
About enumerative algebraic geometry in TGD framework

M. Pitkänen
Email: matpitka6@gmail.com.
http://tgdtheory.com/.

June 20, 2019

Abstract

String models and M-theory involve both algebraic and symplectic enumerative geome-
try. Also in adelic TGD enumerative algebraic geometry emerges. This article gives a brief
summary about the basic ideas involved and suggests some applications to TGD.

1. One might want to know the number of points of sub-variety belonging to the number
field defining the coefficients of the polynomials. This problem is very relevant in M8

formulation of TGD, where these points are carriers of sparticles. In TGD based vision
about cognition they define cognitive representations as points of space-time surface,
whose M8 coordinates can be thought of as belonging to both real number field and to
extensions of various p-adic number fields induced by the extension of rationals. If these
cognitive representations define the vertices of analogs of twistor Grassmann diagrams
in which sparticle lines meet, one would have number theoretically universal adelic for-
mulation of scattering amplitudes and a deep connection between fundamental physics
and cognition.

2. Second kind of problem involves a set algebraic surfaces represented as zero loci for
polynomials - lines and circles in the simplest situations. One must find the number of
algebraic surfaces intersecting or touching the surfaces in this set. Here the notion of
incidence is central. Point can be incident on line or two lines (being their intersection),
line on plane, etc.. This leads to the notion of Grassmannians and flag-manifolds. In
twistor Grassmannian approach algebraic geometry of Grassmannians play key role. Also
in twistor Grassmannian approach to TGD algebraic geometry of Grassmannians play a
key role and some aspects of this approach are discussed.

3. In string models the notion of brane leads to what might be called quantum variant
of algebraic geometry in which the usual rules of algebraic geometry do not apply as
such. Gromow-Witten invariants provide an example of quantum invariants allowing
sharper classification of algebraic and symplectic geometries. In TGD framework M8−H
duality suggests that the construction of scattering amplitudes at level of M8 reduces to
a super-space analog of algebraic geometry for complexified octonions. Candidates for
TGD analogs of branes emerge naturally and G-W invariants could have applications
also in TGD.

In the sequel I will summarize the understanding of novice about enumerative algebraic
geometry and discuss possible TGD applications. This material can be also found in earlier
articles but it seemed appropriate to collect the material about enumerative algebraic geometry
to a separate article.
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1 Introduction

Algebraic geometry is something very different from Riemann geometry, Kähler geometry, or sub-
manifold geometry based on local notions. Sub-manifolds are replaced with sub-varieties defined as
zero loci for polynomials with coefficients in the field of rationals or extension of rationals. Partial
differential equations are replaced with algebraic ones. One can generalize algebraic geometry to
any number field.

String theorists have worked with algebraic geometry with motivation coming from various
moduli spaces emerging in string theory. The moduli spaces for closed and open strings possibly in
presence of branes are involved. Also Calabi-Yau compacticication leads to algebraic geometry, and
topological string theories of type A and B involve also moduli spaces and enumerative algebraic
geometry.

In TGD the motivation for enumerative algebraic geometry comes from several sources.

1. Twistor lift of TGD lifts space-time surfaces to their 6-D twistor spaces representable as
surfaces in the product of 6-D twistor spaces of M4 and CP2 and possessing Kähler struc-
ture - this makes these spaces completely unique and strongly suggests the role of algebraic
geometry, in particular in the generalization of twistor Grassmannian approach [K3] [L2].

2. There are three threads in number theoretic vision: p-adic numbers and adelics, classical
number fields, and infinite primes. Adelic physics [L3] as physics of sensory experience
and cognition unifies real physics and various p-adic physics in the adele characterized by an
extension of rationals inducing those of p-adic number fields. This leads to algebraic geometry
and counting of points with imbedding space coordinates in the extension of rationals and
defining a discrete cognitive representation. The core of the scattering amplitude would be
defined by this cognitive representation identifiable in terms of points appearing as arguments
of n-point function in QFT picture [K3].

3. M8 −M4 × CP2 duality is the analog of the rather adhoc spontaneous compactification in
string models but would be non-dynamical and thus allow to avoid landscape catastrophe.
Classical physics would reduce to octonionic algebraic geometry at the level of complexi-
fied octonions with several special features due to non-commutativity and non-associativity:
space-time could be seen as 4-surface in the complexification of of octonions. The commuting
imaginary unit would make possible the realization of algebraic extensions of rationals.

The moduli space for the varieties is discrete if the coefficients of the polynomials are in the
extension of rationals. If one poses additional conditions such as associativity of 4-surfaces,
the moduli space is further reduced by the resulting criticality conditions realizing quan-
tum criticality at the fundamental level raising hopes about extremely simple formulation of
scattering amplitudes at the level of M8 [K3] [L2].

Also complex and co-complex sub-manifolds of associative space-time surface are important
and would realize strong form of holography (SH). For non-associative regions of space-time
surface it might not be possible to define complex and co-complex surfaces in unique manner
since the basic M2 ⊂ M4 local flag structure is missing. String world sheets and partonic
2-surfaces and their moduli spaces are indeed in key role and the topology of partonic surfaces
plays a key role in understanding of family replication phenomenon in TGD [K3].
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In this framework one cannot avoid enumerative algebraic geometry.

1. One might want to know the number of points of sub-variety belonging to the number field
defining the coefficients of the polynomials. This problem is very relevant in M8 formulation
of TGD, where these points are carriers of sparticles. In TGD based vision about cognition
they define cognitive representations as points of space-time surface, whose M8 coordinates
can be thought of as belonging to both real number field and to extensions of various p-adic
number fields induced by the extension of rationals. If these cognitive representations define
the vertices of analogs of twistor Grassmann diagrams in which sparticle lines meet, one
would have number theoretically universal adelic formulation of scattering amplitudes and a
deep connection between fundamental physics and cognition.

