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Abstract

The recent view about the twistorialization in TGD framework is discussed.

1. A proposal made already earlier is that scattering diagrams as analogs of twistor dia-
grams are constructible as tree diagrams for CDs connected by free particle lines. Loop
contributions are not even well-defined in zero energy ontology (ZEO) and are in con-
flict with number theoretic vision. The coupling constant evolution would be discrete
and associated with the scale of CDs (p-adic coupling constant evolution) and with the
hierarchy of extensions of rationals defining the hierarchy of adelic physics.

2. Logarithms appear in the coupling constant evolution in QFTs. The identification of
their number theoretic versions as rational number valued functions required by number-
theoretical universality for both the integer characterizing the size scale of CD and for
the hierarchy of Galois groups leads to an answer to a long-standing question what makes
small primes and primes near powers of them physically special. The primes p ∈ {2, 3, 5}
indeed turn out to be special from the point of view of number theoretic logarithm.

3. The reduction of the scattering amplitudes to tree diagrams is in conflict with unitarity in
4-D situation. The imaginary part of the scattering amplitude would have discontinuity
proportional to the scattering rate only for many-particle states with light-like total
momenta. Scattering rates would vanish identically for the physical momenta for many-
particle states.

In TGD framework the states would be however massless in 8-D sense. Massless pole
corresponds now to a continuum for M4 mass squared and one would obtain the unitary
cuts from a pole at P 2 = 0! Scattering rates would be non-vanishing only for many-
particle states having light-like 8-momentum, which would pose a powerful condition on
the construction of many-particle states.

This idea does not make sense for incoming/outgoing particles, which light-like momenta
unless they are parallel: their total momentum cannot be light-like in the general case.
Rather, P 2 = 0 applies to the states formed inside CDs from groups of incoming and
outgoing particles. BCFW deformation pi → pi + zri describes what happens for the
single-particle momenta: they cease to be light-like but the total momenta for subgroups
of particles in factorization channels are complex and light-like. This strong form of
conformal symmetry has highly non-trivial implications concerning color confinement.

4. The key idea is number theoretical discretization in terms of “cognitive representations”
as space-time time points with M8-coordinates in an extension of rationals and therefore
shared by both real and various p-adic sectors of the adele. Discretization realizes mea-
surement resolution, which becomes an inherent aspect of physics rather than something
forced by observed as outsider. This fixes the space-time surface completely as a zero
locus of real or imaginary part of octonionic polynomial.

This must imply the reduction of “world of classical worlds” (WCW) corresponding to
a fixed number of points in the extension of rationals to a finite-dimensional discretized
space with maximal symmetries and Kähler structure.

The simplest identification for the reduced WCW would be as complex Grassmannian
- a more general identification would be as a flag manifold. More complex options can
of course be considered. The Yangian symmetries of the twistor Grassmann approach
known to act as diffeomorphisms respecting the positivity of Grassmannian and emerging
also in its TGD variant would have an interpretation as general coordinate invariance
for the reduced WCW. This would give a completely unexpected connection with super-
symmetric gauge theories and TGD.

5. M8 picture implies the analog of SUSY realized in terms of polynomials of super-
octonions whereas H picture suggests that supersymmetry is broken in the sense that
many-fermion states as analogs of components of super-field at partonic 2-surfaces are
not local. This requires breaking of SUSY. At M8 level the breaking could be due to
the reduction of Galois group to its subgroup G/H, where H is normal subgroup leaving
the point of cognitive representation defining space-time surface invariant. As a conse-
quence, local many-fermion composite in M8 would be mapped to a non-local one in H
by M8 −H correspondence.
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1 Introduction

The construction of scattering amplitudes is a dream that I have had since the birth of TGD for
four decades ago. Various ideas have gradually emerged, some of them have turned out to be
wrong, and some of them have survived. At this age I must admit that the dream about explicit
algorithms that any graduate student could apply to construct the scattering amplitudes, would
require a collective effort and probably will not be realized during my lifetime.

I have however identified a set of general powerful principles leading to a generalization of
the recipes for constructing twistorial amplitudes and already now these principles suggest the
possibility of rather concrete realizations. In the sequel several additional insights are developed in
more detail. Some of them are discussed already earlier in the formulation of M8−H duality [L6] in
adelic framework [L7, L8] and in the chapters developing the TGD based generalization of twistor
Grasmannian approach [K25, K10, K4, K21].

1. A proposal made already earlier [K21] is that scattering diagrams as analogs of twistor di-
agrams are constructible as tree diagrams for CDs connected by free particle lines. Loop
contributions are not even well-defined in zero energy ontology (ZEO) and are in conflict
with number theoretic vision. The coupling constant evolution would be discrete and asso-
ciated with the scale of CDs (p-adic coupling constant evolution) and with the hierarchy of
extensions of rationals defining the hierarchy of adelic physics.

2. Logarithms appear in the coupling constant evolution in QFTs. The identification of their
number theoretic versions as rational number valued functions required by number-theoretical
universality for both the integer characterizing the size scale of CD and for the hierarchy of
Galois groups leads to an answer to a long-standing question what makes small primes and
primes near powers of them physically special. The primes p ∈ {2, 3, 5} indeed turn out to
be special from the point of view of number theoretic logarithm.

3. The reduction of the scattering amplitudes to tree diagrams is in conflict with unitarity
in 4-D situation. The imaginary part of the scattering amplitude would have discontinuity
proportional to the scattering rate only for many-particle states with light-like total momenta.
Scattering rates would vanish identically for the physical momenta for many-particle states.

In TGD framework the states would be however massless in 8-D sense. Massless pole cor-
responds now to a continuum for M4 mass squared and one would obtain the unitary cuts
from a pole at P 2 = 0! Scattering rates would be non-vanishing only for many-particle states
having light-like 8-momentum, which would pose a powerful condition on the construction
of many-particle states. Single particle momenta cannot be however light-like for this kind
of states unless they are parallel. They must be also complex as they indeed are already in
classical TGD.

In fact, BCFW deformation pi → pi + zri, ri · rj = 0 creates at z-poles of the resulting
amplitude pairs of zero energy states for which complex single particle momenta are not
light-like but sum up to massless momentum. One can interpret these zero energy analogs of
resonances, states inside CDs formed from massless external particles as they arrive to CD.
This strong form of conformal symmetry has highly non-trivial implications concerning color
confinement.

4. The key idea is number theoretical discretization [L7] in terms of “cognitive representations”
as space-time time points with M8-coordinates in an extension of rationals and therefore
shared by both real and various p-adic sectors of the adele. Discretization realizes measure-
ment resolution, which becomes an inherent aspect of physics rather than something forced
by observed as outsider. This fixes the space-time surface completely as a zero locus of real
or imaginary part of octonionic polynomial.

This must imply the reduction of “world of classical worlds” (WCW) corresponding to a fixed
number of points in the extension of rationals to a finite-dimensional discretized space with
maximal symmetries and Kähler structure [K11, K6, K20].

The simplest identification for the reduced WCW would be as complex Grassmannian - a
more general identification would be as a flag manifold. More complex options can of course
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be considered. The Yangian symmetries of the twistor Grassmann approach known to act
as diffeomorphisms respecting the positivity of Grassmannian and emerging also in its TGD
variant would have an interpretation as general coordinate invariance for the reduced WCW.
This would give a completely unexpected connection with supersymmetric gauge theories
and TGD.

5. M8 picture [L6] implies the analog of SUSY realized in terms of polynomials of super-
octonions whereas H picture suggests that supersymmetry is broken in the sense that many-
fermion states as analogs of components of super-field at partonic 2-surfaces are not local.
This requires breaking of SUSY. At M8 level the breaking could be due to the reduction of
Galois group to its subgroup G/H, where H is normal subgroup leaving the point of cognitive
representation defining space-time surface invariant. As a consequence, local many-fermion
composite in M8 would be mapped to a non-local one in H by M8 −H correspondence.

2 General view about the construction of scattering ampli-
tudes in TGD framework

Before twistorial considerations a general vision about the basic principles of TGD and construction
of scattering amplitudes in TGD framework is in order.

2.1 General principles behind S-matrix

Although explicit formulas for scattering amplitudes are probably too much to hope, one can try
to develop a convincing general view about principles behind the S-matrix.

2.1.1 World of Classical Worlds

The first discovery was what I called the “world of classical worlds” (WCW) [K11, K6, K20] as a
generalization of loop space allowing to replace path integral approach failing in TGD work. This
led to a generalization of Einstein’s geometrization program to an attempt to geometrize entire
quantum physics. The geometry of WCW would be essentially unique from its mere existence since
the existence of Riemann connection requires already in the case of loop spaces maximal isometries.
Super-symplectic and super-conformal symmetries generalizing the 2-D conformal symmetries by
replacing 2-D surfaces with light-like 3-surfaces (metrically 2-D!) would define the isometries.

Physical states would be classical spinor fields in the infinite-dimensional WCW and spinors
at given point of WCW would be fermionic Fock states. Gamma matrices would be linear combi-
nations of fermionic oscillator operators associated with the analog of massless Dirac equation at
space-time surface determined by the variational principle whose preferred extremals the space-time
surfaces are. Strong form of holography implied by strong form of general coordinate invariance
would imply that it is enough to consider the restrictions of the induced spinor fields at string world
sheets and partonic 2-surfaces (actually at discrete points at them defining the ends of boundaries
of string world sheets) [K29, K20].

2.1.2 Zero Energy Ontology and generalization of quantum measurement theory to
a theory of consciousness

The attempts to understand S-matrix led to the question about what does state function reduc-
tion really mean. This eventually led to the discovery of Zero Energy Ontology (ZEO) in which
time=constant snapshot as a physical state is replaced with preferred extremal satisfying infinite
number of additional gauge conditions [L9]. Temporal pattern becomes the fundamental entity:
this conforms nicely with the view neuroscientists and computational scientists for whom behav-
ior and program are basic notions. One can say that non-deterministic state function reduction
replaces this kind time evolution with new one. One gets rid of the basic difficulty of ordinary
quantum measurement theory.

Causal diamond (CD) is the basic geometric object of ZEO. The members of the state pair
defining zero energy state - the analog of physical event characterized by initial and final states -
have opposite total conserved quantum numbers and reside at the opposite light-like boundaries
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of CD being associated with 3-surfaces connected by a space-time surface, the preferred extremal.
CDs form a fractal hierarchy ordered by their discrete size scale.

One ends up to a quite radical prediction: the arrow of time changes in “big” state function
reduction changing the roles of active and passive boundaries of CD. The state function reductions
occurring in elementary reactions represent an example of “big” state function reduction. The
sequence of “small” state function reductions - analogs of so called weak measurements - defines
self as a conscious entity having CD as embedding space correlate [L9].

In ZEO based view about WCW 3-surfaces X3 are pairs of 3-surfaces at boundaries of CD
connected by preferred extremals of the action principle. WCW spinors are pairs of fermionic Fock
states at these 3-surfaces and WCW spinor fields are WCW spinors depending on X3 . They
satisfy the analog of massless Dirac equation which boils down to the analogs of Super Virasoro
conditions including also gauge conditions for a sub-algebra of super-symplectic algebra. S-matrix
describing time evolution followed by “small” state function reduction relates two WCW spinor
fields of this kind.

2.1.3 Generalization of twistor Grassmannian approach to TGD framework

Twistorial approach generalizes from M4 to H = M4 × CP2. One possible motivation could
be the fact that ordinary twistor approach describes only scattering of massless particles. In
the proposed generalization particles are massless in 8-D sense and in general massive in 4-D
sense [K25, K10, K4, K21].

1. The existence of twistor lift of Kähler action as 6-D analog of Kähler action fixes the choice
of H uniquely: only M4 and CP2 allow twistor space with Kähler structure. The 12-D
product of the twistor spaces of M4 and CP2 induces twistor structure for 6-D surface X6

under additional conditions guaranteeing that the X6 is twistor space of 4-D surface X4 (S2

bundle over X4) - its twistor lift. The conjecture that 6-D Kähler action indeed gives rise to
twistor spaces of X4 as preferred extremals.

2. This conjecture is the analog for Penrose’s original twistor representation of Maxwellian
fields reducing dynamics of massless fields to homology. There is also an analogy with
massless fields. Dimensional reduction of Kähler action occurs for 6-surfaces, which represent
twistor spaces and the external particles entering CD would be minimal surfaces defining
simultaneous preferred extremals of Kähler action satisfying infinite number of additional
gauge conditions. Minimal surfaces indeed satisfy generalization of massless field equations.
In the interior of CD defining interaction region there is a coupling to Kähler 4-force and one
has analog of massless particle coupling to Maxwellian field.

3. 6-D Kähler action would give the preferred extremals via the analog of dimensional reduction
essential for the twistor space property requiring that one has S2 bundle over space-time sur-
face. I have considered the generalization of the standard twistorial construction of scattering
amplitudes of N = 4 SUSY to TGD context. In particular, the crucial Yangian invariance
of the amplitudes holds true also now in both M4 and CP2 sectors.

4. Skeptic could argue that TGD generalization of twistors does not tell anything about the
origin of the Yangian symmetry. During writing of this contribution I however realized
that the hierarchy of Grassmannians realizing the Yangian symmetries could be seen as a
hierarchy of reduced WCWs associated with the hierarchy of adeles defined by the hierarchy
of extensions of rationals. The isometries of Grassmannian would emerge in the reduction
of the isometry group of WCW to a finite-D isometry group of Grassmannian and would be
caused by finite measurement resolution described number theoretically. Of course, one can
consider also more general flag manifolds with Kähler property as candidates for the analogs
of Grassmannians. I will represent the argument in more detail later.

This could also relate to the postulated infinite hierarchy of hyper-finite factors of type II1
(HFFs) [K28, K8] as a correlate for the finite measurement resolution with included sub-factor
inducing transformations which act trivially in the measurement resolution used.

Remark: There is an amusing connection with empiria. Topologist Barbara Shipman observed
that honeybee dance allows a description in terms of flag manifold F = SU(3)/U(1)×U(1), which
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is the space for the choices of quantization axes of color quantum numbers and also the twistor
space in CP2 degrees of freedom [A2]. This suggest that QCD type physics might make sense in
macroscopic length scales. p-Adic length scale hypothesis and the predicted long range classical
color gauge fields suggest a hierarchy of QCD type physics. One can indeed construct a TGD
based model of honeybee dance with aconcrete interpretation and representation for the points of
F at space-time level [L10].

2.1.4 M8 −H duality

M8 −H duality provides two equivalent ways to see the dynamics with either M8 or H = M4 ×
CP2 as embedding space [L6]. One might speak of number theoretic compactification which is a
completely non-dynamical analog for spontaneous compactification.

1. In M8 picture the space-time corresponds to a zero locus for either imaginary part IM(P ) or
real part RE(P ) of octonionic polynomial (RE(o) and IM(o) are defined by the decomposi-
tion o = RE(o)+I4IM(o), where I4 is octonion unit orthogonal to quaternionic subalgebra).
The dynamics is purely algebraic and ultra-local.

2. At the level of H the dynamics is dictated by variational principle and partial differential
equations. Space-time surfaces are preferred extremals of the twistor lift of Kähler action
reduced to a sum of 4-D Kähler action and volume term analogous to cosmological term
in GRT. The equivalence of these descriptions gives powerful constraints and should follow
from the infinite number of gauge conditions at the level of H associated with a sub-algebra
of supersymplectic algebra implying the required dramatic reduction of degrees of freedom
[K6, K20]. One has a hierarchy of these sub-algebras, which presumably relates to the
hierarchy of HFFs and hierarchy of extensions of rationals.

H picture works very nicely in applications. For instance, the notions of field body and
magnetic body are crucial in all applications.

The notion of quaternionicity, which is a central element ofM8−H duality has a deep connection
with causality which I have not noticed earlier. At the level of momentum space quaternionicity
means that 8-momenta -, which by M8 −H-duality correspond to 4-momenta at level of M4 and
color quantum numbers at the level of CP2 - are quaternionic. Quaternionicity means that the
time component of 8-momentum, which is parallel to real octonion unit, is non-vanishing. The
8-momentum itself must be time-like, in fact light-like. In this case one can always regard the
momentum as momentum in some quaternionic sub-space. Causality requires a fixed sign for the
time component of the momentum.

It must be however noticed that 8-momentum can be complex: also the 4-momentum can be
complex at the level of M ×CP2 already classically. A possible interpretation is in terms of decay
width as part of momentum as it indeed is in phenomenological description of unstable particles.

Could one require that the quaternionic momenta form a linear space with respect to octonionic
sum? This is the case if the energy - that is the time-like part parallel to the real octonionic unit
- has a fixed sign. The sum of the momenta is quaternionic in this case since the sum of light-like
momenta is in general time-like and in special case light-like. If momenta with opposite signs of
energy are allowed, the sum can become space-like and the sum of momenta is co-quaternionic.

This result is technically completely trivial as such but has a deep physical meaning. Quater-
nionicity at the level of 8-momenta implies standard view about causality: only time-like or at
most light-like momenta and fixed sign of time-component of momentum.

2.1.5 Adelic physics

The adelization of ordinary physics fusing real number based physics and various p-adic variants
of physics in order to describe cognition.

1. Adelic physics [L7, L8] gives powerful number theoretic constraints when combined with
M8−H duality and leads to the vision about evolutionary hierarchy defined by extensions of
rationals. The higher the level in the hierarchy, the higher the dimension n of the extension
identified in terms of Planck constant heff/h = n labelling the levels of dark matter hierarchy.
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2. Adelic hypothesis allows to sharpen the strong form of holography to a statement that discrete
cognitive representations consisting of a finite number of points identified as points of space-
time surface with M8 coordinates in the extension of rationals fixes the space-time surface
itself. This dramatic reduction would be basically due to finite measurement resolution
realized as an inherent property of dynamics. Cognitive representation in fact gives the
WCW coordinates of the space-time surface in WCW! WCW reduces to a number theoretic
discretization of a finite-dimensional space with Kähler structure and presumably maximal
isometries.

3. In ZEO space-time surface becomes analogous to a computer program determined in terms
of finite net of numbers! Of course, at the QFT limit of TGD giving standard model and
GRT space-time is locally much more complex since one approximates the many-sheeted
space-time with single slightly curved region of M4. This is the price paid for getting rid (or
losing) the topological richness of the many-sheeted space-time crucial for the understanding
living matter and even physics in galactic scales.

4. Skeptic can argue that this discretization of WCW leads to the loss of WCW geometry based
on real numbers. One can however consider also continuous values for the points of cognitive
representations and assigning metric to the points of cognitive representation. Metric could
be defined as kind of induced metric. One slices CD by parallel CDs by shift the CD along
the axis connecting its tips. This allows to see the point of cognitive representation as point
at one particular CD. One shifts slightly the point along its CD. Embedding space metric
allows to deduce the infinitesimal line element ds2 and to deduce the metric components.
This allows a definition of differential geometry so that the analog of WCW metric makes
sense as a hierarchy of finite-dimensional metrics for space-time surfaces characterize by the
cognitive representations.

The interpretation in real context would be in terms of finite measurement resolution and the
hierarchy would correspond to a hierarchy of hyper-finite factors (HFFs) [K28, K8], whose
defining property is that they allow arbitrarily precise finite-dimensional approximations.
What would be new is that the hierarchy of extensions of rationals would define a hierarchy
of discretizations and hierarchy of HFFs.

Thabove list involves several unproven conjectures, which I can argue to be intuitively obvious
with the experience of four decades: I cannot of course expect that a colleague reading for the first
time about TGD would share these intuitions.

2.2 Classical TGD

Classical TGD is now rather well understood both in both H = M4 × CP2 and M8 pictures.
Applications of classical TGD are in H picture and rather detailed phenomenology has emerged.
M8 picture has led to a rather precise vision about adelic physics and to understanding of finite
measurement resolution.

2.2.1 Classical TGD in M8 picture

Classical TGD in M8 picture is discussed in [L6].

1. In M8 picture one ends to an extremely simple number theoretic construction of space-time
surfaces fixing only discrete or even finite number of space-time points to obtain space-time
surface for a given extension of rationals. The reason is that space-time surfaces are zero loci
for RE(P ) or IM(P ) of octonionic polynomials obtained by continuing real polynomial with
coefficients in an extension of rationals to an octonionic polynomial.

Needless to say, the hierarchy of algebraic extensions of rationals is what makes the dynamics
at given level so simple. The coordinates of space-time surface as a point of WCW must be in
the extension of rationals. As noticed, the points of space-time surface defining the cognitive
representation determining the space-time surface serve as its natural WCW coordinates.
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2. The highly non-trivial point is that no variational principle is involved with M8 construction.
Therefore it seems that neither WCW metric nor Kähler function is needed. If this is the
case, the exponential of Kähler function definable as action exponential does not appear in
scattering amplitudes and must disappear also at H-side from the scattering amplitudes.

3. Skeptic could argue that one loses general coordinate invariance in this approach. This is not
true. Linear M8 coordinates are the only possible option and forced already by symmetries.
The choice octonionic and quaternionic structures fixes the linear M8 coordinates almost
uniquely since time direction is associated with real octonion unit and one spatial direction
to special imaginary unit defining spin quantization axis. In algebraic approach identifying
space-time surface as a zero locus of RE(P ) or IM(P ) these coordinates define space-time
coordinates highly uniquely.

Skeptic could also argue that number theoretic discretization implies reduction of the basic
symmetry groups to their discrete sub-groups. This is true and one can argue that this loss
of symmetry is due to the use of cognitive representations with finite resolution. Points with
algebraic coordinates could be seen as a choices of representatives from a set of points, which
are equivalent as far as measurement resolution is considered.

4. A physically important complication related to M8 dynamics is the possibility of different
octonionic and quaternionic structures. For instance, external particles arriving into CD
correspond to different octonionic and quaternionic structures in general since Lorentz boost
affects the octonionic structure changing the direction of time axis, which corresponds to
the real octonionic unit. In color degrees of freedom one has wave function over different
quaternionic structures: essentially color partial waves labelled by color quantum numbers
[K12].

One can apply Poincare transformations and color rotations (or transformation in sub-groups
of these groups if one requires that the image points belong to the same extension) to the
discrete cognitive representation defining space-time surface. The moduli spaces for these
structures are essential for the understanding the standard Poincare and color quantum
numbers and standard conservation laws in M8 picture. Also the size scales of CDs define
moduli as also Lorentz boosts leaving either boundary of CD unaffected.

2.2.2 Classical TGD in H picture

At the H side one action principle has partial differential equations and infinite number of gauge
conditions associated with a sub-algebra of super-symplectic algebra selecting only extremely few
preferred extremals of the action principle in terms of gauge conditions for a sub-algebra of super-
symplectic algebra. This dynamics is conjectured to follow from the assumption that 6-D lift of
space-time surface X4 to a CP1 bundle over X4 is twistor space of X4. This condition requires
the analog of dimensional reduction since S2 fiber is dynamically trivial.

For 6-D preferred extremals identifiable as twistor spaces of space-time surfaces the 6-D Kähler
action in the product of twistor spaces of M4 and CP2 is assumed to dimensionally reduce to
4-D Kähler action plus volume term identifiable as the analog of cosmological constant term.
This picture reproduces a description of scattering events highly analogous to that emerging in
M8. External particles correspond to minimal surfaces as analogs of free massless fields and all
couplings disappear from the value of the action. The interior of CD corresponds to non-trivial
coupling to Kähler 4-force which does not vanish. In M8 picture one has associative and non-
associative regions as counterparts of these regions.

What is remarkable is that the dynamics determined by partial differential equations plus gauge
conditions would be equivalent with the number theoretic dynamics determined in terms of zero
loci for real or imaginary parts of octonionic polynomials.

2.3 Scattering amplitudes in ZEO

The construction of scattering amplitudes even at the level of principle is far from well-understood.
I have discussed rather concrete proposals for the twistorial construction but the feeling is that
something is still missing [K25, K10, K4, K21]. This feeling might well reflect my quite too
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limited mathematical understanding of twistors and experience about practical construction of the
scattering amplitudes. Later I will discuss possible identification of the missing piece of puzzle.

Consider first the general picture about the construction of scattering amplitudes suggested by
ZEO inspired theory of quantum measurement theory defining also a theory of consciousness.

1. The portions of space-time surfaces outside CD correspond to external particles. They satisfy
associativity conditions at M8 side making possible to map them to minimal surfaces in
H = M4 × CP2 satisfying various infinite number of gauge conditions for a sub-algebra of
super-symplectic algebra isomorphic with it.

Remark: There is an additional condition requiring that associative tangent space or normal
space contains fixed complex subspace of quaternions. It is not quite clear whether this
condition can be generalized so that the distribution of these spaces is integrable.

At both sides the dynamics of external particles is in a well-defined sense critical at both
sides and does not depend at all on coupling constants.

2. Inside CDs associativity conditions break down in M8 and one cannot map this spacetime
region - call it X4 - to H [L6]. It is however possible to construct counterpart of X4 in H
as a preferred extremal for the twistor lift of Kähler action by fixing the 3-surfaces at the
boundaries of CD (boundary conditions). The dependence on couplings at the level of H
would come from the vanishing conditions for classical Noether charges, which depend on
coupling parameters.

3. If the two descriptions of the scattering amplitudes are equivalent, the dependence on coupling
parameters in H should have a counterpart in M8. Coupling constants making sense only
at H side are expected to depend on the size scale of CD and on the extension of rationals
defining the adele [L7, L8]. Coupling constants should be determined completely by the
boundary values of Noether charges at the ends of space-time surface, and therefore by the
3-D ends of associative space-time regions representing external particles at M8 side. This
would suggest that coupling constants are functions of the coefficients of the polynomials and
the points of cognitive representation.

2.3.1 Zero energy ontology and the life cycle of self

ZEO meant a decisive step in the understanding of quantum TGD since it solved the basic paradox
of quantum measurement problem by forcing to realize that subjective and geometric time are not
the same thing [L9].

1. Both the passive boundary of CD and the members of state pairs at it are unaffected during
the sequence of state reductions analogous to weak measurements (see http://tinyurl.com/
zt36hpb) defining self as a generalized Zeno effect. The members of state pairs associated
with the active boundary change and the active boundary itself drifts farther away from the
passive one in the sequence of “small” state function reductions.

Also the space-time surfaces connecting passive and active boundaries change during the
sequence of weak measurements. Only the 3-surfaces at the passive boundary are unaffected.
Hence the geometric past relative to the active boundary changes during the life cycle of self.
In positive energy ontology (PEO) this is not possible.

2. In “big” state function reduction the roles of passive and active boundary are changed and
the arrow of time identifiable as the direction in which CD grows changes. In consciousness
theory “big” state function reduction corresponds to the death of self and subsequent re-
incarnations as a self with an opposite arrow of geometric time.

3. In ZEO the life cycle of self corresponds to a sequence of steps. Single step begins with a
unitary time evolution in which a superposition of states associated with CDs larger than the
original CD emerges. Then follows the analog of weak measurement leading to a localization
to a CD in the moduli space of CDs so that it has a fixed and in general larger size. A
measurement of geometric time occurs and gives rise to an experience about the flow of time.

http://tinyurl.com/zt36hpb
http://tinyurl.com/zt36hpb
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This option would allow to identify the total S-matrix as a product of the S-matrices associ-
ated with various steps in spirit with the interpretation as a generalized Zeno effect.

Remark: In the usual description one fixes the time interval to which one assigns the S-
matrix. There is no division to steps giving rise to the experience of time flow.

4. The measurement of geometric time would be a partial measurement reducing more general
unitary time evolution to a unitary time evolution in the standard sense. Can one generalize
the notion of partial measurement to other observables so that one would still have unitary
time evolution albeit in more restricted sense? Or should one consider giving up the unitary
time evolution?

These observables should commute with the observables having the states at passive bound-
ary as eigenstates: otherwise the state at passive boundary would change. If this picture
makes sense, the “big” reduction to the opposite boundary meaning the death of self would
necessarily occur when all observables commuting with the eigen observables at the passive
boundary have been measured. It could of course occur already earlier.

Should one allow measurements of all observables commuting with the eigen observables at
the passive boundary. This would lead to partial de-coherence of the zero energy state. In
TGD inspired quantum biology this could allow to understand ageing as an unavoidable
gradual loss of the quantum coherence.

2.3.2 More detailed interpretation of ZEO

There are several questions related to the detailed interpretation of ZEO. The intuitive picture is
that inside CD representing self one has collection of sub-CDs representing sub-selves identified
as mental images of self. On can loosely say, that sub-CDs represent mind. The sub-CDs are
connected by on mass shell lines, which correspond to external particles - matter. Sub-CDs can
also have sub-CDs and the hierarchy can have several levels.

The states at the boundaries of CD have opposite total quantum numbers. One can consider
two interpretations.

1. In positive energy ontology (PEO) the notion of zero energy state could be seen only as an
elegant manner to express conservation laws. This is done in QFT quite generally - also
in twistor approach. Also the largest CD would have external particles emanating from its
boundaries travelling to the geometric past and future. One would have however have only
information about the interior of the CD possessed by conscious entity for which CD plus its
sub-CDs (mental images) serve as correlates.

In this picture the arrow of time is fixed since it must be same for all sub-CDs in order to void
inconsistency with the basic idea about self as generalized Zeno effect realized as a sequence
of weak measurements.

2. ZEO suggest a more radical interpretation. Zero energy state defines an event. There would
be the largest CD defining self and sub-CDs would correspond to mental images. There would
be no external particles emanating from the boundaries of the largest CD. In this framework
it becomes possible to speak about the death of self as the first state function reduction to
the opposite boundary changing the roles of active and passive boundaries of self.

This picture should be consistent with what we know about arrow of time and in TGD frame-
work with the idea that the arrow of time can also change - in particular in living matter.

1. How would the standard arrow of time emerge in ZEO? One could see the emergence of the
global arrow of geometric time as a process in which the size of the largest CD increases:
the sub-CDs are forced to have the same arrow of time as the largest CD and cannot make
state function reductions on opposite boundary (die) independently of it. During evolution
the size of the networks with the same arrow of geometric time increases and fixed arrow of
geometric time is established in longer scales.
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2. This picture cannot be quite correct. The applications of TGD inspired consciousness require
that the mental images of self can have arrow of geometric time opposite to that of self. For
instance, motor actions could be sensory perceptions in non-standard arrow of time. Memory
could be communications with brain of geometric past - seeing in time direction - involving
signals to geometric past requiring temporary reversals of the arrow of time at some level of
self-hierarchy. Hence space-time regions with different arrows of time but forming a connected
space-time surface ought to be possible.

Many-sheeted space-time means a hierarchy of space-time sheets connected by what I call
wormhole contacts having Euclidian signature of the induced metric. Space-time sheets at
different levels of the hierarchy are not causally connected in the sense that one cannot speak
of signal propagation in the regions of Euclidian signature. This suggests that the space-time
sheets connected by wormhole contacts can have different arrows of geometric time and are
associated with their own CDs.

In this manner one would avoid the paradox resulting when sub-self - mental image - dies
so that its passive boundary becomes active and the particles emanating from it end up to
the passive boundary of CD, where no changes are allowed during the life cycle of self. If
the particles emanating from time-reversed sub-self and up to boundaries of parallel CD, the
problem is circumvented.

3. Wormhole contacts induce an interaction between Minkowskian space-time sheets that they
connect. The interaction is not mediated by classical signals but by boundary conditions at
the boundaries between Minkowskian regions and Euclidian wormhole contact. These two
boundaries are light-like orbits of opposite wormhole throats (partonic 2-surfaces).

In number theoretic picture the presence of wormhole contact is reflected in the properties set
of points in extension of rationals defining the cognitive representation in turn defining the
space-time surface. In particular, the points associated with wormhole contact have space-
like distance although they are at opposite boundaries of CD and have time-like distance in
the metric of embedding space. This kind of point pairs associated with wormhole contacts
serve serve as a tell-tale signature for them.

3 The counterpart of the twistor approach in TGD

The analogs of twistor diagrams could emerge in TGD [K10, K21] in the following manner in ZEO.

1. Portions of space-time surfaces inside CDs would appear as analogs of vertices and the
spacetime surfaces connecting them as analogs of propagator lines. The “lines” connecting
sub-CDs would carry massless on mass shell states but possibly with complex momenta
analogous to those appearing in twistor diagrams. This is true also classically at level of H:
the coupling constants appearing in the action defining classical dynamics - at least Kähler
coupling strength - are complex so that also conserved quantities have also imaginary parts.

Remark: At the level of M8 one does not have action principle and cannot speak of Noether
charges. Here the conserved charged are associated with the symmetries of the moduli spaces
such as the moduli spaces for octonion and quaternion structures [L6]. The identification of
the classical charges in Cartan algebra at H level with the quantum numbers labeling wave
functions in moduli space at M8 level could be seen as a realization of quantum classical
correspondence.

2. At space-time level the vertices of twistor diagrams correspond to partonic 2-surfaces in the
interior of given CD. In H description fermionic lines along the light-like orbits of partonic
2-surfaces scatter at partonic 2-surfaces. If each partonic 2-surface defining a vertex is sur-
rounded by a sub-CD, these two views about TGD variants of twistor diagrams are unified.
Sub-CD can of course contain more complex structures such as pair of wormhole contacts
assignable to an elementary particle.
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3.1 Could the classical number theoretical dynamics define the hard
core of the scattering amplitudes?

The natural hope is that the simple picture about classical dynamics at the level of M8 should
have similar counterpart at the level of scattering amplitudes in M8. The above arguments suggest
that the scattering diagrams correspond to CDs connected by external particle lines representing
on mass shell particles. These surfaces are associative at the level of M8 and minimal surfaces at
the level of H. This suggests that scattering amplitude for single CD serves as a building brick for
scattering amplitudes: the rest would be “just kinematics” dictated by the enormous symmetries
of WCW.

1. Everything in the construction should reduce to a hard core around which one would have
integrations (or sums for number theoretic realization of finite measurement resolution) over
various moduli characterizing the standard quantum numbers. Twistors for M4 and CP2 and
the moduli for the choices of CDs should correspond to essentially kinematic contribution
involving no genuine dynamics.

2. The scattering amplitudes should make sense in all sectors of adele. This poses powerful
constraints on them. The exponential of Kähler function reducing to action exponential can
in principle appear in the description at H-side but cannot be present at M8 side. Therefore
it should disappear also at the level of H.

If the scattering amplitude at the level of H is sum over contributions with the same value of
the action exponential, the exponentials indeed cancel and I have proposed that this condition
holds true. In perturbative quantum field theory it holds practically always and in integrable
theories is exact. This would mean enormous simplification since all information about the
action principle in H would appear in the vanishing conditions for the Noether charges of the
subalgebra of super-symplectic algebra at the ends of the space-time surface. These Noether
changes indeed depend on the action principle and thus on coupling constants.

3. Could the hard core in the construction of the scattering amplitudes be just the choice of
the cognitive representation as points if M8 belonging to the algebraic extension defining the
adele and determining space-time surface in terms of octonionic polynomial inside this CD
defining the interaction region?

The set of points of extension of rationals in the cognitive representation defines space-time
surface and also its WCW coordinates. The restriction to a cognitive representation with
given number of points in given extension of rationals would mean a reduction of WCW to
a finite-dimensional sub-space.

The first wild guess is that this space is Kähler manifold with maximal symmetries - just
as WCW is. A further wild guess is that these reduced WCWs are Grassmannians and
correspond to those appearing in the twistor Grassmannian approach. A more general con-
jecture is inspired by the vision that super-symplectic gauge conditions effectively reduce the
super-symplectic algebra to a Kac-Moody algebra of a finite-dimensional Lie group - perhaps
belonging to ADE hierarchy. The flag manifolds associated with these Lie groups define more
general homogenous spaces as candidates for the reduced WCWs.

4. One must allow the action of Galois group and this gives several options for given set X of
points in algebraic extension.

(a) One can construct X4(X) in terms of octonionic polynomial and construct a represen-
tation of Galois group as superposition of space-time surfaces obtained from space-time
surface by the action of Galois group on X giving rise to new sets Xg = g(X).

(b) One can also consider the action of Galois group on X and get larger set Y of points
and construct single multi-sheeted surface X4(Y ). This surface corresponds to Planck
constant heff/h = n, where n is the dimension of algebraic extension.

(c) One can also consider the actions of sub-groups of H ⊂ Gal to X to get space-time
surface with heff/h = m dividing n. There are several options corresponding to repre-
sentations for all sub-groups of Galois group. A hierarchy of symmetry breakings seems
to be involved with unbroken symmetry associated with the largest value of heff/h.



3.2 Do loop contributions to the scattering amplitudes vanish in TGD framework?15

5. In this picture the hard core would reduce to the classical number theoretical dynamics of
space-time surface in M8. The additional degrees of freedom would be due to the possibility
of different octonionic and quaternionic structures and choices of size scales and Lorentz
boosts and translations of CDs. The symmetries would dictate the S-matrix in the moduli
degrees of freedom: the dream is that this part of the dynamics reduces to kinematics, so to
say.

The discrete coupling constant evolution would be determined by the hierarchy of extensions
of rationals and by the hierarchy of p-adic length scales. The cancellation of radiative cor-
rections in the sense of sub-CDs inside CDs could be achieved by replacing coupling constant
evolution with its discrete counterpart.

