
one.

These correspondences are discussed from number theoretic point of view suggested by
TGD and based on the interpretation of discrete subgroups of SU(2) as subgroups of the cov-
ering group of quaternionic automorphisms SO(3) (analog of Galois group) and generalization
of these groups to semi-direct products Gal(K) / SU(2)K of Galois group for extension K of
rationals with the discrete subgroup SU(2)K of SU(2) with representation matrix elements in
K. The identification of the inclusion hierarchy of HFFs with the hierarchy of extensions of
rationals and their Galois groups is proposed.

A further mystery whether Gal(K) / SU(2)K could give rise to quantum groups or affine
algebras. In TGD framework the infinite-D group of isometries of “world of classical worlds”
(WCW) is identified as an infinite-D symplectic group for which the discrete subgroups char-
acterized by K have infinite-D representations so that hyper-finite factors are natural for their
representations. Symplectic algebra SSA allows hierarchy of isomorphic sub-algebras SSAn.
The gauge conditions for SSAn and [SSAn, SSA] would define measurement resolution giving
rise to hierarchies of inclusions and ADE type Kac-Moody type algebras or quantum algebras
representing symmetries modulo measurement resolution.

A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra
identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements
defined by the traces of representation matrices (characters).

2. New aspects of M8 −H duality

M8 −H duality is now a central part of TGD and leads to new findings. M8 −H duality
can be formulated both at the level of space-time surfaces and light-like 8-momenta. Since
the choice of M4 in the decomposition of momentum space M8 = M4 × E4 is rather free,
it is always possible to find a choice for which light-like 8-momentum reduces to light-like
4-momentum in M4 - the notion of 4-D mass is relative. This leads to what might be called
SO(4)−SU(3) duality corresponding to the hadronic and partonic views about hadron physics.
Particles, which are eigenstates of mass squared are massless in M4×CP2 picture and massive
in M8 picture. The massivation in this picture is a universal mechanism having nothing to
do with dynamics and results in zero energy ontology automatically if the zero energy states
are superpositions of states with different masses. p-Adic thermodynamics describes this
massivation. Also a proposal for the realization of ADE hierarchy emerges.
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4-D space-time surfaces correspond to roots of octonionic polynomials P (o) with real coeffi-
cients corresponding to the vanishing of the real or imaginary part of P (o). These polynomials
however allow universal roots, which are not 4-D but analogs of 6-D branes and having topol-
ogy of S6. Their M4 projections are time =constant snapshots t = rn, rM ≤ rn 3-balls of
M4 light-cone (rn is root of P (x)). At each point the ball there is a sphere S3 shrinking to
a point about boundaries of the 3-ball. These special values of M4 time lead to a deeper
understanding of ZEO based quantum measurement theory and consciousness theory.

3. Is the identification of twistor space of M4 really correct?

The critical questions concerning the identification of twistor space of M4 as M4 × S2

led to consider a more conservative identification as CP3 with hyperbolic signature (3,-3) and
replacement of H with H = cdconf × CP2, where cdconf is CP2 with hyperbolic signature
(1,-3). This approach reproduces the nice results of the earlier picture but means that the
hierarchy of CDs in M8 is mapped to a hierarchy of spaces cdconf with sizes of CDs. This
conforms with Poincare symmetry from which everything started since Poincare group acts in
the moduli space of octonionic structures of M8. Note that also the original form of M8 −H
duality continues to make sense and results from the modification by projection from CP3,h

to M4 rather than CP2,h.
The outcome of octo-twistor approach applied at level of M8 together with modified M8−

H duality leads to a nice picture view about twistorial description of massive states based
on quaternionic generalization of twistor (super-)Grassmannian approach. A radically new
view is that descriptions in terms of massive and massless states are alternative options, and
correspond to two different alternative twistorial descriptions and leads to the interpretation
of p-adic thermodynamics as completely universal massivation mechanism having nothing to
do with dynamics. As a side product emerges a deeper understanding of ZEO based quantum
measurement theory and consciousness theory relying on the universal roots of octonionic
polynomials of M8, which are not 4-D but analogs of 6-D branes. This part of article is
not a mere side track since by M8 − H duality the finite sub-groups of SU(2) of McKay
correspondence appear quite concretely in the description of the measurement resolution of
8-momentum.
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1 Introduction

There are two mysterious looking correspondences involving ADE groups. McKay correspondence
between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin
diagrams of affine ADE groups is the first one. The correspondence between principal diagrams
characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams for a
subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

I have considered the interpretation of McKay correspondence in TGD framework already
earlier [K25, K14] but the decision to look it again led to a discovery of a bundle of new ideas
allowing to answer several key questions of TGD.

1. Asking questions about M8 −H duality at the level of 8-D momentum space [L4] led to a
realization that the notion of mass is relative as already the existence of alternative QFT
descriptions in terms of massless and massive fields suggests (electric-magnetic duality). De-
pending on choice M4 ⊂ M8, one can describe particles as massless states in M4 × CP2

picture (the choice is M4
L depending on state) and as massive states (the choice is fixed M4

T )
in M8 picture. p-Adic thermal massivation of massless states in M4

L picture can be seen as
a universal dynamics independent mechanism implied by ZEO. Also a revised view about
zero energy ontology (ZEO) based quantum measurement theory as theory of consciousness
suggests itself.

2. Hyperfinite factors of type II1 (HFFs) [K25, K14] and number theoretic discretization in
terms of what I call cognitive representations [L11] provide two alternative approaches to
the notion of finite measurement resolution in TGD framework. One obtains rather concrete
view about how these descriptions relate to each other at the level of 8-D space of light-like
momenta. Also ADE hierarchy can be understood concretely.

3. The description of 8-D twistors at momentum space-level is also a challenge of TGD. 8-D
twistorializations in terms of octo-twistors (M4

T description) and M4 × CP2 twistors (M4
L

description) emerge at imbedding space level. Quantum twistors could serve as a twistor
description at the level of space-time surfaces.

1.1 McKay correspondence in TGD framework

Consider first McKay correspondence in more detail.

1. McKay correspondence states that the McKay graphs characterizing the tensor product de-
composition rules for representations of discrete and finite sub-groups of SU(2) are Dynkin
diagrams for the affine ADE groups obtained by adding one node to the Dynkin diagram of
ADE group. Could this correspondence make sense for any finite group G rather than only
discrete subgroups of SU(2)? In TGD Galois group of extensions K of rationals can be any
finite group G. Could Galois group take the role of G?

2. Why the subgroups of SU(2) should be in so special role? In TGD framework quaternions
and octonions play a fundamental role at M8 side of M8−H duality [L4]. Complexified M8

represents complexified octonions and space-time surfaces X4 have quaternionic tangent or
normal spaces. SO(3) is the automorphism group of quaternions and for number theoret-
ical discretizations induced by extension K of rationals it reduces to its discrete subgroup
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SO(3)K having SU(2)K as a covering. In certain special cases corresponding to McKay cor-
respondence this group is finite discrete group acting as symmetries of Platonic solids. Could
this make the Platonic groups so special? Could the semi-direct products Gal(K) / SU(2)K
take the role of discrete subgroups of SU(2)?

1.2 HFFs and TGD

The notion of measurement resolution is definable in terms of inclusions of HFFs and using number
theoretic discretization of X4. These definitions should be closely related.

1. The inclusions N ⊂M of HFFs with indexM : N < 4 are characterized by Dynkin diagrams
for a subset of ADE groups. The TGD inspired conjecture is that the inclusion hierarchies of
extensions of rationals and of corresponding Galois groups could correspond to the hierarchies
for the inclusions of HFFs. The natural realization would be in terms of HFFs with coefficient
field of Hilbert space in extension K of rationals involved.

Could the physical triviality of the action of unitary operators N define measurement res-
olution? If so, quantum groups assignable to the inclusion would act in quantum spaces
associated with the coset spaces M/N of operators with quantum dimension d = M : N .
The degrees of freedom below measurement resolution would correspond to gauge symmetries
assignable to N .

2. Adelic approach [L8] provides an alternative approach to the notion of finite measurement
resolution. The cognitive representation identified as a discretization of X4 defined by the
set of points with points having H (or at least M8 coordinates) in K would be common to
all number fields (reals and extensions of various p-adic number fields induced by K). This
approach should be equivalent with that based on inclusions. Therefore the Galois groups of
extensions should play a key role in the understanding of the inclusions.

How HFFs could emerge from TGD?

1. The huge symmetries of “world of classical words” (WCW) could explain why the ADE
diagrams appearing as McKay graphs and principal diagrams of inclusions correspond to
affine ADE algebras or quantum groups. WCW consists of space-time surfaces X4, which
are preferred extremals of the action principle of the theory defining classical TGD connecting
the 3-surfaces at the opposite light-like boundaries of causal diamond CD = cd×CP2, where
cd is the intersection of future and past directed light-cones of M4 and contain part of
δM4
±×CP2. The symplectic transformations of δM4

+×CP2 are assumed to act as isometries
of WCW. A natural guess is that physical states correspond to the representations of the
super-symplectic algebra SSA.

2. The sub-algebras SSAn of SSA isomorphic to SSA form a fractal hierarchy with confor-
mal weights in sub-algebra being n-multiples of those in SSA. SSAn and the commutator
[SSAn, SSA] would act as gauge transformations. Therefore the classical Noether charges for
these sub-algebras would vanish. Also the action of these two sub-algebras would annihilate
the quantum states. Could the inclusion hierarchies labelled by integers .. < n1 < n2 < n3....
with ni+1 divisible by ni would correspond hierarchies of HFFs and to the hierarchies of ex-
tensions of rationals and corresponding Galois groups? Could n correspond to the dimension
of Galois group of K.

3. Finite measurement resolution defined in terms of cognitive representations suggests a re-
duction of the symplectic group SG to a discrete subgroup SGK , whose linear action is
characterized by matrix elements in the extension K of rationals defining the extension. The
representations of discrete subgroup are infinite-D and the infinite value of the trace of unit
operator is problematic concerning the definition of characters in terms of traces. One can
however replace normal trace with quantum trace equal to one for unit operator. This im-
plies HFFs and the hierarchies of inclusions of HFFs [K25, K14]. Could inclusion hierarchies
for extensions of rationals correspond to inclusion hierarchies of HFFs and of isomorphic
sub-algebras of SSA?
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Quantum spinors are central for HFFs. A possible alternative interpretation of quantum spinors
is in terms of quantum measurement theory with finite measurement resolution in which precise
eigenstates as measurement outcomes are replaced with universal probability distributions defined
by quantum group. This has also application in TGD inspired theory of consciousness [K14]: the
idea is that the truth value of Boolean statement is fuzzy. At the level of quantum measurement
theory this would mean that the outcome of quantum measurement is not anymore precise eigen-
state but that one obtains only probabilities for the appearance of different eigenstate. One might
say that probability of eigenstates becomes a fundamental observable and measures the strength
of belief.

1.3 New aspects of M8 −H duality

M8−H duality (H = M4×CP2) [L4] has become one of central elements of TGD. M8−Hduality
implies two descriptons for the states.

1. M8−H duality assumes that space-time surfaces in M8 have associative tangent- or normal
space M4 and that these spaces share a common sub-space M2 ⊂ M4, which corresponds
to complex subspace of octonions (also integrable distribution of M2(x) can be considered).
This makes possible the mapping of space-time surfaces X4 ⊂M8 to X4 ⊂ H = M4×CP2)
giving rise to M8 −H duality.

2. M8−H duality makes sense also at the level of 8-D momentum space in one-one correspon-
dence with light-like octonions. In M8 = M4×E4 picture light-like 8-momenta are projected
to a fixed quaternionic M4

T ⊂M8. The projections to M4
T ⊃M2 momenta are in general mas-

sive. The group of symmetries is for E4 parts of momenta is Spin(SO(4)) = SU(2)L×SU(2)R
and identified as the symmetries of low energy hadron physics.

M4 ⊃ M2 can be also chosen so that the light-like 8-momentum is parallel to M4
L ⊂ M8.

Now CP2 codes for the E4 parts of 8-momenta and the choice of M4
L and color group SU(3)

as a subgroup of automorphism group of octonions acts as symmetries. This correspond to
the usual description of quarks and other elementary particles. This leads to an improved
understanding of SO(4) − SU(3) duality. A weaker form of this duality S3 − CP2 duality:
the 3-spheres S3 with various radii parameterizing the E4 parts of 8-momenta with various
lengths correspond to discrete set of 3-spheres S3 of CP2 having discrete subgroup of U(2)
isometries.

3. The key challenge is to understand why the MacKay graphs in McKay correspondence and
principal diagrams for the inclusions of HFFs correspond to ADE Lie groups or their affine
variants. It turns out that a possible concrete interpretation for the hierarchy of finite sub-
groups of SU(2) appears as discretizations of 3-sphere S3 appearing naturally at M8 side of
M8 −H duality. Second interpretation is as covering of quaternionic Galois group. Also the
coordinate patches of CP2 can be regarded as piles of 3-spheres and finite measurement reso-
lution. The discrete groups of SU(2) define in a natural manner a hierarchy of measurement
resolutions realized as the set of light-like M8 momenta. Also a concrete interpretation for
Jones inclusions as inclusions for these discretizations emerges.

4. A radically new view is that descriptions in terms of massive and massless states are alterna-
tive options leads to the interpretation of p-adic thermodynamics as a completely universal
massivation mechanism having nothing to do with dynamics. The problem is the paradoxi-
cal looking fact that particles are massive in H picture although they should be massless by
definition. The massivation is unavoidable if zero energy states are superposition of massive
states with varying masses. The M4

L in this case most naturally corresponds to that associ-
ated with the dominating part of the state so that higher mass contributions can be described
by using p-adic thermodynamics and mass squared can be regarded as thermal mass squared
calculable by p-adic thermodynamics.

5. As a side product emerges a deeper understanding of ZEO based quantum measurement
theory and consciousness theory. 4-D space-time surfaces correspond to roots of octonionic
polynomials P (o) with real coefficients corresponding to the vanishing of the real or imaginary
part of P (o).
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These polynomials however allow universal roots, which are not 4-D but analogs of 6-D
branes and having topology of S6. Their M4 projections are time =constant snapshots
t = rn, rM ≤ rn 3-balls of M4 light-cone (rn is root of P (x)). At each point the ball there is
a sphere S3 shrinking to a point about boundaries of the 3-ball.

What suggests itself is following “braney” picture. 4-D space-time surfaces intersect the 6-
spheres at 2-D surfaces identifiable as partonic 2-surfaces serving as generalized vertices at
which 4-D space-time surfaces representing particle orbits meet along their ends. Partonic
2-surfacew would define the space-time regions at which one can pose analogs of boundary
values fixing the space-time surface by preferred extremal property. This would realize strong
form of holography (SH): 3-D holography is implied already by ZEO.

This picture forces to consider a modification of the recent view about ZEO based theory
of consciousness. Should one replace causal diamond (CD) with light-cone, which can be
however either future or past directed. “Big” state function reductions (BSR) meaning the
death and re-incarnation of self with opposite arrow of time could be still present. An
attractive interpretation for the moments t = rn would be as moments assignable to “small”
state function reductions (SSR) identifiable as “weak” measurements giving rise to sensory
input of conscious entity in ZEO based theory of consciousness. One might say that conscious
entity becomes gradually conscious about its roots in increasing order. The famous question
“What it feels to be a bat” would reduce to “What it feels to be a polynomial?”! One must
be however very cautious here.

1.4 What twistors are in TGD framework?

The basic problem of the ordinary twistor approach is that the states must be massless in 4-D sense.
In TGD framework particles would be massless in 8-D sense. The meaning of 8-D twistorialization
at space-time level is relatively well understood but at the level of momentum space the situation
is not at all so clear.

1. In TGD particles are massless in 8-D sense. For M4
L description particles are massless in 4-D

sense and the description at momentum space level would be in terms of products of ordinary
M4 twistors and CP2 twistors. For M4

T description particles are massive in 4-D sense. How
to generalize the twistor description to 8-D case?

The incidence relation for twistors and the need to have index raising and lowering operation
in 8-D situation suggest the replacement of the ordinary l twistors with either with octo-
twistors or non-commutative quantum twistors.

2. I have assumed that what I call geometric twistor space of M4 is simply M4×S2. It however
turned out that one can consider standard twistor space CP3 with metric signature (3,-3)
as an alternative. This option reproduces the nice results of the earlier approach but the
philosophy is different: there is no fundamental length scale but the hierarchy of causal
diamonds (CDs) predicted by zero energy ontology (ZEO) gives rise to the breaking of the
exact scaling invariance of M8 picture. This forces to modify M8 − H correspondence so
that it involves map from M4 to CP3 followed by a projection to hyperbolic variant CP2,h

of CP2. Note that also the original form of M8 − H duality continues to make sense and
results from the modification by projection from CP3,h to M4 rather than CP2,h.

M4 in H would not be be replaced with conformally compactified M4 (M4
conf ) but con-

formally compactified cd (cdconf ) for which a natural identification is as CP2 with second
complex coordinate replaced with hypercomplex coordinate. The sizes of twistor spaces of
cdconf using CP2 size as unit would reflect the hierarchy of size scales for CDs. The consider-
ation on the twistor space of M8 in similar picture leads to the identification of corresponding
twistor space as HP3 - quaternionic variant of CP3: the counterpart of CD8 would be HP2.

3. Octotwistors can be expressed as pairs of quaternionic twistors. Octotwistor approach sug-
gests a generalization of twistor Grassmannian approach obtained by replacing the bi-spinors
with complexified quaternions and complex Grassmannians with their quaternionic counter-
parts. Although TGD is not a quantum field theory, this proposal makes sense for cognitive
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representations identified as discrete sets of spacetime points with coordinates in the exten-
sion of rationals defining the adele [L8] implying effective reduction of particles to point-like
particles.

4. The outcome of octo-twistor approach together with M8 − H duality leads to a nice pic-
ture view about twistorial description of massive states based on quaternionic generalization
of twistor Grassmannian approach. A radically new view is that descriptions in terms of
massive and massless states are alternative options, and correspond to two different alter-
native twistorial descriptions and leads to the interpretation of p-adic thermodynamics as
completely universal massivation mechanism having nothing to do with dynamics. As a side
product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which
are not 4-D but analogs of 6-D branes. By M8 −H duality the finite sub-groups of SU(2)
of McKay correspondence appear quite concretely in the description of the measurement
resolution of 8-momentum.

What about super-twistors in TGD framework?

1. The parallel progress in the understanding SUSY in TGD framework [L20] in turn led to the
identification of the super-counterparts of M8, H and of twistor spaces modifying dramati-
cally the physical interpretation of SUSY. Super-spinors in twistor space would provide the
description of quantum states. Super-Grassmannians would be involved with the construc-
tion of scattering amplitudes. Quaternionic super Grassmannians would be involved with
M8 description.

2. The great surprise from physics point of view is that in fermionic sector only quarks are
allowed by SO(1, 7) triality and that anti-leptons are local 3-quark composites identifiable as
spartners of quarks. Gauge bosons, Higgs and graviton would be also spartners and assignable
to super-coordinates of imbedding space expressible as super-polynomials of quark oscillator
operators. Super-symmetrization means also quantization of fermions allowing local many-
quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

What about the interpretation of quantum twistors? They could make sense as 4-D space-time
description analogous to description at space-time level. Now one can consider generalization of
the twistor Grassmannian approach in terms of quantum Grassmannians.

2 McKay correspondence

Consider first McKay correspondence from TGD point of view.

2.1 McKay graphs

McKay graps are defined in the following manner. Consider group G which is discrete but not
necessarily finite. If the group is finite there is a finite number of irreducible representations χI .
Select preferred representation V - usually V is taken to be the fundamental representation of
G and form tensor products χI ⊗ V . Suppose irrep χJ appears nij times in the tensor product
χI ⊗ χ0. Assign to each representation χI dot and connect the dots of χI and χJ by nij arrows.
This gives rise to MacKay graph.

Consider now the situation for finite-D groups of SU(2). 2-D SU(2) spinor representation as a
fundamental representation is essential for obtaining the identification of McKay graphs as Dynkin
diagrams of simply laced affine algebras having only single line connecting the roots (the angle
between positive roots is 120 degrees) (see http://tinyurl.com/z48d92t).

http://tinyurl.com/z48d92t
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1. For SU(2) representations one has the basic rule j1 − 1/2 ≤ j ≤ j1 + 1/2 for the tensor
product j1 ⊗ 1/2. This rule must be broken for finite subgroups of SU(2) since the number
of representations if finite so that branching point appears in McKay graph. In branching
point the decomposition of j1 ⊗ 1/2 decomposes to 3 lower-dimensional representations of
the finite subgroup takes place.

2. Simply lacedness means that given representation appears only once in chiI ⊗ V , when V is
2-D representation as it can be for a subgroup of SU(2). Additional exceptional properties
is the absence of loops (nii = 0) and connectedness of McKay graph.

3. One can consider binary icosahedral group (double covering of icosahedral group A5 with
order 60) as an example (for the McKay graph see http://tinyurl.com/y2h55jwp). The
representations of A5 are 1A, 3A, 3

′
B , 4A, 5A, where integer tells the dimension. Note that

SO(3) does not allow 4-D representation. For binary icosahedral group one obtains also
the representations 2A, 2

′
B , 4B , 6A. The McKay graph of E8 contains one branching point in

which one has the tensor product of 6-D and 2-D representations 6A and 2A giving rise to
5A ⊕ 3C ⊕ 4B .

McKay graphs can be defined for any finite group and they are not even unions of simply laced
diagrams unless one has subgroups of SU(2). Still one can wonder whether McKay correspondence
generalizes from subgroups of SU(2) to all finite groups. At first glance this does not seem possible
but there might be some clever manner to bring in all finite groups.

The proposal has been that this McKay correspondence has a deeper meaning. Could simply
laced affine ADE algebras, ADE type quantum algebras, and/or corresponding finite groups act
as symmetry algebras in TGD framework?

2.2 Number theoretic view about McKay correspondence

Could the physical picture provided by TGD help to answer the above posed questions?

1. Could one identify discrete subgroups of SU(2) with those of the covering group SU(2)
of SO(3) of quaternionic automorphisms defining the continuous analog of Galois group
and reducing to a discrete subgroup for a finite resolution characterized by extension K
of rationals. The tensor products of 2-D spinor representation of these discrete subgroups
SU(2)K would give rise to irreps appearing in the McKay graph.

2. In adelic physics [L8] extensions K of rationals define an evolutionary hierarchy with effective
Planck constant heff/h0 = n identified as the dimension of K. The action of discrete and
finite subgroups of various symmetry groups can be represented as Galois group action making
sense at the level of X4 [L4] for what I have called cognitive representations. By M8 − H
duality also the Galois group of quaternions and its discrete subgroups appear naturally.

This suggests a possible generalization of McKay correspondence so that it would apply to
all finite groups G. Any finite group G can appear as Galois group. The Galois group
Gal(K) characterizing the extension of rationals induces in turn extensions of p-adic number
fields appearing in the adele. Could the representation of G as Galois group of extension of
rationals allow to generalize McKay correspondence?

Could the following argument inspired by these observations make sense?

1. SU(2) is identified as spin covering of the quaternionic automorphism group. One can define
the subgroups in matrix representation of SU(2) based on complex numbers. One can replace
complex numbers with the extension of rationals and speak of group SU(2)K identified as a
discrete subgroup of SU(2) having in general infinite order.

The discrete finite subgroups G ⊂ SU(2) appearing in the standard McKay correspondence
correspond to extensions K of rationals for which one has G = SU(2)K . These special
extensions can be identified by studying the matrix elements of the representation of G and
include the discrete groups Zn acting as rotation symmetries of the Platonic solids. For
instance, for icosahedral group Z2,Z3 and Z5 are involved and correspond to roots of unity.

http://tinyurl.com/y2h55jwp
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2. The semi-direct product Gal / SU(2)K with group action

(gal1, g1)(gal2, g2) = (gal1 ◦ gal2, g1(gal1g2))

makes sense. The action of Gal/SU(2)K in the representation is therefore well-defined. Since
all finite groups G can appear as Galois groups, it seems that one obtains extension of the
McKay correspondence to semi-direct products involving all finite groups G representable as
Galois groups.

3. A good guess is that the number of representations of SU(2)K involved is infinite if SU(2)K
has infinite order. For Ãn and D̃n the branching occurs only at the ends of the McKay graph.
For Ek, k = 6, 7, 8 the branching occurs in middle of the graph (see http://tinyurl.com/

y2h55jwp). What happens for arbitrary G. Does the branching occur at all? One could
argue that if the discrete subgroup has infinite order, the representation can be completed
to a representation of SU(2) in terms of real numbers so that the McKay graphs must be
identical.

4. A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra
identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements
defined by the traces of representation matrices (characters).

5. A possible interpretation of quantum spinors is in terms of quantum measurement theory
with finite measurement resolution in which precise eigenstates as measurement outcomes
are replaced with universal probability distributions defined by quantum group [K14]. TGD
inspired theory of consciousness is a possible application.

Also the notion of quantum twistor [L23] can be considered. In TGD particles are massless
in 8-D sense and in general massive in 4-D sense but 4-D twistors are needed also now so that
a modification of twistor approach is needed. The incidence relation for twistors suggests the
replacement of the usual twistors with non-commutative quantum twistors.

3 ADE diagrams and principal graphs of inclusions of hy-
perfinite factors of type II1

Dynkin diagrams for ADE groups and corresponding affine groups characterize also the inclusions
of hyperfinite factors of type II1 (HFFs) [K14].

3.1 Principal graphs and Dynkin diagrams for ADE groups

1. If the index β = M : N of the Jones inclusion satisfies β < 4, the affine Dynkin diagrams
of SU(n) (discrete symmetry groups of n-polygons) and E7 (symmetry group of octahedron
and cube) and D(2n+ 1) (symmetries of double 2n+1-polygons) are not allowed.

2. Vaughan Jones [A4] (see http://tinyurl.com/y8jzvogn) has speculated that these finite
subgroups could correspond to quantum groups as kind of degenerations of Kac-Moody
groups. Modulo arithmetics defined by the integer n defining the quantum phase suggests
itself strongly. For β = 4 one can construct inclusions characterized by extended Dynkin
diagram and any finite sub-group of SU(2). In this case affine ADE hierarchy appear as
principal graphs characterizing the inclusions. For β < 4 the finite measurement resolution
could reduce affine algebra to quantum algebra.

3. The rule is that for odd values of n defining the quantum phase the Dynkin diagram does
not appear. If Dynkin diagrams correspond to quantum groups, one can ask whether they
allow only quantum group representations with quantum phase q = exp(iπ/n) equal to even
root of unity.

http://tinyurl.com/y2h55jwp
http://tinyurl.com/y2h55jwp
http://tinyurl.com/y8jzvogn
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3.2 Number theoretic view about inclusions of HFFs and preferred role
of SU(2)

Consider next the TGD inspired interpretation.

1. TGD suggests the interpretation in terms of representations of Gal(K(G)) / G for finite
subgroups G of SU(2), where K(G) would be an extension associated with G. This would
generalize to subgroups of SU(2) with infinite order in the case of arbitrary Galois group.
Quantum groups have finite number of representations in 1-1-correspondence with terms of
finite-D representations of G. Could the representations of Gal(K(G)) /G correspond to the
representations of quantum group defined by G?

This would conform with the vision that there are two manners to realize finite measurement
resolution. The first one would be in terms of inclusions of hyper-finite factors. Second would
be in terms cognitive representations defining a number theoretic discretization of X4 with
imbedding space coordinates in the extension of rationals in which Galois group acts.

In fact, also the discrete subgroup of infinite-D group of symplectic transformations of
∆M4

+ × CP2 would act in the cognitive representations and this suggests a far reaching
implications concerning the understanding of the cognitive representations, which pose a
formidable looking challenge of finding the set of points of X4 in given extension of ratio-
nals [L19].

