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Abstract

The work with TGD inspired model for quantum computation led to the realization that
von Neumann algebras, in particular hyper-finite factors, could provide the mathematics
needed to develop a more explicit view about the construction of M-matrix generalizing the
notion of S-matrix in zero energy ontology (ZEO). In this chapter I will discuss various aspects
of hyper-finite factors and their possible physical interpretation in TGD framework.

1. Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors
(HFFs) of type III1 appearing in relativistic quantum field theories provide also the proper
mathematical framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra
known as HFF of type II1. Therefore also the Clifford algebra at a given point (light-like
3-surface) of world of classical worlds (WCW) is HFF of type II1. If the fermionic Fock
algebra defined by the fermionic oscillator operators assignable to the induced spinor
fields (this is actually not obvious!) is infinite-dimensional it defines a representation
for HFF of type II1. Super-conformal symmetry suggests that the extension of the Clif-
ford algebra defining the fermionic part of a super-conformal algebra by adding bosonic
super-generators representing symmetries of WCW respects the HFF property. It could
however occur that HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as inter-
sections of future and past directed light-cones. One can allow also unions of CDs and
the proposal is that CDs within CDs are possible. Whether CDs can intersect is not
clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in
powers of 2 reproduces p-adic length scale hypothesis but one must also consider the
possibility that a can have all possible values. Since SO(3) is the isotropy group of CD,
the CDs associated with a given value of a and with fixed lower tip are parameterized by
the Lobatchevski space L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position
of lower tip are parameterized by M4 × L(a). A possible interpretation is in terms of
quantum cosmology with a identified as cosmic time. Since Lorentz boosts define a
non-compact group, the generalization of so called crossed product construction strongly
suggests that the local Clifford algebra of WCW is HFF of type III1. If one allows all
values of a, one ends up with M4 ×M4

+ as the space of moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signa-
ture is that it allows an octonionic representation of gamma matrices obtained as tensor
products of unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by
replacing 1 and γk by octonions. This inspires the idea that it might be possible to
end up with quantum TGD from purely number theoretical arguments. One can start
from a local octonionic Clifford algebra in M8. Associativity (co-associativity) condi-
tion is satisfied if one restricts the octonionic algebra to a subalgebra associated with
any hyper-quaternionic and thus 4-D sub-manifold of M8. This means that the in-
duced gamma matrices associated with the Kähler action span a complex quaternionic
(complex co-quaternionic) sub-space at each point of the sub-manifold. This associative
(co-associative) sub-algebra can be mapped a matrix algebra. Together with M8−H du-
ality this leads automatically to quantum TGD and therefore also to the notion of WCW
and its Clifford algebra which is however only mappable to an associative (co-associative(
algebra and thus to HFF of type II1.

2. Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could
be used to define the M-matrix of quantum TGD. This is not the case as is obvious
already from the fact that unitary time evolution is not a sensible concept in zero energy
ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of
factors is a more appropriate starting point than the notion modular automorphism but
as a generalization of thermodynamical state is certainly not enough for the purposes of
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quantum TGD and quantum field theories (algebraic quantum field theorists might dis-
agree!). Zero energy ontology requires that the notion of thermodynamical state should
be replaced with its “complex square root” abstracting the idea about M-matrix as a
product of positive square root of a diagonal density matrix and a unitary S-matrix. This
generalization of thermodynamical state -if it exists- would provide a firm mathematical
basis for the notion of M-matrix and for the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which
assumes that the Hilbert space in which HFF acts allows cyclic and separable vector
serving as ground state for both HFF and its commutant. The translation to the language
of physicists states that the vacuum is a tensor product of two vacua annihilated by
annihilation oscillator type algebra elements of HFF and creation operator type algebra
elements of its commutant isomorphic to it. Note however that these algebras commute so
that the two algebras are not hermitian conjugates of each other. This kind of situation is
exactly what emerges in zero energy ontology (ZEO): the two vacua can be assigned with
the positive and negative energy parts of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automor-
phisms. This must be true also for their possibly existing “complex square roots”. Phys-
ically they would correspond to different measurement interactions meaning the analog
of state function collapse in zero modes fixing the classical conserved charges equal to the
quantal counterparts. Classical charges would be parameters characterizing zero modes.

A concrete construction of M-matrix motivated the recent rather precise view about basic
variational principles is proposed. Fundamental fermions localized to string world sheets can
be said to propagate as massless particles along their boundaries. The fundamental interac-
tion vertices correspond to two fermion scattering for fermions at opposite throats of wormhole
contact and the inverse of the conformal scaling generator L0 would define the stringy propa-
gator characterizing this interaction. Fundamental bosons correspond to pairs of fermion and
antifermion at opposite throats of wormhole contact. Physical particles correspond to pairs of
wormhole contacts with monopole Kähler magnetic flux flowing around a loop going through
wormhole contacts.

3. Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite
measurement resolution in terms of Connes tensor product but do not fix M-matrix as was
the original optimistic belief.

1. In ZEO N would create states experimentally indistinguishable from the original one.
Therefore N takes the role of complex numbers in non-commutative quantum theory.
The space M/N would correspond to the operators creating physical states modulo
measurement resolution and has typically fractal dimension given as the index of the
inclusion. The corresponding spinor spaces have an identification as quantum spaces
with non-commutative N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a
universal M-matrix describing the situation for an ideal measurement resolution exists as
the idea about square root of state encourages to think. Finite measurement resolution
forces to replace the probabilities defined by the M-matrix with their N “averaged”
counterparts. The “averaging” would be in terms of the complex square root of N -state
and a direct analog of functionally or path integral over the degrees of freedom below
measurement resolution defined by (say) length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution con-
straint. The condition that N acts like complex numbers on M-matrix elements as far
as N -“averaged” probabilities are considered is satisfied if M-matrix is a tensor product
of M-matrix in M(N interpreted as finite-dimensional space with a projection opera-
tor to N . The condition that N averaging in terms of a complex square root of N
state produces this kind of M-matrix poses a very strong constraint on M-matrix if it
is assumed to be universal (apart from variants corresponding to different measurement
interactions).

4. Analogs of quantum matrix groups from finite measurement resolution?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions of
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von Neumann algebras allowing to describe mathematically the notion of finite measurement
resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quan-
tum groups in terms of finite measurement resolution. The basic idea is to replace complex
matrix elements with operators expressible as products of non-negative hermitian operators
and unitary operators analogous to the products of modulus and phase as a representation for
complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its
development with respect to a fixed row or column does not pose additional conditions. Strong
definition of determinant requires its invariance under permutations of rows and columns. The
permutation of rows/columns turns out to have interpretation as braiding for the hermitian
operators defined by the moduli of operator valued matrix elements. The commutativity of
all sub-determinants is essential for the replacement of eigenvalues with eigenvalue spectra of
hermitian operators and sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but
provide a concrete representation and interpretation for quantum group in terms of finite
measurement resolution if q is a root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac
statistics) one obtains quantum matrices for which the determinant is apart from possible
change by sign factor invariant under the permutations of both rows and columns. One could
also understand the fractal structure of inclusion sequences of hyper-finite factors resulting by
recursively replacing operators appearing as matrix elements with quantum matrices.

5. Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy proba-
bilities. For quantum spinors state function reduction cannot be performed unless quantum
deformation parameter equals to q = 1. The reason is that the components of quantum
spinor do not commute: it is however possible to measure the commuting operators repre-
senting moduli squared of the components giving the probabilities associated with “true” and
“false”. The universal eigenvalue spectrum for probabilities does not in general contain (1,0)
so that quantum qbits are inherently fuzzy. State function reduction would occur only after
a transition to q=1 phase and decoherence is not a problem as long as it does not induce this
transition.

1 Introduction

This chapter has emerged from a splitting of a chapter devote to the possible role of von Neu-
mann algebras known as hyper-finite factors in quantum TGD. Second chapter emerging from the
splitting is a representation of basic notions to chapter “Was von Neumann right after all?” [K25]
representing only very briefly ideas about application to quantum TGD only briefly.

In the sequel the ideas about TGD applications are reviewed more or less chronologically. A
summary about evolution of ideas is in question, not a coherent final structure, and as always the
first speculations - in this case roughly for a decade ago - might look rather weird. The vision has
however gradually become more realistic looking as deeper physical understanding of factors has
evolved slowly.

The mathematics involved is extremely difficult for a physicist like me, and to really learn
it at the level of proofs one should reincarnate as a mathematician. Therefore the only practical
approach relies on the use of physical intuition to see whether HFFs might the correct structure and
what HFFs do mean. What is needed is a concretization of the extremely abstract mathematics
involved: mathematics represents only the bones to which physics should add flesh.

1.1 Hyper-Finite Factors In Quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs)
of type III1 appearing in relativistic quantum field theories provide also the proper mathematical
framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra
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known as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-
surface) of world of classical worlds (WCW) is therefore HFF of type II1. If the fermionic
Fock algebra defined by the fermionic oscillator operators assignable to the induced spinor
fields (this is actually not obvious!) is infinite-dimensional it defines a representation for HFF
of type II1. Super-conformal symmetry suggests that the extension of the Clifford algebra
defining the fermionic part of a super-conformal algebra by adding bosonic super-generators
representing symmetries of WCW respects the HFF property. It could however occur that
HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal
is that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski
space L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are
parameterized by M4 × L(a). A possible interpretation is in terms of quantum cosmology
with a identified as cosmic time [K19] . Since Lorentz boosts define a non-compact group,
the generalization of so called crossed product construction strongly suggests that the local
Clifford algebra of WCW is HFF of type III1. If one allows all values of a, one ends up with
M4 ×M4

+ as the space of moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products
of unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and
γk by octonions. This inspires the idea that it might be possible to end up with quantum
TGD from purely number theoretical arguments. This seems to be the case. One can start
from a local octonionic Clifford algebra in M8. Associativity condition is satisfied if one
restricts the octonionic algebra to a subalgebra associated with any hyper-quaternionic and
thus 4-D sub-manifold of M8. This means that the Kähler-Dirac gamma matrices associated
with the Kähler action span a complex quaternionic sub-space at each point of the sub-
manifold. This associative sub-algebra can be mapped a matrix algebra. Together with
M8 −H duality [K26, K7] this leads automatically to quantum TGD and therefore also to
the notion of WCW and its Clifford algebra which is however only mappable to an associative
algebra and thus to HFF of type II1.

1.2 Hyper-Finite Factors And M-Matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could
be used to define the M-matrix of quantum TGD. This is not the case as is obvious already
from the fact that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of
factors is a more appropriate starting point than the notion modular automorphism but as a
generalization of thermodynamical state is certainly not enough for the purposes of quantum
TGD and quantum field theories (algebraic quantum field theorists might disagree!). Zero
energy ontology requires that the notion of thermodynamical state should be replaced with
its “complex square root” abstracting the idea about M-matrix as a product of positive
square root of a diagonal density matrix and a unitary S-matrix. This generalization of
thermodynamical state -if it exists- would provide a firm mathematical basis for the notion
of M-matrix and for the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
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ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology: the two vacua can be assigned with the positive and negative energy parts
of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of
WCW differing only by a real part of holomorphic function of complex coordinates of WCW
and arbitrary function of zero mode coordinates and giving rise to the same Kähler metric
of WCW.

1.3 Connes Tensor Product As A Realization Of Finite Measurement
Resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite measure-
ment resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the
original one. Therefore N takes the role of complex numbers in non-commutative quantum
theory. The space M/N would correspond to the operators creating physical states mod-
ulo measurement resolution and has typically fractal dimension given as the index of the
inclusion. The corresponding spinor spaces have an identification as quantum spaces with
non-commutative N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a uni-
versal M-matrix describing the situation for an ideal measurement resolution exists as the
idea about square root of state encourages to think. Finite measurement resolution forces
to replace the probabilities defined by the M-matrix with their N “averaged” counterparts.
The “averaging” would be in terms of the complex square root of N -state and a direct analog
of functionally or path integral over the degrees of freedom below measurement resolution
defined by (say) length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition thatN acts like complex numbers on M-matrix elements as far asN “averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix inM(N
interpreted as finite-dimensional space with a projection operator to N . The condition that
N averaging in terms of a complex square root of N state produces this kind of M-matrix
poses a very strong constraint on M-matrix if it is assumed to be universal (apart from
variants corresponding to different measurement interactions).

1.4 Concrete Realization Of The Inclusion Hierarchies

A concrete construction of M-matrix motivated by the recent rather precise view about basic
variational principles of TGD allows to identify rather concretely the inclusions of HFFs in TGD
framework and relate them to the hierarchies of broken conformal symmetries accompanying quan-
tum criticalities.

1. Fundamental fermions localized to string world sheets can be said to propagate as massless
particles along their boundaries. The fundamental interaction vertices correspond to two
fermion scattering for fermions at opposite throats of wormhole contact and the inverse of
the conformal scaling generator L0 would define the stringy propagator characterizing this
interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite
throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with
monopole Kähler magnetic flux flowing around a loop going through wormhole contacts.



1.5 Analogs of quantum matrix groups from finite measurement resolution? 9

2. The formulation of scattering amplitudes in terms of Yangian of the super-symplectic alge-
bra leads to a rather detailed view about scattering amplitudes [K22]. In this formulation
scattering amplitudes are representations for sequences of algebraic operations connecting
collections of elements of Yangian and sequences produce the same result. A huge general-
ization of the duality symmetry of the hadronic string models is in question.

3. The reduction of the hierarchy of Planck constants heff/h = n to a hierarchy of quantum
criticalities accompanied by a hierarchy of sub-algebras of super-symplectic algebra acting as
conformal gauge symmetries leads to the identification of inclusions of HFFs as inclusions of
WCW Clifford algebras characterizing by n(i) and n(i+ 1) = m(i)× n(i) so that hierarchies
of von Neuman algebras, of Planck constants, and of quantum criticalities would be very
closely related. In the transition n(i) → n(i + 1) = m(i) × n(i) the measurement accuracy
indeed increases since some conformal gauge degrees of freedom are transformed to physical
ones. An open question is whether one could interpret m(i) as the integer characterizing
inclusion: the problem is that also m(i) = 2 with M : N = 4 seems to be allowed whereas
Jones inclusions allow only m ≥ 3.

Even more, number theoretic universality and strong form of holography leads to a detailed
vision about the construction of scattering amplitudes suggesting that the hierarchy of alge-
braic extensions of rationals relates to the above mentioned hierarchies.

1.5 Analogs of quantum matrix groups from finite measurement resolu-
tion?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions
of von Neumann algebras allowing to describe mathematically the notion of finite measurement
resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution. The basic idea is to replace complex matrix
elements with operators expressible as products of non-negative hermitian operators and unitary
operators analogous to the products of modulus and phase as a representation for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness of
eigenvalue problem in the generalized sense. The weak definition of determinant meaning its devel-
opment with respect to a fixed row or column does not pose additional conditions. Strong definition
of determinant requires its invariance under permutations of rows and columns. The permutation
of rows/columns turns out to have interpretation as braiding for the hermitian operators defined
by the moduli of operator valued matrix elements. The commutativity of all sub-determinants
is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian operators and
sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but pro-
vide a concrete representation and interpretation for quantum group in terms of finite measurement
resolution if q is a root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one obtains
quantum matrices for which the determinant is apart from possible change by sign factor invariant
under the permutations of both rows and columns. One could also understand the fractal structure
of inclusion sequences of hyper-finite factors resulting by recursively replacing operators appearing
as matrix elements with quantum matrices.

1.6 Quantum Spinors And Fuzzy Quantum Mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities.
For quantum spinors state function reduction cannot be performed unless quantum deformation
parameter equals to q = 1. The reason is that the components of quantum spinor do not commute:
it is however possible to measure the commuting operators representing moduli squared of the
components giving the probabilities associated with “true” and “false”. The universal eigenvalue
spectrum for probabilities does not in general contain (1,0) so that quantum qbits are inherently
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fuzzy. State function reduction would occur only after a transition to q=1 phase and de-coherence
is not a problem as long as it does not induce this transition.

This chapter represents a summary about the development of the ideas with last sections
representing the recent latest about the realization and role of HFFs in TGD. I have saved the
reader from those speculations that have turned out to reflect my own ignorance or are inconsistent
with what I regarded established parts of quantum TGD.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 A Vision About The Role Of HFFs In TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must have
a profound role in TGD. Whether also HFFs of type III1 appearing also in relativistic quantum
field theories emerge when WCW spinors are replaced with spinor fields is not completely clear. I
have proposed several ideas about the role of hyper-finite factors in TGD framework. In particular,
Connes tensor product is an excellent candidate for defining the notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by ZEO and the
recent advances in the understanding of M-matrix using the notion of bosonic emergence. The
conclusion is that the notion of state as it appears in the theory of factors is not enough for the
purposes of quantum TGD. The reason is that state in this sense is essentially the counterpart of
thermodynamical state. The construction of M-matrix might be understood in the framework of
factors if one replaces state with its “complex square root” natural if quantum theory is regarded
as a “complex square root” of thermodynamics. It is also found that the idea that Connes tensor
product could fix M-matrix is too optimistic but an elegant formulation in terms of partial trace for
the notion of M-matrix modulo measurement resolution exists and Connes tensor product allows
interpretation as entanglement between sub-spaces consisting of states not distinguishable in the
measurement resolution used. The partial trace also gives rise to non-pure states naturally.

The newest element in the vision is the proposal that quantum criticality of TGD Universe is
realized as hierarchies of inclusions of super-conformal algebras with conformal weights coming as
multiples of integer n, where n varies. If n1 divides n2 then various super-conformal algebras Cn2

are contained in Cn1
. This would define naturally the inclusion.

2.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more mature
than or at least complementary to the summary that I could afford when I started the work with
factors for more than half decade ago. I of course admit that this just a humble attempt of a
physicist to express physical vision in terms of only superficially understood mathematical notions.

2.1.1 Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert space
H bounded in the norm topology with norm defined by the supremum for the length of the image
of a point of unit sphere H. This algebra has a lot of common with complex numbers in that
the counterparts of complex conjugation, order structure and metric structure determined by the
algebraic structure exist. This means the existence involution -that is *- algebra property. The
order structure determined by algebraic structure means following: A ≥ 0 defined as the condition
(Aξ, ξ) ≥ 0 is equivalent with A = B∗B. The algebra has also metric structure ||AB|| ≤ ||A||||B|
(Banach algebra property) determined by the algebraic structure. The algebra is also C∗ algebra:
||A∗A|| = ||A||2 meaning that the norm is algebraically like that for complex numbers.

A von Neumann algebraM [A10] is defined as a weakly closed non-degenerate *-subalgebra of
B(H) and has therefore all the above mentioned properties. From the point of view of physicist it
is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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1. LetM be subalgebra of B(H) and denote byM′ its commutant (H) commuting with it and
allowing to express B(H) as B(H) =M∨M′.

2. A factor is defined as a von Neumann algebra satisfying M′′ =MM is called factor. The
equality of double commutant with the original algebra is thus the defining condition so that
also the commutant is a factor. An equivalent definition for factor is as the condition that
the intersection of the algebra and its commutant reduces to a complex line spanned by a
unit operator. The condition that the only operator commuting with all operators of the
factor is unit operator corresponds to irreducibility in representation theory.

3. Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H and
separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if and only if
it is separating for its commutant. In so called standard representation Ω is both cyclic and
separating.

4. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is
dense in the factor exists. This roughly means that one can approximate the algebra in
arbitrary accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the underlying
physical motivations. The motivating question is what the decomposition of a physical system to
non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product realizes this
decomposition.

1. Tensor product H = H1 ⊗ H2 is the decomposition according to the standard quantum
measurement theory and means the decomposition of operators in B(H) to tensor products
of mutually commuting operators in M = B(H1) and M′ = B(H2). The information about
M can be coded in terms of projection operators. In this case projection operators projecting
to a complex ray of Hilbert space exist and arbitrary compact operator can be expressed as
a sum of these projectors. For factors of type I minimal projectors exist. Factors of type In
correspond to sub-algebras of B(H) associated with infinite-dimensional Hilbert space and
I∞ to B(H) itself. These factors appear in the standard quantum measurement theory where
state function reduction can lead to a ray of Hilbert space.

2. For factors of type II no minimal projectors exists whereas finite projectors exist. For factors
of type II1 all projectors have trace not larger than one and the trace varies in the range
(0, 1]. In this case cyclic vectors Ω exist. State function reduction can lead only to an infinite-
dimensional subspace characterized by a projector with trace smaller than 1 but larger than
zero. The natural interpretation would be in terms of finite measurement resolution. The
tensor product of II1 factor and I∞ is II∞ factor for which the trace for a projector can
have arbitrarily large values. II1 factor has a unique finite tracial state and the set of traces
of projections spans unit interval. There is uncountable number of factors of type II but
hyper-finite factors of type II1 are the exceptional ones and physically most interesting.

3. Factors of type III correspond to an extreme situation. In this case the projection operators
E spanning the factor have either infinite or vanishing trace and there exists an isometry
mapping EH to H meaning that the projection operator spans almost all of H. All projectors
are also related to each other by isometry. Factors of type III are smallest if the factors are
regarded as sub-algebras of a fixed B(H) whereH corresponds to isomorphism class of Hilbert
spaces. Situation changes when one speaks about concrete representations. Also now hyper-
finite factors are exceptional.

4. Von Neumann algebras define a non-commutative measure theory. Commutative von Neu-
mann algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice versa.

2.1.2 Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann algebras.

1. A weight of von Neumann algebra is a linear map from the set of positive elements (those of
form a∗a) to non-negative reals.
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2. A positive linear functional is weight with ω(1) finite.

3. A state is a weight with ω(1) = 1.

4. A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

5. A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the same
trace. Factors of type In the values of trace are equal to multiples of 1/n. For a factor of type
I∞ the value of trace are 0, 1, 2, .... For factors of type II1 the values span the range [0, 1] and for
factors of type II∞ n the range [0,∞). For factors of type III the values of the trace are 0, and∞.

2.1.3 Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (2.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x → x∗ is isometric in M and defines a map M → L2(M) via x → xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor ∆1/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies thatM andM′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A15, A20] ∆ is Hermitian and
positive definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.
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3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly non-
trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.

2.1.4 Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the fac-
tor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of cor-
responding II∞ factor characterizes partially a factor of type II1. This group consists real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values λ for which ω
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
the Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of
λ < 1. For factors of type III0 this set contains only identity automorphism so that there
is no periodicity. For factors of type III1 Connes spectrum contains all real numbers so that
the automorphisms do not affect the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on. These
modules can be characterized by M-dimension. The idea is roughly that complex rays are replaced
by the sub-spaces defined by the action of M as basic units. M-dimension is not integer valued
in general. The so called standard module has a cyclic separating vector and each factor has a
standard representation possessing antilinear involution J such that M′ = JMJ holds true (note
that J changes the order of the operators in conjugation). The inclusions of factors define modules
having interpretation in terms of a finite measurement resolution defined by M.

2.1.5 Crossed product as a way to construct factors of type III

By using so called crossed product crossedproduct for a group G acting in algebra A one can obtain
new von Neumann algebras. One ends up with crossed product by a two-step generalization by
starting from the semidirect product G/H for groups defined as (g1, h1)(g2, h2) = (g1h1(g2), h1h2)
(note that Poincare group has interpretation as a semidirect product M4 /SO(3, 1) of Lorentz and
translation groups). At the first step one replaces the group H with its group algebra. At the
second step the the group algebra is replaced with a more general algebra. What is formed is the
semidirect product A / G which is sum of algebras Ag. The product is given by (a1, g1)(a2, g2) =
(a1g1(a2), g1g2). This construction works for both locally compact groups and quantum groups.
A not too highly educated guess is that the construction in the case of quantum groups gives the
factor M as a crossed product of the included factor N and quantum group defined by the factor
space M/N .

The construction allows to express factors of type III as crossed products of factors of type II∞
and the 1-parameter group G of modular automorphisms assignable to any vector which is cyclic
for both factor and its commutant. The ergodic flow θλ scales the trace of projector in II∞ factor
by λ > 0. The dual flow defined by G restricted to the center of II∞ factor does not depend on
the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of the
kernel of the dual flow defined as set of values of flow parameter λ for which the flow in the center
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is trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for factors of type IIIλ
and contains all real numbers for factors of type III1 meaning that the flow does not affect the
center.

2.1.6 Inclusions and Connes tensor product

Inclusions N ⊂ M of von Neumann algebras have physical interpretation as a mathematical de-
scription for sub-system-system relation. In [K25] there is more extensive TGD colored description
of inclusions and their role in TGD. Here only basic facts are listed and the Connes tensor product
is explained.

For type I algebras the inclusions are trivial and tensor product description applies as such.
For factors of II1 and III the inclusions are highly non-trivial. The inclusion of type II1 factors
were understood by Vaughan Jones [A1] and those of factors of type III by Alain Connes [A11] .

Formally sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be a
sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M
as N module is in question.

2.1.7 Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by indexM : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only
the embedding.

The basic facts proved by Jones are following [A1] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(2.2)

the numbers at right hand side are known as Beraha numbers [A18] . The comments below
give a rough idea about what finiteness of principal graph means.

2. As explained in [B1] , for M : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in
terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g) − r)/r. For
M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed. The Dynkin graphs of
Lie algebras of SU(n), E7 and D2n+1 are however not allowed. E6, E7, andE8 correspond
to symmetry groups of tetrahedron, octahedron/cube, and icosahedron/dodecahedron. The
group for octahedron/cube is missing: what could this mean?

For M : N = 4 one can assign to the inclusion an extended Dynkin graph of type ADE
characterizing Kac Moody algebra. Extended ADE diagrams characterize also the subgroups
of SU(2) and the interpretation proposed in [A23] is following-

The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There are
diagrams corresponding to infinite subgroups: A∞ corresponding to SU(2) itself, A−∞,∞
corresponding to circle group U(1), and infinite dihedral groups (generated by a rotation by
a non-rational angle and reflection.

One can construct also inclusions for which the diagrams corresponding to finite subgroups
G ⊂ SU(2) are extension of An for cyclic groups, of Dn dihedral groups, and of En with
n = 6, 7, 8 for tetrahedron, cube, dodecahedron. These extensions correspond to ADE type
Kac-Moody algebras.

The extension is constructed by constructing first factor R as infinite tensor power of M2(C)
(complexified quaternions). Sub-factor R0 consists elements of of R of form Id ⊗ x. SU(2)
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preserves R0 and for any subgroup G of SU(2) one can identify the inclusion N ⊂ M in
terms of N = RG0 and M = RG, where N = RG0 and M = RG consists of fixed points of R0

and R under the action of G. The principal graph for N ⊂M is the extended Coxeter-Dynk
graph for the subgroup G.

Physicist might try to interpret this by saying that one considers only sub-algebras RG0 and
RG of observables invariant under G and obtains extended Dynkin diagram of G defining an
ADE type Kac-Moody algebra. Could the condition that Kac-Moody algebra elements with
non-vanishing conformal weight annihilate the physical states state that the state is invariant
under R0 defining measurement resolution. Besides this the states are also invariant under
finite group G? Could RG0 and RG correspond just to states which are also invariant under
finite group G.

2.1.8 Connes tensor product

The basic idea of Connes tensor product is that a sub-space generated sub-factor N takes the role
of the complex ray of Hilbert space. The physical interpretation is in terms of finite measurement
resolution: it is not possible to distinguish between states obtained by applying elements of N .

Intuitively it is clear that it should be possible to decompose M to a tensor product of factor
space M/N and N :

M = M/N ⊗N . (2.3)

One could regard the factor space M/N as a non-commutative space in which each point cor-
responds to a particular representative in the equivalence class of points defined by N . The
connections between quantum groups and Jones inclusions suggest that this space closely relates
to quantum groups. An alternative interpretation is as an ordinary linear space obtained by map-
ping N rays to ordinary complex rays. These spaces appear in the representations of quantum
groups. Similar procedure makes sense also for the Hilbert spaces in which M acts.

Connes tensor product can be defined in the space M⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from right is
equivalent with N multiplication from left so that N acts like complex numbers on states. One
can imagine variants of the Connes tensor product and in TGD framework one particular variant
appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n×n matrices acts on V from right, V can be regarded
as a space formed by m × n matrices for some value of m. If N acts from left on W , W can be
regarded as space of n× r matrices.

1. In the first representation the Connes tensor product of spaces V and W consists of m ×
r matrices and Connes tensor product is represented as the product VW of matrices as
(VW )mre

mr. In this representation the information about N disappears completely as the
interpretation in terms of measurement resolution suggests. The sum over intermediate states
defined by N brings in mind path integral.

2. An alternative and more physical representation is as a state∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

3. One can also consider two spaces V and W in which N acts from right and define Connes
tensor product for A† ⊗N B or its tensor product counterpart. This case corresponds to
the modification of the Connes tensor product of positive and negative energy states. Since
Hermitian conjugation is involved, matrix product does not define the Connes tensor product
now. For m = r case entanglement coefficients should define a unitary matrix commuting
with the action of the Hermitian matrices of N and interpretation would be in terms of
symmetry. HFF property would encourage to think that this representation has an analog
in the case of HFFs of type II1.
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4. Also type In factors are possible and for them Connes tensor product makes sense if one can
assign the inclusion of finite-D matrix algebras to a measurement resolution.

2.1.9 Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A22, A15, A20] . There are good
arguments showing that in HFFs of III1 appear are relativistic quantum field theories. In non-
relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group is
essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that ∨ product
should make sense.

