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Abstract

This chapter provides a summary about the role of symmetries in the construction of
quantum TGD. In fact, the general definition of geometry is as a structure characterized by
given symmetries. The discussions are based on the general vision that quantum states of the
Universe correspond to the modes of classical spinor fields in the “world of the classical worlds”
(WCW) identified as the infinite-dimensional WCW of light-like 3-surfaces of H = M4 ×CP2

(more or less-equivalently, the corresponding 4-surfaces defining generalized Bohr orbits). The
following topics are discussed on basis of this vision.

1. Physics as infinite-dimensional Kähler geometry

1. The basic idea is that it is possible to reduce quantum theory to WCW geometry and
spinor structure. The geometrization of loop spaces inspires the idea that the mere
existence of Riemann connection fixes WCW Kähler geometry uniquely. Accordingly,
WCW can be regarded as a union of infinite-dimensional symmetric spaces labeled by
zero modes labeling classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the WCW geometry deriving from the light-likeness of 3-surfaces
and from the special conformal properties of the boundary of 4-D light-cone would guar-
antee the maximal isometry group necessary for the symmetric space property. Quantum
criticality is the fundamental hypothesis allowing to fix the Kähler function and thus dy-
namics of TGD uniquely. Quantum criticality leads to surprisingly strong predictions
about the evolution of coupling constants.

2. WCW spinors correspond to Fock states and anti-commutation relations for fermionic
oscillator operators correspond to anti-commutation relations for the gamma matrices
of the WCW. WCW gamma matrices contracted with Killing vector fields give rise to a
super-symplectic algebra which together with Hamiltonians of the WCW forms what I
have used to call super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and
have no electroweak couplings. In the case of hadrons super-symplectic quanta corre-
spond to what has been identified as non-perturbative sector of QCD: they define TGD
correlate for the degrees of freedom assignable to hadronic strings. They are responsible
for the most of the mass of hadron and resolve spin puzzle of proton.

3. Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable
to light-like 3-surfaces and together these algebras extend the conformal symmetries of
string models to dynamical conformal symmetries instead of mere gauge symmetries. The
construction of the representations of these symmetries is one of the main challenges of
quantum TGD. Modular invariance is one aspect of conformal symmetries and plays a key
role in the understanding of elementary particle vacuum functionals and the description
of family replication phenomenon in terms of the topology of partonic 2-surfaces.

4. Kähler-Dirac equation (or Kähler-Dirac equation) gives also rise to a hierarchy super-
conformal algebras assignable to zero modes. These algebras follow from the existence of
conserved fermionic currents. The corresponding deformations of the space-time surface
correspond to vanishing second variations of Kähler action and provide a realization of
quantum criticality. This led to a breakthrough in the understanding of the Kähler-
Dirac action via the addition of a measurement interaction term to the action allowing
to obtain among other things stringy propagator and the coding of quantum numbers
of super-conformal representations to the geometry of space-time surfaces required by
quantum classical correspondence.

A crucial feature of the Kähler-Dirac equation is the localization of the modes to 2-D
surfaces with vanishing induced W fields (this in generic situation and for all modes but
covariantly constant right-handed neutrino): this is needed in order to have modes with
well-defined em charge. Also Z0 fields can be vanish and is expected to do so - at least
above weak scale. This implies that all elementary particles are string like objects in
very concrete sense.

2. p-adic physics and p-adic variants of basic symmetries

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding
of elementary particle masses using only super-conformal symmetries and p-adic thermody-
namics. The need to fuse real physics and various p-adic physics to single coherent whole led
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to a generalization of the notion of number obtained by gluing together reals and p-adics to-
gether along common rationals and algebraics. The interpretation of p-adic space-time sheets
is as correlates for cognition and intentionality. p-Adic and real space-time sheets intersect
along common rationals and algebraics and the subset of these points defines what I call num-
ber theoretic braid in terms of which both WCW geometry and S-matrix elements should be
expressible. Thus one would obtain number theoretical discretization which involves no adhoc
elements and is inherent to the physics of TGD.

3. Hierarchy of Planck constants and dark matter hierarchy

The realization for the hierarchy of Planck constants proposed as a solution to the dark
matter puzzle leads to a profound generalization of quantum TGD through a generalization of
the notion of embedding space to characterize quantum criticality. The resulting space has a
book like structure with various almost-copies of the embedding space representing the pages
of the book meeting at quantum critical sub-manifolds. A particular page of the book can
be seen as an n-fold singular covering or factor space of CP2 or of a causal diamond (CD)
of M4 defined as an intersection of the future and past directed light-cones. Therefore the
cyclic groups Zn appear as discrete symmetry groups. The extension of embedding space can
be seen as a formal tool allowing an elegant description of the multi-sheetednes due to the
non-determinism of Kähler action. At the space-like ends the sheets fuse together so that a
singular covering is in question.

The original intuition was the the space-time would be n-sheeted for heff = n. Quantum
criticality expected on basis of the vacuum degeneracy of Kähler action suggests that conformal
symmetries act as critical deformations respecting the light-likeness of partonic orbits at which
the signature of the induced metric changes from Minkowskian to Euclidian. Therefore one
would have n conformal equivalence classes of physically equivalent space-time sheets. A
hierarchy of breakings of conformal symmetry is expected on basis of ordinary catastrophe
theory. These breakings would correspond to the hierarchy defined by the sub-algebras of
conformal algebra or associated algebra for which conformal weights are divisible by n. This
defines infinite number of inclusion hierarchies .. ⊂ C(n1) ⊂ C(n3)... such that ni+1 divides
ni. These hierarchies could correspond to inclusion hierarchies of hyper-finite factors and
conformal algebra acting as gauge transformations would naturally define the notion of finite
measurement resolution.

4. Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical
symmetries are important for physics.

1. There are good reasons to believe that the strands of number theoretical braids - ends
of string world sheets - can be assigned with the roots of a polynomial with suggests the
interpretation corresponding Galois groups as purely number theoretical symmetries of
quantum TGD. Galois groups are subgroups of the permutation group S∞ of infinitely
manner objects acting as the Galois group of algebraic numbers. The group algebra of
S∞ is HFF which can be mapped to the HFF defined by configuration space spinors. This
picture suggest a number theoretical gauge invariance stating that S∞ acts as a gauge
group of the theory and that global gauge transformations in its completion correspond
to the elements of finite Galois groups represented as diagonal groups of G×G× .... of
the completion of S∞.

2. HFFs inspire also an idea about how entire TGD emerges from classical number fields,
actually their complexifications. In particular, SU(3) acts as subgroup of octonion auto-
morphisms leaving invariant preferred imaginary unit. If space-time surfaces are hyper-
quaternionic (meaning that the octonionic counterparts of the Kähler-Dirac gamma ma-
trices span complex quaternionic sub-algebra of octonions) and contain at each point a
preferred plane M2 of M4, one ends up with M8 − H duality stating that space-time
surfaces can be equivalently regarded as surfaces in M8 or M4 × CP2. One can actu-
ally generalize M2 to a two-dimensional Minkowskian sub-manifold of M4. One ends
up with quantum TGD by considering associative sub-algebras of the local octonionic
Clifford algebra of M8 or H. so that TGD could be seen as a generalized number theory.
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1 Introduction

This chapter provides a summary about the role of symmetries in the construction of quantum
TGD. The discussions are based on the general vision that quantum states of the Universe cor-
respond to the modes of classical spinor fields in the configuration space - “world of the clas-
sical worlds” (WCW) - identified as the infinite-dimensional WCW of light-like 3-surfaces of
H = M4 ×CP2 (more or less-equivalently, the corresponding 4-surfaces defining generalized Bohr
orbits). The following topics are discussed on basis of this vision.

1.1 Physics As Infinite-Dimensional Kähler Geometry

1. The basic idea is that it is possible to reduce quantum theory to WCW geometry and spinor
structure. The geometrization of loop spaces inspires the idea that the mere existence of
Riemann connection fixes WCW Kähler geometry uniquely. Accordingly, WCW can be
regarded as a union of infinite-dimensional symmetric spaces labeled by zero modes labeling
classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the WCW geometry deriving from the light-likeness of 3-surfaces and
from the special conformal properties of the boundary of 4-D light-cone would guarantee the
maximal isometry group necessary for the symmetric space property. Quantum criticality is
the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of TGD
uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution of
coupling constants.

2. WCW spinors correspond to Fock states and anti-commutation relations for fermionic os-
cillator operators correspond to anti-commutation relations for the gamma matrices of the
WCW. WCW gamma matrices contracted with Killing vector fields give rise to a super-
symplectic algebra which together with Hamiltonians of the WCW forms what I have used
to call super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have
no electroweak couplings. In the case of hadrons super-symplectic quanta correspond to what
has been identified as non-perturbative sector of QCD: they define TGD correlate for the
degrees of freedom assignable to hadronic strings. They are responsible for the most of the
mass of hadron and resolve spin puzzle of proton.

3. Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable to
light-like 3-surfaces and together these algebras extend the conformal symmetries of string
models to dynamical conformal symmetries instead of mere gauge symmetries. The con-
struction of the representations of these symmetries is one of the main challenges of quantum
TGD.

4. Modular invariance is one aspect of conformal symmetries and plays a key role in the under-
standing of elementary particle vacuum functionals and the description of family replication
phenomenon in terms of the topology of partonic 2-surfaces.

5. Kähler-Dirac equation gives also rise to a hierarchy super-conformal algebras assignable to
zero modes. These algebras follow from the existence of conserved fermionic currents. The
corresponding deformations of the space-time surface correspond to vanishing second varia-
tions of Kähler action and provide a realization of quantum criticality. This led to a break-
through in the understanding of the Kähler-Dirac action via the addition of a measurement
interaction term to the action allowing to obtain among other things stringy propagator
and the coding of quantum numbers of super-conformal representations to the geometry of
space-time surfaces required by quantum classical correspondence.

A second breakthrough came from the realization that the well-definedness of em charge
forces in the generic situation localization of the modes to 2- surfaces at which induced W
fields and also Z0 fields above weak scale vanish.
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6. The effective 2-dimensionality of the space-like 3-surfaces realizing quantum holography can
be formulated as a symmetry stating that the replacement of wormhole throat by any light-
like 3-surfaces parallel to it in the slicing of the space-time sheet induces only a gauge trans-
formation of WCW Kähler function adding to it a real part of a holomorphic function of
complex coordinate of WCW depending also on zero modes. This means that the Kähler
metric of WCW remains invariant. It is also postulated that measurement interaction added
to the Kähler-Dirac action induces similar gauge symmetry.

7. The study of the Kähler-Dirac equation leads to a detailed identification of super charges of
the super-conformal algebras relevant for TGD [K13]: these results represent the most recent
layer in the development of ideas about supersymmetry in TGD Universe. Whereas many
considerations related to supersymmetry represented earlier rely on general arguments, the
results deriving from the Kähler-Dirac equation are rather concrete and clarify the crucial
role of the right-handed neutrino in TGD based realization of super-conformal symmetries.
N = 1 SUSY- now almost excluded at LHC - is not possible in TGD because it requires
Majorana spinors. AlsoN = 2 variant of the standard space-time SUSY seems to be excluded
in TGD Universe. Fermionic oscillator operators for the induced spinor fields restricted to
2-D surfaces however generate large N SUSY and super-conformal algebra and the modes of
right-handed neutrino its 4-D version.

1.2 P-Adic Physics As Physics Of Cognition

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of ele-
mentary particle masses using only super-conformal symmetries and p-adic thermodynamics. The
need to fuse real physics and various p-adic physics to single coherent whole led to a generalization
of the notion of number obtained by gluing together reals and p-adics together along common
rationals and algebraics. The interpretation of p-adic space-time sheets is as correlates for cogni-
tion. p-Adic and real space-time sheets intersect along common rationals and algebraics and the
subset of these points defines what I call number theoretic braid in terms of which both WCW
geometry and S-matrix elements should be expressible. Thus one would obtain number theoretical
discretization, which involves no ad hoc elements and is inherent to the physics of TGD.

The original idea was that the notion of number theoretic braid could pose strong number
theoretic conditions on physics just as p-adic thermodynamics poses on elementary particle mass
spectrum. A practically oriented physicist would argue that general braids must be allowed if
one wants to calculate something and that number theoretic braids represent only the intersection
between the real and various p-adic physics. He could also insist that at the level of WCW various
sectors must be realized in a more abstract way - say as hierarchies of polynomials with coefficients
belonging to various extensions or rationals so that one can speak about surfaces common to real
and various p-adic sectors. In this view the fusion of various physics would be analogous to the
completion of rationals to various number fields.

Perhaps the most dramatic implication relates to the fact that points, which are p-adically
infinitesimally close to each other, are infinitely distant in the real sense (recall that real and p-
adic embedding spaces are glued together along rational embedding space points). This means
that any open set of p-adic space-time sheet is discrete and of infinite extension in the real sense.
This means that cognition is a cosmic phenomenon and involves always discretization from the
point of view of the real topology. The testable physical implication of effective p-adic topology of
real space-time sheets is p-adic fractality meaning characteristic long range correlations combined
with short range chaos.

Also a given real space-time sheets should correspond to a well-defined prime or possibly sev-
eral of them. The classical non-determinism of Kähler action should correspond to p-adic non-
determinism for some prime(s) p in the sense that the effective topology of the real space-time
sheet is p-adic in some length scale range. p-Adic space-time sheets with same prime should have
many common rational points with the real space-time and be easily transformable to the real
space-time sheet in quantum jump representing intention-to-action transformation. The concrete
model for the transformation of intention to action leads to a series of highly non-trivial number
theoretical conjectures assuming that the extensions of p-adics involved are finite-dimensional and
can contain also transcendentals.
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An ideal realization of the space-time sheet as a cognitive representation results if the CP2

coordinates as functions of M4
+ coordinates have the same functional form for reals and various

p-adic number fields and that these surfaces have discrete subset of rational numbers with upper
and lower length scale cutoffs as common. The hierarchical structure of cognition inspires the idea
that S-matrices form a hierarchy labeled by primes p and the dimensions of algebraic extensions.