2. This brings in mind also the model for bio-harmony in which genetic code is defined in terms
of Hamiltonian cycles associated with icosahedral and tetrahedral geometries [L1, L13]. One
can wonder why the Hamiltonian cycles for cubic/octahedral geometry do not appear. On the
other hand, according to Vaughan the Dynkin diagram for E7 is missing from the hierarchy
of so principal graphs characterizing the inclusions of HFFs for β < 4 (a fact that I failed to
understand). Could the genetic code directly reflect the properties of the inclusion hierarchy?

How would the hierarchies of inclusions of HFFs and extensions of rationals relate to each
other?

1. I have proposed that the inclusion hierarchies of extensions K of rationals accompanied by
similar hierarchies of Galois groups Gal(K) could correspond to a fractal hierarchy of sub-
algebras of hyperfinite factor of type II1. Quantum group representations in ADE hierarchy
would somehow correspond to these inclusions. The analogs of coset spaces for two alge-
bras in the hierarchy define would quantum group representations with quantum dimension
characterizing the inclusion.

2. The quantum group in question would correspond to a quantum analog of finite-D group
of SU(2) which would be in completely unique role mathematically and physically. The
infinite-D group in question could be the symplectic group of δM4

+ × CP2 assumed to act
as isometries of WCW. In the hierarchy of Galois groups the quantum group of finite group
G ⊂ SU(2) would correspond to Galois group of an extension K.

3. The trace of unit matrix defining the character associated with unit element is infinite for
these representations for factors of type I. Therefore it is natural to assume that hyper-finite
factor of type II1 for which the trace of unit matrix can be normalized to 1. Sub-factors
would have trace of projector with trace smaller than 1.

4. Do the ADE diagrams for groups Gal(K(G)) / G indeed correspond to quantum groups and
affine algebras? Why the finite groups should give rise to affine/Kac-Moody algebras? In
number theoretic vision a possible answer would be that depending on the value of the index
β of inclusion the symplectic algebra reduces in the number theoretic discretization by gauge
conditions specifying the inclusion either to Kac-Moody group (β = 4) or to quantum group
(β < 4).

What about subgroups of groups other than SU(2)? According to Vaughan there has been
work about inclusion hierarchies of SU(3) and other groups and it seems that the results generalize
and finite subgroups of say SU(3) appear. In this case the tensor products of finite sub-groups
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McKay graphs do not however correspond to the principal graphs for inclusions. Could the number
theoretic vision come in rescue with the replacement of discrete subgroup with Galois group and
the identification of SU(2) as the covering for the Galois group of quaternions?

3.3 How could ADE type quantum groups and affine algebras be con-
cretely realized?

The questions discussed are following. How to understand the correspondence between the McKay
graph for finite group G ⊂ SU(2) and ADE (affine) group Dynkin diagram for β < 4 (β = 4)?
How the nodes of McKay grap representing the irreps of finite group can correspond to the positive
roots of a Dynkin diagram, which are essentially vectors defined by eigenvalues of Cartan algebra
generators for complexified Lie-algebra basis.

The first thing that comes in mind is the construction of representation of Kac-Moody algebra
using scalar fields labelled by Cartan algebra generators (see http://tinyurl.com/y9lkeelk):
these representations are discussed by Edward Frenkel [A1]. The charged generators of Kac-Moody
algebra in the complement of Cartan algebra are obtained by exponentiating the contractions of the
vector formed by these scalar fields with roots to get α ·Φ = αiΦ

i. The charged field is represented
as a normal ordered product : exp(iα · Φ) :. If one can assign to each irrep of G a scalar field in a
natural manner one could achieve this.

Neglect first the presence of the group algebra of Gal(K(G)) / G. The standard rule for the
dimensions of the representations of finite groups reads as

∑
i d

2
I = n(G). For double covering of

G one obtains this rule separately for integer spin representations and half-odd integers spin repre-
sentations. An interesting possibility is that this could be interpreted in terms of supersymmetry
at the level of group algebra in which representation of dimension dI appears dI times.

The group algebra of G and its covering provide a universal manner to realize these represen-
tations in terms of a basis for complex valued functions in group (for extensions of rationals also
the values of the functions must belong to the extension).

1. Representation with dimension dI occurs dI times and corresponds to dI × dI representation
matrices DI

mn of representation χI , whose columns and rows provide representations for left-
and right-sided action of G. The tensor product rules for the representations χI can be
formulated as double tensor products. For basis states |J, n〉 in χI and |J, n〉 in χJ one has

|I,m〉⊗|J, n〉 = cK,pI,m|J,n|K, p〉 ,

where cK,pJ,n|J,n are Glebch-Gordan coefficients.

2. For the tensor product of matrices DI
mn and DJ

mn one must apply this rule to both indices.
The orthogonality properties of Glebsch-Gordan coefficients guarantee that the tensor prod-
uct contains only terms in which one has same representation at left- and right-hand side.
The orthogonality rule is ∑

m,n

cK,pI,m|J,nc
K,q
I,r|J,s ∝ δK,L .

3. The number of states is n(G) whereas the number I(G) of irreps corresponds to the dimension
of Cartan algebra of Kac-Moody algebra or of quantum group is smaller. One should be able
to pick only one state from each representation DI .

The condition that the state X of group algebra is invariant under automorphism gXg−1

implies that the allowed states as function in group algebra are traces Tr(DI)(g) of the
representation matrices. The traces of representation matrices indeed play fundamental role
as automorphism invariants. This suggests that the scalar fields ΦI in Kac-Moody algebra
correspond to Hilbert space coefficients of Tr(DI)(g) as elements of group algebra labelled by
the representation. The exponentiation of α · Φ would give the charged Kac-Moody algebra
generators as free field representation.

http://tinyurl.com/y9lkeelk
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4. For infinite sub-groups G ⊂ SU(2) d(G) is infinite. The traces are finite also in this case if
the dimensions of the representations involved are finite. If one interprets the unit matrix as
a function having value 1 in entire group Tr(Id) diverges. Unit dimension for HFFs provide
a more natural notion of dimension d = n(G) of group algebra n(G) as d = n(G) = 1.
Therefore HFFs would emerge naturally.

It is easy to take into account Gal(K(G)). One can represent the elements of semi-direct
product Gal(K(G)) / G as functions in Gal(K(G)) × G and the proposed construction brings in
also the tensor products in the group algebra of Gal(K(G)). It is however essential that group
algebra elements have values in K. This brings in tensor products of representations Gal and G
and the number of representations is n(Gal)×n(G). The number of fields ΦI as also the number of
Cartan algebra generators of ADE Lie algebra increases from I(G) to I(Gal)×I(G). The reduction
of the extension of coefficient field for the Kac-Moody algebra from complex numbers to K splits
the Hilbert space to sectors with smaller number of states.

4 M 8 −H duality

The generalization of the standard twistor Grassmannian approach to TGD remains a challenge
for TGD and one can imagine several approaches. M8−H duality is essential for these approaches
and will be discussed in the sequel. The original form of M8−H duality assumed H = M4×CP2

but quite recently it turned out that if one replaces the twistor space of M4 identified as M4 × S2

with CP3,h, which is hyperbolic variant of CP3 one must replace H with H = CP2,h × CP2.The
symmetry between two factors is amazing!

4.1 M8 −H duality at the level of space-time surfaces

M8 − H duality [L4] relates two views about space-time surfaces X4: as algebraic surfaces in
complexified octonionic M8 and as minimal surfaces with singularities in H = M4 × CP2.

1. Octonion structure at the level of M8 means a selection of a suitable decomposition M8 =
M4 × E4 in turn determining H = M4 × CP2. Choices of M4 share a preferred 2-plane
M2 ⊂M4 belonging to the tangent space of allowed space-time surfaces X4 ⊂M8 at various
points. One can parameterize the tangent space of X4 ⊂ M8 with this property by a point
of CP2. Therefore X4 can be mapped to a surface in H = M4 ×CP2: one M8-duality. One
can consider also the possibility that the choice of M2 is local but that the distribution of
M2(x) is integrable and defines string world sheet in M4. In this case M2(x) is mapped to
same M2 ⊂ H.

2. Since 8-momenta p8 are light-like one can always find a choice of M4
L ⊂ M8 such that p8

belongs to M4
L and is thus light-like. The momentum has in the general case a component

orthogonal to M2 so that M4
L is unique by quaternionicity: quaternionic cross product for

tangent space quaternions gives the third imaginary quaternionic unit. For a fixed M4, call
it M4

T , the M4 projections of momenta are time-like. When momentum belongs to M2 the
choices is non-unique and any M4 ⊂M2 is allowed.

3. Space-time surfaces X4 ⊂M8 have either quaternionic tangent- or normal spaces. Quantum
classical correspondence (QCC) requires that charges in Cartan algebra co-incide with their
classical counters parts determined as Noether charges by the action principle determining X4

as preferred extremal. Parallelity of 8-momentum currents with tangent space of X4 would
conform with the naive view about QCC. It does not however hold true for the contributions
to four-momentum coming from string world sheet singularities (string world sheet boundaries
are identified as carriers of quantum numbers), where minimal surface property fails.

An important aspect of M8 −H duality is the description of space-time surfaces X4
c ⊂M8

c as
roots for the “real” or “imaginary” part in quaternionic sense of complexified-octonionic polynomial
with real coefficients: these options correspond to complexified-quaternionic tangent - or normal
spaces. The real space-time surfaces would be naturally obtained as “real” parts with respect to i
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of their complexified counterparts by projection from M8
c to M4

c . One could drop the subscripts
”c” but in the sequel they are kept.

Remark:Oc,Oc,Cc,Rc will be used in the sequel for complexifications of octonions, quaternions,
etc.. number fields using commuting imaginary unit i appearing naturally via the roots of real
polynomials.

M8 −H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Space-time surface is identified as a 4-D root for a Hc-valued “imaginary” or “real” part of
Oc valued polynomial obtained as an Oc continuation of a real polynomial P with rational
coefficients, which can be chosen to be integers. For P (x) = xn + .. ordinary roots are
algebraic integers. The 4-D space-time surface is projection of this surface from M8

c to M8.

The tangent space of space-time surface and thus space-time surface itself contains a preferred
M2
c ⊂M4

c or more generally, an integrable distribution of tangent spaces M2
c (x). The string

world sheet like entity defined by this distribution is 2-D surface X2
c ⊂ X4

c in Rc sense.

X2c can be fixed by posing to the non-vanishing Qc-valued part of octonionic polynomial
condition that the Cc valued “real” or “imaginary” part in Cc sense for this polynomial
vanishes. M2

c would be the simplest solution but also more general complex sub-manifolds
X2
c ⊂ M4

c are possible. In general one would obtain book like structures as collections of
several string world sheets having real axis as back.

By assuming that Rc-valued “real” or “imaginary” part of the polynomial at this 2-surface
vanishes. one obtains preferred M1

c or E1
c containing octonionic real and preferred imagi-

nary unit or distribution of the imaginary unit having interpretation as complexified string.
Together these kind 1-D surfaces in Rc sense would define local quantization axis of energy
and spin. The outcome would be a realization of the hierarchy R→Cc → Hc → Oc realized
as surfaces.

Remark: Also M4
c appears as a special solution for any polynomial P . M4

c seems to be like
a universal reference solution with which to compare other solutions. M4

c would intersect
all other solutions along string world sheets X2

c . Also this would give rise to a book like
structures with 2-D string world sheet representing the back of given book. The physical
interpretation of these book like structures remains open in both cases.

I have proposed that string world sheets as singularities correspond to 2-D folds of space-
time surfaces at which the dimension of the quaternionic tangent space degenerates from
4 to 2 [L17] [K10]. This interpretation is consistent with the identification as a book like
structure with 2-pages. Also 1-D real and imaginary manifols could be interpreted as folds
or equivalently books with 2 pages.

2. Associativity condition for tangent-/normal space is second essential condition and means
that tangent - or normal space is quaternionic. The conjecture is that the identification in
terms of roots of polynomials guarantees this and one can formulate this as rather convincing
argument [L5, L6, L7].

One cannot exclude rational functions and or even real analytic functions in the sense that
Taylor coefficients are octonionically real (propotional to octonionic real unit). Number theoret-
ical vision - adelic physics [L8], suggests that polynomial coefficients are rational or perhaps in
extensions of rationals. The real coefficients could in principle be replaced with complex numbers
a + ib, where i commutes with the octonionic units and defines complexifiation of octonions. i
appears also in the roots defining complex extensions of rationals.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone δM8
+ of M8

with tip at the origin of coordinates is an exception [L4]. At δM8
+ the octonionic coordinate

o is light-like and one can write o = re, where 8-D time coordinate and radial coordinate are
related by t = r and one has e = (1 + er)/

√
2 such that one as e2 = e.

Polynomial P (o) can be written at δM8
+ as P (o) = P (r)e and its roots correspond to 6-

spheres S6 represented as surfaces tM = t = rN , rM =
√
r2N − r2E ≤ rN , rE ≤ rN , where

the value of Minkowski time t = r = rN is a root of P (r) and rM denotes radial Minkowski
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coordinate. The points with distance rM from origin of t = rN ball of M4 has as fiber
3-sphere with radius r =

√
r2N − r2E . At the boundary of S3 contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries rM = rN of balls belong to the
boundary of M4 light-cone. In this case the intersection would be that of 4-D and 3-D surface,
and empty in the generic case (it is however quite not clear whether topological notion of
“genericity” applies to octonionic polynomials with very special symmetry properties).

3. The 6-spheres tM = rN would be very special. At these 6-spheres the 4-D space-time surfaces
X4 as usual roots of P (o) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of rn.

The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their
2-D ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary
Feynman diagrams. Obviously this would make the definition of the generalized vertices
mathematically elegant and simple.

Note that this does not require that space-time surfaces X4 meet along 3-D surfaces at
S6. The interpretation of the times tn as moments of phase transition like phenomena is
suggestive. ZEO based theory of consciousness suggests interpretation as moments for state
function reductions analogous to weak measurements ad giving rise to the flow of experienced
time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as
initial data fixing the 4-D roots of polynomials. This would give precise content to strong
form of holography (SH), which is one of the central ideas of TGD and strengthens the
3-D holography coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of
CD define unique preferred extremals. The reduction to 2-D holography would be due to
preferred extremal property realizing the huge symplectic symmetries and making M8 −H
duality possible as also classical twistor lift.

I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X4 ∩ S6? This is not possible since time coordinate tM constant at the roots
and varies at string world sheets.

Note that the compexification of M8 (or equivalently octonionic E8) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(ε1, εi, .., ε8), epsiloni = ±1 signatures. Their physical interpretation - if any - remains open
at this moment.

5. The universal 6-D brane-like solutions S6
c have also lower-D counterparts. The condition

determining X2 states that the Cc-valued “real” or “imaginary” for the non-vanishing Qc-
valued “real” or “imaginary” for P vanishes. This condition allows universal brane-like
solution as a restriction of Oc to M4

c (that is CDc) and corresponds to the complexified
time=constant hyperplanes defined by the roots t = rn of P defining “special moments in
the life of self” assignable to CD. The condition for reality in Rc sense in turn gives roots of
t = rn a hyper-surfaces in M2

c .

4.2 M8 −H duality at the level of momentum space

M8 −H duality occurs also at the level of momentum space and has different meaning now.

1. At M8 level 8-momenta are quaternionic and light-like. The choices of M4
L ⊃M2 for which

8-momentum in M4
L, are parameterized by CP2 parameterizing also the choices of tangent or

normal spaces of X4 ⊂M8 at space-time level. This maps M8 light-like momenta to light-like
M4
L momenta and to CP2 point characterizing the M4 and depending on 8-momentum. One

can introduce CP2 wave functions expressible in terms of spinor harmonics and generators
of of a tensor product of Super-Virasoro algebras.
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2. For a fixed choice M4
T momenta in general time-like and the E4 component of 8-momentum

has value equal to mass squared. E4 momenta are points of 3-sphere so that SO(3) harmonics
with SO(4) symmetry could parametrize the states. The quantum numbers are M4

T ⊃
M2 momenta with fixed mass and the two angular momenta with identical values for S3

harmonics, which correspond to the quantum states of a spherical quantum mechanical rigid
body, and are given by the matrix elements Dj

m,n SU(2) group elements (SO(4) decomposes
to SU(2)L)× SU(2)R acting from left and right).

This picture suggests what one might call SO(4)− SU(3) duality at the level of momentum
space. There would be two descriptions of states: as massless states with SU(3) symmetry
and massive states with SO(4) symmetry.

3. What about the space formed by the choices of the space of the light-like 8-momenta? This
space is the space for the choices of preferred M2 and parameterized by the 6-D (symmetric
space G2/SU(3), where SU(3) ⊂ G2 leaving complex plane M2 invariant is subgroup of
quaternionic automorphic group G(2) leaving octonionic real unit defining the rest system
invariant. This space is moduli space for octonionic structures each of which defines family
of space-time surfaces. 8-D Lorent transformations produce even more general octonionic
structures. The space for the choices of color quantization axes is SU(3)/U(1) × U(1), the
twistor space of CP2.

4.2.1 Do M4
L and M4

T have analogs at the space-time level?

As found, the solutions of octonionic polynomials consisting of 4-D roots and special 6-D roots
coming as 6-sphere S6 s at 7-D light-cone of M8. The roots at t = r light-cone boundary are given
by the roots r = rN of the polynomial P (t) and correspond to M4 slices tM = rN , rM ≤ rN . At
point rM S3 fiber as radius r(S3) =

√
r2N − r2M and contracts to a point at its boundaries.

Could M4
L and MT have analogies at the space-time level?

1. The sphere S3 associated M4
T could have counterpart at the level of space-time description.

The momenta in M4
T would naturally be mapped to momenta in the section t = rn in this

case the S3:s of different mass squared values would naturally correspond to S3:s assignable
to the points of the balls t = rn and code for mass squared value.

The counterpart of M4
L should correspond to light-cone boundary but what does CP2 corre-

spond? Could the pile of S3 associated with t = rn correspond also to CP2. Could this be
the case if there is wormhole contact carrying monopole flux at the origin so that the analog
for the replacement of 3-sphere at rCP2

= ∞ with homologically non-trivial 2-sphere would
be realized?

2. Does the 6-sphere as a root polynomial have counterpart in H? The image should be con-
sistent with M8 −H duality and correspond to a fixed structure depending on the root rn
only. Since S3 associated with the E4 momenta reduces to a point for M4

L, the natural guess
is that S6 reduces to t = rn, 0 ≤ rM ≤ rn surface in H.

4.2.2 S3 − CP2 duality

S3−CP2 duality at the level of quantum numbers suggest strongly itself. What does this require?
One can approach the problem from two different perspectives.

1. The first approach would be that the representations of SU(3) and SO(4) groups somehow
correspond to each other: one could speak of SU(3)−SO(4) duality [K19, K24]. The original
form of this duality was this. The color symmetries of quark physics at high energies would
be dual to the SO(4) = SU(2)L × SU(2)R symmetries of the low energy hadron physics.
Since the physical objects are partons and hadrons formed from the one cannot expect the
duality to hold true at the level of details for the representations, and the comparison of the
representations makes this clear.

2. The second approach relies on the notion of cognitive representation meaning discretization
of CP2 and S3 and counting of points of cognitive representations providing discretization in
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terms of M8 or H points belonging to the extension of rationals considered. In this case it
is more natural to talk about S3 − CP2 duality.

The basic observation is that the open region 0 ≤ r < ∞ of CP2 in Eguchi-Hanson coordi-
nates with r labeling 3-spheres S3(r) with finite radius can be regarded as pile of S3(r). In
discretization one would have discrete pile of these 3-spheres with finite number of points in
the extension of rationals. They points of given S3 could be related by isometries in special
cases.

How S3 − CP2 duality at the level of light-like M8 momenta could emerge?

1. Consider first the situation in which one chooses M4 ⊃ M2 sub-spaces so that momentum
projection to it is light-like. For cognitive representation the choices of M4 ⊃M2 correspond
to ad discrete set of points of CP2 and thus points in the pile of S3 with discrete radii since all
E4 parts of momenta with fixed length squared to zero in this choice and each E4 momentum
with fixed lengthand thus identifiable as discrete point of S3 would correspond to one choice.

All these choices would give rise to a pile of S3:s identifiable as set 0 ≤ r <∞ of CP2. The
number of CP2 points would be same as total number of points in the pile of discrete S3s.
This is what S3 − CP2 duality would say.

Remark: The volumes of CP2 and S3 with unit radius are 8π2 and 2π2 so that ration is
rational number.

2. Consider now the situation for M4
T so that one has non-vanishing M4 mass squared equal to

E4 mass squared, having discretized values. The E4 would momenta correspond to points
for a pile of discretized S3 and thus to the points of CP2 by above argument. One would
have S3 −CP2 correspondence also now as one indeed expects since the two manners to see
the situation should be equivalent.

3. In the space of light-like M8 momenta E8 momenta could naturally organize into repre-
sentations of finite discrete subgroups of SU(2) appearing in McKay correspondence with
ADE groups: the groups are cyclic groups, dihedral groups, and the isometry groups as-
sociated with tetrahedron, octahedron (cube) and icosahedron (dodecahedron) (see http:

//tinyurl.com/yyyn9p95).

4. Could a concrete connection with the inclusion hierarchy of HFFs be based on increasing
momentum resolution realized in terms of these groups at sphere S3. Notice however that
for cyclic and dihedral groups the orbits are circles and pairs of circles for dihedral groups so
that the discretization looks too simple and is rotationally asymmetric. Discretization should
improve as n increases.

One can of course ask why Cn and Dn with single direction of rotation axes would appear?
Could it be that the directions of rotation axis correspond to the directions defined by the
vertices of the 5 Platonic solids. Or could the orbits of fixed axis under the 5 Platonic orbits
be allowed. Also this looks still too simple.

Could the discretization labelled by nmax be determined by the product of the groups up to
nmax and define a group with infinite order. One can consider also groups defined by subsets
{n1, n2...n3} and these a pair of sequences with larger sequence containing the smaller one
could perhaps define an inclusion. The groups Cn and Dn allow prime decomposition in
obvious manner and it seems enough to include to the product only the groups Cp and Dp,
where p is prime as generators so that one would have set {p1, ...pn} of primes labelling these
groups besides the Platonic groups. The extension of rationals used poses a cutoff on the
number of groups involved and on the group elements representable since since too high roots
of unity resulting in the multiplication of Cpi and Dpj do not belong to the extension.

At the level of momentum space the hierarchy of finite discrete groups of SU(2) would define
the notion measurement resolution. The discrete orbits of SU(2) × U(1) at S3 would be
analogous to tesselations of sphere S2 known as Platonic solids at sphere S2 and appearing
in the ADE correspondence assignable to Jones inclusions as description of measurement
resolution. This would also explain also why Z2 coverings of the subgroups of SO(3) appear
in ADE sequence.

http://tinyurl.com/yyyn9p95
http://tinyurl.com/yyyn9p95
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This picture is probably not enough for the needs of adelic physics [L8] allowing all extensions
of rationals. Besides roots of unity only the roots of small integers 2, 3, 5 associated with the
geometry of Platonic solids would be included in these discretizations. One could interpret
these discretizations in terms of subgroups of discrete automorphism groups of quaternions.
Also the extensions of rationals are probably needed.

Could S3 − CP2 duality make sense at space-time level? Consider the space-time analog for
the projection of M8 momenta to fixed M4

T .

1. Suppose that the 3-surfaces determining the space-time surfaces as algebraic surfaces in
X4 ⊂ M8 are given at the surfaces t = rN , rM ≤ rN and have a 3-D fiber which should be
surface in CP2. On can assign to each point of this ball S3(rM ) with radius going to zero at
rM = rN . One has pile of S3(rM ) which corresponds to the region 0 ≤ r <∞ of CP2. This
set is discretized. Suppose that the discretization is like momentum discretization. If so, the
points would correspond to points of CP2. It is not however clear why the discretization
should be so symmetric as in momentum discretization.

2. The initial values could be chosen by choosing discrete set of points in this pile of S3:s and
this would give rise to a discrete set of points of CP2 fixing tangent or normal plane of X4

at these points. One should show that the selection of a point of S6 at each point indeed
determines quaternionic tangent or normal plane plane for a given polynomial P (o) in M8.

It would seem that this correspondence need not hold true.

4.3 M8 −H duality and the two manners to describe particles

The isometry groups for M4 × CP2 is P × SU(3) (P for Poincare group). The isometry group
for M8 = M4 × E4 with a fixed choice of M4 breaks down to P × SO(4). A further breaking by
selection M4 ⊂M2 of preferred octonionic complex plane M2 necessary in the algebraic approach
to space-time surfaces X4 ⊂M8 brings in preferred rest system and reduces the Poincare symmetry
further. At the space-time level the assumption that the tangent space of X4 contains fixed M2

or at least integral distribution of M2(x) ⊂M4 is necessary for M8 −H duality [L4].
The representations SO(4) and SU(3) could provide alternative description of physics so that

one would have what I have called SO(4)−SU(3) duality [K19]. This duality could manifest in the
description of strong interaction physics in terms of hadrons and quarks respectively (conserved
vector current hypothesis and partially conserved axial current hypothesis based on Spin(SO(4)) =
SU(2)×SU(2)R. The challenge is to understand in more detail this duality. This could allow also
to understand better how the two twistor descriptions might relate.

SO(4)− SU(3) duality implies two descriptions for the states and scattering amplitudes.

Option I: One uses projection of 8-momenta to a fixed M4
T ⊃M2.

Option II: One assumes that M4
L ⊃ M2 is defines the frame in which quaternionic octonion

momentum is parallel to M4
L: this M4

L depends on particle state and describes this dependence in
terms of wave function in CP2.

4.3.1 Option I: fixed M4
T ⊃M2

For Option I the description would be in terms of a fixed M4
T ⊂ M8 = M4

T × E4 and M2 ⊂ M4
T

fixed for both options. For given quaternionic light-like M8 momentum one would have projection
to M4

T , which is in general massive. E4 momentum would have same the length squared by
light-likeness.

De-localization M4
T mass squared equal to p2(M4

T ) = m2 in E4 can be described in terms of
SO(4) harmonics at sphere having p2(E4) = m2. This would be the description applied to hadrons
and leptons and particles treated as massive particles. Particle mass would be due to the fixed
choice of M4

T . What dictates this choice is an interesting question. An interesting question is
how these descriptions relate to QFT Higgs mechanism as (in principle) alternative descriptions:
the choice of fixed M4

T could be seen as analog for the generation of vacuum expectation of Higgs
selecting preferred direction in the space of Higgs fields.
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4.3.2 Option II: varying M4
L ⊃M2

For Option II the description would use M4
L ⊃M2, which is not fixed but chosen so that it contains

light-like M8 momentum. This would give light-like momentum in M4
L identifiable as quaternionic

sub-space of complexified octonions.

1. One could assign to the state wave function function for the choices of M4 and by quaternion-
icity of 8-momenta this would correspond to a state in super-conformal representation with
vanishing M4

L mass: CP2 point would code the information about E4 component light-like
8-momentum. This description would apply to the partonic description of hadrons in terms
of massless quarks and gluons.

2. For this option one could use the product of ordinary M4 twistors and CP2 twistors. One
challenge would be the generalization of the twistor description to the case of CP2 twistors.

4.3.3 p-Adic particle massivation and ZEO

The two pictures about description of light-like M8 momenta do not seem to be quite consistent
with the recent view about TGD in which H-harmonics describe massivation of massless particles.
What looks like a problem is following.

1. The resulting particles are massive in M4. But they should be massless in M4 × CP2

description. The non-vanishing mass would suggest the correct description in terms of Option
I for which the description in terms of E4 momenta with length equal to mass and thus
identifiable as points of S3. Momentum space wave functions at S3 - essentially rigid body
wave functions given by representation matrices of SU(2) could characterize the states rather
than CP2 harmonic.

2. The description based on CP2 color partial waves however works and this would favor Option
II with vanishing M4 mass. What goes wrong?

To understand what might be involved, consider p-adic mass calculations.

1. The massivation of physical fermion states includes also the action of super-conformal gen-
erators changing the mass. The particles are originally massless and p-adic mass squared is
generated thermally and mapped to real mass squared by canonical identification map.