If this dream has something to do with reality, the construction of scattering amplitudes would
reduce to their construction in moduli degrees of freedom and here the generalization of twistorial
approach relying on Yangian symmetry allowing to identify scattering amplitudes as Yangian
invariants might “trivialize” the situation. It will be found that the Yangian symmetry could
corresponds to general coordinate transformations for the reduced WCW forced by the restriction of
the spacetime surfaces to those allowed by octonionic polynomials with coefficients in the extensiom
of rationals.

3.2 Do loop contributions to the scattering amplitudes vanish in TGD
framework?

In TGD scattering amplitudes interpreted as zero energy states would correspond at embedding
space level to collections of space-time surfaces inside CDs analogous to vertices and connected
by lines defined by the space-time surfaces representing on-mass-shell particles. One would have
massless particles in 8-D sense. The quaternionicity of 8-momentum leads to M4 × CP2 picture
and CP2 twistors should replace E4 twistors of M8 approach.

3.2.1 Why loop corrections should vanish?

There are several arguments suggesting that the loop contributions should vanish in TGD frame-
work. This would give rise to a discrete coupling constant evolution analogous to a sequence of
phase transitions between different critical coupling parameters. Amplitudes would be obtained as
tree diagrams.

1. In ZEO it is far from clear what the basic operation defining the loop contribution could even
mean. One would have zero energy state for which the members of added particle pair have
opposite but momenta but the amplitude is superposition of states with varying momenta.
Why should one allow zero energy states containing one particle which is not an eigenstate of
momentum? This suggests that ZEO does not allow loop contributions at all: the distinction
between PEO and ZEO would make itself visible in rather dramatic manner.

2. The restriction of the BCFW to tree diagrams is internally consistent since the loop term
is identically vanishing in this case. The first term in the BCFW for diagram with l loops
involves a factor with l > 0 loops which vanishes. In l = 1 case the second term is obtained
from (n+ 2, l − 1 = 0) diagram by generating loop but this vanishes by assumption.

3. Number theoretic vision does not favor the decomposition of the amplitude to an infinite
sum of amplitudes since this is expected to lead to the emergence of transcendental numbers
and functions in the amplitude in conflict with the number theoretical universality.

Loops indeed give logarithms and poly-logarithms of rational functions of external momenta
in Grassmannian approach. This violates the number theoretical universality since the p-adic
counterpart of logarithm exist only for the argument of form x = 1 + O(p). This condition
cannot hold true for all primes simultaneously.

Discrete coupling constant evolution suggests the vanishing of loops. One can imagine two
alternative mechanisms for the vanishing of loop contributions. Either the loop contributions do
not make sense at all in ZEO, or the sum of loop contributions for the critical values of coupling
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constants vanishes. The summing up of loop contributions to zero for critical values of couplings
should happen for all values of external momenta and other quantum numbers: this does not look
plausible.

3.2.2 General number theoretic ideas about coupling constant evolution

The discrete coupling constant evolution would be associated with the scale hierarchy for CDs and
the hierarchy of extensions of rationals.

1. Discrete p-adic coupling constant evolution would naturally correspond to the dependence of
coupling constants on the size of CD. For instance, I have considered a concrete but rather
ad hoc proposal for the evolution of Kähler couplings strength based on the zeros of Riemann
zeta [L2]. Number theoretical universality suggests that the size scale of CD identified as the
temporal distance between the tips of CD using suitable multiple of CP2 length scale as a
length unit is integer, call it l. The prime factors of the integer could correspond to preferred
p-adic primes for given CD.

2. I have also proposed that the so called ramified primes of the extension of rationals correspond
to the physically preferred primes. Ramification is algebraically analogous to criticality in
the sense that two roots understood in very general sense co-incide at criticality. Could the
primes appearing as factors of l be ramified primes of extension? This would give strong
correlation between the algebraic extension and the size scale of CD.

In quantum field theories coupling constants depend in good approximation logarithmically on
mass scale, which would be in the case of p-adic coupling constant evolution replaced with an
integer n characterizing the size scale of CD or perhaps the collection of prime factors of n (note
that one cannot exclude rational numbers as size scales). Coupling constant evolution could also
depend on the size of extension of rationals characterized by its order and Galois group.

In both cases one expects approximate logarithmic dependence and the challenge is to define
“number theoretic logarithm” as a rational number valued function making thus sense also for
p-adic number fields as required by the number theoretical universality.

1. Coupling constant evolution with respect to CD size scale

Consider first the coupling constant as a function of the length scale lCD(n)/lCD(1) = n.

1. The number π(n) of primes p ≤ n behaves approximately as π(n) = n/log(n). This suggests
the definition of what might be called “number theoretic logarithm” as Log(n) ≡ n/π(n).
Also iterated logarithms such log(log(x)) appearing in coupling constant evolution would
have number theoretic generalization.

2. If the p-adic variant of Log(n) is mapped to its real counterpart by canonical identification
involving the replacement p → 1/p, the behavior can very different from the ordinary log-
arithm. Log(n) increases however very slowly so that in the generic case one can expect
Log(n) < pmax, where pmax is the largest prime factor of n, so that there would be no
dependence on p for pmax and the image under canonical identification would be number
theoretically universal.

For n = pk, where p is small prime the situation changes since Log(n) can be larger than
small prime p. Primes p near primes powers of 2 and perhaps also primes near powers of 3
and 5 - at least - seem to be physically special. For instance, for Mersenne prime Mk = 2k−1
there would be dramatic change in the step Mk → Mk + 1 = 2k, which might relate to its
special physical role.

3. One can consider also the analog of Log(n) as

Log(n) =
∑
p

kpLog(p) ,

where pki is a factor of n. Log(n) would be sum of number theoretic analogs for primes
factors and carry information about them.



3.2 Do loop contributions to the scattering amplitudes vanish in TGD framework?17

One can extend the definition of Log(x) to the rational values x = m/n of the argument.
The logarithm Logb(n) in base b = r/s can be defined as Logb(x) = Log(x)/Log(b).

4. For p ∈ {2, 3, 5} one has Log(p) > log(p), where for larger primes one has Log(p) < log(p).
One has Log(2) = 2 > log(2) = .693..., Log(3) = 3k/2 > log(3) = 1.099, Log(5) = 5/3 =
1.666.. > log(5) = 1.609. For p = 7 one has Log(7) = 7/4 ' 1.75 < log(7) ' 1.946. Hence
these primes and CD size scales n involving large powers of p ∈ {2, 3, 5} ought to be physically
special as indeed conjectured on basis of p-adic calculations and some observations related
to music and biological evolution [K16, K17, K19, K13].

In particular, for Mersenne primes Mk = 2k− 1 one would have Log(Mk) ' klog(2) for large
enough k. For Log(2k) one would have k×Log(2) = 2k > log(2k) = klog(2): there would be
sudden increase in the value of Log(n) at n = Mk. This jump in p-adic length scale evolution
might relate to the very special physical role of Mersenne primes strongly suggested by p-adic
mass calculations [K12].

5. One can wonder whether one could replace the log(p) appearing as a unit in p-adic negentropy
[K14] with a rational unit Log(p) = p/π(p) to gain number theoretical universality? One
could therefore interpret the p-adic negentropy as real or p-adic number for some prime.
Interestingly, |Log(p)|p = 1/p approaches zero for large primes p (eye cannot see itself!)
whereas |Log(p)|q = 1/|π(p)|q has large values for the prime power factors qr of π(p).

2. The dependence of 1/αK on the extension of rationals

Consider next the dependence on the extension of rationals. The natural algebraization of the
problem is to consider the Galois group of the extension.

1. Consider first the counterparts of primes and prime factorization for groups. The counterparts
of primes are simple groups, which do not have normal subgroups H satisfying gH = Hg
implying invariance under automorphisms of G. Simple groups have no decomposition to
a product of sub-groups. If the group has normal subgroup H, it can be decomposed to a
product H ×G/H and any finite group can be decomposed to a product of simple groups.

All simple finite groups have been classified (see http://tinyurl.com/jn44bxe). There are
cyclic groups, alternating groups, 16 families of simple groups of Lie type, 26 sporadic groups.
This includes 20 quotients G/H by a normal subgroup of monster group and 6 groups which
for some reason are referred to as pariahs.

2. Suppose that finite groups can be ordered so that one can assign number N(G) to group G.
The roughest ordering criterion is based on ord(G). For given order ord(G) = n one has all
groups, which are products of cyclic groups associated with prime factors of n plus products
involving non-Abelian groups for which the order is not prime. N(G) > ord(G) thus holds
true. For groups with the same order one should have additional ordering criteria, which
could relate to the complexity of the group. The number of simple factors would serve as an
additional ordering criterion.

If its possible to define N(G) in a natural manner then for given G one can define the number
π1(N(G)) of simple groups (analogs of primes) not larger than G. The first guess is that
that the number π1(N(G)) varies slowly as a function of G. Since Zi is simple group, one
has π1(N(G)) ≥ π(N(G)).

3. One can consider two definitions of number theoretic logarithm, call it Log1.

a) Log1(N(G)) = N(G)
π1(N(G)) ,

b) Log1(G) =
∑
i kiLog1(N(Gi)) , Log1(N(Gi)) = N(Gi)

π1(N(Gi))
.

(3.1)

Option a) does not provide information about the decomposition of G to a product of simple
factors. For Option b) one decomposes G to a product of simple groups Gi: G =

∏
iG

ki
i and

defines the logarithm as Option b) so that it carries information about the simple factors of
G.

http://tinyurl.com/jn44bxe
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4. One could organize the groups with the same order to same equivalence class. In this case
the above definitions would give

a) Log1(ord(G)) = ord(G)
π1(ord(G)) < Log(ord(G)) ,

b) Log1(ord(G)) =
∑
i kiLog(ord(Gi)) , Log1(ord(Gi)) = ord(Gi)

π1(ord(Gi))
.

(3.2)

Besides groups with prime orders there are non-Abelian groups with non-prime orders. The
occurrence of same order for two non-isomorphic finite simple groups is very rare (see http:

//tinyurl.com/ydd6uomb). This would suggests that one has π1(ord(G)) < ord(G) so that
Log1(ord(G))/ord(G) < 1 would be true.

5. For orders n(G) ∈ {2, 3, 5} one has Log1(n(G)) = Log(n(G)) > log(n(G)) so that the
ordes n(G) involving large factors of p ∈ {2, 3, 5} would be special also for the extensions of
rationals. S3 with order 6 is the first non-abelian simple group. One has π(S3) = 4 giving
Log(6) = 6/4 = 1.5 < log(6) = 1.79 so that S3 is different from the simple groups below it.

To sum up, number theoretic logarithm could provide answer to the long-standing question
what makes Mersenne primes and also other small primes so special.

3.2.3 Considerations related to coupling constant evolution and Riemann zeta

I have made several number theoretic peculations related to the possible role of zeros of Riemann
zeta in coupling constant evolution. The basic problem is that it is not even known whether the
zeros of zeta are rationals, algebraic numbers or genuine transcendentals or belong to all these
categories. Also the question whether number theoretic analogs of ζ defined for p-adic number
fields could make sense in some sense is interesting.

1. Is number theoretic analog of ζ possible using Log(p) instead of log(p)?

The definition of Log(n) based on factorization Log(n) ≡
∑
p kpLog(p) allows to define the num-

ber theoretic version of Riemann Zeta ζ(s) =
∑
n−s via the replacement n−s = exp(−log(n)s)→

exp(−Log(n)s).

1. In suitable region of plane number-theoretic Zeta would have the usual decomposition to
factors via the replacement 1/(1 − p−s) → 1/(1 − exp(−Log(p)s). p-Adically this makes
sense for s = O(p) and thus only for a finite number of primes p for positive integer valued
s: one obtains kind of cut-off zeta. Number theoretic zeta would be sensitive only to a finite
number of prime factors of integer n.

2. This might relate to the strong physical indications that only a finite number of cognitive rep-
resentations characterized by p-adic primes are present in given quantum state: the ramified
primes for the extension are excellent candidates for these p-adic primes. The size scale n of
CD could also have decomposition to a product of powers of ramified primes. The finiteness
of cognition conforms with the cutoff: for given CD size n and extension of rationals the
p-adic primes labelling cognitive representations would be fixed.

3. One can expand the regions of converge to larger p-adic norms by introducing an extension
of p-adics containing e and some of its roots (ep is automatically a p-adic number). By
introducing roots of unity, one can define the phase factor exp(−iLog(n)Im(s)) for suitable
values of Im(s). Clearly, exp(−ipIm(s))/π(p)) must be in the extension used for all primes
p involved. One must therefore introduce prime roots exp(i/π(p)) for primes appearing in
cutoff. To define the number theoretic zeta for all p-adic integer values of Re(s) and all
integer values of Im(s), one should allow all roots of unity (ep(i2π/n)) and all roots e1/n:
this requires infinite-dimensional extension.

4. One can thus define a hierarchy of cutoffs of zeta: for this the factorization of Zeta to a
finite number of ”prime factors” takes place in genuine sense, and the points Im(s) = ikπ(p)

http://tinyurl.com/ydd6uomb
http://tinyurl.com/ydd6uomb
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give rise to poles of the cutoff zeta as poles of prime factors. Cutoff zeta converges to zero
for Re(s)→∞ and exists along angles corresponding to allowed roots of unity. Cutoff zeta
diverges for (Re(s) = 0, Im(s) = ikπ(p)) for the primes p appearing in it.

Remark: One could modify also the definition of ζ for complex numbers by replacing exp(log(n)s)
with exp(Log(n)s) with Log(n) =

∑
p kpLog(p) to get the prime factorization formula. I will re-

fer to this variant of zeta as modified zeta (ζ̃) below. ζ̃ would carry explicit number theoretic
information via the dependence of its “prime factors” 1/(1− exp(−Log(p)s)).

2. Could the values of 1/αK be given as zeros of ζ or of ζ̃

In [L2] I have discussed the possibility that the zeros s = 1/2 + iy of Riemann zeta at critical
line correspond to the values of complex valued Kähler coupling strength αK : s = i/αK . The
assumption that piy is root of unity for some combinations of p and y [log(p)y = (r/s)2π] was
made. This does not allow s to be complex rational. If the exponent of Kähler action disappears
from the scattering amplitudes as M8 −H duality requires, one could assume that s has rational
values but also algebraic values are allowed.

1. If one combines the proposed idea about the Log-arithmic dependence of the coupling con-
stants on the size of CD and algebraic extension with s = i/αK hypothesis, one cannot
avoid the conjecture that the zeros of zeta are complex rationals. It is not known whether
this is the case or not. The rationality would not have any strong implications for number
theory but the existence irrational roots would have (see http://tinyurl.com/y8bbnhe3).
Interestingly, the rationality of the roots would have very powerful physical implications if
TGD inspired number theoretical conjectures are accepted.

The argument discussed below however shows that complex rational roots of zeta are not
favored by the observations [A6] about the Fourier transform for the characteristic function for
the zeros of zeta. Rather, the findings suggest that the imaginary parts [L1] should be rational
multiples of 2π, which does not conform with the vision that 1/αK is algebraic number. The
replacement of log(p) with Log(p) and of 2π with is natural p-adic approximation in an
extension allowing roots of unity however allows 1/αK to be an algebraic number. Could the
spectrum of 1/αK correspond to the roots of ζ or of ζ̃?

2. A further conjecture discussed in [L2] was that there is 1-1 correspondence between primes
p ' 2k, k prime, and zeros of zeta so that there would be an order preserving map k → sk. The
support for the conjecture was the predicted rather reasonable coupling constant evolution
for αK . Primes near powers of 2 could be physically special because Log(n) decomposes to
sum of Log(p):s and would increase dramatically at n = 2k slightly above them.

In an attempt to understand why just prime values of k are physically special, I have proposed
that k-adic length scales correspond to the size scales of wormhole contacts whereas particle
space-time sheets would correspond to p ' 2k. Could the logarithmic relation between Lp
and Lk correspond to logarithmic relation between p and π(p) in case that π(p) is prime and
could this condition select the preferred p-adic primes p?

3. The argument of Dyson for the Fourier transform of the characteristic function for the set
of zeros of ζ

Consider now the argument suggesting that the roots of zeta cannot be complex rationals. On
basis of numerical evidence Dyson [A6] (http://tinyurl.com/hjbfsuv) has conjectured that the
Fourier transform for the characteristic function for the critical zeros of zeta consists of multiples
of logarithms log(p) of primes so that one could regard zeros as one-dimensional quasi-crystal.

This hypothesis makes sense if the zeros of zeta decompose into disjoint sets such that each set
corresponds to its own prime (and its powers) and one has piy = Um/n = exp(i2πm/n) (see the
appendix of [L1]). This hypothesis is also motivated by number theoretical universality [K27, L7].

1. One can re-write the discrete Fourier transform over zeros of ζ at critical line as

f(x) =
∑
y

exp(ixy)) , y = Im(s) .

http://tinyurl.com/y8bbnhe3
http://tinyurl.com/hjbfsuv
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The alternative form reads as

f(u) =
∑
s

uiy , u = exp(x) .

f(u) is located at powers pn of primes defining ideals in the set of integers.

For y = pn one would have piny = exp(inlog(p)y). Note that k = nlog(p) is analogous to
a wave vector. If exp(inlog(p)y) is root of unity as proposed earlier for some combinations
of p and y, the Fourier transform becomes a sum over roots of unity for these combinations:
this could make possible constructive interference for the roots of unity, which are same or at
least have the same sign. For given p there should be several values of y(p) with nearly the
same value of exp(inlog(p)y(p)) whereas other values of y would interfere deconstructively.

For general values y = xn x 6= p the sum would not be over roots of unity and constructive
interference is not expected. Therefore the peaking at powers of p could take place. This
picture does not support the hypothesis that zeros of zeta are complex rational numbers so
that the values of 1/αK correspond to zeros of zeta and would be therefore complex rationals
as the simplest view about coupling constant evolution would suggest.

Remark: Mumford has argued (http://tinyurl.com/zemw27o) that the Fourier transform
should include also the trivial zeros at s = −2,−4,−6... giving and exponentially small
contributions and providing a slowly varying background to the Fourier transform.

2. What if one replaces log(p) with Log(p) = p/π(p), which is rational and thus ζ with ζ̃?
For large enough values of p Log(p) ' log(p) finite computational accuracy does not allow
distinguish Log(p) from log(p). For Log(p) one could thus understand the finding in terms
of constructive interference for the roots of unity if the roots of zeta are of form s = 1/2 +
i(m/n)2π. The value of y cannot be rational number and 1/αK would have real part equal to
y proportional to 2π which would require infinite-D extension of rationals. In p-adic sectors
infinite-D extension does not conform with the finiteness of cognition.

Remark: It is possible to check by numerical calculations whether the locus of complex
zeros of ζ̃ is at line Res(2) = 1/2. If so, then Fourier transform would make sense. One can
also check whether the peaks at nlog(p) are shifted to nLog(p): for p = 2 one would have
Log(2) = 2 > log(2). The positions of peaks should shift to the right for p = 2, 3, 5 and to
the left for p > 5. This should be easy to check by numerical calculations.

3. Numerical calculations have however finite accuracy, and allow also the possibility that y is
algebraic number approximating rational multiple of 2π in some natural manner. In p-adic
sectors would obtain the spectrum of y and 1/αK as algebraic numbers by replacing 2π in
the formula is = αK = i/2 + q × 2π, q = r/s, with its approximate value:

2π → sin(2π/n)n = i
n

2
(exp(i2π/n)− exp(−i2π/n))

for an extension of rationals containing n:th of unity. Maximum value of n would give the
best approximation. This approximation performed by fundamental physics should appear in
the number theoretic scattering amplitudes in the expressions for 1/αK to make it algebraic
number.

y can be approximated in the same manner in p-adic sectors and a natural guess is that
n = p defines the maximal root of unity as exp(i2π/p). The phase exp(ilog(p)y) for y =
qsin(2π/n(y)), q = r/s, is replaced with the approximation induced by log(p)→ Log(p) and
2π → sin(2π/n)n giving

exp(ilog(p)y)→ exp(iq(y)sin(2π/n(y))
p

π(p)
) .

If s in q = r/s does not contain higher powers of p, the exponent exists p-adically for this
extension and can can be expanded in positive powers of p as

http://tinyurl.com/zemw27o
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∑
n

inqnsin(2π/p)n(p/π(p))n .

This makes sense p-adically.

Also the actual complex roots of ζ could be algebraic numbers:

s = i/2 + q × sin(
2π

n(y)
)n(y) .

If the proposed correlation between p-adic primes p ' 2k, k prime and zeros of zeta predicting
a reasonable coupling constant evolution for 1/αK is true, one can have naturally, n(y) = p(y),
where p is the p-adic prime associated with y: the accuracy in angle measurement would
increase with the size scale of CD. For given p there could be several roots y with same p(y)
but different q(y) giving same phases or at least phases with same sign of real part.

Whether the roots of tildeζ are algebraic numbers and at critical line Re(s) = 1/2 is an
interesting question.

Remark: This picture allows many variants. For instance, if one assumes standard zeta, one
could consider the possibility that the roots yp associated with p and giving rise to constructive
interference are of form y = q × (Log(p)/log(p))× sin(2π/p)p, q = r/s.

4. Could functional equation and Riemann hypothesis generalize?

It is interesting to list the elementary properties of the ζ̃ before trying to answer to the questions
of the title.

1. The replacement log(n) → Log(n) ≡ sumpkpLog(p) implies that ζ̃ codes explicitly number
theoretic information. Note that Log(n) satisfies the crucial identity Log(mn) = Log(m) +
Log(n). ζ̃ is an analog of partition function with rational number valued Log(n) taking the
role of energy and 1/s that of a complex temperature. In ZEO this partition function like
entity could be associated with zero energy state as a “square root” of thermodynamical
partition function: in this case complex temperatures are possible. |ζ̃|2 would be the analog
of ordinary partition function.

2. Reduction of ζ̃ to a product of “prime factors” 1/[1−exp(−Log(p)s)] holds true by Log(n) ≡
sumpkpLog(p), Log(p) = p/π(p).

3. ζ̃ is a combination of exponentials exp(−Log(n)s), which converge for Re(s) > 0. For ζ one
has exponentials exp(−log(n)s), which also converge for Re(s) > 0: the sum

∑
n−s does not

however converge in the region Re(s) < 1. Presumably ζ̃ fails to converge for Re(s) ≤ 1.
The behavior of terms exp(−Log(n)s) for large values of n is very similar to that in ζ.

4. One can express ζ o in terms of η function defined as

η(s) =
∑

(−1)nn−s .

The powers (−1)n guarantee that η converges (albeit not absolutely) inside the critical strip
0 < s < 1.

By using a decomposition of integers to odd and even ones, one can express ζ in terms of η:

ζ =
η(s)

(−1 + 2−s+1)
.

This definition converges inside critical strip. Note the pole at s = 1 coming from the factor.

One can define also η̃:

η̃(s) =
∑

(−1)ne−Log(n)s .
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The formula relating ζ̃ and η̃ generalizes: 2−s is replaced with exp(−2s) (Log(2) = 2):

ζ̃ =
η̃(s)

−1 + 2exp−2s
.

This definition ζ̃ converges in the critical strip Re(s) ∈ (0, 1) and also for Re(s) > 1. ζ̃(1−s)
converges for Re(s) < 1 so that in η̃ representation both converge.

Note however that the poles of ζ at s = 1 has shifted to that at s = log(2)/2 and is below
Re(s) = 1/2 line. If a symmetrically posioned pole at s = 1 − log(2)/2 is not present in η̃,
functional equation cannot be true.

5. Log(n) approaches log(n) for integers n not containing small prime factors p for which π(n)
differs strongly from p/log(p). This suggests that allowing only terms exp(−Log(n)s) in the
sum defining ζ̃ not divisible by primes p < pmax might give a cutoff ζ̃cut,pmax(s) behaving
very much like ζ from which “prime factors” 1/(1− exp(−Log(p)s) , p < pmax are dropped
of. This is just division of ζ̃ by these factors and at least formally, this does not affect the
zeros of ζ̃. Arbitrary number of factors can be droped. Could this mean that ζ̃cut has same
or very nearly same zeros as ζ at critical line? This sounds paradoxical and might reflect my
sloppy thinking: maybe the lack of the absolute implies that the conclusion is incorrect.

The key questions are whether ζ̃ allows a generalization of the functional equation ξ(s) = ξ(1−s)
with ξ(s) = 1

2s(s−1)Γ(s/2)π−s/2ζ(s) and whether Riemann hypothesis generalizes. The derivation
of the functional equation is quite a tricky task and involves integral representation of ζ .

1. One can start from the integral representation of ζ true for s > 0.

ζ(s) =
1

(1− 21−s)Γ(s)

∫ ∞
0

ts−1

et + 1
dt , Re(s) > 0 .

deducible from the expression in terms of η(s). The factor 1/(1 + et) can be expanded
in geometric series 1/(1 + et) =

∑
(−1)nexp(nt) converning inside the critical strip. One

formally performs the integrations by taking nt as an integration variable. The integral gives
the result

∑
(−1)n/nz)Γ(s).

The generalization of this would be obtained by a generalization of geometric series:

1/(1 + et) =
∑

(−1)nexp(nt)→
∑

(−1)neexp(Log(n))t

in the integral representation. This would formally give ζ̃: the only difference is that one
takes u = exp(Log(n))t as integration variable.

One could try to prove the functional equation by using this representation. One proof (see
http://tinyurl.com/yak93hyr) starts from the alternative expression of ζ as

ζ(s) =
1

Γ(s)

∫ ∞
1

ts−1

et − 1
dt , Re(s) > 1 .

One modifies the integration contour to a contour C coming from +∞ above positive real
axis, circling the origin and returning back toc+∞ below the real axes to get a modified
representation of ζ:

ζ(s) =
1

2isin(πs)Γ(s)

∫ ∞
1

(−w)s−1

ew − 1
dw , Re(s) > 1 .

One modifies the C further so that the origin is circled around a square with vertices at
±(2n+ 1)π and ±i(2n+ 1)π.

One calculates the integral the integral along C as a residue integral. The poles of the
integrand proportional to 1/(1 − et) are at imaginary axis and correspond to w = ir2π,
r ∈ Z. The residue integral gives the other side of the functional equation.

http://tinyurl.com/yak93hyr
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2. Could one generalize this representation to the recent case? One must generalize the geo-
metric series defined by 1/(ew − 1) to −

∑
eexp(Log(n))w. The problem is that one has only a

generalization of the geometric series and not closed form for the counterpart of 1/(exp(w)−1)
so that one does not know what the poles are. The näıve guess is that one could compute the
residue integrals term by term in the sum over n. An equally näıve guess would be that for
the poles the factors in the sum are equal to unity as they would be for Riemann zeta. This
would give for the poles of n:th term the guess wn,r = r2π/exp(Log(n), r ∈ Z. This does
not however allow to deduce the residue at poles.Note that the poles of η̃ at s = log(2)/2
suggests that functional equation is not true.

There is however no need for a functional equation if one is only interested in F (s) ≡ ζ̃(s) +
ζ̃(1− s) at the critical line! Also the analog of Riemann hypothesis follows naturally!

1. In the representation using η̃ F (s) converges at critical striple and is real(!) at the critical
line Re(s) = 1/2 as follows from the fact that 1 − s = s for Re(s) = 1/2! Hence F (s) is
expected to have a large number of zeros at critical line. Presumably their number is infinite,
since F (s)cut,pmax approaches 2ζcut,pmax for large enough pmax at critical line.

2. One can define a different kind of cutoff of ζ̃ for given nmax: n < nmax in the sum over
e−Log(n)s. Call this cutoff ζ̃cut,nmax . This cutoff must be distinguished from the cutoff
ζ̃cut,pmax obtained by dropping the “prime factors” with p < pmax. The terms in the cutoff
are of the form u

∑
kpp/π(p), u = exp(−s). It is analogous to a polymomial but with fractional

powers of u. It can be made a polynomial by a change of variable u→ v = exp(−s/a), where a
is the product of all π(p):s associated with all the primes involved with the integers n < nmax.

One could solve numerically the zeros of ˜ζ(s) + ˜ζ(s) using program modules calculating π(p)
for a given p and roots of a complex polynomial in given order. One can check whether also
all zeros of ˜ζ(s) + ˜ζ(s) might reside at critical line.

3. One an define also F (s)cut,nmax to be distinguished from F (s)cut,pmax . It reduces to a sum
of terms exp(−Log(n)/2)cos(−Log(n)y) at critical line, n < nmax. Cosines come from roots

of unity. F (s) function is not sum of rational powers of exp(−iy) unlike ˜ζ(s). The existence
of zero could be shown by showing that the sign of this function varies as function of y.
The functions cos(−Log(n)y) have period ∆y = 2π/Log(n). For small values of n the
exponential terms exp(−Log(n)/2) are largest so that they dominate. For them the periods
∆y are smallest so that one expected that the sign of both F (s) and F (s)cut,nmax varies and
forces the presence of zeros.

One could perhaps interpret the system as quantum critical system. The rather large rapidly
varying oscillatory terms with n < nmax with small Log(n) give a periodic infinite set of
approximate roots and the exponentially smaller slowly varying higher terms induce small
perturbations of this periodic structure. The slowly varying terms with large Log(n) become
however large near the Im(s) = 0 so that here the there effect is large and destroys the period

structure badly for small root of ζ̂.

3.2.4 Is the vanishing of the loop corrections consistent with unitarity?

Skeptic could argue that the vanishing of loop corrections is not consistent with unitarity. The
following argument however shows that the fact that momenta in TGD framework are 8-D light-
like momenta could save the situation. If not only single particle states but also many-particle
states have light-like 8-momenta, the discontinuity of the amplitude at pole P 2(M8) = 0 implies
the discontinuity of the amplitude as function of s ≡ P 2(M4) along s-axis.

Minkowskian contribution to mass squared would essentially the sum of conformal (stringy)
contribution from vibrational degrees of freedom and color contribution from CP2 degrees of free-
dom. This suggests a weak form of color confinement: many-particle states could have vanishing
color hyper charge and isospin but the eigenvalue value of color Casimir operator would be non-
vanishing.

To get more concrete view about the situation the reader is encouraged to study the slides of
Jaroslav Trnka explaining BCFW recursion formula [B6] (see http://tinyurl.com/pqjzffj) or
the article [B4] of Elvang and Huang (see http://tinyurl.com/y9rhbzhk).

http://tinyurl.com/pqjzffj
http://tinyurl.com/y9rhbzhk
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1. Unitarity condition SS† = Id for S-matrix S = 1 + iT gives i(T − T †) = TT †. For forward
scattering the physical interpretation is that the discontinuity of −2Im(T ) = i(T − T †) in
forward scattering as a function of total mass s above kinematical threshold along real axis
is essentially the total scattering rate.

2. For a given tree amplitude, which is rational function, one replaces external momenta pi
with p̂i = pi + zri. ri real, light-like and orthogonal to each other and their sum vanishes.
This gives on mass shell scattering amplitude with complex light-like momenta satisfying
conservation conditions.

3. One can consider any non-trivial subset I of momenta and for this set one has P̂ 2
I = P 2

i +
2zP ·RI , where one has PI =

∑
i pi and RI =

∑
i ri. This gives

P̂ 2
I = −P 2

I

(z − zI)
zI

, zI =
P 2
I

2PI ·RI
.

The poles of the modified amplitude Ân(z) come from the propagators at P̂ 2
I = 0 and

correspond to the points z = zI .

4. From the modified scattering amplitude Ân(z) one can obtain the original scattering ampli-
tude by performing a residue integral for Ân(z)/z along a curve enclosing the poles zI . This
gives

An = Ân(z = 0) +
∑
zI

Resz=zI (
Ân(z)

z
) +Bn .

Bn comes from the possible pole at z = ∞ and is often assumed to vanish. If so, the
amplitude factorizes into a sum of products

Resz=zI
Ân(z)

z
=
∑
I

ÂL(zI)
1

P 2
I

ÂR(zI) .

The amplitudes appearing in the product are for modified complex momenta.

The vanishing of loop corrections thus implies that the product terms ÂL(1/P 2)ÂR in the
BCFW formula give rational functions having no cuts just as the number theoretical vision de-
mands. The discontinuities of the imaginary part of the amplitude are at poles and reduce to the
products ÂLÂR with complex on-mass- shell light-like momenta as unitarity demands.

For forward scattering the discontinuity would be essentially positive definite total scattering
rate. It would be however non-vanishing only at P 2 = 0 so that scattering rate could be non-
vanishing only for P 2 = 0! This does not make sense in 4-D physics. Is it possible to overcome
this difficulty in TGD framework?

1. The first thing to notice is that classical TGD predicts complex Noether charges since for
instance Kähler coupling strength has imaginary part. This would suggest that the momenta
of incoming particles could be complex. Could complex value of P (M4) ≡ P implying

P 2 = Re(P )2 − Im(P )2 + i2Re(P ) · Im(P ) = 0

save the situation? The condition requires that Re(P ) and Im(P ) are light-like and parallel
so that one would obtain only light-like four-momenta as total M4 momenta.

2. However, in TGD light-likeness holds true in 8-D sense for single particle states: this led to the
proposed generalization of twistor approach allowing particles to be massive in 4-D sense.
M8 − H duality allows to speak about light-like M8 momenta satisfying quaternionicity
condition. The wave functions in CP2 degrees of freedom emerge from momentum wave
functions in M8 degrees of freedom respecting quaternionicity. The condition P 2(M8) = 0
implies that Re[P (M8)] and Im[P (M8)] are light-like and parallel. Im[P (M8)] can be
arbitrarily small. One has also Re[P (M4)]2 = Re[P (E4)]2 and Im[P (M4)]2 = Im[P (E4)]2.
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3. Could one pose the condition P 2(M8) = 0 also on many-particle states or only to the many-
particle states appearing as complex massless poles in the BCFW conditions? Kind of strong
form of conformal invariance would be in question: not only single-particle states but also
many-particle states would be massless in 8-D sense. Now s = Re[P (M4))]2 = Re[P (E4))]2

could have a continuum of values. The discontinuity along s-axis required by unitarity
would would emerge from the discontinuity due to the pole at P 2(M8) = 0! Hence 8-
dimensional light-likeness in strong sense would be absolutely essential for having vanishing
loop corrections together with non-vanishing scattering rates!

Here one must be however extremely careful.

1. In BCFW approach the expression of residue integral as sum of poles in the variable z
associated with the amplitude obtained by the deformation pi → pi+zri of momenta (

∑
ri =

0, ri · rj = 0) leads to a decomposition of the tree scattering amplitude to a sum of products
of amplitudes in resonance channels with complex momenta at poles. The products involve
1/P 2 factor giving pole and the analog of cut in unitary condition. Proof of tree level unitarity
is achieved by using complexified momenta as a mere formal trick and complex momenta are
an auxiliary notion. The complex massless poles are associated with groups I of particles
whereas the momenta of particles inside I are complex and non-light-like.

2. Could BCFW deformation give a description of massless bound states massless particles so
that the complexification of the momenta would describe the effect of bound state formation
on the single particle states by making them non-light-like? This makes sense if one assumes
that all 8-momenta - also external - are complex. The classical charges are indeed complex
already classically since Kähler coupling strength is complex [L2]. A possible interpretation
for the imaginary part is in terms of decay width characterizing the life-time of the particle
and defining a length of four-vector.

3. The basic question in the construction of scattering amplitudes is what happens inside CD
for the external particles with light-like momenta. The BCFW deformation leading to fac-
torization suggests an answer to the question. The factorized channel pair corresponds to
two CDs inside which analogs of M and N −M particle bound states of external massless
particles would be formed by the deformation pi → pi + zri making particle momenta non-
light-like. The allowed values of z would correspond to the physical poles. The factorization
of BCFW scattering amplitude would correspond to a decomposition to products of bound
state amplitudes for pairs of CDs. The analogs of bound states for zero energy states would
be in question. BCFW factorization could be continued down to the lowest level below which
no factorization is possible.

4. One can of course worry about the non-uniqueness of the BCFW deformation. For instance,
the light-like momenta ri must be parallel (ri = λir) but the direction of r is free. Also the
choice of λi is free to a high extent. BCFW expression for the amplitude as a residue integral
over z is however unique. What could this non-uniqueness mean?

Suppose one accepts the number theoretic vision that scattering amplitudes are representa-
tions for sequences of algebraic manipulations. These representations are bound to be highly
non-unique since very many sequences can connect the same initial and final expressions.
The space-time surface associated with given representation of the scattering amplitude is
not unique since each computation corresponds to different space-time surface. There how-
ever exists a representation with maximal simplicity.

Could these two kinds of non-uniqueness relate?

It is indeed easy to see that many-particle states with light-like single particle momenta cannot
have light-like momenta unless the single-particle momenta are parallel so that in non-parallel case
one must give up light-likeness condition also in complex sense.

1. The condition of light-likeness in complex sense allows the vanishing of real and imaginary
mass squared for individual particles
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Im(pi) = λiRe(pi) , (Re(pi))
2 = (Im(pi))

2 = 0 . (3.3)

Real and imaginary parts are parallel and light-like in 8-D sense. All λi have same sign and
pi has positive or negative time component depending on whether positive or negative energy
part of zero energy state is in question.