The number-theoretic hierarchy of extensions of rationals appears also at the level of WCW
spinor fields and allows to replace the notion of entanglement entropy based on Shannon entropy
with its number theoretic counterpart having also negative values in which case one can speak about
genuine information. In this case case entanglement is stable against Negentropy Maximization
Principle stating that entanglement entropy is minimized in the self measurement and can be
regarded as bound state entanglement. Bound state entanglement makes possible macro-temporal
quantum coherence. One can say that rationals and their finite-dimensional extensions define
islands of order in the chaos of continua and that life and intelligence correspond to these islands.

TGD inspired theory of consciousness and number theoretic considerations inspired for years
ago the notion of infinite primes [K10]. It came as a surprise, that this notion might have direct
relevance for the understanding of mathematical cognition. The idea is very simple. There is
infinite hierarchy of infinite rationals having real norm one but different but finite p-adic norms.
Thus single real number (complex number, (hyper-)quaternion, (hyper-)octonion) corresponds to
an algebraically infinite-dimensional space of numbers equivalent in the sense of real topology.
Space-time and embedding space points become infinitely structured and single space-time point
would represent the Platonia of mathematical ideas. This structure would be completely invisible
at the level of real physics but would be crucial for mathematical cognition and explain why we
are able to imagine also those mathematical structures which do not exist physically. Space-time
could be also regarded as an algebraic hologram. The connection with Brahman=Atman idea is
also obvious.

1.3 Hierarchy Of Planck Constants And Dark Matter Hierarchy

The realization for the hierarchy of Planck constants proposed as a solution to the dark matter
puzzles leads to a profound generalization of quantum TGD through a generalization of the notion
of embedding space to characterize quantum criticality. The resulting space has a book like struc-
ture with various almost-copies of the embedding space representing the pages of the book meeting
at quantum critical sub-manifolds. A particular page of the book can be seen as an n-fold singular
covering or factor space of CP2 or of a causal diamond (CD ) of M4 defined as an intersection of the
future and past directed light-cones. Therefore the cyclic groups Zn appear as discrete symmetry
groups.

The original intuition was the space-time would be n-sheeted for heff = n. Quantum criticality
expected on basis of the vacuum degeneracy of Kähler action suggests that conformal symmetries
act as critical deformations respecting the light-likeness of partonic orbits at which the signature of
the induced metric changes from Minkowskian to Euclidian. Therefore one would have n conformal
equivalence classes of physically equivalent space-time sheets. A hierarchy of breakings of conformal
symmetry is expected on basis of ordinary catastrophe theory. These breakings would correspond
to the hierarchy defined by the sub-algebras of conformal algebra or associated algebra for which
conformal weights are divisible by n. This defines infinite number of inclusion hierarchies .. ⊂
C(n1) ⊂ C(n3)... such that ni+1 divides ni. These hierarchies could correspond to inclusion
hierarchies of hyper-finite factors and conformal algebra acting as gauge transformations would
naturally define the notion of finite measurement resolution.

This topic will not be discussed in this chapter since it is discussed in earlier chapter [?].

1.4 Number Theoretical Symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical symme-
tries are important for physics.

1. There are good reasons to believe that the strands of number theoretical braids can be as-
signed with the roots of a polynomial with suggests the interpretation corresponding Galois
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groups as purely number theoretical symmetries of quantum TGD. Galois groups are sub-
groups of the permutation group S∞ of infinitely ways objects acting as the Galois group
of algebraic numbers. The group algebra of S∞ is HFF which can be mapped to the HFF
defined by WCW spinors. This picture suggest a number theoretical gauge invariance stating
that S∞ acts as a gauge group of the theory and that global gauge transformations in its
completion correspond to the elements of finite Galois groups represented as diagonal groups
of G×G× .... of the completion of S∞.

2. HFFs inspire also an idea about how entire TGD emerges from classical number fields, actu-
ally their complexifications. In particular, SU(3) acts as subgroup of octonion automorphisms
leaving invariant preferred imaginary unit. If space-time surfaces are hyper-quaternionic
(meaning that the octonionic counterparts of the Kähler-Dirac gamma matrices span com-
plex quaternionic sub-algebra of octonions) and contain at each point a preferred plane M2

of M4, one ends up with M8 − H duality stating that space-time surfaces can be equiv-
alently regarded as surfaces in M8 or M4 × CP2. One can actually generalize M2 to a
two-dimensional Minkowskian sub-manifold of M4. One ends up with quantum TGD by
considering associative sub-algebras of the local octonionic Clifford algebra of M8 or H. so
that TGD could be seen as a generalized number theory.

This idea will not be discussed in this chapter since it has better place in the book about physics
as generalized number theory [K8].

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L1].

2 Symmetries

The most general expectation is that WCW can be regarded as a union of coset spaces which are
infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i).

Index i labels 3-topology and zero modes. The group G, which can depend on 3-surface, can be
identified as a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as its subgroup a
group, whose action reduces to Diff(X3) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and H and to show that the tangent space
of WCW allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow com-
plexification. One must also identify the zero modes and construct integration measure for the
functional integral in these degrees of freedom. Besides this one must deduce information about the
explicit form of WCW metric from symmetry considerations combined with the hypothesis that
Kähler function is Kähler action for a preferred extremal of Kähler action. One must of course
understand what “preferred” means.

2.1 General Coordinate Invariance And Generalized Quantum Gravita-
tional Holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces to
the geometry of classical spinor fields in the infinite-dimensional configuration space of 3-surfaces
of M4

+ × CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum theory
and its geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded
into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler func-
tion reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on δM4

+ × CP2, the moment of big bang. The proposal was that Kähler
function K(Y 3) could be defined as a preferred extremal of so called Kähler action for the unique
space-time surface X4(Y 3) going through given 3-surface Y 3 at δM4

+ ×CP2. For Diff4 transforms
of Y 3 at X4(Y 3) Kähler function would have the same value so that Diff4 invariance and degener-
acy would be the outcome. The proposal was that the preferred extremals are absolute minima of
Kähler action.

This picture turned out to be too simple.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf


2.2 Light Like 3-D Causal Determinants And Effective2-Dimensionality 9

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said.

2. It has also become obvious that the gigantic symmetries associated with δM4
± × CP2 ⊂

CD × CP2 manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decomposition
of WCW to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that CDs
label the sectors of CH: the nice feature of this option is that the considerations of this
chapter restricted to δM4

+×CP2 generalize almost trivially. This option is beautiful because
the center of mass degrees of freedom associated with the different sectors of CH would
correspond to M4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 →
X4(X3) must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface
is unique among all its Diff4 translates. This also allows physically preferred “gauge fixing” allowing
to get rid of the mathematical complications due to Diff4 degeneracy. The internal geometry of
the space-time sheet must define the preferred 3-surface X3

l .
The realization of this vision means a considerable mathematical challenge. The effective metric

2-dimensionality of 3-dimensional light-like surfaces X3
l of M4 implies generalized conformal and

symplectic symmetries allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

2.2 Light Like 3-D Causal Determinants And Effective2-Dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic ex-

amples are boundaries and elementary particle horizons at which Minkowskian signature of the
induced metric transforms to Euclidian one. This brings in a second conformal symmetry (see
Fig. 1 ) related to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry is
identifiable as TGD counterpart of the Kac Moody symmetry of string models. The challenge is
to understand the relationship of this symmetry to WCW geometry and the interaction between
the two conformal symmetries.

Figure 1: Conformal symmetry preserves angles in complex plane

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l )∩CD×CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.
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3. Generalized coset construction implies that the differences of super-symplectic and Super
Kac-Moody type Super Virasoro generators annihilated physical states. This construction in
turn led to the realization that WCW for fixed values of zero modes - in particular the values
of the induced Kähler form of δM4

± × CP2 - allows identification as a coset space obtained
by dividing the symplectic group of δM4

± × CP2 with Kac-Moody group, whose generators
vanish at X2 = X3

l × δM4
±×CP2. One can say that quantum fluctuating degrees of freedom

in a very concrete sense correspond to the local variant of S2 × CP2.

The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l should be enough to determine WCW
geometry. This implies that the relevant data is contained to their intersection X2 at least for
finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving
light-likeness corresponding to zero modes or gauge degrees of freedom and induce deformations
of X3 also acting as zero modes. The outcome is effective 2-dimensionality. One must be however
cautious in order to not make over-statements. The reduction to 2-D theory in global sense would
trivialize the theory and the reduction to 2-D theory must takes places for finite region of X3 only
so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation
of this vision is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-
CD: s brings in improved measurement resolution and means also that effective 2-dimensionality
is realized in the scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. What was re-
garded originally as a victory was that it simplifies dramatically the earlier formulas for WCW
metric involving 3-dimensional integrals over X3 ⊂ M4

+ × CP2 reducing now to 2-dimensional
integrals. One can of course criticize so strong form of effective 2-dimensionality as unphysical. As
often happens, the later progress led to the comeback of the formulation involving 3-surfaces! The
stringy picture implied by the solutions of Kähler-Dirac action led to the 3-D picture with effective
2-dimensionality realized in terms of super conformal symmetries.

2.3 Magic Properties Of Light Cone Boundary And Isometries OfWCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well
as Kähler structure. Kähler structure is not unique: possible Kähler structures of light cone
boundary are paramet3rized by Lobatchevski space SO(3, 1)/SO(3). The requirement that the
isotropy group SO(3) of S2 corresponds to the isotropy group of the unique classical 3-momentum
assigned to X4(Y 3) defined as a preferred extremum of Kähler action, fixes the choice of the
complex structure uniquely. Therefore group theoretical approach and the approach based on
Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light
cone boundary. Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes local-

ized with respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also symplectic

structure.

Hence any function of δM4
+ × CP2 would serve as a Hamiltonian transformation acting in

both CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary

local gauge transformations. This group leaves the symplectic form of δM4
+ × CP2, defined

as the sum of light cone and CP2 symplectic forms, invariant. The group of symplectic
transformations of δM4

+ × CP2 is a good candidate for the isometry group of WCW .

2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the
symplectic transformations of CP2, CP2 symplectic transformations wiykd correspond to
zero modes having zero norm in the Kähler metric of WCW . This does not make sense since
symplectic transformations of δM4 × CP2 actually parameterize the quantum fluctuation
degrees of freedom.



2.4 Symplectic Transformations Of ∆M4
+ × CP2 As Isometries Of WCW 11

3. The groups G and H, and thus WCW itself, should inherit the complex structure of the
light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

2.4 Symplectic Transformations Of ∆M4
+ ×CP2 As Isometries Of WCW

The symplectic transformations of δM4
+ × CP2 are excellent candidates for inducing symplectic

transformations of the WCW acting as isometries. There are however deep differences with respect
to the Kac Moody algebras.

1. The conformal algebra of WCW is gigantic when compared with the Virasoro + Kac Moody
algebras of string models as is clear from the fact that the Lie-algebra generator of a sym-
plectic transformation of δM4

+ × CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transforma-

tion of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the

notion of local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+×CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2

Hamiltonians involves a term analogous to a central extension term symmetric with respect
to CP2 Hamiltonians, and resulting from the δM4

+ bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish
and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.

2.5 Does The Symmetric Space Property Correspond To Coset Con-
struction For Super Virasoro Algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (2.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

1. WCW geometry allows two super-conformal symmetries. The first one corresponds to super-
symplectic transformations acting at the level of embedding space. The second one corre-
sponds to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces respect-
ing their light-likeness.
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2. It took considerable amount of trials and errors to realize that both symplectic and Kac-
Moody algebras are needed to generate the entire isometry algebra g. h is sub-algebra of
this extended algebra. In general case the elements of both algebras are non-vanishing at the
prefered partonic 2-surfaces considered.

3. Strong form of holography implies that transformations located to the interior of space-like
3-surface and light-like partonic orbit define zero modes and act like gauge symmetries. The
physically non-trivial transformations correspond to transformations acting non-trivially at
space-like 3-surfaces. g corresponds to the algebra generated by these transformations. For
preferred p3-surface - identified as (say) maximum of Kähler function - h corresponds to the
elements of this algebra reducing to infinitesimal diffeomorphisms.

4. Coset representation has five tensor factors as required by p-adic mass calculations and
they correspond to color algebra, to two factors from electroweak U(2), to one factor from
transversal M4 translations and one factor from symplectic algebra (note that also Hamilto-
nians which are products of δM4

+ and CP2 Hamiltonians are possible.

5. The realization of WCW sectors with fixed values of zero modes as symmetric spaces G/H
(analogous to CP2 = SU(3)/U(2)) suggests that one can assign super-Virasoro algebras with
G and H as a generalized coset representation for g and h so that the differences of the gener-
ators of two super Virasoro algebras annihilate the physical states for coset representations.
This obviously generalizes Goddard-Olive-Kent construction [A4]. It however does not imply
Equivalence Principle as believed for a long time.

2.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks

Concerning the interpretation of the relationship between symplectic and Kac-Moody algebra
there are some poorly understood points, which directly relate to what one means with precise
interpretation of strong form of holography.