2. Second kind of problem involves a set algebraic surfaces represented as zero loci for polyno-
mials - lines and circles in the simplest situations. One must find the number of algebraic
surfaces intersecting or touching the surfaces in this set. Here the notion of incidence is
central. Point can be incident on line or two lines (being their intersection), line on plane,
etc.. This leads to the notion of Grassmannians and flag-manifolds. In twistor Grassmannian
approach algebraic geometry of Grassmannians play key role. Some aspects of twistor Grass-
mannian approach in TGD discussed already in [K3] [L2] will be discussed in this article.

3. In string models the notion of brane leads to what might be called quantum variant of
algebraic geometry in which the usual rules of algebraic geometry do not apply as such.
Gromow-Witten invariants provide an example of quantum invariants allowing sharper clas-
sification of algebraic and symplectic geometries. In TGD framework M8−H duality suggests
that the construction of scattering amplitudes at level of M8 reduces to a super-space analog
of algebraic geometry for complexified octonions. Candidates for TGD analogs of branes
emerge naturally and G-W invariants could have applications also in TGD.

Moduli spaces parameterizing sub-varieties of given kind - lines, circles, algebraic curves of
given degree, are central for the more advanced formulation of algebraic geometry. These mod-
uli spaces emerge also in the formulation of TGD. The moduli space of conformal equivalence
classes of partonic 2-surfaces is one example involved with the explanation of family replication
phenomenon [K1]. One can assign moduli spaces also to octonion and quaternion structures in
M8 (or equivalently with the complexification of E8). One can identify CP2 as a moduli space of
quaternionic sub-spaces of octonions containing preferred complex sub-space.

One cannot avoid these moduli spaces in the formulation of the scattering amplitudes and
this leads to M8 − H duality. The hard core of the calculation should however reduce to the
understanding of the algebraic geometry of 4-surfaces in octonionic space. Clearly, M8 picture
seems to provide the simplest formulation of the number theoretic vision [K3] [L2].

In the sequel I will summarize the understanding of novice about enumerative algebraic geom-
etry and discuss possible TGD applications. This material can be also found in [K3] [L1, L2] but
it seemed appropriate to collect the material about enumerative algebraic geometry to a separate
article.

2 Basics of enumerative algebraic geometry

2.1 Some examples

Some examples give an idea about what enumerative algebraic geometry (see http://tinyurl.

com/y7yzt67b) is.

1. Consider 4 lines in 3-D space. What is the number of lines intersecting these 4 lines [A3]
(see http://tinyurl.com/ycrbr5aj). One could deduce the number of lines and lines by
writing the explicit equations for the lines with each line characterized by 2+3=5 parameters
specifying direction t vector and arbitarily chosen point x0 on the line. 2+3=5 parameters
characterize each sought-for line.

For intersection points xi of sought for line with i:th one has xi = x0 + kit0, i = 1, ..., 4
for the sought for line with direction t0. At the intersection points at the 4 lines one has

http://tinyurl.com/y7yzt67b
http://tinyurl.com/y7yzt67b
http://tinyurl.com/ycrbr5aj
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xi = x0i + Kiti with fixed directions ti. Combining the two equations for each line one has
4 × 3 = 12 equations and 3+4+2 parameters for the sought for line plus 4 parameters Ki

for the four lines. This gives 13 unknown parameters corresponding to x0, ki,Ki. One would
have one parameter set of solutions: something goes wrong.

One has however projective invariance: one can shift x0 along the line by x0 → x0 − at,
ki → ki + a and using this freedom assume for instance k1 = 0. This reduces the number
of parameters to 12 and one has finite number of solutions in the generic case. Actually the
number is 2 in the generic case but can be infinite in some special cases. The challenge is
to deduce the number of the solutions by geometric arguments.Below Schubert’s argument
proving that the number of solutions is 2 will be discussed.

The idea of enumerative geometry is to do this using general geometric arguments allowing
to deform the problem topologically to a simpler one in which case the number of solutions
is obvious which in the most abstract formulation become topological.

2. Apollonius can be seen as founder of enumerative algebraic geometry. Apollonian circles
(see http://tinyurl.com/ycvxe688) represent second example. One has 3 circles in plane.
What is the number of circles tangential to all these 3 circles. Wikipedia link represents the
geometric solution of the problem. The number of circles is 8 in the generic case but there
are exceptional cases.

3. In Steiner’s conic problem (see http://tinyurl.com/yahshsjo) one have 5 conical sections
(circles, cones, ellipsoids, hyperbole) in plane. How many different conics tangential to the
conics there exist? This problem is rather difficult and the thumb rules of enumerative
geometry (dimension counting, Bezout’s rule, Schubert calculus) fail. This is a problem in
projective geometry where one is forced to introduce moduli space for conics tangential to
given conic. This space is algebraic sub-variety of all conics in plane which is 5-D projective
space. One must be able to deduce the number of points in the intersection of these sub-
varieties so that the original problem in 2-D plane is replaced with a problem in moduli
space.

2.2 About methods of algebraic enumerative geometry

A brief summary about methods of algebraic geometry is in order to give some idea about what is
involved (see http://tinyurl.com/y7yzt67b).

1. Dimension counting is the simplest method. If two geometric objects of n-D space have
dimensions k and l, there intersection is n− k − l-dimensional for n− k − l ≥ 0 or empty in
the generic case. For k + l = n one obtains discrete set of intersection points.