For CP2 spinor harmonics mass squared is of order CP2 mass squared and thus gigantic.
Therefore the mass squared is assumed to contain negative tachyonic ground state contribu-
tion due to the negative half-odd integer valued conformal weight hvac < 0 of vacuum. The
origin of this contribution has remained a mystery in p-adic thermodynamics but it makes
possible to construct massless states. hvac cancels the spinorial contributions and the con-
tribution from positive conformal weights of super-conformal generators so that the particle
states are massless before thermalization. This would conform with the idea of using varying
M4
L and thus CP2 description.

2. What does the choice of M4 mean in terms of super-conformal representations? Could the
mysterious vacuum conformal weight hvac provide a description for the effect of the needed
SU(3) rotation of M4 from standard orientation on super-conformal representation. The
effect would be very simple and in certain sense reversal to the effect of Higgs vacuum
expectation value in that it would cancel mass rather than generate it.

An important prediction would be that heavy states should be absent from the spectrum
in the sense that mass squared would be p-adically of order O(p) or O(p2) (in real sense of
order O(1/p) or O(1/p2)). The trick would be that the generation of h0 as a representation
of SU(3) rotation of M4 makes always the dominating contribution to the mass of the state
vanishing.

Remark: If the canonical identification I mapping the p-adic mass integers to their real
numbers is of the simplest form m =

∑
n xnp

n → I(m) =
∑
n xnp

−n, it can happen that
the image of rational m/n with p-adic norm not larger than 1 represented as p-adic integer
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by expanding it in powers of p, can be near to the maximal value of p and the mass of the
state can be of order CP2 mass - about 10−4 Planck masses. If the canonical identification
is defined as m/n→ I/(m)/I(n) the image of the mass is small for small values of m and n.

3. Unfortunately, it is easy to get convinced that this explanation of hvac is not physically
attractive. Identical mass spectra at the level of M8 and H looks like a natural implication
of M8 −H-duality. SU(3) rotation of M4 in M8 cannot however preserve the general form
of M4×CP2 mass squared spectrum for the M4 projections of M8 momenta at level of M8.

Remark: For H = M4 × CP2 the mass squared in given representation of Super-conformal
symmetries is given as a sum of CP2 mass squared for the spinor harmonic determining the
ground state and of a Virasoro contribution proportional to a non-negative integer. The
masses are required to independent of electroweak quantum numbers.

One can imagine two further identifications for the origin of hvac.

1. Take seriously the possibility of complex momenta allowed by the complexification of M8

by commuting imagine unit i and also suggested by the generalization of the twistorializa-
tion. The real and imaginary parts of light-like complex 8-momenta p8 = p8,Re + ip8,Im are
orthogonal to each other: p8,Re · p8,Im = 0 so that both real and imaginary parts of p8 are
light-like: p28,Re = p28,Im = 0. The M4 mass squared can be written has m2 = m2

Re −m2
Im

with hvac ∝ −m2
Im. The representations of Super-conformal algebra would be labelled by

hvac ∝ m2
Im.

Could the needed wrong sign contribution to CP2 mass squared mass make sense? CP2 type
extremals having light-like geodesic as M4 projection are locally identical with CP2 but be-
cause of light-like projection they can be regarded as CP2 with a hole and thus non-compact.
Boundary conditions allow analogs of CP2 harmonics for which spinor d’Alembertian would
have complex eigenvalues.

Does quantum-classical correspondence allow complex momenta: can the classical four-
momenta assignable to 6-D Kähler action be complex? The value of Kähler coupling strength
allows the action to have complex phase but parts with different phases are not allowed. Could
the imaginary part to 4-momentum could come from the CP2 type extremal with Euclidian
signature of metric?

2. Second - not necessarily independent - idea relies on the observation that in TGD one has
besides the usual conformal algebra acting on complex coordinate z also its analog acting on
the light-like radial coordinate r of light-cone boundary. At light-cone boundary one has both
super-symplectic symmetries of ∆M4

+ × CP2 and extension of super-conformal symmetries
of sphere S2 to analogs of conformal symmetries depending on z and r and it seems that one
must chose between these two options. Also the extension of ordinary Kac-Moody algebra
acts at the light-like orbits of partonic 2-surfaces.

There are two scaling generators: the usual L0 = zd/dz and the second generator L0,1 =
ird/dr. For L0,1 at light-cone boundary powers of zn are replaced with (r/r0)ik = exp(iku),
u = log(r/r0)). Could it be that mass squared operator is proportional to L0 + L0,1 having
eigenvalues h = n − k? The absence of tachyons requires h ≥ 0. Could k characterize
given Super-Virasoro representation? Could k ≥ 0 serve as an analog of positive energy
condition allowing to analytically continue exp(iku) to upper u-plane? How to interpret this
continuation?

The 3-D generalization of super-symplectic symmetries at light-cone boundary and extended
Ka-Moody symmetries at partonic 2-surfaces should be possible in some sense. Could the
continuation to the upper u-plane correspond to the continuation of the extended conformal
symmetries from light-cone boundary to future light-one and from light-partonic 2-surfaces
to space-time interior?

Why p-adic massivation should occur at all? Here ZEO comes in rescue.

1. In ZEO one can have superposition of states with different 4-momenta, mass values and also
other charges: this does not break conservation laws. How to fix M4 in this case? One
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cannot do it separately for the states in superposition since they have different masses. The
most natural choices is as the M4 associated with the dominating contribution to the zero
energy state. The outcome would be thermal massivation described excellently by p-adic
thermodynamics [K2]. Recently a considerable increase in the understanding of hadron and
weak boson masses took place [L24].

2. In ZEO quantum theory is square root of thermodynamics in a well-defined formal sense, and
one can indeed assign to p-adic partition function a complex square root as a genuine zero
energy state. Since mass varies, one must describe the presence of higher mass excitations
in zero energy state as particles in M4 assigned with the dominating part of the state so
that the observed particle mass squared is essentially p-adic thermal expectation value over
thermal excitations. p-Adic thermodynamics would thus describe the fact that the choice of
M4
L cannot not ideal in ZEO and massivation would be possible only in ZEO.

3. Current quarks and constituent quarks are basic notions of hadron physics. Constituent
quarks with rather large masses appear in the low energy description of hadrons and current
quarks in high energy description of hadronic reactions. That both notions work looks rather
paradoxical. Could massive quarks correspond to MT picture and current quarks to M4

L

picture but with p-adic thermodynamics forced by the superposition of mass eigenstates
with different masses.

The massivation of ordinary massless fermion involves mixing of fermion chiralities. This
means that the SU(3) rotation determined by the dominating component in zero energy
state must induce this mixing. This should be understood.

4.4 M8 −H duality and consciousness

M8 −H duality is one of the key ideas of TGD and one can ask whether it has implications for
TGD inspired theory of consciousness and it indeed forces to challenge the recent ZEO based view
about consciousness [L9] .

4.4.1 Objections against ZEO based theory of consciousness

Consider first objections against ZEO based view about consciousness.

1. ZEO (zero energy ontology) based view about conscious entity can be regarded as a sequence
of “small” state function reductions (SSRs) identifiable as analogs of so called weak mea-
surements at the active boundary of causal diamond (CD) receding reduction by reduction
farther away from the passive boundary, which is unchanged as also the members of state
pairs at it. One can say that weak measurements commute with the observables, whose
eigenstates the states at passive boundary are. This asymmetry assigns arrow of time to the
self having CD as imbedding space correlate. “Big” state function reductions (BSRs) would
change the roles of boundaries of CD and the arrow of time. The interpretation is as death
and re-incarnation of the conscious entity with opposite arrow of time.

The question is whether quantum classical correspondence (QCC) could allow to say some-
thing about the time intervals between subsequent values of temporal distance between weak
state function reductions.

2. The questionable aspect of this view is that tM = constant sections look intuitively more
natural as seats of quantum states than light-cone boundaries forming part of CD boundaries.
The boundaries of CD are however favoured by the huge symplectic symmetries assignable to
the boundary of M4 light-cone with points replaced with CP2 at level of H. These symmetries
are crucial or the existence of the geometry of WCW (“world of classical worlds”).

3. Second objection is that the size of CD increases steadily: this nice from the point of view of
cosmology but the idea that CD as correlate for a conscious entity increases from CP2 size to
cosmological scales looks rather weird. For instance, the average energy of the state assignable
to either boundary of CD would increase. Since zero energy state is a superposition of
states with different energies classical conservation law for energy does not prevent this [L21]:
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essentially quantal effect due to the fact that the zero energy states are not exact eigenstates
of energy could be in question. In BSRs the energy would gradually increase. Admittedly
this looks strange and one must be keen for finding more conventional options.

4. Third objection is that re-incarnated self would not have any “childhood” since CD would
increase all the time.

One can ask whether M8 −H duality and this braney picture has implications for ZEO based
theory of consciousness. Certain aspects of M8−H duality indeed challenge the recent view about
consciousness based on ZEO (zero energy ontology) and ZEO itself.

1. The moments t = rn defining the 6-branes correspond classically to special moments for which
phase transition like phenomena occur. Could t = rn have a special role in consciousness
theory?

(a) For some SSRs the increase of the size of CD reveals new t = rn plane inside CD. One
can argue that these SSRS define very special events in the life of self. This would not
modify the original ZEO considerably but could give a classical signature for how many
ver special moments of consciousness have occurred: the number of the roots of P would
be a measure for the lifetime of self and there would be the largest root after which BSR
would occur.

(b) Second possibility is more radical. One could one think of replacing CD with single
truncated future- or past-directed light-cone containing the 6-D universal roots of P up
to some rn defining the upper boundary of the truncated cone? Could t = rn define
a sequence of moments of consciousness? To me it looks more natural to assume that
they are associated with very special moments of consciousness.

2. For both options SSRs increase the number of roots rn inside CD/truncated light-one grad-
ually and thus its size? When all roots of P (o) would have been measured - meaning that
the largest value rmax of rn is reached -, BSR would be unavoidable.

BSR could replace P (o) with P1(r1 − o): r1 must be real and one should have r1 > rmax.
The new CD/truncated light-cone would be in opposite direction and time evolution would
be reversed. Note that the new CD could have much smaller size size if it contains only the
smallest root r0. One important modification of ZEO becomes indeed possible. The size of
CD after BSR could be much smaller than before it. This would mean that the re-incarnated
self would have “childhood” rather than beginning its life at the age of previous self - kind
of fresh start wiping the slate clean.

One can consider also a less radical BSR preserving the arrow of time and replacing the
polynomial with a new one, say a polynomial having higher degree (certainly in statistical
sense so that algebraic complexity would increase).

4.4.2 Could one give up the notion of CD?

A possible alternative view could be that one the boundaries of CD are replaced by a pair of two
t = rN snapshots t = r0 and t = rN . Or at least that these surfaces somehow serve as correlates
for mental images. The theory might allow reformulation also in this case, and I have actually
used this formulation in popular lectures since it is easier to understand by laymen.

1. Single truncated light-cone, whose size would increase in each SSR would be present now
since the spheres correspond to balls of radius rn at times rn. If r0 = 0, which is the case for
P (o) ∝ o, the tip of the light-cone boundary is one root. One cannot avoid association with
big bang cosmology. For P (0) 6= r0 the first conscious moment of the cosmology corresponds
to t = r0. One can wonder whether the emergence of consciousness in various scales could
be described in terms of the varying value of the smallest root r0 of P (o).

If one allows BSR:s this picture differs from the earlier one in that CDs are replaced with
alternation of light-cones with opposite directions and their intersections would define CD.
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2. For this option the preferred values of t for SSRs would naturally correspond to the roots of
the polynomial defining X4 ⊂ M8. Moments of consciousness as state function reductions
would be due to collisions of 4-D space-time surfaces X4 with 6-D branes! They would
replace the sequence of scaled CD sizes. CD could be replaced with light-one and with the
increasing sequence (r0, ...rn) of roots defining the ticks of clock and having positive and
negative energy states at the boundaries r0 and rn.

3. What could be the interpretation for BSRs representing death of a conscious entity in the
new variant of ZEO? Why the arrow of time would change? Could it be because there are
no further roots of P (o)? The number of roots of P (o) would give the number of small state
function reductions?

What would happen to P (o) in BSR? The vision about algebraic evolution as increase of
the dimension for the extension of rationals would suggest that the degree of P (o) increases
as also the number of roots if all complex roots are allowed. Could the evolution continue
in the same direction or would it start to shift the part of boundary corresponding to the
lowest root in opposite direction of time. Now one would have more roots and more algebraic
complexity so that evolutionary step would occur.

In the time reversal one would have naturally tmax ≥ rnmax
for the new polynomial P (t−tmax)

having rnmax as its smallest root. The light-cone in M8 with tip at t = tmax would be in
opposite direction now and also the slices t− tmax = r′n would increase in opposite direction!
One would have two light-cones with opposite directions and the t = rn sections would
replace boundaries of CDs. The reborn conscious entity would start from the lowest root so
that also it would experience childhood.

This option could solve the argued problems of the previous scenario and give concrete connec-
tion with the classical physics in accordance with QCC. On the other hand, a minimal modification
of original scenario combined with M8 − H duality with moments t = rn as special moments in
the life of conscious entity allows also to solve these problems if the active boundary of CD is
interpreted as boundary beyond which classical signals cannot contribute to perceptions.

4.4.3 What could be the minimal modification of ZEO based view about conscious-
ness?

What would be the minimal modification of the earlier picture? Could one assume that CDs serve
as imbedding space correlates for the perceptive field?

1. Zero energy states would be defined as before that is in terms of 3-surfaces at boundaries of
CD: this would allow a realization of huge symmetries of WCW and the active boundary A of
CD would define the boundary of the region from which self can receive classical information
about environment. The passive boundary P of CD would define the boundary of the region
providing classical information about the state of self. Also now BSR would mean death and
reincarnation with an opposite arrow of time. Now however CD would shrink in BSR before
starting to grow in opposite time direction. Conscious entity would have “childhood”.

2. If the geometry of CD were fixed, the size scale of the t = rn balls of M4 would first increase
and then start to decrease and contract to a point eventually at the tip of CD. One must
however remember that the size of t = rn planes increases all the time as also the size of
CD in the sequences of SSRs. Moments t = rn could represent special moments in the life
of conscious entity taking place in SSRs in which t = rn hyperplane emerges inside CD with
increased size. The recent surprising findings challenging the Bohrian view about quantum
jumps [L14] can be understood in this picture [L14].

3. t = rn planes could also serve as correlates for memories. As CD increases at active boundary
new events as t = rn planes would take place and give rise to memories. The states at t = rn
planes are analogous to seats of boundary conditions in strong holography and the states
at these planes might change in state function reductions - this would conform with the
observations that our memories are not absolute.
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To sum up, the original view about ZEO seems to be essentially correct. The introduction of
moments t = rn as special moments in the life of self looks highly attractive as also the possibility
of wiping the slate clear by reduction of the size of CD in BSR.

4.5 Challenging the identification H = M4 × CP2

One can challenge the identification H = M4 × CP2. Poincare invariance is realized at level of
the moduli space of the octonionic structures of M8: given octonion structure breaks Poincare
invariance to that for T ×SO(2), which corresponds to a choice of rest frame and spin quantization
axis. Therefore one can consider the replacement of M4 with a space without Poincare symmetries.
There is also a breaking of scaling invariance characterized by a hierarchy of 8-D causal diamonds
(CD8) inducing 4-D hierarchy of causal diamonds (cds).

The proposed identification of twistor space of M4 as M4 × S2 is different from the standard
identification as hyperbolic variant CP3,h of CP3. What if the twistor space could be CP3,h after
all?

The key idea is that the twistor space and its base space represents CD so that one obtains
scale hierarchy of twistor spaces with varying sizes as a realization of broken scale invariance giving
rise to the p-adic length scale hierarchy.

1. I have identified the twistor space of M4 simply as T (M4) = M4 × S2. The interpretation
would be at the level of octonions as a product of M4 and choices of M2 as preferred complex
sub-space of octonions with S2 parameterizing the directions of spin quantization axes. Real
octonion axis would correspond to time coordinate. One could talk about the space of of
light-like directions. Light-like vector indeed defines M2. This view could be defended by
the breaking of both translation and Lorentz invariance in the octonionic approach due to
the choice of M2 and by the fact that it seems to work.

Remark: M8 = M4 × E4 is complexified to M8
c by adding a commuting imaginary unit i

appearing in the extensions of rationals and ordinary M8 represents its particular sub-space.
Also in twistor approach one uses often complexified M4.

2. The objection is that it is ordinary twistor space identifiable as CP3 with (3,-3) signature of
metric is what works in the construction of twistorial amplitudes. CP3 has metric as compact
space and coset space. Could this choice of twistor space make sense after all as geometric
twistor space?

Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X4 ⊂ M4 × CP2. Now Poincare symmetry has been transformed to
a symmetry acting at the level of M8 in the moduli space of octonion structures defined
by the choice of the direction of octonionic real axis reducing Poincare group to T × SO(3)
consisting of time translations and rotations. Fixing of M2 reducrs the group to T × SO(2)
and twistor space can be seen as the space for selections of quantization axis of energy and
spin.

3. But what about the space H? The first guess is H = M4
conf × CP2. According to [B1] (see

http://tinyurl.com/y35k5wwo) one has M4
conf = U(2) such that U(1) factor is time- like

and SU(2) factor is space-like. One could understand M4
conf = U(2) as resulting by addition

and identification of metrically 2-D light-cone boundaries at t = ±∞. This is topologically
like compactifying E3 to S3 and gluing the ends of cylinder S3×D1 together to the S3×S1.

The conformally compactified Minkowski space M4
conf should be analogous to a base space

of CP3 regarded as bundle with fiber S2. The problem is that one cannot imagine an analog
of fiber bundle structure in CP3 having U(2) as base. The identification H = M4

conf × CP2

does not make sense.

4. In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog of
M4
conf - call it cdconf . The only candidate is cdconf = CP2 with one hypercomplex coordinate.

To understand why one can start from the following picture. The light-like boundaries of
CD are metrically equivalent to spheres. The light-like boundaries at t = ±∞ are identified
as in the case of M4

conf . In the case of CP2 one has 3 homologically trivial spheres defining

http://tinyurl.com/y35k5wwo
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coordinate patches. This suggests that cdconf is simply CP2,h: CP2 with second complex
coordinate made hypercomplex. M4 and E4 differ only by the signature and so would do
cdconf = CP2,h and CP2.

The twistor spheres of CP3 associated with points of M4 intersect at point if the points differ
by light-like vector so that one has and singular bundle structure. This structure should have
analog for the compactification of CD. CP3 has also bundle structure CP3 → CP2. The S2

fibers and base are homologically non-trivial and complex analogs of mutually orthogonal line
and plane and intersect at single point. This defines the desired singular bundle structure
via the assignment of S2 to each point of CP2.

The M4 points must belong to the interior of cd and this poses constraints on the distance of
M4 points from the tips of cd. One expects similar hierarchy of cds at the level of momentum
space.

5. In this picture M4
conf = U(2) could be interpreted as a base space for the space of CDs

with fixed direction of time axis identified as direction of octonionic real axis associated with
various points of M4 and therefore of M4

conf . For Euclidian signature one would have base
and fiber of the automorphism sub-group SU(3) regarded as U(2) bundle over CP2: now one
would have CP2 bundle over U(2). This is perhaps not an accident, and one can ask whether
these spaces could be interpreted as representing local trivialization of SU(3) as U(2)×CP2.
This would give to metric cross terms between U(2) and CP2.

The outcome of these considerations is surprising.

1. For modified M8 − H duality one would have T (H) = CP3 × F and H = CP2,H × CP2,
where CP2,H has hyperbolic metric with metric signature (1,−3) having M4 as tangent space
so that the earlier picture could be understood as an approximation. This would reduce
the construction of preferred extremals of 6-D Kähler action in T (H) to a construction of
polynomial holomorphic surfaces and also the minimal surfaces with singularities at string
world sheets should result as bundle projection. Since M8−H duality must respect algebraic
dynamics the maximal degree of the polynomials involved must be same as the degree of the
octonionic polynomial in M8.

2. The hyperbolic variant Kähler form and also spinor connection of CP2,h brings in new physics
beyond standard model. This Kähler form would serve as the analog of Kähler form assigned
to M4 earlier, and suggested to explain the observed CP breaking effects and matter anti-
matter asymmetry for which there are two explanations [L20].

Note that also the original form of M8 −H duality continues to make sense and results from
the modification by projection from CP3,h to M4 rather than CP2,h. Therefore one cannot say
that H = M4 × CP2 identification with CDs realizing the scale hierarchy in M4 is wrong.

5 SUSY in TGD Universe

What SUSY is in TGD framework is a longstanding question, which found a rather convincing
answer rather recently. In twistor Grassmannian approach to N = 4 SYM [B11, B5, B6, B8, B15,
B12, B2] twistors are replaced with supertwistors and the extreme elegance of the description of
various helicity states using twistor space wave functions suggests that super-twistors are realized
both at the level of M8 geometry and momentum space.

In TGD framework M8−H duality allows to geometrize the notion of super-twistor in the sense
that at the level of M8 different components of super-field correspond to components of super-
octonion each of which corresponds to a space-time surfaces satisfying minimal surface equations
with string world sheets as singularities - this is geometric counterpart for masslessness.

5.1 New view about SUSY

The progress in understanding of M8 −H duality [L18] throws also light to the problem whether
SUSY is realized in TGD [L20] and what SUSY breaking cold mean. It is now rather clear that
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sparticles are predicted and SUSY remains exact but that p-adic thermodynamics causes thermal
massivation: unlike Higgs mechanism, this massivation mechanism is universal and has nothing to
do with dynamics. This is due to the fact that zero energy states are superpositions of states with
different masses. The selection of p-adic prime characterizing the sparticle causes the mass splitting
between members of super-multiplets although the mass formula is same for all of them. Super-
octonion components of polynomials have different orders so that also the extension of rational
assignable to them is different and therefore also the ramified primes so that p-adic prime as one
them can be different for the members of SUSY multiplet and mass splitting is obtained.

The question how to realize super-field formalism at the level of H = M4 × CP2 led to a
dramatic progress in the identification of elementary particles and SUSY dynamics. The most
surprising outcome was the possibility to interpret leptons and corresponding neutrinos as local
3-quark composites with quantum numbers of anti-proton and anti-neutron. Leptons belong to
the same super-multiplet as quarks and are antiparticles of neutron and proton as far quantum
numbers are consided. One implication is the understanding of matter-antimatter asymmetry.
Also bosons can be interpreted as local composites of quark and anti-quark.

Hadrons and perhaps also hadronic gluons would still correspond to the analog of monopole
phase in QFTs. Homology charge could appear as a space-time correlate for color at space-time
level and explain color confinement. Also color octet variants of weak bosons, Higgs, and Higgs
like particle and the predicted new pseudo-scalar are predicted. They could explain the successes
of conserved vector current hypothesis (CVC) and partially conserved axial current hypothesis
(PCAC).

One ends up with an improved understanding of quantum criticality and the relation between
its descriptions at M8 level and H-level. Polynomials describing a hierarchy of dark matters
describe also a hierarchy of criticalities and one can identify inclusion hierarchies as sub-hierarchies
formed by functional composition of polynomials: the criticality is criticality for the polynomials
interpreted as p-adic polynomials in O(p) = 0 approximation meaning the presence of multiple
roots in this approximation.

5.2 Connection of SUSY and second quantization

The monomials of theta parameters appearing in super-fields are replaced in case of hermitian H
super coordinates consisting of monomials with vanishing quark number. For super-spinors of H
the monomials carry odd quark number. Monomials of theta parameters are replaced by local
monomials of quark oscillator operators labelled besides spin and weak isospin also by points of
cognitive representation with imbedding space coordinates in an extension of rationals defining the
adele. Discretization allows anti-commutators which are Kronecker deltas rather than delta func-
tions. If continuum limit makes sense, normal ordering must be assumed to avoid delta functions
at zero coming from the contractions.

The monomials (not only the coefficients appearing in them) are solved from generalized clas-
sical field equations and are linearly related to the monomials at boundary of CD playing the role
of quantum fields and classical field equations determine the analogs of propagators.

The Wick contractions of quark-antiquark monomials appearing in the expansion of super-
coordinate of H could define the analog of radiative corrections in discrete approach. M8 − H
duality and number theoretic vision require that the number of non-vanishing Wick contractions
is finite. The number of contractions is bounded by the finite number of points in cognitive
representation and increases with the degree of the octonionic polynomial and gives rise to a
discrete coupling constant evolution parameterized by the extensions of rationals. The polynomial
composition hierarchies correspond to inclusion hierarchies for isomorphic sub-algebras of super-
symplectic algebra having interpretation in terms of inclusions of hyper-finite factors of type II1.

5.3 Proposal for S-matrix

One also ends up to the first completely concrete proposal for how to construct S-matrix directly
from the solutions of super-Dirac equations and super-field equations for space-time super-surfaces.
The idea inspired by WKB approximation is that the exponent of the super variant of Kähler func-
tion including also super-variant of Dirac action defines S-matrix elements as its matrix elements
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between the positive and negative energy parts of the zero energy states formed from the corre-
sponding vacua at the two boundaries of CD annihilated by annihilation operators and resp. cre-
ation operators. The states would be created by the monomials appearing in the super-coordinates
and super-spinor.

Super-Dirac equation implies that super-Dirac action vanishes on-mass-shell. The proposed
construction allows to get also scattering amplitudes between all possible states using the expo-
nential of super-Kähler action. Super-Dirac equation however makes possible to express derivatives
of the quark oscillator operators (values of quark field at points of cognitive representation) so that
one can use only the points of cognitive representation without introducing lattice discretization.
Discrete coupling constant evolution follows from the fact that the contractions of oscillator oper-
ators occur at the boundary of CD and their number is limited by the finite number of points of
cognitive representation.

S-matrix is trivial unless CD contains the images of 6-D analogs of branes as universal special
solutions of the algebraic equations determining space-time surfaces at the level of M8. 4-D
space-time surfaces representing particle orbits meet at the partonic 2-surfaces associated with the
3-D surfaces at t = rn hyper-surfaces of M4. The values of t = rn correspond to the roots of the
real polynomial with rational coefficients determining the space-time surface. These transitions are
analogs of weak measurements, and in TGD theory of consciousness they give rise to the experience
flow of time and can be said to represent ”very special moments” in the life of self [L16].

The creation and annihilation operators at vertices associated with the monomials would be
connected to the points assignable to cognitive representations at opposite boundaries of CD and
also to partonic 2-surfaces in the interior of CD possibly accompanied by sub-CDs. This would
give analogs of twistor Grassmannian diagrams containing finite number of partonic 2-surfaces as
vertices containing in turn ordinary vertices defined by the monomials. Their number would be
finite and they would be basically completely classical objects in accordance with the fact that
quantum TGD is completely classical theory apart from state function reduction.

This view allows a formulation also at the continuum limit since the monomials appearing in
the action density in interior of CD are linear superposition of the monomials at the points of
boundary of CD involving 3-D integral so that contractions of oscillator operators only reduce one
integration without introducing divergence. One can also normal order the monomials at boundary
of CD serving as initial values.

5.4 SUSY and TGD

What SUSY is in TGD framework is a longstanding question. In the following the most plausible
picture assuming M8 −H duality is discussed.

One can imagine two options for SUSY at the fundamental level.

5.4.1 Does TGD allow SUSY at fundamental level?

Generalization of SUSY is strongly suggestive at the level of cognitive representations, where it
makes sense to have fermion fields at same point, and would mean that each point can carry all
possible quark and lepton states. Consider the situation in M8 picture for which space-time is a
surface in M8.

1. The formulation of the theory for cognitive representations effectively replaces X4 with a set
of points with M8 coordinates in extension of rationals. This set of points defines also the
WCW coordinates of space-time surface. This set can fix the space-time surface uniquely if
it corresponds to a root of octonionic polynomial.