2. The remaining two conditions come from the vanishing of the real and imaginary parts of
the total mass squared:

∑
i 6=j Re(pi) ·Re(pj)− Im(pi) · Im(pj) = 0 ,

∑
i6=j Re(pi) · Im(pj) = 0 . (3.4)

By using proportionality of Im(pi) and Re(pi) one can express the conditions in terms of the
real momenta

∑
i 6=j(1− λiλj)Re(pi) ·Re(pj) = 0 ,

∑
i 6=j λjRe(pi) ·Re(pj) = 0 . (3.5)

For positive/negative energy part of zero energy state the sign of time component of momen-
tum is fixed and therefore λi have fixed sign. Suppose that λi have fixed sign. Since the inner
products pi · pj of time-like vectors with fixed sign of time compomemet are all positive or
negative the second term can vanish only if one has pi · pj = 0. If the sign of λi can vary, one
can satisfy the condition linear in λi but not the first condition as is easy to see in 2-particle
case.

3. States with light-like parallel 8-momenta are allowed and one can ask whether this kind of
states might be realized inside magnetic flux tubes identified as carriers of dark matter in
TGD sense. The parallel light-like momenta in 8-D sense would give rise to a state analogous
to super-conductivity. Could this be true also for quarks inside hadrons assumed to move in
parallel in QCD based model. This also brings in mind the earlier intuitive proposal that the
momenta of fermions and antifermions associated with partonic 2-surfaces must be parallel so
that the propagators for the states containing altogether n fermions and antifermions would
behave like 1/(p2)n/2 and would not correspond to ordinary particles.

These arguments are formulated in M8 picture. What could this mean in M4 × CP2 picture?

1. The intuitive expectation is thatRe[P (E4)]2 corresponds to the eigenvalue Λ of CP2 d’Alembertian
so that the higher the momentum, the larger the value of Λ. CP2 d’Alembertian would be
essentially the M4 mass squared of the state. This would allow vanishing color quantum
numbers Y and I3 but force symmetry breaking SU(3)→ SU(2)×U(1). This picture is not
quite accurate: also the vibrational degrees of freedom contribute to the mass squared what
might be called stringy contribution.

2. Could the geometry of CP2 induce this symmetry breaking? For instance, Kähler gauge
potential depends on the U(2) invariant “radial” coordinate of CP2 and is invariant only
under U(2) rotations and changes by gauge transformation in other color rotations. Could
one assign the symmetry breaking to the choice of color quantization axes boiling down at
the classical level to the fixing of CP2 Kähler function would?

One would have color confinement in weak sense: in QCD picture physical states correspond
to color singlet representations. This is certainly very strong statement in a sharp conflict
with the standard view about color confinement. It would make sense in TGD framework,
where color as a spin like quantum number is replaced with angular momentum like quantum
number. One could say that macroscopic systems perform macroscopic color rotation. The
model for the honeybee dance [L10] conforms with this view and actually led to the proposal
for a modification of cosmic string type extremals X4 = X2 × Y 2 ⊂ M4 × CP2 by putting
Y 2 in 2-D rigid body color rotation along both time axis and spatial axis of the string world
sheet X2.
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3. This picture raises again the old question about the relationship of color and electroweak
quantum numbers in TGD framework. Could one regard electroweak quantum numbers as
a spin related to color group SU(3) just as one can relate ordinary spin with Lorentz trans-
formations? Color quantum numbers of say quarks would be analogous to orbital angular
momentum. The realization of the action of the electroweak U(2)ew on CP2 spinors in-
deed involves also geometric color rotation affecting the gauge potentials in the general case
and U(2)ew can be identified as holonomy group of CP2 spinor connection and sugroup of
SU(3). One could also see electroweak symmetry breaking as a further symmetry breaking
U(2) → U(1) × U(1) assignable with the flag manifold SU(3)/U(1) × U(1) parameterizing
different choices of color quantization axes and having interpretation as CP2 twistor space.

Remark: Number theoretic vision means that the quaternionic M8-momenta are discrete
with components having values in the extension of rationals. P 2(M4) becomes discrete if one
poses P 2(M8) = 0 condition for all states. The values of discontinuity of Im(T ) correspond
now to a discrete sequence of poles along s-axis approximating cut. At the continuum limit this
discrete sequence of poles becomes cut. Continuum limit would correspond to a finite measurement
resolution in which one cannot distinguish the poles from each other.

3.3 Grassmannian approach and TGD

Grassmannian approach has provided besides technical progress deeper views about twistorializa-
tion and also led to the understanding of the Yangian symmetry.

3.3.1 Grassmannian twistorialization - or what I understand about it

The twistorialization of the scattering amplitudes works for planar amplitudes in massless theories
and involves the following ingredients.

1. All scattering amplitudes are expressible in terms of on-mass-shell scattering amplitudes with
massless on-mass-shell particles in complex sense.

2. The scattering amplitude is sum over contributions with varying number of loops. BCFW
recursion relation allows to construct scattering amplitudes from their singularities using
3-particle amplitudes as building brick amplitudes. There are two types of singularities.

For the first type of singularity one has on-shell internal line and one obtains a sum over all
possible decompositions of the scattering amplitude to a product of on-mass-shell scattering
amplitudes multiplied by delta function for momentum squared of the internal line. Second
type of singularity corresponds to the so called forward limit and is obtained from (n+ 2, k)
amplitude by contracting two added adjacent particles to form a loop so that their momenta
are opposite and integrating over the momentum.

3. The singular term is algebraically analogous to an exterior derivative of the scattering am-
plitude and can be integrated explicitly: the integration adds BCFW bridge to the both
terms such that the forward limit loop in the second term is under the bridge. The outcome
is BCFW formula for l-loop amplitude with n external particles with k negative helicities
consisting of these two terms.

Twistor Grassmannian approach expresses the on mass shell scattering amplitudes appearing as
building bricks as residue integrals over Grassmannian Gr(n, k), where n is the number of particles
and k is the number of negative helicities. The Grassmannian approach is described in a concise
form in the slides by Jaroslav Trnka [B6] (see http://tinyurl.com/pqjzffj).

1. The construction of the on-mass-shell scattering amplitudes appearing in BCFW formula
as residue integrals in Grassmannians follows by expressing the momentum conserving delta
functions in twistor description in terms of auxiliary variables serving as coordinates of Grass-
mannian G(n, k, C) for the on mass shell tree amplitude with n external particles having k
negative helicities. Grassmannian has dimension d = (n − k)k and can be identified as the
space of k-planes - or equivalently n − k-planes in CN . Grasmannian has a representation

http://tinyurl.com/pqjzffj
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as homogenous space G(n, k, C) = U(n)/U(n − k) × U(k) having SU(n) as the group of
isometries. For k = 1 one obtains projective space which is also symmetric space (allowing
reflection along geodesic lines as isometries).

2. Grassmannians emerge as an auxiliary construct, and the multiple residue integral over Grass-
mannian gives sum of residues so that the introduction of Grassmannians might look like
un-necessary complication. The selection of points of Grassmannian for given external quan-
tum numbers by residue integral given at the same time the value of the amplitude might
however have some deeper meaning.

The construction involves standard mathematics, which is however new for physicists. For
instance, notions such as Plücker coordinates, Schubert cells and cell decomposition appear.
One can relate to each other various widely different looking expressions for the amplitudes
as being associated with different cell decompositions of Grassmannian. The singularities of
the integrand of the scattering amplitude defined as a multiple residue integral over G(k, n)
define a hierarchy of Schubert cells.

3. The so called positive Grassmannian [B5] defines a subset of singularities appearing in the
scattering amplitudes of N = 4 SUSY. The points of positive Grassmannian Gr+(k, n)
are representable as k × n matrices with positive k × k determinants. The singularities
correspond to the boundaries of Gr+(k, n) with some k× k determinants vanishing. For tree
diagrams the singularities correspond to poles appearing in the factorized term of the BCFW
decomposition of the scattering amplitude. The positivity conditions hold true also for the
twistors representing external particles.

4. Positivity conditions guarantee the convexity of the integration region determined by the
C-matrix as point of Gr+(k, n) appearing in the conditions dictating the integration region.

To better understand the meaning of positivity one can first consider triangle call it T - as
a representation of positive Grassmannian Gr+(1, 3) = P 2

+. Any interior points of T can
be regarded as center of mass for suitable positive masses at the vertices of the triangle.
These conditions generalizes to the case of general polygons, which must be convex. If the
number of vertices of the polygon is larger than 3, convexity is not automatically satisfied,
and requires additional conditions.

This description generalizes to Grassmannians Gr+(k, n). Masses define the analog of C-
matrix as element of Gr+(k, n) appearing in the twistor approach and the vertices of the
triangle are analogous to the twistors associated with external particles combining to form
a point of Gr(4, n). Positivity condition is generalized to the condition that k × k minors of
the k × n matrix are positive.

5. Also the twistors associated with the external particles must satisfy analogs of the positivity
conditions. This involves the replacement of Gr(4, n) associated with twistors of the external
particles with Gr+(k + 4, n). The additional k components of the twistors are Grassman
numbers and determined by the superparts of the twistors (see the slides of Trnka at http:
//tinyurl.com/pqjzffj. I must admit that I did not understand this.

6. Residue integral can be defined in terms of what is called canonical form Ω - analog of volume
form - having logarithmic singularities at the boundaries of the Gr+(k, n). Hence one can
perform a reduction of the residue integral to a sum of integrals over G(k, k + 4) instead of
G(k, n) (actually not so surprising since the residue integrals give as outcome the residues at
discrete points!).

This leads to a reduction of the residue integral over Gr+(k, n) to a sum of lower dimen-
sional residue integrals over triangulation defined by Gr+(k, k + 4) represented as surfaces
of Gr+(k, n) glued together along sides. The geometric analog would be decomposition of
polygon to a union of triangles.

This simplifies the situation dramatically [B7, B6, B5] and leads to the notion of ampli-
tuhedron [B2, B1]. What is so remarkable, is the simplicity of the expressions for all-loop
amplitudes and the fact that positivity implies locality and unitarity for N = 4 SUSY.

http://tinyurl.com/pqjzffj
http://tinyurl.com/pqjzffj
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7. It should be possible to construct Ω explicitly having the desired singularities which would
be in TGD framework poles with P 2(M8) = P 2(M4×CP2) = 0 if the proposed realization of
unitary makes sense? Could one just assumes that Ω vanishes for that part of the boundary
of Gr+(k, n), which gives loop singularities? Could these points Gr+(k, n) be transcendental
and excluded for this reason?

If loop corrections are vanishing as ZEO strongly suggests, only tree amplitudes are needed.
Therefore it is appropriate to summarize what I have managed to understand about the construc-
tion of the tree amplitudes with general value of k in the amplituhedron approach.

1. The notion of amplituhedron relies on the mapping of G(k, n) to G+(k, k + m) n ≥ k + m.
Actually a map from G(k, n)×G(k+ 4, n)→ G+(k, k+m) is in question. m = 4 identifiable
as the apparent dimension of twistor space without projective identification giving the actual
dimension d = 3. n is the number of external particles and k the number of negative helicities.

The value of m is m = 4 and follows from the conditions that amplitudes come out correctly.
The constraint Y = C · Z, where Y corresponds to point of G+(k, k + 4) and Z to the point
of G(k + 4, n) performs this mapping, which is clearly many-to one. One can decompose
integral over G+(k, n) to integrals over positive regions G+(k, k + 4) intersecting only along
their common boundary portions. The decomposition of a convex polygon in plane to trian-
gles represent the basic example of this kind of decomposition. Obviously there are several
decompositions of this kind.

2. Each decomposition defines a sum of contributions to the scattering amplitude involving
integration of a projectively invariant volume form over the positive region in question. The
form has a logarithmic singularity at the boundaries of the integration region but spurious
singularities cancel so that only the contribution of the genuine boundary of G+(k, k + 4)
remains. There are additional delta function constraints fixing the integral completely in real
case.

3. In complex case one has residue integral. The proposed generalization to the complex case is
by analytic continuation. TGD inspired proposal is that the positivity condition in the real
case is generalized to the condition that the positive coordinates are replaced by complex
coordinates of hyperbolic space representable as upper half plane or equivalently as the unit
disk obtained from upper half plane by exponential mapping w = exp(iz). The measure dα/α
would correspond to dz = dw/w. If taken over boundary circle labelled by discrete phase
factors exp(iφ) given by roots of unity the integral would be numerically a discrete Riemann
sum making no sense p-adically but residue theorem could allow to avoid the discretizaton
and to define the p-adic variant of the integral by analytic continuation. These conditions
would be completely general conditions on various projectively invariant moduli involved.

4. One must extend the bosonic twistors Za of external particles by adding k coordinates. This
extension looks very difficult to understand intuitively. Somewhat surprisingly, these coordi-
nates are anti-commutative super-coordinates expressible as linear combinations of fermionic
parts of super-twistor using coefficients, which are also Grassmann numbers. Integrating over
these one ends up with the standard expression of the amplitude using canonical integration
measure for the regions in the decomposition of amplituhedron. An interesting question is
whether the addition of k-dimensional anti-commutative parts to Za expressible in terms of
super-coordinates is only a trick or whether it could have some physical interpretation.

3.3.2 Grassmannians as reduced WCWs?

Grassmannians appear as auxiliary spaces in twistor approach. Could Grassmannians and the
procedure assigning to external momenta and helicities discrete set of points of Grassmannian and
scattering amplitude have some concrete interpretation in TGD framework?

1. The points of cognitive representation define WCW coordinates for space-time surface. For a
fixed number of points in cognitive representation WCW is effectively replaced with a finite-
dimensional reduced WCW. These points would naturally correspond to the points defining
ends of fermionic lines at partonic 2-surfaces. WCW has Kähler metric with Euclidian
signature. This could be true also for its reduction.
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2. The experience with twistorialization suggests that these spaces could be simply Grassman-
nians Gr(n, r, C) consisting or r-dimensional complex planes of n-dimensional complex space
representable as coset spaces U(n)/U(n − r) × U(r) appearing as auxiliary spaces in the
construction of twistor amplitudes.

Note that the correlation between quantum states and geometry would be present since n
corresponds to the number of external particles and r to those with negative helicity in or-
dinary twistor Grassmann approach. In TGD framework discretized variants of these spaces
corresponding to the extension of rationals used would appear. Yangian symmetries could
correspond to general coordinate transformations for the reduced WCW acting as gauge sym-
metry. These transformations act as diffeomorphisms for so called positive Grassmannians
also in the standard twistorialization. If the reduced WCWs indeed correspond to twistor
Grassmannians, one would have a completely unexpected connection with supersymmetric
QFTs.

3. The reduction of WCW to a finite dimensional Kähler manifold suggests that also WCW
spinors become ordinary spinors for Kähler manifold so that gamma matrices form a finite-D
fermionic oscillator operator algebra. WCW has maximal symmetries and it would not be
surprising if also the finite-D Kähler manifold would possess maximal symmetries. Note that
WCW gamma matrices together with isometry generators of WCW give rise to a super-
symplectic algebra involving a generalization of 2-D conformal invariance replacing 2-D sur-
faces with light-like 3-surfacs.

4. The interpretation of supersymmetry would be different from the standard one. Kähler
structure implies that N is even and Majorana spinors are absent and both baryon and
lepton number can be conserved separately. The ordinary fermionic oscillator algebra is a
Clifford algebra and could be interpreted in terms of a broken supersymmetry.

Also more general flag manifolds than Grassmannians can be considered. If these spaces are
homogenous spaces they have maximal isometries. They should have also Kähler structure. Com-
pactness looks also a highly desirable property. The gauge conditions for the subalgebra of super-
symplectic algebra state that the sub-algebra and its commutator with the entire algebra annihilate
physical states and give rise to vanishing classical Noether charges. This would effectively reduce
the super-symplectic algebra to a finite-D Lie group or Kac-Moody algebra of a finite-dimensional
Lie group - perhaps belonging to the ADE hierarchy as the hierarchy of inclusions of HFFs as an
alternative correlate for the realization of finite measurement resolution suggests. The flag man-
ifolds associated with these Lie groups define more general homogenous spaces as candidates for
the reduced WCWs.

3.3.3 Interpretation for Grassmannian residue integrations

The identification of Grassmannians (or possibly more general spaces) as reduced WCWs would
give a genuine physical interpretation for the Grassmannian integrations as residue integrations
over reduced WCW. What looks mysterious and maybe even frustrating is that the outcome of
the entire process is sum over discrete residues: what does this mean?

1. The residue integration is only over a surface of reduced WCW with dimension equal to one
half of that of WCW. One has integrand, which depends on the external quantum numbers
coded in terms of twistors and on coordinates of reduced WCW. The residue integration
is analogous to summation over amplitude associated with space-time surfaces coded by
different cognitive representations.

2. One can argue that a continuous residue integral over Grassmannian is not consistent with the
number theoretic discretization. The outcome is however discrete set of space-time surfaces
labelled by cognitive representations as points of Grassmannian. Of the points in question are
in the extension and if this is equivalent with the corresponding property for the coordinates
of Grassmannian, there should be no problems. The restriction of external momenta to the
extension of rationals might guarantee this.
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3. The full multiple residue integral leaves only pole contributions, which correspond to a dis-
crete collection of space-time surfaces (at least the set of space-time surfaces obtained by the
action of Galois group), that is discrete set of points of reduced WCW. It seems that the
entire residue integration is just a way to realize quantum classical correspondence by as-
sociating to the external quantum numbers space-time surfaces and corresponding cognitive
representations - and of course, also the scattering amplitude.

4. One can also ask whether the positivity of Grassmannian might relate to the fact that p-adic
numbers as ordinary integers are always non-negative (most of them infinite). The positivity
might be necessary in order to have number theoretic universality. If the minors associated
with the C-matrix serve as coordinates for Gr+(k, n) they could be interpreted also as p-adic
numbers. If they are allowed to be negative, one encounters problems since p-adic numbers
are not well-ordered and one cannot say whether p-adic number is negative or positive.

3.3.4 Posible description of SUSY and its breaking in TGD framework

Although twistor description make sense also in the absence of supersymmetry, super-symmetry
is an essential part of the elegance of the Grassmannian approach. For the ordinary SUSY one
has gluons and their superpartners characterized in terms of super-twistors. In TGD one has two
pictures [L6, K21].

1. At the level H fermions as fundamental particles are described in terms of second quantized
induced spinor fields, whose oscillator operators can be used to build gamma matrices for
WCW [K29, K20]. In TGD universe all known elementary particles would be composites
of fundamental fermions represented as lines at the light-like orbits of partonic 2-surfaces
(wormhole throats) and ordinary elementary particles involve a pair of wormhole contacts
with throats containing these fermion lines. It is assumed that the fermions are at different
points: this allows to avoid problems due to infinities.

In the proposed generalization of twistor approach 2→ 2 fermion scattering in the classical
fields at partonic 2-surface would define the basic 2→ 2-vertex replacing 3-vertices of twisto-
rial SUSY. Essentially one has only two-vertices describing the redistribution of fermions at
partonic 2-surface between orbits of the partonic 2-surfaces meeting at it. This is different
from N = 4 SUSY [K10]. If one allows completely local multi-fermion states at the level of
H one cannot avoid fermionic contact interactions.

The many-fermion states associated with partonic 2-surfaces would define the analogs of
super-multiplets. One can wonder whether a SUSY type description could exist as a limit
when the partonic 2-surface is approximated with single point so that also positions of
fermions are approximated as single point. SUSY would be only approximate.

2. At the level of M8 I have proposed the use of polynomials P of super-octonion serving as
analogs of super-gluon fields to construct scattering amplitudes [L6]. This allows geometric
description of all particles using super-multiplets. Each monomial of theta parameters would
give rise to its own space-time surface by the condition that either IM(P ) or RE(P ) vanishes
for the corresponding polynomial P . This condition would reduce the components of super-
field to algebraic surfaces.

There is however an important difference from H picture. The members of super-multiplet
defined by P correspond to the coefficients of monomials of theta parameters having inter-
pretation as analogs of oscillator operators. Super-partners would be in this sense point-like
objects unlike in H approach, where this can hold true only approximately.

Could H- and M8 pictures be equivalent and could one understand the breaking of SUSY in
this framework?

1. M8 − H correspondence as a map of associative space-time regions from M8 to minimal
surfaces in H makes sense for the external particles and thus at boundaries of CDs. It
assigns to a point of the partonic 2-surface X2 ⊂ X4 ⊂M8 the quaternionic tangent space of
X4 at it characterized by a point of CP2. M4 point is mapped to itself. There is additional
condition requiring that quaternionic tangent space contains fixed complex sub-space but
this is not relevant now.
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2. Could this map be one-to-many so that super-field component describing purely many-
fermion state would be mapped to several points at the image of X2 in H describing multi-
local many-fermion state? This is possible if the points in M8 are singular in the sense that
the action of a normal subgroup H of Galois group Gal leaves the point invariant so that
Gal reduces to Gal/H: symmetry breaking takes place.

The tangent spaces of the degenerate points are however different and are mapped to different
points of CP2 in M8−H correspondence making sense at boundaries of CDs but not in their
interiors. One would have several fermions with same M4 coordinates but different CP2

coordinates and the outcome would be many-fermion state. In the case of 2-fermion state
the different values of CP2 coordinates would be associated with the opposite throats of a
wormhole contact whose orbit defines light-like 3-surface. Could light-likeness inducing the
reduction of the metric dimension of the tangent space from 4 to 3 somehow induce also this
degeneration?

3. Could symmetry breaking as a degeneration of Gal action to that for Gal/H take place
for the conditions defining the 4-surfaces associated with the higher components of super-
octonion and induce the breaking of SUSY at the level of M8 manifesting as the non-locality
of the fermion state at the level of H? This degeneration would be a typical manifestation
of quantum criticality: criticality in general means co-incidence of two roots.

3.4 Summary

Since the contribution means in well-defined sense a breakthrough in the understanding of TGD
counterparts of scattering amplitudes, it is useful to summarize the basic results deduced above as
a polished answer to a Facebook question.

There are two diagrammatics: Feynman diagrammatics and twistor diagrammatics.

1. Virtual state is an auxiliary mathematical notion related to Feynman diagrammatics coding
for the perturbation theory. Virtual particles in Feynman diagrammatics are off-mass-shell.

2. In standard twistor diagrammatics one obtains counterparts of loop diagrams. Loops are
replaced with diagrams in which particles in general have complex four-momenta, which
however light-like: on-mass-shell in this sense. BCFW recursion formula provides a powerful
tool to calculate the loop corrections recursively.

3. Grassmannian approach in which Grassmannians Gr(k, n) consisting of k-planes in n-D space
are in a central role, gives additional insights to the calculation and hints about the possible
interpretation.

4. There are two problems. The twistor counterparts of non-planar diagrams are not yet un-
derstood and physical particles are not massless in 4-D sense.

In TGD framework twistor approach generalizes.

1. Massless particles in 8-D sense can be massive in 4-D sense so that one can describe also
massive particles. If loop diagrams are not present, also the problems produced by non-
planarity disappear.

2. There are no loop diagrams- radiative corrections vanish. ZEO does not allow to define them
and they would spoil the number theoretical vision, which allows only scattering amplitudes,
which are rational functions of data about external particles. Coupling constant evolution
- something very real - is now discrete and dictated to a high degree by number theoretical
constraints.

3. This is nice but in conflict with unitarity if momenta are 4-D. But momenta are 8-D in
M8 picture (and satisfy quaternionicity as an additional constraint) and the problem dis-
appears! There is single pole at zero mass but in 8-D sense and also many-particle states
have vanishing mass in 8-D sense: this gives all the cuts in 4-D mass squared for all many-
particle state. For many-particle states not satisfying this condition scattering rates vanish:
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these states do not exist in any operational sense! This is certainly the most significant new
discovery in the recent contribution.

BCFW recursion formula for the calculation of amplitudes trivializes and one obtains only
tree diagrams. No recursion is needed. A finite number of steps are needed for the calculation
and these steps are well-understood at least in 4-D case - even I might be able to calculate
them in Grassmannian approach!

4. To calculate the amplitudes one must be able to explicitly formulate the twistorialization in
8-D case for amplitudes. I have made explicit proposals but have no clear understanding yet.
In fact, BCFW makes sense also in higher dimensions unlike Grassmannian approach and it
might be that the one can calculate the tree diagrams in TGD framework using 8-D BCFW
at M8 level and then transform the results to M4 × CP2.

What I said above does yet contain anything about Grassmannians.

1. The mysterious Grassmannians Gr(k, n) might have a beautiful interpretation in TGD: they
could correspond at M8 level to reduced WCWs which is a highly natural notion at M4×CP2

level obtained by fixing the numbers of external particles in diagrams and performing num-
ber theoretical discretization for the space-time surface in terms of cognitive representation
consisting of a finite number of space-time points.

Besides Grassmannians also other flag manifolds - having Kähler structure and maximal sym-
metries and thus having structure of homogenous space G/H - can be considered and might
be associated with the dynamical symmetries as remnants of super-symplectic isometries of
WCW.

2. Grassmannian residue integration is somewhat frustrating procedure: it gives the amplitude
as a sum of contributions from a finite number of residues. Why this work when outcome is
given by something at finite number of points of Grassmannian?!

In M8 picture in TGD cognitive representations at space-time level as finite sets of points
of space-time determining it completely as zero locus of real or imaginary part of octonionic
polynomial would actually give WCW coordinates of the space-time surface in finite resolu-
tion.

The residue integrals in twistor diagrams would be the manner to realize quantum classical
correspondence by associating a space-time surface to a given scattering amplitude by fixing
the cognitive representation determining it. This would also give the scattering amplitude.

Cognitive representation would be highly unique: perhaps modulo the action of Galois group
of extension of rationals. Symmetry breaking for Galois representation would give rise to
supersymmetry breaking. The interpretation of supersymmetry would be however different:
many-fermion states created by fermionic oscillator operators at partonic 2-surface give rise
to a representation of supersymmetry in TGD sense.

4 New insights about quantum criticality for twistor lift
inspired by analogy with ordinary criticality

Quantum criticality (QC) is one of the basic ideas of TGD. Zero energy ontology (ZEO) is second
key notion and leads to a theory of consciousness as a formulation of quantum measurement theory
making observer part of the quantum system in terms of notion of self identified as a generalized
Zeno effect or analog for a sequence of weak measurements, and solving the basic paradox of
standard quantum measurement theory, which one usually tries to avoid by introducing some
“interpretation”.

ZEO allows to see quantum theory could be seen as “square root” of thermodynamics. It
occurred to me that it would be interesting to apply this vision in the case of quantum criticality
to perhaps gain additional insights about its meaning. We have a picture about criticality in
the framework of thermodynamics: what would be the analogy in ZEO based interpretation of
Quantum TGD? Could it help to understand more clearly the somewhat poorly understood views
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about the notion of self, which as a quantum physical counterpart of observer becomes in ZEO a
key concept of fundamental physics?

The basic ingredients involved are discrete coupling constant evolution, zero energy ontology
(ZEO) implying that quantum theory is analogous to ”square root” of thermodynamics, self as
generalized Zeno effect as counterpart of observer made part of the quantum physical system,
M8 ↔ M4 × CP2 duality, and quantum criticality. A further idea is that vacuum functional is
analogous to a thermodynamical partition function as exponent of energy E = TS − PV .

The correspondence rules are simple. The mixture of phases with different 3-volumes per
particle in a critical region of thermodynamical system is replaced with a superposition of space-
time surfaces of different 4-volumes assignable to causal diamonds (CDs) with different sizes.
Energy E is replaced with action S for preferred extremals defining Kähler function in the “world
of classical worlds” (WCW). S is sum of Kähler action and 4-volume term, and these terms
correspond to entropy and volume in the generalization E = TS−PV → S. P resp. T corresponds
to the inverse of Kähler coupling strength αK resp. cosmological constant Λ. Both have discrete
spectrum of values determined by number theoretically determined discrete coupling constant
evolution. Number theoretical constraints force the analog of micro-canonical ensemble so that
S as the analog of E is constant for all 4-surfaces appearing in the quantum superposition. This
implies quantization rules for Kähler action and volume, which are very strong since αK is complex.

This kind of quantum critical zero energy state is created in unitary evolution created in single
step in the process defining self as a generalized Zeno effect. This unitary process implying time
de-localization is followed by a weak measurement reducing the state to a fixed CD so that the clock
time identified as the distance between its tips is well-defined. The condition that the action is
same for all space-time surfaces in the superposition poses strong quantization conditions between
the value of Kähler action (Kähler coupling strength is complex) and volume term proportional to
cosmological constant. The outcome is that after sufficiently large number of steps no space-time
surfaces satisfying the conditions can be found, and the first reduction to the opposite boundary
of CD must occur - self dies. This is the classical counterpart for the fact that eventually all state
function reduction leaving the members of state pairs at the passive boundary of CD invariant are
made and the first reduction to the opposite boundary remains the only option.

The generation of magnetic flux tubes provides a way to satisfy the constancy conditions for
the action so that the existing phenomenology as well as TGD counterpart of cyclic cosmology
as re-incarnations of cosmic self follows as a prediction. This picture allows to add details to the
understanding of the twistor lift of TGD at classical level and allows an improved understanding
of the p-adic length scale evolution of cosmological constant solving the standard problem caused
by the huge value of Λ. The sign of Λ is predicted correctly.

This picture generalizes to the twistor lift of TGD and cosmology provides an interesting
application. One ends up with a precise model for the p-adic coupling constant evolution of
the cosmological constant Λ explaining the positive sign and smallness of Λ in long length scales as
a cancellation effect for M4 and CP2 parts of the Kähler action for the sphere of twistor bundle in
dimensional reduction, a prediction for the radius of the sphere of M4 twistor bundle as Compton
length associated with Planck mass (2π times Planck length), and a prediction for the p-adic
coupling constant evolution for Λ and coupling strength of M4 part of Kähler action giving also
insights to the CP breaking and matter antimatter asymmetry. The observed two values of Λ could
correspond to two different p-adic length scales differing by a factor of

√
2.

4.1 Some background

Some TGD background is needed to understand the ideas proposed in the sequel.

4.1.1 Discrete coupling constant evolution

The most obvious implication is discrete coupling constant evolution in which the set of values
for coupling constants is discrete and analogous to the set of the critical values of temperature
[L17] (see http://tinyurl.com/y9hlt3rp). Zeros of Riemann Zeta or its slight modification
suggest themselves as the spectrum for the Kähler coupling strength. This discrete coupling
constant evolution requires that loop corrections vanish. This vision is realized concretely in
the generalization of the twistorial approach to the construction of scattering amplitudes [L17].

http://tinyurl.com/y9hlt3rp
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Non-manifest unitarity is the basic problem of the twistor Grassmann approach. A general-
ization of the BCFW formula without the loop corrections gives scattering amplitudes satisfying
unitary constraints. The needed cuts are be replaced by sequences of massless poles in 8-D sense
and cuts approximate these sequences (consider electrostatic analogy in which line charge approx-
imates a discrete sequences of poles). The replacement cuts with sequences of poles is forced by
the number theoretic discretization of momenta so that they belong to an extension of rationals
defining the adele [L7] (see http://tinyurl.com/ycbhse5c).

Non-planar loop diagrams are a chronic problem of twistor approach since there is no general
rule loop integrations allowing to combine them neatly. Also this problem disappears now.

M8 − H duality plays key role in the twistorial approach [L6] (see http://tinyurl.com/

yd43o2n2). In the ordinary twistor approach all momenta are light-like so that it does not apply
to massive particles. TGD solves this problem: at M8 level one has quaternionic light-like 8-D
momenta, which correspond to massive 4-D momenta in M8 picture. In H = M4 × CP2 picture
ground states of super-conformal representations are constructed in terms of spinor harmonics of
in M4×CP2, which are products plane-waves characterized by massive 4-momenta and color wave
functions associated with massless Dirac equation in H. Also the analog of Dirac equation for the
induced spinor fields at space-time surface is massless [K29] (see http://tinyurl.com/yc2po5gf).

4.1.2 ZEO and self as generalized Zeno effect

ZEO allows to see self as generalized Zeno effect [L9](see http://tinyurl.com/ycxm2tpd).

1. Generalized Zeno effect can be regarded as a sequence of “small” state function reductions
analogous to weak measurements performed at active boundary of causal diamond (CD).
In usual Zeno effect the state is unaffected under repeated measurements: now the same is
true at passive boundary of CD whereas the members of state pairs at the active boundary
change. The unitary evolutions followed by these evolutions leave thus passive boundary and
states at it invariant whereas active boundary shifts farther away from the passive boundary
and the members of state pairs at it are affected. This gives rise to the experienced flow of
time.

The change of states is characterized unitary S-matrix. Each unitary evolution involves de-
localization in the space of CDs so that one has quantum superposition of CDs with sizes not
smaller than the CD to which the state was localized at previous reduction. This gives rise to
a steady increase of clock time defined as the distance between the tips of CD. Self dies and
reincarnates as a self with opposite direction of clock time when the first unitary evolution
at the passive boundary followed by a weak measurement at it takes place. Self dies when
all observables leaving the states at passive boundary invariant are measured. There are no
choices to be made anymore.

2. Quantum TGD as “square root ” of thermodynamics means that the partition function of
thermodynamics is replaced by its “square root” defined by the vacuum functional identified
as exponent of Kähler function of “world of classical worlds” (WCW). Kähler function is
analogous to energy E = TS − PV in thermodynamics with T replaced with the inverse
of complex Kähler coupling strength and P with cosmological constant, which have discrete
spectrum of values.

One has the analog of micro-canonical ensemble for which only states with given energy are
possible. Now the action (Kähler function) is same for the space-time surfaces assignable to
the zero energy states involved. This condition allows to get rid of the exponentials defin-
ing the vacuum functional otherwise appearing in the scattering amplitudes. This condition
is strongly suggested by number theoretic universality for which these exponentials are ex-
tremely troublesome since both the exponent and exponential should belong to the extension
of rationals used.

This implies a huge simplification in the construction of the amplitudes [L6] (see http:

//tinyurl.com/yd43o2n2) because finite measurement resolution effectively replaces space-
time surfaces with their cognitive representation defined by a discrete set of space-time points
with embedding space coordinates in the extension of rationals defining the adele.This repre-
sentation codes for the space-time surface if it corresponds to zero locus of real or imaginary

http://tinyurl.com/ycbhse5c
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yc2po5gf
http://tinyurl.com/ycxm2tpd
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yd43o2n2
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part (in quaterionic sense) of an octonionic polynomial with real coefficients. WCW coordi-
nates are given by the cognitive representation and are discrete. One is led to enumerative
algebraic geometry.

4.1.3 M8 −H duality

M8 − H duality [L6] (see http://tinyurl.com/yd43o2n2) states that the purely algebraic dy-
namics determined by the vanishing of real or imaginary part for octonionic polynomial is dual to
the dynamics dictated by partial differential equations for an action principle.

1. There are two options for how to identify M8 counterparts of space-time surfaces in terms
roots of four polynomials defining real or imaginary part of an octonionic polynomial obtained
as a continuation of real polynomial.

(a) One can allow all roots x + iy and project them to M4 or M8 from M8
c . One can

decompose these surfaces to regions with associative (quaternionic) tangent space or
normal space and they are analogous to external particles of a twistor diagram entering
CD and to interaction regions in which associativity does not hold true and which
correspond to interiors of CD. One can criticizes the projection as somewhat adhoc
process.

(b) It became later clear that one can also consider space-time surface as Minkowskian real
regions so that the projection to a sub-space M4 ⊂ M8

c of complexified octonions is
invariant under the conjugation i → −i, Ik → −Ik, where Ik are quaternionic units.
M4
c parts of space-time coordinates would be form m = m0 + iIkm

k, m0,mk real. This
conditions need not or even cannot be posed on E4

c coordinates since M8 −H duality
assigns to the tangent space of space-time surface a CP2 point irrespective of whether
the point is in M8

c or M8.

2. At the level of H external particles correspond to minimal surfaces, which are also extremals
of Kähler action and in accordance with the number theoretical universality and quantum
criticality do not depend on the coupling parameters at all. They are obtained by a map
taking the 4-surfaces in M8 to those in H. These conditions should be equivalent with the
condition that the 6-D surfaces X6 in 12-D twistor space of H define twistor bundles of
space-time surfaces X4.

3. The space-time regions in the interiors of CDs are not minimal surfaces so that Kähler action
and volume term couple dynamically and coupling parameters characterize the extremals.
The analog is motion of point like particle in the Maxwell field defined by induced Kähler
form: this is generalize to the motion of 3-D object with purely internal Kähler field and
that associated with wormhole contacts and mediating interaction with larger and smaller
space-time sheets.

In these regions the map mediating M8−H duality does not exist since one cannot label the
tangent spaces of space-time surface by points of CP2. The non-existence of this map is due
to the failure of either associativity of tangent space or normal space at M8 level. The initial
values at boundaries of CD for the incoming preferred extremals however allows to fix the
time evolution in the interior of CD. This is essentially due to the infinite number of gauge
conditions for the super-symplectic algebra.