2. Bezouts theorem is a more advanced method. Consider for instance, curves in plane defined
by the curves polynomials x = Pm(y) and x = Pn(y) of degrees k = m and k = n. The
number N of intersection points in the generic case is bounded above by N = m× n (in this
case all roots are real). One can understand this by noticing that one has m roots yk or given
x giving rise to a m-branched graph of function y = f(x). The number of intersections for
the graphs of the two polynomials is at most m × n. If one has curve in plane represented
by polynomial equation Pm,n(x, y) = 0, one can also estimate immediately the minimal
multi-degree (m,n) for this polynomials.

3. Schubert calculus http://tinyurl.com/y766ddw2) is a more advanced but not completely
rigorous method of enumerative geometry [A3] (see http://tinyurl.com/ycrbr5aj).

Schubert’s vision was that the number of intersection points is stable against deformations in
the generic case. This is not quite true always but in exceptional cases one can say that two
separate solutions degenerate to single one, just like roots of polynomial can do for suitable
values of coefficients.

For instance, Schubert’s solution to the already mentioned problem of finding a line intersect-
ing 4 lines in generic position relies on this assumption. The idea is to deform the situation
so that one has two intersecting pairs of lines. One solution to the problem is a line going

http://tinyurl.com/ycvxe688
http://tinyurl.com/yahshsjo
http://tinyurl.com/y7yzt67b
http://tinyurl.com/y766ddw2
http://tinyurl.com/ycrbr5aj
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through the intersection points for line pairs. Second solution is obtained as intersection of
the planes. It can happen that planes are parallel in which case this does not work.

Schubert calculus it applies to linear sub-varieties but can be generalized also to non-linear
varieties. The notion of incidence allowing a general formulation for intersection and tangen-
tiality (touching) is central. This leads to the notions of flag, flag manifold, and Schubert
variety as sub-variety of Grassmannian.

Flag is a hierarchy of incident subspaces A0 ⊂ A1 ⊂ A2... ⊂ An with the property that
the the dimension di ≤ n of Ai satisfies di ≥ i. As a special case this notion leads to the
notion of Grassmannian G(k, n) consisting of k-planes in n-dimensional space: in this case A0

corresponds to k-planes and A2 to space An. More general flag manifolds are moduli spaces
and sub-varieties of Grassmannian providing a solution to some conditions. Flag varieties as
sub-varieties of Grassmannians are Schubert varieties (see http://tinyurl.com/y7ehcrzg).
They are also examples of singular varieties. More general Grassmannians are obtained as
coset spaces of G/P , where G is algebraic group and P is parabolic sub-group of G.

Remark: CP2 corresponds to the space of complex lines in C3. CP2 can be also understood
as the space of quaternionic planes in octonionic 8-space containing fixed 2-plane so that also
now one has flag. String world sheets inside space-time surfaces define curved flags with 2-D
and 4-D tangent spaces defining an integrable distribution of local flags.

4. Cohomology combined with Poincare duality allows a rigorous formulation of Schubert calcu-
lus. Schubert’s idea about possibility to deform the generic position corresponds to homotopy
invariance, when the degeneracies of the solutions are taken into account. Homology and co-
homology become basic tools and the so called cup product for cohomology together with
Poincare duality and Künneth formula for the cohomology of Cartesian product in terms of
cohomologies of factors allows to deduce intersection numbers algebraically. Schubert cells
define a basis for the homology of Grassmannian containing only even-dimensional generators.

Grassmannians play a key role in twistor Grassmannian approach as auxiliary manifolds. In
particular, the singularities of the integrand of the scattering amplitude defined as a multiple
residue integral over G(k, n) define a hierarchy of Schubert cells. The so called positive
Grassmannian [B1] defines a subset of singularities appearing in the scattering amplitudes of
N = 4 SUSY. This hierarchy and its CP2 counterpart are expected also in TGD framework.

Remark: Schubert’s vision might be relevant for the notion of conscious intelligence. Could
problem solving involve the transformation of a problem to a simple critical problem, which
is easy but for which some solutions can become degenerate? The transformation of general
position for 4 lines to a pair of intersecting lines would be example of this. One can wonder
whether quantum criticality could help problem solving by finding critical cases.

5. Moduli spaces of curves and varieties provide the most refined methods. Flag manifolds
define basic examples of moduli spaces. Quantum cohomology represents even more refined
conceptualization: the varieties (branes in M-theory terminology) are said to be connected
or intersect if each of them has a common point with the same pseudo-holomorphic variety
(“string world sheet”). Pseudo-holomorphy - which could have minimal surface property as
counterpart - implies that the connecting 2-surface is not arbitrary.

Quantum intersection for the “string world sheet” and “brane” is possible also when it is
not stable classically (the co-dimension of brane is smaller than 2). Even in the case that
it possible classically quantum intersection makes possible kind of “telepathic” quantum
contact mediated by the “string world sheet” naturally involved with the description of
quantum entanglement in TGD framework.

3 Gromow-Witten invariants

Gromow-Witten invariants play a central role in superstring theories and M-theory and are closely
related to branes. For instance, partition functions can be expressed in terms of these invariants
giving additional invariants of symplectic and algebraic geometries. Hence it is interesting to look
whether they could be important also in TGD framework.

http://tinyurl.com/y7ehcrzg
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3.1 Formal definition

Consider first the definition of Gromow-Witten (G-W) invariants (see http://tinyurl.com/

y9b5vbcw). G-W invariants are rational number valued topological invariants useful in algebraic
and symplectic geometry. These quantum invariants give information about these geometries not
provided by classical invariants. Despite being rational numbers in the general case G-W invariants
in some sense give the number of string world sheets connecting given branes.