2. In TGD quarks do not carry color as spin like number so that Fermi statistics allows all
many-fermion-anti-fermion states such that fermions (antifermions) do not have identical elec-
troweak and spin quantum numbers. Fermi statistics allows finite number of many-fermion
and many-anti-fermion states at given point: one has 4 different states corresponding to 2
helicity states and 2 possible electroweak states (U and D type quarks, lepton and correspond-
ing neutrino). These states correspond to the components states of N = 4 super-multiplet
or even N = 8 SUSY (conserved B and L and both fermion and antifermion as generators of
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super-symmetries)with conserved B and L. This picture is almost “must” for cognitive rep-
resentation for which fermions could reside at the points of cognitive representation having
coordinates in extension of rationals defined the adele in adelic physics [L8].

3. For this option SUSY would not be broken: the same mass formula would hold true for all
members of the SUSY multiplet but mass scale could be different in massivation by p-adic
thermodynamics. p-Adic prime characterizing the mass scale of the particle would depend
on its quantum numbers. Mass splitting inside SUSY multiplet would occur and spartners
could be very heavy.

4. In TGD massless fields correspond to minimal surfaces (apart from string world sheet singu-
larities). The superposition of fields is replaced with the disjoint union of space-time surfaces
carrying the superposed fields: a particle touching unavoidably sheets with common M4

projection experiences the sum of effects of the fields at different space-time sheets. This
allows to understand how many-sheeted space-time leads to QFT limit. Octonions replace
the space of primary fields and the roots of octonionic polynomial correspond to space-time
sheets. The replacement of octonions with super-octonions assigns to each component of
super-octonion polynomial a space-time surface so that the super field is geometrized.

The geometric description of SUSY would be in terms of super-octonions and components
of SUSY multiplet would correspond to components of a real polynomial of super-octonion
and would in general give rise to minimal space-time surfaces as their roots: one space-time
sheet for each component of the super-polynomial.

What is of crucial importance is that the components would have different degrees so that
the extensions defined by the roots would be different. Therefore also the p-adic primes
characterizing corresponding particles would be different as ramified primes of extension and
in p-adic mass calculations this would mean different p-adic mass scales and breaking of
SUSY although the mass formulas would be same for the members of SUSY multiplet. The
remaining question is how the ramified prime defining the p-adic prime is selected.

5. Particles are proposed to correspond to points of cognitive representation, whose points have
preferred imbedding space coordinates in the extension of rationals defining the particular
adele in adelic physics [L8]. These points would be also belong to partonic 2-surfaces identified
as intersections of 6-D universal roots rn of octonionic polynomials in 1-1 correspondence with
the roots of the real polynomial with rational coefficients defining the octonionic polynomial.
The projections of these surface to M4 would be t = rn, 0 ≤ rM ≤ rn balls inside light-
cone. The data at partonic 2-surfaces - the points in extension of rationals - would dictates
the space-time surface in accordance with strong form of holography. This generalizes to
polynomials of super-octonions.

6. This option might be free of divergences, and number theoretical vision requires that loops
vanish since they would lead out of extension of rationals essential for adelic physics to make
sense. Coupling constant evolution would reduce to discrete sequence of phase transitions
between phases characterized by different coupling constants determined by quantum criti-
cality.

If SUSY is realized, the vertices could be those of SUSY with conserved B and L and
describe the decay or fusion of states consisting of some number of elementary fermions
and antifermions at same point and describable using N = 4 or maybe even N = 8 SUSY
(generated by quarks, leptons, and their antiparticles).

7. One could also argue that the formation of stable enough many-fermion states with many
fermions at single point is most plausible if there are no gauge interactions between fermions.
Right handed neutrino corresponding to covariantly constant CP2 spinor has no color and
electroweak interactions. This would suggest that N = 2 SUSY generated by neutrinos is
the least broken one.

8. The counterpart of SUSY at the level of H = M4 × CP2 would be obtained by M8 − H
duality in relatively straightforward manner.
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This option is definitely the most elegant and most general and there would be strong connec-
tions with SUSYs and even understanding of SUSY breaking in terms of p-adic thermodynamics
and different extensions of rationals for various members of the SUSY multiplets.

5.4.2 Does TGD allow dynamically generated SUSY at fundamental level?

I have also played with what might be called dynamically generated SUSY. Consider first no-SUSY
option.

1. A stronger condition would be that only single fermion or antifermion at given point of
space-time surface is possible. At continuum limit one might argue that this kind of states
are too singular and therefore excluded. Particle interaction vertices would involve only re-
arrangement of fermion and anti-fermion lines and turning of them backwards in time. There
would be no SUSY.

2. For this option one expects that the scattering amplitudes could be obtained as composites
of scattering amplitudes for fundamental fermions. If so, the construction should be very
simple.

One can however imagine a kind of dynamically generated broken SUSY also for this option.

1. Suppose that fermions and antifermions are associated with singularities of space-time surfae
at which sheets intersect each other. For 4-D space-time surface in 8-D space these self-
intersections are unavoidable but intersections of more than two branches are expected to be
very rare unless some special conditions are required.

2. If one allows fermion-right-handed neutrino pairs at intersections of two branches, one would
have almost N = 2 SUSY: the states with fermion and pair or right-handed neutrino and
antineutrino would be missing.

3. Space-time surfaces would be mapped by M8 − H duality to H = M4 × CP2. Since the
tangent space of of point is parameterized sa CP2 point, and because tangent spaces of co-
inciding points at singularity are different, the image would consist of several points of CP2

but same point of M4. The points at different sheets would have collinear light-like momenta
so that they could be interpreted as members of SUSY multiplet.

4. In this case number theory would not provide a mechanism of SUSY breaking since the
intersecting roots correspond to the same polynomial and same extension of rationals.

One could argue that for this option the formation of sparticles are than fundamental sfermions
is extremely rare occurrence so that SUSY cannot be realized in this manner.

If SUSY is realized at the level of M8, it should have a formulation also at the level of H.

1. M8 −H duality is non-local and means that the dynamics at the level of H is not strictly
local but dictated by partial differential equations for super-fields having interpretation as
describing purely local many-fermion states made of fundamental fermions with quantum
numbers of leptons and quarks (quarks do not possess color as spin like quantum number)
ad their antiparticles.

2. Classical field equations and modified Dirac equation must result from this picture. Induction
procedure for the spinors of H must generalize so that spinors are replaced by super-spinors
Ψs having multi-spinors as components multiplying monomials of θ. The determinant of
metric and modified gamma matrices depend on imbedding space coordinates h replaced with
super coordinates hs so that monomials of θ appear in two different manners. Hermiticity
requires that sums of monomial and its hermitian conjugate appear in hs. Monomials must
also have vanishing fermion numbers. Otherwise on can obtained fermionic states propagating
like bosons. For Dirac action one must assume tha Ψs involves only odd monomials of θ
possibly multiplied by monomials appearing in hs to get only fermionic states and correct
kind of propagators.
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3. One Taylor expands both bosonic action density (Kähler action plus volume term) Super-
Dirac action with respect to the super-coordinates hs. The coefficients of the monomials of θ:s
are obtained are partial derivatives of the action. Since the number of θ parameters is finite
and corresponds to the number of spin-weak-isopin states of quarks and leptons, the number
of terms is finite if the θ parameters anti-commute to zero. If not, one can get an infinite
number of terms from the Taylor series for the action. Number theoretical considerations do
not favor this and there should exist a cancellation mechanism for the radiative corrections
coming from fermionic Wick contractions.

4. One can interpret the superspace as the exterior algebra of the spinors of H. This reminds
of the result that the sections of the exterior algebra of Riemann manifold codes for the
Riemann geometry (see http://tinyurl.com/yxrcr8xv). This generalizes the observation
that one can hear the shape of a drum since the sound spectrum is determined by its frequency
spectrum defined by Laplacian.

Super-fields define a Clifford algebra generated by θ parameters as a kind of square root
of exterior algebra which corresponds to the Clifford algebra of gamma matrices. Maybe
this algebra could code also for the spinor structure of imbedding space or even that of
space-time surface so that the super-fields could be seen as carriers of geometric information
about space-time surface as a preferred extremal. In 8-D case there is also SO(1, 8) triality
suggesting that corresponding three Clifford algebras correspond to exterior algebra fermionic
and anti-fermionic algebras.

5. At M8 level the components of super-octonion correspond to various derivatives of the basic
polynomial P (t) so that space-time geometry correlates with the quantum numbers assignable
to super-octonion components - this is in accordance with QCC (quantum-classical correspon-
dence). This is highly desirable at the level of H too.

6. Could the space-time surface in M8 be same for super-field components with degree d <
dmax in some special cases? The polynomial associated with super octonion components are
determined by the derivatives of the basic polynomial P (t) with order determined by the
degree of the super-monomial. If they have decomposition P (t) = P k1 (t), the monomials
with degree d < k the roots corresponding to the roots P1(t) co-incide. Besides this there
are additional roots of drP1/dt

r for super-octonion component with r θ parameters.

A possible interpretation could be as quantum criticality in which there is no SUSY breaking
for components having d < k (masses in p-adic thermodynamics could be the same since
the extension defined by P1 and corresponding ramified primes would be same). This would
conform with the general vision about quantum criticality.

7. Usual super-field formalism involves Grassmann integration over θ parameters to give the
action. M8 formalism does not involve the θ integral at all. Should this be the case also
at the level of H? This would guarantee that different components of H- coordinates as
super-field would give rise to different spae-time surface and QCC would be realized. θ inte-
gration produces SUSY invariants naturally involved with the definition of vertices involving
components of super-fields. Also vertices involving fermionic and bosonic states emerge since
bosonic super-field components appear in super-coordinates in super-Dirac action.

5.5 Could super coordinates of H be treated like super-octonion in M8?

Could one treat super-fields in H in the same manner as in M8? One would perform the θ
integration to obtain action principle for the dynamics of space-time surface or of induced spinor
fields. The first guess is that the multi-spinors appearing in bosonic action are classical fields. The
super-components of Dirac spinor would be however second quantized. Here one must however
keep mind open.

The coefficient actions would be spinorial quantities multiplied by monomials of θ:s and one
would solve field equations separately for each multi-spinor component This would be in accordance
with the replacement of superposition of fields with disjoint union for space-time surfaces with
induced fields.

http://tinyurl.com/yxrcr8xv
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It seems that the analog of SYM-Super-Dirac action is the only physical option. Bosonic action
as analog of SYM action would describe bosons and their spartners and Super-Dirac action fermions
and their spartners.

5.5.1 Bosonic action as an analog of SYM action

In bosonic action imbedding space coordinates are supersymmetrized. This option is analogous to
pure SYM action without fermions.

1. Space-time would be super-surface in super counterpart of H = M4 ×CP2 with coordinates
hk having super components proportional to multi-spinors multiplying the monomials of θ
parameters treated as independent fields. For M4 this is expected to work but in the case of
CP2 this approach is not so straightforward. The symmetries and projective space property
allowing to use projective coordinates might help to overcome the possible technical problems.

2. The θ parameters associated with θ and θ cannot anti-commute to zero but can be regarded as
fermionic creation operators and annihilation operators. Θ parameters and their conjugates
can be assigned with both leptons and quarks (or with quarks only as it turns out). If θ
parameters and their conjugates anti-commute in standard manner to unity, one can regard
them as fermionic oscillator operators. The vacuum expectation value of the action contains
only monomials with vanishing B an L.

A stronger condition is that hs is hermitian and thus contains only sums of monomials and
their conjugates having vanishing B and L. This guarantees super-symmetrization respecting
bosonic statistics at the level of propagators since all kinetic terms involve two covariant
derivatives - one can indeed transform ordinary derivatives of monomials coming from the
Taylor expansion to covariant derivatives involving also the coupling to Kähler form since
the total Kähler charge of terms vanishes.

The lack of anti-commutativity of θ:s and their conjugates (also representable as θ derivates)
or equivalently of fermionic oscillator operators implies problems.

1. For anti-commuting θ parameters the series would involve a finite number of partial deriva-
tives of action. Wick contractions of oscillator operators would give rise to an infinite series.
As such this need not be a problem if the sum converges to a well-defined algebraic exten-
sion defining general coordinate invariant action as a kind of effective action expressible as a
Taylor series of super field components with vanishing net fermion numbers B and L. The
appearance of infinite Taylor series defining the coefficients of super-polynomial is however
troublesome from the point of view of number theoretic vision since there is no guarantee
that the coefficients are rational functions.

One manner to avoid problems is to normal order the terms in the action. One can however
hope that the normal ordered form results automatically due to the vanishing of c-number
terms emerging in the normal ordering process. This condition would be analogous to the
vanishing of fermionic loops and this is indeed the basic vision of TGD. By quantum criti-
cality coupling constant evolution is discrete so that loops vanish. This would imply a huge
simplification of twistor amplitudes [L12] since only the counterparts of tree diagrams would
be obtained.

2. The terms in the action would typically involve n-tuples of partial derivatives

Lk1α1,....αnkn =
∂nL

∂hk1|α1
...∂hkn|αn

coming from super-Taylor expansion of action The Taylor expansion must be define recur-
sively by substituting repeatedly the Taylor expansion of Γk in terms of super-coordinates.
This expansion should stop in finite order. This should be due to the vanishing of terms
involving anti-commutators of oscillator operators. In the case of Γα and Γk the expansion
must be carried out recursively and if the contractions coming from anti-commutators of
oscillator operators do not vanish, the recursion process is infinite.
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The partial derivatives Lk1α1,....αnkn are contracted with quantities γk1 ..γknDα1
O1...Dαn

On,
whereOn are monomials of θ parameters. The resulting terms can be denoted by Γα1...αnO1Dα1 ...DαnOn.

The terms On in the bosonic expectation value representing contributions for ∆hs involve
Wick contractions of type 〈|hshs〉. The vacuum expectation values 〈Γα1...αn

∏
iDαi

∆hs,i〉
must vanish.

The vanishing of these divergences could be interpreted in terms of conserved Noether cur-
rents and therefore symmetries. This condition would be analogous to the vanishing of loops
and would be guaranteed by preferred extremal property and field equations for hs,i. The
experience with preferred extremals of bosonic action, which is sum of Kähler action and
volume term tells that preferred extremals are minimal surface apart from string world sheet
singularities and the field equations reduce to algebraic conditions. In recent case one might
hope that something similar happens.

The simplest situation would be that the vacuum expectations have vanishing multi-divergences:

Γα1...αn〈
∏
i

Dαi
∆hs,i〉 = 0 .

n − 1-fold divergence would define a conserved current perhaps assignable to a symmetry
as a Noether current. Also for more general assumption that the monomials involve even
number of θ and their conjugates similar conservation conditions are obtained. An interesting
possibility is that these conditions code for the conjectured Yangian symmetry characterizing
also twistorial amplitudes [L12].

3. One does not obtain free field equations. The reason is that the Taylor expansion of the non-
linear geometric action gives higher powers of super-parts of imbedding space coordinates.

An interesting possibility in line with the speculations of Nima-Arkani Hamed and others is
that space-time as a 4-surface of imbedding space could emerge from anti-commutators of the θ
monomials as radiative corrections so that the bosonic action would vanish when the super-part
of hs vanishes.

5.5.2 Super-Dirac action

Before doing anything one can recall what happens in the case of modified Dirac action.

1. One has separate modified Dirac actions ΨDΨ, D = ΓαDα for quarks and leptons (later
it will be found that modified Dirac action for quarks might be enough) and the covariant
derivatives differ since there is a coupling to n-ple of included Kähler potential. For leptons
one has n = −3 and for quarks n = 1. This guarantees that em charges come out correctly.
This coupling appears in the covariant derivative Dα of fermionic super field.

2. One obtains modified Dirac equations for quarks and leptons by variation with respect to
spinors. The variation with respect to the imbedding space coordinates gives quantized
versions of classical conservation laws with respect to isometries. One also obtains and
infinite number of super-currents as contractions of modes of the modified Dirac operator
with Ψ.

3. Classical field equations for the space-time surface emerge as a consistency condition guar-
anteeing the modified Dirac operator is hermitian: canonical momentum currents of classical
action must be conserved and define conserved quantum when contracted with Killing vectors
of isometries. Quantum-classical correspondence (QQC) requires than for Cartan algebra of
symmetry algebra the classical Noether charges are same as the fermionic Noether charges.

It turns out that the super-symmetrization of modified Dirac equation gives only fermions and
they fermionic superpartners in this manner if one requires that propagators are consistent
with statistics.

H coordinates are super-symmetrized and induced spinor field becomes a super-spinor Ψ =
ΨNON (θ, θ) with PsiN depending on hs.
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1. As in the case of bosonic action the vacuum expectation value gives modified Dirac action
conserving fermion numbers but one could assume that the monomials in the leptonic (quark)
modified Dirac action have either non-vanishing L (B) and vanishing B (L). It seems that
the lepton (baryon -) number of monomials can vary from 1 to maximum value. A more
restrictive condition would be that the value is 1 for all terms.

2. Super-Dirac spinor is expanded in monomials ON (θ, θ) of θ and its conjugate θ, whose anti-
commutator is non-trivial. One can equally well talk about quark like oscillator operators.
The sum Ψ = ΨNON defining super-spinor field. The multi-spinors ΨN are functions of
space-time coordinates, which are ordinary numbers. Quark oscillator operators are same as
appearing in the imbedding space super-coordinates. Only monomials ON having odd quark
number are allowed. Super-spinor field however contains terms involving quark pairs giving
rise to spartners of multiquark states with fixed quark number. The conjugate of super-spinor
is defined in an obvious manner.

3. The metric determinant and modified gamma matrices appearing in the Dirac action are
expanded as Taylor series in hermitian super-coordinate hs +hs with h = hNON . This as as
in the case of bosonic action.

There are also couplings to gauge potentials defined by the spinor connection of CP2 and the
expansion of them with respect to the imbedding space coordinates gives at the first step rise
covariant derivatives of gauge potentials giving spinor curvature. At next steps one obtains
covariant derivatives of spinor curvature, which however vanish so that the number of terms
coming from the dependence of spinor connection on CP2 coordinates is expected to be finite.
Constant curvature property of CP2 is therefore be essential (not that also M4 would have
covariantly constant spinor curvature in twistor lift and give rise to CP breaking).

The super-coordinate expansion of the metric determinant
√
g and modified gamma matri-

ces Γα and covariant derivatives Dα involving dependence on H coordinates give additional
monomials of θ parameters appear as hermitian monomials. Classical field equations corre-
spond to DαΓα = 0 guaranteeing the hermiticity of D = ΓαDα.

4. When super-coordinates of H are replaced with ordinary imbedding space coordinates the

only Wick contractions are between ON and O
N

in the vacuum expectation of Dirac action,
and the action reduces to super-Dirac action with components satisfying modified Dirac equa-
tion. Propagator is Dirac propagator for all terms and the presence of only odd components
in Ψ and even components in hs guarantees that Fermi statistics is not violated at the level
of propagators. The dependence on hs induces coupling between different components of the
super-spinor. The components of super-spinor are interpreted as second quantized objects.

5. The terms in the action would typically involve n-tuples of partial derivatives Lk1α1...kn1αn

defined earlier for L =
√
g coming from super-Taylor expansions. Similar derivatives come

from the modified gamma matrices Γα.

Also now one obtains loops from the self contractions in the terms coming from the expression
of action and gamma matrices. These terms should vanish and as already found this would
requires vanishing of currents perhaps identifiable as Noether currents of symmetries. This
guarantees that the Taylor expansion contains only finite number of terms as required by
number theoretic vision.

The multi-fermion vertices defined by the action would be non-trivial but involve always con-
traction of all fermion indices between monomials formed from θ:s in Ψ and their conjugates in Ψ
if the loop contractions sum up to zero. One could interpret these supersymmetric vertices as a
redistribution of fermions of a local many-fermion state between external local many-fermion states
particles represented by the monomials appearing in the vertices. The fermions making the initial
state would be same as in final state and all distributions of fermion number between sfermion
lines would be allowed. The action obtained by contraction would has SUSY as symmetry but the
propagation of different sfermions is fermionic and does not look like that for ordinary spartners.
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5.5.3 Feedback to M8 level

Super-symmetrization of bosonic action identified as sum of Kähler action and volume term plus
super-Dirac action [L12] seem to define an excellent candidate for the description of TGD basic
physics. One could however worry about the asymmetry between M8 and H. The original specu-
lations related to [L4] super-octonions were too naive and is not consistent with the picture at H
level.

1. Should one introduce super-spinors also at the level of M8 as octonion analytic fields and
defined scattering amplitudes in terms of them just as in the case of H? The fact is that
scattering amplitudes cannot be defined in terms of octonionic surfaces alone.

Also spinor fields are needed and here SO(1, 3) triality is suggestive. Spinor fields and anti-
spinor fields could be octonion analytic functions (polynomials) of octonion coordinate, which
are conjugates of each other. SO(1, 3) triality however suggests that only fermions correspond
to second imbedding space chirality are allowed: the trio would be formed by fermions,
antifermions, and octonionic coordinates. It turns out that one could indeed understand
leptons and neutrinos as local analogs of proton and neutron so that only quark chirality
would be present at fundamental level. This would simplify dramatically the picture about
elementary particles and interactions.

2. This picture forces to consider alternative interpretation for octonion analyticity. Could
the vanishing of the real or imaginary part in quaternionic sense have interpretation as a
condition of super-spinor - kind of super-selection rule.

So: what super-octonions could be?

1. The key idea is that the powers on of octonion appearing are associative. If the coefficients
of P (o) are real or possibly even complex rationals m+ in commuting with octonions, asso-
ciativity is not lost. Octonion o would be multiplied by a super-polynomial ps with (possibly
complex-) rational coefficients to get super-octonion os = ops. The conjugate octonion s
would be treated analogously. The terms in os would be proportional to super-monomials
ON (θ, θ). One would have ons = onpns so that associativity would be preserved.

θ resp. θ would transform like components of 8-D spinor resp. its conjugate and have
interpretation as quark resp. anti-quark like spinors. SO(1, 7) triality allows only leptonic or
quark-like spinors and quark-like spinors are the only physical choice. ON (θ, θ) would behave
like quark multi-spinors.

2. Super-polynomial Ps(o) would be defined by super-analytic continuation as P (os) by Taylor
expanding it with respect to the super-part of os. The outcome is super-polynomial with
coefficients of monomials ON given by ordinary octonionic polonomials PN . Each PN would
define 4-surface by requiring that the imaginary or real part of PN (in quaternionic sense)
vanishes. The polynomials PN are expressible in terms of P and its derivatives.

3. The geometric description of SUSY would be in terms of super-octonions and their super-
polynomials and the components of SUSY multiplet would correspond to components of
a real polynomial of super-octonion and would in general give rise to minimal space-time
surfaces as their roots: one space-time sheet for each component of the super-polynomial.

What is of crucial importance is that the components would have different degrees so that
the extensions defined by the roots would be different. Therefore also the p-adic primes
characterizing corresponding particles would be different as ramified primes of extension and
in p-adic mass calculations this would mean different p-adic mass scales and breaking of
SUSY although the mass formulas would be same for the members of SUSY multiplet. The
remaining question is how the ramified prime defining the p-adic prime is selected.

4. SO(1, 7) triality implies that 8-spinors, their conjugates, and 8-vector form a triplet. Super-
field formalism in M4 × CP2 suggests that there bosonic action defining space-time surface
and super-Dirac action are fundamental. This should have analog at M8 level. This would
suggest that super-variants of ordinary octonions serve as arguments of octonion valued
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super-fields having interpretation as quarks and antiquarks. Θ parameters are same in all
cases.

The bosonic super-monomials in os would be of form ON (θ, θ) with vanishing quark number
and monomial and its conjugate would appear as sum: the interpretation would be in terms
of local bosonic states with vanishing quark number. Quark-like octonionic super-field qs
would be odd polynomial of θ with coefficients polynomials of os. For antiquark-like super-
field qs θ would be replaced with its conjugate. The interpretation would be in terms of states
with odd quark or anti-quark number. Also in this interpretation the vanishing of the real or
imaginary part of the quark- or antiquark-like polynomial would define a space-time surface
in M8 and one would have bosonic, quark-like, and antiquark-like space-time surfaces.

5.6 Could SYM action plus Super-Dirac action for quarks explain ele-
mentary particle spectrum?

TGD based SUSY involves super-spinors and super-coordinates. Suppose that one has a cognitive
representation defined by the points of space-time surface with coordinates in an extension of
rationals defining adele and belonging to the partonic 2-surfaces defined by the intersections of
6-D roots of octonionic polynomials with 4-D roots. This representation has H counterpart.

Cognitive representation gives rise to a tensor product of these algebras and the oscillator
operators define a discretized version of fermionic oscillator operator algebra of quantum field
theories. One would have interpretation as many-fermion states but the local many-fermion states
would have particle interpretation. This would replace fermions of the earlier identification of
elementary particles with SUSY multiplets in the proposed sense. This brings in large number
of new particles. One can however ask whether the return to the original picture in which single
partonic 2-surface corresponds to elementary particle could be possible. Certainly it would simplify
the picture dramatically.

Could this picture explain elementary particle spectrum and how it would modify the recent
picture?: these are the questions.

5.6.1 Attempt go gain bird’s eye of view

Rather general arguments suggest that SYM action plus Super-Dirac action could explain ele-
mentary particle spectrum. Some general observations help to get a bird’s eye of view about the
situation.

1. The antisymmetric tensor products for fermions and anti-fermions produce states with same
spectrum of electro-weak quantum numbers irrespectively of whether the fermion and anti-
fermion are at same point or at different points. Which option is correct or are these options
correspond analogous to two different phases of lattice gauge theory in which nodes resp.
links determine the states? Only multi-local states containing fermions with identical spin
and weak isospin at different points are not possible as local states.

There is no point in denying the existence of either kind of states. What suggests itself is
the generalization of electric-magnetic duality relating perturbative Coulomb phase in which
ordinary particles dominate and the non-perturbative phase in which magnetic monopoles
dominate. I have considered what I have called weak form of electic-magnetic duality already
earlier [K7] but as a kind of self-duality stating that for homologically charged partonic 2-
surfaces electric and magnetic fluxes are identical. The new picture would conform with the
view of ordinary QFT about this duality.

2. The basic distinction between TGD and standard model is that color is not spin-like quantum
number but represented as color partial waves basically reducing to the spinor harmonics plus
super-symplectic generators carrying color quantum numbers. Spinor harmonics as such have
non-physical correlation between color and electro-weak quantum numbers [K2] although
quarks and leptons correspond to triality t = 1 and triality t = 0 states.

3. It turns out that one could understand quarks, leptons, and electro-weak gauge bosons and
their spartners as states involving only single partonic 2-surface [K1]: this would give essen-
tially the original topological model for family replication in which partonic 2-surfaces were
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identified as boundary components of 3-surface. In principle one can allow also quarks and
gluons with unit charge matrix with color partial waves defining Lie-algebra generator as
bosonic states. Could these states correspond to free partons for which perturbative QCD
applies at high energies?

Also color octet partial waves of electro-weak bosons and Higgs and the predicted additional
pseudo-scalar - something totally new - are possible as both local and bi-local states. There
would be no mixing of U(1)Y state and neutral SU(2)w states for color octet gluon. In this
sense electro-weak symmetry breaking would be absent.

4. Electro-weak group as holonomy group of CP2 can be mapped to the Cartan group of color
group, and electro-weak and color quantum numbers would relate like spin and angular
momentum to each other. This encourages to think that there are deep connections between
electro-weak physics and color physics, which have remained hidden in standard model.

The conserved vector current hypothesis (CVC) and partially conserved axial current hypoth-
esis (PCAC) of hadron physics suggests a strong connection between color physics and electro-
weak physics. There is also evidence for so called X bosons with mass 16.7 MeV [?] [L3]
suggesting in TGD framework that weak physics could have fractally scaled down copy in
hadronic and even nuclear scales.

Could ordinary gluons be responsible for CVC whereas colored variants of weak bosons and
Higgs/pseudo-scalar Higgs would be responsible for PCAC? Usually strong force in hadronic
sense is assigned with pion exchange. This approach does not work perturbatively. Could
one assign strong force with the exchange of pseudo-scalar, and colored variants of gluons,
pseudo-scalar, and Higgs?