It has later turned out [L17] that it might be possible to take the associativity conditions to
extreme in the sense that they would hold everywhere apart from a set of discrete points and
space-time surface would be minimal surfaces at all points except this finite set of points.
There would be transfer of conserved quantities assignable to the volume term and the 4-D
Kähler action (coming as dimensionally reduced 6-D Kähler action for the twistor lift of
TGD) only at these points and elementary fermions would be naturally assignable to these
points.

http://tinyurl.com/yd43o2n2
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4.1.4 Quantum criticality

Quantum criticality is a further key notion of TGD and was originally motivated by the idea that
Kähler coupling strength must be unique in order that the theory is unique.

1. The first implication of quantum criticality is quantization of various coupling strengths as
analogs of critical temperature and of other critical parameters such as pressure. This quan-
tization is required also by number theoretical universality in the adelic approach: coupling
constant parameters must belong to the extension of rationals used.

2. Second implication of quantum criticality is a huge generalization of conformal symmetries to
their 4-D analogs. The key observation is that 3-D light-like surfaces allow a generalization of
conformal invariance to get the Kac-Moody algebra associated with the isometries of H (at
least) as symmetries. In the case of boundary of CD this leads to what I call supersymplectic
invariance: the symplectic transformations of the two components of δCD × CP2 act as
isometries of WCW. This algebra allows a fractal hierarchy of sub-algebras isomorphic to the
algebra itself and gauge conditions state that this kind of sub-algebra and its commutator
with the entire algebra annihilate physical states and classical Noether charges for them
vanish [L17] (see http://tinyurl.com/y9hlt3rp). By quantum classical correspondence
(QCC) the eigenvalues of quantum charges are equal to the classical Noether charges in
Cartan algebra of supersymplectic algebra.

3. The third implication is the understanding of preferred extremals in H = M4×CP2 and their
counterparts at the level of M8. Associativity condition at the level of M8 satisfied by the
spacetime surfaces representing external particles arriving into CD corresponds to quantum
criticality posing conditions on the coefficients of octonionic polynomials. The space-time
regions inside CD the space-time surfaces do not satisfy associativity conditions and are not
critical.

4. TGD as “square root” of thermodynamics idea suggests a fourth application of quantum
criticality. This analogy might allow a better understanding of self as Zeno effect. This
application will be studied in the sequel.

4.2 Analogy of the vacuum functional with thermodynamical partition
function

Consider first the thermodynamical view about criticality. I have discussed criticality from slightly
different perspective in [L13] (see http://tinyurl.com/ydhknc2c).

1. Thermodynamical states in critical region, where phases with different densities - say liquid
and gas - are present serves as a basic example. This situation is actually a problem of the
approach relying on partition function as van der Waals equation predicting 3 different den-
sities for the density of molecules as function of pressure and temperature. Cusp catastrophe
gives a view about situation: number density n is behavior variable and P and T are the
control variables.

2. The experimental fact is that the density is constant as function of volume V for fixed
temperature T whereas van der Waals predicts dependence on V . The phase corresponding
to the middle sheet of the cusp is not at all present and the portions of liquid and gas phases
vary. Maxwell’s rules (area rule and lever rule) allow to solve the problem plaguing actually
all approaches based on partition function. Lever rule assumes that there are actually two
kinds of “elements” present. Molecules are the first element but what the second element
could be? TGD identification is as magnetic tubes [L13].

3. In the more general case in which the catastrophe is more general than cusp and has more
sheets, two or more phases with different volumes are present and their volumes and possibly
other behavior variables analogous to volume vary at criticality.

4. If one applies criticality in stronger sense by requiring that the function which has extremum
as function of n at the surface represented by cusp catastrophe has same value at different

http://tinyurl.com/y9hlt3rp
http://tinyurl.com/ydhknc2c
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sheets of the cusp, only the boundary line of the cusp having V-shaped projection in (p, T )-
plane remains.

4.2.1 Generalization of thermodynamical criticality to TGD context

The generalization of this picture to TGD framework replaces the mixture of thermodynamical
phases with different volumes with quantum superposition of space-time surfaces with different
4-volumes assignable to CDs with different quantized sizes (by number theoretical constraints).

1. Vacuum functional, which is exponent of Kähler function of WCW expressible as Kähler
action for its preferred extremal, can be regarded as a complex “square root” of thermody-
namical partition function Z meaning that its real valued modulus squared is analogous to
partition function [K25, K10, K4, K21].

Action S, whose value for preferred extremal defines Kähler function of WCW serves as the
analog of energy assumed to have expression E = PV − TS, which is not generally true but
implied by the condition that E is homogenous as function of conjugate variable pairs P, V
and T, S. The analogs of P and T correspond to coupling constant parameters. Pressure p
is replaced with the coefficient of volume term in action - essentially cosmological constant.
T is replaced with the coefficient 1/αK of Kähler action representing entropy (or negentropy
depending on situation).

Remark: Note that T corresponds now to 1/αK rather than αK analogous to temperature
when Kähler action SK is regarded as analog of energy E rather than entropy S.

2. Quantum criticality in the sense of ZEO is the counterpart for the criticality in thermody-
namics. The mixture of thermodynamical phases with different 3-volumes is replaced with
quantum superposition of zero energy states with 4-surface having same action S but dif-
ferent 4-volumes assignable to different CDs. Critical system consists of several phases with
same values of coupling parameters αK and Λ but different 4-volume.

There is also a number theoretic constraint identifiable as the counterpart of the constant
energy condition defining micro-canonical ensemble. The exponent of action S must cancel
from the scattering amplitudes to avoid serious existence problems in the p-adic sectors of
adele associated with given extension of rationals. Criticality means thus that exp(S) has
same value for all preferred extremals involved. Real parts are same for all of them and
imaginary parts of the action exponential are fixed modulo multiple of 2π. The analog in
the case of van der Waals equation of state that the allowed states are associated with the
boundary of the projection of the cusp catastrophe to (p, T ) plane.

Critical quantum states are superpositions of space-time surfaces with different 4-volumes
associated with CDs with quantized size scales (distance between tips) and are generated
by unitary evolution. The value of time as size of CD (distance between its tips) is not
well-defined in these states.

Remark: Quantum critical states are “timeless” as meditative practices would express it.

This kind of superposition is created by unitary evolution operator at each step in the se-
quence of unitary evolutions followed by a state function reduction measuring clock time
as the distance between the tips of CD. Localization to single CD is the outcome and only
superposition with same time-scale and same S but possibly different 4-volumes.

3. The condition that action is same is very strong and applies to both real and imaginary parts
of action (αK is complex). The proposal [L2, L17] (see http://tinyurl.com/yas6ofhv and
http://tinyurl.com/y9hlt3rp) is that the coupling constant evolution as p-adic length
scale p ' 2k, k prime corresponds to zero of Riemann ζ for 1/αK or is proportional to it by
rational multiplier q. For q = 1 Re(1/αK) analogous to the ordinary temperature would be
equal to Re(s) = 1/2 for the zeros at the critical line and imaginary parts would correspond
to the imaginary parts Im(s) of the zeros. Constancy of the action S would boil down to
the conditions

Re(SK) +Re(Svol) = constant , Im(SK) + Im(Svol) = constant mod 2π . (4.1)

http://tinyurl.com/yas6ofhv
http://tinyurl.com/y9hlt3rp
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Note that the condition for imaginary part is a typical quantization condition.

4-volume can can have arbitrary large values but for SK this is probably not the case -
this already by the quantization conditions. Hence one expects that there is some maximal
possible volume for preferred extremals and thus maximal distance between the tips of CDs
involved.

When the zero energy state is a superposition of only space-time surfaces with this maximal
volume, further unitary evolutions are not possible and the first state function reduction to
the opposite boundary of CD happens (death of self and reincarnation with opposite direction
of clock time). Self has finite lifetime! This would be the classical correlate for the situation in
which no quantum measurements leaving invariant the members of state pairs at the passive
boundary of CD are possible.

4.2.2 The constancy of Re(S)

How the cancellation of real part of ∆(Re(SK)) + ∆(Re(Svol)) could take place?

1. The physical picture is that the time evolution giving rise to self starts from flux tube
dominated phase obtained in the first state function reduction to the opposite boundary of CD
and that also asymptotically one obtains flux tube dominated phase again but the flux tubes
are scaled up. This is the TGD view about quantum cosmology as a sequences of selves and of
their time reversals [K23] [L3] (see http://tinyurl.com/y7fmaapa). This picture suggests
that the generation of magnetic flux tubes allows to satisfy the ∆Re(SK) + ∆Re(Svol) = 0
condition: in Minkowskian regions the change magnetic part of ∆Re(SK) tends to cancel
∆Re(Svol) whereas the electric part is of the same sign. Therefore magnetic flux tubes are
favored.

If the sign of the volume term is negative the exponential defining the vacuum functional
decreases with volume. If the relative sign of SK and Svol is negative, the magnetic part of
the action is positive. The generation of flux tubes generates positive magnetic action ∆SK
helping to cancel the change ∆Svol.

The additional conditions coming from the imaginary parts are analogous to semiclassical
quantization conditions.

2. The proposed picture can be realized by a proper choice of the relative signs of volume term
and Kähler action term. The relative sign comes automatically correct for a positive value
of cosmological constant Λ. For this choice the total action density is

Ltot = (LK +
Λ

8πG
)
√
g4 . (4.2)

This choice gives positive vacuum energy density associated with the volume term.

3. The density of Kähler action associated with CP2 degrees of freedom is

LK,CP2
= − 1

4g2
JµνJµν . (4.3)

The action is proportional to E2 − B2 in Minkowskian regions and magnetic term has sign
opposite to that of volume term so that these terms can compensate with the condition
guaranteeing constant action. The overall sign of action in the exponent can be chosen
so that the exponential vanishes for large volumes. This suggests that the volume term is
negative in the vacuum functional (Kähler function as negative of the action for preferred
extremal). Euclidian regions, where CP2 part of Kähler action is of form B2 +E2 and tends
to cancel the volume term.

http://tinyurl.com/y7fmaapa
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4. There is also Kähler action in M4 degrees of freedom. In twistor lift dimensional reduction
occurs for 6-D Kähler action and M4 part and CP2 part contribute to Kähler action. The
S2 parts of these actions must give rise to a cosmological constant decreasing like the inverse
of p-adic length scale squared. This is achieved if the Kähler contributions have opposite
signs so that M4 contribution has a non-standard sign. This is possible if M4 Kahler form is
proportional to imaginary unit and M4 Kähler coupling strength contains additional scaling
factor.

The induced Kähler form must be sum of the M4 parts and CP2 parts and also the action
must be sum of M4 and CP2 parts. This is achieved if the charge matrices of these two
Kähler forms are orthogonal (the trace of their product vanishes). Since CP2 part couples
to both 1 and Γ9 giving rise to Kähler charges proportional to 1 for quarks and 3 for leptons
having opposite chiralities, the corresponding charges would be proportional to 3 for quarks
and -1 for leptons.

The imaginary unit multiplying M4 Kähler form disappears in action and field equations
and one obtains

LK = − 1

4g2
K

(ε2J2(M4) + J2(CP2) , (4.4)

where ε is purely imaginary so that one has ε2 < 0. Since the fields are induced, negative
sign for M4 Kähler action is not expected to lead to difficulties if M4 term is small.

Some examples are in order.

1. For cosmic string extremals Kähler action is multiple of volume action. The condition that
the two actions cancel would give a constraint between Λ and αK . Net string tension would
be reduced from the value determined by CP2 scale to a rather small value. This need not
occur generally but might be true for very short p-adic length scales, where Λ is large as
required by the large value of string tension associated with Kähler action. For thickened
cosmic strings (magnetic flux tubes) the value of string tension assignable to Kähler action
is reduced and the condition can be satisfied for smaller values of Λ.

2. For CP2 type extremals assignable to wormhole contacts serving as basic building bricks of
elementary particles the action would be finite for all size scales of CD. Both magnetic and
electric contribution to the action are of same sign. For Euclidian regions with 4-D space-time
projection with so strong electric field that it changes the signature of the induced metric
the same is true.

3. One can ask whether blackhole interiors as Euclidian regions correspond to these Euclidian
space-time sheets or to highly tangled magnetic flux tubes with length considerably longer
than Schwartschild radius for which cancellation also can occur (see http://tinyurl.com/

ydhknc2c). Both pictures are consistent in many-sheeted space-time: magnetic flux tube
tangle could topologically condense to a space-time sheet with Euclidian signature. Can-
cellation cannot last for ever so that also blackholes are unstable against big state function
reduction changing the arrow of time. Blackhole evaporation might relate to this instability.

4.2.3 The constancy of Im(S) modulo 2π

If cosmological constant is real, the condition for the constancy of imaginary part of ∆S modulo
2π applies only to the case of SK and implies that ∆SK is fixed modulo 2π in the superposition
of space-time surfaces. If zeros of ζ [L2] (see http://tinyurl.com/yas6ofhv) or its modifica-
tion Zeta) [L17]) (see http://tinyurl.com/y9hlt3rp) give the spectrum of 1/αK the value of
∆SK,red =

∫
Tr(J2)dV is given as multiples of 2πn/y, where y is imaginary part for a zero of zeta.

The constancy of Re(S) implies that the 4-volume ∆V is quantized as multiples of 2πn/Λ. These
conditions bring in mind semiclassical quantization of the action in multiples of ~.

http://tinyurl.com/ydhknc2c
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It however turns out that twistor lift forces same phase for M4 and CP2 parts of the Kähler
action so that the quantization condition for volume is lost. The reason is that 1/αK(M4) and
1/αK(CP2) are proportional to

1

αK,6
=

1

αK,4R2
, (4.5)

where R2 has dimensions of length squared.

4.3 Is the proposed picture consistent with twistor lift of Kähler action?

Is it possible to realize the cancellation of real parts of ∆Svol and ∆SK (modulo 2π for imaginary
part) for the twistor lift of Kähler action? Does the sign of the cosmological constant Λ come
out correctly (wrong sign of Λ is the probably fatal problem of M-theory)? Can one understand
the p-adic evolution of the cosmological constant Λ implying that Λ becomes small in long p-adic
length scales and thus solving the key problem related to Λ?

4.3.1 Dimensional reduction of the twistor lift

The condition that the induction of the product of twistor bundles of M4 and CP2 to the space-
time surface gives the twistor bundle of the space-time surface is conjectured to determine the
dynamics of the space-time surfaces. A generalization of 4-D Kähler action to 6-D Kähler action is
proposed to give this dynamics, and to dimensionally reduce to a sum of Kähler actions associated
with M4 and CP” Kähler forms plus cosmological term.

1. Twistor bundles are sphere bundles. For the extremals of 6-D Kähler action dimensional
reduction takes place since 6-D extremals must be twistor bundle of corresponding space-
time surface. Therefore S2 degrees of freedom are frozen and become non-dynamical.

One could say that the spheres appearing as fibers of twistor bundles of M4 and CP2 are
identified in the embedding map. The simplest correspondence between S2(M4) and S2(CP2)
identifies (θ1, φ1) for S2(M4) with (θ2, φ2) for S2(CP2). This means that S2(X6) is mapped
in the same manner to S2(M4) and S2(CP2).

One can imagine also correspondence with n-fold winding based on the identification (θ1, φ1) =
(θ2, nφ2). The area of S2(M4) are becomes n-fold and the S2 part of the Kähler action using
θ2 as coordinate transforms as SK(S2(M4)n = 1)→ SK(S2(M4)n) = n2SK(S2(M4)). n = 1
is the most plausible option physically.

2. What the proposed general vision implies for cosmological constant as a sum of S2(M4)
and S2(CP2) parts of 6-D Kähler action giving in dimensional reduction 4-D volume term
responsible for the cosmological constant and 4-D Kähler action. If the charge matrices of
M4 and CP2 parts of Kähler form are orthogonal one can induce Kähler form. If the coupling
to M4 Kähler form is imaginary, M4 and CP2 contributions to the total Kähler action have
opposite signs. M4 and CP2 parts have opposite signs of magnetic terms and the sign of
CP2 magnetic part is opposite to the volume term.

3. The dimensionally reduced action is obtained by integrating the 6-D Kähler action over S2

fiber. The integration gives the area A(S2) of the S2 fiber, which in the metric induced from
the spheres of twistor space of X4 is given by

A(S2) = (1 + r2)4πR2(S2(CP2)) , r = R(S2(CP2))
R(S2(M4)) . (4.6)

The very natural but un-checked assumption is that the radius of S2(CP2) equals to the
radius R(CP2) of the geodesic sphere of CP2:

R(S2(CP2)) = R(CP2) . (4.7)
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One obtains

L = − 1

16παK,6

[
J2(CP2) + ε2J2(M4) + J2(S2(CP2)) + ε2J2(S2(M4))

]
A(S2) . (4.8)

The immediate conclusion is that the phases of Kähler action and volume term are same so
that the quantization condition for imaginary part of the action is not obtained.

4. The Kähler coupling strengths αK(CP2) and αK(M4) can be read from the first term

1
αK(CP2) = 1

αK,44π(1+r2)
R2(CP2)

R2 ,

1
αK(M4) = ε2

αK(CP2) .

(4.9)

One can choose the factor R2 to be the area of S2 by suitably renormalizing 1/αK . This
would give simpler expression

1
αK(CP2) = 1

αK,4
,

1
αK(M4) = ε2

αK(CP2) .

(4.10)

5. One can deduce constraints on the value of the ε2 from the smallness of the contributions
of the corresponding U(1) gauge potential to the ordinary Coulomb potential affecting the
energies of atoms by a coupling proportional to mass number A rather than Z as for Coulomb
potential. This allows to distinguish between isotopes. This gives very stringent bounds
on ε2. I have earlier derived an upper bound treating this term as a perturbation and
by considering the contribution to the Coulomb energy of hydrogen atom [L5] (see http:

//tinyurl.com/y8xcem2d). One obtains ε2 ≤ 10−10. The upper bound is also the size scale
of CP breaking induced by M4 part and characterizes also matter-antimatter asymmetry.

4.3.2 Cosmological constant

Consider next the prediction for the cosmological constant term.

1. The S2 parts of the actions have constant values. The natural normalization of Kähler
form of J(S2(X)), X = M4, CP2 is as J2 = −2. This a convention is the overall scale of
normalization can be chosen freely by rescaling 1/αK,4. Taking into account the fact that
index raising is carried out by induced metric one finds that the cosmological term given the
sum of M4 and CP2 contributions to S2 part of Kähler action multiplied by A(S2)

Λ =
1

16παK

2

(1 + r2)R2(CP2)
(1 +

ε2

r4
) . (4.11)

If ε is imaginary one can achieve the cancellation giving rise to small cosmological constant.

2. The empirical condition on cosmological constant (see https://en.wikipedia.org/wiki/

Cosmological_constant) can be expressed in terms of critical mass density corresponding
to flat 3-space as

Λ = 3ΩΛH
2 , Ω ' .691 ,

H = da
dt a

da
dt = 1√

gaa
.

(4.12)

http://tinyurl.com/y8xcem2d
http://tinyurl.com/y8xcem2d
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Cosmological_constant
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Here a corresponds to the proper time for the light-cone M4
+ and t for the proper time for the

space-time surface, which is Lorentz invariant under the Lorentz group leaving the boundary
δM4

+.

From this one obtains a condition for allowing to get idea about the discrete evolution of Λ
with p-adic length scale occurring in jumps:

1 +
ε2

r4
= 24παK(1 + r2)R2(CP2)× ΩΛH

2 . (4.13)

In an excellent approximation one must have ε ' r2, r = R(M4)/(CP2). One can consider
two obvious guesses. One has either R(M4) = LPl =

√
G - that is Planck length - or one

has the Compton length associated with Planck mass given by R(M4) = 2πlPl. The first
option gives in reasonable approximation r = 2−11 and ε2 = r4 = 2−44 ∼ .6 × 10−13. The
second option gives ε2 ' .9 × 10−10. This values corresponds roughly to the CP2 breaking
parameter and matter-antimatter asymmetry and M4 part of the Kähler action indeed gives
rise to CP2 breaking. I have earlier derived an upper bound for ε by demanding that the
Kähler U(1) forces does not give rise to observable effects in the energy levels of hydrogen
atom. The upper bound is of the same magnitude as the estimate for ε2 for the Compton
scale option.

3. If one accepts p-adic length scale hypothesis Lp ∝
√
p , p ' 2k [K15], one expects Λ(k) ∝

1/L(k)2 [K4] (see http://tinyurl.com/ybrhguux). How to achieve this? The only possi-
bility is that the parameter ε2 is subject to coupling constant evolution. One would have for
the cosmological constant

Λ(k) ∝ ε2

r4
− 1 ∝ 1

L2(k)
∝ 2−k . (4.14)

This would suggest for the 2-adic coupling constant evolution of ε the expression

ε2 = −r4(1−X) , X = 24παK(1 + r2)R2(CP2)× ΩΛH
2 = q × 2−k . (4.15)

where q is rational number. Note that from p-adic length scale hypothesis one has 2−k ∝
1/L2(k). One can consider also p-adic primes near powers of small prime in which case one
obtains different evolution.

4. For ΩΛ constant this would predict quantization of Hubble constant as ΩΛH
2 ∝ 1/L(k)2

determined by näıve scaling dimension. The ratio of Hubble constants for two subsequent
scales would be H(k)/H(k+1) =

√
2 if Ω is constant. The observed - and poorly understood

- variation of Hubble constant from cosmological studies and distance ladder studies is in
the range 50 − 73.2 km/s/Mpc. Cosmological studies correspond to longer scales so that
the smaller value of H is consistent with the decrease of H. The ratio of these upper
and lower bounds is 1.46 <

√
2 ' 1.141 (see http://tinyurl.com/yd6m8sca and http:

//tinyurl.com/ycr4ffm4).

Remark: The uncertainty in the value of Hubble constant is reflected as uncertainty in
the distances D deduced from cosmic redshift z ' HD/c. This is taken into account in the
definition of cosmological distant unit h−1Mpc, where h is in the range .5− .75 corresponding
to a scale factor 1.5 rather near to

√
2.

5. Piecewise constant evolution means that acceleration parameter is positive since constant
value of H gives

d2a

dt2
=

(da/dt)2

a
= aH2 > 0 . (4.16)

http://tinyurl.com/ybrhguux
http://tinyurl.com/yd6m8sca
http://tinyurl.com/ycr4ffm4
http://tinyurl.com/ycr4ffm4
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If the phase transitions reducing H by factor 1/2 occur at a(k) = 2k/2a0, one has

d2a

dt2
∝ 2−k/2 . (4.17)

Acceleration would be reduced gradually with rate determined by its näıve scaling dimension.

4.3.3 Solution of Hubble constant discrepancy from the length scale dependence of
cosmological constant

One can critize this proposal. The recent best values of the Hubble constant are 67.0 km/s/Mpc
and and 73.5 km/s/Mpc and their ratio is about 1.1 rather than

√
2. Therefore the hypothesis

that H satisfies p-adic length scale hypothesis might be too strong. In the following a proposal in
which the variation of H could be due to the variation of cosmological constant Λ satisfying p-adic
length scale hypothesis is discussed.

The discrepancy of the two determinations of Hubble constant has led to a suggestion that new
physics might be involved (see http://tinyurl.com/yabszzeg).

1. Planck observatory deduces Hubble constant H giving the expansion rate of the Universe
from CMB data something like 360,000 y after Big Bang, that is from the properties of
the cosmos in long length scales. Riess’s team deduces H from data in short length scales
by starting from galactic length scale and identifies standard candles (Cepheid variables),
and uses these to deduce a distance ladder, and deduces the recent value of H(t) from the
redshifts.

2. The result from short length scales is 73.5 km/s/Mpc and from long scales 67.0 km/s/Mpc
deduced from CMB data. In short length scales the Universe appears to expand faster. These
results differ too much from each other. Note that the ratio of the values is about 1.1. There
is only 10 percent discrepancy but this leads to conjecture about new physics: cosmology has
become rather precise science!

TGD could provide this new physics. I have already earlier considered this problem but have
not found really satisfactory understanding. The following represents a new attempt in this respect.

1. The notions of length scale are fractality are central in TGD inspired cosmology. Many-
sheeted space-time forces to consider space-time always in some length scale and p-adic length
scale defined the length scale hierarchy closely related to the hierarchy of Planck constants
heff/h0 = n related to dark matter in TGD sense. The parameters such as Hubble constant
depend on length scale and its value differ because the measurements are carried out in
different length scales.

2. The new physics should relate to some deep problem of the recent day cosmology. Cosmo-
logical constant Λ certainly fits the bill. By theoretical arguments Λ should be huge making
even impossible to speak about recent day cosmology. In the recent day cosmology Λ is
incredibly small.

3. TGD predicts a hierarchy of space-time sheets characterized by p-adic length scales (Lk) so
that cosmological constant Λ depends on p-adic length scale L(k) as Λ ∝ 1/GL(k)2, where
p ' 2k is p-adic prime characterizing the size scale of the space-time sheet defining the sub-
cosmology. p-Adic length scale evolution of Universe involve as sequence of phase transitions
increasing the value of L(k). Long scales L(k) correspond to much smaller value of Λ.

4. The vacuum energy contribution to mass density proportional to Λ goes like 1/L2(k) being
roughly 1/a2, where a is the light-cone proper time defining the “radius” a = R(t) of the
Universe in the Robertson-Walker metric ds2 = dt2 − R2(t)dΩ2. As a consequence, at long
length scales the contribution of Λ to the mass density decreases rather rapidly.

Must however compare this contribution to the density ρ of ordinary matter. During radi-
ation dominated phase it goes like 1/a4 from T ∝ 1/a and form small values of a radiation

http://tinyurl.com/yabszzeg
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dominates over vacuum energy. During matter dominated phase one has ρ ∝ 1/a3 and also
now matter dominates. During predicted cosmic string dominated asymptotic phase one has
ρ ∝ 1/a2 and vacuum energy density gives a contribution which is due to Kähler magnetic
energy and could be comparable and even larger than the dark energy due to the volume
term in action.

5. The mass density is sum ρm + ρd of the densities of matter and dark energy. One has
ρm ∝ H2. Λ ∝ 1/L2(k) implies that the contribution of dark energy in long length scales
is considerably smaller than in the recent cosmology. In the Planck determination of H it
is however assumed that cosmological constant is indeed constant. The value of H in long
length scales is under-estimated so that also the standard model extrapolation from long to
short length scales gives too low value of H. This is what the discrepancy of determinations
of H performed in two different length scales indeed demonstrate.

A couple of remarks are in order.

1. The twistor lift of TGD [K25, K4] [L14] suggests an alternative parameterization of vacuum
energy density as ρvac = 1/L4(k1). k1 is roughly square root of k. This gives rise to a pair of
short and long p-adic length scales. The order of magnitude for 1/L(k1) is roughly the same
as that of CMB temperature T : 1/L(k1) ∼ T . Clearly, the parameters 1/T and R correspond
to a pair of p-adic length scales. The fraction of dark energy density becomes smaller during
the cosmic evolution identified as length scale evolution with largest scales corresponding
to earliest times. During matter dominated era the mass density going like 1/a3 would to
dominate over dark energy for small enough values of a. The asymptotic cosmology should
be cosmic string dominated predicting 1/GT 2(k). This does not lead to contradiction since
Kähler magnetic contribution rather than that due to cosmological constant dominates.

2. There are two kinds of cosmic strings: for the other type only volume action is non-vanishing
and for the second type both Kähler and volume action are non-vanishing but the contribution
of the volume action decreases as function of the length scale.

5 Further comments about classical field equations in TGD
framework

In the sequel some remarks about field equations defining space-time surfaces in TGD framework
are made.

First three dualities at the level of field equations are discussed. These dualities are rather
obvious but extremely important concerning the physical interpretation of TGD.

The earlier proposal that external particles correspond to minimal surfaces is strengthened.
Also the interaction regions would correspond to minimal surfaces. The strongest condition would
be that the minimal surface property break down at reaction vertices only associated with partonic
2-surfaces defining the 2-D counterparts of vertices: this would mean physical exchange of classical
conserved charges between volume part of the action and Kähler action just at these points. This
condition might be too strong.

The strongest condition could mean strengthening of the strong form of holography to M4 ×
CP2 counterpart of the proposed number theoretic holography based on the notion of cognitive
representation at the level of M8 [L6] and also justification for the proposed construction of twistor
Grassmannian variants of scattering amplitudes involving also data at a discrete set of points [L17].

5.1 Three dualities at the level of field equations

The basic field equations of TGD allow several dualities. There are 3 of them at the level of basic
field equations (and several other dualities such as M8 −M4 × CP2 duality).

1. The first duality is the analog of particle-field duality. The spacetime surface describing the
particle (3-surface of H = M4×CP2 instead of point-like particle) corresponds to the particle
aspect whereas the fields inside it geometrized in terms of sub-manifold geometry correspond
to the field aspect. Particle orbit serves as wave guide for field, one might say.
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2. Second duality is particle-spacetime duality. Particle identified as 3-D surface means that
particle orbit is space-time surface glued to a larger space-time surface by topological sum
contacts. It depends on the scale used, whether it is more appropriate to talk about particle
or of space-time.

3. The third duality is hydrodynamics- massless field theory duality. Hydrodynamical equa-
tions state local conservation of Noether currents. Field equations indeed reduce to local
conservation conditions of Noether currents associated with the isometries of H. One the
other hand, these equations have interpretation as non-linear geometrization of massless wave
equation with coupling to Maxwell fields. This realizes the ultimate dream of theoretician:
symmetries dictate the dynamics completely. This is expected to be realized also at the level
of scattering amplitudes and the generalization of twistor Grassmannian amplitudes could
realize this in terms of Yangian symmetry.

Hydrodynamics-wave equations duality generalizes to the fermionic sector and involves super-
conformal symmetry.

1. What I call modified gamma matrices Γα are obtained as contractions of the partial deriva-
tives of the action defining space-time surface with respect to the gradients of embedding
space coordinate with embedding space gamma matrices [K29]. The divergence DαΓα van-
ishes by field equations for the space-time surface and this is necessary for the internal
consistency the Dirac equation (Ψ satisfies essentially the same equation as Ψ). Γα reduce
to ordinary ones if the space-time surface is M4 and one obtains ordinary massless Dirac
equation.

2. Modified Dirac equation [K29] expressess conservation of super current and actually infinite
number of super currents obtained by contracting second quantized induced spinor field with
the solutions of modified Dirac. This corresponds to the super-hydrodynamic aspect. On
the other hand, modified Dirac equation corresponds to fermionic analog of massless wave
equation.

5.2 Are space-time surfaces minimal surfaces everywhere except at 2-D
interaction vertices?

If one starts from the analogy with complex analysis, the natural hypothesis would be that singular
surfaces are co-dimension 2 surfaces - string world sheets and partonic 2-surfaces, which are at the
ends of space-time surfaces and define topological reaction vertices. Light-like 3-surfaces as partonic
orbits would be formally analogous to cuts of analytic function.

One can argue [L19] that the singular surface defines a sub-manifold giving a deltafunction like
contribution to the action density and that one can assign conserved quantities to this surface. This
requires that the singular contributions to the energy momentum tensor and canonical momentum
currents as spacetime vectors are parallel to the singular surface. There must be one time-like
or light-like direction and singular points do not satisfy this condition. There can be however an
exchange of conserved charged between Kähler and volume degrees of freedom for the singular
surfaces [L19]. One can also consider the possibility that the exchange is non-vanishing at singular
points only. This option, which is perhaps non-realistic would be the strongest and will be discussed
below.

String boundaries represent orbits of fundamental point-like fermions located at 3-D light-like
surfaces which represent orbits of partonic 2-surfaces. String world sheets are minimal surfaces
and correspond to stringy objects associated with say hadrons. There are also degrees of freedom
associated with space-time interior. One have objects of various dimension which all are minimal
surfaces. Modified Dirac equation extends the field equations to supersymmetric system and assigns
fermionic degrees of freedom to these minimal surfaces of varying dimension.

From the physics point of view, the singular surfaces are analogous to carriers of currents acting
as point- and string-like sources of massless field equations (more general option allows also string
world sheets as carriers of currents).

The action S determining space-time surfaces as preferred extremals follows from twistor lift
[K25, K21, K4, L17] and equals to the sum of volume term V ol multiplied by the TGD counterpart
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of cosmological constant and Kähler action SK . The field equation is a geometric generalization of
d’Alembert (Laplace) equation in Minkowskian (Eucidian) regions of space-time surface coupled
with induced Kähler form analogous to Maxwell field. Generalization of equations of motion for
particle by replacing it with 3-D surface is in question and the orbit of particle defines a region of
space-time surface.

1. Zero energy ontology (ZEO) suggests that the external particles arriving to the boundaries of
given causal diamond (CD) are like free massless particles and correspond to minimal surfaces
as a generalization of light-like geodesic. This dynamic reduces to mere algebraic conditions
and there is no dependence on the coupling parameters appearing in S. In contrast to this,
in the interaction regions inside CDs there could be a coupling between V ol and SK due to
the non-vanishing divergences of energy momentum currents associated with the two terms
in action cancelling each other.

2. Similar algebraic picture emerges from M8 − H duality [L6] at the level of M8 and from
what is known about preferred extremals of S assumed to satisfy infinite number of super-
symplectic gauge conditions at the 3-surfaces defining the ends of space-time surface at the
opposite boundaries of CD.

At M8 side of M8−H duality associativity is realized as quaternionicity of either tangent or
normal space of the space-time surface. The condition that there is 2-D integral distribution
of sub-spaces of tangent spaces defining a distribution of complex planes as subspaces of
octonionic tangent space implies the map of the space-time surface in M8 to that of H.
Given point m8 of M8 is mapped to a point of M4 ×CP2 as a pair of points (m4, s) formed
by M4 ⊂ M8 projection m4 of m8 point and by CP2 point s parameterizing the tangent
space or the normal space of X4 ⊂M8.

Remark: The assumption about integrable distribution of M2(x) defining string world sheet
in M4 might be too general: M2x) could not depend on x.

If associativity or even the condition about the existence of the integrable distribution of 2-
planes fails, the map to M4×CP2 is lost. One could cope with the situation since the gauge
conditions at the boundaries of CD would allow to construct preferred extremal connecting
the 3-surfaces at the boundaries of CD if this kind of surface exists at all. One can however
wonder whether giving up the map M8 → H is necessary.

3. Number theoretic dynamics in M8 involves no action principle and no coupling constants,
just the associativity and the integrable distribution of complex planes M2(x) of complexified
octonions. This suggests that also the dynamics at the level of H involves coupling constants
only via boundary conditions. This is the case for the minimal surface solutions suggesting
that M8−H duality maps the surfaces satisfying the above mentioned conditions to minimal
surfaces. The universal dynamics conforms also with quantum criticality.

4. One can argue that the dependence of field equations on coupling parameters of S leading to a
perturbative series in coupling parameters in the interior of the space-time surface inside CD
spoils the extremely beautiful purely algebraic picture about the construction of solutions
of field equations using conformal invariance assignable to quantum criticality. Classical
perturbation series is also in conflict with the vision that the TGD counterparts twistorial
Grassmannian amplitudes do not involve any loop contributions coming as powers of coupling
constant parameters [L17].

To sum up, both M8 −H duality, number theoretic vision, quantum criticality, twistor lift of
TGD reducing dynamics to the condition about the existence of induced twistor structure, and the
proposal for the construction of twistor scattering amplitudes suggest an extremely simple picture
about the situation. The divergences of the energy momentum currents of V ol and SK would
be non-vanishing delta function type singularities only at discrete points at partonic 2-surfaces
defining generalized vertices so that minimal surface equations would hold almost everywhere as
the original proposal indeed stated.

1. The fact that all the known extremals of field equations for S are minimal surfaces conforms
with the idea. This might be due to the fact that these extremals are especially easy to
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construct but could be also true quite generally apart from singular points. The divergences
of the energy momentum currents associated with SK and V ol vanish separately: this follows
from the analog of holomorphy reducing the field equations to purely algebraic conditions.

It is essential that Kähler current jK vanishes or is light-like so that its contraction with the
gradients of the embedding space coordinates vanishes. Second condition is that in transversal
degrees of freedom energy momentum tensor is tensor of form (1,1) in the complex sense and
second fundamental form consists of parts of type (1,1) and (-1-1). In longitudinal degrees
of freedom the trace Hk of the second fundamental form Hk

αβ = Dβ∂αh
k vanishes.

2. Minimal surface equations are a non-linear analog of massless field equation but one would
like to have also the analog of massless particle. The 3-D light-like boundaries between
Minkowskian and Euclidian space-time regions are indeed analogs of massless particles as
are also the string like word sheets, whose exact identification is not yet fully understood.
In any case, they are crucial for the construction of scattering amplitudes in TGD based
generalization of twistor Grassmannian approach. At M8 side these points could correspond
to singularities at which Galois group of the extension of rationals has a subgroup leaving the
point invariant. The points at which roots of polynomial as function of parameters co-incide
would serve as an analog.

The intersections of string world sheets with the orbits of partonic 2-surface are 1-D light-
like curves X1

L defining fermion lines. The twistor Grassmannian proposal [L17] is that the
ends of the fermion lines at partonic 2-surfaces defining vertices provide the information
needed to construct scattering amplitudes so that information theoretically the construction
of scattering amplitudes would reduce to an analog of quantum field theory for point-like
particles.