The basic building bricks are symplectic algebra of δCD (this includes CP2 besides light-cone
boundary) and Kac-Moody algebra assignable to the isometries of δCD [K4]. It seems however
that the longheld view about the role of Kac-Moody algebra must be modified. Also the earlier
realization of super-Hamiltonians and Hamiltonians seems too näıve.

1. I have been accustomed to think that Kac-Moody algebra could be regarded as a sub-algebra
of symplectic algebra. p-Adic mass calculations however requires five tensor factors for the
coset representation of Super Virasoro algebra naturally assigned to the coset structure G/H
of a sector of WCW with fixed zero modes. Therefore Kac-Moody algebra cannot be regarded
as a sub-algebra of symplectic algebra giving only single tensor factor and thus inconsistent
with interpretation of p-adic mass calculations.

2. The localization of Kac-Moody algebra generators with respect to the internal coordinates
of light-like 3-surface taking the role of complex coordinate z in conformal field theory is
also questionable: the most economical option relies on localization with respect to light-like
radial coordinate of light-cone boundary as in the case of symplectic algebra. Kac-Moody
algebra cannot be however sub-algebra of the symplectic algebra assigned with covariantly
constant right-handed neutrino in the earlier approach.

3. Right-handed covariantly constant neutrino as a generator of super symmetries plays a key
role in the earlier construction of symplectic super-Hamiltonians. What raises doubts is that
other spinor modes - both those of right-handed neutrino and electro-weakly charged spinor
modes - are absent. All spinor modes should be present and thus provide direct mapping
from WCW geometry to WCW spinor fields in accordance with super-symmetry and the
general idea that WCW geometry is coded by WCW spinor fields.

Hence it seems that Kac-Moody algebra must be assigned with the modes of the induced
spinor field which carry electroweak quantum numbers. If would be natural that the modes
of right-handed neutrino having no weak and color interactions would generate the huge
symplectic algebra of symmetries and that the modes of fermions with electroweak charges
generate much smaller Kac-Moody algebra.
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4. The dynamics of Kähler action and Kähler-Dirac action action are invisible in the earlier
construction. This suggests that the definition of WCW Hamiltonians is too simplistic. The
proposal is that the conserved super charges derivable as Noether charges and identifiable
as super-Hamiltonians define WCW metric and Hamiltonians as their anti-commutators.
Spinor modes would become labels of Hamiltonians and WCW geometry relates directly to
the dynamics of elementary particles.

5. Note that light-cone boundary δM4
+ = S2×R+ allows infinite-dimensional group of isometries

consisting of conformal transformation of the sphere S2 with conformal scaling compensated
by an S2 local scaling or the light-like radial coordinate of R+. These isometries contain as
a subgroup symplectic isometries and could act as gauge symmetries of the theory.

Gauge symmetry property means that the Kähler metric of the WCW is same for all choices
of preferred X3. Kähler function would however differ by a real part of a holomorphic function of
WCW coordinates for different choices of preferred X3.

Strong form of holography (or strong form of GCI) implies that one can take either space-like
or light-like 3-surfaces as basic objects and consider the action the super-symplectic algebra also
for the light-like 3-surfaces. This is possible by just parallelly translating the light-like boundary of
CD so that one obtains slicing of CD by these light-like 3-surfaces. The equality of four-momenta
associated with the two super-conformal representations might allow interpretation in terms of
equivalence of gravitational and inertial four-momenta.

2.7 Comparison Of TGD And Stringy Views About Super-Conformal
Symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison with
the conformal symmetries of super string models.

2.7.1 Basic differences between the realization of super conformal symmetries in
TGD and in super-string models

The realization super conformal symmetries in TGD framework differs from that in string models
in several fundamental aspects.

1. In TGD framework super-symmetry generators acting as configuration space gamma matri-
ces carry either lepton or quark number. Majorana condition required by the hermiticity
of super generators which is crucial for super string models would be in conflict with the
conservation of baryon and lepton numbers and is avoided. This is made possible by the
realization of bosonic generators represented as Hamiltonians of X2-local symplectic trans-
formations rather than vector fields generating them [K4]. This kind of representation applies
also in Kac-Moody sector since the local transversal isometries localized in X3

l and respect-
ing light-likeness condition can be regarded as X2 local symplectic transformations, whose
Hamiltonians generate also isometries. Localization is not complete: the functions of X2

coordinates multiplying symplectic and Kac-Moody generators are functions of the symplec-
tic invariant J = εµνJµν so that effective one-dimensionality results but in different sense
than in conformal field theories. This realization of super symmetries is what distinguishes
between TGD and super string models and leads to a totally different physical interpretation
of super-conformal symmetries. The fermionic representations of super-symplectic and super
Kac-Moody generators can be identified as Noether charges in standard manner.

2. A long-standing problem of quantum TGD was that stringy propagator 1/G does not make
sense if G carries fermion number. The progress in the understanding of second quantization
of the modified Dirac operator made it however possible to identify the counterpart of G as
a c-number valued operator and interpret it as different representation of G [K2].

3. The notion of super-space is not needed at all since Hamiltonians rather than vector fields
represent bosonic generators, no super-variant of geometry is needed. The distinction be-
tween Ramond and N-S representations important for N = 1 super-conformal symmetry and
allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2 super-conformal
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symmetry it is already possible to generate spectral flow transforming these Ramond and
N-S representations to each other (Gn is not Hermitian anymore).

4. If Kähler action defines the Kähler-Dirac operator, the number of spinor modes could be
finite. One must be here somewhat cautious since bound state in the Coulomb potential
associated with electric part of induced electro-weak gauge field might give rise to an infinite
number of bound states which eigenvalues converging to a fixed eigenvalue (as in the case of
hydrogen atom). Finite number of generalized eigenmodes means that the representations
of super-conformal algebras reduces to finite-dimensional ones in TGD framework. Also the
notion of number theoretic braid indeed implies this. The physical interpretation would be in
terms of finite measurement resolution. If Kähler action is complexified to include imaginary
part defined by CP breaking instanton term, the number of stringy mass square eigenvalues
assignable to the spinor modes becomes infinite since conformal excitations are possible. This
means breakdown of exact holography and effective 2-dimensionality of 3-surfaces. It seems
that the inclusion of instanton term is necessary for several reasons. The notion of finite
measurement resolution forces conformal cutoff also now. There are arguments suggesting
that only the modes with vanishing conformal weight contribute to the Dirac determinant
defining vacuum functional identified as exponent of Kähler function in turn identified as
Kähler action for its preferred extremal.

5. What makes spinor field mode a generator of gauge super-symmetry is that is c-number and
not an eigenmode of DK(X2) and thus represents non-dynamical degrees of freedom. If the
number of eigen modes of DK(X2) is indeed finite means that most of spinor field modes
represent super gauge degrees of freedom.

2.7.2 The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro rep-
resentations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason is that
WCW gamma matrices possess a well defined fermion number. The hermiticity of the WCW
gamma matrices Γ and of the Super Virasoro current G could be achieved by posing Majorana
conditions on the second quantized H-spinors. Majorana conditions can be however realized only
for space-time dimension D mod 8 = 2 so that super string type approach does not work in TGD
context. This kind of conditions would also lead to the non-conservation of baryon and lepton
numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the gen-
eral situation corresponds to super symmetric operators S, S†, whose anti-commutator is Hamil-
tonian: {S, S†} = H. One can define a simpler system by considering a Hermitian operator
S0 = S + S† satisfying S2

0 = H: this relation is completely analogous to the ordinary Super Vi-
rasoro relation GG = L. On basis of this observation it is clear that one should replace ordinary
Super Virasoro structure GG = L with GG† = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard
physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the doubling
of super generators and super generators carry U(1) charge having an interpretation as fermion
number in recent context. The so called short representations of N = 2 super-symmetry algebra
can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix Γn, n > 0 corresponds to an operator creating fermion whereas Γn, n < 0
annihilates anti-fermion. For the Hermitian conjugate Γ†n the roles of fermion and anti-fermion are
interchanged. Only the anti-commutators of gamma matrices and their Hermitian conjugates are
non-vanishing. The dynamical Kac Moody type generators are Hermitian and are constructed as
bilinears of the gamma matrices and their Hermitian conjugates and, just like conserved currents
of the ordinary quantum theory, contain parts proportional to a†a, b†b, a†b† and ab (a and b
refer to fermionic and anti-fermionic oscillator operators). The commutators between Kac Moody
generators and Kac Moody generators and gamma matrices remain as such.

For a given value of m Gn, n > 0 creates fermions whereas Gn, n < 0 annihilates anti-fermions.
Analogous result holds for G†n. Virasoro generators remain Hermitian and decompose just like Kac
Moody generators do. Thus the usual anti-commutation relations for the super Virasoro generators
must be replaced with anti-commutations between Gm and G†n and one has
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{Gm, G†n} = 2Lm+n + c
3 (m2 − 1

4 )δm,−n ,
{Gm, Gn} = 0 ,
{G†m, G†n} = 0 .

(2.2)

The commutators of type [Lm, Ln] are not changed. Same applies to the purely kinematical
commutators between Ln and Gm/G†m.

The Super Virasoro conditions satisfied by the physical states are as before in case of Ln whereas
the conditions for Gn are doubled to those of Gn, n < 0 and G†n, n > 0.

2.7.3 What could be the counterparts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the
complex coordinates of X2 as a candidate for conformal super-symmetries. One can imagine two
counterparts of the stringy coordinate z in TGD framework.

1. Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the sense
that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather than being

completely free [K4]. Thus the real variable J replaces complex (or hyper-complex) stringy
coordinate and effective 1-dimensionality holds true also now but in different sense than for
conformal field theories.

2. The slicing of X4 by string world sheets Y 2 and partonic 2-surfaces X2 implied by number
theoretical compactification implies string-parton duality and involves the super conformal
fermionic gauge symmetries associated with the coordinates u and w in the dual dimensional
reductions to stringy and partonic dynamics. These coordinates define the natural analogs of
stringy coordinate. The effective reduction of X3

l to braid by finite measurement resolution
implies the effective reduction of X4(X3) to string world sheet. This implies quite strong
resemblance with string model. The realization that spinor modes with well- define em
charge must be localized at string world sheets makes the connection with strings even more
explicit [K13].

One can understand how Equivalence Principle emerges in TGD framework at space-time
level when many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/manysheeted.
jpg or Fig. 9 in the appendix of this book) is replaced with effective space-time lumping to-
gether the space-time sheets to M4 endowed with effective metric. The quantum counterpart
EP has most feasible interpretation in terms of Quantum Classical Correspondence (QCC):
the conserved Kähler four-momentum equals to an eigenvalue of conserved Kähler-Dirac
four-momentum acting as operator.

3. The conformal fields of string model would reside at X2 or Y 2 depending on which description
one uses and complex (hyper-complex) string coordinate would be identified accordingly. Y 2

could be fixed as a union of stringy world sheets having the strands of number theoretic braids
as its ends. The proposed definition of braids is unique and characterizes finite measurement
resolution at space-time level. X2 could be fixed uniquely as the intersection of X3

l (the
light-like 3-surface at which induced metric of space-time surface changes its signature) with
δM4
± × CP2. Clearly, wormhole throats X3

l would take the role of branes and would be
connected by string world sheets defined by number theoretic braids.

4. An alternative identification for TGD parts of conformal fields is inspired by M8−H duality.
Conformal fields would be fields in WCW . The counterpart of z coordinate could be the
hyper-octonionic M8 coordinate m appearing as argument in the Laurent series of WCW
Clifford algebra elements. m would characterize the position of the tip of CD and the fractal
hierarchy of CDs within CDs would give a hierarchy of Clifford algebras and thus inclusions
of hyper-finite factors of type II1. Reduction to hyper-quaternionic field -that is field in M4

center of mass degrees of freedom- would be needed to obtained associativity. The arguments
m at various level might correspond to arguments of N-point function in quantum field theory.

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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3 WCW As A Union Of Homogenous Or Symmetric Spaces

The physical interpretation and detailed mathematical understanding of super-conformal sym-
metries has developed rather slowly and has involved several side tracks. In the following I try
to summarize the basic picture with minimal amount of formulas with the understanding that
the statement “Noether charge associated with geometrically realized Kac-Moody symmetry” is
enough for the reader to write down the needed formula explicitly. Formula oriented reader might
deny the value of the approach giving weight to principles. My personal experience is that piles of
formulas too often hide the lack of real understanding.

In the following the vision about WCW as union of coset spaces is discussed in more detail.

3.1 Basic Vision

The basic view about coset space construction for WCW has not changed.

1. The idea about WCW as a union of coset spaces G/H labelled by zero modes is extremely at-
tractive. The structure of homogenous space [A1] (http://tinyurl.com/y7u2t8jo ) means
at Lie algebra level the decomposition g = h⊕t to sub-Lie-algebra h and its complement t such
that [h, t] ⊂ t holds true. Homogeneous spaces have G as its isometries. For symmetric space
the additional condition [t, t] ⊂ h holds true and implies the existence of involution changing
at the Lie algebra level the sign of elements of t and leaving the elements of h invariant. The
assumption about the structure of symmetric space [A2] (http://tinyurl.com/ycouv7uh )
implying covariantly constant curvature tensor is attractive in infinite-dimensional case since
it gives hopes about calculability.

An important source of intuition is the analogy with the construction of CP2, which is sym-
metric space A particular choice of h corresponds to Lie-algebra elements realized as Killing
vector fields which vanish at particular point of WCW and thus leave 3-surface invariant.
A preferred choice for this point is as maximum or minimum of Kähler function. For this
3-surface the Hamiltonians of h should be stationary. If symmetric space property holds
true then commutators of [t, t] also vanish at the minimum/maximum. Note that Euclidian
signature for the metric of WCW requires that Kähler function can have only maximum or
minimum for given zero modes.