1. One considers collection of n surfaces (“branes”) with even dimensions in some symplectic
manifold X of dimension D = 2k (say Kähler manifold) and pseudo-holomorphic curves
(“string world sheets”) X2, which have the property that they connect these n surfaces in
the sense that they intersect the “branes” in the marked points xi, i = 1, .., n.

“Connect” does not reduce to intersection in topologically stable sense since connecting is
possible also for branes with dimension smaller than D − 2. One allows all surfaces that
X2 that intersects the n surfaces at marked points if they are pseudo-holomorphic even if
the basic dimension rule is not satisfied. In 4-dimensional case this does not seem to have
implications since partonic 2-surfaces satisfy automatically the dimension rule. The n branes
intersect or touch in quantum sense: there is no concrete intersection but intersection with
the mediation of “string world sheet”.

2. Pseudo-holomorphy means that the Jacobian df of the imbedding map f : X2 → X commutes
with the symplectic structures j resp. J of X2 resp. X: i.e. one has df(jT ) = Jdf(T ) for
any tangent vector T at given point of X2. For X2 = X = C this gives Cauchy-Riemann
conditions.

In the symplectic case X2 is characterized topologically by its genus g and homology class
A as surface of X. In algebraic geometry context the degree d of the polynomial defining
X2 replaces A. In TGD X2 corresponds to string world sheet having also boundary. X2 has
also n marked points x1, ..., xn corresponding to intersections with the n surfaces.

3. G-W invariant GWX,A
g,n gives the number of pseudo-holomorphic 2-surfaces X2 connecting n

given surfaces in X - each at single marked point. In TGD these surfaces would be partonic
2-surfaces and marked points would be carriers of sparticles.

The explicit definition of G-W invariant is rather hard to understand by a layman like me. I
however try to express the basic idea on basis of Wikipedia definition (see http://tinyurl.com/

y9b5vbcw). I apologize for my primitive understanding of higher algebraic geometry. The article of
Vakil [A1] (see http://tinyurl.com/ybobccub) discusses the notion of G-W invariant in detail.

1. The situation is conformally invariant meaning that one considers only the conformal equiva-
lence classes for the marked pseudo-holomorphic curves X2 parameterized by the points of so
called Deligne-Mumford moduli space Mg,n of curves of genus g with n marked points: note
that these curves are just abstract objects without no imbedding as surface to X assumed.
Mg,n has complex dimension

d0 = 3(g − 1) + n .

n corresponds complex dimensions assignable to the marked points and 3(g − 1) correspond
to the complex moduli in absence of marked points. This space appears in TGD framework
in the construction of elementary particle vacuum functionals [K1].

2. Since these curves must be represented as surfaces in X one must introduces the moduli
space Mg,n(X,A) of their maps f to X with given homology equivalence class. The elements
in this space are of form (C, x1, .., xn, f) where C is one particular representative of A.

3. The complex dimension d of Mg,n(X,A) can be calculated. One has

d = d0 + cX1 (A) + (g − 1)k .

http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/ybobccub
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Here cX1 (A) is the first Chern class defining element of second cohomology of X evaluated
for A. For Calabi-Yau manifolds one has c1 = 0. The contribution (g− 1)k to the dimension
vanishing for torus topology should have some simple explanation.

4. One defines so called evaluation map ev from Mg,n(X,A) → Y , Y = Mg,n × Xn in terms
of stabilization st(C, x1, ..., xn) ∈ Mg,n(X,A) of C (I understand that stabilization means
that the automophism group of the stabilized surface defined by f is finite [A2] (see http:

//tinyurl.com/y8r44uhl). I am not quite sure what the finiteness of the automorphism
group means. One might however think that conformal transformations must be in question.
One has

ev(C, x1, .., xn, f) = (st(C, x1, .., xn), f(x1), ...f(xn)) .

Evaluation map assigns to the concrete realization of string world sheet with marked points
the abstract curve st(C, x1, .., xn) and points (f(xi), ..., f(xn)) ∈ Xn possibly interpretable
as positions f(xi) of n particles. One could say that one has many particle system with
particles represented by surfaces of Xi of X connected by X2 - string world sheet - mediating
interaction between Xi via the intersection points.

5. Evaluation map takes the fundamental class of Mg,n(X,A) in Hd(Mg,n(X,A)) to an element
of homology group Hd(Y ). This homology equivalence class defines G-W invariant, which is
rational valued in the general case.

6. One can make this more concrete by considering homology equivalence class β in Mg,n

and homology equivalence classes αi, i = 1, ..., n represented by the surfaces Xi. The co-
dimensions of these n+1 homology equivalence classes must sum up to d. The homologies of
Mg,n and Y = Mg,n×Xn induce homology of Y by Künneth formula (see http://tinyurl.
com/yd9ttlfr) implying that Y has class of Hd(Y ) given by the product β · α1... · αn.

One can identify the value of GWX,A
g,n for a given class β · α1... · αn as the coefficients in its

expansion as sum of all elements in Hd(Y ). This coefficient is the value of its intersection
product of GWX,A

g,n with the product β ·α1...·αn and gives element of H0(Q), which is rational
number.

7. There are two non-classical features. Classically intersection must be topologically stable.
This would require αi to have codimension 2 but all even co-dimensions are allowed. That
the value for the number of connecting string world sheets is rational number does not
conform with the classical geometric intuition. The Wikipedia explanation is that the orbifold
singularities for the space Mg,n(X,A) of stable maps are responsible for rational number.

3.2 Application to string theory

Topological string theories give a physical realization of this picture. Here the review article
Instantons, Topological Strings, and Enumerative Geometry of Szabo [A2] (see http://tinyurl.

com/y8r44uhl) is very helpful.

1. In M-theory framework and for topological string models of type A and B the physical
interpretation for the varieties associated with αi would be as branes of various dimensions
needed to satisfy Dirichlet boundary conditions for strings.