3. Number theoretic vision discretizes coupling constant evolution: the values of coupling con-
stants are labelled by parameters of extension of rationals and p-adic primes. This implies
that twistor scattering amplitudes for given discrete values of coupling constants involve no
radiative corrections [L17]: the construction of twistor Grassmannian amplitudes would be
extremely simple. Note that infinite perturbation series would break the expression of scat-
tering amplitudes as rational functions with coefficients int he extension of rationals defining
the adele [L7, L8]. The cuts for the scattering amplitudes would be replaced by sequences of
poles. This is unavoidable also because there is number theoretical discretization of momenta
from the condition that their components belong to an extension of rationals defining the
adele.

What could the reduction of cuts to poles for twistorial scattering amplitudes at the level of
momentum space [L17] mean at space-time level?

1. Poles of an analytic function are co-dimension 2 objects. d’Alembert/Laplace equations
holding true in Minkowskian/Euclidian signatures express the analogs of analyticity in 4-D
case. Co-dimension 2 rule forces to ask whether partonic 2-surfaces defining the vertices and
string world sheets could serve analogs of poles at space-time level? In fact, the light-like
orbits X3

L of partonic 2-surfaces allow a generalization of 2-D conformal invariance since they
are metrically 2-D so that X3

L and string world sheets could serve in the role of poles.

X3
L could be seen as analogs of orbits of bubbles in hydrodynamical flow in accordance

with the hydrodynamical interpretations. Particle reactions would correspond to fusions and
decays of these bubbles. Strings would connect these bubbles and give rise to tensor networks
and serve as space-time correlates for entanglement. Reaction vertices would correspond to
common ends for the incoming and outgoing bubbles. They would be analogous to the lines
of Feynman diagram meeting at vertex: now vertex would be however 2-D partonic 2-surface.

2. What can one say about the singularities associated with the light-like orbits of partonic
2-surfaces? The divergence of the Kähler part TK of energy momentum current T is propor-
tional to a sum of contractions of Kähler current jK with gradients ∇hk of H coordinates.
jK need not be vanishing: it is enough that its contraction with ∇hk vanishes and this is
true if jK is light-like. This is the case for so called massless extremals (MEs). For the other
known extremals jK vanishes.
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Could the Kähler current jK be light-like and non-vanishing and singular at X3
L and at string

world sheets? This condition would provide the long sought-for precise physical identification
of string world sheets. This would also induce to the modified Dirac action a 2-D contribution.
Minimal surface equations would hold true also at these two kinds of surfaces apart from
possible singular points. Even more: jK could be non-vanishing and thus also singular only
at the 1-D intersections X1

L of string world sheets with X3
L - I have called these curves

fermionic lines.

What it means that jK is singular - that is has 2-D delta function singularity at string
world sheets? jK is defined as divergence of the induced Kähler form J so that one can
use the standard definition of derivative to define jK at string world sheet as the limiting
value jαK = (Div+−J)α = lim∆xn→0(Jαn+ − Jαn− )/∆xn, where xn is a coordinate normal to
the string world sheet. If J is discontinuous, this gives rise to a singular current located at
string world sheet. This current should be light like to guarantee that energy momentum
currents are divergenceless. If J is not light-like, it gives rise to isometry currents with non-
vanishing divergence at string world sheet. This is guaranteed if the isometry currents TαA

are continuous through the string world sheet.

3. If the light-like jK at partonic orbits is localized at fermionic lines X1
L, the divergences

of isometry currents could be non-vanishing and singular only at the vertices defined at
partonic 2-surfaces at which fermionic lines X1

L meet. The divergences DivTK and DivTV ol
would be non-vanishing only at these vertices. They should of course cancel each other:
DivTK = −DivTV ol.

4. DivTK should be non-vanishing and singular only at the intersections of string world sheets
and partonic 2-surfaces defining the vertices as the ends of fermion lines. How to translate
this statement to a more precise mathematical form? How to precisely define the notions of
divergence at the singularity?

The physical picture is that there is a sharing of conserved isometry charges of the incoming
partonic orbit i = 1 determined TK between 2 outgoing partonic orbits labelled by j = 2, 3
. This implies charge transfer from i = 1 to the partonic orbits j = 2, 3 such that the sum
of transfers sum up to the total incoming charge. This must correspond to a non-vanishing
divergence proportional to delta function. The transfer of the isometry charge for given pair
i, j of partonic orbits that is Divi→jTK must be determined as the limiting value of the

quantity ∆i→jT
α,A
K /∆xα as ∆xα approaches zero. Here ∆i→jT

α,A
K is the difference of the

components of the isometry currents between partonic orbits i and j at the vertex. The
outcome is proportional delta function.

5. Similar description applies also to the volume term. Now the trace of the second funda-
mental form would have delta function singularity coming from Divi→jTK . The condition
Divi→jTK = −Divi→jTV ol would bring in the dependence of the boundary conditions on
coupling parameters so that space-time surface would depend on the coupling constants in
accordance with quantum-classical correspondence. The manner how the coupling constants
make themselves visible in the properties of space-time surface would be extremely delicate.

This picture conforms with the vision about scattering amplitudes at both M8 and H sides of
M8 −H duality.

1. M8 dynamics based on algebraic equations for space-time surfaces [L6] leads to the proposal
that scattering amplitudes can be constructed using the data only at the points of space-time
surface with M8 coordinates in the extension of the rationals defining the adele [L8, L7]. I
call this discrete set of points cognitive representation with motivations coming from TGD
inspired theory of consciousness [K16].

2. At H side the information theoretic interpretation would be that all information needed
to construct scattering amplitudes would come from points at which the divergences of the
energy momentum tensors of SK and V ol are non-vanishing and singular.

Both pictures would realize extremely strong form of holography, much stronger than the strong
form of holography that stated that only partonic 2-surfaces and string world sheets are needed.
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6 Still about twistor lift of TGD

Twistor lift of TGD led to a dramatic progress in the understanding of TGD but also created
problems with previous interpretation. The new element was that Kähler action as analog of
Maxwell action was replaced with dimensionally reduced 6-D Kähler action decomposing to 4-D
Kähler action and volume term having interpretation in terms of cosmological constant.

One can of course ask whether the resulting induced twistor structure is acceptable. Certainly
it is not equivalent with the standard twistor structure. In particular, the condition J2 = −g is
lost. In the case of induced Kähler form at X4 this condition is also lost. For spinor structure the
induction guarantees the existence and uniqueness of the spinor structure, and the same applies
also to the induced twistor structure being together with the unique properties of twistor spaces
of M4 and CP2 the key motivation for the notion.

There are some potential problems related to the definition of Kähler function. The most
natural identification is as 6-D dimensionally reduced Kähler action.

1. WCW metric must be Euclidian - that positive definite. Since it is defined in terms of
second partial derivatives of the Kähler function with respect to complex WCW coordinates
and their conjugates, the preferred extremals must be completely stable to guarantee that
this quadratic form is positive definite. This condition excludes extremals for which this is
not the case. There are also other identifications for the preferred extremal property and
stability condition would is a obvious additional condition. Note that at quantum criticality
the quadratic form would have some vanishing eigenvalues representing zero modes of the
WCW metric.

2. Vacuum functional of WCW is exponent of Kähler function identified as negative of Kähler
action for a preferred extremal. The potential problem is that Kähler action contains both
electric and magnetic parts and electric part can be negative. For the negative sign of Kähler
action the action must remain bounded, otherwise vacuum functional would have arbitrarily
large values. This favours the presence of magnetic fields for the preferred extremals and
magnetic flux tubes are indeed the basic entities of TGD based physics.

3. One can ask whether the sign of Kähler action for preferred extremals is same as the overall
sign of the diagonalized Kähler metric: this would exclude extremals dominated by Kähler
electric part of action or at least force the electric part be so small that WCW metric has
the same overall signature everywhere.

If one accepts the proposal that the preferred extremals are minimal surfaces (the known ex-
tremals are), extremal property is satisfied for both 4-D Kähler action and volume term separately
except at finite set of singular points at which there is transfer of conserved charges between the
two degrees of freedom. In this principle this would allow the identification of Kähler function as
either 4-D Kähler function or 4-D volume term (actually magnetic S2 part of 6-D Kähler action).
This option looks however rather ad hoc.

6.1 Is the cosmological constant really understood?

The interpretation of the coefficient of the volume term as cosmological constant has been a long-
standing interpretational issue and caused many moments of despair during years. The intuitive
picture has been that cosmological constant obeys p-adic length scale scale evolution meaning that
Λ would behave like 1/L2

p = 1/p ' 1/2k [K4].
This would solve the problems due to the huge value of Λ predicted in GRT approach: the

smoothed out behavior of Λ would be Λ ∝ 1/a2, a light-cone proper time defining cosmic time,
and the recent value of Λ - or rather, its value in length scale corresponding to the size scale of the
observed Universe - would be extremely small. In the very early Universe - in very short length
scales - Λ would be large.

A simple solution of the problem would be the p-adic length scale evolution of Λ as Λ ∝ 1/p,
p ' 2k. The flux tubes would thicken until the string tension as energy density would reach
stable minimum. After this a phase transition reducing the cosmological constant would allow
further thickening of the flux tubes. Cosmological expansion would take place as this kind of phase
transitions (for a mundane application of this picture see [K9]).



6.1 Is the cosmological constant really understood? 51

This would solve the basic problem of cosmology, which is understanding why cosmological
constant manages to be so small at early times. Time evolution would be replaced with length
scale evolution and cosmological constant would be indeed huge in very short scales but its recent
value would be extremely small.

I have however not really understood how this evolution could be realized! Twistor lift seems
to allow only a very slow (logarithmic) p-adic length scale evolution of Λ [L16]. Is there any cure
to this problem?

1. The magnetic energy decreases with the area S of flux tube as 1/S ∝ 1/p ' 1/2k, where√
p defines the transversal length scale of the flux tube. Volume energy (magnetic energy

associated with the twistor sphere) is positive and increases like S. The sum of these has
minimum for certain radius of flux tube determined by the value of Λ. Flux tubes with
quantized flux would have thickness determined by the length scale defined by the density

of dark energy: L ∼ ρ−1/4
vac , ρdark = Λ/8πG. ρvac ∼ 10−47 GeV4 (see http://tinyurl.com/

k4bwlzu) would give L ∼ 1 mm, which would could be interpreted as a biological length
scale (maybe even neuronal length scale).

2. But can Λ be very small? In the simplest picture based on dimensionally reduced 6-D Kähler
action this term is not small in comparison with the Kähler action! If the twistor spheres of
M4 and CP2 give the same contribution to the induced Kähler form at twistor sphere of X4,
this term has maximal possible value!

The original discussions in [K25, K4] treated the volume term and Kähler term in the dimen-
sionally reduced action as independent terms and Λ was chosen freely. This is however not
the case since the coefficients of both terms are proportional to (1/α2

K)S(S2), where S(S2)
is the area of the twistor sphere of 6-D induced twistor bundle having space-time surface as
base space. This are is same for the twistor spaces of M4 and CP2 if CP2 size defines the
only fundamental length scale. I did not even recognize this mistake.

The proposed fast p-adic length scale evolution of the cosmological constant would have ex-
tremely beautiful consequences. Could the original intuitive picture be wrong, or could the desired
p-adic length scale evolution for Λ be possible after all? Could non-trivial dynamics for dimensional
reduction somehow give it? To see what can happen one must look in more detail the induction
of twistor structure.

1. The induction of the twistor structure by dimensional reduction involves the identification
of the twistor spheres S2 of the geometric twistor spaces T (M4) = M4 × S2(M4) and of
TCP2

having S2(CP2) as fiber space. What this means that one can take the coordinates
of say S2(M4) as coordinates and embedding map maps S2(M4) to S2(CP2). The twistor
spheres S2(M4) and S2(CP2) have in the minimal scenario same radius R(CP2) (radius of
the geodesic sphere of CP2. The identification map is unique apart from SO(3) rotation R of
either twistor sphere possibly combined with reflection P . Could one consider the possibility
that R is not trivial and that the induced Kähler forms could almost cancel each other?

2. The induced Kähler form is sum of the Kähler forms induced from S2(M4) and S2(CP2) and
since Kähler forms are same apart from a rotation in the common S2 coordinates, one has
Jind = J +RP (J), where R denotes a rotation and P denotes reflection. Without reflection
one cannot get arbitrary small induced Kähler form as sum of the two contributions. For
mere reflection one has Jind = 0.

Remark: It seems that one can do with reflection if the Kähler forms of the twistor spheres
are of opposite sign in standard spherical coordinates. This would mean that they have have
opposite orientation.

One can choose the rotation to act on (y, z)-plane as (y, z) → (cy + sz,−sz + cy), where
s and c denote the cosines of the rotation angle. A small value of cosmological constant is
obtained for small value of s. Reflection P can be chosen to correspond to z → −z. Using
coordinates (u = cos(Θ),Φ) and their primed counterparts and by writing the reflection
followed by rotation explicitly in coordinates (x, y, z) one finds u′ = −cu− s

√
1− u2sin(Φ),

Φ′ = arctan[(su/
√

1− u2cos(Φ) + ctan(Φ)]. In the lowest order in s one has u′ = −u −
s
√

1− u2sin(Φ), Φ′ = Φ + scos(Φ)(u/
√

1− u2).

http://tinyurl.com/k4bwlzu
http://tinyurl.com/k4bwlzu
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3. Kähler form J tot is sum of unrotated part J = du ∧ dΦ and J ′ = du′ ∧ dΦ′. J ′ equals to
the determinant ∂(u′,Φ′)/∂(u,Φ). A suitable spectrum for s could reproduce the proposal
Λ ∝ 2−k for Λ. The S2 part of 6-D Kähler action equals to (J totθφ )2/

√
g2 and in the lowest

order proportional to s2. For small values of s the integral of Kähler action for S2 over S2 is
proportional to s2.

One can write the S2 part of the dimensionally reduced action as S(S2) = s2F 2(s). Very
near to the poles the integrand has 1/[sin(Θ) + O(s)] singularity and this gives rise to a
logarithmic dependence of F on s and one can write: F = F (s, log(s)). In the lowest
order one has s ' 2−k/2, and in improved approximation one obtains a recursion formula
sn(S2, k) = 2−k/2/F (sn−1, log(sn−1) giving renormalization group evolution with k replaced
by anomalous dimension kn,a = k+ 2log[F (sn−1, log(sn−1)] differing logarithmically from k.

4. The sum J+RP (J) defining the induced Kähler form in S2(X4) is covariantly constant since
both terms are covariantly constant by the rotational covariance of J .

5. The embeddings of S2(X4) as twistor sphere of space-time surface to both spheres are holo-
morphic since rotations are represented as holomorphic transformations. Also reflection as
z → 1/z is holomorphic. This in turn implies that the second fundamental form in complex
coordinates is a tensor having only components of type (1, 1) and (−1,−1) whereas metric
and energy momentum tensor have only components of type (1,−1) and (−1, 1). Therefore
all contractions appearing in field equations vanish identically and S2(X4) is minimal surface
and Kähler current in S2(X4) vanishes since it involves components of the trace of second
fundamental form. Field equations are indeed satisfied.

6. The solution of field equations becomes a family of space-time surfaces parameterized by
the values of the cosmological constant Λ as function of S2 coordinates satisfying Λ/8πG =
ρvac = J ∧ (∗J)(S2). In long length scales the variation range of Λ would become arbitrary
small.

7. If the minimal surface equations solve separately field equations for the volume term and
Kähler action everywhere apart from a discrete set of singular points, the cosmological con-
stant affects the space-time dynamics only at these points. The physical interpretation of
these points is as seats of fundamental fermions at partonic 2-surface at the ends of light-
like 3-surfaces defining their orbits (induced metric changes signature at these 3-surfaces).
Fermion orbits would be boundaries of fermionic string world sheets.

One would have family of solutions of field equations but particular value of Λ would make
itself visible only at the level of elementary fermions by affecting the values of coupling
constants. p-Adic coupling constant evolution would be induced by the p-adic coupling
constant evolution for the relative rotations R combined with reflection for the two twistor
spheres. Therefore twistor lift would not be mere manner to reproduce cosmological term
but determine the dynamics at the level of coupling constant evolution.

8. What is nice that also Λ = 0 option is possible. This would correspond to the variant of
TGD involving only Kähler action regarded as TGD before the emergence of twistor lift.
Therefore the nice results about cosmology [K23] obtained at this limit would not be lost.

6.2 Does p-adic coupling constant evolution reduce to that for cosmo-
logical constant?

One of the chronic problems if TGD has been the understanding of what coupling constant evolu-
tion could be defined in TGD.

1. The notion of quantum criticality is certainly central. The continuous coupling constant
evolution having no counterpart in the p-adic sectors of adele would contain as a sub-evolution
discrete p-adic coupling constant evolution such that the discrete values of coupling constants
allowing interpretation also in p-adic number fields are fixed points of coupling constant
evolution.
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Quantum criticality is realized also in terms of zero modes, which by definition do not con-
tribute to WCW metric. Zero modes are like control parameters of a potential function in
catastrophe theory. Potential function is extremum with respect to behavior variables re-
placed now by WCW degrees of freedom. The graph for preferred extremals as surface in
the space of zero modes is like the surface describing the catastrophe. For given zero modes
there are several preferred extremals and the catastrophe corresponds to the regions of zero
mode space, where some branches of co-incide. The degeneration of roots of polynomials is
a concrete realization for this.

Quantum criticality would also mean that coupling parameters effectively disappear from
field equations. For minimal surfaces (generalization of massless field equation allowing con-
formal invariance characterizing criticality) this happens since they are separately extremals
of Kähler action and of volume term.

Quantum criticality is accompanied by conformal invariance in the case of 2-D systems and
in TGD this symmetry extends to its 4-D analogas isometries of WCW.

2. In the case of 4-D Kähler action the natural hypothesis was that coupling constant evolution
should reduce to that of Kähler coupling strength 1/αK inducing the evolution of other
coupling parameters. Also in the case of the twistor lift 1/αK could have similar role. One
can however ask whether the value of the 6-D Kähler action for the twistor sphere S2(X4)
defining cosmological constant could define additional parameter replacing cutoff length scale
as the evolution parameter of renormalization group.

3. The hierarchy of adeles should define a hierarchy of values of coupling strengths so that the
discrete coupling constant evolution could reduce to the hierarchy of extensions of rationals
and be expressible in terms of parameters characterizing them.

4. I have also considered number theoretical existence conditions as a possible manner to fix the
values of coupling parameters. The condition that the exponent of Kähler function should
exist also for the p-adic sectors of the adele is what comes in mind as a constraint but it
seems that this condition is quite too strong.

If the functional integral is given by perturbations around single maximum of Kähler function,
the exponent vanishes from the expression for the scattering amplitudes due to the presence
of normalization factor. There indeed should exist only single maximum by the Euclidian
signature of the WCW Kähler metric for given values of zero modes (several extrema would
mean extrema with non-trivial signature) and the parameters fixing the topology of 3-surfaces
at the ends of preferred extremal inside CD. This formulation as counterpart also in terms of
the analog of micro-canonical ensemble (allowing only states with the same energy) allowing
only discrete sum over extremals with the same Kähler action [L15].

5. I have also considered more or less ad hoc guesses for the evolution of Kähler coupling strength
such as reduction of the discrete values of 1/αK to the spectrum of zeros of Riemann zeta or
actually of its fermionic counterpart [L2]. These proposals are however highly ad hoc.

As I started once again to consider coupling constant evolution I realized that the basic problem
has been the lack of explicit formula defining what coupling constant evolution really is.

1. In quantum field theories (QFTs) the presence of infinities forces the introduction of momen-
tum cutoff. The hypothesis that scattering amplitudes do not depend on momentum cutoff
forces the evolution of coupling constants. TGD is not plagued by the divergence problems
of QFTs. This is fine but implies that there has been no obvious manner to define what
coupling constant evolution as a continuous process making sense in the real sector of adelic
physics could mean!

2. Cosmological constant is usually experienced as a terrible head ache but it could provide the
helping hand now. Could the cutoff length scale be replaced with the value of the length
scale defined by the cosmological constant defined by the S2 part of 6-D Kähler action? This
parameter would depend on the details of the induced twistor structure. It was shown above
that if the moduli space for induced twistor structures corresponds to rotations of S2 possibly
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combined with the reflection, the parameter for coupling constant restricted to that to SO(2)
subgroup of SO(3) could be taken to be taken s = sin(ε).

3. RG invariance would state that the 6-D Kähler action is stationary with respect to variations
with respect to s. The variation with respect to s would involve several contributions. Besides
the variation of 1/αK(s) and the variation of the S(2) part of 6-D Kähler action defining the
cosmological constant, there would be variation coming from the variations of 4-D Kähler
action plus 4-D volume term . This variation vanishes by field equations. As matter of fact,
the variations of 4-D Kähler action and volume term vanish separately except at discrete
set of singular points at which there is energy transfer between these terms. This condition
is one manner to state quantum criticality stating that field equations involved no coupling
parameters.

One obtains explicit RG equation for αK and Λ having the standard form involving logarith-
mic derivatives. The form of the equation would be

dlog(αK)

ds
= − S(S2)

SK(X4) + S(S2)

dlog(S(S2))

ds
. (6.1)

The equation contains the ratio S(S2)/(SK(X4) + S(S2)) of actions as a parameter. This
does not conform with idea of micro-locality. One can however argue that this conforms with
the generalization of point like particle to 3-D surface. For preferred extremal the action is
indeed determined by the 3 surfaces at its ends at the boundaries of CD. This implies that
the construction of quantum theory requires the solution of classical theory.

In particular, the 4-D classical theory is necessary for the construction of scattering ampli-
tudes. and one cannot reduce TGD to string theory although strong form of holography
states that the data about quantum states can be assigned with 2-D surfaces. Even more:
M8 −H correspondence implies that the data determining quantum states can be assigned
with discrete set of points defining cognitive representations for given adel This set of points
depends on the preferred extremal!

4. How to identify quantum critical values of αK? At these points one should have dlog(αK)/ds =
0. This implies dlog(S(S2)/ds = 0, which in turn implies dlog(αK)/ds = 0 unless one has
SK(X4) + S(S2) = 0. This condition would make exponent of 6-D Kähler action trivial and
the continuation to the p-adic sectors of adele would be trivial. I have considered also this
possibility [L16].

The critical values of coupling constant evolution would correspond to the critical values of
S and therefore of cosmological constant. The basic nuisance of theoretical physics would
determine the coupling constant evolution completely! Critical values are in principle possi-
ble. Both the numerator J2

uΦ and the numerator 1/
√
det(g) increase with ε. If the rate for

the variation of these quantities with s vary it is possible to have a situation in which the
one has

dlog(J2
uΦ)

ds
= −

dlog(
√
det(g))

ds
. (6.2)

5. One should demonstrate that the critical values of s are such that the continuation to p-adic
sectors of the adele makes sense. For preferred extremals cosmological constant appears as
a parameter in field equations but does not affect the field equations expect at the singular
points. Singular points play the same role as the poles of analytic function or point charges
in electrodynamics inducing long range correlations. Therefore the extremals depend on
parameter s and the dependence should be such that the continuation to the p-adic sectors
is possible.

A näıve guess is that the values of s are rational numbers. Above the proposal s = 2−k/2

motivated by p-adic length scale hypothesis was considered but also s = p−k/2 can be con-
sidered. These guesses might be however wrong, the most important point is that there is
that one can indeed calculate αK(s) and identify its critical values.
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6. What about scattering amplitudes and evolution of various coupling parameters? If the
exponent of action disappears from scattering amplitudes, the continuation of scattering
amplitudes is simple. This seems to be the only reasonable option. In the adelic approach [L7]
amplitudes are determined by data at a discrete set of points of space-time surface (defining
what I call cognitive representation) for which the points have M8 coordinates belong to the
extension of rationals defining the adele.

Each point of S2(X4) corresponds to a slightly different X4 so that the singular points depend
on the parameter s, which induces dependence of scattering amplitudes on s. Since coupling
constants are identified in terms of scattering amplitudes, this induces coupling constant
evolution having discrete coupling constant evolution as sub-evolution.

The following argument suggests a connection between p-adic length scale hypothesis and
evolution of cosmological constant but must be taken as an ad hoc guess: the above formula
is enough to predict the evolution.

1. p-Adicization is possible only under very special conditions [L7], and suggests that anomalous
dimension involving logarithms should vanish for s = 2−k/2 corresponding to preferred p-
adic length scales associated with p ' 2k. Quantum criticality in turn requires that discrete
p-adic coupling constant evolution allows the values of coupling parameters, which are fixed
points of RG group so that radiative corrections should vanish for them. Also anomalous
dimensions ∆k should vanish.

2. Could one have ∆kn,a = 0 for s = 2−k/2, perhaps for even values k = 2k1? If so, the ratio
c/s would satisfy c/s = 2k1 − 1 at these points and Mersenne primes as values of c/s would
be obtained as a special case. Could the preferred p-adic primes correspond to a prime near
to but not larger than c/s = 2k1 − 1 as p-adic length scale hypothesis states? This suggest
that we are on correct track but the hypothesis could be too strong.

3. The condition ∆d = 0 should correspond to the vanishing of dS/ds. Geometrically this
would mean that S(s) curve is above (below) S(s) = xs2 and touches it at points s = x2−k,
which would be minima (maxima). Intermediate extrema above or below S = xs2 would be
maxima (minima).

6.3 Appendix: Explicit formulas for the evolution of cosmological con-
stants

What is needed is induced Kähler form J(S2(X4)) ≡ J at the twistor sphere S2(X4) ≡ S2

associated with space-time surface. J(S2(X4)) is sum of Kähler forms induced from the twistor
spheres S2(M4) and S2(CP2).

J(S2(X4) ≡ J = P [J(S2(M4)) + J(S2(CP2))] , (6.3)

where P is projection taking tensor quantity Tkl in S2(M4)×S2(CP2) to its projection in S2(X4).
Using coordinates yk for S2(M4) or S(CP2) and xµ forS2, P is defined as

P : Tkl → Tµν = Tkl
∂yk

∂xµ
∂yl

∂xν
. (6.4)

For the induced metric g(S2(X4)) ≡ g one has completely analogous formula

g = P [g(J(S2(M4)) + g(S2(CP2))] . (6.5)

The expression for the coefficient K of the volume part of the dimensionally reduced 6-D Kähler
action density is proportional to

L(S2) = JµνJµν
√
det(g) . (6.6)
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(Note that Jµν refers to S2 part 6-D Kähler action). This quantity reduces to

L(S2) = (εµνJµν)2 1√
det(g)

. (6.7)

where εµν is antisymmetric tensor density with numerical values +,-1. The volume part of the
action is obtained as an integral of K over S2:

S(S2) =

∫
S2

L(S2) =

∫ 1

−1

du

∫ 2π

0

dΦ
J2
uΦ√
det(g)

. (6.8)

(u,Φ) ≡ (cos(Θ,Φ) are standard spherical coordinates of S2) varying in the ranges [−1, 1] and
[0, 2π].

This the quantity that one must estimate.

6.3.1 General form for the embedding of twistor sphere

The embedding of S2(X4) ≡ S2 to S2(M4) × S2(CP2) must be known. Dimensional reduction
requires that the embeddings to S2(M4) and S2(CP2) are isometries. They can differ by a rotation
possibly accompanied by reflection

One has

(u(S2(M4)),Φ(S2(M4)) = (u(S2(X4),Φ(S2(X4)) ≡ (u,Φ) ,[
u(S2(CP2)),Φ(S2(CP2))

]
≡ (v,Ψ) = RP (u,Φ)

where RP denotes reflection P following by rotation R acting linearly on linear coordinates (x,y,z)
of unit sphere S2). Note that one uses same coordinates for S2(M4) and S2(X4). From this action
one can calculate the action on coordinates u and Φ by using the definite of spherical coordinates.

The Kähler forms of S2(M4) resp. S2(CP2) in the coordinates (u = cos(Θ),Φ) resp.(v,Ψ) are
given by JuΦ = ε = ±1 resp. JvΨ = ε = ±1. The signs for S2(M4) and S2(CP2) are same or
opposite. In order to obtain small cosmological constant one must assume either

1. ε = −1 in which case the reflection P is absent from the above formula (RP → R).

2. ε = 1 in which case P is present. P can be represented as reflection (x, y, z)→ (x, y,−z) or
equivalently (u,Φ)→ (−u,Φ).

Rotation R can represented as a rotation in (y,z)-plane by angle φ which must be small to get
small value of cosmological constant. When the rotation R is trivial, the sum of induced Kähler
forms vanishes and cosmological constant is vanishing.

6.4 Induced Kähler form

One must calculate the component JuΦ(S2(X4)) ≡ JuΦ of the induced Kähler form and the
metric determinant det(g)) using the induction formula expressing them as sums of projections of
M4 and CP2 contributions and the expressions of the components of S2(CP2) contributions in the
coordinates for S2(M4). This amounts to the calculation of partial derivatives of the transformation
R (or RP) relating the coordinates (u,Φ) of S2(M4) and to the coordinates (v,Ψ) of S2(CP2).

In coordinates (u,Φ) one has JuΦ(M4) = ±1 and similar expression holds for J(vΨ)S2(CP2).
One has

JuΦ = 1 +
∂(v,Ψ)

∂(u,Φ)
. (6.9)

where right-hand side contains the Jacobian determinant defined by the partial derivatives given
by

∂(v,Ψ)
∂(u,Φ) = ∂v

∂u
∂Ψ
∂Φ −

∂v
∂Φ

∂Ψ
∂u . (6.10)
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6.4.1 Induced metric

The components of the induced metric can be deduced from the line element

ds2(S2(X4) ≡ ds2 = P [ds2(S2(M4)) + ds2(S2(CP2))] .

where P denotes projection. One has

P (ds2(S2(M4))) = ds2(S2(M4)) =
du2

1− u2
+ (1− u2)dΦ2 .

and

P [ds2(S2(CP2))] = P [
(dv)2

1− v2
+ (1− v2)dΨ2] ,

One can express the differentials (dv, dΨ) in terms of (du, dΦ) once the relative rotation is
known and one obtains

P [ds2(S2(CP2))] =
1

1− v2
[
∂v

∂u
du+

∂v

∂Φ
dΦ]2 + (1− v2)[

∂Ψ

∂u
du+

∂Ψ

∂Φ
dΦ]2 .

This gives

P [ds2(S2(CP2))]

= [( ∂v∂u )2 1
1−v2 + (1− v2)(∂Ψ

∂u )2]du2

+[( ∂v∂Φ )2 1
1−v2 + (∂Ψ

∂Φ )21− v2]dΦ2

+2[ ∂v∂u
∂v
∂Φ

1
(1−v2) + ∂Ψ

∂u
∂Ψ
∂Φ (1− v2)]dudΦ .

From these formulas one can pick up the components of the induced metric g(S2(X4)) ≡ g as

guu = 1
1−u2 + ( ∂v∂u )2 1

1−v2 + (1− v2)(∂Ψ
∂u )2] ,

gΦΦ = 1− u2 + ( ∂v∂Φ )2 1
1−v2 + (∂Ψ

∂Φ )2(1− v2)

guΦ = gΦu = ∂v
∂u

∂v
∂Φ

1
(1−v2) + ∂Ψ

∂u
∂Ψ
∂Φ (1− v2) .

(6.11)

The metric determinant det(g) appearing in the integral defining cosmological constant is given
by

det(g) = guugΦΦ − g2
uΦ . (6.12)

6.4.2 Coordinates (v,Ψ) in terms of (u,Φ)

To obtain the expression determining the value of cosmological constant one must calculate explicit
formulas for (v,Ψ) as functions of (u,Φ) and for partial derivations of (v,Ψ) with respect to (u,Φ).

Let us restrict the consideration to the RP option.

1. P corresponds to z → −z and to

u→ −u . (6.13)

2. The rotation R (x, y, z)→ (x′, y′, z′) corresponds to

x′ = x, y′ = sz + cy = su+ c
√

1− u2sin(Φ) , z′ = v = cu− s
√

1− u2sin(Φ) . (6.14)
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Here one has (s, c) ≡ (sin(ε), cos(ε), where ε is rotation angle, which is extremely small for
the value of cosmological constant in cosmological scales.

From these formulas one can pick v and Ψ = arctan(y′/x) as

v = cu− s
√

1− u2sin(Φ) Ψ = arctan[ su√
1−u2

cos(Φ) + tan(Φ)] . (6.15)

3. RP corresponds to

v = −cu− s
√

1− u2sin(Φ) Ψ = arctan[− su√
1−u2

cos(Φ) + tan(Φ)] . (6.16)

6.4.3 Various partial derivatives

Various partial derivates are given by

∂v
∂u = −1 + s u√

1−u2
sin(Φ) ,

∂v
∂Φ = −s u√

1−u2
cos(Φ) ,

∂Ψ
∂Φ = (−s u√

1−u2
sin(Φ) + c) 1

X ,

∂Ψ
∂u = scos(Φ)(1+u−u2)

(1−u2)3/2
1
X ,

X = cos2(Φ) + [−s u√
1−u2

+ csin(Φ)]2 .

(6.17)

Using these expressions one can calculate the Kähler and metric and the expression for the integral
giving average value of cosmological constant. Note that the field equations contain S2 coordinates
as external parameters so that each point of S2 corresponds to a slightly different space-time
surface.

6.4.4 Calculation of the evolution of cosmological constant

One must calculate numerically the dependence of the action integral S over S2 as function of the
parameter s = sin(ε)). One should also find the extrema of S as function of s.

Especially interesting values are very small values of s since for the cosmological constant
becomes small. For small values of s the integrand (see Eq. 6.8) becomes very large near poles
having the behaviour 1/

√
g = 1/(sin(Θ)+O(s)) coming from

√
g approaching that for the standard

metric of S2. The integrand remains finite for s 6= 0 but this behavior spoils the analytic dependence
of integral on s so that one cannot do perturbation theory around s = 0. The expected outcome
is a logarithmic dependence on s.

In the numerical calculation one must decompose the integral over S2 to three parts.

1. There are parts coming from the small disks D2 surrounding the poles: these give identical
contributions by symmetry. One must have criterion for the radius of the disk and the natural
assumption is that the disk radius is of order s.

2. Besides this one has a contribution from S2 with disks removed and this is the regular part
to which standard numerical procedures apply.

One must be careful with the expressions involving trigonometric functions which give rise to
infinite if one applies the formulas in straightforward manner. These infinities are not real and
cancel, when one casts the formulas in appropriate form inside the disks.

1. The limit u→ ±1 at poles involves this kind of dangerous quantities. The expression for the
determinant appearing in JuΦ remains however finite and J2

uφ vanishes like s2 at this limit.
Also the metric determinant 1/

√
g remains finite expect at s = 0.
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2. Also the expression for the quantity X in Ψ = arctan(X) contains a term proportional to
1/cos(Φ) approaching infinity for Φ → π/2, 3π/2. The value of Ψ = arc(tan(X) remains
however finite and equal to ±Φ at this limit depending on on the sign of us.

Concerning practical calculation, the relevant formulas are given in Eqs. 6.7, 6.8, 6.9, 6.10,
6.11, 6.12, and 6.17.

The calculation would allow to test the conjectures already discussed.

1. There indeed exist extrema satisfying thus dS/ds = 0.

2. These extrema correspond to s = 2−k or more generally s = p−k. This conjecture is inspired
by p-adic length scale hypothesis.

3. A further conjecture is that for certain integer values of integer k the integral S(S2) of Eq.
6.8 is of form S(S2) = xs2 for s = 2−k, where x is a universal numerical constant.

This would realize the idea that p-adic length scales realized as scales associated with cosmo-
logical constant correspond to fixed points of renormalization group evolution implying that
radiative corrections otherwise present cancel. In particular, the deviation from s = 2−d/2

would mean anomalous dimension replacing s = 2−d/2 with s−(d+∆d)/2 for d = k the anoma-
lies dimension ∆d would vanish.

4. The condition ∆d = 0 should be equivalent with the vanishing of the dS/ds. Geometrically
this means that S(s) curve is above (below) S(s) = xs2 and touches it at points s = x2−k,
which would be minima (maxima). Intermediate extrema above or below S = xs2 would be
maxima (minima).

7 More about the construction of scattering amplitudes in
TGD framework

The construction of scattering amplitudes in TGD framework has been a longstanding problem, and
I have considered several proposals - perhaps the most realistic proposal relies on the generalization
of twistor Grassmann approach to TGD context [L17]. These approaches have however suffered
from their ad hoc character.

One reason for the slow progress might be the fact that I have not conditioned Feynman
diagrams into my spine: I have intentionally avoided this in the fear that it would prevent genuine
thinking. Second reason is that TGD is really different and my mathematical skills are rather
limited. For instance, in TGD classical theory is an exact part of quantum theory and particles are
replaced with 3-surfaces: there is no hope of starting from Lagrangian with simple non-linearities
and writing Feynman rules and deducing beta functions.

There are several questions waiting for an answer. How to achieve unitarity? What it is
to be a particle in classical sense? Can one identify TGD analogs of quantum fields? Could
scattering amplitudes have interpretation as Fourier transforms of n-point functions for the analogs
of quantum fields?