5. Hitherto it has been assumed that homology charges (Kähler magnetic charges) characterize
flux tubes connecting the two wormhole throats associated with the monopole flux of ele-
mentary particle. Could one understand the bi-local or multi-local objects of this kind as
exotic phase analogous to magnetic monopole dominated phase of gauge theories as dual of
Coulomb phase?

Hadrons would certainly be excellent candidates for monopole dominated phase. Gluons
would be pairs of quarks associated with homologically charged partonic 2-surfaces with
opposite homology charges. Gluons would literally serve as “glue” in the spirit of lattice
QCD. Gluons and hadrons would be multi-local states made from quarks and gluons as
homologically trivial configurations with vanishing total homology charge.

6. Is there a correlation between color hyper-charge and homology charge forcing quarks and
gluons to be always in this phase and forcing leptons to be homologically neutral? This could
provide topological realization of color confinement. The simplest option is that valence
quarks have homology charges 2,−1,−1 summing up to zero. This was one of the first ideas
in TGD about 38 years ago.

One can also imagine that the homological quark charges (3,−2,−1) summing up to zero
define a classical correlate for the color triplet of quarks, a realization of Fermi statistics,
and allow to understand color confinement topologically. The color partial waves in H would
emerge at the imbedding space level and characterize the ground states of super-symplectic
representations. Color triplets of quarks and antiquarks could thus correspond to homology
charges (3,−2,−1) and (−3, 2, 1) and neutral gluons could be superpositions of pairs of form
(q,−q), q = 3,−1,−1. Charged gluons as flux tubes would not be possible in the confined
phase.

7. Is monopole phase possible also for leptons as general QFT wisdom suggests? For instance,
could Cooper pairs could be flux tubes having members of Cooper pair - say electrons - at
its ends and photons in this phase be superposition of fermion and anti-fermion at the ends
of the flux tube and monopole confinement would make the length of flux tube short and
photon massive in superconducting phase.
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5.6.2 Comparing the new and older picture about elementary particles

The speculative view held hitherto about elementary particles in TGD Universe correspond to the
TGD analog of the magnetic monopole dominated phase of QFTs. This view is considerably more
complicated than the new view and involves unproven assumptions.

1. Identification of elementary particles

Old picture: Ordinary bosons (and also fermions) are identified as multilocal many-fermion
states. The fermions and anti-fermions would reside at different throats of the 2 wormhole
contacts associated with a closed monopole flux tube associated with the elementary particle
and going through wormhole contact to second space-time sheet. All elementary particles
are analogous to hadron-like entities involving closed monopole flux tubes.

One can raise objections against this idea. Leptons are known to be very point-like. One must
also assume that the topologies of monopole throats are same for given genus in order that
p-adic mass calculations make sense. The assumption that quarks correspond to monopole
pairs makes things unnecessarily complex: it would would be enough to assume that they
correspond to partonic 2-surfaces with monopole charge at the ”ends” of flux tubes at given
space-time sheet.

One must assume that the genus of the 4 throats is same for known elementary particles: this
assumption looks rather natural but can be criticized. The correlations forced by preferred
extremal property should of course force the genera of wormhole throats to be identical.

New picture: Elementary fermions would be partonic 2-surfaces. Leptons would have
vanishing homology charge. Elementary bosons could be simply pairs of fermion anti-fermion
located at the opposite ends of flux tubes. This would dramatically simplify the topological
description of particle reactions. In the case of quarks however the homological space-time
correlate of color confinement is attractive and would force monopole flux tubes. It turns
out that this picture corresponds to the simplest level in the heff = nh0 hierarchy. One
could also see leptons and quarks as analogs of perturbative and non-perturbative monopole
dominated phases of gauge theories.

Flux tubes could allow to understand phases like super-conductivity involving massivation
of photons (Meissner effect). For instance, Cooper pairs could correspond closed flux tubes
involving charged fermions at their ”ends”. In high Tc super-conductivity Cooper pairs in
this sense would be formed at higher critical temperature and at lower critical temperature
they would form quantum coherent phase [K5, K6]. Flux tube picture could also allow to
understand strongly interacting phases of electrons.

2. Electroweak massivation

Old picture: Electro-weak massivation has been assumed to involve screening of electro-
weak isospin by a neutrino pair at the second wormhole contact. The screening is not actually
necessary in p-adic thermodynamics in its recent form since the thermal massivation is due
to the mixing of different mass eigenstates.

New picture: There is no need to add pairs of right- and left-handed neutrino to screen the
weak charges in the scale of flux tube.

3. Identification of vertices

Old picture: In old picture one could do almost without vertices: in the simplest proposal
particle reactions would correspond to re-arrangements of fermions and antifermions so that
fermion and antifermion number would be conserved separately. Therefore one needs an
analog of vertex in which partonic 2-surface turns back in time in order to describe creation
of particle pairs and emission of bosons identified as fermion-antifermion pairs.

New picture: In vertices fermions and antifermions assignable to super spinor component
would be redistributed between different orbits of partonic 2-surfaces meeting along their
ends at the 6-D braney object in M8 picture or turn backwards in time - the interpretation
for this might be in terms of interaction with classical induce gauge field. What is new are
the new vertices corresponding to the monomials of oscillator operators in the super-spinor.



5.6 Could SYM action plus Super-Dirac action for quarks explain elementary
particle spectrum? 38

The original identification of particles (given up later) as single partonic 2-surface predicts
genus-generation correspondence without additional assumptions. Both old and new picture
predict also higher gauge boson genera for which some evidence exists: TGD predictions for
the masses are correct [K4].

5.6.3 Are quarks enough as fundamental fermions?

For the first option - call it Option a) - quarks and leptons would define their own super-spinors.
Whether only quark or lepton-like spinors are enough remains still an open question.

1. I have also considered the possibility that quarks are actually anti-leptons carrying homology
charge and have anomalous em charge equal to −1/3 units. One might perhaps say that
quarks are kind of anyonic states [K16]. It is however difficult to understand how the coupling
to Kähler form could be dynamical and have values n = −3 and n = 1 for homologically
neutral and charged states respectively. This would mean that only lepton like θ parameters
appear in super-coordinates and only leptonic Dirac action is needed.

2. For this option proton would be bound state of homologically charged leptons. This in
principle allows decays of type p→ e+... and p→ e+ +e+ +ν requiring that the 3 partonic 2-
surfaces fused with non-trivial homology charges fuse to single homologically trivial 2-surface.
This form of proton instability would be different from that of GUTs. The topology changing
process is expected to be slow. Is the introduction of two super-octonionic θ parameters
natural assignable to B and L or is single parameter enough?

3. The coupling to Kähler form is not explicitly visible on the bosonic action but is visible
in modified Dirac action. Could leptonic modified Dirac action transform to quark type
modified Dirac action? This does not seem plausible.

The super-Dirac action for quarks however suggests another option, call it Option b). Leptons
could be local 3-quark states.

1. Could one identify leptons as local 3 quark composites - essentially anti-baryons as far as
quantum numbers are considered - but with different p-adic scale and emerging from the
super-Dirac action for quarks as purely local states with super-degree d = 3? Could one
imagine totally new approach to the matter antimatter asymmetry?

Leptons would be purely local 3-quark composites and baryons non-local 3-quark composites
so that charge neutrality alone would would guarantee matter-antimatter symmetry at fun-
damental level. Anti-quark matter would prefer to be purely local and quark matter 3-local.
The small CP violation due to the M4 part of Kähler action forced by twistor lift should
explain this asymmetry.

2. The local baryons would have much simpler spectrum and would correspond for given genus
g (lepton generation) to the baryons formed from u and d quarks having however no color.
There would be no counterparts for higher quarks. This would suggests that (L, νL) could
be local analog of (p, n).

For ordinary baryons statistics is a problem and this led to the introduction of quark color
absent for local states. The isospin structure of the local analogs of p and n is not a problem.
In uud (udd) type states allowed by statistics the spins of the u (d) quarks must have opposite
spin. The analogs of ∆ resonances are not possible so that one would obtain only the analogs
of p and n!

3. The widely different mass scales for leptons and quarks would be due to locality making
possible different ramified primes for the extension of rationals. The widely differing p-adic
length scales of leptons and neutrinos could be undersood if the ramified prime for given
extension can be different for the particles super-multiplets with same degree of octonionic
polynomial. This could be caused by electroweak symmetry breaking. The vanishing elec-
troweak quantum numbers of right-handed neutrino implies a dynamics in sharp contrast
with that of neutron, whose dynamics would be dictated by non-locality.
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Also local pions are possible. The lepto-pions of lepto-hadron hypothesis [K22] could corre-
spond to either local pions or to pion-like bound states of lepton and anti-leptons. There is
evidence also for the muon- and tau-pions.

4. This idea might provide a mathematically extremely attractive solution to the matter anti-
matter asymmetry: matter and antimatter would be staring us directly into eyes. The
alternative TGD inspired solution would be that small CP breaking would induce oppo-
site matter-antimatter asymmetries inside long cosmic strings and in their exteriors so that
annihilation period would lead to the observed asymmetry.

The life-time for the decay modes predicted by GUTs is extremely long - longer than 1.67×1034

years (see http://tinyurl.com/nqco2j7). This fact provides a killer test for the proposal.
One should estimate the life-time of proton in number theoretic approach. The corresponding

SUSY vertex corresponds to a Wick contraction involving 4 terms in super-Dirac action: the
trilinear term for quarks and 3 linear terms.

1. The vertex would associated with a partonic 2-surface at which 3 incoming quark space-time
sheets and outgoing electron space-time sheet meet. At quark level the vertex means an
emanation of 3 quark lines from single 3-quark line at a point of partonic 2-surface in the
intersection of the ends of 4 space-time surfaces with 6-sphere t = rn defining a universal
root of octononic polynomial P (o). t is M4 time coordinate [L18]. The vertex itself does not
seem to be small.

2. A fusion of 3 homologically non-trivial partonic 2-surfaces to single partonic 2-surface with
trivial homology charge cannot occur since partonic 2-surfaces with different homology charge
cannot co-incide.

The reaction p → e+ + .. can occur only if the quark-like partonic 2-surface fuse first to
single homologically trivial partonic 2-surface: this would correspond to de-confinement phase
transition for quarks. After that the 3 quark lines would fuse to single e+ line.

(a) To gain some intuition consider two oppositely oriented circles around a puncture of
a plane with opposite homology charges. The circles can reconnect to homologically
trivial circle. Instead of circles one would now have 3 homologically trivial quark-like
2-surfaces at three light-like boundaries between Minkowskian and Euclidian regions of
the space-time surface representing proton. First 2 quark-like 2-surfaces would touch
and develop a wormhole contact connecting them. After that the resulting di-quark
2-surface and third quark 2-surface would fuse. The 3 quarks would be now analogous
to de-confined quarks.

(b) At the next step the 3 separate quark lines would fuse to single one. This process
must occur in single step since di-quark cannot correspond to single point because the
Dirac super-polynomial is odd in θ parameters. The fusion point would correspond to
3 degenerate roots of the octonionic polynomial associated with the partonic 2-surface.
This partonic 2-surface would be associated with t = rn hyperplane of M4 and it would
become leptonic 3-surface.

(c) 3 4-D sheets defined by the roots of the octonionic polynomial should meet at the
vertex assignable to t = rn hyper-plane. This gives 2 additional conditions besides
the conditions defining space-time sheets. This for both the protonic and positronic
space-time sheets. One would have double quantum criticality. The tip of a cusp
catastrophe serves as an analog. Since the coefficients of the octonionic polynomial are
rational numbers, it might be possible to estimate the probability for this to occur:
the probability could be proportional to the ratio N2/N0 of the number N2 of doubly
critical points to the number N0 of all points with coordinates in the extension. This
could make the process very rare.

5.6.4 What bosons the super counterpart of bosonic action predicts?

It has been already noticed that the spectra of fermion-antifermion states are identical for
local and bi-local states if one assumes that the wave function in the relative coordinate of

http://tinyurl.com/nqco2j7
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fermion and anti-fermion is symmetric. This does not yet imply that the particle spectrum
is realistic in the case of the bosonic action.

The situation is simplified considerably by the facts that color is not spin-like quantum
number but analogous to momentum and can therefore be forgotten, family replication can
be explained topologically, and depending B and L are separately conserved for Option a)
but for Option b) L reduces to B since leptons would be local 3-quark composites. Let us
restrict first the considered to Option b).

(a) What kind of spectrum would be predicted? Consider first quark Clifford algebra formed
by θ parameters defining the spartners of quark. Forgetting color, one has 8 states
coming from left and right handed weak doublet and their anti-doublets. The numbers
of elements in Clifford algebra with given lepton number N(q)−N(q) is given by N(q)−
N(q) =

∑
0 ≤ k ≤ 4− qB(4, q+k)×B(4, k) in terms of binomial coefficients. For B = 0

one obtains N(0) =
∑

0 ≤ k ≤ 4B(4, k)2 = 70 states. The states corresponding to the
same degree of octonion polynomial and therefore having fixed q + q = B + B have
same masses. For q − q = 0 bosonic state having q = q = 0 with fixed k one has
q + q = 4 + k so that one has N(k) = B(4, k)2 (N(k) states with same mass even after
p-adic massivation). The numbers N(k) are (1, 42 = 16, 62 = 36, 42 = 16, 1).

(b) The number of qq type states is 16. If one considers super-symmetrization of the bosonic
action, these states would correspond to bosons. Could these states allow an interpre-
tation in terms of the known gauge bosons and Higgs? Weak bosons correspond to 4
helicity doublets giving 8 states. Higgs doublet corresponds to doublet and its conjugate.
There is also a pseudo-scalar doublet and its conjugate.

Gluon cannot belong to this set of states, which actually conforms with the fact that
gluon corresponds to CP2 isometries rather than holonomies and gluon corresponds to
CP2 partial wave since color is not spin-like quantum number. Known particle would
give 8+2+2=12 states and pseudo-scalar doublets the remaining 4. This kind of pseudo-
scalar states are predicted both as local and the bi-local states. As already explained,
one can however also understand gluons in this picture as octet color partial waves. Also
color octet variants of SU(2)w weak bosons are predicted.

(c) There are actually some indications for a Higgs like state with mass 96 GeV (see http:

//tinyurl.com/yxnmy8c7) . Could this be the pseudo-scalar state. Higgs mass 125
GeV is very nearly the minimal mass for k = 89. The minimal mass for k = 90 would
be 88 GeV so that the interpretation as pseudo-scalar with k = 90 might make sense.
The proposal that gluons could have also weak counterparts suggests that also the
pseudo-scalar could have this kind of counterpart. The scaling of the mass of the Higgs
like state with k = 90 to k = 112 (k = 113 corresponds to nuclear p-adic scale) would
give mass m(107) = 37.5 MeV. Kh.U. Abraamyan et al have found evidence for pion
like boson with mass 38 MeV [?, ?, ?] (see http://tinyurl.com/y7zer8dw).

Option b) involving only quarks as fundamental fermions does not predict unobserved gauge
bosons whereas Option a) involving both leptons and quarks as fundamental fermions does
so.

(a) For Option a) taking into account quarks and restricting to electro-weak bosonic states
to those with (B = L = 0) leads to a doubling of bosonic states at k = 2 level.
The couplings of gauge bosons require that the states are superpositions of quark and
lepton pairs with coefficients proportional to the coupling parameters. There are two
orthogonal superpositions of quark and lepton pairs having orthogonal charge matrices
with inner product defined by trace for the product. Ordinary gauge bosons correspond
to the first combination.

The orthogonality of charge matrices gives a condition on them. The charged matrices
having vanishing trace can be chosen that they have opposite signs for opposite H-
chiralities. For charge matrices involving unit matrix one must have charge matrices
proportional to (-3,1) for (L,q) one must have (1,3) for second state. For gluons there
is no condition if one treats color octet as Lie algebra generator with vanishing trace.
The problem is that there is no experimental evidence for these bosons.

http://tinyurl.com/yxnmy8c7
http://tinyurl.com/yxnmy8c7
http://tinyurl.com/y7zer8dw
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(b) For Option b) leptons would be local 3-quark states and spartners of quarks. There
would be no doubling gauge bosons since only one H-chirality would be present. The
observed bosons would be basically superpositions of quark-anti-quark pairs - either
local or non-local.

There would be two phases of matter corresponding to local and bi-local states (baryons
would be 3-local states).

(a) For both phases electro-weak bosons and also gluons with electro-weak charge matrix
1 to bosonic super action as states involving only single partonic 2-surface. As already
mentioned, also color counterparts of SU(2)w bosons are possible. Also graviton could
correspond to spartner for bosonic super-action. This would give essentially the original
model for family replication. 2-surfaces would be homologically trivial in this phase
analogous to Coulomb phase.

(b) In the dual phase the bi-local states would correspond to non-vanishing homology
charges for quarks at least. In this phase one should assign also to leptons 2 worm-
hole contacts. In super-conducting phase it could the second electron of Cooper pair.
Massive photons in this phase would consist of homologically charged fermion pairs.
Lepton could also involve screening lepton-neutrino pair at second wormhole contact.

The universality of gauge boson couplings provides a test for the model.

(a) In bi-local model gauge bosons would correspond to representations of a dynamical
symmetry group SU(3)g associated with the 3 genera [K1]. Bosons would correspond
to octet and singlet representations and one expects that the 3 color neutral states are
light. This would give 3 gauge boson generations. Only the couplings of the singlet
representation of SU(3)g would be universal and higher generations would break uni-
versality both for both gluons and electro-weak bosons. There is evidence the breaking
of universality as also for second and third generation of some weak bosons and the
mass scales assigned with Mersenne primes above M89 are correct [K4].

(b) If also fermions correspond to closed flux tubes with 2 wormhole contacts, the fermion
boson couplings would correspond to the gluing of two closed flux tube strings along their
both “ends” defined by wormhole contacts. A pair of 3-vertices for Feynman diagrams
would be in question. If fermions are associated with single wormhole contact, its is not
so easy to imagine how the closed bosonic flux tube could transform to single wormhole
contact in the process. The wormhole contacts that meet and have opposite fermion
numbers should disappear. This is allowed in the scenario involving 6-branes if the
magnetic flux is trivial as it must be. For quarks and gluons the homology charges must
be opposite if wormhole contact is to disappear.

(c) If gauge bosons correspond to local fermion pairs, the most natural boson states have
fixed value of g apart from topological mixing giving rise to CKM mixing just like
fermions and universality is not natural. One can of course assume topological mixing
guaranteeing it. Ordinary gauge bosons should be totally de-localized in the space of
3 lowest genera [K1] (analogous to constant plane waves) in order to have universality.
The vertices could be understood as a fusion of partonic 2-surfaces. One should however
understand why the mixing is so different for fermions and bosons. SUSY would suggest
identical mixings.

The simplest model corresponds to quarks as fundamental fermions. Leptons and vari-
ous bosons would be local composites in perturbative phase. In monopole dominate phase
hadronic quarks would have homology charges and gluons would be pairs of quark and anti-
quark at opposite throats of closed monopoleflux tube. Basically particle reaction vertices
would correspond to gluing of 3-surfaces along partonic 2-surfaces at 3-spheres defining t = rn
hyperplanes of M4.
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5.6.5 What is the role of super-symplectic algebra?

This picture is not the whole story yet. Super-symplectic approach predicts that the super-
symplectic algebra (SSA) generated essentially by the Hamiltonians of S2×CP2 assignable to
the representations of SO(3)× SU(3) localized with the respect to the light-like radial coor-
dinate of light-cone boundary characterize the states besides electro-weak quantum numbers.
Color quantum numbers would correspond to Hamiltonians in octet representation. This
would predict huge number of additional states.

There are however gauge conditions stating that sub-algebra of SSA having radial conformal
weights coming as n-ples of SSA and isomorphic to SSA and its commutator with SSA
annihilate physical states. This reduces the degrees of freedom considerably but the number
of symplectic Hamiltonians is still infinite: measurement resolution very probably makes this
number to finite.

5.7 Finiteness for the number of non-vanishing Wick contractions,
quantum criticality, and coupling constant evolution

The consistency with number theoretic vision requires that the number of terms in the super-
Taylor expansion of action is finite - otherwise one is led out from the extension: this applies
both to the action determining space-time surfaces and to the corresponding modified Dirac
action. There are several options that one can consider.

(a) Normal ordering of the fermionic oscillator operators would be a straightforward manner
to handle the situation. One would obtain finite number of terms since the number of
quark oscillator operators is d = 4+4 = 8. The maximal degree mmax of multiple partial
derivative of action with respect to gradient of H-coordinate h would be mmax = d = 8
and correspond to monomial with 4+4 quark oscillator operators. Note that the normal
ordering of this term gives rise to c-number.

It however seems that the natural solution of the problem must involve cancellation
of the Wick contractions when the degree m of the multiple partial derivative satisfies
m > mmax. Some cancellation mechanism for m ≥ mmax should guarantee that Wick-
contractions give in this case a vanishing contribution to each of the d = 8 monomials
in the super-action.

(b) The strongest condition would be that all Wick contraction terms coming from the
normal ordering vanish. The contraction terms are expressible as divergences of cur-
rents and the interpretation would be in terms of Noether current associated with some
symmetry. Super-symplectic symmetry is the best candidate in this respect. Note
that besides these currents also the Noether currents coming from the super-symplectic
variations should have a vanishing divergence.

One can argue that if continuum variant of this picture exists, all contractions must
vanish since one would obtain powers of delta functions.

(c) One can consider also a weaker condition. Wick contractions vanish for m > mmax such
that mmax > 8 is possible. This would give rise to the analog of radiative corrections,
and if mmax can vary, one obtains the analog coupling constant evolution and discrete
coupling constant evolution corresponds to the variation of mmax.

How the value of mmax could be determined?

(a) M8 −H duality requires that M8- and H-pictures are structurally similar. Octonionic
polynomials are characterized by their order n and also the super-extremals should
be characterized by n and even the individual terms of super-polynomial should have
counterparts at H-level.

One can define super-octonionic polynomials at M8-level and also for these normal
ordering terms appear. Ordinary derivatives of P (o) with respect to o replace those
of the action with respect to the gradients of H coordinates, and one obtains only
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finite number of Wick contractions. There is no need to require their vanishing now,
and the hierarchy of degrees n = heff/h0 for P defines a discrete coupling constant
evolution with each level corresponding to its own values of coupling constants differing
by the number of Wick contractions. This gives a connection with the ordinary coupling
constant evolution with Wick contractions taking the role of loops.

This picture should have direct image at H-side. In particular, one should have mmax =
n.

(b) The cancellation of Wick contractions for the action containing both Kähler term and
cosmological term probably happens only for critical values of cosmological constant
determined dynamically from the mechanism of dimensional reduction reducing 6-D
surface in the product of twistor spaces T (M4) = M4×S2 and T (CP2) = SU(3)/U(1)×
U(1) to S2 bundle over space-time surface representing induced twistor structure. The
cancellation condition for the higher terms could fix the value of cosmological constant
emerging from the mechanism.

(c) The picture could be interpreted in terms of quantum criticality. The polynomials P (o)
characterize quantum critical phases. Also Taylor series can be considered but they
would not be critical and infinite amount of information would be required to specify
them whereas the specification of critical dynamics requires by its universality only a
finite number of parameters coded by the rational coefficients of polynomial.

Criticality corresponds to the vanishing of not only function but also some of its deriva-
tives at critical point. The criticality would be now infinite in the sense that all deriva-
tives of P (o) higher than n would vanish. This is indeed the view about quantum
criticality that I ended up to long time ago. This implies that the parameter space for
the functions describing criticality is finite-dimensional.

In Thom’s catastrophe theory which essentially describes a hierarchy of criticalities
concretely, the finite-dimension of the space of control parameters is essential. For cusp
catastrophe this space is 2-dimensional and catastrophe graph is defined by a fourth
order polynomial so that all higher order derivatives vanish identically also now.

(d) At the level of H criticality would mean that m-fold partial derivatives of action only
up to m = mmax = n-fold partial derivatives contribute to the radiative corrections.
The action would be polynomial of finite order in the multi-spinor components of super-
coordinates and discrete coupling constant evolution would be realized. The ordinary
variations of the action would be of course non-vanishing to arbitrary high order.

Coupling constant evolution would reduce to the hierarchy of extensions of rationals
since the degree n of P determines the dimension of extension. Evolution in terms
of the hierarchy of extensions of rationals would dictate also coupling constant evolu-
tion. This evolution would also dictate the preferred p-adic length scales if preferred
p-adic primes are identifiable as ramified primes. Ramified primes at the lowest level of
hierarchy are ramified primes at higher levels if P (0) = 0 condition is true for them. Evo-
lutionary hierarchies correspond to functional composition hierarchies for polynomials
with degrees ni such that ni+1 is divisible with ni that is ni+1/ni = ki.

Remark: Functional composition occurs also in the construction of fractals like Man-
delbrot fractal and as a special case one iterates single polynomial to get a hierarchy
in powers of integers n1. This interpretation would conform with the interpretation of
the symmetries guaranteeing the cancellation of Wick terms as super-symplectic sym-
metries.

(e) A connection with the inclusion hierarchies for super-symplectic algebra is highly sug-
gestive. The fractal hierarchy of super-symplectic sub-algebras (fractality and conformal
symmetry - now in generalized sense - are essential for quantum criticality) with levels
labelled by n would naturally give rise to counterparts of the functional composition
hierarchies.

Inclusion hierarchies would correspond to sub-hierarchies of super-symplectic algebras
formed by sequences of sub-algebras with weights divisible by integer ni such that ni
divides ni+1. ni would correspond to a degree of polynomial in the hierarchy formed by
their compositions in accordance with functional composition of polynomials.
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(f) The inclusion hierarchies of super-symplectic algebras would have interpretation in terms
of inclusions of hyper-finite factors of type II1. The ratios ni+1/ni = ki appearing in
the composition hierarchies would correspond to the integers labelling the inclusions of
HFFs and defining quantum phases U = exp(iπ/ki) characterizing quantum algebras
and quantum spaces as analogs of state spaces modulo finite measurement resolution
[K25, K14].

The interpretation of finite measurement resolution as an ability to detect only space-
time sheets characterized by polynomials of order n below some fixed integer is natural.
n would characterize the measurement resolution.

To sum up, this picture rather neatly fuses together several speculative visions about quantum
TGD. The reduction of dynamics to polynomial dynamics at the level of M8 has interpre-
tation in terms of quantum criticality with finite-D space of control parameters implying
universal dynamics involving very few coupling parameters, which are fixed points of cou-
pling constant evolution for given value of n. M8−H duality maps M8 dynamics to the level
of H, where it is realized in terms of a hierarchy of sub-algebras of super-symplectic algebra
and sub-hierarchies correspond to sequences of integers ni dividing ni+1. A connection with
the inclusions of HFFs and finite measurement resolution emerges. The notion of discrete
coupling constant evolution finds a precise formulation, and the notion of radiation correction
is realized in terms of Wick contractions.

5.7.1 How the earlier vision about coupling constant evolution would be modi-
fied?

In [L15, L11] I have considered a vision about coupling constant evolution assuming twistor
space T (M4) = M4×S2. In this model the interference of the Kähler form made possible by
the same signature of S2(M4) and S2(CP2) gives rise to a length scale dependent cosmological
constant appearing defining the running mass squared scale of coupling constant evolution.

For T (M4) identified as CP3(3, h) the signatures of twistor spheres are opposite and Kähler
forms differ by factor i (imaginary unit commuting with octonion units) so that the induced
Kähler forms do not interfere anymore. The evolution of cosmological constant must come
from the evolution of the ratio of the radii of twistor spaces (twistor spheres). This forces to
modify the earlier picture.

(a) M8 −H duality has two alternative forms with H = CP2,h × CP2 or H = M4 × CP2

depending on whether one projects the twistor spheres of CP3,h to CP2,h or M4. Let
us denote the twistor space SU(3)/U(1)× U(1) of CP2 by F .

