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1 On direct testing of quantum consciousness and
DNA as tqc

Quantum entanglement and its reduction in ”cognitive” quantum measure-
ment could provide a direct test of quantum consciousness. Andrei Khren-
nikov [2] has proposed a mathematical formulation of ”quantum like” be-
havior based on his proposal that so called context dependent probabilities
could provide alternative description for quantum mechanical interference
phenomenon. In quantum theory context would correspond to the choice of
quantization axis. Khrennikov has also proposed a modification of Bell in-
equalities so that they apply on conditional probabilities: this would make
it possible to avoid the task of preparing entangled state of brains. The
hope is that one could forget completely the microscopic structure of quan-
tum brain and test quantum like behavior by making simple experiments
involving just questions to the subject persons and finding whether or not
classical rules for conditional probabilities hold true or not. This article was
born as a response in email discussions with Elio Conte and I am grateful
for these interesting exchanges.

1.1 First experiment

Bistable percepts induced by ambiguous figures are especially attractive
from the point of view of experimentation. The question would be ” Which
of the two possible percepts?”’ and the outcome would be answer to this
question. The first experiment reported in [3] was following.

a) Consider a group S of subject persons. Divide it into two groups U
and V containing equally many subject persons. Represent for members
of U the question A (bistable percept A). From this one can deduce the

probalities p(A = +) and p(A = —). Represent for members of V the
question B and and immediately after than the question A (bistable percept
A) for those who answered B = —. This experiment gives the conditional

probabilities p(A = £/B = +).
b) The quantity

p(A==%x)—pB=+)p(A==+/B=+)—p(B=-)p(A==%/B=—)

cos(0+) = 2/p(B=+)pB=—)p(A==+/B=+)p(A==%/B =)

measures the failure of the basic rule p(A = +) — p(B = +)p(A = +/B =
+) — p(B = —)p(A = +/B = —) for classical conditional probability. Note



that in quantum theory similar rules applies to transition amplitudes (con-
ditional probability amplitudes) corresponding to the addition of a complete
set of states in the inner product between two states (for instance, repeated
application of this gives rise to path integral formulation).

¢) One can describe the situation in terms of ”quantum like state”

W(A =)= /p(B=+)p(A=%/B = +)+¢* \[p(B = —)p(A=+/B = -)

satisfying p(A = £) = |¥(A = +)|2. If cos(f) is non-vanishing one can say
that that the situation is quantum like.

1.2 Second experiment

Second experimental test is more complex and involves generalization of
Bell’s inequality so that it involves conditional probabilities [2] Let A, B,C =
£ be arbitrary dichotomous random variables satisfying Kolmogorov ax-
ioms characterizing classical probability. Then the following analog of Bell
inequality can be shown to hold true:

PA=+,B=+)+P(C=+,B=-) > PA=+C=+). (1)

In terms of conditional probabilities one has

P(A=+4+/B=+4) P(C=+4/B=-)
P(B =+) P(C=+)

P(A=+/C=+)
P(C=+)

) = - (2)

If the random variables are symmetrically distributed so that one has
P(X =4)=1/2, for X = A, B,C one obtains

P(A=+/B=+)+P(C=+/B=-) > PA=+/C=+). (3)

Note that this form of equality is by no means necessary. The symmetric
distributions for the random variables would however correspond to maximal
entanglement in spin system given best hopes for the violation of the Bell
inequality.

d) The test is following. Consider a group S of subject persons divided
into subgroups U and V as above. Pose to the members of U question B
and immediately after that question A for those who answered B = + and



question C for those who answered B = —1. For group V represent first
the question C' and for those who answer C' = + represent the question A.
The failure of inequality could regarded as a direct proof for quantum like
behavior. That failure does not occur does not of course mean that system
is classical but only that the quantal effects are not large enough.

e) The analogy with Bell’s inequality suggest that the questions are
analogous to posing the spins of spin pair in spin singlet state to an external
magnetic fields determining the quantization axis. The inequality tend to fail
when the directions of the magnetic fields for the two spins differ enough.
Thus the failure is expected if the questions, in other words ambiguous
figures producing bistable percepts differ enough.

1.3 Criticism and possible improvement of the experiment

In the case of spin pairs the tests of quantum behavior are carried out for
the members of spin pair by putting them to magnetic fields having different
directions. Now the pair of experiments is made for a single subject person.
Hence there is no need to prepare quantum entangled pair of conscious
entities.