2. The basic objection against TGD is that one cannot use the powerful canonical quantization
using the phase space associated with configuration space - now WCW . The reason is the
extreme non-linearity of the Kähler action and its huge vacuum degeneracy, which do not
allow the construction of Hamiltonian formalism. Symplectic and Kähler structure must be
realized at the level of WCW . In particular, Hamiltonians must be represented in completely
new manner. The key idea is to construct WCW Hamiltonians as anti-commutators of super-
Hamiltonians defining the contractions of WCW gamma matrices with corresponding Killing
vector fields and therefore defining the matrix elements of WCW metric in the tangent
vector basis defined by Killing vector fields. Super-symmetry therefre gives hopes about
constructing quantum theory in which only induced spinor fields are second quantized and
embedding space coordinates are treated purely classically.

3. It is important to understand the difference between symmetries and isometries assigned to
the Kähler function. Symmetries of Kähler function do not affect it. The symmetries of
Kähler action are also symmetries of Kähler action because Kähler function is Kähler action
for a preferred extremal (here there have been a lot of confusion). Isometries leave invariant
only the quadratic form defined by Kähler metric gMN = ∂M∂LK but not Kähler function
in general. For G/H decomposition G represents isometries and H both isometries and
symmetries of Kähler function.

CP2 is familiar example: SU(3) represents isometries and U(2) leaves also Kähler function
invariant since it depends on the U(2) invariant radial coordinate r of CP2. The origin r = 0
is left invariant by U(2) but for r > 0 U(2) performs a rotation at r = constant 3-sphere.
This simple picture helps to understand what happens at the level of WCW .

http://tinyurl.com/y7u2t8jo
http://tinyurl.com/ycouv7uh
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How to then distinguish between symmetries and isometries? A natural guess is that one
obtains also for the isometries Noether charges but the vanishing of boundary terms at spa-
tial infinity crucial in the argument leading to Noether theorem as ∆S = ∆Q = 0 does not
hold true anymore and one obtains charges which are not conserved anymore. The symme-
try breaking contributions would now come from effective boundaries defined by wormhole
throats at which the induce metric changes its signature from Minkowskian to Euclidian. A
more delicate situation is in which first order contribution to ∆S vanishes and therefore also
∆Q and the contribution to ∆S comes from second variation allowing also to define Noether
charge which is not conserved.

4. The simple picture about CP2 as symmetric space helps to understand the general vision if
one assumes that WCW has the structure of symmetric space. The decomposition g = h+ t
corresponds to decomposition of symplectic deformations to those which vanish at 3-surface
(h) and those which do not (t).

For the symmetric space option, the Poisson brackets for super generators associated with t
give Hamiltonians of h identifiable as the matrix elements of WCW metric. They would not
vanish although they are stationary at 3-surface meaning that Riemann connection vanishes
at 3-surface. The Hamiltonians which vanish at 3-surface X3 would correspond to t and
the Hamiltonians for which Killing vectors vanish and which therefore are stationary at X3

would correspond to h. Outside X3 the situation would of course be different. The metric
would be obtained by parallel translating the metric from the preferred point of WCW to
elsewhere and symplectic transformations would make this parallel translation.

For the homogenous space option the Poisson brackets for super generators of t would still
give Hamiltonians identifiable as matrix elements of WCW metric but now they would be
necessary those of h. In particular, the Hamiltonians of t do not in general vanish at X3.

3.2 Equivalence Principle And WCW

3.3 Equivakence Principle At Quantum And Classical Level

Quite recently I returned to an old question concerning the meaning of Equivalence Principle (EP)
in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not is a pseudo
problem due to uncritical assumption there really are two different four-momenta which must be
identified. If even the identification of these two different momenta is difficult, the pondering of
this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by graviton exchange
are proportional to the product of four-momenta of particles and that the proportionality constant
does not depend on any other parameters characterizing particle (except spin). The are excellent
reasons to expect that the stringy picture for interactions predicts this.

1. The old idea is that EP reduces to the coset construction for Super Virasoro algebra using
the algebras associated with G and H. The four-momenta assignable to these algebras would
be identical from the condition that the differences of the generators annihilate physical
states and identifiable as inertial and gravitational momenta. The objection is that for the
preferred 3-surface H by definition acts trivially so that time-like translations leading out
from the boundary of CD cannot be contained by H unlike G. Hence four-momentum is
not associated with the Super-Virasoro representations assignable to H and the idea about
assigning EP to coset representations does not look promising.

2. Another possibility is that EP corresponds to quantum classical correspondence (QCC) stat-
ing that the classical momentum assignable to Kähler action is identical with gravitational
momentum assignable to Super Virasoro representations. This forced to reconsider the ques-
tions about the precise identification of the Kac-Moody algebra and about how to obtain the
magic five tensor factors required by p-adic mass calculations [K12].

A more precise formulation for EP as QCC comes from the observation that one indeed
obtains two four-momenta in TGD approach. The classical four-momentum assignable to
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the Kähler action and that assignable to the Kähler-Dirac action. This four-momentum is an
operator and QCC would state that given eigenvalue of this operator must be equal to the
value of classical four-momentum for the space-time surfaces assignable to the zero energy
state in question. In this form EP would be highly non-trivial. It would be justified by the
Abelian character of four-momentum so that all momentum components are well-defined also
quantum mechanically. One can also consider the splitting of four-momentum to longitudinal
and transversal parts as done in the parton model for hadrons: this kind of splitting would
be very natural at the boundary of CD. The objection is that this correspondence is nothing
more than QCC.

3. A further possibility is that duality of light-like 3-surfaces and space-like 3-surfaces holds true.
This is the case if the action of symplectic algebra can be defined at light-like 3-surfaces or
even for the entire space-time surfaces. This could be achieved by parallel translation of
light-cone boundary providing slicing of CD. The four-momenta associated with the two rep-
resentations of super-symplectic algebra would be naturally identical and the interpretation
would be in terms of EP.

One should also understand how General Relativity and EP emerge at classical level. The un-
derstanding comes from the realization that GRT is only an effective theory obtained by endowing
M4 with effective metric.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets.

2. This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would correspond
to that of General Relativity. This resolves long standing issues relating to the interpretation
of TGD.

3. Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for the
effective metric. The conjecture vanishing of divergence of Kähler energy momentum tensor
can be seen as the microscopic justification for the claim that Einstein’s equations hold true
for the effective space-time.

4. The breaking of Poincare invariance could have interpretation as effective breaking in zero
energy ontology (ZEO), in which various conserved charges are length dependent and defined
separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of QCC
rather than realise QCC interpreted as EP. The condition that the energy momentum tensor for
Kähler action has vanishing covariant divergence would be satisfied in GRT if Einstein’s equations
with cosmological term hold true. This is the case also now but one can consider also more general
solutions in which one has two cosmological constants which are not genuine constants anymore:
this idea is however not promising.

An interesting question is whether inertial-gravitational duality generalizes to the case of color
gauge charges so that color gauge fluxes would correspond to “gravitational” color charges and the
charges defined by the conserved currents associated with color isometries would define “inertial”
color charges. Since the induced color fields are proportional to color Hamiltonians multiplied by
Kähler form they vanish identically for vacuum extremals in accordance with “gravitational” color
confinement.

3.4 Criticism Of The Earlier Construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be criticized.
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1. Even after these more than twenty years it looks strange that the Hamiltonians should reduce
to flux integrals over partonic 2-surfaces. The interpretation has been in terms of effective
2-dimensionality suggested strongly by strong form of general coordinate invariance stating
that the descriptions based on light-like orbits of partonic 2-surfaces and space-like three
surfaces at the ends of causal diamonds are dual so that only partonic 2-surfaces and 4-
D tangent space data at them would matter. Strong form of holography implies effective
2-dimensionality but this should correspond gauge character for the action of symplectic
generators in the interior the space-like 3-surfaces at the ends of CDs, which is something
much milder.

One expects that the strings connecting partonic 2-surfaces could bring something new to
the earlier simplistic picture. The guess is that embedding space Hamiltonian assignable
to a point of partonic 2-surface should be replaced with that defined as integral over string
attached to the point. Therefore the earlier picture would suffer no modification at the level
of general formulas.

2. The fact that the dynamics of Kähler action and Kähler-Dirac action are not directly in-
volved with the earlier construction raises suspicions. I have proposed that Kähler function
could allow identification as Dirac determinant [K13] but one would expect more intimate
connection. Here the natural question is whether super-Hamiltonians for the Kähler-Dirac
action could correspond to Kähler charges constructible using Noether’s theorem for cor-
responding deformations of the space-time surface and would also be identifiable as WCW
gamma matrices.

3.5 Is WCW Homogenous Or Symmetric Space?

A key question is whether WCW can be symmetric space [A2] (http://tinyurl.com/y8ojglkb
) or whether only homogenous structure is needed. The lack of covariant constancy of curvature
tensor might produce problems in infinite-dimensional context.

The algebraic conditions for symmetric space are g = h + t, [h, t] ⊂ t, [t, t] ⊂ h. The latter
condition is the difficult one.

1. δCD Hamiltonians should induce diffeomorphisms of X3 indeed leaving it invariant. The
symplectic vector fields would be parallel to X3. A stronger condition is that they induce
symplectic transformations for which all points of X3 remain invariant. Now symplectic
vector fields vanish at preferred 3-surface (note that the symplectic transformations are rM
local symplectic transformations of S2 × CP2).

2. For Kac-Moody algebra inclusion H ⊂ G for the finite-dimensional Lie-algebra induces the
structure of symmetric space. If entire algebra is involved this does not look physically very
attractive idea unless one believes on symmetry breaking for both SU(3), U(2)ew, and SO(3)
and E2 (here complex conjugation corresponds to the involution). If one assumes only Kac-
Moody algebra as critical symmetries, the number of tensor factors is 4 instead of five, and
it is not clear whether one can obtain consistency with p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of CP2. They could
correspond to intersections of deformations of CP2 type vacuum extremals with the boundary
of CD. Also geodesic spheres S2 of CP2 are invariant under U(2) subgroup and would relate
naturally to cosmic strings. The corresponding 3-surface would be L×S2, where L is a piece
of light-like radial geodesic.

3. In the case of symplectic algebra one can construct the embedding space Hamiltonians in-
ducing WCW Hamiltonians as products of elements of the isometry algebra of S2 ×CP2 for
with parity under involution is well-defined. This would give a decomposition of the sym-
plectic algebra satisfying the symmetric space property at the level embedding space. This
decomposition does not however look natural at the level of WCW since the only single point
of CP2 and light-like geodesic of δM4

+ can be fixed by SO(2) × U(2) so that the 3-surfaces
would reduce to pieces of light rays.

http://tinyurl.com/y8ojglkb


3.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks 20

4. A more promising involution is the inversion rM → 1/rM of the radial coordinate mapping
the radial conformal weights to their negatives. This corresponds to the inversion in Super
Virasoro algebra. t would correspond to functions which are odd functions of u ≡ log(rM/r0)
and h to even function of u. Stationary 3-surfaces would correspond to u = 1 surfaces for
which log(u) = 0 holds true. This would assign criticality with Virasoro algebra as one
expects on general grounds.

rM = constant surface would most naturally correspond to a maximum of Kähler function
which could indeed be highly symmetric. The elements with even u-parity should define
Hamiltonians, which are stationary at the maximum of Kähler function. For other 3-surfaces
obtained by /rM -local) symplectic transformations the situation is different: now H is re-
placed with its symplectic conjugate hHg−1 of H is acceptable and if the conjecture is true
one would obtained 3-surfaces assignable to perturbation theory around given maximum as
symplectic conjugates of the maximum. The condition that H leaves X3 invariant in poin-
twise manner is certainly too strong and imply that the 3-surface has single point as CP2

projection.

5. One can also consider the possibility that critical deformations correspond to h and non-
critical ones to t for the preferred 3-surface. Criticality for given h would hold only for
a preferred 3-surface so that this picture would be very similar that above. Symplectic
conjugates of h would define criticality for other 3-surfaces. WCW would decompose to
a union corresponding to different criticalities perhaps assignable to the hierarchy of sub-
algebras of conformal algebra labelled by integer whose multiples give the allowed conformal
weights. Hierarchy of breakings of conformal symmetries would characterize this hierarchy
of sectors of WCW .

For sub-algebras of the conformal algebras (Kac-Moody and symplectic algebra) the condition
[t, t] ⊂ h cannot hold true so that one would obtain only the structure of homogenous space.

3.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks

3.7 WCW As A Union Of Symmetric Spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. The hope is that same
holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition
C(H) = ∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G
and H depend on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all
orbits. What is essential is that these groups are infinite-dimensional. The basic properties of the
coset space decomposition give very strong constraints on the group H, which certainly contains
the subgroup of G, whose action reduces to diffeomorphisms of X3.

If G is symplectic group of δM4
± × CP2 then H is its subgroup, and one can wonder whether

this is really consistent with the identification of H as Kac-Moody algebra assignable to light-like
3-surfaces. This raises the possibility that SKM acts as pure gauge symmetries and has nothing
to do with the coset decomposition.

The improved understanding of solutions of the Kähler-Dirac equation [K13] also leads to the
realization that the direct sum of super-symplectic algebra and isometry algebra is more natural
spectrum generating algebra. For super-symplectic algebra super-generators are represented in
terms of contractions of covariantly constant right-handed neutrino mode with second quantized
spinor field. For isometry sub-algebra super generators have representation in terms of contractions
of modes of induced spinor field localized at string world sheets is a more natural identification
of the fundamental conformal algebra and gives five tensor factors as required by p-adic mass
calculations.