Some basic mathematical results of algebraic quantum field theory [A20] deserve to be listed
since they are suggestive also from the point of view of TGD.

1. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x)
where (O+ x) is the translate of O and |x| denotes Minkowski norm. Then every projection
E ∈ M(O) can be written as WW ∗ with W ∈ M(Oε) and W ∗W = 1. Note that the union
is not a bounded set of M4. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz
boosts induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a
tensor product in relativistic QFTs is believed to hold true. This means that the HFFs of
type III1 associated with causally disjoint regions are sub-factors of factor of type I∞. This
means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFs of type III1s is induced by set theoretic inclusions.

2.2 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.

2.2.1 The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual
and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

1. Under what conditions the assumptions of Tomita-Takesaki formula stating the existence of
modular automorphism and isomorphy of the factor and its commutant hold true? What is
the physical interpretation of the formula M′ = JMJ relating factor and its commutant in
TGD framework?

2. Is the identification M = ∆it sensible is quantum TGD and ZEO, where M-matrix is “com-
plex square root” of exponent of Hamiltonian defining thermodynamical state and the notion
of unitary time evolution is given up? The notion of state ω leading to ∆ is essentially ther-
modynamical and one can wonder whether one should take also a “complex square root” of
ω to get M-matrix giving rise to a genuine quantum theory.

3. TGD based quantum measurement theory involves both quantum fluctuating degrees of
freedom assignable to light-like 3-surfaces and zero modes identifiable as classical degrees
of freedom assignable to interior of the space-time sheet. Zero modes have also fermionic
counterparts. State preparation should generate entanglement between the quantal and
classical states. What this means at the level of von Neumann algebras?
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4. What is the TGD counterpart for causal disjointness. At space-time level different space-time
sheets could correspond to such regions whereas at embedding space level causally disjoint
CDs would represent such regions.

2. Technical problems

There are also more technical questions.

1. What is the von Neumann algebra needed in TGD framework? Does one have a a direct
integral over factors? Which factors appear in it? Can one construct the factor as a crossed
product of some group G with direct physical interpretation and of naturally appearing factor
A? Is A a HFF of type II∞? assignable to a fixed CD? What is the natural Hilbert space H
in which A acts?

2. What are the geometric transformations inducing modular automorphisms of II∞ inducing
the scaling down of the trace? Is the action of G induced by the boosts in Lorentz group.
Could also translations and scalings induce the action? What is the factor associated with
the union of Poincare transforms of CD? log(∆) is Hermitian algebraically: what does the
non-unitarity of exp(log(∆)it) mean physically?

3. Could Ω correspond to a vacuum which in conformal degrees of freedom depends on the
choice of the sphere S2 defining the radial coordinate playing the role of complex variable
in the case of the radial conformal algebra. Does ∗-operation inM correspond to Hermitian
conjugation for fermionic oscillator operators and change of sign of super conformal weights?

The exponent of the Kähler-Dirac action gives rise to the exponent of Kähler function as Dirac
determinant and fermionic inner product defined by fermionic Feynman rules. It is implausible that
this exponent could as such correspond to ω or ∆it having conceptual roots in thermodynamics
rather than QFT. If one assumes that the exponent of the Kähler-Dirac action defines a “complex
square root” of ω the situation changes. This raises technical questions relating to the notion of
square root of ω.

1. Does the complex square root of ω have a polar decomposition to a product of positive definite
matrix (square root of the density matrix) and unitary matrix and does ω1/2 correspond to
the modulus in the decomposition? Does the square root of ∆ have similar decomposition
with modulus equal equal to ∆1/2 in standard picture so that modular automorphism, which
is inherent property of von Neumann algebra, would not be affected?

2. ∆it or rather its generalization is defined modulo a unitary operator defined by some Hamil-
tonian and is therefore highly non-unique as such. This non-uniqueness applies also to |∆|.
Could this non-uniqueness correspond to the thermodynamical degrees of freedom?

2.2.2 ZEO and factors

The first question concerns the identification of the Hilbert space associated with the factors in
ZEO. As the positive or negative energy part of the zero energy state space or as the entire space
of zero energy states? The latter option would look more natural physically and is forced by the
condition that the vacuum state is cyclic and separating.

1. The commutant of HFF given as M′ = JMJ , where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like
boundaries of CD are analogous to upper and lower hemispheres of S2 in conformal field
theory. The presence of J representing essentially Hermitian conjugation would suggest that
positive and zero energy parts of zero energy states are related by this formula so that state
space decomposes to a tensor product of positive and negative energy states and M -matrix
can be regarded as a map between these two sub-spaces.
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2. The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a canonical
representation makes the situation puzzling for a novice. The assumption that the vacuum is
cyclic and separating means that neither creation nor annihilation operators can annihilate it.
Therefore Fermionic Fock space cannot appear as the Hilbert space in the Tomita-Takesaki
theorem. The paradox is circumvented if the action of ∗ transforms creation operators acting
on the positive energy part of the state to annihilation operators acting on negative energy
part of the state. If J permutes the two Fock vacuums in their tensor product, the action of
S indeed maps permutes the tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in ZEO.

1. In ZEO M -matrix defines time-like entanglement coefficients between positive and negative
energy parts of the state. M -matrix is essentially “complex square root” of the density
matrix and quantum theory similar square root of thermodynamics. The notion of state as it
appears in the theory of HFFs is however essentially thermodynamical. Therefore it is good
to ask whether the “complex square root of state” could make sense in the theory of factors.

2. Quantum field theory suggests an obvious proposal concerning the meaning of the square root:
one replaces exponent of Hamiltonian with imaginary exponential of action at T → 0 limit.
In quantum TGD the exponent of Kähler-Dirac action giving exponent of Kähler function
as real exponent could be the manner to take this complex square root. Kähler-Dirac action
can therefore be regarded as a “square root” of Kähler action.

3. The identification M = ∆it relies on the idea of unitary time evolution which is given up in
ZEO based on CDs? Is the reduction of the quantum dynamics to a flow a realistic idea?
As will be found this automorphism could correspond to a time translation or scaling for
either upper or lower light-cone defining CD and can ask whether ∆it corresponds to the
exponent of scaling operator L0 defining single particle propagator as one integrates over t.
Its complex square root would correspond to fermionic propagator.

4. In this framework J∆it would map the positive energy and negative energy sectors to each
other. If the positive and negative energy state spaces can identified by isometry then M =
J∆it identification can be considered but seems unrealistic. S = J∆1/2 maps positive and
negative energy states to each other: could S or its generalization appear in M -matrix as
a part which gives thermodynamics? The exponent of the Kähler-Dirac action does not
seem to provide thermodynamical aspect and p-adic thermodynamics suggests strongly the
presence exponent of exp(−L0/Tp) with Tp chose in such manner that consistency with p-adic
thermodynamics is obtained. Could the generalization of J∆n/2 with ∆ replaced with its
“square root” give rise to padic thermodynamics and also ordinary thermodynamics at the
level of density matrix? The minimal option would be that power of ∆it which imaginary
value of t is responsible for thermodynamical degrees of freedom whereas everything else is
dictated by the unitary S-matrix appearing as phase of the “square root” of ω.

2.2.3 Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the
relationship between zero modes and HFFs involves further conceptual problems.

1. The presence of zero modes means that one has a direct integral over HFFs labeled by
zero modes which by definition do not contribute to WCW line element. The realization of
quantum criticality in terms of Kähler-Dirac action [K26] suggests that also fermionic zero
mode degrees of freedom are present and correspond to conserved charges assignable to the
critical deformations of the pace-time sheets. Induced Kähler form characterizes the values
of zero modes for a given space-time sheet and the symplectic group of light-cone boundary
characterizes the quantum fluctuating degrees of freedom. The entanglement between zero
modes and quantum fluctuating degrees of freedom is essential for quantum measurement
theory. One should understand this entanglement.
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2. Physical intuition suggests that classical observables should correspond to longer length scale
than quantal ones. Hence it would seem that the interior degrees of freedom outside CD
should correspond to classical degrees of freedom correlating with quantum fluctuating de-
grees of freedom of CD.

3. Quantum criticality means that Kähler-Dirac action allows an infinite number of conserved
charges which correspond to deformations leaving metric invariant and therefore act on zero
modes. Does this super-conformal algebra commute with the super-conformal algebra asso-
ciated with quantum fluctuating degrees of freedom? Could the restriction of elements of
quantum fluctuating currents to 3-D light-like 3-surfaces actually imply this commutativ-
ity. Quantum holography would suggest a duality between these algebras. Quantum mea-
surement theory suggests even 1-1 correspondence between the elements of the two super-
conformal algebras. The entanglement between classical and quantum degrees of freedom
would mean that prepared quantum states are created by operators for which the operators
in the two algebras are entangled in diagonal manner.

4. The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions
of hyper-finite factors for which sub-factor defines the resolution in the sense that its action
creates states not distinguishable from each other in the resolution used. The notion of
finite measurement resolution suggests that one should speak about entanglement between
sub-factors and corresponding sub-spaces rather than between states. Connes tensor product
would code for the idea that the action of sub-factors is analogous to that of complex numbers
and tracing over sub-factor realizes this idea.

5. Just for fun one can ask whether the duality between zero modes and quantum fluctuating
degrees of freedom representing quantum holography could correspond toM′ = JMJ? This
interpretation must be consistent with the interpretation forced by zero energy ontology. If
this crazy guess is correct (very probably not!), both positive and negative energy states
would be observed in quantum measurement but in totally different manner. Since this
identity would simplify enormously the structure of the theory, it deserves therefore to be
shown wrong.

2.2.4 Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic chal-
lenge. Consider first the question how HFFs of type II∞ emerge, how modular automorphisms act
on them, and how one can understand the non-unitary character of the ∆it in an apparent conflict
with the hermiticity and positivity of ∆.

1. The Clifford algebra at a given point of WCW(CD) (light-like 3-surfaces with ends at the
boundaries of CD) defines HFF of type II1 or possibly a direct integral of them. For a
given CD having compact isotropy group SO(3) leaving the rest frame defined by the tips
of CD invariant the factor defined by Clifford algebra valued fields in WCW(CD) is most
naturally HFF of type II∞. The Hilbert space in which this Clifford algebra acts, consists
of spinor fields in WCW(CD). Also the symplectic transformations of light-cone boundary
leaving light-like 3-surfaces inside CD can be included to G. In fact all conformal algebras
leaving CD invariant could be included in CD.

2. The downwards scalings of the radial coordinate rM of the light-cone boundary applied to
the basis of WCW (CD) spinor fields could induce modular automorphism. These scalings
reduce the size of the portion of light-cone in which the WCW spinor fields are non-vanishing
and effectively scale down the size of CD. exp(iL0) as algebraic operator acts as a phase mul-
tiplication on eigen states of conformal weight and therefore as apparently unitary operator.
The geometric flow however contracts the CD so that the interpretation of exp(itL0) as a
unitary modular automorphism is not possible. The scaling down of CD reduces the value
of the trace if it involves integral over the boundary of CD. A similar reduction is implied by
the downward shift of the upper boundary of CD so that also time translations would induce
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modular automorphism. These shifts seem to be necessary to define rest energies of positive
and negative energy parts of the zero energy state.

3. The non-triviality of the modular automorphisms of II∞ factor reflects different choices of
ω. The degeneracy of ω could be due to the non-uniqueness of conformal vacuum which is
part of the definition of ω. The radial Virasoro algebra of light-cone boundary is generated
by Ln = L∗−n, n 6= 0 and L0 = L∗0 and negative and positive frequencies are in asymmetric
position. The conformal gauge is fixed by the choice of SO(3) subgroup of Lorentz group
defining the slicing of light-cone boundary by spheres and the tips of CD fix SO(3) uniquely.
One can however consider also alternative choices of SO(3) and each corresponds to a slicing
of the light-cone boundary by spheres but in general the sphere defining the intersection of
the two light-cone does not belong to the slicing. Hence the action of Lorentz transformation
inducing different choice of SO(3) can lead out from the preferred state space so that its
representation must be non-unitary unless Virasoro generators annihilate the physical states.
The non-vanishing of the conformal central charge c and vacuum weight h seems to be
necessary and indeed can take place for super-symplectic algebra and Super Kac-Moody
algebra since only the differences of the algebra elements are assumed to annihilate physical
states.

Modular automorphism of HFFs type III1 can be induced by several geometric transformations
for HFFs of type III1 obtained using the crossed product construction from II∞ factor by extending
CD to a union of its Lorentz transforms.

1. The crossed product would correspond to an extension of II∞ by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD
cannot correspond to these transformations. Same applies to time translations acting on
either boundary but not to ordinary translations. As found, the modular automorphisms
reducing the size of CD could act in HFF of type II∞.

2. The geometric counterparts of the modular transformations would most naturally correspond
to any non-compact one parameter sub-group of Lorentz group as also QFT suggests. The
Lorentz boosts would replace the radial coordinate rM of the light-cone boundary associated
with the radial Virasoro algebra with a new one so that the slicing of light-cone boundary
with spheres would be affected and one could speak of a new conformal gauge. The temporal
distance between tips of CD in the rest frame would not be affected. The effect would seem
to be however unitary because the transformation does not only modify the states but also
transforms CD.

3. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal gauge
defining the radial coordinate of the light-cone boundary, they affect also the definition of
the conformal vacuum so that also ω is affected so that the interpretation as a modular
automorphism makes sense. The simplistic intuition of the novice suggests that if one allows
wave functions in the space of Lorentz transforms of CD, unitarity of ∆it is possible. Note
that the hierarchy of Planck constants assigns to CD preferred M2 and thus direction of
quantization axes of angular momentum and boosts in this direction would be in preferred
role.

4. One can also consider the HFF of type IIIλ if the radial scalings by negative powers of
2 correspond to the automorphism group of II∞ factor as the vision about allowed CDs
suggests. λ = 1/2 would naturally hold true for the factor obtained by allowing only the
radial scalings. Lorentz boosts would expand the factor to HFF of type III1. Why scalings
by powers of 2 would give rise to periodicity should be understood.

The identification of M -matrix as modular automorphism ∆it, where t is complex number
having as its real part the temporal distance between tips of CD quantized as 2n and temperature
as imaginary part, looks at first highly attractive, since it would mean that M -matrix indeed exists
mathematically. The proposed interpretations of modular automorphisms do not support the idea
that they could define the S-matrix of the theory. In any case, the identification as modular
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automorphism would not lead to a magic universal formula since arbitrary unitary transformation
is involved.

2.2.5 Quantum criticality and inclusions of factors

Quantum criticality fixes the value of Kähler coupling strength but is expected to have also an
interpretation in terms of a hierarchies of broken conformal gauge symmetries suggesting hierarchies
of inclusions.

1. In ZEO 3-surfaces are unions of space-like 3-surfaces at the ends of causal diamond (CD).
Space-time surfaces connect 3-surfaces at the boundaries of CD. The non-determinism of
Kähler action allows the possibility of having several space-time sheets connecting the ends
of space-time surface but the conditions that classical charges are same for them reduces this
number so that it could be finite. Quantum criticality in this sense implies non-determinism
analogous to that of critical systems since preferred extremals can co-incide and suffer this
kind of bifurcation in the interior of CD. This quantum criticality can be assigned to the
hierarchy of Planck constants and the integer n in heff = n × h [K9] corresponds to the
number of degenerate space-time sheets with same Kähler action and conserved classical
charges.

2. Also now one expects a hierarchy of criticalities and since criticality and conformal invariance
are closely related, a natural conjecture is that the fractal hierarchy of sub-algebras of con-
formal algebra isomorphic to conformal algebra itself and having conformal weights coming
as multiples of n corresponds to the hierarchy of Planck constants. This hierarchy would
define a hierarchy of symmetry breakings in the sense that only the sub-algebra would act
as gauge symmetries.

3. The assignment of this hierarchy with super-symplectic algebra having conformal structure
with respect to the light-like radial coordinate of light-cone boundary looks very attractive.
An interesting question is what is the role of the super-conformal algebra associated with the
isometries of light-cone boundary R+ × S2 which are conformal transformations of sphere
S2 with a scaling of radial coordinate compensating the scaling induced by the conformal
transformation. Does it act as dynamical or gauge symmetries?

4. The natural proposal is that the inclusions of various superconformal algebras in the hierar-
chy define inclusions of hyper-finite factors which would be thus labelled by integers. Any
sequences of integers for which ni divides ni+1 would define a hierarchy of inclusions pro-
ceeding in reverse direction. Physically inclusion hierarchy would correspond to an infinite
hierarchy of criticalities within criticalities.

2.3 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments from the point of view of
factors.

2.3.1 A proposal for M-matrix

The proposed general picture reduces the core of U -matrix to the construction of S-matrix possibly
having the real square roots of density matrices as symmetry algebra. This structure can be taken
as a template as one tries to to imagine how the construction of M -matrix could proceed in
quantum TGD proper.

1. At the bosonic sector one would have converging functional integral over WCW . This is
analogous to the path integral over bosonic fields in QFTs. The presence of Kähler function
would make this integral well-defined and would not encounter the difficulties met in the case
of path integrals.

2. In fermionic sector 1-D Dirac action and its bosonic counterpart imply that spinors modes
localized at string world sheets are eigenstates of induced Dirac operator with generalized
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eigenvalue pkγk defining light-like 8-D momentum so that one would obtain fermionic prop-
agators massless in 8-D sense at light-light geodesics of embedding space. The 8-D gen-
eralization of twistor Grassmann approach is suggestive and would mean that the residue
integral over fermionic virtual momenta gives only integral over massless momenta and vir-
tual fermions differ from real fermions only in that they have non-physical polarizations so
that massless Dirac operator replacing the propagator does not annihilate the spinors at the
other end of the line.

3. Fundamental bosons (not elementary particles) correspond to wormhole contacts having
fermion and antifermion at opposite throats and bosonic propagators are composite of mass-
less fermion propagators. The directions of virtual momenta are obviously strongly corre-
lated so that the approximation as a gauge theory with gauge symmetry breaking in almost
massless sector is natural. Massivation follows necessary from the fact that also elementary
particles are bound states of two wormhole contacts.

4. Physical fermions and bosons correspond to pairs of wormhole contacts with throats carry-
ing Kähler magnetic charge equal to Kähler electric charge (dyon). The absence of Dirac
monopoles (as opposed to homological magnetic monopoles due to CP2 topology) implies
that wormhole contacts must appear as pairs (also large numbers of them are possible and 3
valence quarks inside baryons could form Kähler magnetic tripole). Hence elementary parti-
cles would correspond to pairs of monopoles and are accompanied by Kähler magnetic flux
loop running along the two space-time sheets involved as well as fermionic strings connecting
the monopole throats.

There seems to be no specific need to assign string to the wormhole contact and if is a piece
of deformed CP2 type vacuum extremal this might not be even possible: the Kähler-Dirac
gamma matrices would not span 2-D space in this case since the CP2 projection is 4-D. Hence
massless fermion propagators would be assigned only with the boundaries of string world
sheets at Minkowskian regions of space-time surface. One could say that physical particles
are bound states of massless fundamental fermions and the non-collinearity of their four-
momenta can make them massive. Therefore the breaking of conformal invariance would be
due to the bound state formation and this would also resolve the infrared divergence problems
plaguing Grassmann twistor approach by introducing natural length scale assignable to the
size of particles defined by the string like flux tube connecting the wormhole contacts. This
point is discussed in more detail in [K22].

The bound states would form representations of super-conformal algebras so that stringy
mass formula would emerge naturally. p-Adic mass calculations indeed assume conformal
invariance in CP2 length scale assignable to wormhole contacts. Also the long flux tube
strings contribute to the particle masses and would explain gauge boson masses.

5. The interaction vertices would correspond topologically to decays of 3-surface by splitting
in complete analogy with ordinary Feynman diagrams. At the level of orbits of partonic 2-
surface the vertices would be represented by partonic 2-surfaces. In [K22] the interpretation of
scattering ampiltudes as sequences of algebraic operations for the Yangian of super-symplectic
algebra is proposed: product and co-product would define time 3-vertex and its time reversal.
At the level of fermions the diagrams reduce to braid diagrams since fermions are “free”. At
vertices fermions can however reflect in time direction so that fermion-antifermion annihila-
tions in classical fields can be said to appear in the vertices.

The Yangian is generated by super-symplectic fermionic Noether charges assignable to the
strings connecting partonic 2-surfaces. The interpretation of vertices as algebraic operations
implies that all sequences of operations connecting given collections of elements of Yangian
at the opposite boundaries of CD give rise to the same amplitude. This means a huge
generalization of the duality symmetry of hadronic string models that I have proposed already
earlier: the chapter [K3] is a remnant of an “idea that came too early”. The propagators are
associated with the fermionic lines identifiable as boundaries of string world sheets. These
lines are light-like geodesics of H and fermion lines correspond topartial wave in the space
S3 of light like 8-momenta with fixed M4 momentum. For external lines M8 momentum
corresponds to the M4 × CP2 quantum numbers of a spinor harmonic.
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The amplitudes can be formulated using only partonic 2-surfaces and string world sheets
and the algebraic continuation to achieve number theoretic Universality should be rather
straightforward: the parameters characterizing 2-surfaces - by conformal invariance various
conformal moduli - in the algebraic extension of rationals are replaced with real and various
p-adic numbers.

6. Wormhole contacts represent fundamental interaction vertex pairs and propagators between
them and one has stringy super-conformal invariance. Therefore there are excellent reasons to
expect that the perturbation theory is free of divergences. Without stringy contributions for
massive conformal excitations of wormhole contacts one would obtain the usual logarithmic
UV divergences of massless gauge theories. The fact that physical particles are bound states
of massless particles, gives good hopes of avoiding IR divergences of massless theories.

The figures ??, ?? (http://tgdtheory.fi/appfigures/elparticletgd.jpg http://tgdtheory.
fi/appfigures/tgdgrpahs.jpg) in the appendix of this book illustrate the relationship between
TGD diagrammatics, QFT diagrammatics and stringy diagrammatics. In [K22] a more detailed
construction based on the generalization of twistor approach and the idea that scattering ampli-
tudes represent sequences of algebraic operation in the Yangian of super-symplectic algebra, is
considered.

2.3.2 Quantum TGD as square root of thermodynamics

ZEO (ZEO) suggests strongly that quantum TGD corresponds to what might be called square
root of thermodynamics. Since fermionic sector of TGD corresponds naturally to a hyper-finite
factor of type II1, and super-conformal sector relates fermionic and bosonic sectors (WCW degrees
of freedom), there is a temptation to suggest that the mathematics of von Neumann algebras
generalizes: in other worlds it is possible to speak about the complex square root of ω defining
a state of von Neumann algebra [A22] [K25]. This square root would bring in also the fermionic
sector and realized super-conformal symmetry. The reduction of determinant with WCW vacuum
functional would be one manifestation of this supersymmetry.

The exponent of Kähler function identified as real part of Kähler action for preferred extremals
coming from Euclidian space-time regions defines the modulus of the bosonic vacuum functional
appearing in the functional integral over WCW. The imaginary part of Kähler action coming from
the Minkowskian regions is analogous to action of quantum field theories and would give rise to
interference effects distinguishing thermodynamics from quantum theory. This would be something
new from the point of view of the canonical theory of von Neumann algebra. The saddle points of
the imaginary part appear in stationary phase approximation and the imaginary part serves the
role of Morse function for WCW.

The exponent of Kähler function depends on the real part of t identified as Minkowski distance
between the tips of CD. This dependence is not consistent with the dependence of the canonical
unitary automorphism ∆it of von Neumann algebra on t [A22], [K25] and the natural interpretation
is that the vacuum functional can be included in the definition of the inner product for spinors
fields of WCW . More formally, the exponent of Kähler function would define ω in bosonic degrees
of freedom.

Note that the imaginary exponent is more natural for the imaginary part of Kähler action
coming from Minkowskian region. In any case, one has combination of thermodynamics and QFT
and the presence of thermodynamics makes the functional integral mathematically well-defined.

Number theoretic vision requiring number theoretical universality suggests that the value of
CD size scales as defined by the distance between the tips is expected to come as integer multiples
of CP2 length scale - at least in the intersection of real and p-adic worlds. If this is the case the
continuous faimily of modular automorphisms would be replaced with a discretize family.

2.3.3 Quantum criticality and hierarchy of inclusions

Quantum criticality and related fractal hierarchies of breakings of conformal symmetry could allow
to understand the inclusion hierarchies for hyper-finite factors. Quantum criticality - implied
by the condition that the Kähler-Dirac action gives rise to conserved currents assignable to the
deformations of the space-time surface - means the vanishing of the second variation of Kähler
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action for these deformations. Preferred extremals correspond to these 4-surfaces and M8−M4×
CP2 duality would allow to identify them also as associative (co-associative) space-time surfaces.

Quantum criticality is basically due to the failure of strict determinism for Kähler action and
leads to the hierarchy of dark matter phases labelled by the effective value of Planck constant
heff = n × h. These phases correspond to space-time surfaces connecting 3-surfaces at the ends
of CD which are multi-sheeted having n conformal equivalence classes.

Conformal invariance indeed relates naturally to quantum criticality. This brings in n discrete
degrees of freedom and one can technically describe the situation by using n-fold singular covering
of the embedding space [K9]. One can say that there is hierarchy of broken conformal symmetries
in the sense that for heff = n × h the sub-algebra of conformal algebras with conformal weights
coming as multiples of n act as gauge symmetries. This implies that classical symplectic Noether
charges vanish for this sub-algebra. The quantal conformal charges associated with induced spinor
fields annihilate the physical states. Therefore it seems that the measured quantities are the
symplectic charges and there is not need to introduce any measurement interaction term and the
formalism simplifies dramatically.

The resolution increases with heff/h = n. Also the number of of strings connecting partonic
2-surfaces (in practice elementary particles and their dark counterparts plus bound states gener-
ated by connecting dark strings) characterizes physically the finite measurement resolution. Their
presence is also visible in the geometry of the space-time surfaces through the conditions that
induced W fields vanish at them (well-definedness of em charge), and by the condition that the
canonical momentum currents for Kähler action define an integrable distribution of planes parallel
to the string world sheet. In spirit with holography, preferred extremal is constructed by fixing
string world sheets and partonic 2-surfaces and possibly also their light-like orbits (should one fix
wormhole contacts is not quite clear). If the analog of AdS/CFT correspondence holds true, the
value of Kähler function is expressible as the energy of string defined by area in the effective metric
defined by the anti-commutators of K-D gamma matrices.

Super-symplectic algebra, whose charges are represented by Noether charges associated with
strings connecting partonic 2-surfaces extends to a Yangian algebra with multi-stringy generators
[K22]. The better the measurement resolution, the larger the maximal number of strings associated
with the multilocal generator.

Kac-Moody type transformations preserving light-likeness of partonic orbits and possibly also
the light-like character of the boundaries of string world sheets carrying modes of induced spinor
field underlie the conformal gauge symmetry. The minimal option is that only the light-likeness of
the string end world line is preserved by the conformal symmetries. In fact, conformal symmetries
was originally deduced from the light-likeness condition for the M4 projection of CP2 type vacuum
extremals.

The inclusions of super-symplectic Yangians form a hierarchy and would naturally correspond
to inclusions of hyperfinite factors of type II1. Conformal symmetries acting as gauge transforma-
tions would naturally correspond to degrees of freedom below measurement resolution and would
correspond to included subalgebra. As heff increases, infinite number of these gauge degrees of
freedom become dynamical and measurement resolution is increased. This picture is definitely in
conflict with the original view but the reduction of criticality in the increase of heff forces it.

2.3.4 Summary

On basis of above considerations it seems that the idea about “complex square root” of the state
ω of von Neumann algebras might make sense in quantum TGD. Also the discretized versions of
modular automorphism assignable to the hierarchy of CDs would make sense and because of its
non-uniqueness the generator ∆ of the canonical automorphism could bring in the flexibility needed
one wants thermodynamics. Stringy picture forces to ask whether ∆ could in some situation be
proportional exp(L0), where L0 represents as the infinitesimal scaling generator of either super-
symplectic algebra or super Kac-Moody algebra (the choice does not matter since the differences of
the generators annihilate physical states in coset construction). This would allow to reproduce real
thermodynamics consistent with p-adic thermodynamics. Note that also p-adic thermodynamics
would be replaced by its square root in ZEO.
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2.4 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the notion
of quantum M -matrix for which elements have values in sub-factor N of HFF rather than being
complex numbers. M-matrix in the factor spaceM/N is obtained by tracing overN . The condition
that N acts like complex numbers in the tracing implies that M-matrix elements are proportional
to maximal projectors toN so that M-matrix is effectively a matrix inM/N and situation becomes
finite-dimensional. It is still possible to satisfy generalized unitarity conditions but in general case
tracing gives a weighted sum of unitary M-matrices defining what can be regarded as a square root
of density matrix.

2.4.1 About the notion of observable in ZEO

Some clarifications concerning the notion of observable in zero energy ontology are in order.

1. As in standard quantum theory observables correspond to hermitian operators acting on
either positive or negative energy part of the state. One can indeed define hermitian conju-
gation for positive and negative energy parts of the states in standard manner.

2. Also the conjugation A → JAJ is analogous to hermitian conjugation. It exchanges the
positive and negative energy parts of the states also maps the light-like 3-surfaces at the
upper boundary of CD to the lower boundary and vice versa. The map is induced by time
reflection in the rest frame of CD with respect to the origin at the center of CD and has a
well defined action on light-like 3-surfaces and space-time surfaces. This operation cannot
correspond to the sought for hermitian conjugation since JAJ and A commute.

3. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This suggests
strongly a connection with quantum field theory and an 8-D generalization of twistor Grass-
mannian approach. By field equations the bosonic part of this action does not contribute
to the Kähler action. Chern-Simons Dirac terms to which Kähler action reduces could be
responsible for the breaking of CP and T symmetries as they appear in CKM matrix.

4. ZEO gives Cartan sub-algebra of the Lie algebra of symmetries a special status. Only Cartan
algebra acting on either positive or negative states respects the zero energy property but this
is enough to define quantum numbers of the state. In absence of symmetry breaking positive
and negative energy parts of the state combine to form a state in a singlet representation of
group. Since only the net quantum numbers must vanish ZEO allows a symmetry breaking
respecting a chosen Cartan algebra.

5. In order to speak about four-momenta for positive and negative energy parts of the states
one must be able to define how the translations act on CDs. The most natural action is a
shift of the upper (lower) tip of CD. In the scale of entire CD this transformation induced
Lorentz boost fixing the other tip. The value of mass squared is identified as proportional to
the average of conformal weight in p-adic thermodynamics for the scaling generator L0 for
either super-symplectic or Super Kac-Moody algebra.

2.4.2 Inclusion of HFFs as characterizer of finite measurement resolution at the level
of S-matrix

The inclusion N ⊂M of factors characterizes naturally finite measurement resolution. This means
following things.

1. Complex rays of state space resulting usually in an ideal state function reduction are re-
placed by N -rays since N defines the measurement resolution and takes the role of complex
numbers in ordinary quantum theory so that non-commutative quantum theory results. Non-
commutativity corresponds to a finite measurement resolution rather than something exotic
occurring in Planck length scales. The quantum Clifford algebraM/N creates physical states
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modulo resolution. The fact that N takes the role of gauge algebra suggests that it might
be necessary to fix a gauge by assigning to each element of M/N a unique element of M.
Quantum Clifford algebra with fractal dimension β =M : N creates physical states having
interpretation as quantum spinors of fractal dimension d =

√
β. Hence direct connection

with quantum groups emerges.

2. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary and
hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and thus corre-
spond entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues
guarantees that it is possible to speak about state function reduction for quantum spinors.
In the simplest case of a 2-component quantum spinor this means that second component of
quantum spinor vanishes in the sense that second component of spinor annihilates physical
state and second acts as element of N on it. The non-commutativity of spinor components
implies correlations between then and thus fractal dimension is smaller than 2.

3. The intuition about ordinary tensor products suggests that one can decompose Tr in M as

TrM(X) = TrM/N × TrN (X) . (2.4)

Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one expects that
operator inM defines an operator inM/N by a projection to the preferred elements ofM.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (2.5)

4. Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (2.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (2.7)

5. Unitarity at the level of M/N can be achieved if the unit operator Id for M can be de-
composed into an analog of tensor product for the unit operators of M/N and N and M
decomposes to a tensor product of unitary M-matrices inM/N and N . For HFFs of type II
projection operators of N with varying traces are present and one expects a weighted sum of
unitary M-matrices to result from the tracing having interpretation in terms of square root
of thermodynamics.

6. This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type III1
this assumption must be given up. This might be possible if one compensates the trace over
N by dividing with the trace of the infinite trace of the projection operator to N . This
probably requires a limiting procedure which indeed makes sense for HFFs.
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2.4.3 Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂M seems to boil down
to a simple rule. Replace ordinary quantum mechanics in complex number field C with that in
N . This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced with
their N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix in
the state space generated by quantum Clifford algebra M/N which can be regarded as a finite-
dimensional matrix algebra with non-commutingN -valued matrix elements. This suggests that full
M -matrix can be expressed as M -matrix withN -valued elements satisfyingN -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-matrix
must be commuting hermitianN -valued operators inside every row and column. The traces of these
operators give N -averaged transition probabilities. The eigenvalue spectrum of these Hermitian
matrices gives more detailed information about details below experimental resolution. N -hermicity
and commutativity pose powerful additional restrictions on the M -matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states with
N -valued coefficients. How this affects the situation? The non-commutativity of quantum spinors
has a natural interpretation in terms of fuzzy state function reduction meaning that quantum
spinor corresponds effectively to a statistical ensemble which cannot correspond to pure state.
Does this mean that predictions for transition probabilities must be averaged over the ensemble
defined by “quantum quantum states”?

2.4.4 Quantum fluctuations and inclusions

Inclusions N ⊂M of factors provide also a first principle description of quantum fluctuations since
quantum fluctuations are by definition quantum dynamics below the measurement resolution. This
gives hopes for articulating precisely what the important phrase “long range quantum fluctuations
around quantum criticality” really means mathematically.

1. Phase transitions involve a change of symmetry. One might hope that the change of the
symmetry group Ga ×Gb could universally code this aspect of phase transitions. This need
not always mean a change of Planck constant but it means always a leakage between sectors
of embedding space. At quantum criticality 3-surfaces would have regions belonging to at
least two sectors of H.

2. The long range of quantum fluctuations would naturally relate to a partial or total leakage of
the 3-surface to a sector of embedding space with larger Planck constant meaning zooming
up of various quantal lengths.

3. For M -matrix in M/N regarded as calN module quantum criticality would mean a special
kind of eigen state for the transition probability operator defined by the M -matrix. The
properties of the number theoretic braids contributing to the M -matrix should characterize
this state. The strands of the critical braids would correspond to fixed points for Ga×Gb or
its subgroup.

2.4.5 M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states
give a precise formulation for M -matrix in finite measurement resolution and the Connes tensor
product involved. The original expectation that Connes tensor product could lead to a unique
M-matrix is wrong. The replacement of ω with its complex square root could lead to a unique
hierarchy of M-matrices with finite measurement resolution and allow completely finite theory
despite the fact that projectors have infinite trace for HFFs of type III1.

1. In ZEO the counterpart of Hermitian conjugation for operator is replaced with M→ JMJ
permuting the factors. Therefore N ∈ N acting to positive (negative) energy part of state
corresponds to N → N ′ = JNJ acting on negative (positive) energy part of the state.
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2. The allowed elements of N much be such that zero energy state remains zero energy state.
The superposition of zero energy states involved can however change. Hence one must have
that the counterparts of complex numbers are of form N = JN1J ∨ N2, where N1 and N2

have same quantum numbers. A superposition of terms of this kind with varying quantum
numbers for positive energy part of the state is possible.

3. The condition that N1i and N2i act like complex numbers in N -trace means that the effect
of JN1iJ ∨N2i and JN2iJi∨N1i to the trace are identical and correspond to a multiplication
by a constant. If N is HFF of type II1 this follows from the decompositionM =M/N ⊗N
and from Tr(AB) = Tr(BA) assuming that M is of form M = MM/N × PN . Contrary to
the original hopes that Connes tensor product could fix the M-matrix there are no conditions
on MM/N which would give rise to a finite-dimensional M-matrix for Jones inclusions. One
can replaced the projector PN with a more general state if one takes this into account in ∗

operation.

4. In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with
a state ωN in the sense of factors looks more natural. This means that the counterpart of
∗ operation exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S = J∆1/2.
The exchange of N1 and N2 gives altogether ∆. In this case the KMS condition ωN (AB) =
ωN∆A) guarantees the effective complex number property [A4] .

5. Quantum TGD more or less requires the replacement of ω with its “complex square root”
so that also a unitary matrix U multiplying ∆ is expected to appear in the formula for S
and guarantee the symmetry. One could speak of a square root of KMS condition [A4] in
this case. The QFT counterpart would be a cutoff involving path integral over the degrees
of freedom below the measurement resolution. In TGD framework it would mean a cutoff in
the functional integral over WCW and for the modes of the second quantized induced spinor
fields and also cutoff in sizes of causal diamonds. Discretization in terms of braids replacing
light-like 3-surfaces should be the counterpart for the cutoff.

6. If one has M -matrix in M expressible as a sum of M -matrices of form MM/N ×MN with
coefficients which correspond to the square roots of probabilities defining density matrix the
tracing operation gives rise to square root of density matrix in M .

2.4.6 Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities in
which N -trace or its generalization in terms of state ωN is needed. One might however dream of
something more.

1. Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the M-
matrices in finite measurement resolution for all inclusions N ⊂ M. This would mean that
one can write

M = MM/N ⊗MN (2.8)

for any physically reasonable choice of N . This would formally express the idea that M is as
near as possible to M-matrix of free theory. Also fractality suggests itself in the sense that
MN is essentially the same as MM in the same sense as N is same as M. It might be that
the trivial solution M = 1 is the only possible solution to the condition.

2. MM/N would be obtained by the analog of TrN or ωN operation involving the “complex
square root” of the state ω in case of HFFs of type III1. The QFT counterpart would be
path integration over the degrees of freedom below cutoff to get effective action.

3. Universality probably requires assumptions about the thermodynamical part of the universal
M-matrix. A possible alternative form of the condition is that it holds true only for canonical
choice of “complex square root” of ω or for the S-matrix part of M :
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S = SM/N ⊗ SN (2.9)

for any physically reasonable choice N .

4. In TGD framework the condition would say that the M-matrix defined by the Kähler-Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration
over the degrees of freedom below the measurement resolution.

An obvious counter argument against the universality is that if the M-matrix is “complex
square root of state” cannot be unique and there are infinitely many choices related by a unitary
transformation induced by the flows representing modular automorphism giving rise to new choices.
This would actually be a well-come result and make possible quantum measurement theory.

In the section “Handful of problems with a common resolution” it was found that one can add
to both Kähler action and Kähler-Dirac action a measurement interaction term characterizing the
values of measured observables. The measurement interaction term in Kähler action is Lagrange
multiplier term at the space-like ends of space-time surface fixing the value of classical charges
for the space-time sheets in the quantum superposition to be equal with corresponding quantum
charges. The term in Kähler-Dirac action is obtained from this by assigning to this term canonical
momentum densities and contracting them with gamma matrices to obtain Kähler-Dirac gamma
matrices appearing in 3-D analog of Dirac action. The constraint terms would leave Kähler function
and Kähler metric invariant but would restrict the vacuum functional to the subset of 3-surfaces
with fixed classical conserved charges (in Cartan algebra) equal to their quantum counterparts.

2.4.7 Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and also
now it makes sense to speak about measurement resolution. Hence one can ask whether Connes
tensor product should be posed as a constraint on space-like entanglement. The interpretation
could be in terms of the formation of bound states. The reducibility of HFFs and inclusions means
that the tensor product is not uniquely fixed and ordinary entanglement could correspond to this
kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The interpreta-
tion of Connes tensor product would be as the variance of the states with respect to some subgroup
of U(n) associated with the measurement resolution: the analog of color confinement would be in
question.

2.4.8 2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A19] are playing with very formal looking formal structures obtained
by replacing vectors with vector spaces. Direct sum and tensor product serve as the basic arithmetic
operations for the vector spaces and one can define category of n-tuples of vectors spaces with
morphisms defined by linear maps between vectors spaces of the tuple. n-tuples allow also element-
wise product and sum. They obtain results which make them happy. For instance, the category of
linear representations of a given group forms 2-vector spaces since direct sums and tensor products
of representations as well as n-tuples make sense. The 2-vector space however looks more or less
trivial from the point of physics.

The situation could become more interesting in quantum measurement theory with finite mea-
surement resolution described in terms of inclusions of hyper-finite factors of type II1. The reason
is that Connes tensor product replaces ordinary tensor product and brings in interactions via
irreducible entanglement as a representation of finite measurement resolution. The category in
question could give Connes tensor products of quantum state spaces and describing interactions.
For instance, one could multiply M -matrices via Connes tensor product to obtain category of
M -matrices having also the structure of 2-operator algebra.

1. The included algebra represents measurement resolution and this means that the infinite-
D sub-Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor
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takes the role of complex numbers in generalized QM so that one obtains non-commutative
quantum mechanics. For instance, quantum entanglement for two systems of this kind would
not be between rays but between infinite-D subspaces corresponding to sub-factors. One
could build a generalization of QM by replacing rays with sub-spaces and it would seem that
quantum group concept does more or less this: the states in representations of quantum
groups could be seen as infinite-dimensional Hilbert spaces.

2. One could speak about both operator algebras and corresponding state spaces modulo finite
measurement resolution as quantum operator algebras and quantum state spaces with fractal
dimension defined as factor space like entities obtained from HFF by dividing with the
action of included HFF. Possible values of the fractal dimension are fixed completely for
Jones inclusions. Maybe these quantum state spaces could define the notions of quantum 2-
Hilbert space and 2-operator algebra via direct sum and tensor production operations. Fractal
dimensions would make the situation interesting both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

1. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF con-
taining included algebras replaced with direct sum of included HFFs.

2. The tensor products for quantum state spaces and quantum operator algebras are not any-
more trivial. The condition that measurement algebras act effectively like complex numbers
would require Connes tensor product involving irreducible entanglement between elements
belonging to the two HFFs. This would have direct physical relevance since this entangle-
ment cannot be reduced in state function reduction. The category would defined interactions
in terms of Connes tensor product and finite measurement resolution.

3. The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using the
2-Hilbert spaces and quantum 2-operator algebras.

2.5 Questions about quantum measurement theory in Zero Energy On-
tology

The following summary about quantum measurement theory in ZEO is somewhat out-of-date and
somewhat sketchy. For more detailed view see [K13, K23, K2].

2.5.1 Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time scale
imply the conditions at shorter time scales. On the other hand, in shorter time scales the inclusion
would be deeper and would give rise to a larger reducibility of the representation of N in M.
Formally, as N approaches to a trivial algebra, one would have a square root of density matrix
and trivial S-matrix in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) =
Tr[P+M

†P−M ], where P+ and P− are projectors to positive and negative energy energy N -rays.
The projectors give rise to the averaging over the initial and final states inside N ray. The
reduction could continue step by step to shorter length scales so that one would obtain a sequence
of inclusions. If the U -process of the next quantum jump can return the M -matrix associated with
M or some larger HFF, U process would be kind of reversal for state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams
and wild actions to the age when most decisions relate to the routine daily activities; the progress
of science from macroscopic to microscopic scales; even biological decay processes: all these have
an intriguing resemblance to the fractal state function reduction process proceeding to shorter and
shorter time scales. Since this means increasing thermality of M -matrix, U process as a reversal
of state function reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by U
process giving rise to new zero energy states can bring in something new and is responsible for
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evolution. The non-conservative option is that the biological death is the U -process of the next
quantum jump leading to a new life cycle. Breathing would become a universal metaphor for what
happens in quantum Universe. The 4-D body would be lived again and again.

2.5.2 quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the
Kähler function depends however only on the partonic 3-surface X3, and one must be able to
assign to a given quantum state the most probable X3 - call it X3

max - depending on its quantum
numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and
Z0 charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral is
restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine convergence and
that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type vacuum
degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is that
the needed phase factor corresponds to either Chern-Simons type action or an action describing
the interaction of the induced gauge field with the charges associated with the braid strand. This
action would be defined for the induced gauge fields. YM action seems to be excluded since it is
singular for light-like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3)

but also
√
det(g4) vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct gauge

charges. Kind of electric-magnetic duality should relate the normal components Fni of the gauge
fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is in terms
of quantum gravitational holography.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.

2.5.3 Quantum measurements in ZEO

ZEO based quantum measurement theory leads directly to a theory of conscious entities. The
basic idea is that state function reduction localizes the second boundary of CD so that it becomes
a piece of light-cone boundary (more precisely δM4

± × CP2).
Repeated reductions are possible as in standard quantum measurement theory and leave the

passive boundary of CD. Repeated reduction begins with U process generating a superposition of
CDs with the active boundary of CD being de-localized in the moduli space of CDs, and is followed
by a localization in this moduli space so that single CD is the outcome. This process tends to
increase the distance between the ends of the CD and has interpretation as a space-time correlate
for the flow of subjective time.

Self as a conscious entity corresponds to this sequence of repeated reductions on passive bound-
ary of CD. The first reduction at opposite boundary means death of self and its re-incarnation at
the opposite boundary of CD. Also the increase of Planck constant and generation of negentropic
entanglement is expected to be associated with this state function reduction.

Weak form of NMP is the most plausible variational principle to characterize the state function
reduction. It does not require maximal negentropy gain for state function reductions but allows
it. In other words, the outcome of reduction is n-dimensional eigen space of density matrix space
but this space need not have maximum possible dimension and even 1-D ray is possible in which
case the entanglement negentropy vanishes for the final state and system becomes isolated from
the rest of the world. Weak form of NMP brings in free will and can allow also larger negentropy
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gain than the strong form if n is a product of primes. The beauty of this option is that one can
understand how the generalization of p-adic length scale hypothesis emerges.

2.5.4 Hyper-finite factors of type II1 and quantum measurement theory with a finite
measurement resolution

The realization that the von Neumann algebra known as hyper-finite factor of type II1 is tailor made
for quantum TGD has led to a considerable progress in the understanding of the mathematical
structure of the theory and these algebras provide a justification for several ideas introduced earlier
on basis of physical intuition.

Hyper-finite factor of type II1 has a canonical realization as an infinite-dimensional Clifford
algebra and the obvious guess is that it corresponds to the algebra spanned by the gamma matrices
of WCW. Also the local Clifford algebra of the embedding space H = M4 × CP2 in octonionic
representation of gamma matrices of H is important and the entire quantum TGD emerges from
the associativity or co-associativity conditions for the sub-algebras of this algebra which are local
algebras localized to maximal associative or co-associate sub-manifolds of the embedding space
identifiable as space-time surfaces.

The notion of inclusion for hyper-finite factors provides an elegant description for the notion of
measurement resolution absent from the standard quantum measurement theory.

1. The included sub-factor creates in ZEO states not distinguishable from the original one and
the formally the coset space of factors defining quantum spinor space defines the space of
physical states modulo finite measurement resolution.

2. The quantum measurement theory for hyperfinite factors differs from that for factors of type
I since it is not possible to localize the state into single ray of state space. Rather, the ray
is replaced with the sub-space obtained by the action of the included algebra defining the
measurement resolution. The role of complex numbers in standard quantum measurement
theory is taken by the non-commutative included algebra so that a non-commutative quantum
theory is the outcome.

3. This leads also to the notion of quantum group. For instance, the finite measurement reso-
lution means that the components of spinor do not commute anymore and it is not possible
to reduce the state to a precise eigenstate of spin. It is however perform a reduction to an
eigenstate of an observable which corresponds to the probability for either spin state.

4. For HFFs the dimension of infinite-dimensional state space is finite and 1 by convention. For
included HFF N ⊂M the dimension of the tensor factor space containing only the degrees of
freedom which are above measurement resolution is given by the index of inclusion d =M :
N . One can say that the dimension associated with degrees of freedom below measurement
resolution is D = 1/d. This number is never large than 1 for the inclusions and contains
a set of discrete values d = 4cos2(2π/n), n ≥ 3, plus the continuum above it. The fractal
generalization of the formula for entanglement entropy gives S = −log(1/D) = −log(d) ≤ 0
so that one can say that the entanglement negentropy assignable to the projection operators
to the sub-factor is positive except for n = 3 for which it vanishes. The non-measured degrees
of freedom carry information rather than entropy.

5. Clearly both HFFs of type I and II allow entanglement negentropy and allow to assign it
with finite measurement resolution. In the case of factors its is not clear whether the weak
form of NMP allows makes sense.

As already explained, the topology of the many-sheeted space-time encourages the generaliza-
tion of the notion of quantum entanglement in such a way that unentangled systems can possess
entangled sub-systems. One can say that the entanglement between sub-selves is not visible in the
resolution characterizing selves. This makes possible sharing and fusion of mental images central
for TGD inspired theory of consciousness. These concepts find a deeper justification from the
quantum measurement theory for hyper-finite factors of type II1 for which the finite measurement
resolution is basic notion.
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2.5.5 Hierarchies of conformal symmetry breakings, Planck constants, and inclusions
of HFFs

The basic almost prediction of TGD is a fractal hierarchy of breakings of symplectic symmetry as
a gauge symmetry.

It is good to briefly summarize the basic facts about the symplectic algebra assigned with
δM4
± × CP2 first.

1. Symplectic algebra has the structure of Virasoro algebra with respect to the light-like radial
coordinate rM of the light-cone boundary taking the role of complex coordinate for ordinary
conformal symmetry. The Hamiltonians generating symplectic symmetries can be chosen to
be proportional to functions fn(rM ). What is the natural choice for fn(rM ) is not quite
clear. Ordinary conformal invariance would suggests fn(rM ) = rnM . A more adventurous
possibility is that the algebra is generated by Hamiltonians with fn(rM ) = r−s, where s is a
root of Riemann Zeta so that one has either s = 1/2 + iy (roots at critical line) or s = −2n,
n > 0 (roots at negative real axis).

2. The set of conformal weights would be linear space spanned by combinations of all roots
with integer coefficients s = n − iy, s =

∑
niyi, n > −n0, where −n0 ≥ 0 is negative

conformal weight. Mass squared is proportional to the total conformal weight and must be
real demanding y =

∑
yi = 0 for physical states: I call this conformal confinement analogous

to color confinement. One could even consider introducing the analog of binding energy as
“binding conformal weight”.

Mass squared must be also non-negative (no tachyons) giving n0 ≥ 0. The generating
conformal weights however have negative real part -1/2 and are thus tachyonic. Rather
remarkably, p-adic mass calculations force to assume negative half-integer valued ground
state conformal weight. This plus the fact that the zeros of Riemann Zeta has been indeed
assigned with critical systems forces to take the Riemannian variant of conformal weight
spectrum with seriousness. The algebra allows also now infinite hierarchy of conformal sub-
algebras with weights coming as n-ples of the conformal weights of the entire algebra.

3. The outcome would be an infinite number of hierarchies of symplectic conformal symmetry
breakings. Only the generators of the sub-algebra of the symplectic algebra with radial
conformal weight proportional to n would act as gauge symmetries at given level of the
hierarchy. In the hierarchy ni divides ni+1. In the symmetry breaking ni → ni+1 the
conformal charges, which vanished earlier, would become non-vanishing. Gauge degrees of
freedom would transform to physical degrees of freedom.

4. What about the conformal Kac-Moody algebras associated with spinor modes. It seems that
in this case one can assume that the conformal gauge symmetry is exact just as in string
models.

The natural interpretation of the conformal hierarchies ni → ni+1 would be in terms of increas-
ing measurement resolution.

1. Conformal degrees of freedom below measurement resolution would be gauge degrees of
freedom and correspond to generators with conformal weight proportional to ni. Conformal
hierarchies and associated hierarchies of Planck constants and n-fold coverings of space-
time surface connecting the 3-surfaces at the ends of causal diamond would give a concrete
realization of the inclusion hierarchies for hyper-finite factors of type II1 [K25].

ni could correspond to the integer labelling Jones inclusions and associating with them the
quantum group phase factor Un = exp(i2π/n), n ≥ 3 and the index of inclusion given by
|M : N | = 4cos2(2π/n) defining the fractal dimension assignable to the degrees of freedom
above the measurement resolution. The sub-algebra with weights coming as n-multiples of
the basic conformal weights would act as gauge symmetries realizing the idea that these
degrees of freedom are below measurement resolution.

2. If heff = n× h defines the conformal gauge sub-algebra, the improvement of the resolution
would scale up the Compton scales and would quite concretely correspond to a zoom analo-
gous to that done for Mandelbrot fractal to get new details visible. From the point of view
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of cognition the improving resolution would fit nicely with the recent view about heff/h as
a kind of intelligence quotient.

This interpretation might make sense for the symplectic algebra of δM4
±×CP2 for which the

light-like radial coordinate rM of light-cone boundary takes the role of complex coordinate.
The reason is that symplectic algebra acts as isometries.

3. If Kähler action has vanishing total variation under deformations defined by the broken con-
formal symmetries, the corresponding conformal charges are conserved. The components of
WCW Kähler metric expressible in terms of second derivatives of Kähler function can be
however non-vanishing and have also components, which correspond to WCW coordinates
associated with different partonic 2-surfaces. This conforms with the idea that conformal
algebras extend to Yangian algebras generalizing the Yangian symmetry of N = 4 symmet-
ric gauge theories. The deformations defined by symplectic transformations acting gauge
symmetries the second variation vanishes and there is not contribution to WCW Kähler
metric.

4. One can interpret the situation also in terms of consciousness theory. The larger the value
of heff , the lower the criticality, the more sensitive the measurement instrument since new
degrees of freedom become physical, the better the resolution. In p-adic context large n
means better resolution in angle degrees of freedom by introducing the phase exp(i2π/n) to
the algebraic extension and better cognitive resolution. Also the emergence of negentropic
entanglement characterized by n×n unitary matrix with density matrix proportional to unit
matrix means higher level conceptualization with more abstract concepts.

The extension of the super-conformal algebra to a larger Yangian algebra is highly suggestive
and gives and additional aspect to the notion of measurement resolution.

1. Yangian would be generated from the algebra of super-conformal charges assigned with the
points pairs belonging to two partonic 2-surfaces as stringy Noether charges assignable to
strings connecting them. For super-conformal algebra associated with pair of partonic surface
only single string associated with the partonic 2-surface. This measurement resolution is the
almost the poorest possible (no strings at all would be no measurement resolution at all!).

2. Situation improves if one has a collection of strings connecting set of points of partonic 2-
surface to other partonic 2-surface(s). This requires generalization of the super-conformal
algebra in order to get the appropriate mathematics. Tensor powers of single string super-
conformal charges spaces are obviously involved and the extended super-conformal generators
must be multi-local and carry multi-stringy information about physics.

3. The generalization at the first step is simple and based on the idea that co-product is the
”time inverse” of product assigning to single generator sum of tensor products of generators
giving via commutator rise to the generator. The outcome would be expressible using the
structure constants of the super-conformal algebra schematically a Q1

A = fBCA QB⊗QC . Here
QB and QC are super-conformal charges associated with separate strings so that 2-local
generators are obtained. One can iterate this construction and get a hierarchy of n-local
generators involving products of n stringy super-conformal charges. The larger the value of
n, the better the resolution, the more information is coded to the fermionic state about the
partonic 2-surface and 3-surface. This affects the space-time surface and hence WCW metric
but not the 3-surface so that the interpretation in terms of improved measurement resolution
makes sense. This super-symplectic Yangian would be behind the quantum groups and Jones
inclusions in TGD Universe.

4. n gives also the number of space-time sheets in the singular covering. One possible interpre-
tation is in terms measurement resolution for counting the number of space-time sheets. Our
recent quantum physics would only see single space-time sheet representing visible manner
and dark matter would become visible only for n > 1.

It is not an accident that quantum phases are assignable to Yangian algebras, to quantum
groups, and to inclusions of HFFs. The new deep notion added to this existing complex of high
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level mathematical concepts are hierarchy of Planck constants, dark matter hierarchy, hierarchy
of criticalities, and negentropic entanglement representing physical notions. All these aspects
represent new physics.

2.6 Planar Algebras And Generalized Feynman Diagrams

Planar algebras [A6] are a very general notion due to Vaughan Jones and a special class of them
is known to characterize inclusion sequences of hyper-finite factors of type II1 [A16] . In the fol-
lowing an argument is developed that planar algebras might have interpretation in terms of planar
projections of generalized Feynman diagrams (these structures are metrically 2-D by presence of
one light-like direction so that 2-D representation is especially natural). In [K4] the role of planar
algebras and their generalizations is also discussed.

2.6.1 Planar algebra very briefly

First a brief definition of planar algebra.

1. One starts from planar k-tangles obtained by putting disks inside a big disk. Inner disks
are empty. Big disk contains 2k braid strands starting from its boundary and returning
back or ending to the boundaries of small empty disks in the interior containing also even
number of incoming lines. It is possible to have also loops. Disk boundaries and braid strands
connecting them are different objects. A black-white coloring of the disjoint regions of k-
tangle is assumed and there are two possible options (photo and its negative). Equivalence
of planar tangles under diffeomorphisms is assumed.

2. One can define a product of k-tangles by identifying k-tangle along its outer boundary with
some inner disk of another k-tangle. Obviously the product is not unique when the number
of inner disks is larger than one. In the product one deletes the inner disk boundary but if
one interprets this disk as a vertex-parton, it would be better to keep the boundary.

3. One assigns to the planar k-tangle a vector space Vk and a linear map from the tensor
product of spaces Vki associated with the inner disks such that this map is consistent with
the decomposition k-tangles. Under certain additional conditions the resulting algebra gives
rise to an algebra characterizing multi-step inclusion of HFFs of type II1.

4. It is possible to bring in additional structure and in TGD framework it seems necessary to
assign to each line of tangle an arrow telling whether it corresponds to a strand of a braid
associated with positive or negative energy parton. One can also wonder whether disks could
be replaced with closed 2-D surfaces characterized by genus if braids are defined on partonic
surfaces of genus g. In this case there is no topological distinction between big disk and
small disks. One can also ask why not allow the strands to get linked (as suggested by the
interpretation as planar projections of generalized Feynman diagrams) in which case one
would not have a planar tangle anymore.

2.6.2 General arguments favoring the assignment of a planar algebra to a generalized
Feynman diagram

There are some general arguments in favor of the assignment of planar algebra to generalized
Feynman diagrams.

1. Planar diagrams describe sequences of inclusions of HFF:s and assign to them a multi-
parameter algebra corresponding indices of inclusions. They describe also Connes tensor
powers in the simplest situation corresponding to Jones inclusion sequence. Suppose that
also general Connes tensor product has a description in terms of planar diagrams. This might
be trivial.