The use of ensemble is the problematic aspect of experiments. Human
beings are extremely complex systems and one can argue that it is impossible
to prepare an ensemble of identical systems in cognitive sense. A possible
manner to avoid the problem would be the replacement of ensembles with
a time series of experiments performed for a single subject person. In both
experiments one could perform the two kinds of experiments many times to
single subject person and deduce various probabilities and cos(#) from the
outcome of the experiments.

1.4 Interpretation in terms of zero energy ontology and DN A
as tqc

The discussions with Elio Conte led to the realization that in zero energy
ontology the experiments differ from the corresponding experiments for two-
spin system only in that space-like entanglement is replaced with time like
entanglement. The experiment would be essentially a measurement of prob-
abilities defined by the matrix elements of M-matrix defining the generaliza-
tion of S-matrix. Hence Bell’s inequalities and their generalizations should
apply in genuine quantum sense. By performing the experiments for a sin-
gle subject person as time series one might be therefore able study whether
quantum consciousness in the sense of TGD makes sense.



Quantum consciousness approach however requires that bistable per-
cepts have genuine microscopic quantum states as their physical correlates.
This is not assumed in the approach of Khrennikov.

a) If the vision about DNA as topological quantum computer makes
sense, the question to the answer ” Which of the two possible percepts?” can
be regarded as a qubit which is some function of a large number of qubits
and same function irrespective of the ambiguous figure used. This could hold
quite generally, at least for a given sensory modality. The qubits appearing
as arguments of this function are determined by the sensory input defined by
the ambiguous figure. The ambiguous figure would take the role of magnetic
field determining the directions of quantization axes for a large collection of
qubits appearing as arguments of the Boolean function (one cannot exclude
the possibility that neuronal synchrony forces all these axes to have same
direction). Qubit could correspond to spin or some spin like variable. The
quantization axes could correspond in this case to the direction of external
magnetic field acting on 1-gate of tqc.

b) Qubit could be replaced with an n-state system: this would require
a generalization of the Bell inequalities. The model of DNA as tqc suggests
that qubit might be replaced with qutrit defined by a quark triplet (third
quark with vanishing color isospin would correspond to ill-defined truth
value). The inability of subject persons to identify the percept always indeed
encourages to consider this option. Color group SU(3) (SO(3) C SU(3))
defines the set of possible quantization axes as points of the flag manifold
F = SU(3)/U(1) x U(1) (SO(3)/SO(2) = S?). Quantization axes would
be determined by the direction of color magnetic field in color Lie algebra
and sensory input would define a sequence of 1-gates at the lipids ends of
the braid strands, and realized as color rotations of the flux tube defining
braid strand. This hypothesis would conform with the proposal of Barbara
Shipman that honeybee dance that quarks are in some mysterious manner
involved with cognition [4].

2 A further comment about Bell inequality and
its cognitive counterpart

The attempt to explain Bell’s inequality for a non-physicist looks to me a
mission impossible. One can deduce the failure of Bell’s inequalities easily in
the formalism of quantum theory but this formalism is not available for the
poor popularizer. Popularizer should explain something completely counter
intuitive by applying to the every day intuition of the listener. The general-



ization of this inequality to cognitive context makes the situation even more
difficult since one cannot refer to geometric concepts like spin rotations.

In the following I try to concretize the statement ”Quantum behavior
need not imply violation of Bell’s inequalities” and answer the question
”"What kind of experimental situation gives rise to a violation of ordinary
Bell inequalities in case of spin pair (what the directions of magnetic field
must be)” by an argument involving basic notions of group theory of rota-
tion group. The third question is ”What kind of cognitive experiment using
ambiguous figures might be analogous to the experiment demonstrating vio-
lation of Bell’s inequalities for spin pair?”. TGD view about brain does not
give very good hopes of the violation - basically because the cognitive bits
are Boolean functions of very many qubits. In the context of Khrennikov’s
theory the situation might be better.

2.1 Non-violation and violation of Bell inequalities in spin-
spin system

2.1.1 Bell inequality in spin-spin system

For simplicity consider a system of two spins |j, m) = |1/2,4+1/2 > in maxi-
mally entangled state with total spin zero and forget considerations related
to fermion statistics. For convenience, let us use the brief hand notation
| +1/2) for the states. The state is given by

1
V2

and invariant under rotations.

Let a,b,c and a’,b’,c’ denote the measurements of first resp. second
spin with three directions n € {ej,es,e3} of measurement axes. a = +1
correspond to spin s, = £1/2.