2. In topological string theories one considers sigma model with target space X, which can
be rather general. The symplectic or complex structure of X is however essential. X is
forced to be 3-D (in complex sense) Calabi-Yau manifold by consistency of quantum theory.
Interestingly, the super twistor space CP (3|4) is super Calabi-Yau manifold although CP3

is not and must therefore have trivial first Chern class c1 appearing in the formula for the
dimension d above. I must admit that I do not understand why this is the case.

Closed topological strings have no marked points and one has n = 0. Open topological strings
world sheets meet n branes at points xi, where they satisfy Dirichlet boundary conditions.
Branes an be identified as even-dimensional Lagrangian sub-manifolds with vanishing induced
symplectic form.

http://tinyurl.com/y8r44uhl
http://tinyurl.com/y8r44uhl
http://tinyurl.com/yd9ttlfr
http://tinyurl.com/yd9ttlfr
http://tinyurl.com/y8r44uhl
http://tinyurl.com/y8r44uhl
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3. For topological closed string theories of type A one considers holomorphically imbedded
curves in X characterized by genus g and homology class A: one speaks of world sheet
instantons. A =

∑
niSi is sum over the generating classes Si with integer coefficients.

For given g and A one has analog of product of non-interacting systems at temperatures
1/ti assignable to the homology classes Si with energies identifiable as ni. One can assign
Boltzmann weight labelled by (g,A) as Qβ =

∏
iQ

ni
i , Qi = exp(−ti).

One can construct partition function for the entire system as sum over Boltzmann weights
with degeneracy factors telling the number of world sheet instantons with given (g,A). One
can calculate free energy as sum

∑
Ng,βQ

β over contributions labelled by (g,A). The co-
efficients Ng,β count the rational valued degeneracies of the world sheet instantons of given

type and reduce to G-W invariants GWX,A
g,0 .

Remark: If one allows powers of a root e−1/n, t = n, in the extension of rationals or replace
e−t with pn, partition functions make sense also in the p-adic context.

4. For topological open string theories of type A one has also branes. Homology equivalence
classes are relative to the brane configuration. The coefficients Ng,β are given by GWX,A

g,n for
a given configuration of branes: the above described general formulas correspond to these.

5. For topological string theories of type B, string world sheets reduce to single point and thus
correspond to constant solutions to the field equations of sigma model. Quantum intersection
reduces to ordinary intersection and one has x1 = x2... = xn. G-W invariants involve only
classical cohomology and give for n = 2 the number of common points for two surfaces in X
with dimension d1 and d2 = n − d. The duality between topological string theories of type
A and B related to the mirror symmetry supports the idea that one could generalize the
calculation of these invariants in theories B to theories A. It is not clear whether this option
as any analog in TGD.

The so called Witten conjecture (see http://tinyurl.com/yccahv3q) proved by Kontsevich
states that the partition function in one formulation of stringy quantum gravity and having as
coefficients of free energy G-W invariants of the target space is same as the partition function in
second formulation and expressible in terms of so called tau function associated with KdV hierarchy.
This leads to non-trivial identities. Witten conjecture actually follows from the invariance of
partition function with respect to half Virasoro algebra and Virasoro conjecture (see http://

tinyurl.com/y7xcc9hm) stating just this generalizes Witten’s conjecture.

3.3 About the analogs of branes and G-W invariants in TGD

A couple of comments from TGD perspective are in order.

1. As such the definition of G-W invariants given above do not make sense in TGD frame-
work. For instance, space-time surface is not a closed symplectic manifold whereas M8

and H are analogs of symplectic spaces. Minkowskian regions of space-time surface have
Hamilton-Jacobi structure at the level of both M8 and H and this might replace the sym-
plectic structure. Space-time surfaces are not closed manifolds.

Physical intuition however suggests that the generalization exists. The fact that Minkowskian
metric and Euclidian metric for complexified octonions are obtained in various sectors for
which complex valued length squared is real suggests that signature is not a problem. Kähler
form for complexified z gives as special case analog of Kähler form for E4 and M4.

2. The quantum intersection defines a description of interactions in terms of string world sheets.
If I have understood G-W invariant correctly, one could have for D > 4-dimensional symplec-
tic spaces besides partonic 2k − 2-D surfaces also surfaces with smaller but even dimension
identifiable as branes of various dimensions. Branes would correspond to a generalization of
relative cohomology. In TGD framework one has 2k = 4 and the partonic 2-surfaces have
dimension 2 so that classical intersections consisting of discrete points are possible and stable
for string world sheets and partonic 2-surfaces. This is a unique feature of 4-D space-time.

http://tinyurl.com/yccahv3q
http://tinyurl.com/y7xcc9hm
http://tinyurl.com/y7xcc9hm
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One might think a generalization of G-W invariant allowing to see string world sheets as con-
necting the spaced-like 3-surfaces at the boundaries of CDs and light-like orbits of partonic
2-surfaces. The intersection is not discrete now and marked points would naturally corre-
spond to the ends points of strings at partonic 2-surfaces associated with the boundaries of
CD and with the vertices of topological scattering diagrams.

3. The idea about 2-D string world sheet as interaction region could generalize in TGD to
space-time surface inside CD defining 4-D interaction region. In [K3] [L2] one indeed ends
up with amazingly similar description of interactions for n external particles entering CD
and represented as zero loci for quaternion valued “real” part RE(P ) or “imaginary” part
IM(P ) for the complexified octonionic polynomial.