(b) The key idea is that the p-adic length scale hierarchy for the size of 8-D CDs and
their 4-D counterparts is mapped to a corresponding hierarchy for the sizes of twistor
spaces CP3,h assignable to M4 by M8 −H-duality. By scaling invariance broken only
by discrete size scales of CDs one can take the size scale of CP2 as a unit so that
r = R2(S2(CP3,h)/R(S2(F )) becomes an evolution parameter.

Coupling constant evolution must correspond to a variation for the ratio of r = R2(S2(CP3,h)/R(S2(F ))
and a reduction to p-adic length scale evolution is expected. A simple argument shows
that Λ is inversely proportional to constant magnetic energy assignable to S2(X4) di-
vided by 1/

√
g2(S2) in dimensional reduction needed to induce twistor structure. Thus

one has Λ ∝ 1/r2 ∝ 1/L2
p. Preferred p-adic primes would be identified as ramified

primes of extension of rationals defining the adele so that coupling constant evolution
would reduce to number theory.

(c) The induced metric would vanish for R(S2(CP3,h) = R(S2(F )). Λ would be infinite at
this limit so that one must have R(S2(CP3,h) 6= R(S2(F )). The most natural assump-
tion is that one R(S2(CP3,h) > R(S2(F )) but one cannot exclude the alternative option.
Λ behaves like 1/L2

p. Inversions of CDs with respect to the values of the cosmological
time parameter a = Lp would produce hierarchies of length scales, in particular p-adic
length scales coming as powers of

√
p. CP2 scale and the scale assignable to cosmolog-

ical constant could be seen as inversions of each other with respect to a scale which is
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of order 10−4 meters defined by the density of dark energy in the recent Universe and
thus biological length scale.

(d) The original model for the length scale evolution of coupling parameters [L15] would
reduce to that along paths at S2(CP2) and would depend on the ends points of the
path only. This picture survives as such. Also in the modified picture the zeros of
Riemann zeta could naturally correspond to the quantum critical points as fixed points
of evolution defining the coupling constants for a given extension of rationals.

Space-time surfaces the level of M8 would be determined by octonionic polynomials
determined by real polynomials with rational coefficients. The non-critical values of
couplings might correspond to the values of the couplings for space-time surfaces as-
sociated with octonion analytic functions determined by real analytic functions with
rational Taylor coefficients.

5.8 S-matrix and SUSY

The construction of S-matrix has been one of the eternity projects of TGD. There are many
proposals such as the construction based on the quaternionic generalization of twistor Grass-
mannian approach for cognitive representations involving huge simplification due to the van-
ishing of loop diagrams [L12, L23, L22] but also this approach is indirect. SUSY in TGD
sense finally suggests a quite concrete fundamental approach.

(a) The construction would be based on the explicit solution of the super-symmetrized field
equations. In principle everything reduces formally to classical partial differential equa-
tions for super-space-time surface and super-spinors. One solves preferred extremal as
its super-variants which means solving the space-time evolution of multi-spinors defin-
ing super-coordinates and in this background one solves super-Dirac equation. This is
highly non-trivial but in principle a well-defined procedure. If one gives initial values of
various multi-spinor mods at the first light-like boundary of causal diamond (CD), one
can deduce super-spinor field at opposite boundary of CD and express it as a superpo-
sition of its basic modes with well-defined quark number and other quantum numbers.
This gives S-matrix.

(b) Situation simplifies dramatically for discrete cognitive representation replacing space-
time surface with the set of points having imbedding space coordinates in extension of
rationals defining the adele. Since finite set of points defining the preferred time scales
t = rn as roots of a real polynomial determines the octonionic polynomia, M8 − H
duality raises the hope that the discretization provided by cognitive representation is
exact and improvement in UV/IR resolution means addition of new space-time sheets
with smaller/bigger size.

(c) Partonic 2-surfaces define topological vertices. They are identified as intersections of in-
coming particle like 4-surfaces as roots of octonionic polynomials with 6-sphere defining
analogs of branes in M8 as universal roots of octonionic polynomials and having M4

time t = rn hyperplanes of M4 as their intersections.

Multi-quark-antiquark vertices at partonic 2-surfaces are points of cognitive represen-
tation having H-coordinates in an extension of rationals (or at least their pre-images in
M8 have this property). Lines defining local multi-quark states fuse and split again into
new states in quark number conserving manner. Vertices are super-symmetric in TGD
sense and determined as vacuum expectations of the bosonic action and super-Dirac
action and analogous to those defined by θ integration in SUSY.

(d) The counterparts of radiative corrections of QFTs are Wick contraction terms for the
fermionic oscillator operators. M8 − H duality requires that their contribution from
partial multi-derivatives of order higher than the order n of the octonionic polynomial
are vanishing. This leads to the conditions having interpretation as conservation of
Noether currents of symmetries. As n increases, the number of Wick contractions
increases and this gives rise to discrete coupling constant evolution as function of the
dimension of extension of rationals defined by the octonionic polynomial.
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(e) No further quantization is needed since super-symmetrization corresponds to second
quantization. This is part of the realization of the dream about geometrizing also
quantum theory. This should have been realized long time ago also by colleagues since
SUSY algebra is Clifford algebra like also oscillator operator algebra.

5.9 M8 −H duality and SUSY

M8−H duality and heff/h0 = n hypothesis pose strong constraints on SUSY in TGD sense.

(a) heff/h0 = n interpreted as dimension of extension of rationals gives constraints. Galois
extensions are defined by irreducible monic polynomials P (t) extended to octonionic
polynomials, whose roots correspond to 4-D space-surfaces and in special case 6-spheres
at 7-D light-cones of M8 taking the role of branes.

The condition that the roots of extension defined by Q are preserved for larger extension
P ◦Q is satisfied if P has zero as root:

P (0) = 0 .

This simple observation is of crucial importance, and suggests an evolutionary hierarchy
P ◦ Q with simplest possible polynomials Q at the bottom of the hierarchy are very
naturally assignable to elementary particles. These polynomials have degree two and
are of form Q = x2 ± n. Discriminant equals to D = 2n and has the prime factors of n
as divisors defining ramified primes identified as p-adic primes assignable to particles.

Remark: Also polynomials P (t) = t − c are in principle possible. The corresponding
space-time surfaces at the level of H would be M4 and CP2 and they are extremals of
Kähler action but do not have particle interpretation.

(b) Octonionic super-polynomials decompose to a sum of octonionic polynomials with θ
monomials having varying degree d. One can assign octonionic super-coordinates to
both leptons and quarks for Option a). Option b) identifying leptons as local 3-quark
local composites and thus spartners of quarks would mean that quarks (anti-quark)
appear in the octonionic polynomial (its conjugate). This would realize SO(1, 7) triality.

(c) This has important implications for SUSY in TGD sense. The degree d for the monomial
of super-octonion polynomial in M8 would corresponds to the degree d = F +F for the
super-field in H. The number of fermions and anti-fermions giving rise to spartner is d.

If the degree n of the octonionic polynomial is smaller than the number N = 16 of
maximal degree of θ polynomial, only a fraction of spartners are possible. SUSY is
realized only partially and one can say that part of spartners are absent at the lowest
levels of evolutionary hierarchy. At the lowest level of hierarchy corresponding to n = 2
only fermions (quarks) would be present as local states and would form non-local states
such as baryons and mesons. Gauge bosons and Higgs like state would be bi-local states
and graviton 4-local state.

Remark: Gauge bosons and Higgs like states as local fermion-anti-fermion composites
at level n = 2× 2. For the option involving only quarks (color is not spin like quantum
number). Note that the value of n0 = 3×2 = 6 in h = n0×h0 suggested by the findings
of Randel Mills [L2, L10] would allow the known elementary particles.

5.10 How is the p-adic mass scale determined?

p-Adic prime identified as a ramified prime of extension of rationals is assumed to determine
the p-adic mass scale. There are however several ramified primes and somehow the quantum
numbers of particle should dictate with ramified prime is chosen. There are two options
to consider depending on whether both the extension and ramified prime are same for all
spartners Option 1) or whether spartners can have different ramified primes (Option 2)).
There also options depending on whether both leptons and quarks appear in their own
super-Dirac actions (Option a) or whether only quarks appear in super-Dirac action (Option
b). Call the 4 composite options Option 1a), 2a), 1b), 2b) respectively.
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(a) Consider first Options 1a) and 1b). The ramified prime is same for all states corre-
sponding to the same degree of θ monomial and thus same value of F + F . At the
lowest k = 2 level containing only fermions as local states the p-adic thermal masses
of quarks and leptons are same for Option 1a) at least for single generation and for all
generations if Q2 does not depend on the genus g of the partonic 2-surface. For Option
1b) the masses would not be same for leptons and quarks since they would correspond to
different degrees of super-octonionic polymials. For both options would have n = n(g).

(b) For Option 2 ramified prime depends on the state of the SUSY multiplet. This would
require that for fermions with k = 2 the integer n in Q2(x) = x2 ± n has the p-adic
primes assignable to leptons and quarks as factors.

There are 6 different quarks and 6 different leptons with different p-adic mass scales.
For Option 2a) n should have 12 prime factors which are near to power of 2. For leptons
the factors correspond to Mersenne primes Mk, k ∈ {107, 127} and Gaussian Mersenne
k = 113. Gaussian Mersenne is complex integer. TGD requires complexification of
octonions with imaginary unit i commuting with octonionic units so that also Gaussian
primes are possible. This would resolve the question whether P (t) can have complex
coefficients m+ in.

For option 2b) quarks and leptons as local proton and neutron would have different
extensions since the polynomials would be different. The p-adic primes for 6 quark
states quarks would depend on genus. The value of n need not depend on genus g since
the ramified primes p depends on g: p = p(g).

Since the polynomials describing higher levels of the dark hierarchy would be composites
P ◦Q2 with P (0) = 0, Q2 would be a really fundamental polynomial in TGD Universe.
For Option 2b) it would be associated with quarks and would code for the elementary
particles physics. The higher levels such as leptons would represent dark matter levels.

(c) The crucial test is whether the mass scales of gauge bosons can be understood. If one
assumes additivity of p-adic mass squares so that the masses for 2-local bosons would
be p-adically sums of mass squared at the “ends” of the flux tube. If the discriminant
D = 2n of Q2 contains high enough number of factors this is possible. The value of the
factor p for photon would be rather larger from the limits on photon mass. For graviton
the value p would be even larger.

To sum up, the vision about dark phases suggests that the monopole phase is possible already
for the minimal value n = 2 involving only fundamental quarks for Option 2b), which is the
simplest one and could solve the probelm of matter antimatter asymmetry. Bosons and
leptons as purely local composites of quarks are possible for n = 6. Rather remarkably, also
empirical constraints [L2, L10] led to the conclusion h = 6h0. The condition is actually
weaker: h/h0 mod 6 = 0.

6 Could standard view about twistors work at space-
time level after all?

While asking what super-twistors in TGD might be, I became critical about the recent view
concerning what I have called geometric twistor space of M4 identified as M4 × S2 rather
than CP3 with hyperbolic metric. The basic motivations for the identification come from
M8 picture in which there is number theoretical breaking of Poincare and Lorentz symme-
tries. Second motivation was that M4

conf - the conformally compactified M4 - identified as
group U(2) [B1] (see http://tinyurl.com/y35k5wwo) assigned as base space to the stan-
dard twistor space CP3 of M4, and having metric signature (3,-3) is compact and is stated
to have metric defined only modulo conformal equivalence class.

As found in the previous section, TGD strongly suggests that M4 in H = M4 ×CP2 should
be replaced with hyperbolic variant of CP2, and it seems to me that these spaces are not
identical. Amusingly, U(2) and CP2 are fiber and base in the representation of SU(3) as
fiber space so that the their identification does not seem plausible.

http://tinyurl.com/y35k5wwo
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On can however ask whether the selection of a representative metric from the conformal
equivalence class could be seen as breaking of the scaling invariance implied also by ZEO
introducing the hierarchy of CDs in M8. Could it be enough to have M4 only at the level of
M8 and conformally compactified M4 at the level of H? Should one have H = cdconf×CP2?
What cdconf would be: is it hyperbolic variant of CP2?

6.1 Getting critical

The only way to make progress is to become very critical now and then. These moments of
almost despair usually give rise to a progress. At this time I got very critical about the TGD
inspired identification of twistor spaces of M4 and CP2 and their properties.

6.1.1 Getting critical about geometric twistor space of M4

Let us first discuss the recent picture and how to modify it so that it is consistent with the
hierarchy of CDs. The key idea is that the twistor space and its base space represents CD so
that one obtains scale hierarchy of twistor spaces as a realization of broken scale invariance
giving rise to the p-adic length scale hierarchy.

(a) I have identified the twistor space of M4 simply as T (M4) = M4 × S2. The inter-
pretation would be at the level of octonions as a product of M4 and choices of M2 as
preferred complex sub-space of octonions with S2 parameterizing the directions of spin
quantization axes. Real octonion axis would correspond to time coordinate. One could
talk about the space of of light-like directions. Light-like vector indeed defines M2. This
view could be defended by the breaking of both translation and Lorentz invariance in
the octonionic approach due to the choice of M2 and by the fact that it seems to work.

Remark: M8 = M4 × E4 is complexified to M8
c by adding a commuting imaginary

unit i appearing in the extensions of rationals and ordinary M8 represents its particular
sub-space. Also in twistor approach one uses often complexified M4.

(b) The objection is that it is ordinary twistor space identifiable as CP3 with (3,-3) signature
of metric is what works in the construction of twistorial amplitudes. CP3 has metric as
compact space and coset space. Could this choice of twistor space make sense after all
as geometric twistor space?

Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X4 ⊂M4×CP2. Now Poincare symmetry has been transformed
to a symmetry acting at the level of M8 in the moduli space of octonion structures
defined by the choice of the direction of octonionic real axis reducing Poincare group to
T ×SO(3) consisting of time translations and rotations. Fixing of M2 reducrs the group
to T × SO(2) and twistor space can be seen as the space for selections of quantization
axis of energy and spin.

(c) But what about the space H? The first guess is H = M4
conf × CP2. According to [B1]

(see http://tinyurl.com/y35k5wwo) one has M4
conf = U(2) such that U(1) factor

is time- like and SU(2) factor is space-like. One could understand M4
conf = U(2)

as resulting by addition and identification of metrically 2-D light-cone boundaries at
t = ±∞. This is topologically like compactifying E3 to S3 and gluing the ends of
cylinder S3 ×D1 together to the S3 × S1.

The conformally compactified Minkowski space M4
conf should be analogous to base

space of CP3 regarded as bundle with fiber S2. The problem is that one cannot imagine
an analog of fiber bundle structure in CP3 having U(2) as base. The identification
H = M4

conf × CP2 does not make sense.

(d) In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog
of M4

conf - call it cdconf . The only candidate is cdconf = CP2 with one hypercomplex
coordinate. To understand why one can start from the following picture. The light-
like boundaries of CD are metrically equivalent to spheres. The light-like boundaries at

http://tinyurl.com/y35k5wwo
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t = ±∞ are identified as in the case of M4
conf . In the case of CP2 one has 3 homologically

trivial spheres defining coordinate patches. This suggests that cdconf is simply CP2 with
second complex coordinate made hypercomplex. M4 and E4 differ only by the signature
and so would do cdconf and CP2.

The twistor spheres of CP3 associated with points of M4 intersect at point if the points
differ by light-like vector so that one has and singular bundle structure. This structure
should have analog for the compactification of CD. CP3 has also bundle structure CP3 →
CP2. The S2 fibers and base are homologically non-trivial and complex analogs of
mutually orthogonal line and plane and intersect at single point. This defines the
desired singular bundle structure via the assignment of S2 to each point of CP2.

The M4 points must belong to the interior of cd and this poses constraints on the
distance of M4 points from the tips of cd. One expects similar hierarchy of cds at the
level of momentum space.

(e) In this picture M4
conf = U(2) could be interpreted as a base space for the space of CDs

with fixed direction of time axis identified as direction of octonionic real axis associated
with various points of M4 and therefore of M4

conf . For Euclidian signature one would
have base and fiber of the automorphism sub-group SU(3) regarded as U(2) bundle over
CP2: now one would have CP2 bundle over U(2). This is perhaps not an accident, and
one can ask whether these spaces could be interpreted as representing local trivialization
of SU(3) as U(2)×CP2. This would give to metric cross terms between U(2) and CP2.

(f) The proposed identification can be tested by looking whether it generalizes. What
the twistor space for entire M8 would be? cd = CD4 is replaced with CD8 and the
discussion of the preceding chapter demonstrated that the only possible identification
of the twistor space is now is as the 12-D hyperbolic variant of HP3 whereas CD8,conf

would correspond to 8-D hyperbolic variant of HP2 analogous to hyperbolic variant of
CP2.

The outcome of these considerations is surprising.

(a) One would have T (H) = CP3 × F and H = CP2,H ×CP2 where CP2,H has hyperbolic
metric with metric signature (1,−3) having M4 as tangent space so that the earlier
picture can be understood as an approximation. This would reduce the construction
of preferred extremals of 6-D Kähler action in T (H) to a construction of polynomial
holomorphic surfaces and also the minimal surfaces with singularities at string world
sheets should result as bundle projection. Since M8−H duality must respect algebraic
dynamics the maximal degree of the polynomials involved must be same as the degree
of the octonionic polynomial in M8.

(b) The hyperbolic variant Kähler form and also spinor connection of hyperbolic CP2 brings
in new physics beyond standard model. This Kähler form would serve as the analog of
Kähler form assigned to M4 earlier, and suggested to explain the observed CP breaking
effects and matter antimatter asymmetry for which there are two explanations [L20].

Some comments about the Minkowskian signature of the hyperbolic counterparts of CP3 and
CP2 are in order.

(a) Why the metric of CP3 could not be Euclidian just as the metric of F? The basic
objection is that propagation of fields is not possible in Euclidian signature and one
completely loses the earlier picture provided by M4 × CP2. The algebraic dynamics in
M8 picture can hardly replace it.

(b) The map assigning to the point M4 a point of CP3 involves Minkowskian sigma matrices
but it seems that the Minkowskian metric of CP3 is not explicitly involved in the
construction of scattering amplitudes. Note however that the antisymmetric bi-spinor
metric for the spin 1/2 representation of Lorentz group and its conjugate bring in the
signature. U(2, 2) as representation of conformal symmetries suggests (2, 2) signature
for 8-D complex twistor space with 2+2 complex coordinates representing twistors.
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The signature of CP3 metric is not explicitly visible in the construction of twistor am-
plitudes but analytic continuations are carried out routinely. One has also complexified
M4 and M8 and one could argue that the problems disappear. In the geometric sit-
uation the signatures of the subspaces differ dramatically. As already found, analytic
continuation could allow to define the variants of twistor spaces elegantly by replacing
a complex coordinate with a hyperbolic one.

Remark: For E4 CP3 is Euclidian and if one has E4
conf = U(2), one could think of re-

placing the Cartesian product of twistor spaces with SU(3) group having M4
conf = U(2)

as fiber and CP2 as base. The metric of SU(3) appearing as subgroup of quaternionic
automorphisms leaving M4 ⊂M8 invariant would decompose to a sum of M4

conf metric

and CP2 metric plus cross terms representing correlations between the metrics of M4
conf

and CP2. This is probably mere accident.

6.1.2 M8 −H duality and twistor space counterparts of space-time surfaces

It seems that by identifying CP3,h as the twistor space of M4, one could develop M8 − H
duality to a surprisingly detailed level from the conditions that the dimensional reduction
guaranteed by the identification of the twistor spheres takes place and the extensions of
rationals associated with the polynomials defining the space-time surfaces at M8- and twistor
space sides are the same. The reason is that minimal surface conditions reduce to holomorphy
meaning algebraic conditions involving first partial derivatives in analogy with algebraic
conditions at M8 side but involving no derivatives.

(a) The simplest identification of twistor spheres is by z1 = z2 for the complex coordinates of
the spheres. One can consider replacing zi by its Möbius transform but by a coordinate
change the condition reduces to z1 = z2.

(b) At M8 side one has either RE(P ) = 0 or IM(P ) = 0 for octonionic polynomial obtained
as continuation of a real polynomial P with rational coefficients giving 4 conditions
(RE/IM denotes real/imaginary part in quaternionic sense). The condition guarantees
that tangent/normal space is associative.

Since quaternion can be decomposed to a sum of two complex numbers: q = z1 +
Jz2 RE(P ) = 0 correspond to the conditions Re(RE(P )) = 0 and Im(RE(P )) = 0.
IM(P ) = 0 in turn reduces to the conditions Re(IM(P )) = 0 and Im(IM(P )) = 0.

(c) The extensions of rationals defined by these polynomial conditions must be the same as
at the octonionic side. Also algebraic points must be mapped to algebraic points so that
cognitive representations are mapped to cognitive representations. The counterparts of
both RE(P ) = 0 and IM(P ) = 0 should be satisfied for the polynomials at twistor side
defining the same extension of rationals.

(d) M8 −H duality must map the complex coordinates z11 = Re(RE) and z12 = Im(RE)
(z21 = Re(IM) and z22 = Im(IM)) at M8 side to complex coordinates ui1 and ui2
with ui1(0) = 0 and ui2(0) = 0 for i = 1 or i = 2, at twistor side.

Roots must be mapped to roots in the same extension of rationals, and no new roots
are allowed at the twistor side. Hence the map must be linear: ui1 = aizi1 + bizi2 and
ui2 = cizi1 + dizi2 so that the map for given value of i is characterized by SL(2,Q)
matrix (ai, bi; ci, di).

(e) These conditions do not yet specify the choices of the coordinates (ui1, ui2) at twistor
side. At CP2 side the complex coordinates would naturally correspond to Eguchi-
Hanson complex coordinates (w1, w2) determined apart from color SU(3) rotation as a
counterpart of SU(3) as sub-group of automorphisms of octonions.

If the base space of the twistor space CP3,h of M4 is identified as CP2,h, the hyper-
complex counterpart of CP2, the analogs of complex coordinates would be (w3, w4) with
w3 hypercomplex and w4 complex. A priori one could select the pair (ui1, ui2) as any pair
(wk(i), wl(i)), k(i) 6= l(i). These choices should give different kinds of extremals: such
as CP2 type extremals, string like objects, massless extremals, and their deformations.
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String world sheet singularitees and world-line singularities as their light-like boundaries at
the light-like orbits of partonic 2-surfaces are conjectured to characterize preferred extremals
as surfaces of H at which there is a transfer of canonical momentum currents between Kähler
and volume degrees of freedom so that the extremal is not simultaneously an extremal of
both Kähler action and volume term as elsewhere. What could be the counteparts of these
surfaces in M8?

(a) The interpretation of the pre-images of these singularities in M8 should be number
theoretic and related to the identification of quaternionic imaginary units. One must
specify two non-parallel octonionic imaginary units e1 and e2 to determine the third one
as their cross product e3 = e1×e2. If e1 and e2 are parallel at a point of octonionic sur-
face, the cross product vanishes and the dimension of the quaternionic tangent/normal
space reduces from D = 4 to D = 2.

(b) Could string world sheets/partonic 2-surfaces be images of 2-D surfaces in M8 at which
this takes place? The parallelity of the tangent/normal vectors defining imaginary units
ei, i = 1, 2 states that the component of e2 orthogonal to e1 vanishes. This indeed gives
2 conditions in the space of quaternionic units. Effectively the 4-D space-time surface
would degenerate into 2-D at string world sheets and partonic 2-surfacesa as their duals.
Note that this condition makes sense in both Euclidian and Minkowskian regions.

(c) Partonic orbits in turn would correspond surfaces at which the dimension reduces to
D=3 by light-likeness - this condition involves signature in an essential manner - and
string world sheets would have 1-D boundaries at partonic orbits.

6.1.3 Getting critical about implicit assumptions related to the twistor space
of CP2

One can also criticize the earlier picture about implicit assumptions related the twistor spaces
of CP2.

(a) The possibly singular decomposition of F to a product of S2 and CP2 would has a
description similar to that for CP3. One could assign to each point of CP2 base homo-
logically non-trivial sphere intersecting it orthogonally.

(b) I have assumed that the twistor space T (CP2) = F = SU(3)/U(1)×U(1) allows Kaluza-
Klein type metric meaning that the metric decomposes to a sum of the metrics assignable
to the base CP2 and fiber S2 plus cross terms representing interaction between these
degrees of freedom. It is easy to check that this assumption holds true for Hopf fibration
S3 → S2 having circle U(1) as fiber (see http://tinyurl.com/qbvktsx). If Kaluza-
Klein picture holds true, the metric of F would decompose to a sum of CP2 metric and
S2 metric plus cross terms representing correlations between the metrics of CP2 and
S2.

(c) One should demonstrate that F = SU(3)/U(1) × U(1) has metric with the expected
Kaluza-Klein property. One can represent SU(3) matrices as products XY Z of 3 matri-
ces. X represents a point of base space CP2 as matrix, Y represents the point of the fiber
S2 = U(2)/U(1) × U(1) of F in similar manner as U(2) matrix, and the Z represents
U(1)× U(1) element as diagonal matrix [B1](see http://tinyurl.com/y6c3pp2g).

By dropping U(1) × U(1) matrix one obtains a coordinatization of F . To get the line
element of F in these coordinates one could put the coordinate differentials of U(1)×U(1)
to zero in an expression of SU(3) line element. This should leave sum of the metrics of
CP2 and S2 with constant scales plus cross terms. One might guess that the left- and
righ-invariance of the SU(3) metric under SU(3) implies KK property.

Also CP3 should have the KK structure if one wants to realize the breaking of scaling in-
variance as a selection of the scale of the conformally compactified M4. In absence of KK
structure the space-time surface would depend parametrically on the point of the twistor
sphere S2.

http://tinyurl.com/qbvktsx
http://tinyurl.com/y6c3pp2g
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6.2 The nice results of the earlier approach to M4 twistorialization

The basic nice results of the earlier picture should survive in the new picture.

(a) Central for the entire approach is twistor lift of TGD replacing space-time surfaces with
6-D surfaces in 12-D T (M4) × T (CP2) having space-time surfaces as base and twistor
sphere S2 as fiber. Dimensional reduction identifying twistor spheres of T (M4) an
T (CP2) and makes these degrees of freedom non-dynamical.

(b) Dimensionally reduced action 6-D Kähler action is sum of 4-D Kähler action and a
volume term coming from S2 contribution to the induced Kähler form. On interpretation
is as a generalization of Maxwell action for point like charge by making particle a 3-
surface.

The interpretation of volume term is in terms of cosmological constant. I have pro-
posed that a hierarchy of length scale dependent cosmological constants emerges. The
hierarchy of cosmological constants would define the running length scale in coupling
constant evolution and would correspond to a hierarchy of preferred p-aic length scales
with preferred p-adic primes identified as ramified primes of extension of rationals.

(c) The twistor spheres associated M4 × S2 and F were assumed to have same radii and
most naturally same Euclidian signature: this looks very nice since there would be only
single fundamental length equal to CP2 radius determining the radius of its twistor
sphere. The vision to be discussed would be different. There would be no fundamental
scale and length scales would emerge through the length scale hierarchy assignable to
CDs in M8 and mapped to length scales for twistor spaces.

The identification of twistor spheres with same radius would give only single value of
cosmological constant and the problem of understanding the huge discrepancy between
empirical value and its naive estimate would remain. I have argued that the Kähler
forms and metrics of the two twistor spheres can be rotated with respect to each other
so that the induced metric and Kähler form are rotated with respect to each other, and
the magnetic energy density assignable to the sum of the induced Kähler forms is not
maximal.

The definition of Kähler forms involving preferred coordinate frame would gives rise to
symmetry breaking. The essential element is interference of real Kähler forms. If the
signatures of twistor spheres were opposite, the Kähler forms differ by imaginary unit
and the interference would not be possible.

Interference could give rise to a hierarchy of values of cosmological constant emerging as
coefficient of the Kähler magnetic action assignable to S2(X4) and predict length scale
dependent value of cosmological constant and resolve the basic problem related to the
extremely small value of cosmological constant.