Let us consider Bell’s inequality which appears in Andrei Khrennikov’s
article in the form

11/2)] =1/2) + | = 1/2)]1/2)] (4)

Pla=-1,0'=+1)+P(c=-1,0' =-1) > Pla= -1, = +1) . (5)

An equivalent form is

P(s1=—1/2,80 = +1/2) + P(sg = —1/2, 59 = —1/2) > P(s1 = —1/2, 53 = +1/2) .

(6)



2.1.2 Expression of probabilities in terms of rotation matrices

One can transform Bell inequality to a purely geometric condition by notic-
ing that the probabilities are defined by matrix elements of matrices rotating
quantization axis n; to ny to each other. The rotations are not unique since
one can perform first an arbitrary rotation around n;, rotate then then n;
to ny, and then perform arbitrary rotation around ny. The initial/final
rotation induces only a phase factor to an eigen state of spin with respect
to initial/final axes and does not affect probabilities appearing in the Bell
inequalities.
a) Quite generally, P(s, = £1/2, s, = £1/2) is expressible as

P(sq = +1/2,8, = £1/2) = |R(na,m) £1/2.51/2° (7)

where the rotation matrix R(ng,n)*"/?*1/2 represents the action of rota-

tion taking n, to m on spinors. Note that the sign of spin is changed in the
second argument on the right hand side: this corresponds to the fact that
the measurement of first spin giving spin s = 4+1/2 fixes the value of second
spin to be opposite.

This representation follows from the unitary action of rotations on spin
eigen states given by

|s¢ = £1/2) = R(navnb)i1/2,1/2’3b =1/2) + R(naanb)ﬂ/z,q/ﬂsb =-1/2) .
(8)

This action means that the 2 spin 1/2 eigenstates are analogous to the 3
components of position vector in that they transform under rotations to
linear combinations of each other.

The above expression for the probability follows using standard rules of
quantum theory: that is, as moduli squared of the inner product

P(sq = £1/2,5, = £1/2) = (sq = £1/2|s, = £1/2)|? | (9)

between the spin eigen states associated with quantization axes n, and ny
using the orthonormality of the state basis.

2.1.3 Expression of Bell’s inequality in terms of rotation matrices

a) Using the representation of 9 for probabilities, Bell’s inequality reads as



’R(”17”2)71/2,71/2\2 + ‘R(nQan?))fl/Z,l/Q’z > ]R(nl,n3)71/2371/2|2 (10)

and has obviously purely geometric content.
b) The rotation n, — n; can be parameterized in terms of three angles:

R(na,ny) = R(c, 8,7) | (11)

where « is the angle between n, and n,. One can choose always [ =
v = 0 without affecting the probabilities since these angle correspond to
an arbitrary rotation around the direction of ny resp. n, inducing only a
phase factor. R(«,0,0) has a simple form

R(a,0,0) = ( i);(;y(f/)z) zZZEZg; ) . "

Diagonal elements correspond to Ry /91/2 = R_1/2,_1/2 = cos(6/2) and non-
diagonal ones to Ryjp 12 = —R_1/91/2 = sin(0/2). This formula follows
from the requirement that rotations form a group and can be found in any
text book of quantum mechanics.

c¢) Using this representation of rotation matrices the condition for the
violation(!) of Bell inequality reads as

cos?(012/2) + sin®(0a3/2) < cos®(613/2) . (13)
By using trigonometric identities cos?(x/2) = (cos(x)+1)/2 and sin?(x/2) =
(1 — cos(z))/2 one can write the inequality as

cos(ba3) — cos(021) > 1 — cos(bh3) . (14)

This is a purely geometric condition for angles between three unit vectors
characterizing the quantization axes.
2.1.4 Analysis of the violation Bell’s inequalities

By choosing the coordinates suitably one always have es is in z-direction:
e3 == e,, and e in y — z plane.



es=e, , e =cos(a)e, + sin(a)ey , (15)

e can be always expressed as

ex = cos(f)e, + sin(B)(cos(d)er + sin(p)ey) (16)

The cosines are given in terms of inner products of these vectors: cos(6;;) =
ng - nj:

cos(ba3) = cos(B) ,
cos(021) = cos(a)cos(B) + sin(a)sin(B)sin(¢p) , (17)
cos(613) = cos(a) .