Associativity forces quantum criticality posing conditions on the coefficients of the polyno-
mials. Polynomials with the origin of octonion coordinate along the same real axis commute
and associate. Since the origins are different for external particles in the general case, the
polynomials representing particles neither commute nor associate inside the interaction re-
gion defined by CD but one can also now define zero loci for both RE(

∏
Pi) and IM(

∏
Pi)

giving Pi = 0 for some i. Now different permutations and different associations give rise to
different interaction regions and amplitude must be sum over all these.

3-vertices would correspond to conditions Pi = 0 for 3 indices i simultaneously. The strongest
condition is that 3 partonic 2-surfaces X2

i co-incide: this condition does not satisfy classical
dimension rule and should be posed as essentially 4-D boundary condition. Two partonic
2-surfaces X2

i (ti(n)) intersect at discrete set of points: could one assume that the sparticle
lines intersect and there fusion is forced by boundary condition? Or could one imagine that
partonic 2-surfaces turns back in time and second partonic 2-surface intersects it at the
turning point?

4. In 4-D context string world sheets are associated with magnetic flux tubes connecting partonic
orbits and together with strings serve as correlates for negentropic entanglement assignable
to the p-adic sectors of the adele considered, to attention in consciousness theory, and to
remote mental interactions in general and occurring routinely between magnetic body and
biological body also in ordinary biology. This raises the question whether “quantum touch”
generalizes from 2-D string world sheets to 4-D space-time surface (magnetic flux tubes)
connecting 3-surfaces at the orbits and partonic orbits.

5. The above formulation applies to closed symplectic manifolds X. One can however generalize
the formulation to algebraic geometry. Now the algebraic curve X2 is characterized by genus
g and order of polynomial n defining it. This formulation looks very natural in M8 picture.

An interesting question is whether the notion of brane makes sense in TGD framework.

1. In TGD branes inside space-time variety are replaced by partonic 2-surfaces and possibly
by their light-like orbits at which the induced metric changes signature. These surfaces are
metrically 2-D. String world sheets inside space-time surfaces have discrete intersection with
the partonic 2-surfaces. The intersection of strings as space-like resp. light-like boundaries of
string world sheet with partonic orbit sheet resp. space-like 3-D ends of space-time surface
at boundaries of CD is also discrete classically.

2. An interesting question concerns the role of 6-spheres S6(tn) appearing as special solutions
to the octonionic zero locus conditions solving both RE(Pn) = 0 and IM(Pn) = 0 requiring
Pn(o) = 0. This can be true at 7-D light cone o = et, e light-like vector and t a real parameter.
The roots tn of P (t) = 0 give 6-spheres S6(tn) with radius tn as solutions to the singularity
condition. As found, one can assign to each factor Pi in the product of polynomials defining
many-particle state in interaction region its own partonic 2-surfaces X2(tn) related to the
solution of Pi(t) = 0

Could one interpret 6-spheres as brane like objects, which can be connected by 2-D “free”
string world sheets as 2-varieties in M8 and having discrete intersection with them implied
by the classical dimension condition for the intersection. Free string world sheets would be
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something new and could be seen as trivially associative surfaces whereas 6-spheres would
represent trivially co-associative surfaces in M8.

The 2-D intersections of S6(tn) with space-time surfaces define partonic 2-surfaces X2 ap-
pearing at then ends of space-time and as vertices of topological diagrams. Light-like sparticle
lines along parton orbits would fuse at the partonic 2-surfaces and give rise to the analog of
3-vertex in N = 4 SUSY.

Some further TGD inspired remarks are in order.

1. Virasoro conjecture generalizing Witten conjecture involves half Virasoro algebra. Super-
Virasoro algebra algebra and its super-symplectic counterpart (SSA) play a key role in the
formulation of TGD at level of H. Also these algebras are half algebras. The analogs of
super-conformal conformal gauge conditions state that sub-algebra of SSA with conformal
weights coming as n-ples of those for entire algebra and its commutator with entire SSA give
rise to vanishing Noether charges and annihilate physical states.

These conditions are conjecture to fix the preferred extremals and serve as boundary con-
ditions allowing the formulation of M8 − H correspondence inside space-time regions (in-
teraction regions), where the associativity conditions fail to be true and direct M8 − H
correspondence does not make sense. Non-trivial solutions to these conditions are possi-
ble only if one assumes half super-conformal and half super-symplectic algebras. Otherwise
the generators of the entire SSA annihilate the physical states and all SSA Noether charges
vanish. The invariance of partition function for string world sheets in this sense could be
interpreted in terms of emergent dynamical symmetries.

2. Just for fun one can consider the conjecture that the reduction of quantum intersections to
classical intersections mediated by string world sheets implies that the numbers of string
world sheets as given by the analog of G-W invariants are integers.

4 Twistor Grassmannians and algebraic geometry

Twistor Grassmannians provide an application of algebraic geometry involving the above described
notions [B1] (see http://tinyurl.com/yd9tf2ya). This approach allows extremely elegant ex-
pressions for planar amplitudes of N = 4 SYM theory in terms of amplitudes formulated in
Grassmannians G(k, n).

It seems that this approach generalizes to TGD in such a manner that CP2 degrees of free-
dom give rise to additional factors in the amplitudes having form very similar to the M4 part of
amplitudes and involving also G(k, n) with ordinary twistor space CP3 being replaced with the
flag manifold SU(3)/U(1)×U(1): k would now correspond to the number sparticles with negative
weak isospin. Therefore the understanding of the algebraic geometry of twistor amplitudes could
be helpful also in TGD framework.

4.1 Twistor Grassmannian approach very concisely

I try to compress my non-professional understanding of twistor Grassmann approach to some key
points.