3.7.1 Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability
of the theory are enormous since it suffices to find metric and curvature tensor for single repre-
sentative 3-surface on a given orbit (contravariant form of metric gives propagator in perturbative
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calculation of matrix elements as functional integrals over the WCW ). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero
mode structure of the WCW . Almost twenty (seven according to long held belief!) years after the
discovery of the candidate for the Kähler function defining the metric, it became finally clear that
these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transforma-
tions of δM4

± × CP2 leaving the induced Kähler form invariant. If G acts as isometries the values
of Kähler form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and
WCW allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctu-
ations of the induced metric. The group H dividing G would in turn correspond to the symplectic
isometries reducing to diffeomorphisms at the 3-surfaces or possibly at partonic 2-surfaces only.

H could but not not need to corresponds to the Kac-Moody symmetries respecting light-likeness
of X3

l and acting in X3
l but trivially at the partonic 2-surface X2. The action of course extends

also to the interior of space-like 3-surface X3 at the boundary of CD. This coset structure was
originally suggested via coset construction for super Virasoro algebras of super-symplectic and
super Kac-Moody algebras.

3.7.2 WCW isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some
subgroup of for the group G for the diffeomorphisms of δM4

+×CP2. These diffeomorphisms indeed
act in a natural manner in δCH, the space of 3-surfaces in δM4

+ × CP2. WCW is expected to
decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the
vector fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend
on the topology of X3 and since G does not change the topology of 3-surface each 3-topology
defines separate orbit of G. Therefore, the union involves sum over all on topologies of X3 plus
possibly other “zero modes”. Different topologies are naturally glued together since singular 3-
surfaces intermediate between two 3-topologies correspond to points common to the two sectors
with different topologies.

3.8 Isometries Of WCW Geometry As SymplecticTransformations Of
∆M4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of WCW as
the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write the general
decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (3.1)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light
cone diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with
respect to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the
theory should be more or less equivalent with topological field theory in this case. Consider now
the various candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical

symmetries of the vacuum extremals suggests the possibility that the diffeomorphisms of the
light cone boundary and symplectic transformations of CP2 could leave Kähler function in-
variant and thus correspond to zero modes. The symplectic transformations of CP2 localized
with respect to light cone boundary acting as symplectic transformations of CP2 have inter-
pretation as local color transformations and are a good candidate for the isometries. The
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fact that local color transformations are not even approximate symmetries of Kähler action
is not a problem: if they were exact symmetries, Kähler function would be invariant and zero
modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+.

Besides this there is a huge group of the symplectic symmetries of δM4
+ × CP2 if light

cone boundary is provided with the symplectic structure. Both groups must be considered as
candidates for groups of isometries. δM4

+×CP2 option exploits fully the special properties of
δM4

+×CP2, and one can develop simple argument demonstrating that δM4
+×CP2 symplectic

invariance is the correct option. Also the construction of WCW gamma matrices as super-
symplectic charges supports δM4

+ × CP2 option.

3.9 SUSY Algebra Defined By The Anti-Commutation Relations Of
Fermionic Oscillator Operators And WCW Local Clifford Algebra
Elements As Chiral Super-Fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majorana
spinors appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric stan-
dard model (MSSM). Majorana-Weyl spinors appear in M-theory and super string models. An
undesirable consequence is chiral anomaly in the case that the numbers of left and right handed
spinors are not same. For D = 11 and D = 10 these anomalies cancel which led to the breakthrough
of string models and later to M-theory. The probable reason for considering these dimensions is
that standard model does not predict right-handed neutrino (although neutrino mass suggests that
right handed neutrino exists) so that the numbers of left and right handed Weyl-spinors are not
the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino spinor
acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-defined
sense disappears from the spectrum as a zero mode so that the number of right and left handed
chiralities in M4 × CP2 would not be same. For light-like 3-surfaces covariantly constant right-
handed neutrino does not however solve the counterpart of Dirac equation for a non-vanishing
four-momentum and color quantum numbers of the physical state. Therefore it does not disappear
from the spectrum anymore and one expects the same number of right and left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Majorana
spinors and also the the Minkowski signature of M4×CP2 makes them impossible. The conclusion
that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors are indeed
possible and if the number of right and left handed Weyl spinors is same super-symmetry is possible.
In 8-D context right and left-handed fermions correspond to quarks and leptons and since color
in TGD framework corresponds to CP2 partial waves rather than spin like quantum number, also
the numbers of quark and lepton-like spinors are same.

The physical picture suggest a new kind of approach to super-symmetry in the sense that
the anti-commutations of fermionic oscillator operators associated with the modes of the induced
spinor fields define a structure analogous to SUSY algebra. This means that N = 2N SUSY with
large N is in question allowing spins higher than two and also large fermion numbers. Recall
that N ≤ 32 is implied by the absence of spins higher than two and the number of real spinor
components is N = 32 also in TGD. The situation clearly differs from that encountered in super-
string models and SUSYs and the large value of N allows to expect very powerful constraints
on dynamics irrespective of the fact that SUSY is broken. Right handed neutrino modes define a
sub-algebra for which the SUSY is only slightly broken by the absence of weak interactions and one
could also consider a theory containing a large number of N = 2 super-multiplets corresponding
to the addition of right-handed neutrinos and antineutrinos at the wormhole throat.

Masslessness condition is essential for super-symmetry and at the fundamental level it could be
formulated in terms of Kähler-Dirac gamma matrices using octonionic representation and assuming
that they span local quaternionic sub-algebra at each point of the space-time sheet. SUSY algebra
has standard interpretation with respect to spin and isospin indices only at the partonic 2-surfaces
so that the basic algebra should be formulated at these surfaces. Effective 2-dimensionality would
require that partonic 2-surfaces can be taken to be ends of any light-like 3-surface Y 3

l in the slicing
of the region surrounding a given wormhole throat.
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3.9.1 Super-algebra associated with the Kähler-Dirac gamma matrices

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor
fields are naturally formulated in terms of the Kähler-Dirac gamma matrices. Super-conformal
symmetry suggests that the anti-commutation relations for the fermionic oscillator operators at
light-like 3-surfaces or at their ends are most naturally formulated as anti-commutation relations
for SUSY algebra. The resulting anti-commutation relations would fix the quantum TGD.

{a†nα, anβ} = DmnDαβ ,

D = (pµ +
∑
a

Qµa)σ̂µ . (3.2)

Here pµ andQµa are space-time projections of momentum and color charges in Cartan algebra. Their
action is purely algebraic. The anti-commutations are nothing but a generalization of the ordinary
equal-time anti-commutation relations for fermionic oscillator operators to a manifestly covariant
form. The matrix Dm,n is expected to reduce to a diagonal form with a proper normalization
of the oscillator operators. The experience with extended SUSY algebra suggest that the anti-
commutators could contain additional central term proportional to δαβ .

One can consider basically two different options concerning the definition of the super-algebra.

1. If the super-algebra is defined at the 3-D ends of the intersection of X4 with the boundaries
of CD, the modified gamma matrices appearing in the operator D appearing in the anti-
commutator are associated with Kähler action. If the generalized masslessness condition
D2 = 0 holds true -as suggested already earlier- one can hope that no explicit breaking of
super-symmetry takes place and elegant description of massive states as effectively massless
states making also possible generalization of twistor is possible. One must however notice
that also massive representatives of SUSY exist.

2. SUSY algebra could be also defined at 2-D ends of light-like 3-surfaces.

According to considerations of [K13] these options are equivalent for a large class of space-
time sheets. If the effective 3-dimensionality realized in the sense that the effective metric defined
by the Kähler-Dirac gamma matrices is degenerate, propagation takes place along 3-D light-like
3-surfaces. This condition definitely fails for string like objects.

One can realize the local Clifford algebra also by introducing theta parameters in the standard
manner and the expressing a collection of local Clifford algebra element with varying values of
fermion numbers (function of CD and CP2 coordinates) as a chiral super-field. The definition
of a chiral super field requires the introduction of super-covariant derivatives. Standard form for
the anti-commutators of super-covariant derivatives Dα make sense only if they do not affect the
Kähler-Dirac gamma matrices. This is achieved if pk acts on the position of the tip of CD (rather
than internal coordinates of the space-time sheet). Qa in turn must act on CP2 coordinates of the
tip.

3.9.2 Super-fields associated with WCW Clifford algebra

WCW local Clifford algebra elements possess definite fermion numbers and it is not physically sen-
sible to super-pose local Clifford algebra elements with different fermion numbers. The extremely
elegant formulation of super-symmetric theories in terms of super-fields encourages to ask whether
the local Clifford algebra elements could allow expansion in terms of complex theta parameters
assigned to various fermionic oscillator operator in order to obtain formal superposition of elements
with different fermion numbers. One can also ask whether the notion of chiral super field might
make sense.

The obvious question is whether it makes sense to assign super-fields with the Kähler-Dirac
gamma matrices.

1. Kähler-Dirac gamma matrices are not covariantly constant but this is not a problem since
the action of momentum generators and color generators on space-time coordinates is purely
algebraic.
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2. One can define the notion of chiral super-field also at the fundamental level. Chiral super-field
would be continuation of the local Clifford algebra of associated with CD to a local Clifford
algebra element associated with the union of CDs. This would allow elegant description of
cm degrees of freedom, which are the most interesting as far as QFT limit is considered.

3. Kähler function of WCW as a function of complex coordinates could be extended to a chiral
super-field defined in quantum fluctuation degrees of freedom. It would depend on zero
modes too. Does also the latter dependence allow super-space continuation? Coefficients
of powers of theta would correspond to fermionic oscillator operators. Does this function
define the propagators of various states associated with light-like 3-surface? WCW complex
coordinates would correspond to the modes of induced spinor field so that super-symmetry
would be realized very concretely.

3.10 Identification Of Kac-Moody Symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-
surfaces plays a crucial role in the identification of quantum fluctuating WCW degrees of freedom
contributing to the metric. The recent vision looks like follows.

1. The recent interpretation is that these symmetries are due to the non-determinism of Kähler
action and transform to each other preferred extremals with same space-like surfaces as their
ends at the boundaries of causal diamond. These space-time surfaces have same Kähler
action and possess same conserved quantities.

2. The sub-algebra of conformal symmetries acts as gauge transformations of these infinite set
of degenerate preferred extremals and there is finite number n of gauge equivalence classes.
n corresponds to the effective (or real depending on interpretation) value of Planck constant
heff = n× h. The further conjecture is that the sub-algebra of conformal algebra for which
conformal weights are integers divisible by n act as genuine gauge symmetries. If Kähler
action reduces to a sum of 3-D Chern-Simons terms for preferred extremals, it is enough
to consider the action on light-like 3-surfaces. For gauge part of algebra the algebra acts
trivially at space-like 3-surfaces.

3. A good guess is that the Kac-Moody type algebra corresponds to the sub-algebra of sym-
plectic isometries of δM4

± × CP2 acting on light-like 3-surfaces and having continuation to
the interior.

A stronger assumption is that isometries are in question. For CP2 nothing would change
but light-cone boundary δM4

± = S2×R+ has conformal transformations of S2 as isometries.
The conformal scaling is compensated by S2-local scaling of the light like radial coordinate
of R+.

4. This super-conformal algebra realized in terms of spinor modes and second quantized induced
spinor fields would define the Super Kac-Moody algebra. The generators of this Kac-Moody
type algebra have continuation from the light-like boundaries to deformations of preferred
extremals and at least the generators of sub-algebra act trivially at space-like 3-surfaces.

The following is an attempt to achieve a more detailed identification of the Kac-Moody algebra
is considered.

3.10.1 Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0

invariant. This gives the condition

δgαβCof(gαβ) = 0 , (3.3)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ+ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric
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δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (3.4)

3.10.2 Ansatz as an X3-local conformal transformation of embedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the embedding space
generated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (3.5)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (3.6)

If an X3-local variant of a conformal transformation of the embedding space is in question, the
first term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (3.7)

The transformations in question includes conformal transformations of H± and isometries of the
embedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (3.8)

3.10.3 A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations.
In order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the
metric in this form is plausible since generic 3-manifold allows coordinates in which the metric is
diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (3.9)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results.
If cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (3.10)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart

for the condition that Kac-Moody algebra acts in the transversal degrees of freedom only.
The condition also states that the components gri is not changed in the infinitesimal trans-
formation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.
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2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (3.11)

The equation states that gri are not affected by the symmetry. The radial dependence of
ξi is fixed by this differential equation. No condition on ξr results. These conditions imply
that the local gauge transformations are dynamical with the light-like radial coordinate r
playing the role of the time variable. One should be able to fix the transformation more or
less arbitrarily at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (3.12)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with
r appearing as a parameter. Note however that the derivatives of ξr do not appear in
the equation. At least formally equations are not over-determined so that solutions should
exist for arbitrary choices of cA as functions of X3 coordinates satisfying the orthogonality
conditions. If this is the case, the Kac-Moody algebra can be regarded as a local algebra in
X3 subject to the orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA
except the one associated with time translation and fixed by the orthogonality condition
depends on the radial coordinate r only. The larger algebra decomposes into a direct sum of
representations of this algebra.