a) The condition for the violation reads as

cos(B) — cos(a)cos(B) + sin(a)sin(B)sin(p) > 1 — cos(a) . (18)

giving

[1 — cos(@)][1 — cos(B)]
sin(a)sin(f3) ’
The condition states that the third quantization axis (eg) is sufficiently far

from the plane defined by the first two (e3 and eq).
The region

sin(¢) > (19)

[1 — cos(a)][1 — cos(B)]
sin(a)sin(f)
corresponds to pseudo-classical regime allowing for which sin(¢) > 1 would
hold true, and the curve

>1 . (20)

[1 — cos(a)][1 — cos(B)]
sin(a)sin(f3)
separates the pseudoclassical and strictly non-classical regions from each

other. Using the variables x = [1—cos(«)]/sin(a) and y = [1—cos(5)]/sin(5)
this equation reduces to an equation

=1. (21)



zy=1. (22)

of a hyperbole. The region between x- and y-axes and hyperbole is strictly
non-classical and the region above the hyperbole is pseudoclassical. The
allowed variation range of x and y is (0, 00) corresponding to (0, ).

The non-classical region divides into three regions. The two regions
between x- (y-) coordinate axis and asymptotic of hyperbole and the middles
region with = ~ y.

a) In asymptotic region « is near zero and [ near to m or vice versa
so that the directions of all three quantization axes are near to x-aces but
nearly opposite for a and 5. The possible problem is the instability against
small variations of & and (3. The variation of ¢ is almost entire range (0, )
but actually this corresponds to a very small half-circle around z-axis so
that there is not so much room than one might think.

b) The middle region of the open square (0 < z < 1,0 < y < 1) is
perhaps the most promising one experimentally. For instance, one can con-
sider large enough equilateral triangles on surface of unit sphere defined by
quantization directions with x =y and sin(8)¢ = a = (.

2.1.5 Examples about the violation and non-violation of Bell’s
inequalities

Consider now examples about violation and non-violation of Bell inequali-
ties.

a) For instance, for o and/or [ sufficiently near to zero one can write
1 — cos(a) ~ a?/2 and sin(a) ~ «a (same for 3). Suppose that « is small.
In this case one has

[1 - cos(B)
sin(B)

Solutions obviously exist for sufficiently small values of « for given value of
B > 0 (note that sin(3) > 0 is always true). Thus by taking quantization e
and e; sufficiently near to each other one can always find violation of Bell
inequalities.

b) If both o and (3 are near to zero so that all three quantization axes
are near to each other but not identical, the condition for violation reduces
in a good approximation to

sin(¢) > X % . (23)
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sin(¢) > %ﬁ : (24)
and solutions to this condition obviously exist. Obviously this option gives
the weakest condition on sin(¢).

The inequality is satisfied also for @« = 0 or § = 0 but this does not
actually yield violation of Bell since for a = 0 or 8 = 0 corresponds to a
situation in which two quantization axes are in the same direction (different
values of ¢ correspond to the same direction es = e, for 3 = 0). The original
naive expectation that the directions of quantization axes should differ very
much in order to have violation, is wrong.

c¢) In the special case &« = 3 > 0 e; and e are on the cone around e,
and violation is obtained for

[1 — cos(a)]?
——

sin(¢p) > (25)

sin(a)
provided the condition cos(a) + sin(a) > 1 guaranteing sin(¢) < 1 is satis-
fied. The condition is true for 0 < « < 7/2 so that upper hemisphere with
North Pole and equator excluded gives violation. Note that in this case the
directions of quantization axes ej, es, es must be far enough from each other
unlike in the previous case and this case corresponds to the original intuitive
expectations.
d) Bell inequalities are not violated for

[1 — cos(a)][1 — cos(B)]
sin(a)sin(B) '

Note that pseudo-classicality implied by too small values of sin(¢) means
that the plane defined by es and eg is nearly orthogonal to the plane defined
by e; and e3. In particular, for sin(¢) = 0 stating that third quantization
axes is in a plane orthogonal to the first two axes.

sin(¢) < (26)

2.2 Cognitive measurements in TGD framework

Consider first the question what cognitive Bell’s inequalities could mean in
TGD framework and whether they could be violated.

a) Zero energy ontology reduces the failure of cognitive Bell’s inequal-
ity to a situation mathematically equivalent with the failure ordinary Bell’s

11



inequality for a spin system. The only difference is that space-like entan-
glement is replaced with time-like entanglement. Two spins located are
replaced with the states of cognitive system at times ¢t =T and t =T + 7.

b) The notion of quantization direction for spin is absolutely essential
for the failure of the ordinary Bell’s inequality and should have a cognitive
analog. A concrete representation of Boolean variable as a spin like ob-
servable (ordinary spin or color isospin as in TGD based model of DNA as
topological quantum computer) gives ore than a mere analog.