(d) One could criticize the allowance of relative rotation as adhoc: note that the resulting
cosmological constant becomes a function depending on S2 point. For instance, does
the rotation really produce preferred extremals as minimal surfaces extremizing also
Kähler action except at string world sheets? Each point of S2 would correspond to
space-time surface X4 with different value of cosmological constant appearing as a
parameter. Moreover, non-trivial relative rotation spoils the covariant constancy and
J2(S2) = −g(S2) property for the S2 part of Kähler form, and that this does not
conform with the very idea of twistor space.

(e) One nice implication would be that space-time surfaces would be minimal surfaces
apart from 2-D string world sheet singularities at which there is a transfer of canonical
momentum currents between Kähler and volume degrees of freedom. One can also
consider the possibility that the minimal surfaces correspond to surfaces give as roots of
3 polynomials of hypercomplex coordinate of M2 and remaining complex coordinates.

Minimal surface property would be direct translation of masslessness and conform with
the twistor view. Singular surfaces would represent analogs of Abelian currents. The
universal dynamics for minimal surfaces would be a counterpart for the quantum crit-
icality. At M8 level the preferred complex plane M2 of complexified octonions would
represent the singular string world sheets and would be forced by number theory.
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Masslessness would be realized as generalized holomorphy (allowing hyper-complexity
in M2 plane) as proposed in the original twistor approach but replacing holomorphic
fields in twistor space with 6-D twistor spaces realized as holomorphic 6-surfaces.

6.3 ZEO and twistorialization as manners to introduce scales in M8

physics

M8 physics as such has no scales. One motivation for ZEO is that it brings in the scales as
sizes of causal diamonds (CDs).

6.3.1 ZEO generates scales in M8 physics

Scales are certainly present in physics and must be present also in TGD Universe.

(a) In TGD Universe CP2 scale plays the role of fundamental length scale, there is also
the length scale defined by cosmological constant and the geometric mean of these two
length scales defining a scale of order 10−4 meters emerging in the earlier picture and
suggesting a biological interpretation.

The fact that conformal inversion mk → R2mk/a2, a2 = mkmk is a conformal trans-
formation mapping hyperboloids with a ≥ R and a ≤ R to each other, suggests that
one can relate CP2 scale and cosmological scale defined by Λ by inversion so that cell
length scale would define one possible radius of cdconf .

(b) In fact, if one has R(cdconf ) = x×R(CP2) one obtains by repeated inversions a hierarchy
R(k) = xkR and for x =

√
p one obtains p-adic length scale hierarchy coming as

powers of
√
p, which can be also negative. This suggests a connection with p-adic

length scale hypothesis and connections between long length scale and short length
scale physics: they could be related by inversion. One could perhaps see Universe as a
kind of Leibnizian monadic system in which monads reflect each other with respect to
hyperbolic surfaces a = constant. This would conform with the holography.

(c) Without additional assumptions there is a complete scaling invariance at the level of
M8. The scales could come from the choice of 8-D causal diamond CD8 as intersection
of 8-D future and past directed light-cones inducing choice of cd in M4. CD serves
as a correlate for the perceptive field of a conscious entity in TGD inspired theory of
consciousness and is crucial element of zero energy ontology (ZEO) allowing to solve
the basic problem of quantum measurement theory.

6.3.2 Twistorial description of CDs

Could the map of the surfaces of 4-surfaces of M8 to cdconf×CP2 by a modification of M8−H
correspondence allow to describe these scales? If so, compactification via twistorialization
and M8 − H correspondence would be the manner to describe these scales as something
emergent rather than fundamental.

(a) The simplest option is that the scale of cdconf corresponds to that of CD8 and CD4.
One should also understand what CP2 scale corresponds. The simplest option is that
CP2 scale defines just length unit since it is difficult to imagine how this scale could
appear at M8 level. cdconf scale squared would be multiple or CP2 scale squared,
say prime multiple of it, and assignable to ramified primes of extension of rationals.
Inversions would produce further scales. Inversion would allow kind of hologram like
representation of physics in long length scales in arbitrary short length scales and vice
versa.

(b) The compactness of cdconf corresponds to periodic time assignable to over-critical cos-
mologies starting with big bang and ending with big crunch. Also CD brings in mind
over-critical cosmology, and one can argue that the dynamics at the level of cdconf
reflects the dynamics of ZEO at the level of M8.
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6.3.3 Modification of H and M8 −H correspondence

It is often said that the metric of M4
conf is defined only modulo conformal scaling factor.

This would reflect projectivity. One can however endow projective space CP3 with a metric
with isometry group SU(2, 2) and the fixing of the metric is like gauge choice by choosing
representative in the projective equivalence class. Thus CP3 with signature (3,-3) might
perhaps define geometric twistor space with base cdconf rather than M4

conf very much like
the twistor space T (CP2) = F = SU(3)/U(1) × U(1) at the level. Second projection would
be to M4 and map twistor sphere to a point of M4. The latter bundle structure would be
singular since for points of M4 with light-like separation the twistor spheres have a common
point: this is an essential feature in the construction of twistor amplitudes.

New picture requires a modification of the view about H and about M8−H correspondence.

(a) H would be replaced with cdconf × CP2 and the corresponding twistor space with
CP3 × F . M8 −H duality involves the decomposition M2 ⊂ M4 ⊂ M8 = M4 × CP2,
where M4 is quaternionic sub-space containing preferred place M2. The tangent or
normal space of X4 would be characterized by a point of CP2 and would be mapped
to a point of CP2 and the point of CP2 - or rather point plus the space S2 or light-like
vectors characterizing the choices of M2 - would mapped to the twistor sphere S2 of
CP3 by the standard formulas.

S2(cdconf ) would correspond to the choices of the direction of preferred octonionic
imaginary unit fixing M2 as quantization axis of spin and S2(CP2) would correspond
to the choice of isospin quantization axis: the quantization axis for color hyperspin
would be fixed by the choice of quaternionic M4 ⊂ M8. Hence one would have a nice
information theoretic interpretation.

(b) The M4 point mapped to twistor sphere S2(CP3) would be projected to a point of cdconf
and defineM8−H correspondence at the level ofM4. This would define compactification
and associate two scales with it. Only the ratioR(cdconf )/R(CP2) matters by the scaling
invariance at M8 level and one can just fixe the scale assignable to T (CP2) and call it
CP2 length scale.

One should have a concrete construction for the hyperbolic variants of CPn.

(a) One can represent Minkowski space and its variants with varying signatures as sub-
spaces of complexified quaternions, and it would seem that the structure of sub-space
must be lifted to the level of the twistor space. One could imagine variants of projective
spaces CPn, n = 2, 3 as and HPn, n = 2, 3. They would be obtained by multiplying
imaginary quaternionic unit Ik with the imaginary unit i commuting with quaternionic
units. If the quaternions λ involved with the projectivization (q1, ..., qn) ≡ λ(q1, ..., qn)
are ordinary quaternions, the multiplication respects the signature of the subspace. By
non-commutativity of quaternions one can talk about left- and right projective spaces.

(b) One would have extremely close correspondence between M4 and CP2 degrees of free-
dom reflecting the M8 − H correspondence. The projection CP3 → CP2 for E4

would be replaced with the projection for the hyperbolic analogs of these spaces in
the case of M4. The twistor space of M4 identified as hyperbolic variant of CP3

would give hyperbolic variant of CP2 as conformally compactified cd. The flag manifold
F = SU(3)/U(1)× U(1) as twistor space of CP2 would also give CP2 as base space.

The general solution of field equations at the level of T (H) would correspond to holomorphy in
general sense for the 6-surfaces defined by 3 vanishing conditions for holomorphic functions
- 6 real conditions. Effectively this would mean the knowledge of the exact solutions of
field equations also at the level of H: TGD would be an integrable theory. Scattering
amplitudes would in turn constructible from these solutions using ordinary partial differential
equations [L20].

(a) The first condition would identify the complex coordinates of S2(cdconf ) and S2(CP2):
here one cannot exclude relative rotation represented as a holomorphic transformation
but for R(cdconf )� R(CP2) the effect of the rotation is small.
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(b) Besides this there would be vanishing conditions for 2 holomorphic polynomials. The
coordinate pairs corresponding to M2 ⊂M4 would correspond to hypercomplex behav-
ior with hyper complex coordinate u = ±t − z. t and z could be assigned with U(1)
fibers of Hopf fibrations SU(2)→ S2 .

(c) The octonionic polynomial P (o) of degree n = heff/h0 with rational coefficients fixes
the extension of rationals and since the algebraic extension should be same at both
sides, the polynomials in twistor space should have same degree. This would give enor-
mous boos concerning the understanding of the proposed cancellation of fermionic Wick
contractions in SUSY scattering amplitudes forced by number theoretic vision [L20].

6.3.4 Possible problems related to the signatures

The different signatures for the metrics of the twistor spheres of cdconf and CP2 can pose
technical problems.

(a) Twistor lift would replace X4 with 6-D twistor space X6 represented as a 6-surface in
T (M4)× T (CP2). X6 is defined by dimensional reduction in which the twistor spheres
S2(cdconf ) and S2(CP2) are identified and define the twistor sphere S2(X4) of X6 serv-
ing as a fiber whereas space-time surface X4 serves as a base. The simplest identification
is as (θ, φ)S2(M4) = (θ, φ)S2(CP2): the same can be done for the complex coordinates
zS2(M4

conf )
= zS2(CP2))). An open question is whether a Möbius transformation could

relate the complex coordinates. The metrics of the spheres are of opposite sign and
differ only by the scaling factors R2(cdconf ) and R2(CP2).

(b) For cdconf option the signatures of the 2 twistor spheres would be opposite (time-like for
cdconf ). For R(cdconf )/R(CP2) = 1. J2 = −g is the only consistent option unless the
signature of space is not totally positive or negative and implies that the Kähler forms of
the two twistor spheres differ by i. The magnetic contribution from S2(X4) would give
rise to an infinite value of cosmological constant proportional to 1/

√
g2, which would

diverge R(cdconf )/R(CP2) = 1. There is however no need to assume this condition as
in the original approach.

6.4 Hierarchy of length scale dependent cosmological constants in
twistorial description

At the level of M8 the hierarchy of CDs defines a hierarchy of length scales and must cor-
respond to a hierarchy of length scale dependent cosmological constants. Even fundamental
scales would emerge.

(a) If one has R(cdconf )/R(CP2) >> 1 as the idea about macroscopic cdconf would suggest,
the contribution of S2(cdconf ) to the cosmological constant dominates and the relative
rotation of metrics and Kähler form cannot affect the outcome considerably. Therefore
different mechanism producing the hierarchy of cosmological constants is needed and
the freedom to choose rather freely the ratio R(cdconf )/R(CP2) would provide the
mechanism. What looked like a weakness would become a strength.

(b) S2(cdconf would have time-like metric and could have large scale. Is this really ac-
ceptable? Dimensional reduction essential for the twistor induction however makes
S2(cdconf ) non-dynamical so that time-likeness would not be visible even for large radii
of S2(cdconf ) expected if the size of cdconf can be even macroscopic. The corresponding
contribution to the action as cosmological constant has the sign of magnetic action and
also Kähler magnetic energy is positive. If the scales are identical so that twistor spheres
have same radius, the contributions to the induced metric cancel each other and the
twistor space becomes metrically 4-D.

(c) At the limit R(cdconf ) → RCP2) cosmological constant coming from magnetic energy
density diverges for J2 = −G option since it is proportional to 1/

√
g2. Hence the

scaling factors must be different. The interpretation is that cosmological constant has
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arbitrarily large values near CP2 length scale. Note however that time dependence is
replaced with scale dependence and space-time sheets with different scales have only
wormhole contacts.

It would seem that this approach could produce the nice results of the earlier approach. The
view about how the hierarchy of cosmological constants emerges would change but the idea
about reducing coupling constant evolution to that for cosmological constant would survive.
The interpretation would be in terms of the breaking of scale invariance manifesting as the
scales of CDs defining the scales for the twistor spaces involved. New insights about p-adic
coupling constant evolution emerge and one finds a new “must” for ZEO. H = M4 × CP2

picture would emerge as an approximation when cdconf is replaced with its tangent space
M4. The consideration of the quaternionic generalization of twistor space suggests natural
identification of the conformally compactified twistor space as being obtained from CP2 by
making second complex coordinate hyperbolic. This need not conform with the identification
as U(2).

7 How to generalize twistor Grassmannian approach in
TGD framework?

One should be able to generalize twistor Grassmannian approach in TGD framework. The
basic modification is replacement of 4-D light-like momenta with their 8-D counterparts. The
octonionic interpretation encourages the idea that twistor approach could generalize to 8-D
context. Higher-dimensional generalizations of twistors have been proposed but the basic
problem is that the index raising and lifting operations for twistors do not generalize (see
http://tinyurl.com/y24lkwce).

(a) For octonionic twistors as pairs of quaternionic twistors index raising would not be
lost working for MT option and light-like M8 momenta can be regarded sums of M4

T

and E4 parts as also twistors. Quaternionic twistor components do not commute and
this is essential for incidence relation requiring also the possibility to raise or lower the
indices of twistors. Ordinary complex twistor Grassmannians would be replaced with
their quaternionic countparts. The twistor space as a generalization of CP3 would be
3-D quaternionic projective space T (M8) = HP3 with Minkowskian signature (6,6) of
metric and having real dimension 12 as one might expect.

Another option realizing non-commutativity could be based on the notion of quantum
twistor to be also discussed.

(b) Second approach would rely on the identification of M4×CP2 twistor space as a Carte-
sian product of twistor spaces of M4 and CP2. For this symmetries are not broken,
M4
L ⊂M8 depends on the state and is chosen so that the projection of M8 momentum

is light-like so that ordinary twistors and CP2 twistors should be enough. M8 − H
relates varying M4

L based and M4
T based descriptions.

(c) The identification of the twistor space of M4 as T (M4) = M4 × S2 can be motivated
by octonionic considerations but might be criticized as non-standard one. The fact that
quaternionic twistor space HP3 looks natural for M8 forces to ask whether T (M4) =
CP3 endowed with metric having signature (3,3) could work in the case of M4. In the
sequel also a vision based on the identification T (M4) = CP3 endowed with metric
having signature (3,3) will be discussed.

7.1 Twistor lift of TGD at classical level

In TGD framework twistor structure is generalized [K21, K17, K11, L12]. The inspiration
for TGD approach to twistorialization has come from the work of Nima Arkani-Hamed and
colleagues [B11, B5, B6, B8, B15, B12, B2]. The new element is the formulation of twistor
lift also at the level of classical dynamics rather than for the scattering amplitudes only
[K21, K11, K17, L12].

http://tinyurl.com/y24lkwce
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(a) The 4-D light-like momenta in ordinary twistor approach are replaced by 8-D light-like
momenta so that massive particles in 4-D sense become possible. Twistor lift of TGD
takes places also at the space-time level and is geometric counterpart for the Penrose’s
replacement of massless fields with twistors. Roughly, space-time surfaces are replaced
with their 6-D twistor spaces represented as 6-surfaces. Space-time surfaces as preferred
extremals are minimal surfaces with 2-D string world sheets as singularities. This is the
geometric manner to express masslessness. X4 is simultaneously also extremal of 4-D
Kähler action outside singularities: this realizes preferred extremal property.

(b) One can say that twistor structure of X4 is induced from the twistor structure of H =
M4 × CP2, whose twistor space T (H) is the Cartesian product of geometric twistor
space T (M4) = M4 × CP1 and T (CP2) = SU(3)/U(1) × U(1). The twistor space
of M4 assigned to momenta is usually taken as a variant of CP3 with metric having
Minkowski signature and both CP1 fibrations appear in the more precise definition of
T (M4). Double fibration [B14] (see http://tinyurl.com/yb4bt74l) means that one
has fibration from M4 × CP1 - the trivial CP1 bundle defining the geometric twistor
space to the twistors space identified as complex projective space defining conformal
compactification of M4. Double fibration is essential in the twistorialization of TGD
[K15].

(c) The basic objects in the twistor lift of classical TGD are 6-D surfaces in T (H) having
the structure of twistor space in the sense that they are CP1 bundles having X4 as base
space. Dimensional reduction to CP1 bundle effectively eliminates the dynamics in CP1

degrees of freedom and its only remnant is the value of cosmological constant appearing
as coefficient of volume term of the dimensionally reduced action containing also 4-D
Kähler action. Cosmological term depends on p-adic length scales and has a discrete
spectrum [L12, L11].

CP1 has also an interpretation as a projective space constructed from 2-D complex spinors.
Could the replacement of these 2-spinors with their quantum counterparts defining in turn
quantum CP1 realize finite quantum measurement resolution in M4 degrees of freedom?
Projective invariance for the complex 2-spinors would mean that one indeed has effectively
CP1.

7.2 Octonionic twistors or quantum twistors as twistor description
of massive particles

For M4
T option the particles are massive and the one encounters the problem whether and

how to generalize the ordinary twistor description.

7.3 Basic facts about twistors and bi-spinors

It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a

′
with λ̃ defined as complex conjugate

of λ and having opposite chirality (see http://tinyurl.com/y6bnznyn).

(a) When λ is scaled by a complex number λ̃ suffers an opposite scaling. The bi-spinors
allow the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′ λ̃
a′ µ̃b

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (7.1)

(b) Spinor indices are lowered and raised using antisymmetric tensors εαβ and εα̇β̇ . If the
particle has spin one can assign it a positive or negative helicity h = ±1. Positive

http://tinyurl.com/yb4bt74l
http://tinyurl.com/y6bnznyn
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helicity can be represented by introducing artitrary negative (positive) helicity bispinor
µa (µa′) not parallel to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (7.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

(c) What makes 4-D twistors unique is the existence of the index raising and lifting opera-
tions using ε tensors. In higher dimensions they do not exist and this causes difficulties.
For octonionic twistors with quaternionic components possibly only in D = 8 the situ-
ation changes.

To get a very rough idea about twistor Grassmannian approach idea, consider tree ampli-
tudes of N = 4 SUSY as example and it is convenient to drop the group theory factor
Tr(T1T2 · · ·Tn). The starting point is the observation that tree amplitude for which more
than n− 2 gluons have the same helicity vanish. MHV amplitudes have exactly n− 2 gluons
of same helicity- taken by a convention to be negative- have extremely simple form in terms
of the spinors and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(7.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].

An essential point in what follows is that the amplitudes are expressible in terms of the anti-
symmetric bi-linears 〈λi, λj〉making sense also for octotwistors and identifiable as quaternions
rather than octonions.

7.3.1 M8 −H duality and two alternative twistorializations of TGD

M8 −H duality suggests two alternative twistorializations of TGD.

(a) The first approach would be in terms of M8 twistors suggested by quaternionic light-
lineness of 8-momenta. M8 twistors would be Cartesian products of M4 and E4 twistors.
One can imagine a straightforward generalization of twistor scattering amplitudes in
terms of generalized Grassmannian approach replacing complex Grassmannian with
quaternionic Grassmannian, which is a mathematically well-defined notion.

(b) Second approach would rely on M4 ×CP2 twistors, which are products of M4 twistors
and CP2 twistors: this description works nicely at classical space-time level but at the
level of momentum space the problem is how to describe massivation of M4 momenta
using twistors.

7.3.2 Why the components of twistors must be non-commutative?

How to modify the 4-D twistor description of light-like 4-momenta so that it applies to
massive 4-momenta?

(a) Twistor consists of a pair (µα̇, λ
α) of bi-spinors in conjugate representations of SU(2).

One can start from the 4-D incidence relations for twistors

µα̇ = pαα̇λ
α .
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Here pαα̇ denotes the representation of four-momentum pkσk. The antisymmetric per-
mutation symbols εαβ and its dotted version define antisymmetric “inner product” in
twistor space. By taking the inner product of µ with itself, one obtains the commutation
relation µ1µ2−µ2µ1 = 0, which is consistent with right-hand side for massless particles
with pkp

k = 0.

(b) In TGD framework particles are massless only in 8-D sense so that the right hand
side in the contraction is in general non-vanishing. In massive case one can replace
four-momentum with unit vector. This requires

〈µ, µ〉 = µ1µ2 − µ2µ1 6= 0 .

The components of 2-spinor become non-commutative.

This raises two questions.

(a) Could the replacement of complex twistors by quaternionic twistors make them non-
commutative and allow massive states?

(b) Could non-commutative quantum twistors solve the problem caused by the light-likeness
of momenta allowing 4-D twistor description?

7.3.3 Octotwistors or quantum twistors?

One should be able to generalize twistor amplitudes and twistor Grassmannian approach to
TGD framework, where particles are massless in 8-D sense and massive in 4-D sense. Could
twistors be replaced by octonionic or quantum twistors.

(a) One can express mass squared as a product of commutators of components of the twistors
λ and λ̃, which is essentially the conjugate of λ:

p · p = 〈λ, λ〉
[
λ̃, λ̃

]
. (7.4)

This operator should be non-vanishing for non-vanishing mass squared. Both terms in
the product vanish unless commutativity fails so that mass vanishes. The commutators
should have the quantum state as its eigenstate.

(b) Also 4-momentum components should have well-defined values. Four-momentum has
expression paa

′
= λaλ̃a

′
in massless case. This expression should generalized to massive

case as such. Eigenvalue condition and reality of the momentum components requires
that the components paa

′
are commuting Hermitian operators.

In twistor Grassmannian approach complex but light-like momenta are possible as
analogs of virtual momenta. Also in TGD framework the complexity of Kähler cou-
pling strength allows to consider complex momenta. For twistor lift they however differ
from real momenta only by a phase factor associated with the 1/αK associated with
6-D Kähler action.

Remark: I have considered also the possibility that states are eigenstates only for the
longitudinal M2 projection of 4-momentum with quark model of hadrons serving as a
motivation.

i. Could this equation be obtained in massive case by regarding λa and λ̃a
′

as com-
muting octo-spinors and their complex conjugates? Octotwistors would naturally
emerge in the description at imbedding space level. I have already earlier considered
the notion of octotwistor [K18] [L4]).

ii. Or could it be obtained for quantum bi-spinors having same states as eigenstates.
Could quantum twistors as generalization of the ordinary twistors correspond to the
reduction of the description from the level of M8 or H to at space-time level so that
one would have 4-D twistors and massive particles with 4-momentum identifiable
as Noether charge for the action principle determining preferred extremals? I have
considered also the notion of quantum spinor earlier [K14, K8, K3, K20, K9].
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(c) In the case of quantum twistors the generalization of the product of the quantities
〈λi, λi+1〉 appearing in the formula should give rise to c-number in the case of quantum
spinors. Can one require that the quantities 〈λi, λi+1〉 or even 〈λi, λj〉 are c-numbers si-
multaneously? This would also require that 〈λ, λ〉 is non-vanishing c-number in massive
case: also incidence relation suggest this condition. Could one think λ as an opera-
tor such that 〈λ, λ〉 has eigenvalue spectrum corresponding to the quantities 〈λi, λi+1〉
appearing in the scattering amplitude?

7.4 The description for M4
T option using octo-twistors?

For option I with massiveM4
T projection of 8-momentum one could imagine twistorial descrip-

tion by using M8 twistors as products of M4
T and E4 twistors, and a rather straightforward

generalization of standard twistor Grassmann approach can be considered.

7.4.1 Could twistor Grassmannians be replaced with their quaternionic vari-
ants?

The first guess would simply replaceGr(k, n) withGr(2k, 2n) 4-D twistors 8-D twistors. From
twistor amplitudes with quaternionic M8-momenta one could construct physical amplitudes
by going from 8-momentum basis to the 4-momentum- basis with wave functions in irreps of
SO(3). Life is however not so simple.

(a) The notion of ordinary twistor involves in an essential manner Pauli matrices σi satis-
fying the well-known anti-commutation relations. They should be generalized. In fact,
σ0 and

√
−1σi can be regarded as a matrix representation for quaternionic units. They

should have analogs in 8-D case.

Octonionic units iei indeed provide this analog of sigma matrices. Octonionic units for
the complexification of octonions allow to define incidence relation and representation of
8-momenta in terms of octo-spinors. They do not however allow matrix representation
whereas time-like octonions allow interpretation as quaternion in suitable bases and
thus matrix representation. Index raising operation is essential for twistors and makes
dimension D = 4 very special. For naive generalizations of twistors to higher dimensions
this operation is lost (see http://tinyurl.com/y24lkwce).

(b) Could one avoid multiplication of more than two octo-twistors in Grassmann ampli-
tudes leading to difficulties with associativity. An important observation is that in the
expressions for the twistorial scattering amplitudes only products 〈λi, λj〉 or [λ̃i, λ̃i+1]
but not both occur. These products are associative even if the spinors are replaced by
quaternionic spinors.

These operations are antisymmetric in the arguments, which suggests cross product for
quaternions giving rise to imaginary quaternion so that the product of objects would
give rise to a product of imaginary quaternions. This might be a problem since a
large number of terms in the product would approach to zero for random imaginary
quaternions.

An ad hoc guess would be that scattering probability is proportional to the product
of amplitude as product 〈λi, λj〉 and its “hermitian conjugate” with the conjugates

[λ̃i, λ̃i+1] in the reverse order (this does not affect the outcome) so that the result would
be real. Scattering amplitude would be more like quaternion valued operator. Could
one have a formulation of quantum theory or at least TGD view about quantum theory
allowing this?

(c) If ordinary massless 4-momenta correspond to quaternionic sigma matrices, twistors
can be regarded as pairs of 2-spinors in matrix representation. Octonionic 8-momenta
should correspond to pairs of 4-spinors. As already noticed, octonions do not how-
ever allow matrix representation! Octonions for a fixed decomposition M8 = M4 × E4

can be however decomposed to linear combination of two quaternions just like complex

http://tinyurl.com/y24lkwce
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numbers to a combination of real numbers. These quaternions would have matrix repre-
sentation and quaternionic analogs of twistor pair (µ, λ̃). One could perhaps formulate
the generalization of twistor Grassmann amplitudes using these pairs. This would sug-
gest replacement of complex bi-spinors with complexified quaternions in the ordinary
formalism. This might allow to solve problems with associativity if only 〈λi, λj〉 or

[λ̃i, λ̃i+1] appear in the amplitudes.

(d) The argument in the momentum conserving delta function δ(λiλ̃i) should be real so that
the conjugation with respect to i would not change the argument and non-commutativity
would not be problem. In twistor Grassmann amplitudes the argument C · Z of delta
momentum conserving function is linear in the components of complex twistor Z. If
complex twistor is replaced with quaternionic twistor, the Grassmannian coordinates C
in delta functions δ(C · Z) must be replaced with quaternionic one.

The replacement of complex Grassmannians GrC(k, n) with quaternionic Grassmannians
GrH(k, n) is therefore highly suggestive. Quaternionic Grassmannians (see http://tinyurl.
com/y23jsffn) are quotients of symplectic Lie groupsGrH(k, n) = Un(H)/(Ur(H)×Un−r(H))
and thus well-defined. In the description using GlH(k, n) matrices the matrix elements would
be quaternions and k × k minors would be quaternionic determinants.

Remark: Higher-D projective spaces of octonions do not exist so that in this sense dimension
D = 8 for imbedding space would be maximal.

7.4.2 Twistor space of M8 as quaternionic projective space HP3?

The simplest Grassmannian corresponds to twistor space and one can look what one obtains
in this case. One can also try to understand how to cope with the problems caused by
Minkowskian signature.

(a) In previous section it was found that the modification of H to H = cdconf × CP2 with
cdconf = CP2,h identifiable as CP2 with Minkowskian signature of metric is strongly
suggestive.

(b) For E8 quaternionic twistor space as analog of CP3 would be its quaternionic variant
HP3 with expected dimension D = 16−4 = 12. Twistor sphere would be replaced with
its quaternionic counterpart SU(2)H/U(1)H having dimension 4 as expected. CD8,conf

as conformally compactified CD8 must be 8-D. The space HP2 has dimension 8 and
is analog of CP2 appearing as analog of base space of CP3 identified as conformally
compactified 4-D causal diamond cdconf . The quaternionic analogy of M4

conf = U(2)

identified as conformally compactified M4 would be U(2)H having dimension D = 10
rather than 8.