3.10.4 Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric
via the orthogonality condition. What this means that jA,k in principle acts also to φB in the
commutator [cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (3.13)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal
transformation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of
the induced metric are unchanged in the transformation so that the condition for cA resulting
from grr component of the metric is not affected. Also the conditions coming from gir = 0
remain unchanged. Therefore the commutation relations of local algebra apart from constraint
from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The
orthogonality to the light-like tangent vector creates here a problem since the commutator does
not obviously satisfy this condition automatically. The problem can be solved by following the
recipes of non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved from
the orthogonality condition. This assumption is analogous with the assumption that time
coordinate is non-dynamical in the quantization of strings. The natural basis for the algebra
is obtained by allowing only a single generator JA besides P 0 and putting dA = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the
JA 6= P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent
with commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz
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vector property of P k it is clear that the commutators resulting in a repeated commutation
have well-defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting
with P 0. Also D could be allowed without losing well-defined radial conformal weights but
the argument below excludes it. This picture conforms with the earlier identification of the
Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mu-
tually commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving
added generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(3.14)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators
of SO(3) (but not with D so that it is excluded!), one can define the commutator of two
generators as a commutator of the remaining part and identify Ψ(P 0) from the condition
above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but
the interpretation would be that the sub-algebra plays the same role as SO(3) in the case of
Lorentz group: that is gives rise to generalized spin degrees of freedom whereas the entire
algebra divided by this sub-algebra would define the coset space playing the role of orbital
degrees of freedom. In fact, also the Kac-Moody type symmetries for which cA depends
on the transversal coordinates of X3 would correspond to orbital degrees of freedom. The
presence of these orbital degrees of freedom arranging super Kac-Moody representations into
infinite multiplets labeled by function basis for X2 means that the number of degrees of
freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinatem0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip
of δM4

±. Thus it would be natural to assume that the preferred M4 coordinate varies along
this light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal
weights would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of
S2
± along this ray defining also SO(2) rotation axis.

3.10.5 Hamiltonians

The action of these transformations on Kähler action is well-defined and one can deduce the
conserved quantities having identification as WCW Hamiltonians. Hamiltonians also correspond
to closed 2-forms. The condition that the Hamiltonian reduces to a dual of closed 2-form is satisfied
because X2-local conformal transformations of M4

± × CP2 are in question (X2-locality does not
imply any additional conditions).

3.10.6 The action of Kac-Moody algebra on spinors and fermionic representations
of Kac-Moody algebra

One can imagine two interpretations for the action of generalized Kac-Moody transformations on
spinors.
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1. The basic goal is to deduce the fermionic Noether charge associated with the bosonic Kac-
Moody symmetry and this can be done by a standard recipe. The first contribution to
the charge comes from the transformation of Kähler-Dirac gamma matrices appearing in
the Kähler-Dirac action associated with fermions. Second contribution comes from spinor
rotation.

2. Both SO(3) and SU(3) rotations have a standard action as spin rotation and electro-weak
rotation allowing to define the action of the Kac-Moody algebra JA on spinors.

3.10.7 How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a symplectic extension
which can emerge from the freedom to add a constant term to Hamiltonians as in the case of
super-symplectic algebra. The expression of the Hamiltonians as closed forms could allow to
understand how the central extension term emerges.

In principle one can construct a representation for the action of Kac-Moody algebra on fermions
a representations as a fermionic bilinear and the central extension of Kac-Moody algebra could
emerge in this construction just as it appears in Sugawara construction.

3.10.8 About the interpretation of super Kac-Moody symmetries

Also the light like 3-surfaces X3
l of H defining elementary particle horizons at which Minkowskian

signature of the metric is changed to Euclidian and boundaries of space-time sheets can act as
causal determinants, and thus contribute to WCW metric. In this case the symmetries correspond
to the isometries of the embedding space localized with respect to the complex coordinate of the
2-surface X2 determining the light like 3-surface X3

l so that Kac-Moody type symmetry results.
Also the condition

√
g3 = 0 for the determinant of the induced metric seems to define a conformal

symmetry associated with the light like direction.
If is enough to localize only the H-isometries with respect to X3

l , the purely bosonic part of
the Kac-Moody algebra corresponds to the isometry group M4 × SO(3, 1)× SU(3). The physical
interpretation of these symmetries is not so obvious as one might think. The point is that one
can generalize the formulas characterizing the action of infinitesimal isometries on spinor fields
of finite-dimensional Kähler manifold to the level of the configuration space. This gives rise to
bosonic generators containing also a sigma-matrix term bilinear in fermionic oscillator operators.
This representation need not be equivalent with the purely fermionic representations provided by
induced Dirac action. Thus one has two groups of local color charges and the challenge is to find
a physical interpretation for them.

The following arguments support one possible identification.

1. The hint comes from the fact that U(2) in the decomposition CP2 = SU(3)/U(2) corresponds
in a well-defined sense electro-weak algebra identified as a holonomy algebra of the spinor
connection. Hence one could argue that the U(2) generators of either SU(3) algebra might
be identifiable as generators of local U(2)ew gauge transformations whereas non-diagonal
generators would correspond to Higgs field. This interpretation would conform with the idea
that Higgs field is a genuine scalar field rather than a composite of fermions.

2. Since X3
l -local SU(3) transformations represented by fermionic currents are characterized

by central extension they would naturally correspond to the electro-weak gauge algebra and
Higgs bosons. This is also consistent with the fact that both leptons and quarks define
fermionic Kac Moody currents.

3. The fact that only quarks appear in the gamma matrices of the WCW supports the view that
action of the generators of X3

l -local color transformations on WCW spinor fields represents
local color transformations. If the action of X3

l -local SU(3) transformations on WCW spinor
fields has trivial central extension term the identification as a representation of local color
symmetries is possible.

The topological explanation of the family replication phenomenon is based on an assignment
of 2-dimensional boundary to a 3-surface characterizing the elementary particle. The precise
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identification of this surface has remained open and one possibility is that the 2-surface X2 defining
the light light-like surface associated with an elementary particle horizon is in question. This
assumption would conform with the notion of elementary particle vacuum functionals defined in
the zero modes characterizing different conformal equivalences classes for X2.

3.10.9 The relationship of the Super-Kac Moody symmetry to the standard super-
conformal invariance

Super-Kac Moody symmetry can be regarded as N = 4 complex super-symmetry with complex
H-spinor modes of H representing the 4 physical helicities of 8-component leptonic and quark
like spinors acting as generators of complex dynamical super-symmetries. The super-symmetries
generated by the covariantly constant right handed neutrino appear with both M4 helicities: it
however seems that covariantly constant neutrino does not generate any global super-symmetry in
the sense of particle-sparticle mass degeneracy. Only right-handed neutrino spinor modes (apart
from covariantly constant mode) appear in the expressions of WCW gamma matrices forming a
subalgebra of the full super-algebra.

N = 2 real super-conformal algebra is generated by the energy momentum tensor T (z), U(1)
current J(z), and super generators G±(z) carrying U(1) charge. Now U(1) current would corre-
spond to right-handed neutrino number and super generators would involve contraction of covari-
antly constant neutrino spinor with second quantized induced spinor field. The further facts that
N = 2 algebra is associated naturally with Kähler geometry, that the partition functions associated
with N = 2 super-conformal representations are modular invariant, and that N = 2 algebra defines
so called chiral ring defining a topological quantum field theory [A3], lend a further support for
the belief that N = 2 super-conformal algebra acts in super-symplectic degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (3.15)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k
Wess-Zumino model has the same value of c but different conformal weights. More information
about conformal algebras can be found from the appendix of [A3].

For Ramond representation L0 − c/24 or equivalently G0 must annihilate the massless states.
This occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be even and

that (k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the appearance
of a fractional vacuum fermion number qvac = ±c/12 = ±k/4(k+ 2). I have proposed that NS and
Ramond algebras could combine to a larger algebra containing also lepto-quark type generators
but this not necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4 complex sub-algebras
associated with quarks and leptons might further extend to a larger algebra if lepto-quark gener-
ators acting effectively as half odd-integer Virasoro generators can be allowed. The algebra would
contain spin and electro-weak spin as fermionic indices. Poincare and color Kac-Moody generators
would act as symplectically extended isometry generators on WCW Hamiltonians expressible in
terms of Hamiltonians of X3

l × CP2. Electro-weak and color Kac-Moody currents have conformal
weight h = 1 whereas T and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests that the extended
algebra requires the inclusion of also second quantized induced spinor fields with h = 1/2 and
their super-partners with h = 0 and realized as fermion-anti-fermion bilinears. Since G and Ψ
are labeled by 2 × 4 spinor indices, super-partners would correspond to 2 × (3 + 1) = 8 massless
electro-weak gauge boson states with polarization included. Their inclusion would make the theory
highly predictive since induced spinor and electro-weak fields are the fundamental fields in TGD.
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3.11 Coset Space Structure For WCW As A SymmetricSpace

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in
the WCW metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also that G acts as isometries of WCW . This
generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM± × CP2 and
Kac-Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next
section.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation
in terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody
algebra is

H =
∑

ΦA(x)HA . (3.16)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l × CP2. For symplectic algebra

any Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing

of the causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l ×CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal
weight. ∆ is identified as analogous quantum number labeling the modes of induced spinor
field.

3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decompo-

sition of M4 = M2(x)×E2(x) required by number theoretical compactification and present
for known extremals of Kähler action with Minkowskian signature of induced metric. In this
case SO(3) would be replaced with SO(2). It however seems that the radial light-like coor-
dinate u of X4(X3

l ) would remain the same since any other curve along light-like boundary
would be space-like.

4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (3.17)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of
the point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. WCW at X2 could be also regarded as the analog of
the origin of local S2×CP2. This interpretation is in accordance with the original idea which
however was given up in the lack of proper realization. The same picture can be deduced from
braiding in which case the Kac-Moody algebra corresponds to local SO(2) × U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in
the sense that the deformations of X3

l preserving its light-likeness do not affect the physics.
Note however that Kac-Moody type Virasoro generators do not annihilate physical states.



3.12 The Relationship Between Super-Symplectic And SuperKac-Moody Algebras,
Equivalence Principle, And Justification Of P-Adic Thermodynamics 31

5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of
course trivial since the action leaves each point invariant. The conditions of Cartan decom-
position are satisfied. The commutators of the Kac-Moody vector fields with symplectic
generators are non-vanishing since the action of symplectic generator on Kac-Moody gener-
ator restricted to X2 gives a non-vanishing result belonging to the symplectic algebra. Also
the commutators of Kac-Moody generators are Kac-Moody generators.

3.12 The Relationship Between Super-Symplectic And SuperKac-Moody
Algebras, Equivalence Principle, And Justification Of P-Adic Ther-
modynamics

The relationship between super-symplectic algebra (SS) acting at light-cone boundary and Super
Kac-Moody algebra (SKM) assumed to act on light-like 3-surfaces and by continuation of the
action also to the space-like 3-surfaces at the boundaries of CD has remained somewhat enigmatic
due to the lack of physical insights.

Corresponding to the coset decomposition G/H of WCW there is also the sub-algebra SD of
SS acting as diffeomorphisms of given 3-surface. This algebra acts as gauge algebra. It seems that
SKM and SD cannot be the same algebra.

The construction of WCW gamma matrices and study of the solutions of Kähler-Dirac equation
support strongly the conclusion that the construction of physical states involves the direct sum of
two algebras SS and SI. The super-generators of SS are realized using only covariantly constant
mode for the right-handed neutrino. The isometry sub-algebra SI is realized using all spinor
modes. The direct sum SS ⊕ SI has the 5 tensor factors required by p-adic mass calculations. SI
is Kac-Moody algebra and could be a natural identification for SKM . This forces to give up the
construction of coset representation for the Super-Virasoro algebras.

This is not the only problem. The question to precisely what extent Equivalence Principle (EP)
remains true in TGD framework and what might be the precise mathematical realization of EP
and to wait for an answer for rather long time. Also the justification of p-adic thermodynamics
for the scaling generator L0 of Virasoro algebra - in obvious conflict with the basic wisdom that
this generator should annihilate physical states - remained lacking.

One cannot still exclude the possibility that these three problems could have a common solution
in terms of an appropriate coset representation. Quantum variant of EP cannot not follow from
the coset representation for SS and SD. The coset representation of SS and SI = SKM could
however make sense and would be realized in the tensor product for the representations of SS and
SI and would have the five tensor factors. Physical states would correspond to those for the direct
sum SS ⊕ SI. Since SS ⊕ SI acts as a spectrum generating algebra rather than gauge algebras,
the condition that L0 annihilates the physical states is not necessary. The coset representation
would differ from the representation for SS ⊕ SI only that the states would be annihilated by the
differences of the SV generators rather than their sums.

3.12.1 New vision about the relationship between various algebras

Consider now the new vision about the relationship between SSV , its sub-algebra acting as dif-
feomorphisms of 3-surface and SKMV .

1. The isometries G of sub- WCW associted with given CD are symplectic transformations of
δCD×CP2 [K4] (note that I have used the attribute “canonical” instead of “symplectic” in
some contexts) reducing to diffeomorphisms at partonic 2-surfaces or at the entire 3-surfaces
at the boundaries of CD. H acts a symplectic subgroup acting as diffeomorphisms of X3 or
partonic 2-surfaces. It should annihilate physical states so that SD associated with H ⊂ G
is not interesting as far as coset representations are considered.

Only the sub-algebra SI associated with symplectic isometries can provide coset represen-
tation. The representation space would be generated by the action of SS ⊕ SI in terms of
fermionic oscillator operators and WCW isometry algebra. The same representation space al-
lows also the representation of sums of super generators so that one has two options. SS⊕SI
and SS − SI.
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2. Consider first the SS⊕SI option. In this case the number of tensor factors in Super-Virasoro
algebra is five as required by the p-adic mass calculations. Ln annihilated physical states but
there is no need for L0 to annihilate them since symplectic algebra is not gauge algebra.