2. Generalized vertices identified geometrically as partonic 2-surfaces indeed contain Connes
tensor products. The smallest sub-factor N would play the role of complex numbers meaning
that due to a finite measurement resolution one can speak only about N-rays of state space
and the situation becomes effectively finite-dimensional but non-commutative.
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3. The product of planar diagrams could be seen as a projection of 3-D Feynman diagram to
plane or to one of the partonic vertices. It would contain a set of 2-D partonic 2-surfaces.
Some of them would correspond vertices and the rest to partonic 2-surfaces at future and
past directed light-cones corresponding to the incoming and outgoing particles.

4. The question is how to distinguish between vertex-partons and incoming and outgoing par-
tons. If one does not delete the disk boundary of inner disk in the product, the fact that
lines arrive at it from both sides could distinguish it as a vertex-parton whereas outgoing par-
tons would correspond to empty disks. The direction of the arrows associated with the lines
of planar diagram would allow to distinguish between positive and negative energy partons
(note however line returning back).

5. One could worry about preferred role of the big disk identifiable as incoming or outgoing
parton but this role is only apparent since by compactifying to say S2 the big disk exterior
becomes an interior of a small disk.

2.6.3 A more detailed view

The basic fact about planar algebras is that in the product of planar diagrams one glues two disks
with identical boundary data together. One should understand the counterpart of this in more
detail.

1. The boundaries of disks would correspond to 1-D closed space-like stringy curves at partonic
2-surfaces along which fermionic anti-commutators vanish.

2. The lines connecting the boundaries of disks to each other would correspond to the strands
of number theoretic braids and thus to braidy time evolutions. The intersection points of
lines with disk boundaries would correspond to the intersection points of strands of number
theoretic braids meeting at the generalized vertex.

[Number theoretic braid belongs to an algebraic intersection of a real parton 3-surface and its
p-adic counterpart obeying same algebraic equations: of course, in time direction algebraicity
allows only a sequence of snapshots about braid evolution].

3. Planar diagrams contain lines, which begin and return to the same disk boundary. Also
“vacuum bubbles” are possible. Braid strands would disappear or appear in pairwise manner
since they correspond to zeros of a polynomial and can transform from complex to real and
vice versa under rather stringent algebraic conditions.

4. Planar diagrams contain also lines connecting any pair of disk boundaries. Stringy decay of
partonic 2-surfaces with some strands of braid taken by the first and some strands by the
second parton might bring in the lines connecting boundaries of any given pair of disks (if
really possible!).

5. There is also something to worry about. The number of lines associated with disks is even
in the case of k-tangles. In TGD framework incoming and outgoing tangles could have odd
number of strands whereas partonic vertices would contain even number of k-tangles from
fermion number conservation. One can wonder whether the replacement of boson lines with
fermion lines could imply naturally the notion of half-k-tangle or whether one could assign
half-k-tangles to the spinors of WCW (“world of classical worlds”) whereas corresponding
Clifford algebra defining HFF of type II1 would correspond to k-tangles.

2.7 Miscellaneous

The following considerations are somewhat out-of-date: hence the title “Miscellaneous”.
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2.7.1 Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M -matrix with physically
acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal
field theory suggest that Connes tensor product is essentially equivalent with the fusion rules for
conformal fields defined by the Clifford algebra elements of CH(CD) (4-surfaces associated with
3-surfaces at the boundary of causal diamond CD in M4), extended to local fields in M4 with
gamma matrices acting on WCW spinor s assignable to the partonic boundary components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms
of Connes tensor product [A23] and refers to the work of Wassermann about the fusion of loop
group representations as a demonstration of the possibility to formula the fusion rules in terms of
Connes tensor product [A13] .

Fusion rules are indeed something more intricate that the näıve product of free fields expanded
using oscillator operators. By its very definition Connes tensor product means a dramatic reduction
of degrees of freedom and this indeed happens also in conformal field theories.

1. For non-vanishing n-point functions the tensor product of representations of Kac Moody
group associated with the conformal fields must give singlet representation.

2. The ordinary tensor product of Kac Moody representations characterized by given value of
central extension parameter k is not possible since k would be additive.

3. A much stronger restriction comes from the fact that the allowed representations must define
integrable representations of Kac-Moody group [A14] . For instance, in case of SU(2)k Kac
Moody algebra only spins j ≤ k/2 are allowed. In this case the quantum phase corresponds
to n = k + 2. SU(2) is indeed very natural in TGD framework since it corresponds to both
electro-weak SU(2)L and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical
states would replace näıve tensor product with something more intricate. The näıvest approach
would start from M4 local variants of gamma matrices since gamma matrices generate the Clifford
algebra Cl associated with CH(CD). This is certainly too näıve an approach. The next step
would be the localization of more general products of Clifford algebra elements elements of Kac
Moody algebras creating physical states and defining free on mass shell quantum fields. In standard
quantum field theory the next step would be the introduction of purely local interaction vertices
leading to divergence difficulties. In the recent case one transfers the partonic states assignable to
the light-cone boundaries δM4

±(mi) × CP2 to the common partonic 2-surfaces X2
V along X3

L,i so
that the products of field operators at the same space-time point do not appear and one avoids
infinities.

The remaining problem would be the construction an explicit realization of Connes tensor
product. The formal definition states that left and right N actions in the Connes tensor product
M⊗NM are identical so that the elements nm1 ⊗m2 and m1 ⊗m2n are identified. This implies
a reduction of degrees of freedom so that free tensor product is not in question. One might hope
that at least in the simplest choices for N characterizing the limitations of quantum measurement
this reduction is equivalent with the reduction of degrees of freedom caused by the integrability
constraints for Kac-Moody representations and dropping away of higher spins from the ordinary
tensor product for the representations of quantum groups. If fusion rules are equivalent with
Connes tensor product, each type of quantum measurement would be characterized by its own
conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided by
quantum field theories. In [K6] a rather precise vision about generalized Feynman diagrams is
developed and the challenge is to relate this vision to Connes tensor product.

2.7.2 Connection with topological quantum field theories defined by Chern-Simons
action

There is also connection with topological quantum field theories (TQFTs) defined by Chern- Simons
action [A17] .
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1. The light-like 3-surfaces X3
l defining propagators can contain unitary matrix characterizing

the braiding of the lines connecting fermions at the ends of the propagator line. Therefore
the modular S-matrix representing the braiding would become part of propagator line. Also
incoming particle lines can contain similar S-matrices but they should not be visible in the
M -matrix. Also entanglement between different partonic boundary components of a given
incoming 3-surface by a modular S-matrix is possible.

2. Besides CP2 type extremals MEs with light-like momenta can appear as brehmstrahlung like
exchanges always accompanied by exchanges of CP2 type extremals making possible mo-
mentum conservation. Also light-like boundaries of magnetic flux tubes having macroscopic
size could carry light-like momenta and represent similar brehmstrahlung like exchanges. In
this case the modular S-matrix could make possible topological quantum computations in
q 6= 1 phase [K1] . Notice the somewhat counter intuitive implication that magnetic flux
tubes of macroscopic size would represent change in quantum jump rather than quantum
state. These quantum jumps can have an arbitrary long geometric duration in macroscopic
quantum phases with large Planck constant [K8] .

There is also a connection with topological QFT defined by Chern-Simons action allowing to
assign topological invariants to the 3-manifolds [A17] . If the light-like CDs X3

L,i are boundary
components, the 3-surfaces associated with particles are glued together somewhat like they are
glued in the process allowing to construct 3-manifold by gluing them together along boundaries.
All 3-manifold topologies can be constructed by using only torus like boundary components.

This would suggest a connection with 2+1-dimensional topological quantum field theory defined
by Chern-Simons action allowing to define invariants for knots, links, and braids and 3-manifolds
using surgery along links in terms of Wilson lines. In these theories one consider gluing of two
3-manifolds, say 3-spheres S3 along a link to obtain a topologically non-trivial 3-manifold. The
replacement of link with Wilson lines in S3#S3 = S3 reduces the calculation of link invariants
defined in this manner to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-
manifolds are glued together along link so that a singular 3-manifolds with a book like structure
are possible. The allowance of CDs which are not boundaries, typically 3-D light-like throats of
wormhole contacts at which induced metric transforms from Minkowskian to Euclidian, brings in
additional richness of structure. If the scaling factor of CP2 metric can be arbitrary large as the
quantization of Planck constant predicts, this kind of structure could be macroscopic and could
be also linked and knotted. In fact, topological condensation could be seen as a process in which
two 4-manifolds are glued together by drilling light-like CDs and connected by a piece of CP2 type
extremal.

3 Fresh View About Hyper-Finite Factors In TGD Frame-
work

In the following I will discuss the basic ideas about the role of hyper-finite factors in TGD with the
background given by a work of more than half decade. First I summarize the input ideas which
I combine with the TGD inspired intuitive wisdom about HFFs of type II1 and their inclusions
allowing to represent finite measurement resolution and leading to notion of quantum spaces with
algebraic number valued dimension defined by the index of the inclusion.

Also an argument suggesting that the inclusions define “skewed” inclusions of lattices to larger
lattices giving rise to quasicrystals is proposed. The core of the argument is that the included
HFF of type II1 algebra is a projection of the including algebra to a subspace with dimension
D ≤ 1. The projection operator defines the analog of a projection of a bigger lattice to the
included lattice. Also the fact that the dimension of the tensor product is product of dimensions of
factors just like the number of elements in finite group is product of numbers of elements of coset
space and subgroup, supports this interpretation.

One also ends up with a detailed identification of the hyper-finite factors in orbital degrees of
freedom in terms of symplectic group associated with δM4

± ×CP2 and the group algebras of their
discrete subgroups define what could be called “orbital degrees of freedom” for WCW spinor fields.
By very general argument this group algebra is HFF of type II, maybe even II1.
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3.1 Crystals, Quasicrystals, Non-Commutativity And Inclusions Of Hy-
perfinite Factors Of Type II1

I list first the basic ideas about non-commutative geometries and give simple argument suggesting
that inclusions of HFFs correspond to “skewed” inclusions of lattices as quasicrystals.

1. Quasicrystals (see http://tinyurl.com/67kz3qo) (say Penrose tilings) [A8] can be regarded
as subsets of real crystals and one can speak about “skewed” inclusion of real lattice to larger
lattice as quasicrystal. What this means that included lattice is obtained by projecting the
larger lattice to some lower-dimensional subspace of lattice.

2. The argument of Connes concerning definition of non-commutative geometry can be found
in the book of Michel Lapidus at page 200. Quantum space is identified as a space of
equivalence classes. One assigns to pairs of elements inside equivalence class matrix elements
having the element pair as indices (one assumes numerable equivalence class). One considers
irreducible representations of the algebra defined by the matrices and identifies the equivalent
irreducible representations. If I have understood correctly, the equivalence classes of irreps
define a discrete point set representing the equivalence class and it can often happen that
there is just single point as one might expect. This I do not quite understand since it requires
that all irreps are equivalent.

3. It seems that in the case of linear spaces - von Neumann algebras and accompanying Hilbert
spaces - one obtains a connection with the inclusions of HFFs and corresponding quantum
factor spaces that should exist as analogs of quantum plane. One replaces matrices with
elements labelled by element pairs with linear operators in HFF of type II1. Index pairs
correspond to pairs in linear basis for the HFF or corresponding Hilbert space.

4. Discrete infinite enumerable basis for these operators as a linear space generates a lattice
in summation. Inclusion N ⊂ M defines inclusion of the lattice/crystal for N to the cor-
responding lattice of M . Physical intuition suggests that if this inclusion is “skewed” one
obtains quasicrystal. The fact the index of the inclusion is algebraic number suggests that
the coset space M/N is indeed analogous to quasicrystal.

More precisely, the index of inclusion is defined for hyper-finite factors of type II1 using the
fact that quantum trace of unit matrix equals to unity Tr(Id(M)) = 1, and from the tensor
product composition M = (M/N)×N given Tr(Id(M)) = 1 = Ind(M/N)Tr(P (M → N)),
where P (M → N is projection operator from M to N . Clearly, Ind(M/N) = 1/Tr(P (M →
N)) defines index as a dimension of quantum space M/N .

For Jones inclusions characterized by quantum phases q = exp(i2π/n), n = 3, 4, ... the
values of index are given by Ind(M/N) = 4cos2(π/n), n = 3, 4, .... There is also another
range inclusions Ind(M/N) ≥ 4: note that Tr(P (M → N)) defining the dimension of N as
included sub-space is never larger than one for HFFs of type II1. The projection operator
P (M → N) is obviously the counterpart of the projector projecting lattice to some lower-
dimensional sub-space of the lattice.

5. Jones inclusions are between linear spaces but there is a strong analogy with non-linear coset
spaces since for the tensor product the dimension is product of dimensions and for discrete
coset spaces G/H one has also the product formula n(G) = n(H)×n(G/H) for the numbers
of elements. Noticing that space of quantum amplitudes in discrete space has dimension
equal to the number of elements of the space, one could say that Jones inclusion represents
quantized variant for classical inclusion raised from the level of discrete space to the level
of space of quantum states with the number of elements of set replaced by dimension. In
fact, group algebras of infinite and enumerable groups defined HFFs of type II under rather
general conditions (see below).

Could one generalize Jones inclusions so that they would apply to non-linear coset spaces
analogs of the linear spaces involved ? For instance, could one think of infinite-dimensional
groups G and H for which Lie-algebras defining their tangent spaces can be regarded as HFFs
of type II1? The dimension of the tangent space is dimension of the non-linear manifold:
could this mean that the non-linear infinite-dimensional inclusions reduce to tangent space

http://tinyurl.com/67kz3qo
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level and thus to the inclusions for Lie-algebras regarded hyper-finite factors of type II1 or
more generally, type II? This would would rise to quantum spaces which have finite but
algebraic valued quantum dimension and in TGD framework take into account the finite
measurement resolution.

6. To concretize this analogy one can check what is the number of points map from 5-D space
containing aperiodic lattice as a projection to a 2-D irrational plane containing only origin as
common point with the 5-D lattice. It is easy to get convinced that the projection is 1-to-1
so that the number of points projected to a given point is 1. By the analogy with Jones
inclusions this would mean that the included space has same von Neumann dimension 1 -
just like the including one. In this case quantum phase equals q = exp(i2π/n), n = 3 - the
lowest possible value of n. Could one imagine the analogs of n > 3 inclusions for which the
number of points projected to a given point would be larger than 1? In 1-D case the rational
lines y = (k/l)x define 1-D rational analogs of quasi crystals. The points (x, y) = (m,n),
m mod l = 0 are projected to the same point. The number of points is now infinite and
the ratio of points of 2-D lattice and 1-D crystal like structure equals to l and serves as the
analog for the quantum dimension dq = 4cos2(π/n).

To sum up, this this is just physicist’s intuition: it could be wrong or something totally trivial
from the point of view of mathematician. The main message is that the inclusions of HFFs might
define also inclusions of lattices as quasicrystals.

3.2 HFFs And Their Inclusions In TGD Framework

In TGD framework the inclusions of HFFs have interpretation in terms of finite measurement
resolution. If the inclusions define quasicrystals then finite measurement resolution would lead to
quasicrystals.

1. The automorphic action of N in M ⊃ N and in associated Hilbert space HM where N
acts generates physical operators and accompanying stas (operator rays and rays) not dis-
tinguishable from the original one. States in finite measurement resolution correspond to
N -rays rather than complex rays. It might be natural to restrict to unitary elements of N .

This leads to the need to construct the counterpart of coset space M/N and corresponding
linear space HM/HN . Physical intuition tells that the indices of inclusions defining the
“dimension” of M/N are algebraic numbers given by Jones index formula.

2. Here the above argument would assign to the inclusions also inclusions of lattices as qua-
sicrystals.

3.2.1 Degrees of freedom for WCW spinor field

Consider first the identification of various kinds of degrees of freedom in TGD Universe.

1. Very roughly, WCW (“world of classical worlds”) spinor is a state generated by fermionic
creation operators from vacuum at given 3-surface. WCW spinor field assigns this kind of
spinor to each 3-surface. WCW spinor fields decompose to tensor product of spin part (Fock
state) and orbital part (“wave” in WCW) just as ordinary spinor fields.

2. The conjecture motivated by super-symmetry has been that both WCW spinors and their
orbital parts (analogs of scalar field) define HFFs of type II1 in quantum fluctuating degrees
of freedom.

3. Besides these there are zero modes, which by definition do not contribute to WCW Kähler
metric.

(a) If the zero zero modes are symplectic invariants, they appear only in conformal factor of
WCW metric. Symplectically invariant zero modes represent purely classical degrees of
freedom - direction of a pointer of measurement apparatus in quantum measurement -
and in given experimental arrangement they entangle with quantum fluctuating degrees
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of freedom in one-one manner so that state function reduction assigns to the outcome
of state function reduction position of pointer. I forget symplectically invariant zero
modes and other analogous variables in the following and concentrate to the degrees of
freedom contributing WCW line-element.

(b) There are also zero modes which are not symplectic invariants and are analogous to
degrees of freedom generated by the generators of Kac-Moody algebra having vanishing
conformal weight. They represent “center of mass degrees of freedom” and this part of
symmetric algebra creates the representations representing the ground states of Kac-
Moody representations. Restriction to these degrees of freedom gives QFT limit in
string theory. In the following I will speak about “cm degrees of freedom”.

The general vision about symplectic degrees of freedom (the analog of “orbital degrees of
freedom” for ordinary spinor field) is following.

1. WCW (assignable to given CD) is a union over the sub-WCWs labeled by zero modes and
each sub-WCW representing quantum fluctuating degrees of freedom and “cm degrees of
freedom” is infinite-D symmetric space. If symplectic group assignable to δM4

+×CP2 acts as
as isometries of WCW then “orbital degrees of freedom” are parametrized by the symplectic
group or its coset space (note that light-cone boundary is 3-D but radial dimension is light-like
so that symplectic - or rather contact structure - exists).

Let S2 be rM = constant sphere at light-cone boundary (rM is the radial light-like coordinate
fixed apart from Lorentz transformation). The full symplectic group would act as isometries
of WCW but does not - nor cannot do so - act as symmetries of Kähler action except in the
huge vacuum sector of the theory correspond to vacuum extremals.

2. WCW Hamiltonians can be deduced as “fluxes” of the Hamiltonians of δM4
+ × CP2 taken

over partonic 2-surfaces. These Hamiltonians expressed as products of Hamiltonians of S2

and CP2 multiplied by powers rnM . Note that rM plays the role of the complex coordinate z
for Kac-Moody algebras and the group G defining KM is replaced with symplectic group of
S2×CP2. Hamiltonians can be assumed to have well-defined spin (SO(3)) and color (SU(3))
quantum numbers.

3. The generators with vanishing radial conformal weight (n = 0) correspond to the symplectic
group of S2 × CP2. They are not symplectic invariants but are zero modes. They would
correspond to “cm degrees of freedom” characterizing the ground states of representations of
the full symplectic group.

3.2.2 Discretization at the level of WCW

The general vision about finite measurement resolution implies discretization at the level of WCW.

1. Finite measurement resolution at the level of WCW means discretization. Therefore the
symplectic groups of δM4

+ × CP2 resp. S2 × CP2 are replaced by an enumerable discrete
subgroup. WCW is discretized in both quantum fluctuating degrees of freedom and “center
of mass” degrees of freedom.

2. The elements of the group algebras of these discrete groups define the “orbitals parts” of
WCW spinor fields in discretization. I will later develop an argument stating that they are
HFFs of type II - maybe even II1. Note that also function spaces associated with the coset
spaces of these discrete subgroups could be considered.

3. Discretization applies also in the spin degrees of freedom. Since fermionic Fock basis generates
quantum counterpart of Boolean algebra the interpretation in terms of the physical correlates
of Boolean cognition is motivated (fermion number 1/0 and various spins in decomposition
to a tensor product of lower-dimensional spinors represent bits). Note that in ZEO fermion
number conservation does not pose problems and zero states actually define what might be
regarded as quantum counterparts of Boolean rules A→ B.
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4. Note that 3-surfaces correspond by the strong form of GCI/holography to collections of
partonic 2-surfaces and string world sheets of space-time surface intersecting at discrete set
of points carrying fermionic quantum numbers. WCW spinors are constructed from second
quantized induced spinor fields and fermionic Fock algebra generates HFF of type II1.

3.2.3 Does WCW spinor field decompose to a tensor product of two HFFs of type
II1?

The group algebras associated with infinite discrete subgroups of the symplectic group define the
discretized analogs of waves in WCW having quantum fluctuating part and cm part. The proposal
is that these group algebras are HFFs of type II1. The spinorial degrees of freedom correspond to
fermionic Fock space and this is known to be HFF. Therefore WCW spinor fields would defined
tensor product of HFFs of type II1. The interpretation would be in terms of supersymmetry at
the level of WCW. Super-conformal symmetry is indeed the basic symmetry of TGD so that this
result is a physical “must”. The argument goes as follows.

1. In non-zero modes WCW is symplectic group of δM4
+ × CP2 (call this group just Sympl)

reduces to the analog of Kac-Moody group associated with S2 × CP2, where S2 is rM =
constant sphere of light-cone boundary and z is replaced with radial coordinate. The Hamil-
tonians, which do not depend on rM would correspond to zero modes and one could not
assign metric to them although symplectic structure is possible. In “cm degrees of freedom”
one has symplectic group associated with S2 × CP2.

2. Finite measurement resolution, which seems to be coded already in the structure of the
preferred extremals and of the solutions of the Kähler-Dirac equation, suggests strongly that
this symplectic group is replaced by its discrete subgroup or symmetric coset space. What
this group is, depends on measurement resolution defined by the cutoffs inherent to the
solutions. These subgroups and coset spaces would define the analogs of Platonic solids in
WCW!

3. Why the discrete infinite subgroups of Sympl would lead naturally to HFFs of type II? There
is a very general result stating that group algebra of an enumerable discrete group, which has
infinite conjugacy classes, and is amenable so that its regular representation in group algebra
decomposes to all unitary irreducibles is HFF of type II. See for examples about HFFs of
type II listed in Wikipedia article (see http://tinyurl.com/y8445w8q) [A3].

4. Suppose that the group algebras associated the discrete subgroups Sympl are indeed HFFs
of type II or even type II1. Their inclusions would define finite measurement resolution
the orbital degrees of freedom for WCW spinor fields. Included algebra would create rays of
state space not distinguishable experimentally. The inclusion would be characterized by the
inclusion of the lattice defined by the generators of included algebra by linearity. One would
have inclusion of this lattice to a lattice associated with a larger discrete group. Inclusions of
lattices are however known to give rise to quasicrystals (Penrose tilings are basic example),
which define basic non-commutative structures. This is indeed what one expects since the
dimension of the coset space defined by inclusion is algebraic number rather than integer.

5. Also in fermionic degrees of freedom finite measurement resolution would be realized in terms
of inclusions of HFFs- now certainly of type II1. Therefore one could obtain hierarchies of
lattices included as quasicrystals.

What about zero modes which are symplectic invariants and define classical variables? They are
certainly discretized too. One might hope that one-one correlation between zero modes (classical
variables) and quantum fluctuating degrees of freedom suggested by quantum measurement theory
allows to effectively eliminate them. Besides zero modes there are also modular degrees of freedom
associated with partonic 2-surfaces defining together with their 4-D tangent space data basis objects
by strong form of holography. Also these degrees of freedom are automatically discretized. But
could one consider finite measurement resolution also in these degrees of freedom. If the symplectic
group of S2×CP2 defines zero modes then one could apply similar argument also in these degrees
of freedom to discrete subgroups of S2 × CP2.

http://tinyurl.com/y8445w8q
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3.3 Little Appendix: Comparison Of WCW Spinor Fields With Ordi-
nary Second Quantized Spinor Fields

In TGD one identifies states of Hilbert space as WCW spinor fields. The analogy with ordinary
spinor field helps to understand what they are. I try to explain by comparison with QFT.

3.3.1 Ordinary second quantized spinor fields

Consider first ordinary fermionic QFT in fixed space-time. Ordinary spinor is attached to an space-
time point and there is 2D/2 dimensional space of spin degrees of freedom. Spinor field attaches
spinor to every point of space-time in a continuous/smooth manner. Spinor fields satisfying Dirac
equation define in Euclidian metric a Hilbert space with a unitary inner product. In Minkowskian
case this does not work and one must introduce second quantization and Fock space to get a
unitary inner product. This brings in what is essentially a basic realization of HFF of type II1 as
allowed operators acting in this Fock space. It is operator algebra rather than state space which
is HFF of type II1 but they are of course closely related.

3.3.2 Classical WCW spinor fields as quantum states

What happens TGD where one has quantum superpositions of 4-surface/3-surfaces by GCI/partonic
2-surfaces with 4-D tangent space data by strong form of GCI.

1. First guess: space-time point is replaced with 3-surface. Point like particle becomes 3-surface
representing particle. WCW spinors are fermionic Fock states at this surface. WCW spinor
fields are Fock state as a functional of 3-surface. Inner product decomposes to Fock space
inner product plus functional integral over 3-surfaces (no path integral!). One could speak
of quantum multiverse. Not single space-time but quantum superposition of them. This
quantum multiverse character is something new as compared to QFT.

2. Second guess: forced by ZEO, by geometrization of Feynman diagrams, etc.

(a) 3-surfaces are actually not connected 3-surfaces. They are collections of components at
both ends of CD and connected to single connected structure by 4-surface. Components
of 3-surface are like incoming and outgoing particles in connected Feynman diagrams.
Lines are identified as regions of Euclidian signature or equivalently as the 3-D light-like
boundaries between Minkowskian and Euclidian signature of the induced metric.

(b) Spinors(!!) are defined now by the fermionic Fock space of second quantized induced
spinor fields at these 3-surfaced and by holography at 4-surface. This fermionic Fock
space is assigned to all multicomponent 3-surfaces defined in this manner and WCW
spinor fields are defined as in the first guess. This brings integration over WCW to the
inner product.

3. Third, even more improved guess: motivated by the solution ansatz for preferred extremals
and for Kähler-Dirac equation [K26] giving a connection with string models.

The general solution ansatz restricts all spinor components but right-handed neutrino to
string world sheets and partonic 2-surfaces: this means effective 2-dimensionality. String
world sheets and partonic 2-surfaces intersect at the common ends of light-like and space-like
braids at ends of CD and at along wormhole throat orbits so that effectively discretization
occurs. This fermionic Fock space replaces the Fock space of ordinary second quantization.

4 The idea of Connes about inherent time evolution of cer-
tain algebraic structures from TGD point of view

Jonathan Disckau asked me about what I think about the proposal of Connes represented in the
summary of progress of noncommutative geometry in ”Noncommutative Geometry Year 2000”
[A12] (see https://arxiv.org/abs/math/0011193) that certain mathematical structures have
inherent time evolution coded into their structure.

https://arxiv.org/abs/math/0011193
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I have written years ago about Connes’s proposal. At that time I was trying to figure out how
to understand the construction of scattering amplitudes in the TGD framework and the proposal
of Connes looked attractive. Later I had to give up this idea. However, the basic idea is beautiful.
One should only replace the notion of time evolution from a one-parameter group of automorphisms
to something more interesting. Also time evolution as increasing algebraic complexity is a more
attractive interpretation.

The inclusion hierarchies of hyperfinite factors (HFFs) - closely related to the work of Connes
- are a key element of TGD and crucial for understanding evolutionary hierarchies in TGD. Is it
possible that mathematical structure evolves in time in some sense? The TGD based answer is
that quantum jump as a fundamental evolutionary step - moment of subjective time evolution - is a
necessary new element. The sequence of moments of consciousness as quantum jumps would have
an interpretation as hopping around in the space of mathematical structures leading to increasingly
complex structures.

The generalization of the idea of Connes is discussed in this framework. In particular, the
inclusion hierarchies of hyper-finite factors, the extension hierarchies of rationals, and fractal in-
clusion hierarchies of subalgebras of supersymplectic algebra isomorphic with the entire algebra
are proposed to be more or less one and the same thing in TGD framework.

The time evolution operator of Connes could corresponds to super-symplectic algebra (SSA) to
the time evolution generated by exp(iL0τ) so that the operator ∆ of Connes would be identified
as ∆ = exp(L0). This identification allows number theoretical universality if τ is quantized.
Furthermore, one ends up with a model for the subjective time evolution by small state function
reductions (SSFRs) for SSA with SSAn gauge conditions: the unitary time evolution for given
SSFR would be generated by a linear combination of Virasoro generators not annihilating the
states. This model would generalize the model for harmonic oscillator in external force allowing
exact S-matrix.

4.1 Connes proposal and TGD

In this section I develop in more detail the analog of Connes proposal in TGD framework.

4.1.1 What does Connes suggest?

One must first make clear what the automorphism of HFFs discovered by Connes is.

1. Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. I have described the theory
earlier [K14, K10].

First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (4.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x → x∗ is isometric in M and defines a map M → L2(M) via x → xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor ∆1/2.



4.1 Connes proposal and TGD 45

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies thatM andM′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A15, A20] ∆ is Hermitian and
positive definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly non-
trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.

The definition of ∆it reduces in eigenstate basis of ∆ to the definition of complex function dit.
Note that is positive so that the logarithm of d is real.

In TGD framework number theoretic universality poses additional conditions. In diagonal basis
elog(d)it must exist. A simply manner to solve the conditions is e = exp(m/r) existing p-adically
for an extension of rational allowing r:th root of e. This requires also quantization of as a root of
unity so that the exponent reduces to a root of unity.

2. Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the fac-
tor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of corre-
sponding II∞ factor characterizes partially a factor of type II1. This group consists of real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values λ for which ω
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
the Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of
λ < 1. For factors of type III0 this set contains only identity automorphism so that there
is no periodicity. For factors of type III1 Connes spectrum contains all real numbers so that
the automorphisms do not affect the identity operator of the factor at all.
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The modules over a factor correspond to separable Hilbert spaces that the factor acts on. These
modules can be characterized by M-dimension. The idea is roughly that complex rays are replaced
by the sub-spaces defined by the action of M as basic units. M-dimension is not integer valued
in general. The so called standard module has a cyclic separating vector and each factor has a
standard representation possessing antilinear involution J such that M′ = JMJ holds true (note
that J changes the order of the operators in conjugation). The inclusions of factors define modules
having interpretation in terms of a finite measurement resolution defined by M.

3. Objections against the idea of Connes

One can represent objections against this idea.

1. Ordinary time evolution in wave mechanics is a unitary automorphism, so that in this
framework they would not have physical meaning but act as gauge transformations. If outer
automorphisms define time evolutions, they must act as gauge transformations. One would
have an analog of gauge field theory in HFF. This would be of course highly interesting: when
I gave up the idea of Connes, I did not consider this possibility. Super-symplectic algebras
having fractal structure are however extremely natural candidate for defining HFF and there
is infinite number of gauge conditions.

2. An automorphism is indeed in question so that the algebraic system would not be actually
affected. Therefore one cannot say that HFF has inherent time evolution and time. However,
one can represent in HFF dynamical systems obeying this inherent time evolution. This
possibility is highly interesting as a kind of universal gauge theory.

On the other hand, outer automorphisms affect the trace of the projector defining the identity
matrix for a given factor. Does the scaling factor Λ represent some kind of renormalization
operation? Could it relate to the action of scalings in the TGD framework where scalings
replace time translations at the fundamental level? What the number theoretic vision of
TGD could mean? Could this quantize the continuous spectrum of the scalings Λ for HFFs
so that they belong to the extension? Could one have a spectrum of Λ for each extension of
rationals? Are different extensions related by inclusions of HFFs?

3. The notion of time evolution itself is an essentially Newtonian concept: selecting a preferred
time coordinate breaks Lorentz invariance. In TGD however time coordinate is replace by
scaling parameter and the situation changes.

4. The proposal of Connes is not general enough if evolution is interpreted as an increase of
complexity.

For these reasons I gave up the automorphism proposed by Connes as a candidate for defining
time evolution giving rise to scattering amplitudes in TGD framework.

4.1.2 Two views about TGD

The two dual views about what TGD is described briefly in [?].

1. Physics as geometry of the world of ”world of classical worlds” (WCW) identified as the
space of space-time surfaces in M4 × CP2 [K16]. Twistor lift of TGD [K17] implies that
the space-time surfaces are minimal surfaces which can be also regarded as extermals of the
Kähler action. This implies holography required by the general coordinate invariance in TGD
framework.

2. TGD as generalized number theory forcing to generalize physics to adelic physics [?] fusing
real physics as correlate of sensory experience and various p-adic physics as correlates of
cognition. Now space-times are naturally co-associative surfaces in complexified M8 (com-
plexified octonions) defined as ”roots” of octonionic polynomials determined by polynomials
with rational coefficients [?, ?, ?]. Now holography extends dramatically: finite number of
rational numbers/roots of rational polynomial/points of space-time region dictate it.

M8 − H duality relates these two views and is actually a generalization of Fourier transform
and realizes generalization of momentum-position duality.
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4.1.3 The notion of time evolution in TGD

Concerning various time evolutions in TGD, the general situation is now rather well understood.
There are two quantal time evolutions: geometric one assignable to single CD and and subjec-

tive time evolution which reflects the generalization of point-like particle to a 3-surface and the
introduction of CD as 4-D perceptive field of particle in ZEO [?].

1. Geometric time evolution corresponds to the standard scattering amplitudes for which I have
a general formula now in terms of zero energy ontology (ZEO) [?, ?, ?, ?]. The analog of
S-matrix corresponds to entanglement coefficients between members of zero energy state at
opposite boundaries of causal diamond (CD).

2. Subjective time evolution of conscious entity corresponds to a sequence of ”small” state
function reductions (SSFRs) as moments of consciousness: each SSFR is preceded by an
analog of unitary time evolution, call it U . SSFRs are the TGD counterparts of ”weak”
measurements.

U(t) is generated by the scaling generator L0 scaling light-like radial coordinate of light-
cone boundary and is a generalization of corresponding operator in superconformal and string
theories and defined for super-symplectic algebras acting as isometries of the world of classical
worlds (WCW) [?]. U(t) is not the exponential of energy as a generator of time translation
as in QFTs but an exponential of the mass squared operator and corresponds to the scaling of
radial light-like coordinate r of the light-like boundary of CD: r is analogous to the complex
coordinate z in conformal field theories.

Also ”big” SFRs (BSFRs) are possible and correspond to ”ordinary” SFRs and in TGD
framework mean death of self in the universal sense and followed by reincarnation as time
reversed subjective time evolution [?].

3. There is also classical time evolution at the level of space-time surfaces. Here the assumption
that X4 belongs to H = M4 × CP2 defines Minkowski coordinates of M4 as almost unique
space-time coordinates of X4 is the M4 projection of X4 is 4-D. This generalizes also to the
case of M8. Symmetries make it possible to identify an essentially a unique time coordinate.

This means enormous simplification. General coordinate invariance is a marvellous symmetry
but it leads to the problem of specifying space-time coordinates that is finding preferred
coordinates. This seems impossible since 3-metric is dynamical. M4 provides a fixed reference
system and the problem disappears. M4 is dynamical by its Minkowskian signature and one
can speak about classical signals.

4. There is also classical time evolution for the induced spinor fields. At the level of H the spinor
field is a superposition of modes of the massless Dirac operator (massless in 8-D sense). This
spinor field is free and second quantized. Second quantization of induced spinor trivializes
and this is absolutely crucial for obtaining scattering amplitudes for fermions and avoiding
the usual problems for quantization of fermions in curved background.

The induced spinor field is a restriction of this spinor field to the space-time surface and
satisfies modified Dirac equation automatically. There is no need for second quantization
at the level of space-time surface and propagators etc.... are directly calculable. This is an
enormous simplification.

There are therefore as many as 4 time evolutions and subjective time evolution by BSFRs and
possibly also by SSFRs is a natural candidate for time evolution as genuine evolution as emergence
of more complex algebraic structures.

4.1.4 Could the inherent time evolution of HFF have a physical meaning in TGD
after all?

The idea about inherent time evolution defined by HFF itself as one parameter group of outer
automorphisms is very attractive by its universality: physics would become part of mathematics.

1. Thermodynamic interpretation, with inverse temperature identified as an analog of time
coordinate, comes first in mind but need not be the correct interpretation.
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2. Outer automorphisms should act at a very fundamental level analogous to the state space
of topological field theories. Fundamental group is after all in question! The assignment of
the S-matrix of particle physics to the outer automorphism does not look reasonable since
the time evolution would be with respect to the linear Minkowski coordinate, which is not
Lorentz invariant.

For these reasons I gave up the idea of Connes when considering it for the first time. However,
TGD inspired theory of consciousness as a generalization of quantum measurement theory has
evolved since then and the situation is different now.

The sequence of SSFRs defines subjective time evolution having no counterpart in QFTs. Each
SSFR is preceded by a unitary time evolution, which however corresponds to the scaling of the
light-like radial coordinate of the light-cone boundary [?] rather than time translation. Hamiltonian
is replaced with the scaling generator L0 acting as Lorentz invariant mass squared operator so that
Lorentz invariance is not lost.

Could the time evolution assignable to L0 correspond to the outer automorphism of Connes
when one poses an infinite number of gauge conditions making inner automorphisms gauge trans-
formations? The connection of Connes proposal with conformal field theories and with TGD is
indeed suggestive.

1. Conformally invariant systems obey infinite number of gauge conditions stating that the
conformal generators Ln, n > 0, annihilate physical states and carry vanishing Noether
charges.

These gauge conditions bring in mind the condition that infinitesimal inner automorphisms
do not change the system physically. Does this mean that Connes outer automorphism
generates the time evolution and inner automorphisms act as gauge symmetries? One
would have an analog of gauge field theory in HFF.

2. In TGD framework one has an infinite hierarchy of systems satisfying conditions analogous
to the conformal gauge conditions. The generators of the super-symplectic algebra (SCA)
acting as isometries of the ”world of classical worlds” (WCW) are labelled by non-negative
conformal weight n and it has infinite hierarchy of algebras SCAk isomorphic to it with
conformal weights given by k-multiple of those of the entire algebra, k = 1, 2, .....

Gauge conditions state for SCAk that the generators of SCAk and its commutator with
SCA annihilate physical states. The interpretation is in terms of a hierarchy of improving
measurement resolutions with degrees of freedom below measurement resolution acting like
gauge transformations.

The Connes automorphism would ”see” only the time evolution in the degrees of freedom
above measurement resolution and as k increases, their number would increase.

In the case of hyperfinite factors of type II1 (HFFs) the fundamental group of corresponding
factor II∞ consists of all reals: I hope I am right here.

1. The hyperfinite factors of type II1 and corresponding factors II∞ are natural in the TGD
context. Therefore the spectrum would consist of reals unless one poses additional conditions.

2. Could the automorphisms correspond to the scalings of the lightcone proper time, which
replace time translations as fundamental dynamics. Also in string models scalings take the
role of time translations.

3. In zero energy ontology (ZEO) the scalings would act in the moduli space of causal diamonds
which is finite-dimensional. This moduli space defines the backbone of the ”world of classical
worlds”. WCW itself consists of a union of sub-WCs as bundle structures over CDs [?]. The
fiber consists of space-time surfaces inside a given CD analogous to Bohr orbits and satisfying
holography reducing to generalized holomorphy. The scalings as automorphisms scale
the causal diamonds. The space of CDs is a finite-dimensional coset space and has also
other symmetry transformations.
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4. The number theoretic vision suggests a quantization of the spectrum of Λ so that for a given
extension of rationals the spectrum would belong to the extension. HFFs would be labelled
at least partially by the extensions of rationals. The recent view of M8 − H duality [?] is
dramatically simpler than the earlier view [?, ?, ?] and predicts that the space-time regions
are determined by a pair of analytic functions with rational coefficients forced by number
theoretical universality meaning that the space-time surfaces have interpretation also as p-
adic surfaces.

The simplest analytic functions are polynomials with integer coefficients and if one requires
that the coefficients are smaller than the degree of the polynomial, the number of polynomials
is finite for a given degree. This would give very precise meaning for the concept of number
theoretic evolution.

There would be an evolutionary hierarchy of pairs of polynomials characterized by increasing
complexity and one can assign to these polynomials extension of rationals characterized by
ramified primes depending on the polynomials. The ramified primes would have interpreta-
tion as p-adic primes characterizing the space-time region considered. Extensions of rationals
and ramified primes could also characterize HFFs. This is a rather dramatic conjecture at
the level of pure mathematics.

5. Scalings define renormalization group in standard physics. Now they scale the size of the
CD. Could the scalings as automorphisms of HFFs correspond to discrete renormalization
operations?

4.1.5 Three views about finite measurement resolution

Evolution could be seen physically as improving finite measurement resolution: this applies to both
sensory experience and cognition. There are 3 views about finite measurement resolution (FMR)
in TGD.

1. Hyper finite factors (HFFs) and FMR

HFFs are an essential part of Connes’s work and I encountered them about 15 years ago or
so [K25, K10].

The inclusions of hyper-finite factors HFFs provide one of the three - as it seems equivalent
- ways to describe finite measurement resolution (FMR) in TGD framework: the included factor
defines an analog for gauge degrees of freedom which correspond to those below measurement
resolution.

2. Cognitive representations and FMR

Another description for FMR in the framework of adelic physics would be in terms of cognitive
representations [?]. First some background about M8 −H duality.

1. There are number theoretic and geometric views about dynamics. In algebraic dynamics at
the level of M8, the space-time surfaces are roots of polynomials. There are no partial
differential equations like in the geometric dynamics at the level of H.

2. The algebraic ”dynamics” of space-time surfaces in M8 is dictated by co-associativity, which
means that the normal space of the space-time surface is associative and thus quaternionic.
That normal space rather than tangent space must be associative became clear last year [?, ?].

3. M8−H duality maps these algebraic surfaces inM8 toH = M4×CP2 and the one obtains the
usual dynamics based on variational principle giving minimal surfaces which are non-linear
analogs for the solutions of massless field equations. Instead of polynomials the natural
functions at the level of H are periodic functions used in Fourier analysis [?].

At level of complexified M8 cognitive representation would consist of points of co-associative
space-time surface X4 in complexified M8 (complexified octonions), whose coordinates belong to
extension of rationals and therefore make sense also p-adically for extension of p-adic numbers
induced by extension of rationals. M8 −H duality maps the cognitive representations to H.
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Cognitive representations form a hierarchy: the larger the extension of rationals, the larger the
number of points in the extension and in the unique discretization of space-time surface. Therefore
also the measurement resolution improves.

The surprise was that the cognitive representations which are typically finite, are for the ”roots”
of octonionic polynomials infinite [?, ?]. Also in this case the density of points of cognitive repre-
sentation increases as the dimension of extensions increases.

The understanding of the physical interpretation of M8 − H duality increased dramatically
during the last half year.

1. X4 in M8 is highly analogous to momentum space (4-D analog of Fermi ball one might say)
and H to position space. Physical states correspond to discrete sets of points - 4-momenta
- in X4. This is just the description used in particle physics for physical states. Time and
space in this description are replaced by energy and 4-momentum. At the level of H one
space-time and classical fields and one talks about frequencies and wavelengths instead of
momenta.

2. M8 −H duality is a generalization of Fourier transform. Hitherto I have assumed that the
space-time surface in M8 is mapped to H. The momentum space interpretation at the level
of M8 however requires that the image must be a superposition of translates of the image in
plane wave with some momentum: only the translates inside some bigger CD are allowed -
this means infrared cutoff.

The total momentum as sum of momenta for two half-cones of CD in M8 is indeed well-
defined. One has a generalization of a plane wave over translational degrees of freedom
of CD and restricted to a bigger CD.

At the limit of infinitely large size for bigger CD, the result is non-vanishing only when
the sum of the momenta for two half-cones of CD vanishes: this corresponds to conservation
of 4-momentum as a consequence of Poincare invariance rather than assumption as in the
earlier approach [?].

This generalizes the position-momentum duality of wave mechanics lost in quantum field
theory. Point-like particle becomes a quantum superposition of space-time surfaces inside
the causal diamond (CD). Plane wave is a plane wave for the superposition of space-time
surfaces inside CD having the cm coordinates of CD as argument.

3. Inclusion hierarchy of supersymplectic algebras and FMR

The third inclusion hierarchy allowing to describe finite measurement resolution is defined
by supersymplectic algebras acting as the isometries of the ”world of classical worlds” (WCW)
consisting of space-time surfaces are preferred extremals (”roots” of polynomials inM8 and minimal
surfaces satisfying infinite-D set of additional ”gauge conditions” in H).

At a given level of hierarchy generators with conformal weight larger than n act like gauge gen-
erators as also their commutators with generators with conformal weight smaller than n correspond
to vanishing Noether charges. This defines ”gauge conditions”.

To sum up, there are therefore 3 hierarchies allowing to describe finite measurement resolution
and they must be essentially equivalent in TGD framework.

4.1.6 Three evolutionary hierarchies

There are three evolutionary hierarchies: hierarchies of extensions of extensions of... ofrationals...;
inclusions of inclusions of .... of HFFs, and inclusions of isomorphic super symplectic algebras.

1. Extensions of rationals

The extensions of rationals become algebraically increasingly complex as their dimension in-
creases. The co-associative space-time surfaces in M8 are ”roots” of real polynomials with rational
coefficients to guarantee number theoretical universality and this means space-time surfaces are
characterized by extension of rationals.

Each extension of rationals defines extensions for p-adic number fields and entire adele. The
interpretation is as a cognitive leap: the system’s intelligence/algebraic complexity increases when
the extension is extended further.
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The extensions of extensions of .... define hierarchies with Galois groups in certain sense
products of extensions involved. Exceptional extensions are those which do not allow this decom-
position. In this case Galois group is a simple group. Simple groups are primes of finite groups and
correspond to elementary particles of cognition. Kind of fundamental, non-decomposable ideas.
Mystic might speak of pure states of consciousnesswith no thoughts.

In the evolution by quantum jumps the dimension of extension increases in statistical sense and
evolution is unavoidable. This evolution is due to subjective time evolution by quantum jumps,
something which is in spirit with Connes proposal but replaces time evolution by a sequence of
evolutionary leaps.

2. Inclusions of HFFs as a hierarchy

HFFs are fractals. They have infinite inclusion hierarchies in which sub-HFF isomorphicto
entire HFFs is included to HFF.

Also the hierarchies of inclusions define evolutionary hierarchies: HFF which is isomorphic
with original becomes larger and in some sense more complex than the included factor. Also now
one has sequences of inclusions of inclusions of.... These sequences would correspond to sequences
for extensions of extensions... of rationals. Note that the inclusion hierarchy would be the basic
object: not only single HFF in the hierarchy.

3. Inclusions of supersymplectic algebras as an evolutionary hierarchy

The third hierarchy is defined by the fractal hierarchy of sub-algebras of supersymplectic algebra
isomorphic to the algebra itself. At a given level of hierarchy generators with conformal weight
larger than n correspond to gauge degrees of freedom. As n increases the number of physical
degrees of freedom above measurement resolution increases which means evolution. This hierarchy
should correspond rather concretely to that for the extensions of rationals. These hierarchies would
be essentially one and the same thing in the TGD Universe.

4.1.7 TGD based model for subjective time development

The understanding of subjective time development as sequences of SSFRs preceded by unitary
”time” evolution has improved quite considerably recently [?]. The idea is that the subjective time
development as a sequence of scalings at the light-cone boundary generated by the vibrational
part L̂0 of the scaling generator L0 = p2 − L̂0 (L0 annihilates the physical states). Also p-adic
mass calculations use L̂0 .

For more than 10 years ago [K14, K10], I considered the possibility that Connes time evolution
operator that he assigned with thermo-dynamical time could have a significant role in the definition
of S-matrix in standard sense but had to give up the idea.

It however seems that for super-symplectic algebra L̂0 generates an outer automorphism since
the algebra has only generators with conformal with n > 0 and its extension to included also
generators with n ≤ 0 is required to introduce L0: since L0 contains annihilation operators,
it indeed generates outer automorphism in SCA. The two views could be equivalent! Whereas
Connes considered thermo-dynamical time evolution, in TGD framework the time evolution would
be subjective time evolution by SSFRs.

1. The guess would be that the exponential of the scaling operator L0 gives the time evolution.
The problem is that L0 annihilates the physical states. The solution of the problem would be
the same as in p-adic thermodynamics. L0 decomposes as L0 = p2− L̂0 and the vibrational
part L̂0 this gives mass spectrum as eigenvalues of p2. The thermo-dynamical state in p-adic

thermodynamics is pL̂0β . This operator exists p-adically in the p-adic number field defined
by prime p.

2. Could unitary subjective time development involve the operator exp(i2πL0τ) τ =
log(T/T0)? This requires T/T0 = exp(n/m) guaranteeing that exponential is a root
of unity for an eigenstate of L0. The scalings are discretized and scalings come as powers of
e1/m. This is possible using extensions of rationals generated by a root of e. The unique
feature of p-adics is that ep is ordinary p-adic number. This alone would give periodic time
evolution for eigenstates of L0 with integer eigenvalues n.
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4.1.8 SSA and SSAn

Supersymplectic algebra SSA has fractal hierarchies of subalgebras SSAn. The integers in a
given hierarchy are of forn n1, n1n2, n1n2n3, ... and correspond naturally to hierarchies of inclusions
of HFFs. Conformal weights are positive: n > 0. For ordinary conformal algebras also negative
weights are allowed. Yangians have only non-negative weights. This is of utmost importance.

SSAn with generators have radial light-like conformal weights coming as multiples of n.
SSAn annihilates physical states and [SSAn, SSA] does the same. Hence the generators with
conformal weight larger than n annihilate the physical states.

What about generators with conformal weights smaller than n? At least a subset of them need
not annihilate the physical states. Since Ln are superpositions of creation operators, the idea that
analogs of coherent states could be in question.

It would be nice to have a situation in which Ln, n < m commute. [Lk, Ll] = 0 effectively for
k + l ≥ m.

The simplest way to obtain a set of effectively commuting operators is to take the generators
Lk, [m/2] < k < m, where [m/2] is nearest integer larger than m/2.

This raises interesting questions.

1. Could the Virasoro generators O({ck}) =
∑
k∈[m/2],m] ckLk as linear combinations of creation

operators generate a set of coherent states as eigenstates of their Hermitian conjugates.

2. Some facts about coherent states are in order.

(a) When one adds to quantum harmonic oscillator Hamiltonian oscillator a time de-
pendent perturbation which lasts for a finite the vacuum state evolves to an oscillator
vacuum whose position is displacemented. The displacement is complex and is a Fourier
component of the external force f(t) corresponding to the harmonic oscillator frequency
ω. Time evolution picks up only this component.

(b) Coherent state property means that the state is eigenstate of the annihilation creation
operator with eivengeu α = −ig(ω) where g(omega) =

∫
f(u)exp(−iωu)du is Fourier

transform of f(t).

(c) Coherent states are not orthogonal and form an overcomplete set. The overlaps of
coherent states are proportional to a Gaussian depending on the complex parameters
characterizing them. One can however develop any state in terms of coherent states as
a unique expansion since one can represent unitary in terms of coherent states.

(d) Coherent state obtained from the vacuum state by time evolution in presence of f(t)
by a unitary displacement operator D(α) = exp(αa† − αa). (https://en.wikipedia.
org/wiki/Displacement_operator).

The displacement operator is a unitary operator and in the general case the displacement
is complex. The product of two displacement operators would be apart from a phase
factor a displacement operator associated with the sum of displacements.

(e) Harmonic oscillator coherent states are indeed maximally classical since wave packets
have minimal width in both q and p space. Furthermore, the classical expectation values
for q and p obey classical equations of motion.

These observations raise interesting questions about how the evolution by SSFRs could be
modelled.

(a) Instead of harmonic oscillator in q-space, one would have time evolution in the space
of scalings of causal diamond parameterized by the scaling parameter τ = log(T/T0),
where T can be identified as the radial light-like coordinate of light-cone boundary.

The analogs of harmonic oscillator states would be defined in this space and would be
essentially wave packets with ground state minimizing the width of the wave packet.

(b) The role of harmonic oscillator Hamiltonian in absence of external force would be taken
by the generator L̂0 (L0 = p2 − L̂0 acts trivially) and gives rise to mass squared quan-
tization. The situation would be highly analogous to that in p-adic thermodynamics.

https://en.wikipedia.org/wiki/Displacement_operator
https://en.wikipedia.org/wiki/Displacement_operator
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The role of ω would be taken by the minimal conformal weight hmin such that the
eigenvalues of L0 are its multiples. It seems that this weight must be equal to hmin = 1.

The commutations of ~L0 with Lk, k > 0 would be as for L0 so what the replacement
should not affect the situation.

(c) The scaling parameter τ is analogous to the spatial coordinate q for the harmonic
oscillator. Can one identify the analog of the external force f(t) acting during unitary
evolution between two SSFRs? Or is it enough to use only the analog of g(ω → hmin =
1) - that is the coefficients Ck.

To identify f(t), one needs a time coordinate t. This was already identified as τ . This
one would have q = t, which looks strange. The space in which time evolution is the
space of scalings and the time evolutions are scalings and thus time evolution means
translation in this space. The analog for this would be Hamiltonian H = i~d/dq.
Number theoretical universality allows only the values of τ = r/s whose exponents
give roots of unity. Also exp(nτ) makes sense p-adically for these values. This would
mean that the Fourier transform defining g would become discrete and be sum over the
values f(τ = r/s).

(d) What happens if one replaces L̂0 with L0. In this case one would have the replacement
of ω with hvac = 0. Also the analog of Fourier transform with zero frequency makes
sense. L̂0 = p2−L0 is the most natural choice for the Hamiltonian defining the time
evolution operator but is trivial. Could ∆iτ describe the inherent time evolution. It
would be outer automorphism since it is not defined solely in terms of SCA. So: could
one have ∆ = exp(L̂0) so that ∆iτ coincide with exp(iL̂0τ)? This would mean the
identification

∆ = exp(L̂0) ,

which is a positive definite operator. The exponents coming from exp(iL0τ) can be
number theoretically universal if τ = log(T/T0) is a rational number implying T/T0 =
exp(r/s), which is possible number theoretically) and the extension of rationals contains
some roots of e.

(e) Could one have ∆ = L0? Also now that positivity condition would be satisfied if SSA
conformal weights satisfy n > 0.

The problem with this operation is that it is not number theoretically universal since the
exponents exp(ilog(n)τ) do not exist p-adically without introducing infinite-D extension
of p-adic number making log(n) well-defined.

What is however intriguing is that the ”time” evolution operator ∆iτ in the eigenstate
basis would have trace equal to Tr(∆iτ )

∑
d(n)niτ , where d(n) is the degeneracy of the

state. This is a typical zeta function: for Riemann Zeta one has d(n) = 1.

For ∆ = exp(L0) option Tr(∆iτ ) =
∑
d(n)exp(inτ) exists for τ = r/s if r:th root of e

belongs to the extension of p-adics.

To sum up, one would have Gaussian wave packet as harmonic oscillator vacuum in the space
of scaled variants of CD. The unitary time evolution associated with SSFR would displace
the peak of the wave packet to a larger scalings. The Gaussian wave function in the space
of scaled CDs has been proposed earlier.

Could this time evolution make sense and be even realistic?

1. The analogs of harmonic oscillator states are defined in the space of scalings as Gaussians
and states obtained from them using oscillator operators. There would be a wave function
in the moduli space of CDs analogous to a state of harmonic oscillator.

2. SSFR following the time evolutions would project to an eigenstate of harmonic oscillator
having in general displaced argument. The unitary displacement operator D should commute
with the operators having the members of zero energy states at the passive boundary of CD
as eigenstates. This poses strong conditions. At least number theoretic measurements could
satisfy these conditions.
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3. SSFRs are identified as weak measurements as near as possible to classical measurements.
Time evolution by the displacement would be indeed highly analogous to classical time evo-
lution for theeharmonic oscillator.

4. The unitary displacement operator corresponds to the arbitrary external force on the har-
monic oscillator and it seems that it would be selected in SSFR for the unitary evolution
after SSFR. This means fixing the coefficients Ck in the operator

∑
CkLk.

What is the subjective ”time” evolution operator when in the case of SSAn?

1. The scaling analog of the unitary displacement operator D as D =
∑
exp(

∑
CkLk−CkL−k)

is highly suggestive and would take the oscillator vacuum to a coherent state. Coefficients
Ck would be proportional to τ . There would be a large number of choices for the unitary
displacement operator. One can also consider complex values of τ since one has complexified
M8.

2. There should be a normalization for the coefficients: without this it is not possible to talk
about a special value of τ does not make sense. For instance, the sum of their moduli
squared could be equal to 1. This would give interpretation as a quantum state in the
degrees of freedom considered. The width of the Gaussian would increase slowly during the
unitary time evolution and be proportional to log(T/T0).

The width of the Gaussian would increase slowly as a function of T during the unitary time
evolution and be proportional to log(T/T0). The condition that ck are proportional the same
complex number times τ is too strong.

3. The arbitrariness in the choice of Ck would bring in a kind of non-determinism as a selection
of this superposition. The ability to engineer physical systems is in conflict with the
determinism of classical physics and also difficult to understand in standard quantum physics.
Could one interpret this choice as an analog for engineering a Hamiltonian as in say
quantum computation or build-up of an electric circuit for some purpose? Could goal
directed action correspond to this choice?

If so engineerable degrees of freedom would correspond to intermediate degrees of freedom
associated with Lk, [m/2] ≤ k ≤ m. They would be totally absent for k = 1 and this would
correspond to a situation analogous to the standard physics without any intentional action.

5 MIP*= RE: What could this mean physically?

I received a very interesting link to a popular article (https://cutt.ly/sfd5UQF) explaining a
recently discovered deep result in mathematics having implications also in physics. The article
[A21] (https://cutt.ly/rffiYdc) by Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John
Wright, and Henry Yuen has a rather concise title “MIP*=RE”. In the following I try to express
the impressions of a (non-mainstream) physicist about the result.

The following is the result expressed using the concepts of computer science about which I
know very little at the hard technical level. The results are however told to state something highly
non-trivial about physics.

1. RE (recursively enumerable languages) denotes all problems solvable by computer. P denotes
the problems solvable in a polynomial time. NP does not refer to a non-polynomial time but
to “non-deterministic polynomial acceptable problems” - I hope this helps the reader- I am
a little bit confused! It is not known whether P = NP is true.

2. IP problems (P is now for “prover” that can be solved by a collaboration of an interrogator
and prover who tries to convince the interrogator that her proof is convincing with high
enough probability. MIP involves multiple l provers treated as criminals trying to prove
that they are innocent and being not allowed to communicate. MIP* is the class of solvable
problems in which the provers are allowed to entangle.

https://cutt.ly/sfd5UQF
https://cutt.ly/rffiYdc
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The finding, which is characterized as shocking, is that all problems solvable by a Turing
computer belong to this class: MIP*=RE. All problems solvable by computer would reduce to
problems in the class MIP*! Quantum computation would indeed add something genuinely new
to the classical computation.