1. Twistor Grassmannian approach constructs the scattering amplitudes by fusing 3-vertices
(+,-,-) (one positive helicity) and (-,+,+) (one negative helicity) to a more complex diagrams.
All particles are on mass shell and massless but complex. If only real massless momenta are
allowed the scattering amplitudes would allow only collinear gluons. Incoming particles have
real momenta.

Remark: Remarkably, M4×CP2 twistor lift of TGD predicts also complex Noether charges,
in particular momenta, already at classical level. Also M8−H duality requires a complexifi-
cation of octonions by adding commuting imaginary unit and allows to circumvent problems
related to the Minkowski signature since the metric tensor can be regarded as Euclidian
metric tensor defining complex value norm as bilinear mkmklm

l in complexified M8 so that

http://tinyurl.com/yd9tf2ya
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real metric is obtained only in sub-spaces with real or purely imaginary coordinates. The
additional imaginary unit allows also to define what complex algebraic numbers mean.

The unique property of 3-vertex is that the twistorial formulation for the conservation of
four-momentum implies that in the vertex one has either λ1 ∝ λ2 ∝ λ3 or λ1 ∝ λ2 ∝ λ3.
These cases correspond to the 2 3-vertices distinguished notationally by the color of the
vertex taken to be white or black [B1].

Remark: One must allow octonionic super-space in M8 formulation so that octonionic SUSY
broken by CP2 geometry reducing to the quaternionicity of 8-momenta in given scattering
diagram is obtained.

2. The conservation condition for the total four-momentum is quadratic in twistor variables for
incoming particles. One can linearize this condition by introducing auxiliary Grassmannian
G(k, n) over which the tree amplitude can be expressed as a residue integral. The number
theoretical beauty of the multiple residue integral is that it can make sense also p-adically
unlike ordinary integral.

The outcome of residue integral is a sum of residues at discrete set of points. One can
construct general planar diagrams containing loops from tree diagrams with loops by BCFW
recursion. I have considered the possibility that BCFW recursion is trivial in TGD since
coupling constants should be invariant under the addition of loops: the proposed scattering
diagrammatics however assumed that scattering vertices reduce to scattering vertices for 2
fermions. The justification for renormalization group invariance would be number theoretical:
there is no guarantee that infinite sum of diagrams gives simple function defined in all number
fields with parameters in extension of rationals (say rational function).

3. The general form of the Grassmannian integrand in G(k, n) can be deduced and follows from
Yangian invariance meaning that one has conformal symmetries and their duals which ex-
pand to full infinite-dimensional Yangian symmetry. The denominator of the integrand of
planar tree diagram is the product of determinants of k × k minors for the k × n matrix
providing representation of a point of G(k, n) unique apart from SL(k, k) transformations.
Only minors consisting of k consecutive columns are assumed in the product. The residue
integral is determined by the poles of the denominator. There are also dynamical singular-
ities allowing the amplitude to be non-vanishing only for some special configurations of the
external momenta.

4. On mass-shell diagrams obtained by fusing 3-vertices are highly redundant. One can describe
the general diagram by using a disk such that its boundary contains the external particles
with positive or negative helicity. The diagram has certain number nF of faces. There are
moves, which do not affect the amplitude and it is possible to reduce the number of faces to
minimal one: this gives what is called reduced diagram. Reduced diagrams with nF faces
define a unique nF − 1-dimensional sub-manifold of G(k, n) over which the residue integral
can be defined. Since the dimension of G(k, n) is finite, also nF is finite so that the number
of diagrams is finite.

5. On mass shell diagrams can be labelled by the permutations of the external lines. This gives
a connection with 1+1-dimensional QFTs and with braid group. In 1+1-D integral QFTs
however scattering matrix induces only particle exchanges.

The permutation has simple geometric description: one starts from the boundary point of
the diagram and moves always from left or right depending on the color of the point from
which one started. One arrives some other point at the boundary and the final points are
different for different starting points so that the process assigns a unique perturbation for
a given diagram. Diagrams which are obtained by moves from each other define the same
permutation. BFCW bridge which is a manner to obtain new Yangian invariant corresponds
to a permutation of consecutive external particles in the diagram.

6. The poles of the denominator determine the value of the multiple residue integrals. If one al-
lowed all minors, one would have extremely complex structure of singularities. The allowance
only cyclically taken minors simplifies the situation dramatically. Singularities correspond to
n subgroups of more than 2 collinear k-vectors implying vanishing of some of the minors.
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7. Algebraic geometry comes in rescue in the understanding of singularities. Since residue
integral is in question, the choice is rather free and only the homology equivalence class of
the cell decomposition matters. The poles for a hierarchy with poles inside poles since given
singularity contains sub-singularities. This hierarchy gives rise to a what is known as cell
composition - stratification - of Grassmannian consisting of varieties with various dimensions.
These sub-varieties define representatives for the homology group of Grassmannian. Schubert
cells already mentioned define this kind of stratification.

Remark: The stratification has very strong analogy of the decomposition of catastrophe in
Thom’s catastrophe theory to pieces of various dimensions. The smaller the dimension, the
higher the criticality involved. A connection with quantum criticality of TGD is therefore
highly suggestive.

Cyclicity implies a reduction of the stratification to that for positive Grassmannians for which
the points are representable as k × n matrices with non-negative k × k determinants. This
simplifies the situation even further.

Yangian symmetries have a geometric interpretation as symmetries of the stratification: level
1 Yangian symmetries are diffeomorphisms preserving the cell decomposition.

4.2 Problems of twistor approach

Twistor approach is extremely beautiful and elegant but has some problems.

1. The notion of twistor structure is problematic in curved space-times. In TGD framework
the twistor structures of M4 and CP2 (E4) induce twistor structure of space-time surface
and the problem disappears just like the problems related to classical conservation laws are
circumvented. Complexification of octonions allows to solve the problems related to the
metric signature in twistorialization.