3. Consider next the SS − SI obtain, the coset representation. A generalization of the coset
construction obtained by replacing finite-dimensional Lie group with infinite-dimensional
symplectic group suggests itself. The differences of Super-Virasor algebra elements for SS
and SI would annihilate physical states. Also the generators On, n > 0, for both algebras
would annihilate the physical states so that the differences of the elements would annihilate
automatically physical states for n > 0. For coset representation one could even require that
the difference of the scaling generators L0 annihilates the physical states.

The problem is however that the Super Virasoro algebra generators do note reduce to the
sums of generators assignable to SS and SI so that one does not obtain the five tensor
factors.

The coset representation motivated the proposal was that identical action of the Dirac op-
erators assignable to G and H in coset representation could provide the long sought-for precise
realization of Equivalence Principle (EP) in TGD framework. EP would state that the total in-
ertial four-momentum and color quantum numbers assignable to G are equal to the gravitational
four-momentum and color quantum numbers assignable to H. One can argue that since super-
symplectic transformations correspond to the isometries of the “world of classical worlds”, the
assignment of the attribute “inertial” to them is natural.

This interpretation is not feasible ifH corresponds acts as diffeomorphisms: the four-momentum
associated with SD most naturally vanishes since it represents diffeomorphisms. If H corresponds
to SI, one has the problem with the number of tensor factors. Therefore SS ⊕SI seems to be the
only working option.

A more feasible realization of EP quantum level is as Quantum Classical Correspondence (QCC)
stating that the conserved four-momentum associated with Kähler action equals to an eigenvalue
of the conserved Kähler-Dirac four-momentum having natural interpretation as gravitational four-
momentum due the fact that well-defined em charge for spinor modes forces them in the generic
case to string world sheets. At classical level EP follows at GRT limit obtained by lumping many-
sheeted space-time to M4 with effective metric satisfying Einstein’s equations as a reflection of the
underlying Poincare invariance.

3.12.2 Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and has been already
used as a constraint in attempts to understand the super-conformal symmetries in partonic level.

1. The hope was that for SS/SI coset representations the p-adic thermal expectation values of
the SS and SI conformal weights would be non-vanishing and identical and mass squared
could be identified equivalently either as the expectation value of SI or SS scaling generator
L0. There would be no need to give up Super Virasoro conditions for SS − SI.

2. There seems consistency with p-adic mass calculations for hadrons [K7] since the non-
perturbative SS contributions and perturbative SKM contributions to the mass correspond
to space-time sheets labeled by different p-adic primes. The earlier statement that SS is re-
sponsible for the dominating non-perturbative contributions to the hadron mass transforms
to a statement reflecting SS − SI duality. The perturbative quark contributions to hadron
masses can be calculated most conveniently by using p-adic thermodynamics for SI whereas
non-perturbative contributions to hadron masses can be calculated most conveniently by
using p-adic thermodynamics for SS. Also the proposal that the exotic analogs of baryons
resulting when baryon looses its valence quarks [K6] remains intact in this framework.

3. The results of p-adic mass calculations depend crucially on the number N of tensor factors
contributing to the Super-Virasoro algebra. The required number is N = 5 and during years
I have proposed several explanations for this number. This excldes the coset representation
SS/SI. SS ⊕ SI however survives. It indeed seems that holonomic contributions related
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to spinor modes other than covariantly constant right-handed neutrino- that is electro-weak
and spin contributions- must be regarded as contributions separate from those coming from
isometries. SKM algebras in electro-weak degrees and spin degrees of of freedom, would give
2+1=3 tensor factors corresponding to U(2)ew×SU(2). SU(3) and SO(3) (or SO(2) ⊂ SO(3)
leaving the intersection of light-like ray with S2 invariant) would give 2 additional tensor
factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

1. In positive energy ontology Lorentz invariance requires the interpretation of mass squared
as thermal expectation value of the conformal weight assignable to vibrational degrees of
freedom. In Zero Energy Ontology (ZEO) quantum theory can be formally regarded as a
square root of thermodynamics and it is possible to speak about thermal expectation value
of mass squared without losing Lorentz invariance since the zero energy state corresponds
to a square root of density matrix expressible as product of hermitian and unitary matrices.
This implies that one can speak about thermal expectation value of mass squared rather
than conformal weight. This might have some non-trivial experimental consequences since
the energies of states with the same free momentum contributing to the thermal expectation
value are different.

2. The coefficient of proportionality can be however deduced from the observation that the mass
squared values for CP2 Dirac operator correspond to definite values of conformal weight in
p-adic mass calculations. It is indeed possible to assign to partonic 2-surface X2 CP2 partial
waves correlating strongly with the net electro-weak quantum numbers of the parton so that
the assignment of ground state conformal weight to CP2 partial waves makes sense. The
identification of the spinor partial waves is in terms of ground states of super-conformal
representations.

3. In the case of M4 degrees of freedom it is strictly speaking not possible to talk about mo-
mentum eigen states since translations take parton out of δH+. This would suggests that
4-momentum must be assigned with the tip of the light-cone containing the particle but this
is not consistent with zero energy ontology. Hence it seems that one must restrict the trans-
lations of X3

l to time like translations in the direction of geometric future at δM4
+×CP2. The

decomposition of the partonic 3-surface X3
l to regions X3

l,i carrying non-vanishing induced

Kähler form and the possibility to assign M2(x) ⊂ M4 to the tangent space of X4(X3
l ) at

points of X3
l suggests that the points of number theoretic braid to which oscillator operators

can be assigned can carry four-momentum in the plane defined by M2(x). One could assume
that the four-momenta assigned with points in given region X3

i are collinear but even this
restriction is not necessary.

4. The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (3.18)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the
QCD based model of hadrons only longitudinal momenta and transverse momentum squared
are used as labels of parton states, which together with the presence of preferred plane M2

would suggest that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (3.19)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why

massive quarks can behave as nearly massless quarks inside hadrons.
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3.12.3 How it is possible to have negative conformal weights for ground states?

p-Adic mass calculations require negative conformal weights for ground states [K5]. The only
elegant solution of the problems caused by this requirement seems to be p-adic: the conformal
weights are positive in the real sense but as p-adic numbers their dominating part is negative
integer (in the real sense), which can be compensated by the conformal weights of Super Virasoro
generators.

1. If ±λ2
i as such corresponds to a ground state conformal weight and if λi is real the ground

state conformal weight positive in the real sense. In complex case (instanton term) the most
natural formula is h = ±|λ|2.

2. The first option is based on the understanding of conformal excitations in terms of CP
breaking instanton term added to the modified Dirac operator. In this case the conformal
weights are identified as h = n−|λk|2 and the minus sign comes from the Euclidian signature
of the effective metric for the Kähler-Dirac operator. Ground state conformal weight would
be non-vanishing for non-zero modes of D(X3

l ). Massless bosons produce difficulties unless
one has h = |λi(1)− λi(2)|2, where i = 1, 2 refers to the two wormhole throats. In this case
the difference can vanish and its non-vanishing would be due to the symmetric breaking.
This scenario is assumed in p-adic mass calculations. Fermions are predicted to be always
massive since zero modes of D(X2) represent super gauge degrees of freedom.

3. In the context of p-adic thermodynamics a loop hole opens allowing λi to be real. In spirit of
rational physics suppose that one has in natural units h = λ2

i = xp2 − n, where x is integer.
This number is positive and large in the real sense. In p-adic sense the dominating part of
this number is −n and can be compensated by the net conformal weight n of Super Virasoro
generators acting on the ground state. xp2 represents the small Higgs contribution to the
mass squared proportional to (xp2)R ' x/p2 (R refers to canonical identification ). By the
basic features of the canonical identification p > x ' p should hold true for gauge bosons
for which Higgs contribution dominates. For fermions x should be small since p-adic mass
calculations are consistent with the vanishing of Higgs contribution to the fermion mass. This
would lead to the earlier conclusion that xp2 and hence BK is large for bosons and small for
fermions and that the size of fermionic (bosonic) wormhole throat is large (small). This kind
of picture is consistent with the p-adic modular arithmetics and suggests by the cutoff for
conformal weights implied by the fact that both the number of fermionic oscillator operators
and the number of points of number theoretic braid are finite. This solution is however tricky
and does not conform with number theoretical universality.

4 Are Both Symplectic And Conformal Field Theories Needed?

Symplectic (or canonical as I have called them) symmetries of δM4
+ × CP2 (light-cone boundary

briefly) act as isometries of the “world of classical worlds”. One can see these symmetries as
analogs of Kac-Moody type symmetries with symplectic transformations of S2 × CP2, where S2

is rM = constant sphere of light-cone boundary, made local with respect to the light-like radial
coordinate rM taking the role of complex coordinate. Thus finite-dimensional Lie group G is
replaced with infinite-dimensional group of symplectic transformations. This inspires the question
whether a symplectic analog of conformal field theory at δM4

+ × CP2 could be relevant for the
construction of n-point functions in quantum TGD and what general properties these n-point
functions would have. This section appears already in the previous chapter about symmetries of
quantum TGD [K3] but because the results of the section provide the first concrete construction
recipe of M -matrix in zero energy ontology, it is included also in this chapter.

4.1 Symplectic QFT At Sphere

Actually the notion of symplectic QFT emerged as I tried to understand the properties of cosmic
microwave background which comes from the sphere of last scattering which corresponds roughly
to the age of 5 × 105 years [K9]. In this situation vacuum extremals of Kähler action around
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almost unique critical Robertson-Walker cosmology imbeddable in M4×S2, where there is homo-
logically trivial geodesic sphere of CP2. Vacuum extremal property is satisfied for any space-time
surface which is surface in M4×Y 2, Y 2 a Lagrangian sub-manifold of CP2 with vanishing induced
Kähler form. Symplectic transformations of CP2 and general coordinate transformations of M4

are dynamical symmetries of the vacuum extremals so that the idea of symplectic QFT emerges
natural. Therefore I shall consider first symplectic QFT at the sphere S2 of last scattering with
temperature fluctuation ∆T/T proportional to the fluctuation of the metric component gaa in
Robertson-Walker coordinates.

1. In quantum TGD the symplectic transformation of the light-cone boundary would induce
action in the “world of classical worlds” (light-like 3-surfaces). In the recent situation it is
convenient to regard perturbations of CP2 coordinates as fields at the sphere of last scattering
(call it S2) so that symplectic transformations of CP2 would act in the field space whereas
those of S2 would act in the coordinate space just like conformal transformations. The
deformation of the metric would be a symplectic field in S2. The symplectic dimension
would be induced by the tensor properties of R-W metric in R-W coordinates: every S2

coordinate index would correspond to one unit of symplectic dimension. The symplectic
invariance in CP2 degrees of freedom is guaranteed if the integration measure over the vacuum
deformations is symplectic invariant. This symmetry does not play any role in the sequel.

2. For a symplectic scalar field n ≥ 3-point functions with a vanishing anomalous dimension
would be functions of the symplectic invariants defined by the areas of geodesic polygons
defined by subsets of the arguments as points of S2. Since n-polygon can be constructed from
3-polygons these invariants can be expressed as sums of the areas of 3-polygons expressible in
terms of symplectic form. n-point functions would be constant if arguments are along geodesic
circle since the areas of all sub-polygons would vanish in this case. The decomposition of n-
polygon to 3-polygons brings in mind the decomposition of the n-point function of conformal
field theory to products of 2-point functions by using the fusion algebra of conformal fields
(very symbolically ΦkΦl = cmklΦm). This intuition seems to be correct.

3. Fusion rules stating the associativity of the products of fields at different points should
generalize. In the recent case it is natural to assume a non-local form of fusion rules given
in the case of symplectic scalars by the equation

Φk(s1)Φl(s2) =

∫
cmklf(A(s1, s2, s3))Φm(s)dµs . (4.1)

Here the coefficients cmkl are constants and A(s1, s2, s3) is the area of the geodesic triangle of
S2 defined by the sympletic measure and integration is over S2 with symplectically invariant
measure dµs defined by symplectic form of S2. Fusion rules pose powerful conditions on
n-point functions and one can hope that the coefficients are fixed completely.

4. The application of fusion rules gives at the last step an expectation value of 1-point function
of the product of the fields involves unit operator term

∫
cklf(A(s1, s2, s))Iddµs so that one

has

〈Φk(s1)Φl(s2)〉 =

∫
cklf(A(s1, s2, s))dµs . (4.2)

Hence 2-point function is average of a 3-point function over the third argument. The absence
of non-trivial symplectic invariants for 1-point function means that n = 1- an are constant,
most naturally vanishing, unless some kind of spontaneous symmetry breaking occurs. Since
the function f(A(s1, s2, s3)) is arbitrary, 2-point correlation function can have both signs.
2-point correlation function is invariant under rotations and reflections.
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4.2 Symplectic QFT With Spontaneous Breaking Of Rotational And
Reflection Symmetries

CMB data suggest breaking of rotational and reflection symmetries of S2. A possible mechanism
of spontaneous symmetry breaking is based on the observation that in TGD framework the hier-
archy of Planck constants assigns to each sector of the generalized embedding space a preferred
quantization axes. The selection of the quantization axis is coded also to the geometry of “world of
classical worlds”, and to the quantum fluctuations of the metric in particular. Clearly, symplectic
QFT with spontaneous symmetry breaking would provide the sought-for really deep reason for the
quantization of Planck constant in the proposed manner.