Quantum entanglement would play an essential role in quantum computation. Also the
implications for physics are highly non-trivial.

1. Connes embedding problem asking whether all infinite-D matrices can always be approx-
imated by finite-D matrices has a negative solution.Therefore MIP*= RE does not hold
true for hyperfinite factors of type II1 (HFFs) central in quantum TGD. Also the Tirelson
problem finds a solution. The measurements of commuting observers performed by two ob-
servers are equivalent to the measurements of tensor products of observables only in finite-D
case and for HFFs. That quantum entanglement would not have any role in HFFs is in
conflict with intuition.

2. In the TGD framework finite measurement resolution is realized in terms of HFFs at
Hilbert space level and in terms of cognitive representations at space-time level defined purely
number-theoretically. This leads to a hierarchy of adeles defined by extensions of rationals
and the Hilbert spaces must have algebraic extensions of rationals as a coefficient field.
Therefore one cannot in general case find a unitary transformation mapping the entangled
situation to an unentangled one, and quantum entanglement plays a key role. It seems that
computationalism formulated in terms of recursive functions of natural numbers must be
formulated for the hierarchy of extensions of rationals in terms of algebraic integers.

3. In TGD inspired theory of consciousness entanglement between observers could be seen as
a kind of telepathy helping to perform conscious quantum computations. Zero energy
ontology also suggests a modification of the views about quantum computation. TGD can
be formulated also for real and p-adic continua identified as correlates of sensory experience
and cognition, and it seems that computational paradigm need not apply in the continuum
cases.

5.1 Two physically interesting applications

There are two physically interesting applications of the theorem interesting also from the TGD
point of view and force to make explicit the assumptions involved.

5.1.1 About the quantum physical interpretation of MP*

To proceed one must clarify the quantum physical interpretation of MIP*.

Quantum measurement requires entanglement of the observer O with the measured system
M . What is basically measured is the density matrix of M (or equivalently that of O).
State function reduction gives as an outcome a state, which corresponds to an eigenvalue
of the density matrix. Note that this state can be an entangled state if the density matrix
has degenerate eigenvalues. Quantum measurement can be regarded as a question to the
measured system: “What are the values of given commuting observables?”. The final
state of quantum measurement provides an eigenstate of the observables as the answer to
this question. M would be in the role of the prover and Oi would serve as interrogators.

In the first case multiple interrogators measurements would entangle M with unentangled
states of the tensor product H1 ⊗H2 for O followed by a state function reduction splitting
the state of M to un-entangled state in the tensor product M1 ⊗M2.

In the second case the entire M would be interrogated using entanglement of M with
entangled states of H1 ⊗H2 using measurements of several commuting observables. The
theorem would state that interrogation in this manner is more efficient in infinite-D case
unless HFFs are involved.
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3. This interpretation differs from the interpretation in terms of computational problem solving
in which one would have several provers and one interrogator. Could these interpretations
be dual as the complete symmetry of the quantum measurement with respect to O and M
suggests? In the case of multiple provers (analogous to accused criminals) it is advantageous
to isolate them. In the case of multiple interrogators the best result is obtained if the
interrogator does not effectively split itself into several ones.

5.1.2 Connes embedding problem and the notion of finite measurement/cognitive
resolution

Alain Connes formulated what has become known as Connes embedding problem. The question
is whether infinite matrices forming factor of type II1 can be always approximated by finite-D
matrices that is imbedded in a hyperfinite factor of type II1 (HFF). Factors of type II and their
HFFs are special classes of von Neumann algebras possibly relevant for quantum theory.

This result means that if one has measured of a complete set of for a product of commuting
observables acting in the full space, one can find in the finite-dimensional case a unitary transfor-
mation transforming the observables to tensor products of observables associated with the factors
of a tensor product. In the infinite-D case this is not true.

What seems to put alarms ringing is that in TGD there are excellent arguments suggesting
that the state space has HFFs as building bricks. Does the result mean that entanglement cannot
help in quantum computation in TGD Universe? I do not want to live in this kind of Universe!

5.1.3 Tsirelson problem

Tsirelson problem (see this) is another problem mentioned in the popular article as a physically
interesting application. The problem relates to the mathematical description of quantum measure-
ment.

Three systems are considered. There are two systems O1 and O2 representing observers and the
third representing the measured system M . The measurement reducing the entanglement between
M and O1 or O2 can regarded as producing correspondence between state of M and O1 or O2, and
one can think that O1 or O2 measures only obserservables in its own state space as a kind of image
of M . There are two ways to see the situation. The provers correspond now to the observers and
the two situations correspond to provers without and with entanglement.

Consider first a situation in which one has single Hilbert space H and single observer O. This
situation is analogous to IP.

1. The state of the system is described statistically by a density matrix - not necessarily pure
state -, whose diagonal elements have interpretation as reduction probabilities of states in
this bases. The measurement situation fixes the state basis used. Assume an ensemble of
identical copies of the system in this state. Assume that one has a complete set of commuting
observables.

2. By measuring all observables for the members of the ensemble one obtains the probabilities
as diagonal elements of the density matrix. If the observable is the density matrix having
no- degenerate eigenvalues, the situation is simplified dramatically. It is enough to use the
density matrix as an observable. TGD based quantum measurement theory assumes that
the density matrix describing the entanglement between two subsystems is in a universal
observable measure in state function reductions reducing their entanglement.

3. Can one deduce also the state of M as a superposition of states in the basic chosen by the
observer? This basis need not be the same as the basis defined by - say density matrix if the
system has interacted with some system and this ineracton has led to an eigenstate of the
density matrix. Assume that one can prepare the latter basis by a physical process such as
this kind of interaction.

The coefficients of the state form a set of N2 complex numbers defining a unitary N × N
matrix. Unitarity conditions giveN conditions telling that the complex rows and unit vectors:
these numbers are given by the measurement of all observables. There are also N(N − 1)

https://arxiv.org/abs/0812.4305
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conditions telling that the rows are orthogonal. Together these N+N(N−1) = N2 numbers
fix the elements of the unitary matrix and therefore the complex coefficients of the state basis
of the system can be deduced from a complete set of measurements for all elements of the
basis.

Consider now the analog of the MIS* involving more than one observer. For simplicity consider
two observers.

1. Assume that the state space H of M decomposes to a tensor product H = H1 ⊗ H2 of
state spaces H1 and H2 such that O1 measures observables X1 in H1 and O2 measuresob-
servables X2 in H2. The observables X1 and X2 commute since they act in different tensor
factors. The absence of interaction between the factors corresponds to the inability of the
provers to communicate. As in the previous case, one can deduce the probabilities for the
various outcomes of the joint measurements interpreted as measurements of a complete set
of observables X1 ⊗X2.

2. One can also think that the two systems form a single system O so that O1 and O2 can
entangle. This corresponds to a situation in which entanglement between the provers is
allowed. Now X1 and X2 are not in general independent but also now they must commute.
One can deduce the probabilities for various outcomes as eigenstates of observables X1X2

and deduce the diagonal elements of the density matrix as probabilities.

Are these ways to see the situation equivalent? Tsirelson demonstrated that this is the case for
finite-dimensional Hilbert spaces, which can indeed be decomposed to a tensor product of factors
associated with O1 and O2. This means that one finds a unitary transformation transforming the
entangled situation to an unentangled one and to tensor product observables.

For the infinite-dimensional case the situation remained open. According to the article, the
new result implies that this is not the case. For hyperfinite factors the situation can be approx-
imated with a finite-D Hilbert space so that the situations are equivalent in arbitrary precise
approximation.

5.2 The connection with TGD

The result looks at first a bad news from the TGD point of view, where HFFs are highly suggestive.
One must be however very careful with the basic definitions.

5.2.1 Measurement resolution

Measurement resolution is the basic notion.

1. There are intuitive physicist’s arguments demonstrating that in TGD the operator algebras
involved with TGD are HFFs provides a description of finite measurement resolution. The
inclusion of HFFs defines the notion of resolution: included factor represents the degrees
of freedom not seen in the resolution used [K25, K10] (http://tgdtheoryd.fi/pfpool/
vNeumann.pdf) and http://tgdtheoryd.fi/pfpool/vNeumannnew.pdf).

Hyperfinite factors involve new structures like quantum groups and quantum algebras reflect-
ing the presence of additional symmetries: actually the “world of classical worlds” (WCW) as
the space of space-time surfaces as maximal group of isometries and this group has a fractal
hierarchy of isomorphic groups imply inclusion hierarchies of HFFs. By the analogs of gauge
conditions this infinite-D group reduces to a hierarchy of effectively finite-D groups. For
quantum groups the infinite number of irreps of the corresponding compact group effectively
reduces to a finite number of them, which conforms with the notion of hyper-finiteness.

It looks that the reduction of the most general quantum theory to TGD-like theory relying on
HFFs is not possible. This would not be surprising taking into account gigantic symmetries
responsible for the cancellation of infinities in TGD framework and the very existence of
WCW geometry.

http://tgdtheoryd.fi/pfpool/vNeumann.pdf
http://tgdtheoryd.fi/pfpool/vNeumann.pdf
http://tgdtheoryd.fi/pfpool/vNeumannnew.pdf
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2. Second TGD based approach to finite resolution is purely number theoretic [?] and involves
adelic physics as a fusion of the real physics with various p-adic physics as correlates of
cognition. Cognitive representations are purely number theoretic and unique discretizations
of space-time surfaces defined by a given extension of rationals forming an evolutionary
hierarchy: the coordinates for the points of space-time as a 4-surface of the embedding space
H = M4 × CP2 or of its dual M8 are in the extension of rationals defining the adele. In
the case of M8 the preferred coordinates are unique apart from time translation. These two
views would define descriptions of the finite resolution at the level of space-time and Hilbert
space. In particular, the hierarchies of extensions of rationals should define hierarchies of
inclusions of HFFs.

For hyperfinite factors the analog of MIP*=RE cannot hold true. Doesn’t the TGD Universe
allow a solution of all the problems solvable by Turing Computer? There is a loophole in this
argument.

1. The point is that for the hierarchy of extensions of rationals also Hilbert spaces have as a
coefficient field the extension of rationals! Unitary transformations are restricted to matrices
with elements in the extension. In general it is not possible to realize the unitary transforma-
tion mapping the entangled situation to an un-entangled one! The weakening of the theorem
would hold true for the hierarchy of adeles and entanglement would give something genuinely
new for quantum computation!

2. A second deep implication is that the density matrix characterizing the entanglement between
two systems cannot in general be diagonalized such that all diagonal elements identifiable as
probabilities would be in the extension considered. One would have stable or partially stable
entanglement (could the projection make sense for the states or subspaces with entanglement
probability in the extension). For these bound states the binding mechanism is purely number
theoretical. For a given extension of p-adic numbers one can assign to algebraic entanglement
also information measure as a generalization of Shannon entropy as a p-adic entanglement
entropy (real valued). This entropy can be negative and the possible interpretation is that
the entanglement carries conscious information.

5.2.2 What about transcendental extensions?

During the writing of this article an interesting question popped up.

1. Also transcendental extensions of rationals are possible, and one can consider the gener-
alization of the computationalism by also allowing functions in transcendental extensions.
Could the hierarchy of algebraic extensions could continue with transcendental extensions?
Could one even play with the idea that the discovery of transcendentals meant a quantum
leap leading to an extension involving for instance e and π as basic transcendentals? Could
one generalize the notion of polynomial root to a root of a function allowing Taylor expansion
f(x) =

∑
qnx

n with rational coefficients so that the roots of f(x) = 0 could be used define
transcendental extensions of rationals?

2. Powers of e or its root define and infinite-D extensions having the special property that they
are finite-D for p-adic number fields because ep is ordinary p-adic number. In the p-adic
context e can be defined as a root of the equation xp −

∑
pn/n! = 0 making sense also for

rationals. The numbers log(pi) such that pi appears a factor for integers smaller than p
define infinite-D extension of both rationals and p-adic numbers. They are obtained as roots
of ex − pi = 0.

3. The numbers (2n+ 1)π (2nπ) can be defined as roots of sin(x) = 0 (cos(x) = 0. The exten-
sion by π is infinite-dimensional and the conditions defining it would serve as consistency
conditions when the extension contains roots of unity and effectively replaces them.

4. What about other transcendentals appearing in mathematical physics? The values ζ(n)
of Riemann Zeta appearing in scattering amplitudes are for even values of n given by
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ζ(2n) = (−1)n+1B2n(2π)2n/2(2n+1)!. This follows from the functional identity for Riemann
zeta and from the expression ζ(−n) = (−1)nBn+1/(n + 1) ( (B(−1/2) = −1/2) (https:
//cutt.ly/dfgtgmw). The Bernoulli numbers Bn are rational and vanish for odd values of
n. An open question is whether also the odd values are proportional to πn with a rational
coefficient or whether they represent “new” transcendentals.

5.2.3 What about the situation for the continuum version of TGD?

At least the cognitively finitely representable physics would have the HFF property with coefficient
field of Hilbert spaces replaced by an extension of rationals. Number theoretical universality would
suggest that HFF property characterizes also the physics of continuum TGD. This leads to a series
of questions.

1. Does the new theorem imply that in the continuum version of TGD all quantum computations
allowed by the Turing paradigm for real coefficients field for quantum states are not possible:
MIP∗ ⊂ RE? The hierarchy of extensions of rationals allows utilization of entanglement,
and one can even wonder whether one could have MIP∗ = RE at the limit of algebraic
numbers.

2. Could the number theoretic vision force change also the view about quantum computation?
What does RE actually mean in this framework? Can one really assume complex entangle-
ment coefficients in computation. Does the computational paradigm makes sense at all in
the continuum picture?

Are both real and p-adic continuum theories unreachable by computation giving rise to cog-
nitive representations in the algebraic intersubsection of the sensory and cognitive worlds? I
have indeed identified real continuum physics as a correlate for sensory experience and various
p-adic physics as correlates of cognition in TGD: They would represent the computionally
unreachable parts of existence.

Continuum physics involves transcendentals and in mathematics this brings in analytic for-
mulas and partial differential equations. At least at the level of mathematical consciousness
the emergence of the notion of continuum means a gigantic step. Also this suggests that
transcendentality is something very real and that computation cannot catch all of it.

3. Adelic theorem allows to express the norm of a rational number as a product of inverses of its
p-adic norms. Very probably this representation holds true also for the analogs of rationals
formed from algebraic integeres. Reals can be approximated by rationals. Could extensions
of all p-adic numbers fields restricted to the extension of rationals say about real physics only
what can be expressed using language?

Also fermions are highly interesting in the recent context. In TGD spinor structure can be
seen as a square root of Kähler geometry, in particular for the “world of classical worlds” (WCW).
Fermions are identified as correlates of Boolean cognition. The continuum case for fermions does
not follow as a näıve limit of algebraic picture.

1. The quantization of the induced spinors in TGD looks different in discrete and continuum
cases. Discrete case is very simple since equal-time anticommutators give discrete Kronecker
deltas. In the continuum case one has delta functions possibly causing infinite vacuum energy
like divergences in conserved Noether charges (Dirac sea).

2. In [?] (https://cutt.ly/zfftoK6) I have proposed how these problems could be avoided
by avoiding anticommutators giving delta-function. The proposed solution is based on zero
energy ontology and TGD based view about space-time. One also obtains a long-sought-for
concrete realization for the idea that second quantized induce spinor fields are obtained as
restrictions of second quantized free spinor fields in H = M4×CP2 to space-time surface. The
fermionic variant of M8 −H-duality [?] provides further insights and gives a very concrete
picture about the dynamics of fermions in TGD.

https://cutt.ly/dfgtgmw
https://cutt.ly/dfgtgmw
https://cutt.ly/zfftoK6
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These considerations relate in an interesting manner to consciousness. Quantum entanglement
makes in the TGD framework possible telepathic sharing of mental images represented by sub-
selves of self. For the series of discretizations of physics by HFFs and cognitive representations
associated with extensions of rationals, the result indeed means something new.

5.2.4 What does one mean with quantum computation in TGD Universe?

The TGD approach raises some questions about computation.

1. The ordinary computational paradigm is formulated for Turing machines manipulating nat-
ural numbers by recursive algorithms. Programs would essentially represent a recursive
function n → f(n). What happens to this paradigm when extensions of rationals define
cognitive representations as unique space-time discretizations with algebraic numbers as the
limit giving rise to a dense in the set of reals.

The usual picture would be that since reals can be approximated by rationals, the situation is
not changed. TGD however suggests that one should replace at least the quantum version of
the Turing paradigm by considering functions mapping algebraic integers (algebraic rational)
to algebraic integers.

Quite concretely, one can manipulate algebraic numbers without approximation as a rational
and only at the end perform this approximation and computations would construct recursive
functions in this manner. This would raise entanglement to an active role even if one has
HFFs and even if classical computations could still look very much like ordinary computation
using integers.

This suggests that computationalism usually formulated in terms of recursive functions
of natural or rational numbers could be replaced with a hierarchy of computationalisms
for the hierarchy of extensions of rationals. One would have recursively definable functions
defined and having values in the extensions of rationals. These functions would be analogs
of analytic functions (or polynomials) with the complex variable replaced with an integer
or a rational of the extension. This poses very powerful constraints and there are good
reasons to expect an increase of computational effectiveness. One can hope that at
the limit of algebraic numbers of these functions allow arbitrarily precise approximations
to real functions. If the real world phenomena can be indeed approximated by cognitive
representations in the TGD sense, one can imagine a highly interesting approach to AI.

2. ZEO brings in also time reversal occurring in “big” (ordinary) quantum jumps and this mod-
ifies the views about quantum computation. In ZEO based conscious quantum computation
halting means “death” and “reincarnation” of conscious entity, self? How the processes in-
volving series of haltings in this sense differs from ordinary quantum computation: could one
shorten the computation time by going forth and back in time.

There are many interesting questions to be considered. M8 − H duality gives justifications
for the vision about algebraic physics. TGD leads also to the notion of infinite prime and I have
considered the possibility that infinite primes could give a precise meaning for the dimension of
infinite-D Hilbert space. Could the number-theoretic view about infinite be considerably richer
than the idea about infinity as limit would suggest [K20].

The construction of infinite primes is analogous to a repeated second quantization of arithmetic
supersymmetric quantum field theory allowing also bound states at each level and a concrete
correspondence with the hierarchy of space-time sheets is suggestive. For the infinite primes at
the lowest level of the hierarchy single particle states correspond to rationals and bound states to
polynomials and therefore to the sets of their roots. This strongly suggests a connection with M8

picture.

5.2.5 Could the number field of computable reals (p-adics) be enough for physics?

For some reason I have managed to not encounter the notion of computable number (see
https://cutt.ly/pTeSSfR) as opposed to that of non-computable number (see https://cutt.

ly/gTeD9vF). The reason is perhaps that I have been too lazy to take computationalism seriously
enough.

https://cutt.ly/pTeSSfR
https://cutt.ly/gTeD9vF
https://cutt.ly/gTeD9vF
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Computable real number is a number, which can be produced to an arbitrary accuracy by a
Turing computer, which by definition has a finite number of internal states, has input which
is natural number and produces output which is natural numbers. Turing computer computes
values of a function from natural numbers to itself by applying a recursive algorithm.

The following three formal definitions of the notion are equivalent.

1. The real number a is computable, if it can be expressed in terms of a computable function
n→ f(n) from natural numbers to natural numbers characterized by the property

f(n)− 1)

n
≤ a ≤ (

f(n) + 1)

n
.

For rational a = q, f(n) = nq satisfies the conditions. Note that this definition does not
work for p-adic numbers since they are not well-ordered.

2. The number a is computable if for an arbitrarily small rational number ε there exists a
computable function producing a rational number r satisfying |r − x≤ ε. This definition
works also for p-adic numbers since it involves only the p-adic norm which has values which
are powers of p and is therefore real valued.

3. a is computable if there exists a computable sequence of rational numbers ri converging to
a such that |a− ri| ≤ 2−i holds true. This definition works also for 2-adic numbers and its
variant obtained by replacing 2 with the p-adic prime p makes sense for p-adic numbers.

The set Rc of computable real numbers and the p-adic counterparts Qp,c of Rc, have highly
interesting properties.

1. Rc is enumerable and therefore can be mapped to a subset of rationals: even the
ordering can be preserved. Also Qp,c is enumerable but now one cannot speak of ordering.
As a consequence, most real (p-adic) numbers are non-computable. Note that the pinary
expansion of a rational is periodic after some pinary digit. For a p-adic transcendental
this is not the case.

2. Algebraic numbers are computable so that one can regard Rc as a kind of completion of
algebraic numbers obtained by adding computable reals. For instance, π and e are com-
putable. 2π can be computed by replacing the unit circle with a regular polygon with n sides
and estimating the length as nLn. Ln the length of the side. e can be computed from the
standard formula. Interestingly, ep is an ordinary p-adic number. An interesting question
is whether there are other similar numbers. Certainly many algebraic numbers correspond
to ordinary p-adic numbers.

3. Rc (Qp,c) is a number field since the arithmetic binary operations +,−×, / are computable.
Also differential and integral calculus can be constructed. The calculation of a derivative
as a limit can be carried out by restricting the consideration to computable reals and there
is always a computable real between two computable reals. Also Riemann sum can be
evaluated as a limit involving only computable reals.

4. An interesting distinction between real and p-adic numbers is that in the sum of real numbers
the sum of arbitrarily high digits can affect even all lower digits so that it requires computa-
tional work to predict the outcome. For p-adic numbers memory digits affect only the higher
digits. This is why p-adic numbers are tailor made for computational purposes.Canonical
identification

∑
xnp

n →
∑
xnp

−n used in p-adic mass calculations to map p-adic mass
squared to its real counterpart [K11] maps p-adics to reals in a continuous manner. For inte-
gers this corresponds is 2-to-1 due to the fact that the p-adic numbers −1 = (p− 1)/(1− p)
and 1/p are mapped to p.

5. For computable numbers, one cannot define the relation =. One can only define equality in
some resolution ε. The category theoretical view about equality is also effective and conforms
with the physical view.
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Also the relations ≤ and ≥ fail to have computable counterparts since only the absolute
value |x − y| can appear in the definition and one loses the information about the well-
ordered nature of reals. For p-adic numbers there is no well-ordering so that nothing is
lost. A restriction to non-equal pairs however makes order relation computable. For p-adic
numbers the same is true.

6. Computable number is obviously definable but there are also definanable numbers, which
are not computable. Examples are Gödel numbers in a given coding scheme for statements,
which are true but not provable. More generally, the Gödel numbers coding for undecidable
problems such as the halting problem are uncomputable natural numbers in a given coding
scheme. Chaitin’s constant, which gives the probability that random Turing computation
halts, is a non-computable but definable real number.

7. Computable numbers are arithmetic numbers, which are numbers definable in terms of
first order logic using Peano’s axioms. First order logic does not allow statements about
statements and one has an entire hierarchy of statements about... about statements. The
hierarchy of infinite primes defines an analogous hierarchy in the TGD framework and is
formally similar to a hierarchy of second quantizations [K20].

6 Analogs Of Quantum Matrix Groups From Finite Mea-
surement Resolution?

The notion of quantum group [?]eplaces ordinary matrices with matrices with non-commutative
elements. This notion is physically very interesting, and in TGD framework I have proposed that
it should relate to the inclusions of von Neumann algebras allowing to describe mathematically
the notion of finite measurement resolution [?] These ideas have developed slowly through various
side tracks.

In the sequel I will consider the notion of quantum matrix inspired by the recent view about
quantum TGD relying on the notion of finite measurement resolution and show that under some
additional conditions it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution.

1. The basic idea is to replace complex matrix elements with operators, which are products
of non-negative hermitian operators and unitary operators analogous to the products of
modulus and phase as a representation for complex numbers. Modulus and phase would be
non-commuting and have commutation relation analogous to that between momentum and
plane-wave in accordance with the idea about quantization of complex numbers.

2. The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. Strong/weak permutation symmetry of de-
terminant requires its invariance apart from sign change under permutations of rows and/or
columns. Weak permutation symmetry means development of determinant with respect to a
fixed row or column and does not pose additional conditions. For weak permutation symme-
try the permutation of rows/columns would however have a natural interpretation as braiding
for the hermitian operators defined by the moduli of operator valued matrix elements and
here quantum group structure emerges.

3. The commutativity of all sub-determinants is essential for the replacement of eigenvalues with
eigenvalue spectra of hermitian operators and sub-determinants define mutually commuting
set of operators.

Quantum matrices define a more general structure than quantum group but provide a concrete
representation for them in terms of finite measurement resolution, in particular when q is a root of
unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one obtains quantum matrices for which
the determinant is apart from possible change by a sign factor invariant under the permutations
of both rows and columns. One can also understand the recursive fractal structure of inclusion
sequences of hyper-finite factors resulting by replacing operators appearing as matrix elements
with quantum matrices and a concrete connection with quantum groups emerges.
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In Zero Energy Ontology (ZEO) M-matrix serving as the basic building brick of unitary U-
matrix and identified as a hermitian square root of density matrix provides a possible application
for this vision. Especially fascinating is the possibility of hierarchies of measurement resolutions
represented as inclusion sequences realized as recursive construction of M-matrices. Quantization
would emerge already at the level of complex numbers appearing as M-matrix elements.

This approach might allow to unify various ideas behind TGD. For instance, Yangian algebras
emerging naturally in twistor approach are examples of quantum algebras. The hierarchy of Planck
constants should have close relationship with inclusions and fractal hierarchy of sub-algebras of
super-symplectic and other conformal algebras.

6.1 Well-definedness Of The Eigenvalue Problem As A Constraint To
Quantum Matrices

Intuition suggests that the presence of degrees of freedom below measurement resolution implies
that one must use density matrix description obtained by taking trace over the unobserved degrees
of freedom. One could argue that in state function reduction with finite measurement resolution
the outcome is not a pure state, or not even negentropically entangled state (possible in TGD
framework) but a state described by a density matrix. The challenge is to describe the situation
mathematically in an elegant manner.

1. There is present an infinite number of degrees of freedom below measurement resolution with
which measured degrees of freedom entangle so that their presence affects the situation. One
has a system with finite number degrees of freedom such as two-state system described by a
quantum spinor. In this case observables as hermitian operators described by 2× 2 matrices
would be replaced by quantum matrices with elements, which in general do not commute.

An attractive generalization of complex numbers appearing as elements of matrices is ob-
tained by replacing them with products Hij = hijuij of hermitian operators hij with non-
negative spectrum (modulus of complex number) and unitary operators uij (phase of complex
number) suggests itself. The commutativity of hij and uij would look nice but is not neces-
sary and is in conflict with the idea that modulus and phase of an amplitudes do not commute
in quantum mechanics.

Very probably this generalization is trivial for mathematician. One could indeed interpret
the generalization in terms of a tensor product of finite-dimensional matrices with possibly
infinite-dimensional space of operators of Hilbert space. For the physicist the situation might
be different as the following proposal for what hermitian quantum matrices could be suggests.

2. The modulus of complex number is replaced with a hermitian operator having non-negative
eigenvalues. The representation as h = AA† + A†A is would guarantee this. The phase of
complex number would be replaced by a unitary operator U possibly allowing the represen-
tation U = exp(iT ), T hermitian. The commutativity condition

[hij , uij ] = 0 (6.1)

for a given matrix element is also suggestive but as already noticed, Uncertainty Principle
suggests that modulus and phase do not commute as operators. The commutator of modulus
and phase would naturally be equal to that between momentum operator and plane wave:

[hij , uij ] = i~× uij , (6.2)

Here ~ = h/2π can be chosen to be unity in standard quantum theory. In TGD it can be
generalized to a hermitian operator Heff/h with an integer valued spectrum of eigenvalues
given by heff/h = n so that ordinary and dark matter sectors would be unified to single
structure mathematically.



6.1 Well-definedness Of The Eigenvalue Problem As A Constraint To Quantum
Matrices 64

3. The notions of eigenvalues and eigenvectors for a hermitian operator should generalize. Now
hermitian operator H would be a matrix with formally the same structure as N×N hermitian
matrix in commutative number field - say complex numbers - possibly satisfying additional
conditions.

Hermitian matrix can be written as

Hij = hijuij for i>j Hij = uijhij for i<j , Hii = hi . (6.3)

Hermiticity conditions Hij = H†ji give

hij = hji , uij = u†ji . (6.4)

Here it has been assumed that one has quantum SU(2). For quantum U(2) one would have

U11 = U†22 = haua with ua commuting with other operators. The form of the conditions is
same as for ordinary hermitian matrices and it is not necessary to assume commutativity
[hij , uij ] = 0. Generalization of Pauli spin matrices provides a simple illustration.

4. The well-definedness of eigenvalue problem gives a strong constraint on the notion of her-
mitian quantum matrix. Eigenvalues of hermitian operator are determined by the vanishing
of determinant det(H − λI). Its expression involves sub-determinants and one must decide
whether to demand that the definition of determinant is independent of which column or row
one chooses to develop the determinant.

For ordinary matrix the determinant is expressible as sum of symmetric functions:

det(H − λI) =
∑

λnSn(H) . (6.5)

Elementary symmetric functions Sn - n-functions in following - have the property that they
are sums of contributions from to n-element paths along the matrix with the property that
path contains no vertical or horizontal steps. One has a discrete analog of path integral
in which time increases in each step by unit. The analogy with fermionic path integral is
also obvious. In the non-commutative case non-commutativity poses problems since different
orderings of rows (or columns) along the same n-path give different results.