2. The description of massive particles is a problem. In TGD framework M8 approach allows
to replace massive particles with particles with octonionic momenta light-like in 8-D sense
belonging to quaternionic subspace for a given diagram. The situation reduces to that for
ordinary twistors in this quaternionic sub-space but since quaternionic sub-space can vary,
additional degrees of freedom bringing in CP2 emerge and manifest themselves as transversal
8-D mass giving real mass in 4-D sense.

3. Non-planar diagrams are also a problem. In TGD framework a natural guess is that they
correspond to various permutations of free particle octonionic polynomials. Their product
defines interaction region in the interior of CD to which free particles satisfying associativity
conditions (quantum criticality) arrive. If the origins of polynomials are not along same time
axis, the polynomials do not commute nor associate. One must sum over their permutations
and for each permutation over its associations.

4.3 Trying to understand the fundamental 3-vertex in twistor approach

As far as the realization of four-momentum conservation is considered 3-vertex unique twistorial
properties. Therefore it is fundamental in the construction of scattering diagrams in twistor Grass-
mannian approach to N = 4 SYM [B1] (see http://tinyurl.com/yd9tf2ya). Twistor Grassmann
approach suggests that 3-vertex with complexified light-like 8-momenta represents the basic build-
ing brick representing from which more complex diagrams can be constructed using the BCFW
recursion formula [B1]. In TGD 3-vertex generalized to 8-D light-like quaternionic momenta should
be highly analogous to the 4-D 3-vertex and in a well-defined sense reduce to it if all momenta of
the diagram belong to the same quaternionic sub-space M4

0 [K3] [L2]. It is however not completely
clear how 3-vertex emerges in TGD framework.

1. A possible identification of the 3-vertex at the level of M8 would be as a vertex at which 3
sparticle lines with light-like complexified quaternionic 8-momenta meet. This vertex would
be associated with the partonic vertex X2(tn) = X4∩S6(tn). Incoming sparticle lines at the
light-like partonic orbits identified as boundaries of string world sheets (for entangled states
at least) would be light-like.

http://tinyurl.com/yd9tf2ya
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Does the fusion of two sparticle lines to third one require that either or both fusing lines
become space-like - say pieces of geodesic line inside the Euclidian space-time region- bounded
by the partonic orbit? The identification of the lines of twistor diagrams as carriers of light-
like complexified quaternionic momenta in 8-D sense does not encourage this interpretation
(also classical momenta are complex). Should one pose the fusion of the light-like lines as a
boundary condition?

2. As found in [L2], one can challenge the assumption about the existence of string world sheets
as commutative regions in the non-associative interaction region. Could one have just fermion
lines as light-like curves at partonic orbits inside CD? Or cannot one have even them?

Even if the polynomial
∏
i Pi defining the interaction region is product of polynomials with

origins of octonionic coordinates not along the same real line, the 7-D light-cones of M8

associated with the particles still make sense in the sense that Pi(oi) = 0 reduces at it to
Pi(ti) = 0, ti real number, giving spheres S6(ti(n)) and partonic 2-surfaces and vertices
X2(ti(n)). The light-like curves as geodesics the boundary of 7-D light-cones mapped to
light-like curves along partonic orbits in H would not be lost inside interaction regions.
Hence it seems that light-like curves are there. Interactions can be said to effectively localize
sparticles to 1-D lightlike curves.

3. At the level of H this relates to a long standing interpretational problem related to the notion
of induced spinor fields. SH suggests strongly the localization of the induced spinor fields
at string world sheets and even at sparton lines in absence of entanglement. On the other
hand, various super-conformal symmetries require that induced spinor fields are 4-D and thus
seems to favor de-localization. The information theoretic interpretation is that the induced
spinor fields at string world sheets or even at sparton lines contain all information needed to
construct the scattering amplitudes. One can also say that string world sheets and sparton
lines correspond to a description in terms of an effective action.

4.4 Could the M8 view about twistorial scattering amplitudes be con-
sistent with the earlier H picture?

The proposed picture involving super coordinates of M8 and super-twistors [K3] [L2] does not
seem to conform with the earlier proposal for the construction of scattering amplitudes at the level
of H [K4]. Is this really true?

In H picture the introduction of super-space does not look natural, and one can say that
fundamental fermions are the only fundamental particles [K2, K4]. The H view about super-
symmetry is as broken supersymmetry in which many fermion states at partonic 2-surfaces give
rise to supermultiplets such that fermions are at different points. Fermion 4-vertex would be
the fundamental vertex and involve classical scattering without fusion of fermion lines. Only a
redistribution of fermion and anti-fermion lines among the orbits of partonic 2-surfaces would take
place in scattering and one would have kind of OZI rule.

Could the earlier H view conform with the recent M8 view, which is much closer to the SUSY
picture.

1. The intuitive idea without a rigorous justification has been that the fermion lines at par-
tonic 2-surfaces correspond to singularities of many-sheeted space-time surface at which some
sheets co-incide. M8 sparticle consists effectively of n fermions at the same point in M8.
Could it be mapped by M8−H duality to n fermions at distinct locations of partonic 2-surface
in H?

2. M8 −H correspondence maps the points of M4 ⊂ M4 × E4 to points of M4 ⊂ M4 × CP2.
The tangent plane of space-time surface containing a preferred M2 is mapped to a point of
CP2. If the effective n-fermion state M8 is at point at which n sheets of space-time surface
co-incide and if the tangent spaces of different sheets are not identical, which is quite possible
and even plausible, the point is indeed mapped to n points of H with same M4 coordinates
but different CP2 coordinates and sparticle would be mapped to a genuine many-fermion
state.
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