Unitarity is certainly the issue #1 and in the sequel almost trivial solution to unitarity problem
is proposed. Also quantum classical correspondence is discussed.

7.1 Some background

7.1.1 Supersymplectic algebra

Let us collect what I think is known in TGD framework.

1. The “world of classical worlds” (WCW) [K20] geometry does not exist without maximal group
of isometries and WCW is assumed to possess super-symplectic algebra (SSA) assignable to
light-cone boundary (boundaries of causal diamonds (CDs)) as isometries. Also Kac-Moody
algebras for isometries of embedding space realized at the light-like partonic orbits serving as
boundaries between Euclidian and Minkowskian regions of space-time surface are expected
to be of key importance (for p-adic mass calculations applying these symmetries see [K12].
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SSA has a fractal hierarchy of isomorphic sub-algebras and the proposal is that one has
hierarchy of criticalities such that sub-SSA and its commutator with SSA annihilate the
physical states so that SSA effectively reduces to a finite-D Lie-algebra generating the physical
states. Sub-SSA takes the role of gauge algebra and one could say that it represents finite
measurement resolution. This hierarchy would correspond to a hierarchies of inclusions of
von Neumann algebras known as hyper-finite factors of type II1 [K28, K8].

It seems obvious to me that the scattering amplitudes should allow a formulation in terms
of SSA effectively reducing to finite-D Lie-algebra of corresponding Kac-Moody algebra plus
Kac-Moody algebras associated with embedding space isometries.

Remark: Conformal weights of SSA associated with the radial light-like coordinate are
non-negative so that one has analogy with Yangian algebra. The TGD variant of twistor
Grassmann approach [K21] [L17] strongly suggests that SSA extends to Yangian having
multi-local generators with locus corresponding to partonic 2-surface.

2. There are both classical and fermionic Noether charges associated with SSA and the Kac-
Moody algebras [K6, K29, K20]. Quantum-classical correspondence (QCC) suggests that the
eigenvalues for Cartan algebra Noether charges in the fermionic representation correspond
to bosonic charges assignable to the dimensionally reduced Kähler action. One obtains also
fermionic super-charges in 1-1 correspondence with the modes of the induced spinor field.
Super-charges are very much like oscillator operators creating or annihilating fermions and
there is a temptation to think that these fermionic SSA and Kac-Moody charges take the
role of operators creating fermionic and bosonic states.

One could think of constructing many-particle states at both boundaries of causal diamond
(CD) by decomposing SSA to Cartan algebra and to parts acting like creation and annihila-
tion operators. States would be created by the generators acting like oscillator operators.

The time evolution dictated by preferred extremals and corresponding modified Dirac equa-
tion would transform initial states at boundary A of CD to final states at boundary B. This
time evolution is determined by preferred extremal property and by modified Dirac equa-
tion [K29]. Time evolution is not obtained by exponentiating quantum Hamiltonian as in
QFT approach. The existence of infinite-D SSA of Noether changes should make it possible
to prove unitarity.

7.1.2 General argument for unitarity

The argument for unitarity is very general and based on zero energy ontology (ZEO). Causal
diamond (CD) containing space-time surfaces having ends at its opposite boundaries is central for
ZEO. Zero energy states are quantum superpositions of space-time surfaces, which are preferred
extremals of dimensionally reduced 6-D Kähler action decomposing to 4-D Kähler action and
volume term. CD has two boundaries: the active boundary (B) and passive boundary (A) and
space-time surfaces as preferred extremals have ends at these boundaries [L9].

In ZEO one has two kinds of state function reductions.

1. At the active boundary (B) one has “small” state function reductions as counterparts of
weak measurements following unitary time evolutions shifting the active boundary B farther
from passive boundary A in statistical sense. During each unitary time evolution there is a
de-localization with respect to the distance between the tips of CD followed by localization
serving also as time measurement. This would yield the correlation between experienced time
as sequence of these weak measurements and geometric time identified as distance between
the tips of CD.

Also measurements of observables commuting with the observables, whose eigenstates the
states at boundary A are, are possible. Passive boundary (A) and the members of zero
energy states associated with it do not change, and this gives rise to what one might call
generalized Zeno effect.

S-matrix would correspond to the evolution between two weak measurements for the states at
the active boundary of CD and expected to be unitary. At passive boundary of CD and states
at it would not be affected. The time evolution in the fermionic sector would be induced
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by the modified Dirac equation. Now one can express the states at new active boundary in
terms of those at old active boundary and one would obtain unitary S-matrix by expressing
the final states in terms of the state basic for the original boundary.

2. In “big” state function reduction the roles of passive boundary A and active boundary B are
changed. The states at B are superpositions of states in the state basis for SSA. Unitary
S-matrix would be obtained by expressing these states in terms of SSA basis.

Unitarity does not seem to be a problem since the conservation of Cartan charges for SSA in
the fermionic representation would not allow breaking of unitarity. The time evolution would be
induced by the preferred extremal property and modified Dirac equation.

Scattering amplitudes would involve an integration over positions of particles meaning that
instead of single 4-surface one would have large number of them contributing to single scattering
amplitude. Different position would correspond to different values of zero modes not contributing
to WCW metric. Number theoretical vision [L7, L8] demands that the exponent of action is same
for all of these surfaces: with inspiration coming from the idea about quantum TGD as square
root of thermodynamics, I have indeed proposed [L15] this quantum analog of micro-canonical
ensemble (for which energy is constant) as a way to get rid of difficulties in the realization of
number theoretical universality. The number theoretically cumbersome action exponents would
cancel out from the scattering amplitudes.

7.2 Does 4-D action generate lower-dimensional terms dynamically?

The original proposal was that the action defining the preferred extremals is 4-D Kähler action.
Later it became obvious that there must be also 2-D string world sheet term present and prob-
ably also 1-D term associated with string boundaries at partonic 2-surfaces. The question has
been whether these lower-D terms in the action are primary of generated dynamically. By super-
conformal symmetry the same question applies to the fermionic part of the action. The recent
formulation based on the twistor lift of TGD contains also volume term but the question remains
the same.

Quantum criticality would be realized as a minimal surface property realized by holomorphy
in suitably generalized sense [L18, L16]. The reason is that the holomorphic solutions of minimal
surface equations involve no coupling parameters as the universality of the dynamics at quantum
criticality demands.

Minimal surface equation would be true apart from possible singular surfaces having dimension
D = 2, 1, 0. D = 2 corresponds to string world sheets and partonic 2-surfaces. If there are 0-D
singularities they would be associated with the ends of orbits of partonic 2-surfaces at bound-
aries of causal diamond (CD). Minimal surfaces are solutions of non-linear variant of massless
d’Alembertian having as effective sources the singular surfaces at which d’Alembertian equation
fails. The analogy with gauge theories is highly suggestive: singular surfaces would act as sources
of massless field.

Strings world sheets seem to be necessary. The basic question is whether the singular surfaces
are postulated from the beginning and there is action associated with them or whether they emerge
dynamical from 4-D action. One can consider two extreme options.

Option I: There is an explicit assignment of action to the singular surfaces from the beginning.
A transfer of Noether charges between space-time interior and string world sheets is possible.
This kind of transfer process can take place also between string world sheets and their light-like
boundaries and happens if the normal derivatives of embedding space coordinates are discontinuous
at the singular surface.

Option II: No separate action is assigned with the singular surfaces. There could be a transfer
of Noether charges between 4-D Kähler and volume degrees of freedom at the singular surfaces
causing the failure of minimal surface property in 4-D sense. But could singular surfaces carry
Noether currents as 2-D delta function like densities?

This is possible if the discontinuity of the normal derivatives generates a 2-D singular term
to the action. Conservation laws require that at string world sheets energy momentum tensor
should degenerate to a 2-D tensor parallel to and concentrated at string world sheet. Only 4-D
action would be needed - this was actually the original proposal. Strings and particles would
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be essentially edges of space-time - this is not possible in GRT. Same could happen also at its
boundaries giving rise to point like particles. Super-conformal symmetry would make this possible
also in the fermionic sector.

For both options the singular surfaces would provide a concrete topological picture about the
scattering process at the level of single space-time surface and telling what happens to the initial
state. The question is whether Option I actually reduces to Option II. If the 2-D term is generated
to 4-D action dynamically, there is no need to postulate primary 2-D action.

7.2.1 Can Option II generate separate 2-D action dynamically?

The following argument shows that Option II with 4-D primary action can generate dynamically
2-D term into the action so that no primary action need to be assigned with string world sheets.

1. Dimensional hierarchy of surfaces and strong form of holography

String world sheets having light-like boundaries at the light-like orbits of partonic 2-surfaces
are certainly needed to realize strong form of holography [K29]. Partonic 2-surfaces emerge auto-
matically as the ends of the orbits of wormhole contacts.

1. There could (but neet not) be a separate terms in the primary action corresponding to
string world sheets and their boundaries. This hierarchy bringing in mind branes would
correspond to the hierarchy of classical number fields formed by reals, complex numbers,
quaternions (space-time surface), and octonions (embedding space in M8-side of M8 duality).
The tangent - or normal spaces of these surfaces would inherit real, complex, and quaternionic
structures as induced structure. The number theoretic interpretation would allow to see these
surfaces as images of those surfaces in M8 mapped to H by M8 − H duality. Therefore it
would be natural to assign action to these surfaces.

2. This makes in principle possible the transfer of classical and quantum charges between space-
time interior and string world sheets and between from string world sheets to their light-like
boundaries. TGD variant of twistor Grassmannian approach [K21, L17] relies on the assump-
tion that the boundaries of string world sheets at partonic orbits carry quantum numbers.
Quantum criticality realized in terms of minimal surface property realized holomorphically
is central for TGD and one can ask whether it could play a role in the definition of S-matrix
and identification of particles as geometric objects.

3. For preferred extremals string world sheets (partonic 2-surfaces) would be complex (co-
complex) manifolds in octonionic sense. Minimal surface equations would hold true outside
string world sheets. Conservation of various charges would require that the divergences of
canonical momentum currents at string world sheet would be equal to the discontinuities of
the normal components of the canonical momentum currents in interior. These discontinuities
would correspond to discontinuities of normal derivatives of embedding space coordinates and
are acceptable. Similar conditions would hold true at the light-like boundaries of string world
sheets at light-like boundaries of parton orbits. String world sheets would not be minimal
surfaces and minimal surface property for space-time surface would fail at these surfaces.

Quantum criticality for string world sheets would also correspond to minimal surface property.
If this is realized in terms of holomorphy, the field equations for Kähler and volume parts at
string world sheets would be satisfied separately and the discontinuities of normal components
for the canonical momentum currents in the interior would vanish at string world sheets.

4. The idea about asymptotic states as free particles would suggest that normal components
of canonical momentum currents are continuous near the boundaries of CD as boundary
conditions at least. The same must be true at the light-like boundaries of string world sheets.
Minimal surface property would reduce to the property of being light-like geodesics at light-
like partonic 2-surface. If this is not assumed, the orbit is space-like. Even if these conditions
are realized, one can imagine the possibility that at string world sheets 4-D minimal surface
equation fails and there is transfer of charges between Kähler and volume degrees of freedom
(Option II) and therefore breaking of quantum criticality.
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If the exchange of Noether charges vanishes everywhere at string world sheets and boundaries,
one could argue that they represent independent degrees of freedom and that TGD reduces
to string model. The proposed equation for coupling constant evolution however contains a
coefficients depending on the total action so that this would not be the case.

5. Assigning action to the lower-D objects requires additional coupling parameters. One should
be able to express these parameters in terms of the parameters appearing in 4-D action (αK
and cosmological constant). For string sheets the action containing cosmological term is 4-D
and Kähler action for X2 × S2, where S2 is non-dynamical twistor sphere is a good guess.
Kähler action gets contributions from X2 and S2. If the 2-D action is generated dynamically
as a singular term of 4-D action its coupling parameters are those of 4-D action.

6. There is a temptation to interpret this picture as a realization of strong form of holography
(SH) in the sense that one can deduce the space-time surfaces by using data at string world
sheets and partonic 2-surfaces and their light-like orbits. The vanishing of normal components
of canonical momentum currents would fix the boundary conditions.

If double holography D = 4 → D = 2 → D = 1 were satisfied it might be even possible to
reduce the construction of S-matrix to the proposed variant of twistor Grassmann approach.
This need not be the case: p-adic mass calculations rely on p-adic thermodynamics for the
excitions of massless particles having CP2 mass scale and it would seem that the double
holography can makes sense for massless states only.

In M8-picture [L6] the information about space-time surface is coded by a polynomial defined
at real line having coefficients in an extension of rationals. This real line for octonions
corresponds to the time axis in the rest system rather than light-like orbit as light-like
boundary of string world sheet.

2. Stringy quantum criticality?

The original intuition [L18] was that there are canonical momentum currents between Kähler
and volume degrees of freedom at singular surfaces but no transfer of canonical momenta between
interior and string world sheets nor string world sheets and their boundaries. Also string world
sheets would be minimal surfaces as also the intuition from string models suggests. Could also the
stringy quantum criticality be realized?

1. Some embedding space coordinates hk must have discontinuous partial derivatives in direc-
tions normal to the string world sheet so that 3-surface has 1-D edge along fermionic string
connecting light-like curves at partonic 2-surfaces in both Minkowskian and Euclidian re-
gions. A closed highly flattened rectangle with long and short edges would be associated
with closed monopole flux tube in the case of wormhole contact pairs assigned with elemen-
tary particles. 3-surfaces would be “edgy” entities and space-time surfaces would have 2-D
and 1-D edges. In condensed matter physics these edges would be regarded as defects.

2. Quantum criticality demands that the dynamics of string world sheets and of interior ef-
fectively decouple. Same must take place for the dynamics of string world sheets and their
boundaries. Decoupling allows also string world sheets to be minimal surfaces as analogs of
complex surfaces whereas string world sheet boundaries would be light-like (their deforma-
tions are always space-like) so that one obtains both particles and string like objects.

3. By field equations the sums for the divergences of stringy canonical momentum currents and
the corresponding singular parts of these currents in the interior must vanish. By quantum
criticality in interior the divergencespf Kähler and volume terms vanish separately. Same
must happen for the sums in case of string world sheets and their boundaries. The disconti-
nuity of normal derivatives implies that the contribution from the normal directions to the
divergence reduces to the sum of discontinuities in two normal directions multiplied by 2-D
delta function. Thid contribution is in the general case equal to the divergence of correspond-
ing stringy canonical momentum current but must vanish if one has quantum criticality also
at string world sheets and their boundaries.
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The separate continuity of Kähler and volume parts of canonical momentum currents would
guarantee this but very probably implies the continuity of the induced metric and Kähler
form and therefore of normal derivatives so that there would be no singularity. However, the
condition that total canonical momentum currents are continuous makes sense, and indeed
implies a transfer of various conserved charges between Kähler action and volume degrees of
freedom at string world sheets and their boundaries in normal directions as was conjectured
in [L18].

4. What about the situation in fermionic degrees of freedom? The action for string world sheet
X2 would be essentially of Kähler action for X2 × S2, where S2 is twistor sphere. Since the
modified gamma matrices appearing in the modified Dirac equation are determined in terms
of canonical momentum densities assignable to the modified Dirac action, there could be
similar transfer of charges involved with the fermionic sector and the divergences of Noether
charges and super-charges assignable to the volume action are non-vanishing at the singular
surfaces. The above mechanism would force decoupling between interior spinors and string
world sheets spinors also for the modified Dirac equation since modified gamma matrices are
determined by the bosonic action.

Remark: There is a delicacy involved with the definition of modified gamma matrices,
which for volume term are proportional to the induced gamma matrices (projections of the
embedding space gamma matrices to space-time surface). Modified gamma matrices are
proportional to the contractions Tαk Γk of canonical momentum densities Tαk = ∂L/∂(∂αh

k)
with embedding space gamma matrices Γk. To get dimension correctly in the case of volume
action one must divide away the factor Λ/8πG. Therefore fermionic super-symplectic currents
do not involve this factor as required.

It remains an open question whether the string quantum criticality is realized everywhere or
only near the ends of string world sheets near boundaries of CD.

3. String world sheet singularities as infinitely sharp edges and dynamical generation of string
world sheet action

The condition that the singularities are 2-D string world sheets forces 1-D edges of 3-surfaces
to be infinitely sharp.

Consider an edge at 3-surface. The divergence from the discontinuity contains contributions
from two normal coordinates proportional to a delta function for the normal coordinate and coming
from the discontinuity. The discontinuity must be however localized to the string rather than 2-
surface. There must be present also a delta function for the second normal coordinate. Hence
the value of also discontinuity must be infinite. One would have infinitely sharp edge. A concrete
example is provided by function y = |x|α α < 1. This kind of situation is encountered in Thom’s
catastrope theory for the projection of the catastrophe: in this case one has α = 1/2. This
argument generalizes to 3-D case but visualization is possible only as a motion of infinitely sharp
edge of 3-surface.

Kähler form and metric are second degree monomials of partial derivatives so that an attractive
assumption is that gαβ , Jαβ and therefore also the components of volume and Kähler energy
momentum tensor are continuous. This would allow ∂ni

hk to become infinite and change sign at
the discontinuity as the idea about infinitely sharp edge suggests. This would reduce the continuity
conditions for canonical momentum currents to rather simple form

Tninj∆∂njh
k = 0 . (7.1)

which in turn would give

Tninj = 0 (7.2)

stating that canonical momentum is conserved but transferred between Kähler and volume degrees
of freedom. One would have a condition for a continuous quantity conforming with the intuitive
view about boundary conditions due to conservation laws. The condition would state that energy
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momentum tensor reduces to that for string world sheet at the singularity so that the system
becomes effectively 2-D. I have already earlier proposed this condition.

The reduction of 4-D locally to effectively 2-D system raises the question whether any separate
action is needed for string world sheets (and their boundaries)? The generated 2-D action would
be similar to the proposed 2-D action. By super-conformal symmetry similar generation of 2-D
action would take place also in the fermionic degrees of freedom. I have proposed also this option
already earlier. This would mean that Option II is enough.

The following gives a more explicit analysis of the singularities. The vanishing on the discon-
tinuity for the sum of normal derivative gives terms with varying degree of divergence. Denote by
ni resp. ti the coordinate indices in the normal resp. tangent space. Suppose that some derivative
∂ni

hk become infinite at string. One can introduce degree nD of divergence for a quantity appear-
ing as part of canonical momentum current as the degree of the highest monomial consisting of the
diverging derivatives ∂ni

hk appearing in quantity in question. For the leading term in continuity
conditions for canonical momentum currents of total action one should have nD = 2 to give the
required 2-D delta function singularity.

• ∂nih
k has nD ≤ 1. If it is also discontinuous - say changes sign - one has nD = 2 for ∆∂nih

k

in direction ni.

• One has nD(gtitj ) = 0, nD(gtinj
) = 1, nD(gnini

) = 2 and nD(gninj
) = 1 or 2 for i 6= j.

One has nD(g) = 4 (g = det(gαβ)). For contravariant metric one gas nD(gtitj ) = 0 and
nD(gnij) = nD(gninj ) = −2 as is easy to see from the formula for gαβ in terms of cofactors.

• Both Kähler and volume terms in canonical momentum current are proportional to
√
g with

nD(
√
g) = 2 having leading term proportional to 2-determinant

√
det(gninj ). In Kähler

action the leading term comes from tangent space part Jij and has nD = −1 coming from
the partial derivative. The remaining parts involving Jtinj

or Jninj
have nD < 0.

• Consider the behavior of the contribution of volume term to the canonical momentum cur-
rents. For gnitj∂tjh

k√g one has nD = 0 so that this term is finite. For gninj∂nj
hk
√
g one has

nD ≤ 1 and this term can be infinite as also its discontinuity coming solely from the change
of sign for ∂njh

k. If ∂njh
k is infinite and changes sign, one can have nD = 2 as required by

2-D delta function singularity.

The continuity condition for the canonical momentum current would state the vanishing of
nD = 2 discontinuity but would not imply separate vanishing of discontinuity for Kähler
and volume parts of canonical momentum currents - this in accordance with the idea about
canonical momentum transfer. If the sign of partial derivative only changes the coefficient of
the partial derivative must vanish so that the condition reduces to the condition Tninj = 0
already given for the components of the total energy momentum tensor, which would be
continuous by the above assumption.

4. A connection with Higgs vacuum expectation?

What about the physical interpretation of the singular divergences of the isometry currents JA
of the volume action located at string world sheet?

1. The divergences of JA are proportional to the trace of the second fundamental form H formed
by the covariant derivatives of gradients ∂αh

k of H-coordinates in the interior and vanish.
The singular contribution at string world sheets is determined by the discontinuity of the
isometry current JA and involves only the first derivatives ∂αh

k.

2. One of the first questions after ending up with TGD for 41 years ago was whether the trace
of H in the case of CP2 coordinates could serve as something analogous to Higgs vacuum
expectation value. The length squared for the trace has dimensions of mass squared. The
discontinuity of the isometry currents for SU(3) parts in h = u(2) and its complement t,
whose complex coordinates define u(2) doublet. u(2) is in correspondence with electroweak
algebra and t with complex Higgs doublet. Could an interpretation as Higgs or even its
vacuum expectation make sense?
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3. p-Adic thermodynamics explains fermion masses elegantly (understanding of boson masses
is not in so good shape) in terms of thermal mixing with excitations having CP2 mass
scale and assignable to short string associated with wormhole contacts. There is also a
contribution from long strings connecting wormhole contacts and this could be important for
the understanding of weak gauge boson masses. Could the discontinuity of isometry currents
in t determine this contribution to mass. Edges/folds would carry mass.

4. The non-singular part of the divergence multiplying 2-D delta function has dimension 1/length
squared and the square of this vector in CP2 metric has dimension of mass squared. Could the
interpretation of the discontinuity as Higgs expectation make sense? If so, Higgs expectation
would vanish in the space-time interior.

Could the interior modes of the induced spinor field - or at least the interior mode of right-
handed neutrino νR having no couplings to weak or color fields - be massless in 8-D or even 4-D
sense? Could νR and νR generate an unbroken N = 2 SUSY in interior whereas inside string
world sheets right-handed neutrino and antineutrino would be eaten in neutrino massivation
and the generators of N = 2 SUSY would be lost somewhat like charged components of
Higgs!

If so, particle physicists would be trying to find SUSY from wrong place. Space-time interior
would be the correct place. Would the search of SUSY be condensed matter physics rather
than particle physics?

7.2.2 Summarizing the recent view about elementary particles

It is interesting to see how elementary particles and their basic interaction vertices could be realized
in this framework.

1. In TGD framework particle would correspond to pair of wormhole contact associated with
closed magnetic flux tube carrying monopole flux. Strongly flattened rectangle with Minkowskian
flux tubes as long edges with length given by weak scale and Euclidian wormhole contacts as
short edges with CP2 radius as lengths scale is a good visualization. 3-particle vertex corre-
sponding to the replication of this kind of flux tube rectangle to two rectangles would replace
3-vertex of Feynman graph. There is analogy with DNA replication. Similar replication is
expected to be possible also for the associated closed fermionic strings.

2. Denote the wormhole contacts by A and B and their opposite throats by Ai and Bi, i = 1, 2.
For fermions A1 can be assumed to carry the electroweak quantum numbers of fermion. For
electroweak bosons A1 and A2 (for instance) could carry fermion and anti-fermion, whose
quantum numbers sum up to those of ew gauge boson. These “corner fermions” can be called
active.

Also other distributions of quantum numbers must be considered. Fermion and anti-fermion
could in principle reside at the same throat - say A1. One can however assume that second
wormhole contact, say A has quantum numbers of fermion or weak boson (or gluon) and
second contact carries quantum numbers screening weak isospin.

3. The model assumes that the weak isospin is neutralized in length scales longer than the size
of the flux tube structure given by electro-weak scale. The screening fermions can be called
passive. If the weak isospin of W± boson is neutralized in the scale of flux tube, 2 νLνR pairs
are needed (lepton number for these pairs must vanish) for W−. For Z νLνR and νLnuR are
needed. The pairs of passive fermions could reside in the interior of flux tube, at string world
sheet or at its corners just like active fermions. The first extreme is that the neutralizing
neutrino-antineutrino pairs reside in interior at the opposite long edges of the rectangular
flux tube. Second extreme is that they are at the corners of rectangular closed string.

4. Rectangular closed string containing active fermion at wormhole A (say) and with members
of isospin neutralizing neutrino-antineutrino pair at the throats of B serves as basic units.
In scales shorter than string length the end A would behave like fermion with weak isospin.
At longer scales physical fermion would be hadron like entity with vanishing isospin and one
could speak of confinement of weak isospin.
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From these physical fermions one can build gauge bosons as bound states. Weak bosons
and also gluons would be pairs of this kind of fermionic closed strings connecting wormhole
contacts A and B. Gauge bosons (and also gravitons) could be seen as composites of string
like physical fermions with vanishing net isospin rather than those of point like fundamental
fermions.

5. The decay of weak boson to fermion-antifermion pair would be flux tube replication in which
closed strings representing physical fermion and anti-fermion continue along different copies
of flux tube structure. The decay of boson to two bosons - say W → WZ - by replication
of flux tube would require creation of a pair of physical fermionic closed strings representing
Z. This would correspond to a V-shaped vertex with the edge of V representing closed
fermionic closed string turning backwards in time. In decays like Z → W+W− two closed
fermion strings would be created in the replication of flux tube. Rectangular fermionic string
would turns backwards in time in the replication vertex and the rectangular strings of Z
would be shared between W+ and W−.

This mesonlike picture about weak bosons as bound states of fermions sounds complex as
compared with standard model picture. On the other hand only the spinor fields assignable to
single fermion family are present.

A couple of comments concerning this picture are in order.

1. M8 duality provides a different perspective. In M8 picture these vertices could correspond
to analogs of local 3 particle vertices for octonionic superfield, which become nonlocal in the
map taking M8 = M4 × CP2 surfaces to surfaces in H = M4 × CP2. The reason is that
M4 point is mapped to M4 point but the tangent space at E4 point is mapped to a point
of CP2. If the point in M8 corresponds to a self-intersection point the tangent space at the
point is not unique and point is mapped to two distinct points. There local vertex in M8

would correspond to non-local vertex in H and fermion lines could just begin. This would
mean that at H-level fermion line at moment of replication and V-shaped fermion line pair
beginning at different point of throat could correspond to 3-vertex at M8 level.

2. The 3-vertex representing replication could have interpretation in terms of quantum critical-
ity: in reversed direction of time two branches of solution of classical field equations would
co-incide.

7.2.3 Gravitation as a square of gauge interaction

I encountered in FB a link to an interesting popular article (see http://tinyurl.com/y5r4glgg)
about theoretical physicist Henrik Johansson who has worked with supergravity in Wallenberg
Academy. He has found strong mathematical evidence for a new duality. Various variants of super
quantum gravity support the view that supersymmetric quantum theories of gravitation can be
seen as a double copy of a gauge theory. One could say that spin 2 gravitons are gluons with
color charge replaced with spin. Since the information about charges disappears, gluons can be
understood very generally as gauge bosons for given gauge theory, not necessarily QCD.

The article of C. D. White [B3] (see https://arxiv.org/pdf/1708.07056.pdf) entitled “The
double copy: gravity from gluons” explains in more detail the double copy duality and also shows
that it relates in many cases also exact classical solutions of Einsteins equations and YM theories.
One starts from L-loop scattering amplitude involving products of kinematical factors ni and color
factors ci and replaces color factors with extra kinematical factors ñi. The outcome is an L-loop
amplitude for gravitons.

As if gravitation could be regarded as a gauge theory with polarization and/or momenta identi-
fied giving rise to effective color charges. This is like taking gauge potential and giving it additional
index to get metric tensor. This näıve analogy seems to hold true at the level of scattering ampli-
tudes and also for many classical solutions of field equations. Could one think that gravitons as
states correspond to gauge singlets formed from two gluons and having spin 2? Also spin 1 and
spin 0 states would be obtained and double copies involve also them.

TGD view about elementary particles indeed predicts that gravitons be regarded in certain
sense pairs of gauge bosons. Consider now gravitons and assume for simplicity that spartners of

http://tinyurl.com/y5r4glgg
https://arxiv.org/pdf/1708.07056.pdf
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fundamental fermions - identifiable as local multi-fermion states allowed by statistics - are not
involved: this does not change the situation much [L21]. Graviton’s spin 2 requires 2 fermions and
2 anti-fermions: fermion or anti-fermion at each throat. For gauge bosons fermion and anti-fermion
at two throats is enough. One could therefore formally see gravitons as pairs of two gauge bosons
in accordance with the idea about graviton is a square of gauge boson.

The fermion contents of the monopole flux tube associated with elementary particle determines
quantum numbers of the flux tube as particle and characterizes corresponding interaction. The
interaction depends also on the charges at the ends of the flux tube. This leads to a possible
interpretation for the formation of bound states in terms of flux tubes carrying quantum numbers
of particles.

1. These long flux tubes can be arbitrarily long for large values of ~eff = n×~0 assigned to the
flux tube. A plausible guess for for the expression of ~ in terms of 0 is as ~ = 6×~0 [L4, L11].
The length of the flux tube scales like ~eff .

2. Nottale [?] proposed that it makes sense to speak about gravitational Planck constant hgr.
In TGD this idea is generalized and interpreted in framework of generalized quantum the-
ory [K22, K18, K3]. For flux tubes assignable to gravitational bound states along which
gravitons propagate, one would have ~eff = ~gr = GMm/v0, where v0 < c is parameter
with dimensions of velocity. One could write interaction strength as

GMm = v0 × ~gr .

3. ~gr obtained from this formula must satisfy ~gr > ~. This generalizes to other interactions.
For instance, one has one would have

Z1Z2e
2 =

v0~em

for electromagnetic flux tubes in the case that ones hem > ~. The interpretation of the velocity
parameter v0 is discussed in [K3].

One could even turn the situation around and say that the value of ~eff fixes the interaction
strength. ~eff would depend on fermion content and thus of virtual particle and also on the
masses or other charges at the ends of the flux tube. The longer the range of the interaction, the
larger the typical value of ~eff .

4. The interpretation could be in terms long length scale quantum fluctuations at quantum criticality.
Particles generate U-shaped monopole flux tubes with varying length proportional to ~gr. If these
U-shaped flux tubes from two different particles find each other, they reconnect to flux tube pairs
connecting particles and give rise to interaction. What comes in mind is tiny curious and social
animals studying their environment.

5. I have indeed proposed this picture in biology: the U-shaped flux tubes would be tentacles with
which bio-molecules (in particular) would be scanning their environment. This scanning would
be the basic mechanism behind immune system. It would also make possible for bio-molecules
to find each in molecular crowd and provide a mechanism of catalysis. Could this picture apply
completely generally? Would even elementary particles be scanning their environment with these
tentacles?

6. Could one interpret the flux tubes as analogs of virtual particles or could they replace virtual
particles of quantum field theories? The objection is that flux tubes would have time-like momenta
whereas virtual particle analogs would have space-like momenta. The interpretation makes sense
only if the associated momenta are between space-like and time-like that is light-like so that flux
tube would correspond to mass shell particle. But this is the case in twistor approach to gauge
theories also in TGD [L21] (see http://tinyurl.com/y62no62a ).

Perhaps the following interpretation is more appropriate. Flux tubes are accompanied by strings
and string world sheets can be interpreted as stringy description of gravitation and other interac-
tions.

http://tinyurl.com/y62no62a
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7.2.4 Kähler calibrations: an idea before its time?

While updating book introductions I was surprised to find that I had talked about so called
calibrations of sub-manifolds as something potentially important for TGD and later forgotten the
whole idea! A closer examination however demonstrated that I had ended up with the analog
of this notion completely independently later as the idea that preferred extremals are minimal
surfaces apart form 2-D singular surfaces, where there would be exchange of Noether charges
between Kähler and volume degrees of freedom.

1. The original idea that I forgot too soon was that the notion of calibration (see http:

//tinyurl.com/y3lyead3) generalizes and could be relevant for TGD. A calibration in Rie-
mann manifold M means the existence of a k-form φ in M such that for any orientable k-D
sub-manifold the integral of φ over M equals to its k-volume in the induced metric. One can
say that metric k-volume reduces to homological k-volume.

Calibrated k-manifolds are minimal surfaces in their homology class, in other words their
volume is minimal. Kähler calibration is induced by the kth power of Kähler form and
defines calibrated sub-manifold of real dimension 2k. Calibrated sub-manifolds are in this
case precisely the complex sub-manifolds. In the case of CP2 they would be complex curves
(2-surfaces) as has become clear.

2. By the Minkowskian signature of M4 metric, the generalization of calibrated sub-manifold
so that it would apply in M4 × CP2 is non-trivial. Twistor lift of TGD however forces to
introduce the generalization of Kähler form in M4 (responsible for CP breaking and matter
antimatter asymmetry) and calibrated manifolds in this case would be naturally analogs of
string world sheets and partonic 2-surfaces as minimal surfaces. Cosmic strings are Cartesian
products of string world sheets and complex curves of CP2. Calibrated manifolds, which do
not reduce to Cartesian products of string world sheets and complex surfaces of CP2 should
also exist and are minimal surfaces.

One can also have 2-D calibrated surfaces and they could correspond to string world sheets
and partonic 2-surfaces which also play key role in TGD. Even discrete points assignable to
partonic 2-surfaces and representing fundamental fermions play a key role and would trivially
correspond to calibrated surfaces.

3. Much later I ended up with the identification of preferred extremals as minimal surfaces by
totally different route without realizing the possible connection with the generalized calibra-
tions. Twistor lift and the notion of quantum criticality led to the proposal that preferred
extremals for the twistor lift of Kähler action containing also volume term are minimal sur-
faces. Preferred extremals would be separately minimal surfaces and extrema of Kähler action
and generalization of complex structure to what I called Hamilton-Jacobi structure would
be an essential element. Quantum criticality outside singular surfaces would be realized as
decoupling of the two parts of the action. May be all preferred extremals be regarded as
calibrated in generalized sense.

If so, the dynamics of preferred extremals would define a homology theory in the sense that
each homology class would contain single preferred extremal. TGD would define a generalized
topological quantum field theory with conserved Noether charges (in particular rest energy)
serving as generalized topological invariants having extremum in the set of topologically
equivalent 3-surfaces.

It is interesting to recall that the original proposal for the preferred extremals as absolute
minima of Kähler action has transformed during years to a proposal that they are absolute
minima of volume action within given homology class and having fixed ends at the boundaries
of CD.

4. The experience with CP2 would suggest that the Kähler structure of M4 defining the coun-
terpart of form φ is unique. There is however infinite number of different closed self-dual
Kähler forms of M4 defining what I have called Hamilton-Jacobi structures. These forms can
have subgroups of Poincare group as symmetries. For instance, magnetic flux tubes corre-
spond to given cylindrically symmetry Kähler form. The problem disappears as one realizes
that Kähler structures characterize families of preferred extremals rather than M4 itself.

http://tinyurl.com/y3lyead3
http://tinyurl.com/y3lyead3
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If the notion of calibration indeed generalizes, one ends up with the same outcome - preferred
extremals as minimal surfaces with 2-D string world sheets and partonic 2-surfaces as singularities
- from many different directions.

1. Quantum criticality requires that dynamics does not depend on coupling parameters so that
extremals must be separately extremals of both volume term and Kähler action and therefore
minimal surfaces for which these degrees of freedom decouple except at singular 2-surfaces,
where the necessary transfer of Noether charges between two degrees of freedom takes place
at these. One ends up with string picture but strings alone are of course not enough. For
instance, the dynamical string tension is determined by the dynamics for the twistor lift.

2. Almost topological QFT picture implies the same outcome: topological QFT property fails
only at the string world sheets.

3. Discrete coupling constant evolution, vanishing of loop corrections, and number theoretical
condition that scattering amplitudes make sense also in p-adic number fields, requires a
representation of scattering amplitudes as sum over resonances realized in terms of string
world sheets.

4. In the standard QFT picture about scattering incoming states are solutions of free massless
field equations and interaction regions the fields have currents as sources. This picture
is realized by the twistor lift of TGD in which the volume action corresponds to geodesic
length and Kähler action to Maxwell action and coupling corresponds to a transfer of Noether
charges between volume and Kähler degrees of freedom. Massless modes are represented by
minimal surfaces arriving inside causal diamond (CD) and minimal surface property fails in
the scattering region consisting of string world sheets.

5. Twistor lift forces M4 to have generalize Kähler form and this in turn strongly suggests a gen-
eralization of the notion of calibration. At physics side the implication is the understanding
of CP breaking and matter anti-matter asymmetry.

6. M8−H duality requires that the dynamics of space-time surfaces in H is equivalent with the
algebraic dynamics in M8. The effective reduction to almost topological dynamics implied
by the minimal surface property implies this. String world sheets (partonic 2-surfaces) in
H would be images of complex (co-complex sub-manifolds) of X4 ⊂ M8 in H. This should
allows to understand why the partial derivatives of embedding space coordinates can be
discontinuous at these edges/folds but there is no flow between interior and singular surface
implying that string world sheets are minimal surfaces (so that one has conformal invariance).

The analogy with foams in 3-D space deserves to be noticed.