(a) For the first option one gives up the condition that determinant can be developed with
respect to any row or column and defines determinant by developing it with respect
to say first row or first column. If one developing with respect to the column (row)
the permutations of rows (columns) do not affect the value of determinant or sub-
determinants but permutations of columns (rows) do so unless one poses additional
conditions stating that the permutations do not affect given contribution to the deter-
minant or sub-determinant. It turns out that this option must be applied in the case
of ordinary quantum group. For quantum phase q = ±1 the determinant is invariant
under permutations of both rows and columns.

(b) Second manner to get rid of difficulty would be that n-path does not depend on the
ordering of the rows (columns) differ only by the usual sign factor. For 2× 2 case this
would give

ad− bc = da− cb , (Option 2) (6.6)

These conditions state the invariance of the n-path under permutation group Sn per-
muting rows or columns.
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(c) For the third option the elements along n-paths commute: paths could be said to be
“classical”. The invariance of N -path in this sense guarantees the invariance of all
n-paths. In 2-D case this gives

[a, d] = 0 , [b, c] = 0 . (Option 3) (6.7)

5. One should have a well-defined eigenvalue problem. If the n-functions commute, one can
diagonalize the corresponding operators simultaneously and the eigenvalues problem reduces
to possibly infinite number of ordinary eigenvalue problems corresponding to restrictions to
given set of eigenvalues associated with N − 1 symmetric functions. This gives an additional
constraint on quantum matrices.

In 2-dimensional case one would have the condition

[ad− bc, a+ d] = 0 . (6.8)

Depending on how strong S2 invariance one requires, one obtains 0, 1, 2 nontrivial conditions
for 2 × 2 quantum matrices and 1 condition from the commutativity of n-functions besides
hermiticity conditions.

For N × N -matrices one would have N ! − 1 non-trivial conditions from the strong form of
permutation invariance guaranteeing the permutation symmetry of n-functions and N(N −
1)/2 conditions from the commutativity of n-functions.

6. The eigenvectors of the density matrix are obtained in the usual manner for each eigenvalue
contributing to quantum eigenvalue. Also the diagonalization can be carried out by a uni-
tary transformation for each eigenvalue separately. Hence the standard approach seems to
generalize almost trivially.

What makes the proposal non-trivial and possibly physically interesting is that the hermitian
operators are not assumed to be just tensor products of N × N hermitian matrices with
hermitian operators in Hilbert space.

The notion of unitary quantum matrix should also make sense. The näıve guess is that the
exponentiation of a linear combination of ordinary hermitian matrices with coefficients, which
are hermitian matrices gives quantum unitary matrices. In the case of U(1) the replacement of
exponentiation parameter t in exp(itX) with a hermitian operator gives standard expression for
the exponent and it is trivial to see that unitary conditions are satisfied also in this case. Also in
the case of SU(2) it is easy to verify that the guess is correct. One must also check that one indeed
obtains a group: it could also happen that only semi-group is obtained.

In any case, one could speak of quantum matrix groups with coordinates replaced by hermitian
matrices. These quantum matrix group need not be identical with quantum groups in the standard
sense of the word. Maybe this could provide one possible meaning for quantization in the case of
groups and perhaps also in the case of coset spaces G/H.

6.2 The Relationship To Quantum Groups And Quantum Lie Algebras

It is interesting to find out whether quantum matrices give rise to quantum groups under suitable
additional conditions. The child’s guess for these conditions is that the permutation of rows and
columns correspond to braiding for the hermitian moduli hij defined by unitary operators Uij .

6.2.1 Quantum groups and quantum matrices

The conditions for hermiticity and unitary do not involve quantum parameter q, which suggests
that the näıve generalization of the notion of unitary matrix gives unitary group obtained by
replacing complex number field with operator algebra gives group with coordinates defined by
hermitian operators rather than standard quantum group. This turns out to be the case and it
seems that quantum matrices provide a concrete representation for quantum group. The notion of
braiding as that for operators hij can be said to emerge from the notion of quantum matrix.
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1. Exponential of quantum hermitian matrix is excellent candidate for quantum unitary matrix.
One should check the exponentiation indeed gives rise to a quantum unitary matrix. For
q = ±1 this seems obvious but one should check this separately for other roots of unity.
Instead of considering the general case, we consider explicit ansatz for unitary U(2) quantum
matrix as U = [a, b;−b†, a†]. The conditions for unitary quantum group in the proposed
sense would state the orthonormality and unit norm property of rows/columns.

The explicit form of the conditions reads as

ab− ba = 0 , ab† = b†a ,
aa† + bb† = 1 , a†a+ b†b = 1 .

(6.9)

The orthogonality conditions are unique and reduce to the vanishing of commutators.

Normalization conditions involve a choice of ordering. One possible manner to avoid the
problem is to assume that both orderings give same unit length for row or column (as done
above). If only the other option is assumed then only third or fourth equations is needed.
The invariance of determinant under permutation of rows would imply [a, a†] = [b, b†] = 0
and the ordering problem would disappear.

2. One can look what conditions the explicit representation Uij = hijuij or equivalently [haua, hbub;−u†bhb, u†aha]
gives. The intuitive expectation is that U(2) matrix decomposes to a product of commutating
SU(2) matrix and U(1) matrices. This implies that ua commutes with the other matrices
involved. One obtains the conditions

hahb = hb(ubhau
†
b) , hbha = (ubhau

†
b)hb . (6.10)

These conditions state that the permutation of ha and hb analogous to braiding operation is
a unitary operation.

For the purposes of comparison consider now the corresponding conditions for SU(2)q matrix.

1. The SU(2)q matrix [a, b; b†, a†] with real value of q (see http://tinyurl.com/yb8tycag)
satisfies the conditions

ba = qab , b†a = qab†, bb† = b†b ,
a†a+ q2b†b = 1 , aa† + bb† = 1 .

(6.11)

This gives [a†, a] = (1 − q2)b†b. The above conditions would correspond to q = ±1 but
with complex numbers replaced with operator algebra. q-commutativity obviously replaces
ordinary commutativity in the conditions and one can speak of q-orthonormality.

For complex values of q - in particular roots of unity - the condition a†a + q2b†b = 1 is in
general not self-consistent since hermitian conjugation transforms q2 to its complex conjugate.
Hence this condition must be dropped for complex roots of unity.

2. Only for q = ±1 corresponding to Bose-Einstein and Fermi-Dirac statistics the conditions
are consistent with the invariance of n-functions (determinant) under permutations of both
rows and columns. Indeed, if 2 × 2 q-determinant is developed with respect to column, the
permutation of rows does not affect its value. This is trivially true also in N×N dimensional
case since the permutation of rows does not affect the n-paths at all.

If the symmetry under permutations is weakened, nothing prevents from posing quantum or-
thogonality conditions also now and the decomposition to a product of positive and hermitian
matrices give a concrete meaning to the notion of quantum group.

Do various n−functions commute with each other for SU(2)q? The only commutator of this
kind is that for the trace and determinant and should vanish:

http://tinyurl.com/yb8tycag
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[
b+ b†, aa† + bb†

]
= 0 . (6.12)

Since a†a and aa† are linear combinations of b†b = b†b, they vanish. Hence it seems that
TGD based view about quantum groups is consistent with the standard view.

3. One can look these conditions in TGD framework by restricting the consideration to the case
of SU(2) (ua = 1) and using the ansatz U = [ha, hbub;−u†bhb, ha]. Orthogonality conditions
read as

hahb = qhb(ubhau
†
b) , hbha = q(ubhau

†
b)hb .

If q is root of unity, these conditions state that the permutation of ha and hb analogous
to a unitary braiding operation apart from a multiplication with quantum phase q. For
q = ±1 the sign-factor is that in standard statistics. Braiding picture could help guess the
commutators of hij in the case of N ×N quantum matrices. The permutations of rows and
columns would have interpretation as braidings and one could say that braided commutators
of matrix elements vanish.

The conditions from the normalization give

h2a + h2b = 1 , h2a + q2(u†bh
2
bub) = 1 . (6.13)

For complex q the latter condition does not make sense since h2a−1 and u†bh
2
bub are hermitian

matrices with real eigenvalues. Also for real values of q 6= ±1 one obtains contradicion since
the spectra of unitarily related hermitian operators would differ by scaling factor q2. Hence
one must give up the condition involving q2 unless one has q = ±1. Note that the term
proportional to q2 does not allow interpretation in terms of braiding.

4. Roots of unity are natural number theoretically as values of q but number theoretical uni-
versality allows the generic value of q would be a complex number existing simultaneously in
all p-adic number properly extended. This would suggest the spectrum of q to come as

q(m,n) = e1/mexp(
ı2π

n
) . (6.14)

The motivation comes from the fact that ep is ordinary p-adic number for all p-adic number
fields so e and also any root of e defines a finite-dimensional extension of p-adic numbers
[K24] [?]. The roots of unity would be associated to the discretization of the ordinary angles
in case of compact matrix groups. Roots of e would be associated with the discretization of
hyperbolic angles needed in the case of non-compact matrix groups such as SL(2,C).

Also now unification of various values of q to single single operator Q, which is product of
commuting hermitian and unitary operators and commuting with the hermitian operator H
representing the spectrum of Planck constant would code the spectrum. Skeptic can of course
wonder, whether the modulus and phase of Q can be assumed to commute. The relationship
between integers associated with H and Q is interesting.

6.2.2 Quantum Lie algebras and quantum matrices

What about quantum Lie algebras? There are many notions of quantum Lie algebra and quantum
group. General formulas for the commutation relations are well-known for Drinfeld-Jimbo type
quantum groups (see http://tinyurl.com/yb8tycag). The simplest guess is that one just poses
the defining conditions for quantum group, replaces complex numbers as coefficient module with
operator algebra, and poses the above described conditions making possible to speak about eigen-
values and eigen vectors. One might however hope that this representation allows to realize the
non-commutativity of matrix elements of quantum Lie algebra in a concrete manner.

http://tinyurl.com/yb8tycag
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1. For SU(2) the commutation relations for the elements X+, X−, h read as

[h,X±] = ±X± , [X+, X−] = h . (6.15)

Here one can use the 2× 2 matrix representations for the ladder operators X± and diagonal
angular momentum generator h.

2. For SU(2)q one has

[h,X±] = ±X± , [X+, X−] = qh−q−h

q−q−1 . (6.16)

3. Using the ansatz for the generators but allowing hermitian operator coefficients in non-
diagonal generators X±, one obtains the condition

For SU(2)q one would have

[X+, X−] = h2+ = h2− =
qh − q−h

q − q−1
. (6.17)

Clearly, the proposal might make possible to have concrete representations for the quantum
Lie algebras making the decomposition to measurable and directly non-measurable degrees
of freedom explicit.

The conclusion is that finite measurement resolution does not lead automatically to standard
quantum groups although the proposed realization is consistent with them. Also the quantum
phases q = ±1 n = 1, 2 are realized and correspond to strong permutation symmetry and Bose-
Einstein and Fermi statistics.

6.3 About Possible Applications

The realization for the notion of finite measurement resolution is certainly the basic application
but one can imagine also other applications where hermitian and unitary matrices appear.

6.3.1 Density matrix description of degrees of freedom below measurement resolu-
tion

Density matrix ρ obtained by tracing over non-observable degrees of freedom is a fundamental
example about a hermitian matrix satisfying the additional condition Tr(ρ) = 1.

1. A state function reduction with a finite measurement resolution would lead to a non-pure
state. This state would be describable using N × N -dimensional quantum hermitian quan-
tum density matrix satisfying the condition Tr(ρ) = 1 (or more generally Trq(ρ) = 1), and
satisfying the additional conditions allowing to reduce its diagonalization to that for a col-
lection of ordinary density matrices so that the eigenvalues of ordinary density matrix would
be replaced by N quantum eigenvalues defined by infinite-dimensional diagonalized density
matrices.

2. One would have N quantum eigenvalues - quantum probabilities - each decomposing to
possibly infinite set of ordinary probabilities assignable to the degrees of freedom below
measurement resolution and defining density matrix for non-pure states resulting in state
function reduction.
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6.3.2 Some questions

Some further questions pop up naturally.

1. One might hope that the quantum counterparts of hermitian operators are in some sense
universal, at least in TGD framework (by quantum criticality). Could the condition that
the commutator of hermitian generators is proportional to i~ times hermitian generator pose
additional constraints? In 2-D case this condition is satisfied for quantum SU(2) generators
and very probably the same is true also in the general case. The possible problems result from
the non-commutativity but (XY )† = Y †X† identity takes care that there are no problems.

2. One can also raise physics related questions. What one can say about most general quantum
Hamiltonians and their energy spectra, say quantum hydrogen atom? What about quan-
tum angular momentum? If the proposed construction is only a concretization of abstract
quantum group construction, then nothing new is expected at the level of representations of
quantum groups.

3. Could the spectrum of heff define a quantum h as a hermitian positive definite operator?
Could this allow a description for the presence of dark matter, which is not directly observ-
able? Same question applies to the quantum parameter q.

4. M-matrices are basic building bricks of scattering amplitudes in ZEO. M-matrix is produce
of hermitian ”complex” square root H of density matrix satisfying H2 = ρ and unitary S-
matrix S. It has been proposed that these matrices commute. The previous consideration
relying on basic quantum thinking suggests that they relate like translation generator in radial
direction and phase defined by angle and thus satisfy [H,S] = i(Heff/h) × S. This would
give enormously powerful additional condition to S-matrix. One can also ask whether M-
matrices in presence of degrees of freedom below measurement resolution is quantum version
of M-matrix in the proposed sense.

5. Fractality is of of the key notions of TGD and characterizes also hyperfinite factors. I have
proposed some realizations of fractality such as infinite primes and finite-dimensional Hilbert
spaces taking the role of natural numbers and ordinary sum and product replaced with direct
sum and tensor product. One could also imagine a fractal hierarchy of quantum matrices
obtained by replacing the operators appearing as matrix elements of quantum matrix element
by quantum matrices. This hierarchy could relate to the sequence of inclusions of HFFs.

7 Jones Inclusions And Cognitive Consciousness

WCW spinors have a natural interpretation in terms of a quantum version of Boolean algebra.
Beliefs of various kinds are the basic element of cognition and obviously involve a representation
of the external world or part of it as states of the system defining the believer. Jones inclusions
mediating unitary mappings between the spaces of WCWs spinors of two systems are excellent
candidates for these maps, and it is interesting to find what one kind of model for beliefs this
picture leads to.

The resulting quantum model for beliefs provides a cognitive interpretation for quantum groups
and predicts a universal spectrum for the probabilities that a given belief is true. This spectrum
depends only on the integer n characterizing the quantum phase q = exp(i2π/n) characterizing the
Jones inclusion. For n 6=∞ the logic is inherently fuzzy so that absolute knowledge is impossible.
q = 1 gives ordinary quantum logic with qbits having precise truth values after state function
reduction.

7.1 Does One Have A Hierarchy Of U- And M-Matrices?

U -matrix describes scattering of zero energy states and since zero energy states can be illustrated
in terms of Feynman diagrams one can say that scattering of Feynman diagrams is in question.
The initial and final states of the scattering are superpositions of Feynman diagrams characterizing
the corresponding M -matrices which contain also the positive square root of density matrix as a
factor.
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The hypothesis that U -matrix is the tensor product of S-matrix part of M -matrix and its
Hermitian conjugate would make U -matrix an object deducible by physical measurements. One
cannot of course exclude that something totally new emerges. For instance, the description of
quantum jumps creating zero energy state from vacuum might require that U -matrix does not
reduce in this manner. One can assign to the U -matrix a square like structure with S-matrix and
its Hermitian conjugate assigned with the opposite sides of a square.

One can imagine of constructing higher level physical states as composites of zero energy states
by replacing the S-matrix with M -matrix in the square like structure. These states would provide
a physical representation of U -matrix. One could define U -matrix for these states in a similar
manner. This kind of hierarchy could be continued indefinitely and the hierarchy of higher level
U and M -matrices would be labeled by a hierarchy of n-cubes, n = 1, 2,... TGD inspired theory
of consciousness suggests that this hierarchy can be interpreted as a hierarchy of abstractions
represented in terms of physical states. This hierarchy brings strongly in mind also the hierarchies
of n-algebras and n-groups and this forces to consider the possibility that something genuinely new
emerges at each step of the hierarchy. A connection with the hierarchies of infinite primes [K20]
and Jones inclusions are suggestive.

7.2 Feynman Diagrams As Higher Level Particles And Their Scattering
As Dynamics Of Self Consciousness

The hierarchy of inclusions of hyper-finite factors of II1 as counterpart for many-sheeted space-time
lead inevitably to the idea that this hierarchy corresponds to a hierarchy of generalized Feynman
diagrams for which Feynman diagrams at a given level become particles at the next level. Accepting
this idea, one is led to ask what kind of quantum states these Feynman diagrams correspond, how
one could describe interactions of these higher level particles, what is the interpretation for these
higher level states, and whether they can be detected.

7.2.1 Jones inclusions as analogs of space-time surfaces

The idea about space-time as a 4-surface replicates itself at the level of operator algebra and state
space in the sense that Jones inclusion can be seen as a representation of the operator algebra N
as infinite-dimensional linear sub-space (surface) of the operator algebra M. This encourages to
think that generalized Feynman diagrams could correspond to image surfaces in II1 factor having
identification as kind of quantum space-time surfaces.

Suppose that the modular S-matrices are representable as the inner automorphisms ∆(Mit
k

assigned to the external lines of Feynman diagrams. This would mean that N ⊂Mk moves inside
calMk along a geodesic line determined by the inner automorphism. At the vertex the factors
calMk to fuse along N to form a Connes tensor product. Hence the copies of N move inside Mk

like incoming 3-surfaces in H and fuse together at the vertex. Since all Mk are isomorphic to
a universal factor M, many-sheeted space-time would have a kind of quantum image inside II1
factor consisting of pieces which are d = M : N/2-dimensional quantum spaces according to the
identification of the quantum space as subspace of quantum group to be discussed later. In the
case of partonic Clifford algebras the dimension would be indeed d ≤ 2.

7.2.2 The hierarchy of Jones inclusions defines a hierarchy of S-matrices

It is possible to assign to a given Jones inclusion N ⊂ M an entire hierarchy of Jones inclusions
M0 ⊂ M1 ⊂ M2..., M0 = N , M1 = M . A possible interpretation for these inclusions would be
as a sequence of topological condensations.

This sequence also defines a hierarchy of Feynman diagrams inside Feynman diagrams. The
factor M containing the Feynman diagram having as its lines the unitary orbits of N under ∆M
becomes a parton inM1 and its unitary orbits under ∆M1

define lines of Feynman diagrams in M1.
The concrete representation for M -matrix or projection of it to some subspace as entanglement
coefficients of partons at the ends of a braid assignable to the space-like 3-surface representing a
vertex of a higher level Feynman diagram. In this manner quantum dynamics would be coded and
simulated by quantum states.
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The outcome can be said to be a hierarchy of Feynman diagrams within Feynman diagrams,
a fractal structure for which many particle scattering events at a given level become particles at
the next level. The particles at the next level represent dynamics at the lower level: they have the
property of “being about” representing perhaps the most crucial element of conscious experience.
Since net conserved quantum numbers can vanish for a system in TGD Universe, this kind of
hierarchy indeed allows a realization as zero energy states. Crossing symmetry can be understood
in terms of this picture and has been applied to construct a model for M -matrix at high energy
limit [K6] .

One might perhaps say that quantum space-time corresponds to a double inclusion and that
further inclusions bring in N -parameter families of space-time surfaces.

7.2.3 Higher level Feynman diagrams

The lines of Feynman diagram inMn+1 are geodesic lines representing orbits ofMn and this kind
of lines meet at vertex and scatter. The evolution along lines is determined by ∆Mn+1

. These
lines contain within themselves Mn Feynman diagrams with similar structure and the hierarchy
continues down to the lowest level at which ordinary elementary particles are encountered.

For instance, the generalized Feynman diagrams at the second level are ribbon diagrams ob-
tained by thickening the ordinary diagrams in the new time direction. The interpretation as ribbon
diagrams crucial for topological quantum computation and suggested to be realizable in terms of
zero energy states in [K1] is natural. At each level a new time parameter is introduced so that the
dimension of the diagram can be arbitrarily high. The dynamics is not that of ordinary surfaces
but the dynamics induced by the ∆Mn .

7.2.4 Quantum states defined by higher level Feynman diagrams

The intuitive picture is that higher level quantum states corresponds to the self reflective aspect
of existence and must provide representations for the quantum dynamics of lower levels in their
own structure. This dynamics is characterized by M -matrix whose elements have representation
in terms of Feynman diagrams.

1. These states correspond to zero energy states in which initial states have “positive energies”
and final states have “negative energies”. The net conserved quantum numbers of initial
and final state partons compensate each other. Gravitational energies, and more generally
gravitational quantum numbers defined as absolute values of the net quantum numbers of
initial and final states do not vanish. One can say that thoughts have gravitational mass but
no inertial mass.

2. States in sub-spaces of positive and negative energy states are entangled with entanglement
coefficients given by M -matrix at the level below.

To make this more concrete, consider first the simplest non-trivial case. In this case the particles
can be characterized as ordinary Feynman diagrams, or more precisely as scattering events so that
the state is characterized by Ŝ = PinSPout, where S is S-matrix and Pin resp. Pout is the projection
to a subspace of initial resp. final states. An entangled state with the projection of S-matrix giving
the entanglement coefficients is in question.

The larger the domains of projectors Pin and Pout, the higher the representative capacity of
the state. The norm of the non-normalized state Ŝ is Tr(ŜŜ†) ≤ 1 for II1 factors, and at the limit
Ŝ = S the norm equals to 1. Hence, by II1 property, the state always entangles infinite number of
states, and can in principle code the entire S-matrix to entanglement coefficients.

The states in which positive and negative energy states are entangled by a projection of S-
matrix might define only a particular instance of states for which conserved quantum numbers
vanish. The model for the interaction of Feynman diagrams discussed below applies also to these
more general states.

7.2.5 The interaction of Mn Feynman diagrams at the second level of hierarchy

What constraints can one pose to the higher level reactions? How Feynman diagrams interact?
Consider first the scattering at the second level of hierarchy (M1), the first levelM0 being assigned
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to the interactions of the ordinary matter.

1. Conservation laws pose constraints on the scattering at level M1. The Feynman diagrams
can transform to new Feynman diagrams only in such a way that the net quantum numbers
are conserved separately for the initial positive energy states and final negative energy states
of the diagram. The simplest assumption is that positive energy matter and negative energy
matter know nothing about each other and effectively live in separate worlds. The scattering
matrix form Feynman diagram like states would thus be simply the tensor product S ⊗ S†,
where S is the S-matrix characterizing the lowest level interactions and identifiable as unitary
factor of M -matrix for zero energy states. Reductionism would be realized in the sense that,
apart from the new elements brought in by ∆Mn defining single particle free dynamics, the
lowest level would determine in principle everything occurring at the higher level providing
representations about representations about... for what occurs at the basic level. The lowest
level would represent the physical world and higher levels the theory about it.

2. The description of hadronic reactions in terms of partons serves as a guide line when one
tries to understand higher level Feynman diagrams. The fusion of hadronic space-time sheets
corresponds to the vertices M1. In the vertex the analog of parton plasma is formed by a
process known as parton fragmentation. This means that the partonic Feynman diagrams
belonging to disjoint copies ofM0 find themselves inside the same copy ofM0. The standard
description would apply to the scattering of the initial resp. final state partons.

3. After the scattering of partons hadronization takes place. The analog of hadronization in
the recent case is the organization of the initial and final state partons to groups Ii and Fi
such that the net conserved quantum numbers are same for Ii and Fi. These conditions can
be satisfied if the interactions in the plasma phase occur only between particles belonging
to the clusters labeled by the index i. Otherwise only single particle states in M1 would be
produced in the reactions in the generic case. The cluster decomposition of S-matrix to a
direct sum of terms corresponding to partitions of the initial state particles to clusters which
do not interact with each other obviously corresponds to the “hadronization”. Therefore no
new dynamics need to be introduced.

4. One cannot avoid the question whether the parton picture about hadrons indeed corresponds
to a higher level physics of this kind. This would require that hadronic space-time sheets
carry the net quantum numbers of hadrons. The net quantum numbers associated with the
initial state partons would be naturally identical with the net quantum numbers of hadron.
Partons and they negative energy conjugates would provide in this picture a representation
of hadron about hadron. This kind of interpretation of partons would make understandable
why they cannot be observed directly. A possible objection is that the net gravitational
mass of hadron would be three times the gravitational mass deduced from the inertial mass
of hadron if partons feed their gravitational fluxes to the space-time sheet carrying Earth’s
gravitational field.

5. This picture could also relate to the suggested duality between string and parton pictures
[K21] . In parton picture hadron is formed from partons represented by space-like 2-surfaces
X2
i connected by join along boundaries bonds. In string picture partonic 2-surfaces are

replaced with string orbits. If one puts positive and negative energy particles at the ends of
string diagram one indeed obtains a higher level representation of hadron. If these pictures
are dual then also in parton picture positive and negative energies should compensate each
other. Interestingly, light-like 3-D causal determinants identified as orbits of partons could
be interpreted as orbits of light like string word sheets with “time” coordinate varying in
space-like direction.

7.2.6 Scattering of Feynman diagrams at the higher levels of hierarchy

This picture generalizes to the description of higher level Feynman diagrams.

1. Assume that higher level vertices have recursive structure allowing to reduce the Feynman
diagrams to ordinary Feynman diagrams by a procedure consisting of finite steps.
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2. The lines of diagrams are classified as incoming or outgoing lines according to whether the
time orientation of the line is positive or negative. The time orientation is associated with
the time parameter tn characterizing the automorphism ∆itn

M\ . The incoming and outgoing

net quantum numbers compensate each other. These quantum numbers are basically the
quantum numbers of the state at the lowest level of the hierarchy.

3. In the vertices the Mn+1 particles fuse and Mn particles form the analog of quark gluon
plasma. The initial and final state particles of Mn Feynman diagram scatter independently
and the S-matrix Sn+1 describing the process is tensor product Sn ⊗ S†n. By the clustering
property of S-matrix, this scattering occurs only for groups formed by partons formed by the
incoming and outgoing particles Mn particles and each outgoing Mn+1 line contains and
irreducible Mn diagram. By continuing the recursion one finally ends down with ordinary
Feynman diagrams.

7.3 Logic, Beliefs, And Spinor Fields In The World Of Classical Worlds

Beliefs can be characterized as Boolean value maps βi(p) telling whether i believes in proposition
p or not. Additional structure is brought in by introducing the map λi(p) telling whether p is true
or not in the environment of i. The task is to find quantum counterpart for this model.

7.3.1 The spectrum of probabilities for outcomes in state function reduction with
finite measurement resolution is universal

Consider quantum two-spinor as a model of a system with finite measurement resolution implying
that state function reduction do not anymore lead to a spin state with a precise value but that one
can only predict the probability distribution for the outcome of measurement. These probabilities
can be also interpreted as truth values of a belief in finite cognitive resolution.

It is actually possible to calculate the spectrum of the probabilities of truth values with rather
mild additional assumptions.

1. Since the Hermitian operators X1 = (z1z1 + z1z1)/2 and X2 = (z2z2 + z2z2)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p1 = X1/R

2 and p2 = X2/R
2, R2 = X1 +X2.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfying z1|0〉 =

z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 = z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥

0. The eigenvalues of X1 and X2 are given by a modified harmonic oscillator spectrum as

X1 = (1/2 + n1q
n2)r , X2 = (1/2 + n2q

n1)r .

The reality of eigenvalues (hermiticity) is guaranteed if one has n1 = N1n and n1 = N2n and
implies that the spectrum of eigen states gets increasingly thinner for n → ∞. This must
somehow reflect the fractal dimension. The fact that large values of oscillator quantum num-
bers n1 and n2 correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n→∞.

3. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2+N1n, 1/2+N2n)/[1+
(N1 +N2)n] are rational and allow an interpretation as both real and p-adic numbers. This
also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits N1 � N2 and N2 � N1 non-fuzzy states result. As noticed,
n = ∞ must be treated separately and corresponds to an ordinary non-fuzzy qbit logic. At
n→∞ limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0 states are
non-fuzzy.

4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitsN1 � N2 and N2 �
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N1. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density
matrix obtained by tracing over non-visible degrees of freedom.

7.3.2 WCW spinors as logic statements

In TGD framework the infinite-dimensional WCW (CH) spinor fields defined in CH, the “world
of classical worlds”, describe quantum states of the Universe [K26] . WCW spinor field can be
regarded as a state in infinite-dimensional Fock space and are labeled by a collection of various
two valued indices like spin and weak isospin. The interpretation is as a collection of truth values
of logic statements one for each fermionic oscillator operator in the state. For instance, spin up
and down would correspond to two possible truth values of a proposition characterized by other
quantum numbers of the mode.

The hierarchy of space-time sheet could define a physical correlate for the hierarchy of higher
order logics (statements about statements about...). The space-time sheet containing N fermions
topologically condensed at a larger space-time sheet behaves as a fermion or boson depending on
whether N is odd or even. This hierarchy has also a number theoretic counterpart: the construc-
tion of infinite primes [K20] corresponds to a repeated second quantization of a super-symmetric
quantum field theory.

7.3.3 Quantal description of beliefs

The question is whether TGD inspired theory of consciousness allows a fundamental description
of beliefs.