¢) An ambiguous figure giving rise to a bistable percept serves as the
analog for the magnetic field fixing the quantization direction. If figures are
close to each other, the quantization axis have almost same direction. If
figures are very different, the axis have large relative angle.

d) One might hope the failure of Bell inequality in the following two
basic situations involving at least two quantization axes near to each other.
Both situations are however somewhat questionable since they are unstable
against small changes.

i) All figures are reasonably near to each other (region near origin and
below the hyperboloid in («, 3) plane).

ii) Two of figures are near to each other and the third one differs widely
from the two (the region below hyperboloid but far along x or y-axis: in his
case small variation of § or a and destroy the violation of Bell inequality).

e) The situation in which all figures are analogous to the three quantiza-
tion axes defining vertices of nearly equilateral and large enough triangle at
the surface of sphere defined by the directions of the quantization axes would
be perhaps the best one experimentally but it is not easy to quantify what
this means in terms of the unambiguous figures. This situation corresponds
to the intuitive idea that figures must differ from each other enough.

Unfortunately, there is a serious objection against this optimistic picture
is following. The implicit assumption is that single qubit represents directly
the percept. One how however expects that the Boolean variable, the answer
to question ”Which percept”, in the experiments considered is a function
of very many qubits and in this kind of system it might be very difficult to
achieve the failure of Bell’s inequality. More concretely, the replacement of
ambiguous figure with a modified one means that a large number of spin
rotations for a collection of spins is performed and since these rotations
are different, the net effect might be that the situation becomes effectively
classical and one would obtains no violation of Bell inequality.
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2.3 How could one violate cognitive Bell inequality in Khren-
nikov’s approach?

The question is ”How to produce experimentally a violation of cognitive Bell
inequality?”. If one wants to work without a physical realization of Boolean
cognition in terms of qubits, the challenge becomes much more difficult.
The only hope is to start from the violation of Bell inequality in spin system
and try to guess what kind of experimental arrangement could yield the
violation.

The idea is to try to translate the above argument for the violation of
Bell inequality for spin system to an experimental arrangement in which one
uses ambiguous figures yielding bistable percept and the yes/no answer to
the question which percept corresponds to s = £1/2.

The previous examples about violation suggest that one could choose
two of the ambiguous figures to be near to each other so that the quanti-
zation axes e; and e3 defined by them are near to each other. The third
unambiguous figure could be chosen more freely but in such a manner that
the counterpart for the statement ”the plane defined by e; and eg is suffi-
ciently far from a plane orthogonal to that defined by es and es”. It is not
clear what the content of this statement could be. The situation is optimal
if all percepts are near to each other but not identical so that the naive
expectation that percepts should differ very much is wrong (if the analogy
with spin system makes sense).

One can consider following translation to an experimental protocol.

a) Consider the situation in which spin measurements with three quan-
tization directions are replaced with three questions ”Which percept?” for
three different percepts. Denote by a, b, c these cognitive measurements at
t=T and by a/,0/,c at t =T + 7.

b) (s, = —1/2,s, = 1/2) appearing at the right hand side means that
same ambiguous figure a = c is represented at t =T and ¢t =T + 7. What
this means that at ¢ = T percept is represented, then it disappears for a
short time, and is represented again at ¢ = T+ 7. One must check that the
percept is not changed in this operation. If not, one cannot use the analogy
with the measurement of spin. Obviously this poses some upper bound on
T.

c¢) As already explained, one might hope the failure of Bell inequality in
the following two basic situations involving at least two quantization axes
near to each other. Both situations are however somewhat questionable
since they are unstable against small changes.

i) All figures are reasonably near to each other (region near origin and

13



below the hyperboloid in («, ) plane).

ii) Two of figures are near to each other and the third one differs widely
from the two (the region below hyperboloid but far along x or y-axis: in his
case small variation of 3 or a and destroy the violation of Bell inequality).

d) The situation in which all figures are analogous to the three quantiza-
tion axes defining vertices of nearly equilateral and large enough triangle at
the surface of sphere defined by the directions of the quantization axes would
be perhaps the best one experimentally but it is not easy to quantify what
this means in terms of the unambiguous figures. This situation corresponds
to the intuitive idea that figures must differ from each other enough.
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