HP3 and HP2 might work for E8 but it seems that the 4-D analog of twistor sphere
should have signature (2,-2) whereas base space should have signature (1,-7). Some kind
of hyperbolic analogs of these spaces obtained by replacing quaternions with their hy-
percomplex variant seem to be needed. The same receipe in the twistorialization of M4

would give cdconf as analog of CP2 with second complex coordinate made hyperbolic.
I have already considered the construction of hyperbolic analogs of CP2 and CP3 as
projective spaces. These results apply to HP2 and HP3.

(c) What about octonions? Could one define octonionic projective plane OP2 and its hy-
perbolic variants corresponding to various sub-spaces of M8? Euclidian OP2 known
as Cayley plane exists as discovered by Ruth Moufang in 1933. Octonionic higher-D
projective spaces and Grassmannians do not however exist so that one cannot assign
OP3 as twistor spaces.

7.4.3 Can one obtain scattering amplitudes as quaternionic analogs of residue
integrals?

Can one obtain complex valued scattering amplitudes (i commuting with octonionic units)
in this framework?

http://tinyurl.com/y23jsffn
http://tinyurl.com/y23jsffn
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(a) The residue integral over quaternionic C-coordinates should make sense, and pick up
the poles as vanishing points of minors. The outcome of repeated residue integrations
should give a sum over poles with complex residues.

(b) Residue calculus requires analyticity. The problem is that quaternion analyticity based
on a generalization of Cauchy-Riemann equations allows only linear functions. One
could define quaternion (and octonion) analyticity in restricted sense using powers series
with real coefficients (or in extension involving i commuting with octonion units). The
quaternion/octonion analytic functions with real coefficients are closed with respect to
sum and product. I have used this definition in the proposed construction of algebraic
dynamics for in X4 ⊂M8 [L4].

(c) Could one define the residue integral purely algebraically? Could complexity of the
coefficients (i) force complex outcome: if pole q0 is not quaternionically real the function
would not allow decompose to f(q)/(q−q0) with f allowing similar Taylor series at pole.
If so, then the formulas of Grassmannian formalism could generalize more or less as such
at M8 level and one could map the predictions to predictions of M4 × CP2 approach
by analog of Fourier transform transforming these quantum state basis to each other.

This option looks rather interesting and involves the key number theoretic aspects of TGD
in a crucial manner.

7.5 Do super-twistors make sense at the level of M8?

ByM8−H duality [L4] there are two levels involved: M8 andH. These levels are encountered
both at the space-time level and momentum space level. Do super-octonions and super-
twistors make sense at M8 level?

(a) At the level of M8 the high uniqueness and linearity of octonion coordinates makes
the notion of super-octonion natural. By SO(8) triality octonionic coordinates (bosonic
octet 80), octonionic spinors (fermionic octet 81), and their conjugates (anti-fermionic
octet 8−1) would for triplet related by triality. A possible problem is caused by the
presence of separately conserved B and L. Together with fermion number conservation
this would require N = 4 or even N = 4 SUSY, which is indeed the simplest and most
beautiful SUSY.

(b) At the level of the 8-D momentum space octonionic twistors would be pairs of two
quaternionic spinors as a generalization of ordinary twistors. Super octo-twistors would
be obtained as generalization of these.

The progress in the understanding of the TGD version of SUSY [L20] led to a dramatic
progress in the understanding of super-twistors.

(a) In non-twistorial description using space-time surfaces and Dirac spinors in H, imbed-
ding space coordinates are replaced with super-coordinates and spinors with super-
spinors. Theta parameters are replaced with quark creation and annihilation operators.
Super-coordinate is a super-polynomial consisting of monomials with vanishing total
quark number and appearing in pairs of monomial and its conjugate to guarantee her-
miticity.

Dirac spinor is a polynomial consisting of powers of quark creation operators multiplied
by monomials similar to those appearing in the super-coordinate. Anti-leptons are
identified as spartners ofquarks identified as local 3-quark states. The multi-spinors
appearing in the expansions describe as such local many-quark-antiquark states so that
super-symmetrization means also second quantization. Fermionic and bosonic states
assignable to H-geometry interact since super-Dirac action contains induced metric and
couplings to induced gauge potentials.

(b) The same recipe works at the level of twistor space. One introduces twistor super-
coordinates analogous to super-coordinates of H and M8. The super YM field of N =
4 SUSY is replaced with super-Dirac spinor in twistor space. The spin degrees of
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freedom associated with twistor spheres S2 would bring in 2 additional spin-like degrees
of freedom.

The most plausible option is that the new spin degrees are frozen just like the geometric
S2 degrees of freedom. The freezing of bosonic degrees of freedom is implied by the
construction of twistor space of X4 by dimensional reduction as a 6-D surface in the
product of twistor spaces of M4 and CP2. Chirality conditions would allow only single
spin state for both spheres.

(c) Number theoretical vision implies that the number of Wick contractions of quarks and
antiquarks cannot be larger than the degree of the octonionic polynomial, which in
turn should be same as that of the polynomials of twistor space giving rise to the
twistor space of space-time surface as 6-surface. The resulting conditions correspond to
conserved currents identifiable as Noether currents assignable to symmetries.

Also Grassmannian is replaced with super-Grassmannian and super-coordinates as matrix
elements of super matrices are introduced.

(a) The integrand of the Grassmannian integral defining the amplitude can be expanded in
Taylor series with respect to theta parameters associated with the super coordinates C
as rows of super G(k, n) matrix.

(b) The delta function δ(C,Z) factorizing into a product of delta functions is also expanded
in Taylor series to get derivatives of delta function in which only coordinates appear. By
partial integration the derivatives acting on delta function are transformed to deriva-
tives acting on integrand already expanded in Taylor series in theta parameters. The
integration over the theta parameters using the standard rules gives the amplitudes
associated with different powers of theta parameters associated with Z and from this
expression one can pick up the scattering amplitudes for various helicities of external
particles.

The super-Grassmannian formalism is extremely beautiful but one must remember that one
is dealing with quantum field theory. It is not at all clear whether this kind of formalism
generalizes to TGD framework, where particle are 3-surfaces [L4]. The notion of cognitive
representation effectively reducing 3-surfaces to a set of point-like particles strongly suggests
that the generalization exists.

The progress in understanding of M8 −H duality throws also light to the problem whether
SUSY is realized in TGD and what SUSY breaking does mean. It seems now clear that spar-
ticles are predicted and SUSY remains in the simplest scenario exact but that p-adic thermo-
dynamics causes thermal massivation: unlike Higgs mechanism, this massivation mechanism
is universal and has nothing to do with dynamics. This is due to the fact that zero en-
ergy states are superpositions of states with different masses. The selection of p-adic prime
characterizing the sparticle causes the mass splitting between members of super-multiplets
although the mass formula is same for all of them.

The increased undestanding of what twistorialization leads to an improved understanding of
what twistor space in TGD could be. It turns out that the hyperbolic variant CP3,h of the
standard twistor space CP3 is a more natural identification than the earlier M4 × S2 also in
TGD framework but with a scale corresponding to the scale of CD at the level of M8 so that
one obtains a scale hierarchy of twistor spaces. Twistor space has besides the projection to
M4 also a bundle projection to the hyperbolic variant CP2,h of CP2 so that a remarkable
analogy between M4 and CP2 emerges. One can formulate super-twistor approach to TGD
using the same formalism as will be discussed in this article for the formulation at the level
of H. This requires introducing besides 6-D Kähler action and its super-variant also spinors
and their super-variants in super-twistor space. The two formulations are equivalent apart
from the hierarchy of scales for the twistor space. Also M8 allows analog of twistor space as
quaternionic Grassmannian HP3 with signature (6,6). What about super- variant of twistor
lift of TGD? consider first the situation before the twistorialization.

(a) The parallel progress in the understanding SUSY in TGD framework [L20] leads to
the identification of the super-counterparts of M8, H and of twistor spaces modifying
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dramatically the physical interpretation of SUSY. Super-spinors in twistor space would
provide the description of quantum states. Super-Grassmannians would be involved with
the construction of scattering amplitudes. Quaternionic super Grassmannians would be
involved with M8 description.

(b) In fermionic sector only quarks are allowed by SO(1, 7) triality and that anti-leptons are
local 3-quark composites identifiable as spartners of quarks. Gauge bosons, Higgs and
graviton would be also spartners and assignable to super-coordinates of imbedding space
expressible as super-polynomials of quark oscillator operators. Super-symmetrization
means also quantization of fermions allowing local many-quark states.

(c) SUSY breaking would be caused by the same universal mechanism as ordinary massi-
vation of massless states. The mass formulas would be supersymmetric but the choice
of p-adic prime identifiable as ramified prime of extension of rationals would depend
on the state of super-multiplet. ZEO would make possible symmetry breaking without
symmetry breaking as Wheeler might put it.

7.5.1 Super-counterpart of twistor lift using the proposed formalism

The construction of super-coordinates and super-spinors [L20] suggests a straightforward for-
mulation of the super variant of twistor lift . One should only replace the super-imbedding
space and super-spinors with super-twistor space and corresponding super-spinors and for-
mulate the theory using 6-D super-Kähler action and super-Dirac equation and the same
general prescription for constructing S-matrix. Dimensional reduction should give essentially
the 4-D theory apart from the variation of the radius of the twistor space predicting varia-
tion of cosmological constant. The size scale of CD would correspond to the size scale of the
twistor space for M4 and for CP2 the size scale would serve as unit and would not vary.

The first step is the construction of ordinary variant of Kähler action and modified Dirac
action for 6-D surfaces in 12-D twistor space.

(a) Replace the spinors of H with the spinors of 12-D twistor space and assume only quark
chirality. By the bundle property of the twistor space one can express the spinors as
tensor products of spinors of the twistor spaces T (M4) and T (CP2). One can express the
spinors of T (M4) tensor products of spinors of M4 - and S2 spinors locally and spinors
of T (CP2) as tensor products of CP2 - and S2 spinors locally. Chirality conditions
should reduce the number of 2 spin components for both T (M4) and T (CP2) to one so
that there are no additional spin degrees of freedom.

The dimensional reduction can be generalized by identifying the two S2 fibers for the
preferred extremals so that one obtains induced twistor structure. In spinorial sector
the dimensional reduction must identify spinorial degrees of freedom of the two S2s
by the proposed chirality conditions also make them non-dynamical. The S2 spinors
covariantly constant in S2 degrees of freedom.

(b) Define the spinor structure of 12-D twistor space, define induced spinor structure at 6-D
surfaces defining the twistor space of space-time surface. Define the twistor counterpart
of the analog of modified Dirac action using same general formulas as in case of H.

Construct next the super-variant of this structure.

(a) Introduce second quark oscillator operators labelled by the points of cognitive represen-
tation in 12-D twistor space effectively replacing 6-D surface with its discretization and
having quantized quark field q as its continuum counterpart. Replace the coordinates
of the 12-D twistor space with super coordinates hs expressed in terms of quark and
anti-quark oscillator operators labelled by points of cognitive representation, and having
interpretation as quantized quark field q restricted to the points of representation.

(b) Express 6-D Kähler action and Dirac action density in terms of super-coordinates hs.
The local monomials of q appear in hs and therefore also in the expansion of super-
variants of modified gamma matrices defined by 6-D ähler action as contractions of
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canonical momentum currents of the action density LK with the gamma matrices of
12-D twistor space. In super-Kähler action also the local composites of q giving rise
to currents formed from the local composites of 3-quarks and antiquarks and having
interpretation as leptons and anti-leptons occur - leptons would be therefore spartners
of squarks.

(c) Perform super-expansion also for the induced spinor field qs in terms of monomials of q.
qs(q) obeys super-Dirac equation non-linear in q. But also q should satisfy super-Dirac
action as an analog of quantized quark field and non-linearity indeed forces also q to
have has super-expansion. Thus both quark field q and super-quark field qs both satisfy
super-Dirac equation.

The only possibility is qs = q stating fixed point property under q → qs having inter-
pretation in terms of quantum criticality fixing the values of the coefficients of various
terms in qs and in the super-coordinate hs having interpretation as coupling constants.
One has quantum criticality and discrete coupling constant evolution with respect to
extension of rationals characterizing adelic physics.

(d) Super-Dirac action vanishes for its solutions and the exponent of super-action reduces to
exponent of super-Kähler action, whose matrix elements between positive and negative
energy parts of zero energy states give S-matrix elements.

Super-Dirac action has however an important function: the derivatives of quark currents
appearing in the super-Kähler action can be transformed to a linear strictly local action
of super spinor connection (∂α → Aα,s effectively). Without this lattice discretization
would be needed and cognitive representation would not be enough.

To sum up, the super variants of modified gamma matrices of the 6-surface would satisfy
the condition Dα,sΓ

α
s = 0 expressing preferred extremal property and guaranteeing super-

hermicity of Ds. qs would obey super-Dirac equation Dsqs = 0. The self-referential identifi-
cation q = qs would express quantum criticality of TGD.

8 Could one describe massive particles using 4-D quan-
tum twistors?

The quaternionic generalization of twistors looks almost must. But before this I considered
also the possibility that ordinary twistors could be generalized to quantum twistors to describe
particle massivation. Quantum twistors could provide space-time level description, which
requires 4-D twistors, which cannot be ordinary M4 twistors. Also the classical 4-momenta,
which by QCC would be equal to M8 momenta, are in general massive so that the ordinary
twistor approach cannot work. One cannot of course exclude the possibility that octo-twistors
are enough or that M8

L description is equivalent with space-time description using quantum
twistors.

8.1 How to define quantum Grassmannian?

The approach to twistor amplitude relies on twistor Grassmann approach [B7, B4, B3, B10,
B11, B2] (see http://tinyurl.com/yxllwcsn). This approach should be replaced by re-
placing Grassmannian GR(K,N) = Gl(n,C)/Gl(n−m,C)×Gl(m,C) with quantum Grass-
mannian.

8.1.1 Naive approach to the definition of quantum Grassmannian

Quantum Grassmannian is a notion studied in mathematics and the approach of [A2] (see
http://tinyurl.com/y5q6kv6b) looks reasonably comprehensible even for physicist. I have
already earlier tried to understand quantum algebras and their possible role in TGD [K12].
It is however better to start as ignorant physicist and proceed by trial and error and find
whether mathematicians have ended up with something similar.

http://tinyurl.com/yxllwcsn
http://tinyurl.com/y5q6kv6b
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(a) Twistor Grassmannian scattering amplitudes involving k negative helicity gluons involve
product of k×k minors of an k×n matrix C taken in cyclic order. C defines k×n coor-
dinates for Grassmannian Gr(k, n) of which part is redundant by the analogs of gauge
symmetries Gl(n−m,C)×Gl(m,C). Here n is the number of external gluons and k the
number of negative helicity gluons. The k×k determinants taken in cyclic order appear
in the integrand over Grassmannian. Also the quantum variants of these determinants
and integral over quantum Grassmannian should be well-defined and residue calculus
gives hopes for achieving this.

(b) One should define quantum Grassmannian as algebra according to my physicist’s un-
derstanding algebra can be defined by starting from a free algebra generated by a set of
elements - now the matrix elements of quantum matrix. One poses on these elements
relations to get the algebra considered. What could these conditions be in the recent
case.

(c) A natural condition is that the definition allows induction in the sense that its restriction
to quantum sub-matrices is consistent with the general definition of k × n quantum
matrices. In particular, one can identify the columns and rows of quantum matrices as
instances of quantum vectors.

(d) How to generalize from 2× 2 case to k × n case? The commutation relations for neigh-
boring elements of rows and columns are fixed by induction. In 4× 4 corresponding to
M4 twistors one would obtain for (a1, ..., a4). aiai+1 = qai+1ai cyclically (k = 1 follows
k = 4).

What about commutations of ai and ai+k, k > 1. Is there need to say anything about
these commutators? In twistor Grassmann approach only connected k × k minors in
cyclic order appear. Without additional relations the algebra might be too large. One
could argue that the simplest option is that one has aiai+k = qai+kai for k odd aiai+k =
q−1ai+kai for k even. This is required from the consistency with cyclicity. These
conditions would allow to define also sub-determinants, which do not correspond to
connected k×k squares by moving the elements to a a connected patch by permutations
of rows and columns.

(e) What about elements along diagonal? The induction from 2×2 would require the com-
mutativity of elements along right-left diagonals. Only commutativity of the elements
along left-right diagonal be modified. Or is the commutativity lost only along directions
parallel to left-right diagonal? The problem is that the left-right and right-left directions
are transformed to each other in odd permutations. This would suggest that only even
permutations are allowed in the definition of determinant

(f) Could one proceed inductively and require that one obtains the algebra for 2×2 matrices
for all 2 × 2 minors? Does this apply to all 2 × 2 minors or only to connected 2 × 2
minors with cyclic ordering of rows and columns so that top and bottom row are nearest
neighbors as also right and left column. Also in the definition of 3× 3 determinant only
the connected developed along the top row or left column only 2 × 2 determinants
involving nearest neighbor matrix elements appear. This generalizes to k × k case.

It is time to check how wrong the naive intuition has been. Consider 2×2 matrices as simple
example. In this case this gives only 1 condition (ad− bc = −da+ cb) corresponding to the
permutation of rows or columns. Stronger condition suggested by higher-D case would be
ad = da and bc = cb. The definition of 2 × 2 in [A2] however gives for quantum 2-matrices
(a, b; c, d) the conditions

ac = qca , bd = qda ,
ab = qba , cd = qdc ,
bc = cb , ad− da = (q − q−1)bc .

(8.1)

The commutativity along left-right diagonal is however lost for q 6= 1 so that quantum
determinant depends on what row or column is used to expand it. The modification of
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the commutation relations along rows and columns is what one might expect and wants in
order to achieve non-commutativity of twistor components making possible massivation in
M4 sense.

The limit q → 1 corresponds to non-trivial algebra in general and would correspond to β = 4
for inclusions of HFFs expected to give representations of Kac-Moody algebras. At this
limit only massless particles in 4-D sense are allowed. This suggests that the reduction of
Kac-Moody algebras to quantum groups corresponds to symmetry breaking associated with
massivation in 4-D sense.

8.1.2 Mathematical definition of quantum Grassmannian

It would seem that the proposed approach is reasonable. The article [A3] (see http://

tinyurl.com/yycflgrd) proposing a definition of quantum determinant explains also the
basic interpretation of what the non-commutativity of elements of quantum matrices does
mean.

(a) The first observation is that the commutation of the elements of quantum matrix cor-
responds to braiding rather than permutation and this operation is represented by R-
matrix. The formula for the action of braiding is

Rabcdt
c
et
d
f = tadt

b
cR

cd
ef . (8.2)

Here R-matrix is a solution of Yang-Baxter equaion and characterizes completely the
commutation relations between the elements of quantum matrix. The action of braiding
is obtained by applying the inverse of R-matrix from left to the equation. By iterat-
ing the braidings of nearest neighbors one can deduce what happens in the braiding
exchanging quantum matrix elements which are not nearest neighbors. What is nice
that the R-matrix would fix the quantum algebra, in particular quantum Grassmannian
completely.

(b) In the article the notion of quantum determinant is discussed and usually the defini-
tion of quantum determinant involves also the introduction of metric gab allowing the
raising of the indices of the permutation symbol. One obtains formulas relating metric
and R-matrix and restricting the choice of the metric. Note however that if ordinary
permutation symbol is used there is no need to introduce the metric.

The definition quantum Grassmannian proposed does not involve hermitian conjugates of
the matrices involved. One can define the elements of Grassmannian and Grassmannian
residue integrals without reference to complex conjugation: could one do without hermitian
conjugates? On the other hand, Grassmannians have complex structure and Kähler structure:
could this require hermitian conjugates and commutation relations for these?

8.2 Two views about quantum determinant

If one wants to define quantum matrices in Gr(k, n) so that quantal twistor-Grassmann
amplitudes make sense, the first challenge is to generalize the notion of k × k determinant.

One can consider two approaches concerning the definition of quantum determinant.

(a) The first guess is that determinant should not depend on the ordering of rows or columns
apart from the standard sign factor. This option fails unless one modifies the definition
of permutation symbol.

(b) The alternative view is that permutation symbol is ordinary and there is dependence
on the row or column with respect to which one develops. This dependence would
however disappear in the scattering amplitudes. If the poles and corresponding residues
associated with the k × k-minors of the twistor amplitude remain invariant under the

http://tinyurl.com/yycflgrd
http://tinyurl.com/yycflgrd
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permutation, this is not a problem. In other words, the scattering amplitudes are
invariant under braid group. This is what twistor Grassmann approach implies and also
TGD predict.

For the first option quantum determinant would be braiding invariant. The standard def-
inition of quantum determinant is discussed in detail in [A3] (see http://tinyurl.com/

yycflgrd).

(a) The commutation of the elements of quantum matrix corresponds to braiding rather
than permutation and as found, this operation is represented by R-matrix.

(b) Quantum determinant would change only by sign under the braidings of neighboring
rows and columns. The braiding for the elements of quantum matrix would compensate
the braiding for quantum permutation symbol. Permutation symbol is assumed to be q-
antisymmetric under braiding of any adjacent indices. This requires that permutation
ik ↔ ik+1 regarded as braiding gives a contraction of quantum permutation symbol
εi1,...1k with Rijikik+1

plus scaling by some normalization factor λ besides the change of
sign.

εa1...akak+1...an = −λεa1...ij...anRjiakak+1
. (8.3)

The value of λ can be calculated.

(c) The calculation however leads to the result that that quantum determinant D satisfies
D2 = 1! If the result generalizes for sub-determinants defined by k × k-minors (, which
need not be the case) would have determinants satisfying D2 = 1, and the idea about
vanishing of k×k-minor essential for getting non-trivial twistor scattering amplitude as
residue would not make sense.

It seems that the braiding invariant definition of quantum determinant, which of course
involves technical assumptions) is too restrictive. Does this mean that the usual definition
requiring development with respect to preferred row is the physically acceptable option? This
makes sense if only the integral but not integrand is invariant under braidings. Braiding
symmetry would be analogous to gauge invariance.

8.3 How to understand the Grassmannian integrals defining the
scattering amplitudes?

The beauty of the twistor Grassmannian approach is that the residue integrals over quantum
Gr(k, n) would reduce to sum over poles (or possibly integrals over higher-D poles). Could
residue calculus provide a manner to integrate q-number valued functions of q-numbers?
What would be the minimal assumptions allowing to obtain scattering amplitudes as c-
numbers?

Consider first what the integrand to be replaced with its quantum version looks like.

(a) Twistor scattering amplitudes involve also momentum conserving delta function express-
ible as δ(λaλ̃

a). This sum and - as it seems - also the summands should be c-numbers
- in other words one has eigenstates of the operators defining the summands.

(b) By introducing Grassmannian spaceGr(k, n) with coordinates Cα,i (see http://tinyurl.

com/yxllwcsn), one can linearize δ(λaλ̃
a) to a product of delta functions δ(C · Z) =

δ(C · λ̃) × δ(C⊥ · λ) (I have not written the delta function is Grassmann parameters
related to super coordinates). Z is the n-vector formed by the twistors associated with
incoming particles.

The 4× k components of Cα,kZ
k should be c-numbers at least when they vanish. One

should define quantum twistors and quantum Grassmannian and pose the constraints
on the poles.

http://tinyurl.com/yycflgrd
http://tinyurl.com/yycflgrd
http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxllwcsn
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How to achieve the goal? Before proceeding it is good to recall the notion of non-commutative
geometry (see http://tinyurl.com/yxrcr8xv). Ordinary Riemann geometry can be ob-
tained from exterior algebra bundle, call it E. The Hilbert space of square integrable sections
in E carries a representation of the space of continuous functions C(M) by multiplication
operators. Besides this there is unbounded differential operator D, which so called signature
operator and defined in terms of exterior derivative and its dual: D = d+ d∗. This spectral
triple of algebra, Hilbert space, and operator D allows to deduce the Riemann geometry.

The dream is that one could assign to non-commutative algebras non-commutative spaces
using this spectral triple. The standard q-p quantization is example of this: one obtains now
Lagrange manifolds as ordinary commutative manifolds.

Consider now the situation in the case of quantum Grassmannian.

(a) In the recent case the points defining the poles of the function - it might be that the
eventual poles are not a set of discrete points but a higher-dimensional object - would
form the commutative part of non-commutative quantum space. In this space the
product of quantum minors would become ordinary number as also the argument C ·Z
of the delta function. This commutative sub-space would correspond to a space in which
maximum number of minors vanish and residues reduce to c-numbers.

Thus poles of the integrand of twistor amplitude would correspond to eigenstates for
some k × k minors of Grassmannian with a vanishing eigenvalue. The residue at the
pole at given step in the recursion pole by pole need not be c-number but the further
residue integrals should eventually lead to a c-number or c-number valued integrand.

(b) The most general option would be that the conditions hold true only in the sense that
some k × k minors for k ≥ 2 are c-numbers and have a vanishing eigenvalue but that
smaller minors need not have this property. Also Cα,kZ

k should be c-numbers and
vanish. Residue calculus would give rise to lower-D integrals in step-wise manner.

The simplest and most general option is that one can speak only about eigenvalues of
k × k minors. At pole it is enough to have one minor for which eigenvalue vanishes
whereas other minors could remain quantal. In the final reduction the product of all
non-vanishing k × k minors appearing in cyclic order in the integrand should have a
well-defined c-number as eigenvalue. Does this allow the appearance of only cyclic
minors.

A stronger condition would be that all non-vanishing minors reduce to their eigenvalues.
Could it be that only the n cyclic minors can commute simultaneously and serve as
analogs of q-coordinates in phase space? The complex dimension of GC(n, k) is d =
(n − k)k. If the space spaced by minors corresponds to Lagrangian manifold with real
dimension not larger than d, one has k ≤ d = (n−k)k. This gives k ≤ n/2(1+

√
1− 2/n)

For k = 2 this gives k ≤ n/2. For n → ∞ one has k ≤ n/2 + 1. For k > n/2 one can
change the roles of positive and negative helicities. It has been found that in certain
sense the Grassmannian contributing to the twistor amplitude is positive.

The notion of positivity found to characterize the part of Grassmannian contributing
to the residue integral and also the minors and the argument of delta function [B9](see
http://tinyurl.com/yd9tf2ya) would suggest that it is also real sub-space in some
sense and this finding supports this picture.

The delta function constraint forcing C · Z to zero must also make sense. C · Z defines
k × 6 matrix and also now one must consider eigenvalues of C · Z. Positivity suggest
reality also now. Z adds 4 × n degrees of freedom and the number 6 × k of additional
conditions is smaller than 4 × n. 6k ≤ 4 × n combined with k ≤ n/2 gives k ≤ n/2 so
that the conditions seems to be consistent.

(c) The c-number property for the cyclic minors could define the analog of Lagrangian man-
ifold for the phase space or Kähler manifold. One can of course ask, whether Kähler
structure of Gr(k, n) could generalize to quantum context and give the integration region
as a sub-manifold of Lagrangian manifold of Gr(k, n) and whether the twistor ampli-
tudes could reduce to integral over sub-manifold of Lagrangian manifold of ordinary
Gr(k, n).

http://tinyurl.com/yxrcr8xv
http://tinyurl.com/yd9tf2ya
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To sum up, I have hitherto thought that TGD allows to get rid of the idea of quantization
of coordinates. Now I have encountered this idea from totally unexpected perspective in
an attempt to understand how 8-D masslessness and its twistor description could relate to
4-D one. Grassmannians are however very simple and symmetric objects and have natural
coordinates as k × n matrices interpretable as quantum matrices. The notion of quantum
group could find very concrete application as a solution to the basic problem of the standard
twistor approach. Therefore one can consider the possibility that they have quantum coun-
terparts and at least the residue integrals reducing to c-numbers make sense for quantum
Grassmannians in algebraic sense.
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