1. The coding of angular momentum quantization axis to the generalized embedding space
geometry allows to select South and North poles as preferred points of S2. To the three
arguments s1, s2, s3 of the 3-point function one can assign two squares with the added point
being either North or South pole. The difference

∆A(s1, s2, s3) ≡ A(s1, s2, s3, N)−A(s1, s2, s3, S) (4.3)

of the corresponding areas defines a simple symplectic invariant breaking the reflection sym-
metry with respect to the equatorial plane. Note that ∆A vanishes if arguments lie along
a geodesic line or if any two arguments co-incide. Quite generally, symplectic QFT differs
from conformal QFT in that correlation functions do not possess singularities.

2. The reduction to 2-point correlation function gives a consistency conditions on the 3-point
functions

〈(Φk(s1)Φl(s2))Φm(s3)〉 = crkl

∫
f(∆A(s1, s2, s))〈Φr(s)Φm(s3)〉dµs

= (4.4)

crklcrm

∫
f(∆A(s1, s2, s))f(∆A(s, s3, t))dµsdµt . (4.5)

Associativity requires that this expression equals to 〈Φk(s1)(Φl(s2)Φm(s3))〉 and this gives ad-
ditional conditions. Associativity conditions apply to f(∆A) and could fix it highly uniquely.

3. 2-point correlation function would be given by

〈Φk(s1)Φl(s2)〉 = ckl

∫
f(∆A(s1, s2, s))dµs (4.6)

4. There is a clear difference between n > 3 and n = 3 cases: for n > 3 also non-convex polygons
are possible: this means that the interior angle associated with some vertices of the polygon
is larger than π. n = 4 theory is certainly well-defined, but one can argue that so are also
n > 4 theories and skeptic would argue that this leads to an inflation of theories. TGD
however allows only finite number of preferred points and fusion rules could eliminate the
hierarchy of theories.

5. To sum up, the general predictions are following. Quite generally, for f(0) = 0 n-point cor-
relation functions vanish if any two arguments co-incide which conforms with the spectrum
of temperature fluctuations. It also implies that symplectic QFT is free of the usual singu-
larities. For symmetry breaking scenario 3-point functions and thus also 2-point functions
vanish also if s1 and s2 are at equator. All these are testable predictions using ensemble of
CMB spectra.
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4.3 Generalization To Quantum TGD

Since number theoretic braids are the basic objects of quantum TGD, one can hope that the n-
point functions assignable to them could code the properties of ground states and that one could
separate from n-point functions the parts which correspond to the symplectic degrees of freedom
acting as symmetries of vacuum extremals and isometries of the “world of classical worlds”.

1. This approach indeed seems to generalize also to quantum TGD proper and the n-point
functions associated with partonic 2-surfaces can be decomposed in such a way that one
obtains coefficients which are symplectic invariants associated with both S2 and CP2 Kähler
form.

2. Fusion rules imply that the gauge fluxes of respective Kähler forms over geodesic triangles
associated with the S2 and CP2 projections of the arguments of 3-point function serve basic
building blocks of the correlation functions. The North and South poles of S2 and three
poles of CP2 can be used to construct symmetry breaking n-point functions as symplectic
invariants. Non-trivial 1-point functions vanish also now.

3. The important implication is that n-point functions vanish when some of the arguments
co-incide. This might play a crucial role in taming of the singularities: the basic general
prediction of TGD is that standard infinities of local field theories should be absent and this
mechanism might realize this expectation.

Next some more technical but elementary first guesses about what might be involved.

1. It is natural to introduce the moduli space for n-tuples of points of the symplectic manifold
as the space of symplectic equivalence classes of n-tuples. In the case of sphere S2 convex
n-polygon allows n + 1 3-sub-polygons and the areas of these provide symplectically invari-
ant coordinates for the moduli space of symplectic equivalence classes of n-polygons (2n-D
space of polygons is reduced to n + 1-D space). For non-convex polygons the number of
3-sub-polygons is reduced so that they seem to correspond to lower-dimensional sub-space.
In the case of CP2 n-polygon allows besides the areas of 3-polygons also 4-volumes of 5-
polygons as fundamental symplectic invariants. The number of independent 5-polygons for
n-polygon can be obtained by using induction: once the numbers N(k, n) of independent
k ≤ n-simplices are known for n-simplex, the numbers of k ≤ n + 1-simplices for n + 1-
polygon are obtained by adding one vertex so that by little visual gymnastics the numbers
N(k, n+1) are given by N(k, n+1) = N(k−1, n)+N(k, n). In the case of CP2 the allowance
of 3 analogs {N,S, T} of North and South poles of S2 means that besides the areas of poly-
gons (s1, s2, s3), (s1, s2, s3, X), (s1, s2, s3, X, Y ), and (s1, s2, s3, N, S, T ) also the 4-volumes
of 5-polygons (s1, s2, s3, X, Y ), and of 6-polygon (s1, s2, s3, N, S, T ), X,Y ∈ {N,S, T} can
appear as additional arguments in the definition of 3-point function.

2. What one really means with symplectic tensor is not clear since the näıve first guess for the n-
point function of tensor fields is not manifestly general coordinate invariant. For instance, in
the model of CMB, the components of the metric deformation involving S2 indices would be
symplectic tensors. Tensorial n-point functions could be reduced to those for scalars obtained
as inner products of tensors with Killing vector fields of SO(3) at S2. Again a preferred
choice of quantization axis would be introduced and special points would correspond to the
singularities of the Killing vector fields.

The decomposition of Hamiltonians of the “world of classical worlds” expressible in terms of
Hamiltonians of S2×CP2 to irreps of SO(3) and SU(3) could define the notion of symplectic
tensor as the analog of spherical harmonic at the level of WCW . Spin and gluon color would
have natural interpretation as symplectic spin and color. The infinitesimal action of various
Hamiltonians on n-point functions defined by Hamiltonians and their super counterparts
is well-defined and group theoretical arguments allow to deduce general form of n-point
functions in terms of symplectic invariants.

3. The need to unify p-adic and real physics by requiring them to be completions of rational
physics, and the notion of finite measurement resolution suggest that discretization of also
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fusion algebra is necessary. The set of points appearing as arguments of n-point functions
could be finite in a given resolution so that the p-adically troublesome integrals in the formulas
for the fusion rules would be replaced with sums. Perhaps rational/algebraic variants of
S2 × CP2 = SO(3)/SO(2) × SU(3)/U(2) obtained by replacing these groups with their
rational/algebraic variants are involved. Tedrahedra, octahedra, and dodecahedra suggest
themselves as simplest candidates for these discretized spaces. Also the symplectic moduli
space would be discretized to contain only n-tuples for which the symplectic invariants are
numbers in the allowed algebraic extension of rationals. This would provide an abstract
looking but actually very concrete operational approach to the discretization involving only
areas of n-tuples as internal coordinates of symplectic equivalence classes of n-tuples. The
best that one could achieve would be a formulation involving nothing below measurement
resolution.

4. This picture based on elementary geometry might make sense also in the case of conformal
symmetries. The angles associated with the vertices of the S2 projection of n-polygon could
define conformal invariants appearing in n-point functions and the algebraization of the
corresponding phases would be an operational manner to introduce the space-time correlates
for the roots of unity introduced at quantum level. In CP2 degrees of freedom the projections
of n-tuples to the homologically trivial geodesic sphere S2 associated with the particular
sector of CH would allow to define similar conformal invariants. This framework gives
dimensionless areas (unit sphere is considered). p-Adic length scale hypothesis and hierarchy
of Planck constants would bring in the fundamental units of length and time in terms of CP2

length.

The recent view about M -matrix described is something almost unique determined by Connes
tensor product providing a formal realization for the statement that complex rays of state space
are replaced with N rays where N defines the hyper-finite sub-factor of type II1 defining the
measurement resolution. M -matrix defines time-like entanglement coefficients between positive
and negative energy parts of the zero energy state and need not be unitary. It is identified as
square root of density matrix with real expressible as product of of real and positive square root
and unitary S-matrix. This S-matrix is what is measured in laboratory. There is also a general
vision about how vertices are realized: they correspond to light-like partonic 3-surfaces obtained
by gluing incoming and outgoing partonic 3-surfaces along their ends together just like lines of
Feynman diagrams. Note that in string models string world sheets are non-singular as 2-manifolds
whereas 1-dimensional vertices are singular as 1-manifolds. These ingredients we should be able
to fuse together. So we try once again!

1. Iteration starting from vertices and propagators is the basic approach in the construction of n-
point function in standard QFT. This approach does not work in quantum TGD. Symplectic
and conformal field theories suggest that recursion replaces iteration in the construction. One
starts from an n-point function and reduces it step by step to a vacuum expectation value
of a 2-point function using fusion rules. Associativity becomes the fundamental dynamical
principle in this process. Associativity in the sense of classical number fields has already
shown its power and led to a hyper-octoninic formulation of quantum TGD promising a
unification of various visions about quantum TGD [K11].

2. Let us start from the representation of a zero energy state in terms of a causal diamond
defined by future and past directed light-cones. Zero energy state corresponds to a quantum
superposition of light-like partonic 3-surfaces each of them representing possible particle
reaction. These 3-surfaces are very much like generalized Feynman diagrams with lines
replaced by light-like 3-surfaces coming from the upper and lower light-cone boundaries and
glued together along their ends at smooth 2-dimensional surfaces defining the generalized
vertices.

3. It must be emphasized that the generalization of ordinary Feynman diagrammatics arises and
conformal and symplectic QFTs appear only in the calculation of single generalized Feynman
diagram. Therefore one could still worry about loop corrections. The fact that no integration
over loop momenta is involved and there is always finite cutoff due to discretization together



4.3 Generalization To Quantum TGD 39

with recursive instead of iterative approach gives however good hopes that everything works.
Note that this picture is in conflict with one of the earlier approaches based on positive
energy ontology in which the hope was that only single generalized Feynman diagram could
define the U -matrix thought to correspond to physical S-matrix at that time.

4. One can actually simplify things by identifying generalized Feynman diagrams as maxima
of Kähler function with functional integration carried over perturbations around it. Thus
one would have conformal field theory in both fermionic and WCW degrees of freedom. The
light-like time coordinate along light-like 3-surface is analogous to the complex coordinate
of conformal field theories restricted to some curve. If it is possible continue the light-
like time coordinate to a hyper-complex coordinate in the interior of 4-D space-time sheet,
the correspondence with conformal field theories becomes rather concrete. Same applies to
the light-like radial coordinates associated with the light-cone boundaries. At light-cone
boundaries one can apply fusion rules of a symplectic QFT to the remaining coordinates.
Conformal fusion rules are applied only to point pairs which are at different ends of the
partonic surface and there are no conformal singularities since arguments of n-point functions
do not co-incide. By applying the conformal and symplectic fusion rules one can eventually
reduce the n-point function defined by the various fermionic and bosonic operators appearing
at the ends of the generalized Feynman diagram to something calculable.

5. Finite measurement resolution defining the Connes tensor product is realized by the dis-
cretization applied to the choice of the arguments of n-point functions so that discretion is
not only a space-time correlate of finite resolution but actually defines it. No explicit realiza-
tion of the measurement resolution algebra N seems to be needed. Everything should boil
down to the fusion rules and integration measure over different 3-surfaces defined by exponent
of Kähler function and by imaginary exponent of Chern-Simons action. The continuation of
WCW Clifford algebra for 3-surfaces with cm degrees of freedom fixed to a hyper-octonionic
variant of gamma matrix field of super-string models defined in M8 (hyper-octonionic space)
and M8 ↔ M4 × CP2 duality leads to a unique choice of the points, which can contribute
to n-point functions as intersection of M4 subspace of M8 with the counterparts of partonic
2-surfaces at the boundaries of light-cones of M8. Therefore there are hopes that the result-
ing theory is highly unique. Symplectic fusion algebra reduces to a finite algebra for each
space-time surface if this picture is correct.

6. Consider next some of the details of how the light-like 3-surface codes for the fusion rules
associated with it. The intermediate partonic 2- surfaces must be involved since otherwise
the construction would carry no information about the properties of the light-like 3-surface,
and one would not obtain perturbation series in terms of the relevant coupling constants.
The natural assumption is that partonic 2-surfaces belong to future/past directed light-cone
boundary depending on whether they are on lower/upper half of the causal diamond. Hyper-
octonionic conformal field approach fixes the nint points at intermediate partonic two-sphere
for a given light-like 3-surface representing generalized Feynman diagram, and this means
that the contribution is just N -point function with N = nout + nint + nin calculable by the
basic fusion rules. Coupling constant strengths would emerge through the fusion coefficients,
and at least in the case of gauge interactions they must be proportional to Kähler coupling
strength since n-point functions are obtained by averaging over small deformations with
vacuum functional given by the exponent of Kähler function. The first guess is that one can
identify the spheres S2 ⊂ δM4

± associated with initial, final and, and intermediate states so
that symplectic n-points functions could be calculated using single sphere.

These findings raise the hope that quantum TGD is indeed a solvable theory. Even if one
is not willing to swallow any bit of TGD, the classification of the symplectic QFTs remains a
fascinating mathematical challenge in itself. A further challenge is the fusion of conformal QFT
and symplectic QFT in the construction of n-point functions. One might hope that conformal and
symplectic fusion rules can be treated separately. This separation indeed happens since conformal
degrees of freedom correspond to quantum fluctuations contributing to the WCW metric and
affecting the induced metric whereas symplectic invariants correspond to non-quantum fluctuating
zero modes defining the part of quantum state not affected by quantum fluctuations parameterized
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by the symplectic group of δM4
± × CP2. Also the dream about symplectic fusion rules have been

realized. An explicit construction of symplectic fusion algebras is represented in [K1].
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