1. Foams can be modelled as 2-D minimal surfaces with edges meeting at vertices. TGD space-
time could be seen as a dynamically generated foam in 4-D many-sheeted space-time con-
sisting of 2-D minimal surfaces such that also the 4-D complement is a minimal surface. The
counterparts for vertices would be light-like curves at light like orbits of partonic 2-surfaces
from which several string world sheets can emanate.

2. Can one imagine something more analogous to the usual 3-D foam? Could the light-like orbits
of partonic 2-surfaces define an analog of ordinary foam? Could also partonic 2-surfaces have
edges consisting of 2-D minimal surfaces joined along edges representing strings connecting
fermions inside partonic 2-surface?

For years ago I proposed what I called as symplectic QFT (SQFT) as an analog of conformal
QFT and as part of quantum TGD [K5]. SQFT would have symplectic transformations as
symmetries, and provide a description for the symplectic dynamics of partonic 2-surfaces.
SQFT involves an analog of triangulation at partonic 2-surfaces and Kähler magnetic fluxes
associated with them serve as observables. The problem was how to fix this kind of network.
Partonic foam could serve as a concrete physical realization for the symplectic network and
have fundamental fermions at vertices. The edges at partonic 2-surfaces would be space-like
geodesics. The outcome would be a calibration involving objects of all dimensions 0 ≤ D ≤ 4
- a physical analog of homology theory.
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7.3 Twistors in TGD and connection with Veneziano duality

The twistorialization of TGD has two aspects. The attempt to generalize twistor Grassmannian
approach emerged first. It was however followed by the realization that also the twistor lift of TGD
at classical space-time level is needed. It turned out that the progress in the understanding of the
classical twistor lift has been much faster - probably this is due to my rather limited technical QFT
skills.

7.3.1 Twistor lift at space-time level

8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [K25]. The
reason is that M4 and CP2 are completely exceptional in the sense that they are the only 4-D
manifolds allowing twistor space with Kähler structure [A4]. The twistor space of M4 × CP2 is
Cartesian product of those of M4 and CP2. The obvious idea is that space-time surfaces allowing
twistor structure if they are orientable are representable as surfaces in H such that the properly
induced twistor structure co-incides with the twistor structure defined by the induced metric.

In fact, it is enough to generalize the induction of spinor structure to that of twistor structure
so that the induced twistor structure need not be identical with the ordinary twistor structure
possibly assignable to the space-time surface. The induction procedure reduces to a dimensional
reduction of 6-D Kähler action giving rise to 6-D surfaces having bundle structure with twistor
sphere as fiber and space-time as base. The twistor sphere of this bundle is imbedded as sphere in
the product of twistor spheres of twistor spaces of M4 and CP2.

This condition would define the dynamics, and the original conjecture was that this dynamics
is equivalent with the identification of space-time surfaces as preferred extremals of Kähler action.
The dynamics of space-time surfaces would be lifted to the dynamics of twistor spaces, which
are sphere bundles over space-time surfaces. What is remarkable that the powerful machinery of
complex analysis becomes available.

It however turned out that twistor lift of TGD is much more than a mere technical tool.
First of all, the dimensionally reduction of 6-D Kähler action contained besides 4-D Kähler action
also a volume term having interpretation in terms of cosmological constant. This need not bring
anything new, since all known extremals of Kähler action with non-vanishing induced Kähler form
are minimal surfaces. There is however a large number of embeddings of twistor sphere of space-
time surface to the product of twistor spheres. Cosmological constant has spectrum and depends on
length scale, and the proposal is that coupling constant evolution reduces to that for cosmological
constant playing the role of cutoff length. That cosmological constant could transform from a mere
nuisance to a key element of fundamental physics was something totally new and unexpected.

1. The twistor lift of TGD at space-time level forces to replace 4-D Kähler action with 6-D
dimensionally reduced Kähler action for 6-D surface in the 12-D Cartesian product of 6-D
twistor spaces of M4 and CP2. The 6-D surface has bundle structure with twistor sphere as
fiber and space-time surface as base.

Twistor structure is obtained by inducing the twistor structure of 12-D twistor space using
dimensional reduction. The dimensionally reduced 6-D Kähler action is sum of 4-D Kähler
action and volume term having interpretation in terms of a dynamical cosmological constant
depending on the size scale of space-time surface (or of causal diamond CD in zero energy
ontology (ZEO)) and determined by the representation of twistor sphere of space-time surface
in the Cartesian product of the twistor spheres of M4 and CP2.

2. The preferred extremal property as a representation of quantum criticality would naturally
correspond to minimal surface property meaning that the space-time surface is separately
an extremal of both Kähler action and volume term almost everywhere so that there is no
coupling between them. This is the case for all known extremals of Kähler action with
non-vanishing induced Kähler form.

Minimal surface property could however fail at 2-D string world sheets, their boundaries and
perhaps also at partonic 2-surfaces. The failure is realized in minimal sense if the 3-surface
has 1-D edges/folds (strings) and 4-surface 2-D edges/folds (string world sheets) at which
some partial derivatives of the embedding space coordinates are discontinuous but canonical
momentum densities for the entire action are continuous.
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There would be no flow of canonical momentum between interior and string world sheet and
minimal surface equations would be satisfied for the string world sheet, whose 4-D counterpart
in twistor bundle is determined by the analog of 4-D Kähler action. These conditions allow
the transfer of canonical momenta between Kähler- and volume degrees of freedom at string
world sheets. These no-flow conditions could hold true at least asymptotically (near the
boundaries of CD).

M8−H duality suggests that string world sheets (partonic 2-surfaces) correspond to images
of complex 2-sub-manifolds of M8 (having tangent (normal) space which is complex 2-plane
of octonionic M8).

3. Cosmological constant would depend on p-adic length scales and one ends up to a concrete
model for the evolution of cosmological constant as a function of p-adic length scale and
other number theoretic parameters (such as Planck constant as the order of Galois group):
this conforms with the earlier picture.

Inflation is replaced with its TGD counterpart in which the thickening of cosmic strings to
flux tubes leads to a transformation of Kähler magnetic energy to ordinary and dark matter.
Since the increase of volume increases volume energy, this leads rapidly to energy minimum
at some flux tube thickness. The reduction of cosmological constant by a phase transition
however leads to a new expansion phase. These jerks would replace smooth cosmic expansion
of GRT. The discrete coupling constant evolution predicted by the number theoretical vision
could be understood as being induced by that of cosmological constant taking the role of
cutoff parameter in QFT picture [L16].

7.3.2 Twistor lift at the level of scattering amplitudes and connection with Veneziano
duality

The classical part of twistor lift of TGD is rather well-understood. Concerning the twistorialization
at the level of scattering amplitudes the situation is much more difficult conceptually - I already
mentioned my limited QFT skills.

1. From the classical picture described above it is clear that one should construct the 8-D
twistorial counterpart of theory involving space-time surfaces, string world sheets and their
boundaries, plus partonic 2-surfaces and that this should lead to concrete expressions for the
scattering amplitudes.

The light-like boundaries of string world sheets as carriers of fermion numbers would cor-
respond to twistors as they appear in twistor Grassmann approach and define the analog
for the massless sector of string theories. The attempts to understand twistorialization have
been restricted to this sector.

2. The beautiful basic prediction would be that particles massless in 8-D sense can be massive
in 4-D sense. Also the infrared cutoff problematic in twistor approach emerges naturally and
reduces basically to the dynamical cosmological constant provided by classical twistor lift.

One can assign 4-momentum both to the spinor harmonics of the embedding space represent-
ing ground states of super-conformal representations and to light-like boundaries of string
world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identical
by quantum classical correspondence: this could be seen as a concretization of Equivalence
Principle. Also a connection with string model emerges.

3. As far as symmetries are considered, the picture looks rather clear. Ordinary twistor Grass-
mannian approach boils down to the construction of scattering amplitudes in terms of Yangian
invariants for conformal group of M4. Therefore a generalization of super-symplectic sym-
metries to their Yangian counterpart seems necessary. These symmetries would be gigantic
but how to deduce their implications?

4. The notion of positive Grassmannian is central in the twistor approach to the scattering am-
plitudes in calN = 4 SUSYs. TGD provides a possible generalization and number theoretic
interpretation of this notion. TGD generalizes the observation that scattering amplitudes in
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twistor Grassmann approach correspond to representations for permutations. Since 2-vertex
is the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering am-
plitudes are representations for braidings.

Braid interpretation encourages the conjecture that non-planar diagrams can be reduced to
ordinary ones by a procedure analogous to the construction of braid (knot) invariants by
gradual un-braiding (un-knotting).

This is however not the only vision about a solution of non-planarity. Quantum criticality
provides different view leading to a totally unexpected connection with string models, actually
with the Veneziano duality, which was the starting point of dual resonance model in turn leading
via dual resonance models to super string models.

1. Quantum criticality in TGD framework means that coupling constant evolution is discrete
in the sense that coupling constants are piecewise constant functions of length scale replaced
by dynamical cosmological constant. Loop corrections would vanish identically and the
recursion formulas for the scattering amplitudes (allowing only planar diagrams) deduced in
twistor Grassmann would involve no loop corrections. In particular, cuts would be replaced
by sequences of poles mimicking them like sequences of point charge mimic line charges. In
momentum discretization this picture follows automatically.

2. This would make sense in finite measurement resolution realized in number theoretical vi-
sion by number-theoretic discretization of the space-time surface (cognitive representation)
as points with coordinates in the extension of rationals defining the adele [L7]. Similar dis-
cretization would take place for momenta. Loops would vanish at the level of discretization
but what would happen at the possibly existing continuum limit: does the sequence of poles
integrate to cuts? Or is representation as sum of resonances something much deeper?

3. Maybe it is! The basic idea of behind the original Veneziano amplitudes (see http://

tinyurl.com/yyhwvbqb) was Veneziano duality. This 4-particle amplitude was generalized
by Yoshiro Nambu, Holber-Beck Nielsen, and Leonard Susskind to N-particle amplitude (see
http://tinyurl.com/yyvkx7as) based on string picture, and the resulting model was called
dual resonance model. The model was forgotten as QCD emerged. Later came superstring
models and led to M-theory. Now it has become clear that something went wrong, and it
seems that one must return to the roots. Could the return to the roots mean a careful
reconsideration of the dual resonance model?

4. Recall that Veneziano duality (1968) was deduced by assuming that scattering amplitude can
be described as sum over s-channel resonances or t-channel Regge exchanges and Veneziano
duality stated that hadronic scattering amplitudes have representation as sums over s- or t-
channel resonance poles identified as excitations of strings. The sum over exchanges defined
by t-channel resonances indeed reduces at larger values of s to Regge form.

The resonances had zero width, which was not consistent with unitarity. Further, there
were no counterparts for the sum of s-, t-, and u-channel diagrams with continuous cuts
in the kinematical regions encountered in QFT approach. What puts bells ringing is the u-
channel diagrams would be non-planar and non-planarity is the problem of twistor Grassmann
approach.

5. Veneziano duality is true only for s- and t- channels but not been s- and u-channel. Stringy
description makes t-channel and s-channel pictures equivalent. Could it be that in funda-
mental description u-channels diagrams cannot be distinguished from s-channel diagrams or
t-channel diagrams? Could the stringy representation of the scattering diagrams make u-
channel twist somehow trivial if handles of string world sheet representing stringy loops in
turn representing the analog of non-planarity of Feynman diagrams are absent? The per-
mutation of external momenta for tree diagram in absence of loops in planar representation
would be a twist of π in the representation of planar diagram as string world sheet and would
not change the topology of the string world sheet and would not involve non-trivial world
sheet topology.

http://tinyurl.com/yyhwvbqb
http://tinyurl.com/yyhwvbqb
http://tinyurl.com/yyvkx7as


7.3 Twistors in TGD and connection with Veneziano duality 74

For string world sheets loops would correspond to handles. The presence of handle would
give an edge with a loop at the level of 3-surface (self energy correction in QFT). Handles
are not allowed if the induced metric for the string world sheet has Minkowskian signature.
If the stringy counterparts of loops are absent, also the loops in scattering amplitudes should
be absent.

This argument applies only inside the Minkowskian space-time regions. If string world sheets
are present also in Euclidian regions, they might have handles and loop corrections could
emerge in this manner. In TGD framework strings (string world sheets) are identified to 1-
D edges/folds of 3-surface at which minimal surface property and topological QFT property
fails (minimal surfaces as calibrations). Could the interpretation of edge/fold as discontinuity
of some partial derivatives exclude loopy edges: perhaps the branching points would be too
singular?

A reduction to a sum over s-channel resonances is what the vanishing of loops would suggest.
Could the presence of string world sheets make possible the vanishing of continuous cuts even at
the continuum limit so that continuum cuts would emerge only in the approximation as the density
of resonances is high enough?

The replacement of continuous cut with a sum of infinitely narrow resonances is certainly an
approximation. Could it be that the stringy representation as a sum of resonances with finite width
is an essential aspect of quantum physics allowing to get rid of infinities necessarily accompanying
loops? Consider now the arguments against this idea.

1. How to get rid of the problems with unitarity caused by the zero width of resonances? Could
finite resonance widths make unitarity possible? Ordinary twistor Grassmannian approach
predicts that the virtual momenta are light-like but complex: obviously, the imaginary part
of the energy in rest frame would have interpretation as resonance with.

In TGD framework this generalizes for 8-D momenta. By quantum-classical correspondence
(QCC) the classical Noether charges are equal to the eigenvalues of the fermionic charges
in Cartan algebrable (maximal set of mutually commuting observables) and classical TGD
indeed predicts complex momenta (Kähler coupling strength is naturally complex). QCC
thus supports this proposal.

2. Sum over resonances/exchanges picture is in conflict with QFT picture about scattering of
particles. Could finite resonance widths due to the complex momenta give rise to the QFT
type scattering amplitudes as one develops the amplitudes in Taylor series with respect to
the resonance width? Unitarity condition indeed gives the first estimate for the resonance
width.

QFT amplitudes should emerge in an approximation obtained by replacing the discrete set of
finite width resonances with a cut as the distance between poles is shorter than the resolution
for mass squared.

In superstring models string tension has single very large value and one cannot obtain QFT
type behavior at low energies (for instance, scattering amplitudes in hadronic string model
are concentrated in forward direction). TGD however predicts an entire hierarchy of p-
adic length scales with varying string tension. The hierarchy of mass scales corresponding
roughly to the lengths and thickness of magnetic flux tubes as thickened cosmic strings and
characterized by the value of cosmological constant predicted by twistor lift of TGD. Could
this give rise to continuous QCT type cuts at the limit when measurement resolution cannot
distinguish between resonances?

The dominating term in the sum over sums of resonances in t-channel gives near forward
direction approximately the lowest mass resonance for strings with the smallest string tension.
This gives the behavior 1/(t − m2

min), where mmin corresponds to the longest mass scale
involved (the largest space-time sheet involved), approximating the 1/t-behavior of massless
theories. This also brings in IR cutoff, the lack of which is a problem of gauge theories.
This should give rise to continuous QFT type cuts at the limit when measurement resolution
cannot distinguish between resonances.
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7.3.3 Number-theoretic approach to unitarity

Twistorialization leads to the proposal that cuts in the scattering amplitudes are replaced with sums
over poles, and that also many-particle states have discrete momentum and mass squared spectrum
having interpretation in terms of bound states. Gravitation would be the natural physical reason
for the discreteness of the mass spectrum and in string models it indeed emerges as “stringy” mass
spectrum. The situation is very similar to that in dual resonance models, which were precedessors
of super string theories.

Number theoretical discretization based on the hierarchy of extensions of rationals defining
extensions of p-adic number fields gives rise to cognitive representatations as discrete sets of space-
time surface and discretization of 4-momenta and S-matrix with discrete momentum labels. In
number theoretic discretization cuts reduce automatically to sequences of poles. Whether this
discretization is an approximation reflecting finite cognitive resolution or whether finite cognitive
representation is a property of physical states reflecting itself as a condition that various parameters
characterizing them belong to the extension considered, remains an open question.

One can approach the unitarity conditions also number theoretically. In the discretization
forced by the extension of rationals the amplitudes are defined between states having a discrete
spectrum of 4-momenta. Unitarity condition reduces to a purely algebraic condition involving
only sums. In these conditions the Dirac delta functions associated with the mass squared of the
resonances are replaced with Kronecker deltas.

1. For given extension of rationals the unitary conditions are purely algebraic equations

i(Tmn + Tnm) =
∑
r

TmrTnr = TmnTnn + TmmTmn +
∑
r 6=m,n

TmrTnr .

where Tmn belongs the extension. Complex imaginary unit i corresponds to that appearing
in the extension of octonions in M8 −H duality [L6].

2. In the forward direction m = n one obtains

2Im(Tmm) = Re(Tmm)2 + Im(Tmm)2 + Pm , Pm =
∑
r 6=m

TmrTmr .

Pm represents total probability for non-forward scattering.

3. One can think of solving Im(Tmm) algebraically from this second order polynomial in the
lowest order approximation in which Tmn = 0 for m 6= n. This gives

2Im(Tmm) = 1 +
√

1− Pm −Re(Tmm)2 .

Reality requires 1−Re(Tmm)2 − Pm ≥ 0 giving

Re(Tmm)2 + Pm ≤ 1 .

This condition is identically true by unitarity since probability for scattering cannot be larger
than 1.

Besides this the real root must belong to the original extension of rationals. For instance,
if the extension of rationals is trivial, the quantity 1 − Pm − Re(Tmm)2 must be a square
of rational y giving 1 − Pm = y2 + Re(Tmm)2. In the case of extension y is replaced with
a number in the extension. I am not enough of number theorist to guess how powerful this
kind of number theoretical conditions might be. In any case, the general ansatz for S is a
unitary matrix in extension of rationals and this kind of matrices form a group so that there
is no hope about unique solution.
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4. One could think of iterative solution of the conditions by assuming in the zeroth order
approximation Tmn = 0 for m 6= n giving Re(Tmm)2 + Im(Tmm)2 = 1 reducing to cos2(θ) +
sin2(θ) = 1. For trivial extension of rationals θ would correspond to Pythagorean triangle.

For non-diagonal elements of Tmn one would obtain at the next step the conditions

i(Tmn + Tnm) = TmnTnn + TmmTnm .

This gives a 2 linear equations for Tmn.

5. These conditions are not enough to give unique solution. Time reversal invariance gives
additional conditions and might help in this respect. T invariance is slightly broken but
CPT symmetry could replace T symmetry in the general situation.

Time reversal operator T (to be not confused with Tmn above) is anti-unitary operator and
one has S† = T (S). In wave mechanics one can show that T-invariant S-matrix and thus
also T -matrix is symmetric: S = ST . The matrices of this kind do not form a group so that
the conditions can be very powerful.

Combined with the above equations symmetry gives

2Im(Tmn) = TmnTnn + TmmTmn .

The two conditions for Tmn in principle fix it completely in this order.

One obtains from the real part of the equation

2Im(Tmn) = Re[TmnTnn + TmmTmn] .

The vanishing of the imaginary part gives

Im[TmnTnn + TmmTmn] = 0 .

giving a linear relation between the real and imaginary parts of Tmn. No new number
theoretical conditions emerge. This relation requires that real and imaginary parts belong to
the extension.

6. At higher orders one must feed the resulting ansatz to the unitarity conditions for the diagonal
elements Tnn. One can hope that the lowest order ansatz leads to rather unique solution by
iteration of the unitarity conditions. In higher order conditions the higher order corrections
appear linearly so that no new number theoretic conditions emerge at higher orders.

Physical picture suggests that the S-matrices could be obtained by an iterative procedure.
Since infinitely long procedure very probably leads out of the extension, one can ask whether
the procedure should stop after finite steps. This property would pose an additional condi-
tions to the S-matrix.

7. Diagonal matrices are solutions to the conditions and for then the diagonal elements are roots
of unity in the extension of rationals considered. The automorphisms Sd → USdU

−1 produce
new S-matrices and if the unitary matrix U is orthogonal real matrix in algebraic extension
satisfying therefore UUT = 1, the condition S = ST is satisfied. There are therefore a large
number of solutions.

S-matrices diagonalizable in the extension are not the only solutions. The diagonalization of
a unitary matrix S = ST in general gives a diagonal S-matrix, for which the roots of unity
in general do not belong to the extension. Also the diagonalizating matrix fails to be in the
extension. This non-diagonalizability might have deep physics content and explain why the
physically natural state basis is not the one in which S-matrix is diagonal. In the case of
density matrix it would guarantee stability of entanglement.

To sum up, number theoretic conditions could give rise to highly unique discrete S-matrices,
when CPT symmetry can be formulated purely algebraically and be combined with unitarity. CPT
symmetry might not however allow formulation in terms of automorphisms of diagonal unitary
matrices analogous to orthogonal transformations.
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7.4 Summary

It seems that unitarity of S-matrix reduces to the existence of maximal group of WCW isometries.
The conservation of charges implies conservation of probability and unitarity.

Disjoint 3-surfaces and also those topologically condensed at larger space-time sheets would
have interpretation as topological representations of particles in this approach. The special role of
the partonic orbits suggests holography in the sense that these orbits have particle interpretation.
Similar holography would make sense true for string world sheets and their boundaries. Action
could therefore contain parts associated with D = 2 and D = 1 surfaces so that oscillator operators
associated with these would be involved in the construction of states.

The transfer of quantum numbers from space-time interior to string world sheets could take
place in interaction regions for Option I for which one assigns action to singular surfaces identified
as surfaces having complex or real tangent space at M8 level. The transfer would naturally
vanish near the boundaries of CD. Same applies to the transfer from string world sheets to their
boundaries. For Option II two the string world sheets would not carry Noether currents and only
minimal surface property could fail at these surfaces: therefore this option is not realistic. Also for
Option I there could be breaking of minimal surface property in this sense and the discontinuity
of normal component for Noether currents would imply it automatically.

When this picture is combined with the twistor Grassmannian inspired view about scattering
amplitudes using the constraints coming from quantum criticality, discreteness of the coupling
constant evolution, and the existence of amplitudes as rational functions with coefficients in a
extension of rationals allowing p-adic variants, one ends up to a picture in which amplitudes
reduces to sums over resonances - this was just what was assumed in Veneziano model besides s-t
duality.

This picture does not conform with QFT picture in superstring framework, where one has
single large string tension so that poles cannot be approximated by cuts for low energies. In TGD
framework this can be the case since string tension has spectrum reducing to that for cosmological
constant. Since momenta are already classically predicted to be complex, resonance poles have
finite width and one can in principle understand also unitarity. Therefore twistorialization in TGD
framework leads to string models, and strings are indeed an essential part of twistorialization in
TGD framework.

8 Scattering amplitudes and orbits of cognitive representa-
tions under subgroup of symplectic group respecting the
extension of rationals

Number theorist Minhyong Kim has speculated about very interesting general connection between
number theory and physics [A7, A9] (see http://tinyurl.com/y86bckmo). The reading of a
popular article about Kim’s work revealed that number theoretic vision about physics provided by
TGD has led to a very similar ideas and suggests a concrete realization of Kim’s ideas [L20]. The
identification of points of algebraic surface with coordinates, which are rational or in extension of
rationals, gives rise to what one can call identification problem. In TGD framework the embedding
space coordinates for points of space-time surface belonging to the extension of rationals defining
the adelic physics in question are common to reals and all extensions of p-adics induced by the
extension. These points define what I call cognitive representation, whose construction means
solving of the identification problem.

Cognitive representation defines discretized coordinates for a point of “world of classical worlds”
(WCW) taking the role of the space of spaces in Kim’s approach. The symmetries of this space
are proposed by Kim to help to solve the identification problem. The maximal isometries of WCW
necessary for the existence of its Kähler geometry provide symmetries identifiable as symplectic
symmetries. The discrete subgroup respecting extension of rationals acts as symmetries of cog-
nitive representations of space-time surfaces in WCW, and one can identify symplectic invariants
characterizing the space-time surfaces at the orbits of the symplectic group.

This picture could be applied to the construction of scattering amplitudes with finite cognitive
precision in terms of cognitive representations and their orbits under subgroup SD of symplectic
group respecting the extension of rationals defining the adele. One could pose to SD the additional

http://tinyurl.com/y86bckmo
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condition that it leaves the value of action invariant: call this group SD,S : this would define what
I have called micro-canonical ensemble (MCE).

The obvious question is whether the simplest zero energy states could correspond to single orbit
of SD or whether several orbits are required. For the more complex option zero energy states would
be superposition of states corresponding to several orbits of SD with coefficients constructed of
symplectic invariants. The following arguments lead to the conclusion that MCE and single orbit
orbit option are non-realistic, and raise the question whether the orbits of SD could combine to an
orbit of its Yangian analog. A generalization of the formula for scattering amplitudes in terms of
n-point functions emerges and somewhat surprisingly one finds that the unitarity is an automatic
consequence of state orthonormalization in zero energy ontology (ZEO).

8.1 Zero energy states

The degrees of freedom at WCW level can be divided to zero modes, which do not contribute to
WCW metric and correspond to symplectic invariants and to dynamical degrees of freedom which
correspond to the orbits of symplectic group of δM4

± × CP2. The assumption is that symplectic
group indeed acts as isometries. The general proposal for the state construction in continuum case
should have a discrete analog. There are good reasons to hope that the zero energy states in the
degrees of freedom corresponding to the orbits of the discrete variant SD of the symplectic grop
are analogous to spherical harmonics and are dictated completely by symmetry considerations.

Quantum superposition of space-time surfaces - preferred extremals - defines zero energy state.
The natural question is whether zero energy state could correspond to single orbit of SD or whether
several of them are needed.

1. Preferred extremal is fixed more or less uniquely by its ends, which are 3-surfaces at the
opposite light-like boundaries of CD. The interpretation is in terms of holography forced
also by general coordinate invariance requiring that one must be able to assign to a given
3-surface a unique space-time surface at which general coordinate transformations act. In
ZEO 3-surface means union of 3-surface at opposite ends of CD.

The idea about preferred extremals as analogs of Bohr orbits suggests that the 3-surface at the
either end determines the 3-surface at the opposite end highly uniquely. The proposal that
preferred extremals are minimal surfaces apart from singular 2-surfaces identifiable as string
world sheet, means that they are separately extremals of both Kähler action and volume
term supports this expectation as also the condition that sub-algebra of symplectic group
Lie algebra isomorphic to it gives rise to vanishing Noether charges and also the Noether
charges associated with its commutator with the full algebra vanish.

The condition that the zero energy state at the active boundary of CD is superposition of
many-particle states with different particle number in topological sense suggests that this is
not the case.

Even stronger form of holography would be that the data at string world sheets and partonic
2-surfaces determines the preferred extremal completely. In number theoretic vision one can
consider even stronger number theoretic holography: if octonionic polynomials code for the
space-time surfaces as M8 −H holography suggests [L6], cognitive representation consisting
of discrete set of points with M8 coordinates in extension of rationals would determine the
preferred extremals.

2. Also fermionic degrees of freedom at the ends are involved. Quantum classical correspondence
(QCC) states that the classical charges in Cartan sub-algebra of symmetries are equal to the
eigenvalues of quantal charges constructible in terms of fermionic oscillator operator algebra.
Many-fermion states would correspond to preferred extremals and the fermionic statistics
requires that one has superposition over corresponding 4-surfaces. The state at second end
of CD is quantum entangled, and fermionic statistics suggests entanglement at both ends.

Symplectic isometries have subgroup with parameters in the extension of rationals defining the
adele: call this subgroup SD. Denote the subgroup of SD leaving action invariant by SD,S . The
representations of SD (or possibly SD,S) are expected to be important concerning the construction
of scattering amplitudes and on basic of zero energy state property one expects that the action
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of SD (SD,S) on the opposite ends of space-time surface compensate each other for zero energy
states.

A reasonable looking question is whether simplest zero energy states could corresponds to single
orbit of SD. One expects that the number of points defining the cognitive representation is same
for all preferred extremals at its orbit. There are several questions to be answered.

1. The existence of preferred extremals connecting given 3-surface with fixed topological partic-
ular number to 3-surface at the second end of CD having varying topological particle number
looks rather plausible. Topological particle number can be identified either as number of
disjoint 3-surfaces and number of disjoint partonic 2-surfaces carrying fermions.

Can single orbit of SD contain space-time surfaces with varying topological particle number
at the other end of CD? If not , one must allow some minimal number of orbits of SD in the
definition of minimal zero energy state. This option looks the most realistic one.

2. What is the precise definition of cognitive representation?

3. Micro-canonical ensemble (MCE) hypothesis states that action is same for all space-time
surfaces appearing in zero energy state. Can this hypothesis be consistent with the pres-
ence of many-particle states with different topological particle number? CP2 type extremals
represent particles and have non-vanishing actions. Also the action of symplectic group in
general changes the Kähler action although the action is constant at co-dimension 1 surface
of WCW so that the subgroup SD,S should act at this surface. It would seem that one must
allow the variation of action and this is a challenge for number theoretic universality since
the number theoretically non-universal part of action exponentials must be common to all
space-time surfaces involves and must cancel in S-matrix.

What does one mean with cognitive representation? Is single orbit of SD enough? Can one
assume MCE? These are the key questions to be considered.

8.2 The action of symplectic isometries on cognitive representations

The action of SD on cognitive representation defining the adele is straightforward. It is not however
quite clear how to identify the cognitive representation.

1. Cognitive representation in question corresponds to a set of points of space-time surface with
M8 coordinates in extension of rationals defining the adele (a stronger condition is that also
M4 × CP2 coordinates satisfy the same condition).

2. Does cognitive representation contain only the points at the ends of CD, either end, or
also interior points? Or does cognitive representation consists of singular points at which
non-trivial subgroup of Galois group leaves the point invariant? The singular points could
correspond to fundamental fermions at partonic 2-surfaces.

Remark: If the fermionic lines are light-like geodesic they would correspond as cognitive
representations exceptionally informative and easy ones containing infinite number of points
of extensions essentially the number line defined by the extension. This raises the question
whether the simplest string world sheets identifiable as planes M2 could be the most inter-
esting singularities of preferred extremals identified as singular minimal surfaces. Canonical
embedding of M4 is also cognitively easy.

The condition that the actions of symplectic group at opposite boundaries of CD compensate
each other makes sense only if one restricts the cognitive representations at either boundary
of CD. This would exclude interior points.

Could one allow also points in the interior of space-time surface by generalizing the view about
symplectic invariance of zero energy state? For instance, could the partonic 2-surface defining
vertices in the interior contain points of the cognitive representation. Does the allowance of
the points of cognitive representation in interior mean giving up strict determinism and does
the variational principle with volume term allow it (mere 4-D Kähler action allows huge
vacuum degeneracy).
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3. When does the point of cognitive representation correspond to a fundamental fermion? I
have proposed [L6] that this is the case if the point is critical in number theoretical sense
meaning that there is subgroup of Galois group leaving it invariant: the sheets corresponding
to different elements of Galois sub-group would co-incide at critical point. The number of
singular points and thus number of fundamental fermions might vary.

4. Could the number of singular points vary for the 4-surfaces at the orbit so that the number
of fundamental fermions would vary too? Could this allow to have superposition of many-
particle states as active part of the zero energy state? This does not seem plausible since
the number of points of cognitive representations must be SD invariant. Several orbits of SD
seem to be required.

The role of Galois group of extension of rationals must be important.

1. Galois group act do not affect space-time surface but only inside the cognitive representation.
Galois group can also have subgroup leaving invariant given point. A possible interpretation
is as number theoretic correlate for fundamental fermion.

2. A natural hypothesis is that the sub-group of symplectic group leaving the cognitive repre-
sentation invariant acts as Galois group. A goo analogous for Galois group is provide by the
rotation group SO(3) serving as isotropy group of time-like 4-momentum having vanishing
3-momentum in the rest system. For induced representations SO(3) acts in spin degrees
of freedom. In the recent case Galois group could act in number theoretic spin degrees of
freedom. Could the action of Galois group be physically non-trivial. For instance, could
the ordinary symmetries be represented as Galois transformations in fermionic degrees of
freedom?

Symplectic invariants characterize the representation and Kähler fluxes for M4 and CP2 Kähler
forms define this kind of invariants. Also higher fluxes are possible. The general state as superpo-
sition of states associated with the over orbits of SD would have functions of these invariants as
coefficients.

8.3 Zero energy states and generalization of micro-canonical ensemble

The space-time surfaces in micro-canonical ensemble (MCE) [L15] would have same action so that
Kähler function would be constant. It is interesting to discuss this hypothesis in light of the idea
that simplest zero energy state corresponds to a finite set of orbits of SD,S .

8.3.1 Is micro-canonical ensemble consistent with zero energy state- SD orbit corre-
spondence?

The assumption that action is constant at the orbit is not problematic. Kähler function must
vary in order to give rise to non-trivial Kähler metric. Kähler function is however constant at co-
dimension 1 surfaces of WCW. For instance, the Kähler function of CP2 is function of the radial
coordinate invariant under subgroups invariant under U(2) but not under SU(3).

1. The simplest variant of MCE is that single space-time surface is involved. The action of SD,S
would be essentially trivial - zero momentum would be more familiar Minkowski analogy. One
would get rid of the action exponentials: this would solve the problems related to number
theoretical universality caused by the fact that the exponential need not exist in various
p-adic number fields.

2. A more realistic hypothesis is that SD,S has several 4-surfaces at its orbit. If the number of
surfaces is N the sum of action exponentials is N -fold and the exponential disappears from
the S-matrix elements in analogy with what happens in the full theory without discretization
by cancellation of the exponential strong suggested by what happens in QFTs.

MCE has however problems.
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1. It is not at all clear whether one can make restriction to a subgroup preserving the action. To
gain some perspective, not that in the case of CP2 this would mean restriction to r = constant
surface of CP2 and this is not possible. In the case of rotation group this would mean
restriction to sphere.

Physically it is also obvious that one should allow in the zero energy state all 4-surfaces which
are allowed by the conditions posed by preferred extremal property and there seems no good
reason to prevent final states with varying particle topological particle number.

2. Also the standard view about S-matrix suggests at active boundary of CD a superposition
of final states with different topological particle numbers having different number disjoint
3-surfaces or same number of disjoint 3-surfaces but varying number of partonic 2-surfaces.
That the action of SD changes the number of the disjoint 3-surfaces is in conflict with näıve
intuitions but one must remember that number theoretic discretization loses information
about connectedness.

3. If the zero energy state has at the active boundary 3-surfaces with a varying topological
particle number identified as a number of CP2 type extremals with unique maximal action,
one expects that action exponential is not constant along the orbit of SD. If the subgroup of
SD, call it SD,S , preserves the value of the action, one must allow orbits of SD with varying
value of action. This would give superposition MCEs. Action preserving subgroup would
be analogous to the little group of Poincare group preserving the momentum of particle. As
notice, also several orbits of SD must be allowed.

The conclusions seems to be that MCE is physically non-realistic.

8.3.2 Can one generalize micro-canonical ensemble to single orbit of SD?

Suppose that the orbit of SD contains many-particle states having in final state varying particle
numbers measured as number disjoint 3-surfaces or partonic 2-surfaces. Is there any hope of
understanding these many-particle states in terms of single representation of SD?

1. The orbit of SD must have 4-surfaces with varying value of action. This is possible if the
action exponentials differ by a multiplicative rational number so that the number theoretically
problematic part cancels out from the S-matrix since it appears in both denominator and
numerator of the expression defining S-matrix element.

2. That cognitive representations at the orbit would have same number of points at all points
of orbits is intuitively in conflict with varying topological particle number. If Galois group
has a subgroup of order m > 1 acting trivially on points representing fundamental fermions,
the number of points in the representation is effectively reduced since m points are replaced
by 1 point. This could allows to have a varying particle numbers identified as the number of
points of cognitive representation.

If CP2 type extremals in the final state serve as correlates for particles, one should understand
how their addition is possible. Their addition to the state would require that some non-
degenerate points of representation become degenerate. If the number N points is large, it
is quite possible to have rather large number of fundamental fermions in the final state. The
degeneration of these points would give rise to fermions. There is however an upper bound
which also comes from infrared cutoff for energy.

3. It is not clear whether SD can transform to each other points with different value of m. The
problem is that idea that SD maps some points to single point is in conflict with the idea
that SD action is bijective. It seems that this idea simply fails.

The conclusion seems to be that one must allow several orbits on basis of purely classical picture
and QCC suggesting the possibility of finals states with varying topological particles number.
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8.3.3 Could ZEO allow to understand the possibility of particle creation and anni-
hilation?

The idea about quantum superposition of states with varying particle number in topological sense
is natural if one believes in QFT based intuition. Just for fun one can ask whether ZEO could
provide a loophole.

In ZEO “self” corresponds to a sequence of unitary time evolutions changing the state at active
boundary. The active boundary itself becomes de-localized. “Small” state function reduction
induces localization of the active boundary. This means measurement of clock time as temporal
distance between CDs. The time increment ∆T between subsequent values of clock time varies,
and one expects that particle number changes in each unitary evolution. The big state function
reduction occurs at some time T , the lifetime of self, and one can assume that the value of T varies
statistically.