1. Beliefs define a model about some subsystem of universe constructed by the believer. This
model can be understood as some kind of representation of real word in the state space
representing the beliefs.

2. One can wonder what is the difference between real and p-adic variants of WCW spinor
fields and whether they could represent reality and beliefs about reality. WCW spinors (as
opposed to spinor fields) are constructible in terms of fermionic oscillator operators and seem
to be universal in the sense that one cannot speak about p-adic and real WCW spinors as
different objects. Real/p-adic spinor fields however have real/p-adic space-time sheets as
arguments. This would suggest that there is no fundamental difference between the logic
statements represented by p-adic and real WCW spinors.

3. This vision is realized if the intersection of reality and various p-adicities corresponds to an
algebraically universal set of consisting of partonic 2-surfaces and string world sheets for which
defining parameters are WCW coordinates in an algebraic extension of rationals defining that
for p-adic number fields. Induced spinor fields would be localized at string world sheets and
their intersections with partonic 2-surfaces and would be number theoretically universal. If
second quantized induced spinor fields are correlates of Boolean cognition, which is behind the
entire mathematics, their number theoretical universality is indeed a highly natural condition.
Also fermionic anticommutation relations are number theoretically universal. By conformal
invariance the conformal moduli of string world sheets and partonic 2-surface would be the
natural WCW coordinates for the 2-surfaces in question and I proposed their p-adicization
already in p-adic mass calculations for two decades ago.

This picture would provide an elegant realization for the p-adicization. There would be ne
need to map real space-time surfaces directly to p-adic ones and vice versa and one would
avoid problems related to general coordinate invariance (GCI) completely. Strong form of
holography would assign to partonic surfaces the real and p-adic variants. Already p-adic
mass calculations support the presence of cognition in all length scales.

These observations suggest a more concrete view about how beliefs emerge physically.
The idea that p-adic WCW spinor fields could serve as representations of beliefs and real WCW

spinor fields as representations of reality looks very nice and conforms with the adelic vision that
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space-time is adele - a book-like structure contains space-time sheets in various number fields as
pages glued together along back for which the parameters characterizing space-time surface are
numbers in an algebraic extension of rationals. Real space-time surfaces would be correlates for
sensory experience and p-adic space-time sheets for cognition.

7.4 Jones Inclusions For Hyperfinite Factors Of Type II1 As A Model
For Symbolic And Cognitive Representations

Consider next a more detailed model for how cognitive representations and beliefs are realized at
quantum level. This model generalizes trivially to symbolic representations.

The Clifford algebra of gamma matrices associated with WCW spinor fields corresponds to a
von Neumann algebra known as hyper-finite factor of type II1. The mathematics of these algebras
is extremely beautiful and reproduces basic mathematical structures of modern physics (conformal
field theories, quantum groups, knot and braid groups,....) from the mere assumption that the world
of classical worlds possesses infinite-dimensional Kähler geometry and allows spinor structure.

The almost defining feature is that the infinite-dimensional unit matrix of the Clifford algebra
in question has by definition unit trace. Type II1 factors allow also what are known as Jones
inclusions of Clifford algebras N ⊂M. What is special to II1 factors is that the induced unitary
mappings between spinor spaces are genuine inclusions rather than 1-1 maps.

The S-matrix associated with the real-to-p-adic quantum transition inducing belief from reality
would naturally define Jones inclusion of CH Clifford algebra N associated with the real space-time
sheet to the Clifford algebra M associated with the p-adic space-time sheet. The moduli squared
of S-matrix elements would define probabilities for pairs or real and belief states.

In Jones inclusion N ⊂M the factor N is included in factorM such thatM can be expressed
as N -module over quantum space M/N which has fractal dimension given by Jones index M :
N = 4cos2(π/n) ≤ 4, n = 3, 4, .... varying in the range [1, 4]. The interpretation is as the fractal
dimension corresponding to a dimension of Clifford algebra acting in d =

√
M : N -dimensional

spinor space: d varies in the range [1, 2]. The interpretation in terms of a quantal variant of logic
is natural.

7.4.1 Probabilistic beliefs

ForM : N = 4 (n =∞) the dimension of spinor space is d = 2 and one can speak about ordinary
2-component spinors with N -valued coefficients representing generalizations of qubits. Hence the
inclusion of a given N -spinor as M-spinor can be regarded as a belief on the proposition and for
the decomposition to a spinor in N-module M/N involves for each index a choice M/N spinor
component selecting super-position of up and down spins. Hence one has a superposition of truth
values in general and one can speak only about probabilistic beliefs. It is not clear whether one
can choose the basis in such a way that M/N spinor corresponds always to truth value 1. Since
WCW spinor field is in question and even if this choice might be possible for a single 3-surface,
it need not be possible for deformations of it so that at quantum level one can only speak about
probabilistic beliefs.

7.4.2 Fractal probabilistic beliefs

For d < 2 the spinor space associated with M/N can be regarded as quantum plane having
complex quantum dimension d with two non-commuting complex coordinates z1 and z2 satisfying
z1z2 = qz2z1 and z1z2 = qz2z1. These relations are consistent with hermiticity of the real and
imaginary parts of z1 and z2 which define ordinary quantum planes. Hermiticity also implies that
one can identify the complex conjugates of zi as Hermitian conjugates.

The further commutation relations [z1, z2] = [z2, z1] = 0 and [z1, z1] = [z2, z2] = r give a
closed algebra satisfying Jacobi identities. One could argue that r ≥ 0 should be a function r(n)
of the quantum phase q = exp(i2π/n) vanishing at the limit n→∞ to guarantee that the algebra
becomes commutative at this limit and truth values can be chosen to be non-fuzzy. r = sin(π/n)
would be the simplest choice. As will be found, the choice of r(n) does not however affect at all the
spectrum for the probabilities of the truth values. n =∞ case corresponding to non-fuzzy quantum
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logic is also possible and must be treated separately: it corresponds to Kac Moody algebra instead
of quantum groups.

The non-commutativity of complex spinor components means that z1 and z2 are not indepen-
dent coordinates: this explains the reduction of the number of the effective number of truth values
to d < 2. The maximal reduction occurs to d = 1 for n = 3 so that there is effectively only single
truth value and one could perhaps speak about taboo or dogma or complete disappearance of the
notions of truth and false (this brings in mind reports about meditative states: in fact n = 3
corresponds to a phase in which Planck constant becomes infinite so that the system is maximally
quantal).

As non-commuting operators the components of d-spinor are not simultaneously measurable for
d < 2. It is however possible to measure simultaneously the operators describing the probabilities
z1z1 and z2z2 for truth values since these operators commute. An inherently fuzzy Boolean logic
would be in question with the additional feature that the spinorial counterparts of statement and its
negation cannot be regarded as independent observables although the corresponding probabilities
satisfy the defining conditions for commuting observables.

If one can speak of a measurement of probabilities for d < 2, it differs from the ordinary
quantum measurement in the sense that it cannot involve a state function reduction to a pure
qubit meaning irreducible quantal fuzziness. One could speak of fuzzy qbits or fqbits (or quantum
qbits) instead of qbits. This picture would provide the long sought interpretation for quantum
groups.

The previous picture applies to all representations M1 ⊂M2, where M1 and M2 denote either
real or p-adic Clifford algebras for some prime p. For instance, real-real Jones inclusion could
be interpreted as symbolic representations assignable to a unitary mapping of the states of a
subsystem M1 of the external world to the state space M2 of another real subsystem. p1 → p2
unitary inclusions would in turn map cognitive representations to cognitive representations. There
is a strong temptation to assume that these Jones inclusions define unitary maps realizing universe
as a universal quantum computer mimicking itself at all levels utilizing cognitive and symbolic
representations. Subsystem-system inclusion would naturally define one example of Jones inclusion.

7.4.3 The spectrum of probabilities of truth values is universal

It is actually possible to calculate the spectrum of the probabilities of truth values with rather
mild additional assumptions.

1. Since the Hermitian operators X1 = (z1z1 + z1z1)/2 and X2 = (z2z2 + z2z2)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p1 = X1/R

2 and p2 = X2/R
2, R2 = X1 +X2.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfying z1|0〉 =

z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 = z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥

0. The eigenvalues of X1 and X2 are given by a modified harmonic oscillator spectrum as

X1 = (1/2 + n1q
n2)r , X2 = (1/2 + n2q

n1)r .

The reality of eigenvalues (hermiticity) is guaranteed if one has n1 = N1n and n1 = N2n and
implies that the spectrum of eigen states gets increasingly thinner for n → ∞. This must
somehow reflect the fractal dimension. The fact that large values of oscillator quantum num-
bers n1 and n2 correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n→∞.

3. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2+N1n, 1/2+N2n)/[1+
(N1 +N2)n] are rational and allow an interpretation as both real and p-adic numbers. This
also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits N1 � N2 and N2 � N1 non-fuzzy states result. As noticed,
n = ∞ must be treated separately and corresponds to an ordinary non-fuzzy qbit logic. At
n→∞ limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0 states are
non-fuzzy.
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4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitsN1 � N2 and N2 �
N1. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density
matrix obtained by tracing over non-visible degrees of freedom.

7.4.4 How to define variants of belief quantum mechanically?

Probabilities of true and false for Jones inclusion characterize the plausibility of the belief and
one can ask whether this description is enough to characterize states such as knowledge, misbelief,
doubt, delusion, and ignorance. The truth value of βi(p) is determined by the measurement of
probability assignable to Jones inclusion on the p-adic side. The truth value of λi(p) is determined
by a similar measurement on the real side. β and λ appear completely symmetrically and one can
consider all kinds of triplets M1 ⊂ M2 ⊂ M3 assuming that there exist unitary S-matrix like
maps mediating a sequence M1 ⊂ M2 ⊂ M3 of Jones inclusions. Interestingly, the hierarchies
of Jones inclusions are a key concept in the theory of hyper-finite factors of type II1 and pair of
inclusions plays a fundamental role.

Let us restrict the consideration to the situation when M1 corresponds to a real subsystem of
the external world, M2 its real representation by a real subsystem, and M3 to p-adic cognitive
representation of M3. Assume that both real and p-adic sides involve a preferred state basis for
qubits representing truth and false.

Assume first that bothM1 ⊂M2 andM2 ⊂M3 correspond to d = 2 case for which ordinary
quantum measurement or truth value is possible giving outcome true or false. Assume further that
the truth values have been measured in both M2 and M3.

1. Knowledge corresponds to the proposition βi(p) ∧ λi(p).

2. Misbelief to the proposition βi(p)∧ 6= λi(p).
Knowledge and misbelief would involve both the measurement of real and p-adic probabilities
.

3. Assume next that one has d < 2 form M2 ⊂ M3. Doubt can be regarded neither belief or
disbelief: βi(p)∧ 6= βi(6= p): belief is inherently fuzzy although proposition can be non-fuzzy.

Assume next that truth values inM1 ⊂M2 inclusion corresponds to d < 2 so that the basic
propositions are inherently fuzzy.

4. Delusion is a belief which cannot be justified: βi(p)∧λi(p)∧ 6= λ( 6= p)). This case is possible
if d = 2 holds true for M2 ⊂ M3. Note that also misbelief that cannot be shown wrong is
possible.
In this case truth values cannot be quantum measured for M1 ⊂ M2 but can be measured
for M2 ⊂M3. Hence the states are products of pure M3 states with fuzzy M2 states.

5. Ignorance corresponds to the proposition βi(p)∧ 6= βi( 6= p) ∧ λi(p)∧ 6= λ(6= p)). Both real
representational states and belief states are inherently fuzzy.

Quite generally, only for d1 = d2 = 2 ideal knowledge and ideal misbelief are possible. Fuzzy
beliefs and logics approach to ordinary one at the limit n → ∞, which according to the proposal
of [K18] corresponds to the ordinary value of Planck constant. For other cases these notions are
only approximate and quantal approach allows to characterize the goodness of the approximation.
A new kind of inherent quantum uncertainty of knowledge is in question and one could speak
about a Uncertainty Principle for cognition and symbolic representations. Also the unification of
symbolic and various kinds of cognitive representations deserves to be mentioned.
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7.5 Intentional Comparison Of Beliefs By Topological Quantum Com-
putation?

Intentional comparison would mean that for a given initial state also the final state of the quantum
jump is fixed. This requires the ability to engineer S-matrix so that it leads from a given state
to single state only. Any S-matrix representing permutation of the initial states fulfills these
conditions. This condition is perhaps unnecessarily strong.

Quantum computation is basically the engineering of S-matrix so that it represents a superposi-
tion of parallel computations. In TGD framework topological quantum computation based on the
braiding of magnetic flux tubes would be represented as an evolution characterized by braid [K1] .
The dynamical evolution would be associated with light-like boundaries of braids. This evolution
has dual interpretations either as a limit of time evolution of quantum state (program running) or
a quantum state satisfying conformal invariance constraints (program code).

The dual interpretation would mean that conformally invariant states are equivalent with engi-
neered time evolutions and topological computation realized as braiding connecting the quantum
states to be compared (beliefs represented as many-fermion states at the boundaries of magnetic
flux tubes) could give rise to conscious computational comparison of beliefs. The complexity of
braiding would give a measure for how much the states to be compared differ.

Note that quantum computation is defined by a unitary map which could also be interpreted
as symbolic representation of states of system M1 as states of system M2 mediated by the braid of
join along boundaries bonds connecting the two space-time sheets in question and having light-like
boundaries. These considerations suggest that the idea about S-matrix of the Universe should be
generalized so that the dynamics of the Universe is dynamics of mimicry described by an infinite
collection of fermionic S-matrices representable in terms of Jones inclusions.

7.6 The Stability Of Fuzzy Qbits And Quantum Computation

The stability of fqbits against state function reduction might have deep implications for quantum
computation since quantum spinors would be stable against state function reduction induced by
the perturbations inducing de-coherence in the normal situation. If this is really true, and if the
only dangerous perturbations are those inducing the phase transition to qbits, the implications for
quantum computation could be dramatic. Of course, the rigidity of qbits could be just another
way to say that topological quantum computations are stable against thermal perturbations not
destroying anyons [K1] .

The stability of fqbits could also be another manner to state the stability of rational, or more
generally algebraic, bound state entanglement against state function reduction, which is one of the
basic hypothesis of TGD inspired theory of consciousness [K12] . For sequences of Jones inclusions
or equivalently, for multiple Connes tensor products, one would obtain tensor products of quantum
spinors making possible arbitrary complex configurations of fqbits. Anyonic braids in topological
quantum computation would have interpretation as representations for this kind of tensor products.

7.7 Fuzzy Quantum Logic And Possible Anomalies In The Experimental
Data For The EPR-Bohm Experiment

The experimental data for EPR-Bohm experiment [J3] excluding hidden variable interpretations
of quantum theory. What is less known that the experimental data indicates about possibility of
an anomaly challenging quantum mechanics [J1] . The obvious question is whether this anomaly
might provide a test for the notion of fuzzy quantum logic inspired by the TGD based quantum
measurement theory with finite measurement resolution.

7.7.1 The anomaly

The experimental situation involves emission of two photons from spin zero system so that photons
have opposite spins. What is measured are polarizations of the two photons with respect to
polarization axes which differ from standard choice of this axis by rotations around the axis of
photon momentum characterized by angles α and β. The probabilities for observing polarizations
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(i, j), where i, j is taken Z2 valued variable for a convenience of notation are Pij(α, β), are predicted
to be P00 = P11 = cos2(α− β)/2 and P01 = P10 = sin2(α− β)/2.

Consider now the discrepancies.

1. One has four identities Pi,i + Pi,i+1 = Pii + Pi+1,i = 1/2 having interpretation in terms of
probability conservation. Experimental data of [J3] are not consistent with this prediction [J2]
and this is identified as the anomaly.

2. The QM prediction E(α, β) =
∑
i(Pi,i − Pi,i+1) = cos(2(α − β) is not satisfied neither: the

maxima for the magnitude of E are scaled down by a factor ' .9. This deviation is not
discussed in [J2] .

Both these findings raise the possibility that QM might not be consistent with the data. It turns out
that fuzzy quantum logic predicted by TGD and implying that the predictions for the probabilities
and correlation must be replaced by ensemble averages, can explain anomaly b) but not anomaly
a). A “mundane” explanation for anomaly a) is proposed.

7.7.2 Predictions of fuzzy quantum logic for the probabilities and correlations

1. The description of fuzzy quantum logic in terms statistical ensemble

The fuzzy quantum logic implies that the predictions Pi,j for the probabilities should be replaced
with ensemble averages over the ensembles defined by fuzzy quantum logic. In practice this means
that following replacements should be carried out:

Pi,j → P 2Pi,j + (1− P )2Pi+1,j+1

+ P (1− P ) [Pi,j+1 + Pi+1,j ] . (7.1)

Here P is one of the state dependent universal probabilities/fuzzy truth values for some value of
n characterizing the measurement situation. The concrete predictions would be following

P0,0 = P1,1 → A
cos2(α− β)

2
+B

sin2(α− β)

2

= (A−B)
cos2(α− β)

2
+
B

2
,

P0,1 = P1,0 → A
sin2(α− β)

2
+B

cos2(α− β)

2

= (A−B)
sin2(α− β)

2
+
B

2
,

A = P 2 + (1− P )2 , B = 2P (1− P ) . (7.2)

The prediction is that the graphs of probabilities as a function as function of the angle α− β are
scaled by a factor 1 − 4P (1 − P ) and shifted upwards by P (1 − P ). The value of P , and one
might hope even the value of n labeling Jones inclusion and the integer m labeling the quantum
state might be deducible from the experimental data as the upward shift. The basic prediction is
that the maxima of curves measuring probabilities P(i, j) have minimum at B/2 = P (1− P ) and
maximum is scaled down to (A−B)/2 = 1/2− 2P (1− P ).

If the P is same for all pairs i, j, the correlation E =
∑
i(Pii − Pi,i+1) transforms as

E(α, β) → [1− 4P (1− P )]E(α, β) . (7.3)

Only the normalization of E(α, β) as a function of α− β reducing the magnitude of E occurs. In
particular the maximum/minimum of E are scaled down from E = ±1 to E = ±(1− 4P (1− P )).

From the figure 1b) of [J2] the scaling down indeed occurs for magnitudes of E with same
amount for minimum and maximum. Writing P = 1 − ε one has A − B ' 1 − 4ε and B ' 2ε so
that the maximum is in the first approximation predicted to be at 1 − 4ε. The graph would give
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1− P ' ε ' .025. Thus the model explains the reduction of the magnitude for the maximum and
minimum of E which was not however considered to be an anomaly in [J1, J2] .

A further prediction is that the identities P (i, i) + P (i+ 1, i) = 1/2 should still hold true since
one has Pi,i + Pi,i+1 = (A − B)/2 + B = 1. This is implied also by probability conservation.
The four curves corresponding to these identities do not however co-incide as the figure 6 of [J2]
demonstrates. This is regarded as the basic anomaly in [J1, J2] . From the same figure it is also
clear that below α − β < 10 degrees P++ = P−− ∆P+− = −∆P−+ holds true in a reasonable
approximation. After that one has also non-vanishing ∆Pii satisfying ∆P++ = −∆P−−. This kind
of splittings guarantee the identity

∑
ij Pij = 1. These splittings are not visible in E.

Since probability conservation requires Pii + Pii+1 = 1, a mundane explanation for the dis-
crepancy could be that the failure of the conditions Pi,i + Pii+1 = 1 means that the measurement
efficiency is too low for P+− and yields too low values of P+− + P−− and P+− + P++. The con-
straint

∑
ij Pij = 1 would then yield too high value for P−+. Similar reduction of measurement

efficiency for P++ could explain the splitting for α− β > 10 degrees.
Clearly asymmetry with respect to exchange of photons or of detectors is in question.

1. The asymmetry of two photon state with respect to the exchange of photons could be con-
sidered as a source of asymmetry. This would mean that the photons are not maximally
entangled. This could be seen as an alternative “mundane” explanation.

2. The assumption that the parameter P is different for the detectors does not change the
situation as is easy to check.

3. One manner to achieve splittings which resemble observed splittings is to assume that the
value of the probability parameter P depends on the polarization pair : P = P (i, j) so that one
has (P (−,+), P (+,−)) = (P + ∆, P −∆) and (P (−,−), P (+,+)) = (P + ∆1, P −∆1). ∆ '
.025 and ∆1 ' ∆/2 could produce the observed splittings qualitatively. One would however
always have P (i, i) + P (i, i + 1) ≥ 1/2. Only if the procedure extracting the correlations
uses the constraint

∑
i,j Pij = 1 effectively inducing a constant shift of Pij downwards an

asymmetry of observed kind can result. A further objection is that there are no special reason
for the values of P (i, j) to satisfy the constraints.

2. Is it possible to say anything about the value of n in the case of EPR-Bohm experiment?

To explain the reduction of the maximum magnitudes of the correlation E from 1 to ∼ .9 in the
experiment discussed above one should have p1 ' .9. It is interesting to look whether this allows to
deduce any information about the valued of n. At the limit of large values of Nin one would have
(N1 −N2)/(N1 +N2) ' .4 so that one cannot say anything about n in this case. (N1, N2) = (3, 1)
satisfies the condition exactly. For n = 3, the smallest possible value of n, this would give p1 ' .88
and for n = 4 p1 = .41. With high enough precision it might be possible to select between n = 3
and n = 4 options if small values of Ni are accepted.

7.8 Category Theoretic Formulation For Quantum Measurement The-
ory With Finite Measurement Resolution?

I have been trying to understand whether category theory might provide some deeper understand-
ing about quantum TGD, not just as a powerful organizer of fuzzy thoughts but also as a tool
providing genuine physical insights. Marni Dee Sheppeard (or Kea in her blog Arcadian Functor at
http://tinyurl.com/yb3lsbjq) is also interested in categories but in much more technical sense.
Her dream is to find a category theoretical formulation of M-theory as something, which is not the
11-D something making me rather unhappy as a physicist with second foot still deep in the muds
of low energy phenomenology.

7.8.1 Locales, frames, Sierpinski topologies and Sierpinski space

The ideas below popped up when Kea mentioned in M-theory lesson 51 the notions of locale and
frame [A2] . In Wikipedia I learned that complete Heyting algebras, which are fundamental to
category theory, are objects of three categories with differing arrows. CHey, Loc and its opposite

http://tinyurl.com/yb3lsbjq
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category Frm (arrows reversed). Complete Heyting algebras are partially ordered sets which are
complete lattices. Besides the basic logical operations there is also algebra multiplication (I have
considered the possible role of categories and Heyting algebras in TGD in [K5] ). From Wikipedia
I also learned that locales and the dual notion of frames form the foundation of pointless topology
[A7] . These topologies are important in topos theory which does not assume axiom of choice.

The so called particular point topology [A5] assumes a selection of single point but I have the
physicist’s feeling that it is otherwise rather near to pointless topology. Sierpinski topology [A9]
is this kind of topology. Sierpinski topology is defined in a simple manner: the set is open only
if it contains a given preferred point p. The dual of this topology defined in the obvious sense
exists also. Sierpinski space consisting of just two points 0 and 1 is the universal building block of
these topologies in the sense that a map of an arbitrary space to Sierpinski space provides it with
Sierpinski topology as the induced topology. In category theoretical terms Sierpinski space is the
initial object in the category of frames and terminal object in the dual category of locales. This
category theoretic reductionism looks highly attractive.

7.8.2 Particular point topologies, their generalization, and number theoretical braids

Pointless, or rather particular point topologies might be very interesting from physicist’s point of
view. After all, every classical physical measurement has a finite space-time resolution. In TGD
framework discretization by number theoretic braids replaces partonic 2-surface with a discrete
set consisting of algebraic points in some extension of rationals: this brings in mind something
which might be called a topology with a set of particular algebraic points. Could this preferred
set belongs to any open set in the particular point topology appropriate in this situation?

Perhaps the physical variant for the axiom of choice could be restricted so that only sets of
algebraic points in some extension of rationals can be chosen freely and the choices is defined
by the intersection of p-adic and real partonic 2-surfaces and in the framework of TGD inspired
theory of consciousness would thus involve the interaction of cognition with the material world.
The extension would depend on the position of the physical system in the algebraic evolutionary
hierarchy defining also a cognitive hierarchy. Certainly this would fit very nicely to the formulation
of quantum TGD unifying real and p-adic physics by gluing real and p-adic number fields to single
super-structure via common algebraic points.

7.8.3 Analogs of particular point topologies at the level of state space: finite mea-
surement resolution

There is also a finite measurement resolution in Hilbert space sense not taken into account in the
standard quantum measurement theory based on factors of type I. In TGD framework one indeed
introduces quantum measurement theory with a finite measurement resolution so that complex
rays become included hyper-finite factors of type II1 (HFFs).

1. Could topology with particular algebraic points have a generalization allowing a category the-
oretic formulation of the quantum measurement theory without states identified as complex
rays?

2. How to achieve this? In the transition of ordinary Boolean logic to quantum logic in the
old fashioned sense (von Neuman again!) the set of subsets is replaced with the set of
subspaces of Hilbert space. Perhaps this transition has a counterpart as a transition from
Sierpinski topology to a structure in which sub-spaces of Hilbert space are quantum sub-
spaces with complex rays replaced with the orbits of subalgebra defining the measurement
resolution. Sierpinski space {0,1} would in this generalization be replaced with the quantum
counterpart of the space of 2-spinors. Perhaps one should also introduce q-category theory
with Heyting algebra being replaced with q-quantum logic.

7.8.4 Fuzzy quantum logic as counterpart for Sierpinksi space

The program formulated above might indeed make sense. The lucky association induced by Kea’s
blog was to the ideas about fuzzy quantum logic realized in terms of quantum 2-spinor that I
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had developed a couple of years ago. Fuzzy quantum logic would reflect the finite measurement
resolution. I just list the pieces of the argument.

Spinors and qbits: Spinors define a quantal variant of Boolean statements, qbits. One can
however go further and define the notion of quantum qbit, qqbit. I indeed did this for couple of
years ago (the last section of this chapter).

Q-spinors and qqbits: For q-spinors the two components a and b are not commuting numbers
but non-Hermitian operators: ab = qba, q a root of unity. This means that one cannot measure both
a and b simultaneously, only either of them. aa† and bb† however commute so that probabilities for
bits 1 and 0 can be measured simultaneously. State function reduction is not possible to a state in
which a or b gives zero. The interpretation is that one has q-logic is inherently fuzzy: there are no
absolute truths or falsehoods. One can actually predict the spectrum of eigenvalues of probabilities
for say 1. Obviously quantum spinors would be state space counterparts of Sierpinski space and
for q 6= 1 the choice of preferred spinor component is very natural. Perhaps this fuzzy quantum
logic replaces the logic defined by the Heyting algebra.

Q-locale: Could one think of generalizing the notion of locale to quantum locale by using the
idea that sets are replaced by sub-spaces of Hilbert space in the conventional quantum logic. Q-
openness would be defined by identifying quantum spinors as the initial object, q-Sierpinski space.
a (resp. b for the dual category) would define q-open set in this space. Q-open sets for other
quantum spaces would be defined as inverse images of a (resp. b) for morphisms to this space.
Only for q=1 one could have the q-counterpart of rather uninteresting topology in which all sets
are open and every map is continuous.

Q-locale and HFFs: The q-Sierpinski character of q-spinors would conform with the very
special role of Clifford algebra in the theory of HFFs, in particular, the special role of Jones
inclusions to which one can assign spinor representations of SU(2). The Clifford algebra and
spinors of the world of classical worlds identifiable as Fock space of quark and lepton spinors is
the fundamental example in which 2-spinors and corresponding Clifford algebra serves as basic
building brick although tensor powers of any matrix algebra provides a representation of HFF.

Q-measurement theory: Finite measurement resolution (q-quantum measurement theory)
means that complex rays are replaced by sub-algebra rays. This would force the Jones inclusions
associated with SU(2) spinor representation and would be characterized by quantum phase q and
bring in the q-topology and q-spinors. Fuzzyness of qqbits of course correlates with the finite
measurement resolution.

Q-n-logos: For other q-representations of SU(2) and for representations of compact groups
(Appendix) one would obtain something which might have something to do with quantum n-logos,
quantum generalization of n-valued logic. All of these would be however less fundamental and
induced by q-morphisms to the fundamental representation in terms of spinors of the world of
classical worlds. What would be however very nice that if these q-morphisms are constructible
explicitly it would become possible to build up q-representations of various groups using the fun-
damental physical realization - and as I have conjectured [K15] - McKay correspondence and huge
variety of its generalizations would emerge in this manner.

The analogs of Sierpinski spaces: The discrete subgroups of SU(2), and quite generally, the
groups Zn associated with Jones inclusions and leaving the choice of quantization axes invariant,
bring in mind the n-point analogs of Sierpinski space with unit element defining the particular
point. Note however that n ≥ 3 holds true always so that one does not obtain Sierpinski space
itself. If all these n preferred points belong to any open set it would not be possible to decompose
this preferred set to two subsets belonging to disjoint open sets. Recall that the generalized
embedding space related to the quantization of Planck constant is obtained by gluing together
coverings M4 × CP2 → M4 × CP2/Ga × Gb along their common points of base spaces. The
topology in question would mean that if some point in the covering belongs to an open set, all of
them do so. The interpretation would be that the points of fiber form a single inseparable quantal
unit.

Number theoretical braids identified as as subsets of the intersection of real and p-adic variants
of algebraic partonic 2-surface define a second candidate for the generalized Sierpinski space with
a set of preferred points.
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