Could one think that the particle number in topological is actually well-defined after each small
reduction? The ensemble of detected particle reactions providing the data allowing to deduce the
cross sections. Could the variation of intervals ∆T and the variation for the duration T gives
rise to a variation of detected particle numbers in the final state. If this is the case the unitary
time evolutions and “small” state function reductions would be very “classical”. If so ZEO would
simplify dramatically the structure of S-matrix.

To make this mechanism more detailed, one can add the existing wisdom about CP2 type
extremals as building bricks of particles.

1. The action is expected to depend on particle number and different numbers of CP2 type
extremals assignable to which fundamental fermions are assigned correspond to different
values of actions. This is not a problem now since would not have have superposition over
states with different number of CP2 type extremals and even micro-canonical ensemble could
make sense.

2. The addition of particle to the final state during the unitary evolution taking the active
boundary farther away from the passive boundary would correspond to a creation of CP2

type extremal. Simplest mechanism is 3-vertex defined by partonic 2-surface at which CP2

type extremal replicates. The outgoing lines in the analogs of twistor diagrams would be
unstable against replication. Replication is suggested to be universal process in TGD and the
replication of magnetic body (MB) would induce DNA replication in TGD inspired quantum
biology.

3. A possible interpretation would be in terms of quantum criticality. CP2 type extremals
would be unstable against decay. One could also interpret the analog of twistor diagram as
a sequence of algebraic operations.

In this framework the scattering rates would be determined by a hierarchy of S-matrices labelled
by different values of total durations Tn

∑n
k=1 ∆Tk for a sequence of unitary evolution followed

by time localization. In standard picture they would correspond to single infinitely long time
evolution. It would not be surprising if this difference could exclude the proposal as unrealistic.

8.3.4 Could one regard zero energy state involving several orbits of SD as an orbit
of Yangian analog of SD?

QCC suggest strongly that one must allow zero energy states, which correspond to several orbits
of SD. An interesting possibility is that these orbits could be integrated to a representation of a
larger group. What suggests itself is the possibly existing Yangian variant of SD in which the group
action is not local anymore even at the level of WCW. The Yangian of projective transformations
of M4 indeed appears in twistor Grassmannian approach and gives rise to huge symmetries behind
the success of twistor Grassmannian approach. I have proposed that super-symplectic variant of
Grassmannian indeed exists [K25, K21, K4, L17].

8.4 How to construct scattering amplitudes?

Lubos Motl (see http://tinyurl.com/y5lndpn3) told about two new hep-th papers, by Pate,
Raclariu, and Strominger (see http://tinyurl.com/yxqx237b) and by Nandan, Schreiber, Volovich,

http://tinyurl.com/y5lndpn3
http://tinyurl.com/yxqx237b


8.4 How to construct scattering amplitudes? 83

Zlotnikov (see http://tinyurl.com/y642yspf) related to a new approach to scattering ampli-
tudes based on the replacement of the quantum numbers associated with Poincare group labelling
particles appearing in the scattering amplitudes with quantum numbers associated with the rep-
resentations of Lorentz group.

Why I got interested was that in zero energy ontology (ZEO) the key object is causal diamond
(CD) defined as intersection of future and past directed M4 light-cones with points replaced with
CP2. Space-time surfaces are inside CD and have ends at its light-like boundaries. The Lorentz
symmetries associated with ithe boundaries of CD could be more natural than Poincare symmetry,
which would emerge in the integration over the positions of CDs of external particles arriving to
the opposite light-like boundaries of the big CD defining the scattering region where preferred
extremal describing the scattering event resides.

I did my best to understand the articles and - of course relate these ideas to TGD, where the
construction of scattering amplitudes is the basic challenge. My technical skills are too limited for
to meet this challenge at the level of explicit formulas but I can try to understand the physics and
mathematics brought in by TGD.

While playing with more or less crazy and short-lived ideas inspired by the reading of the
articles I finally realized that there is perhaps no point in starting from quantum field theories.
TGD is not quantum field theory and I must start from TGD itself.

In TGD framework the picture inspired by adelic physics [L8, L7] is roughly following.

1. Cognitive representations realizing number theoretic universality of adelic physics consist
of points of embedding space with coordinates in the extension of rationals. The number
of points is typically finite. Cognitive representation should contain as subset the points
associated with n-point functions, which are essentially correlation functions.

Fundamental fermions are building bricks of elementary particles, and a good guess is that
fundamental fermions correspond to singular points for which the action of subgroup of Galois
group of extension is trivial so that several points collapse together.

2. One must sum over the orbits of a subgroup SD of symplectic group of light-cone boundary
acting as isometries of both boundaries of CD. SD consists of isometries with parameters
in the extension of rationals defining the adele. All orbits needed to represent the pairs of
initial and final 3-surfaces at the boundaries of CD allowed by the action principle must be
realized so that single orbit very probably is not enough.

3. Correlations code for the quantum dynamics. In quantum field theories quantum fluctuations
of fields at distinct points of space-time correlate and give rise to n-point functions expressible
in terms of propagators and vertices: massless fields and conformal fields define the basic
example. Operator algebra or path integral describes them mathematically.

In TGD correlations between embedding space points belonging to the space-time surface
result from classical deterministic dynamics: the points of 3-surface at opposite boundaries
of CD are not independent.

This dynamics is non-linear geometric analog for the dynamics of massless fields: space-time
sheets as preferred extremals are indeed minimal surfaces with string world sheets appearing
as singularities. Minimal surface property is forced by the volume action implied by the
twistor lift and having interpretation in terms of cosmological constant. The correlation
between points at the same boundary of CD are expected to be independent since these
3-surfaces chosen rather freely as analogs of boundary values for fields.

Fermionic dynamics governed by modified Dirac action is dictated completely by super-
symplectic and super-conformal symmetries. Second quantization of fermions at space-time
level is necessary to realized WCW spinor structure: WCW gamma matrices are linear
combinations of fermionic oscillator operators.

4. This suggests that the attempts to guess the conformal field theory producing the correlation
functions makes things much more complex than they actually are. It should be possible to
understand how these correlations emerge from the classical dynamics of space-time surfaces.

As the first brave guess one could try to calculate directly the correlations of spinor harmonics
of embedding space assigned with these points.

http://tinyurl.com/y642yspf
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1. Sum over the symplectic orbits of cognitive representations must be involved as also vacuum
expectation values in the fermionic sector for fermionic fields which must appear in vertices
for external particles. At the level of cognitive representations anti-commutators for oscillator
operators involve Kronecker deltas so that one has discretized variant of second quantization.

2. This could be achieved by expanding the restriction ΨA
|X3 of the embedding space harmonic

ΨA restricted to 3-surface at end of space-time surface as sum of modes Ψn of the induced
spinor field. This would be counterpart for the induction procedure. One can assign to

singular points bilinear of type Ψ
A

|X3D↔Ψ, where Ψ is second quantized induced spinor field
expressible as sum over its modes multiplied by oscillator operators. D is modified Dirac
operator. This gives as vacuum expectations propagators connecting fermions vertices at the
opposite ends of space-time surface.

3. A more concrete picture must rely on a concrete model for elementary particles. Elementary
particles have as building bricks pair of wormhole contacts with fermion lines at the light-
like orbits of the throats at which the signature of the metric changes from Minkowskian to
Euclidian. Particle is necessarily a pair of two wormhole contacts and flux tube connects
them at both space-time sheets and forms a closed flux tube carrying monopole flux.

All particles consist of fundamental fermions and anti-fermions: for instance gauge bosons
involve fermion and anti-fermion responsible for the quantum numbers at the opposite throats
of second wormhole contact. Second wormhole contact involves neutrino pair neutralizing
electroweak isospin in scales longer than the size of the flux tube structure.

4. The topological counterpart of 3-vertex appearing in Feynman diagram corresponds to a
replication of this kind of 3-surface highly analogous to bio-replication. In replication vertex,
there is no singularity of 3-surface analogous to that appearing in the vertices of stringy
diagrams but space-time surface is singular just like 1-D manifold is singular for at vertex of
Feynman diagram.

These singular replicating 3-surfaces and the partonic 2-surfaces give rise to the counterparts
of interaction vertices. Fermionic 4-vertex is impossible and fermion lines can only be re-
shared between outgoing partonic orbits. This is however not enough as will be found. It
will be found that also the creation of fermion pair as effective turning of fermion lines
entering along “upper” wormhole throat and turning back at Euclidian wormhole throat and
continuing along the orbit of “lower” wormhole throat must be possible.

To see how this conclusion emerges consider the following problem. One should obtain also
emission of bosons identified as fermion pairs from fermion line. One has incoming fermion and
outgoing fermion and fermion pair describing boson which represents gauge boson or graviton with
vanishing B and L. Fermionic 4-vertex is not allowed since this would bring in divergences.

1. The appearance of a sub-CD assignable to the partonic 2-surface is possible but does not
solve the problem considered. There would be incoming fermion line at lower boundary and
1 fermion line and fermion and anti-fermion line associated with the boson at the “upper”
boundary. There would be non-locality in the scale of the partonic 2-surface and sub-CD
meaning that the lines can end to vacuum. Now one would encounter the same difficulty but
only in shorter scale.

2. Could one say that fermion line turns backwards in time? A line turning back could be
described as an annihilation of fermion pair to vacuum carrying classical gauge field, which is
standard process. In QFT picture this would be achieved if a bilinear ΨDΨ is allowed in the
vertex where annihilation takes place. Not in TGD: fermionic action vanishes identically by
field equations expressing essentially the conservation of fermion current and various super
currents obtained as contractions fermion field with modes.

Could fermion-anti-fermion pair creation occur at singular points associated with partonic
surfaces representing the turning of fermion line backwards in time. This looks still too
singular.

Rather, the turning backwards in time should mean that a fermion line arriving from future
along the orbit of “upper” throat (say) goes through Euclidian wormhole throat and continues
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along the orbit of “lower” throat back to future than making discontinuous turn-around.
Euclidian regions of space-time surface representing one key distinction between GRT and
TGD would thus be absolutely essential for the generalized scattering diagrams. An exchange
of momentum with classical field would be Feynman diagrammatic manner to say this.

New oscillator operator pairs emerge at the partonic vertices and would correspond to the
above described turn-around for fermion line at wormhole contact. Fermion pairs present at
the “lower” boundary of CD could also disappear.

3. The anti-commutation relations fermions are modified due to the presence of vacuum gauge
fields so that the anti-commutator of fermionic creation operators a†m and anti-fermionic cre-
ation operators b†n is non-vanishing. A proper formulation of the fermionic anti-commutation
relations at the ends of space-time surface is needed and in discretization provided by cogni-
tive representation this should be relatively straightforward.

One can imagine that although standard anti-commutation relations at the lower end of space-
time surface hold true, the time evolution of Ψ in the presence of vacuum gauge potentials
implies that the vacuum expectations 〈vac|a†mb†n|vac〉 are non-vanishing. This would require
that for instance b†n and an are mixed.

There are still questions to be answered.

1. Is the first guess enough? It is not as becomes clear after a thought about the continuum
limit. The WCW degrees of freedom are described at continuum limit in terms of super-
symplectic algebra (SSA) acting on ground state are neglected. Embedding space spinor
modes characterizee only the ground staes of these representations. These degrees of freedom
are essential already in elementary particle physics [K12].

Sub-algebra SSAm of SSA with conformal weights coming as m-multiples of those of SSA and
its commutator with SSA annihilate the physical states, and one obtains a hierarchy. How to
describe these states in the discretization? The natural possibility are the representations of
SD such that (SD)m and the subgroup generated by the commutator algebra are represented
trivially. One has non-trivial (SD)m representations at both ends of WCW such that the
action of SD on the tensor product acts trivially.

There are also fermionic degrees of freedom. The challenge is to identify among other things
WCW gamma matrices as fermionic super charges and it would be nice if all charges were
Noether charges. The simplest guess is that the algebra generated by fermionic Noether
charges QA for symplectic transformations hk → hk + jAk assumed to induce isometries of
WCW and Noether supercharges Qn and their conjugates for the shifts Ψ→ Ψ + εun, where
un is a solution of the modified Dirac equation, is enough.

The commutators ΓAn = [QA, Qn] are super-charges labelled by (A,n). One would like to
identify them as gamma matrices of WCW. The problem is that they are labelled by (A,n)
whereas isometry generators are labelled by A only. There should be one-one correspondence.
Do all supercharges ΓAn except ΓA0 corresponding to u0 = constant annihilate the physical
states so that one would have 1-1 correspondence. This would be analogous to what happens
quite generally in super-conformal algebras.

The generators of this fermionic algebra could be used to generate more general states. One
should also construct the discretized versions of the generators as sums over points of the
cognitive representation at the ends of space-time surface. Note that this requires tangent
space data.

2. What about the conservation of four-momentum and other conservation laws? This can
be handled by quantum classical correspondence (QCC). The momentum and color labels
defined by fermionic quantum numbers in Cartan algebra can be assumed to be equal to the
corresponding classical Noether charges for particle-like space-time surfaces entering to CD.
The technical problem is that if one knows only the discretization - even with tangent space
data - one does not know the values of these charges! It might be that M8−H correspondence
in which M8 side fixes space-time surfaces as roots for real or imaginary parts of octonionic
polynomials from the data at discrete set of points is needed.
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3. ZEO means deviations from ordinary description. SD invariance of zero energy state forces
sum over the 4-surfaces of the orbit with identical coefficients. Symplectic invariance implies
time-like entanglement. One can describe this in terms of hermitian square root Ψ of density
matrix satisfying Ψ†Ψ = ρ. The coefficients of different orbits need not be same and allows
description in terms of dynamical density matrix. If there is Yangian symmetry also this
entanglement is analogous to the entanglement due to statistics.

Surprisingly - and somewhat disappointingly after decades of attempts to understand uni-
tarity in TGD - unitarity is trivial in ZEO since state basis is defined essentially by the rows
of matrices and orthogonality conditions their orthogonality and therefore unitarity. More
concretely, for single state at the passive end state function normalization to unity defined
by inner product as sum over 3-surfaces at active end would give conservation of probability.
Orthogonality of the state basis with inner product as sum over surfaces passive boundary
gives orthogonality for the coefficients defining rows of a matrix and therefore unitarity. In
the case that single orbit or even several of them defines the states one obtains the same
result.

What then guarantees the orthogonality of zero energy states? In ordinary quantum mechan-
ics the property of being eigenstates of some hermitian operator guarantees orthogonality. In
TGD zero energy states would be solutions of the analog of massless Dirac equation in WCW
consisting of pairs of 3-surfaces with members at the ends of preferred extremals inside CD.
This generalizes Super Virosoro conditions of superconformal theories and would provide the
orthonormal state basis.

The outcome would be amazingly simple. There would be no propagators, no vertices, just
spinor harmonics of embedding assigned with these n = n1 + n2 points at the boundaries of CD,
and summation over the orbits of the symplectic group. All these mathematical objects would
emerge from classical dynamics. The sum over the orbits for chosen spinor harmonics would
produce n-point functions, vertices and propagators. It is difficult to imagine anything simpler
and quantum classical correspondence would be complete.

9 Minimal surfaces: comparison of the perspectives of math-
ematician and physicist

The popular article “Math Duo Maps the Infinite Terrain of Minimal Surfaces” (see http://

tinyurl.com/yyetb7c7) was an exceptional representative of its species. It did not irritate the
reader with non-sense hype but gave very elegant and thought provoking representation of very
abstract ideas in mathematics.

9.1 Progress in the understanding of closed minimal surfaces

The article tells about the work of mathematicians Fernando Coda Marques and Andre Neves
based on a profound and - as they tell - extremely hard-to-understand work of Jon Pitts forgotten
by mathematics community. It is comforting that at least in mathematics good work is eventually
recognized.

The results of Marques and Neves are about minimal hyper-surfaces imbedded in various spaces
with dimension varying between 3 and 7 and clearly extremely general. These spaces have varying
topologies and are called ”shapes” in the popular article.

9.1.1 Some examples of minimal surfaces

To begin it is good to have some examples about minimal surfaces.

1. For mathematician any lower-dimensional manifold in some embedding space is surface, even
1-D curve! Simplest minimal surfaces are indeed 1-D geodesic lines. In flat 3-space they are
straight lines of infinite length but at the surface of sphere they are big circles.

http://tinyurl.com/yyetb7c7
http://tinyurl.com/yyetb7c7
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2. Soap films are 2-D minimal surfaces spanned by frames and familiar for every-one. Frame is
necessary for having minimal surface, which does not collapse to a point or extend to infinity
and possibly self-intersect.

Why minimal surfaces are not nice closed surfaces of finite size not intersecting themselves
is due to the fact that the equations for minimal surface state the vanishing of the sum of
external curvatures defined by the trace of so called second fundamental form defined by the
covariant derivatives of tangent vectors of the minimal surface.

One can say that for 2-D minimal surface the external curvatures in 2 orthogonal directions
at given point of surface are of opposite sign. Surface looks locally like saddle rather than
sphere. In n-dimensional case the sum of n principal curvatures - eigenvalues of second
fundamental form as matrix- sum up to zero for each normal direction: more general saddle.

In flat embedding space this implies the saddle property always but in curved space it might
happen that the covariant derivatives replacing the ordinary derivatives in the definition of
second fundamental form - having interpretation as generalized acceleration - can change the
situation and the question is whether non-flat closed embedding space could contain closed
minimal surfaces.

Indeed, in compact spaces with non-flat metric minimal surface can be closed and there is a
century old theorem by Birkhoff stating that sphere has always at least one closed geodesic
independent of metric. In the case of ordinary sphere this geodesic is big circle, the equator.
In complex projective space CP2 there is infinite number of 2-D minimal surfaces which are
closed: geodesic spheres are the simplest examples.

3. A good example about a non-closed 1-D surface is generic geodesic in torus with points
labelled by two angles (φ1, φ2) in flat metric. The geodesic lines are of form φ1 = αφ2).
For non-rational value of α the curve winds the torus infinitely many times and has infinite
length. For α = m/n the curve winds m times around second non-contractible circles and
n times around the second one. Note that now the geodesic line is absolute minimum: this
is caused by the non-contractibility. It can be only shifted in both directions so that the
minimum has 2-D degeneracy.

4. In spaces allowing Kähler structure - means that imaginary unit i satisfying i2 = −1 has
a representation as antisymmetric tensor - any complex algebraic surfaces representable as
root for a set of polynomials, whose number is smaller than complex dimension of the space,
is a minimal surface. This huge variety of minimal surfaces is due to the presence of complex
structure.

9.1.2 What does minimal surface property mean?

Consider now what minimal surface property really means.

1. Strictly speaking, minimal surfaces are stationary with respect to the local variations of
volume only. This is practically always true for physical variational principles defined by an
action. For a great circle at sphere the minimality of length with respect to small variations
is easy to understand by drawing to see what this variation means. With respect to non-local
variations meaning shift toward North or East the area decreases so that one has maximum!
This leads to the term Minimax principle used by Jon Pitts and his followers as a powerful
guideline.

In fact, minimal surfaces can be both minima and maxima for volume simultaneously. The
general extremum as solution of equations defined by a general action principle is saddle.
Minimum with respect to some variables and maximum with respect to others and minimal
surfaces are this kind of objects in the general case.

2. There is a deep connection with Morse theory in topology (see http://tinyurl.com/ych4chg9).
Morse function gives information about the topology of space. Morse function is a contin-
uous monotonously increasing function from the space to real line and its extrema provide
information about the topology of the space. Morse function can be seen as a kind of height
function, a particular coordinate for the space.

http://tinyurl.com/ych4chg9
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The height as z-coordinate for torus imbedded in 3-space gives a classical example of height
function. As z varies on obtains 1-D intersections of torus. The minimum of z corresponds to
a single point, above it one has circle, then circle decomposes to 2 circles at lower saddle, and
circles fuse back to circle at upper saddle, which becomes a point at maximum. Therefore
the extrema of heigh function tell about how the topology of the cross section of the torus
varies with height: point-circle-2 circles-circle-point. The area of surface serves as a Morse
function and minimal points are analogous to the points of the torus at which cross section
changes its topology.

A good guess is that the volume of the surface serves as a Morse function and thus gives
information about the topology of rather abstract infinite-dimensional space: the space of
surfaces. Minimal surfaces would be analogous to the critical points of height function at
torus: points at which the cross section changes its topology.

3. Minimax property states the fact that minimal surfaces are in in generic situation saddle
points in the space of surfaces. There would be a strange correspondence. The points
of minimal surfaces are locally saddles in the finite-dimensional embedding space H and
minimal surfaces represent saddle points in the finite-dimensional space of surfaces in H.
This strange local-global correspondence bringing in mind holography might be behind a
general principle: saddle property could have representations at two levels: points of the
surface and points of the space of surfaces.

Are minimal surfaces a rare exception or could it be that for a general action principle the
extremals are saddles locally and that the space of all field configurations (not only extremals)
contains the extremals as saddle points?

Remark: Minimal surfaces might be very special and related to what corresponds in physics
to criticality implying that the dynamics in certain sense universal. The space of surfaces
corresponds in TGD as the space of 3-surfaces and is analogous to Wheeler’s superspace
consisting of 3-metrics. By holography forced by 4-D general coordinate invariance 3-surfaces
in question must be in one-one correspondence with 4-D surfaces identified as space-time
surfaces. I have christened this space world of classical worlds (WCW). Space-time surfaces
are 4-D minimal surfaces in 8-D H = M4×CP2 but possessing lower dimensional singularities
having interpretation as orbits of string like objects and point like particles. Minimal surface
property would be a correlate for quantum criticality so that minimal surface would be very
special.

9.1.3 The question and the answer

The question that Marquez and Neves posed to themselves was under which conditions compact
space allows a closed minimal surface not intersecting itself or whether all candidates intersect
themselves or have infinite volume. In fact, Marquez and Neves restricted the consideration to
hyper-surfaces. A possible good reason for this is that there is only one field like dynamical degree
of freedom for co-dimension 1 - the coordinate in the normal direction- and this is expected to
simplify the situation considerably. From the tone of the article - “-hyper” has been dropped away
- one has a temptation to guess that the results are much more general.

The basic result of Marques and Neves was rather astonishing. In almost all closed spaces with
dimension between 3 and 7 there exists an infinite series of imbedded closed minimal hyper-surfaces
(embedding means that there are no self-intersections). No frames needed! The irony was that they
could not prove their result for spaces with roundest metrics (no bumps making metric positively
curved, which in turn helps to have minimal surface property without local saddle property).
Song however generalized this result to apply for arbitrary closed embedding spaces [A1] (see
http://tinyurl.com/yycbw4lx).

What helped in the proof was a surprising result by Marques, Neves, and Liokumovich that the
volume for these minimal hyper-surfaces depends on the volume of the compact embedding space
only [A8] (see http://tinyurl.com/y59pdawj)!

This dependence suggests that these closed minimal hyper-surfaces manage to visit a dense
set of points of the embedding space without intersecting themselves: in this manner they could
“measure” the volume. Marques, Neves and Irie show that there is infinite set of imbedded minimal

http://tinyurl.com/yycbw4lx
http://tinyurl.com/y59pdawj
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hyper-surfaces in spaces of dimension 3 ≤ n ≤ 7 intersecting any given ball of the embedding
space [A5] (see http://tinyurl.com/y3u3bvnc). Even more, these minimal surfaces tend to fill
space in some sense evenly.

A natural guess inspired by Minimax Principle is that minimals surfaces correspond to saddle
points for the volume as functional of surface defining Morse function. The volume is analogous
to action in TGD framework.

Two remarks are in order.

1. As noticed, the popular article says that these results hold for minimal surfaces. The articles
however restrict the consideration to minimal hyper-surfaces.

2. The theorem about the dependence of volume of hyper-surface on the volume of embedding
space was inspired by a result proven by Weyl for the high frequencies of drum defined as
a boundary of some space: these frequencies depend on the volume of the space, not on the
shape of drum! One can understand this intuitively by the fact that high frequency vibrations
correspond to short wave lengths and therefore depend only on the local properties of the
space and not on the global topology. The dependence on volume comes from boundary
conditions at the boundaries of the volume.

In the case of minimal hyper-surfaces the analogy would suggests that the addition of details
to the minimal hyper-surface corresponds to the increase of the frequency for drum. Boundary
conditions for drum would be replaced by the compactness of the embedding space leading
to the quantization of the volume analogous to that for frequency.

3. The infinite geodesic on flat torus described above is a rough analog for omni-presence al-
though it is not closed. Also complex surfaces in CP2 defined as zero loci of polynomials
of complex coordinates (ξ1, ξ2) modified to contain irrational powers of ξi could define this
kind of omni-present surfaces having however infinite area. There is however infinite number
of minimal surfaces defined by complex polynomials, which are closed but not omni-present.

9.2 Minimal surfaces and TGD

In TGD framework surfaces satisfying minimal surface equations almost everywhere - play a central
role.

9.2.1 Space-time surfaces as singular minimal surfaces

From the physics point this is not surprising since minimal surface equations are the geometric
analog for massless field equations.

1. The boundary value problem in TGD is analogous to that defining soap films spanned by
frames: space-time surface is thus like a 4-D soap film. Space-time surface has 3-D ends at
the opposite boundaries of causal diamond of M4 with points replaced with CP2: I call this
8-D object just causal diamond (CD). Geometrically CD brings in mind big-bang followed
by big crunch.

These 3-D ends are like the frame of a soap film. This and the Minkowskian signature
guarantees the existence of minimal surface extremals. Otherwise one would expect that the
non-compactness does not allow minimal surfaces as non-self-intersecting surfaces.

2. Space-time is a 4-surface in 8-D H = M4×CP2 and is a minimal surface, which can have 2-D
or 1-D singularities identifiable as string world sheets having 1-D singularities as light-like
orbits - they could be geodesics of space-time surface.

Remark: I considered in [L12] the possibility that the minimal surface property could fail
only at the reaction vertices associated with partonic 2-surfaces defining the ends of string
world sheet boundaries. This condition however seems to be too strong. It is essential that
the singular surface defines a sub-manifold giving deltafunction like contribution to the action
density and that one can assign conserved quantities to this surface. This requires that the
singular contributions to energy momentum tensor and canonical momentum currents as

http://tinyurl.com/y3u3bvnc
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spacetime vectors are parallel to the singular surface. Singular points do not satisfy this
condition.

String boundaries represent orbits of fundamental point-like fermions located at 3-D light-like
surfaces which represent orbits of partonic 2-surfaces. String world sheets are minimal sur-
faces and correspond to stringy objects associated with say hadrons. There are also degrees
of freedom associated with space-time interior. One have objects of various dimension which
all are minimal surfaces. Modified Dirac equation extends the field equations to supersym-
metric system and assigns fermionic degrees of freedom to these minimal surfaces of varying
dimension.

From the physics point of view, the singular surfaces are analogous to carriers of currents
acting as point- and string-like sources of massless field equations.

3. Geometrically string world sheets are analogous to folds of paper sheet. Space-time surfaces
are extremals of an action which is sum of volume term having interpretation in terms of
cosmological constant and what I call Kähler action - analogous to Maxwell action. Outside
singularities one has minimal surfaces stationary with respect to variations of both volume
term and Kähler action - note the analogy with free massless field. At singularities there is an
exchange of conserved quantities between volume and Kähler degrees of freedom analogous
to the interaction of charged particle with electromagnetic field. One can see TGD as a
generalization of a dynamics of point-like particle coupled to Maxwell field by making particle
3-D surface.

4. The condition that the exchange of conserved charges such as four-momentum is restricted to
lower-D surfaces realizes preferred extremal property as a consequence of quantum criticality
demanding a universal dynamics independent of coupling parameters [L18]. Indeed, out-
side the singularities the minimal surfaces dynamics has no explicit dependence on coupling
constants provided local minimal surface property guarantees also the local stationarity of
Kähler action.

Preferred extremal property has also other formulations. What is essential is the generaliza-
tion of super-conformal symmetry playing key role in super string models and in the theory
of 2-D critical systems so that field equations reduce to purely algebraic conditions just like
for analytic functions in 2-D space providing solutions of Laplace equations.

5. TGD provides a large number of specific examples about closed minimal surfaces [K2]. Cos-
mic strings are objects, which are Cartesian products of minimal surfaces (string world sheets)
in M4 and of complex algebraic curves (2-D surfaces). Both are minimal surfaces and ex-
tremize also Kähler action. These algebraic surfaces are non-contractible and characterized
by homology charge having interpretation as Kähler magnetic charge. These surfaces are
genuine minima just like the geodesics at torus.

CP2 contains two kinds of geodesic spheres, which are trivially minimal surfaces. The reason
is that the second fundamental form defining as its trace the analogs of external curvatures
in the normal space of the surfaces vanishes identically. The geodesic sphere of the first kind
is non-contractible minimal surface and absolute minimum. Geodesic spheres of second kind
is contractible and one has Minimax type situation.

These geodesic spheres are analogous to 2-planes in flat 3-space with vanishing external cur-
vatures. For a generic minimal surface in 3-space the principal curvatures are non-vanishing
and sum up to zero. This implies that minimal surfaces look locally like saddles. For 2-plane
the curvatures vanish identically so that saddle is not formed.

9.2.2 Kähler action as Morse function in the space of minimal surfaces

It was found that surface volume could define a Morse function in the space of surfaces. What
about the situation in TGD, where volume is replaced with action which is sum of volume term
and Kähler action [L17, L16, L18]?

Morse function interpretation could appear in two ways. The first possibility is that the action
defines an analog of Morse function in the space of 4-surfaces connecting given 3-surfaces at the
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boundaries of CD. Could it be that there is large number of preferred extremals connecting given 3-
surfaces at the boundaries of CD? This would serve as analogy for the existence of infinite number
of closed surfaces in the case of compact embedding space. The fact that preferred extremals
extremize almost everywhere two different actions suggests that this is not the case but one must
consider also this option.

1. The simplest realization of general coordinate invariance would allow only single preferred
extremal but I have considered also the option for which one has several preferred extremals.
In this case one encounters problem with the definition of Kähler function which would
become many-valued unless one is ready to replace 3-surfaces with its covering so that each
preferred extremal associated with the given 3-surface gives rise to its own 3-surface in the
covering space. Note that analogy with the definition of covering space of say circle by
replacing points with the set of homologically equivalence classes of closed paths at given
point (rotating arbitrary number of times around circle).

2. Number theoretic vision [K27, K10] suggests that these possibly existing different preferred
extremals are analogous to same algebraic computation but performed in different ways or
theorem proved in different ways. There is always the shortest manner to do the computation
and an attractive idea is that the physical predictions of TGD do not depend on what
preferred extremal is chosen.

3. An interesting question is whether the “drum theorem” could generalize to TGD framework.
If there exists infinite series of preferred extremals which are singular minimal surfaces, the
volume of space-time surface for surfaces in the series would depend only on the volume
of the CD containing it. The analogy with the high frequencies and drum suggests that
the surfaces in the series have more and more local details. In number theoretic vision this
would correspond to emergence of more and more un-necessary pieces to the computation.
One cannot exclude the possibility that these details are analogs for what is called loop
corrections in quantum field theory.

4. If the action defines Morse action, the preferred extremals give information about its topol-
ogy. Note however that the requirement that one has extremum of both volume term and
Kähler action almost everywhere is an extremely strong additional condition and corresponds
physically to quantum criticality.

Remark: The original assumption was that the space-time surface decomposes to critical
regions which are minimal surfaces locally and to non-critical regions inside which there is
flow of canonical momentum currents between volume and Kähler degrees of freedom. The
stronger hypothesis is that this flow occurs at 2-D and 1-D surfaces only.

9.2.3 Kähler function as Morse function the space of 3-surfaces

The notion of Morse function can make sense also in the space of 3-surfaces - the world of classical
worlds which in zero energy ontology consists of pairs of 3-surfaces at opposite boundaries of CD
connected by preferred extremal of Kähler action [K6, K20, L17, L16]. Kähler action for the
preferred extremal is assumed to define Kähler function defining Kähler metric of WCW via its
second derivates ∂K∂LK. Could Kähler function define a Morse function?

1. First of all, Morse function must be a genuine function. For general Kähler metric this is
not the case. Rather, Kähler function K is a section in a U(1) bundle consisting of patches
transforming by real part of a complex gradient as one moves between the patches of the
bundle. A good example is CP2, which has non-trivial topology, and which decomposes to
3 coordinate patches such that Kähler functions in overlapping patches are related bythe
analog of U(1) gauge transformation.

Kähler action for preferred extremal associated with given 3-surface is however uniquely
defined unless one includes Chern-Simons term which changes in U(1) gauge transformation
for Kähler gauge potential of CP2.
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2. What could one conclude about the topology of WCW if the action for preferred extremal
defines a Morse function as a functional of 3-surface? This function cannot have saddle
points: in a region of WCW around saddle point the WCW metric depending on the second
derivatives of Morse function would not be positive definite, and this is excluded by the pos-
itivity of Hilbert space inner product defined by the Kähler metric essential for the unitarity
of the theory. This would suggest that the space of 3-surfaces has very simple topology if
Kähler function.

This is too hasty conclusion! WCW metric is expected to depend also on zero modes, which
do not contribute to the WCW line element. What suggests itself is bundle structure. Zero
modes define the base space and dynamical degrees of freedom contributing to WCW line
element as fiber. The space of zero modes can be topologically complex.

There is a fascinating open problem related to the metric of WCW.

1. The conjecture is that WCW metric possess the symplectic symmetries of ∆M4
+ × CP2 as

isometries. In infinite dimensional case the existence of Riemann/Kähler geometry is not
at all obvious as the work of Dan Freed demonstrated in the case of loops spaces [A3], and
the maximal group of isometries would guarantee the existence of WCW Kähler geometry.
Geometry would be determined by symmetries alone and all points of the space would be
metrically equivalent. WCW would be an infinite-dimensional analog of symmetric space.

2. Isometry group property does not require that symplectic symmetries leave Kähler action,
and even less volume term for preferred extremal, invariant. Just the opposite: if the action
would remain invariant, Kähler function and Kähler metric would be trivial!

3. The condition for the existence of symplectic isometries must fix the ratio of the coefficients
of Kähler action and volume term highly uniquely. The physical interpretation is in terms
of quantum criticality realized mathematically in terms of the symplectic symmetry serving
as analog of ordinary conformal symmetry characterizing 2-D critical systems. Note that at
classical level quantum criticality realized as minimal surface property says nothing outside
singular surfaces since the field equations in this regions are algebraic. At singularities the
situation changes. Note also that the minimal surface property is a geometric analog of
masslessness which in turn is a correlate of criticality.

4. Twistor lift of TGD [?]eads to a proposal for the spectra of Kähler coupling strength and
cosmological constant allowed by quantum criticality [L16]. What is surprising that cosmo-
logical constant identified as the coefficient of the volume term takes the role of cutoff mass
in coupling constant evolution in TGD framework. Coupling constant evolution discretizes in
accordance with quantum criticality which must give rise to infinite-D group of WCW isome-
tries. There is also a connection with number theoretic vision in which coupling constant
evolution has interpretation in terms of extensions of rationals [K27, L7, L6].

9.2.4 Can one apply the mathematical results about closed minimal surfaces to
TGD?

The general mathematical thinking involved with the new results is applied also in TGD as should
be clear from the above. But can one apply the new mathematical results described above to
TGD? Unfortunately not as such. There are several reasons for this.

1. The dimension of H = M4 × CP2 is D = 8 > 7. M4 is non-compact and also the signature
of M4 metric is Minkowskian rather than Euclidian. Could one apply these results to special
kinds of 4-surface such as stationary surfaces M1 ×X3, X3 ⊂ E3 × CP2. No: the problem
is that E3 is non-compact.

2. In TGD one does not consider closed space-time surfaces but analogs of soap films spanned by
a frame defined by the 3-surfaces at the opposite ends of CD. Note that the singular surfaces
of dimension D = 2, 1 are analogous to frames with boundaries at the ends of space-time
surface.
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3. In TGD framework preferred extremal property requires that space-time surface is both
minimal surface and extremal of Kähler action outside singularities. This is known to be the
case for all known extremals. This poses very strong conditions on extremals and seems to
mean the existence of a generalization of Kähler structure and conformal invariance to 4-D
situation. This drops a large number of minimal surface extremals from consideration

4. Minimal surfaces filling space evenly do not have any reasonable physical interpretation.
Maybe this could be used to argue that one must have D = 8 and that signature must be
Minkowskian in order to have soap films rather than closed minimal surfaces.

What about E4 with Euclidian signature instead of M4 and closed space-time surfaces in
analogy with Euclidian field theories? Would the projections of closed minimal 4-surfaces in
E4 × CP2 which are also extremals of Kähler action reduce to a point in E4 and complex
2-surfaces in CP2: Euclidianized TGD would degenerate to an Euclidian version of string
model. Also in H = S4 × CP2 the situation might be same since the property of being
extremal of Kähler action is very powerful. It is however essential that also M4 has analog
of Kähler structure: S4 does not have it although it allows twistor structure so that this
options drops out.

5. Can one apply the results of Marques, Neves and others about hyper-surfaces to TGD? What
comes in mind is a minimal 4-surface, which is a Cartesian product of geodesic line M1 ⊂M4

and 3-D hyper-surface X3 ⊂ CP2 visiting all points of CP2 and having a finite volume. If
the action would contain only the volume term, this extremal would be possible. The action
however contains Kähler action and this very probably excludes this extremal.
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